Science.gov

Sample records for disturbed galaxies evidence

  1. Kinematic Disturbances in Rotation Curves among 89 Virgo Galaxies

    NASA Astrophysics Data System (ADS)

    Rubin, V. C.; Waterman, A. H.; Kenney, J. D. P.

    1999-05-01

    For 89 (mostly) spirals in the Virgo cluster, we have obtained optical long-slit spectra of the ionized gas. We find: (1) 50% of the Virgo galaxies we observed have regular rotation patterns; 50% exhibit kinematic disturbances ranging from mild to major. Velocity complexities are consistent with those resulting from tidal encounters or accretion. Since kinematic disturbances will to fade within ~ 1Gyr, many Virgo galaxies have experienced several significant kinematic disturbances during their lifetimes. (2) There is no strong correlation of rotation curve complexity with Hubble type, galaxy luminosity, local galaxy density, or HI deficiency. (3) There is a remarkable difference in the distribution of galaxy systemic velocity for galaxies in the two classes. Galaxies with regular rotation patterns show a flat distribution with velocities ranging from V = -300 km/sec to V = +2500 km/sec; galaxies with disturbed kinematics have a Gaussian distribution which peaks at V = +1172+/-100 km/sec, near the cluster mean velocity. This distribution is virtually identical to the distribution of systemic velocities for elliptical galaxies in Virgo. However, disturbed spirals are less centrally concentrated than the ellipticals and those near the periphery are more likely to have the mean cluster velocity. We suggest that spirals with disturbed kinematics are preferentially on radial orbits, which bring them to the denser core, where tidal interactions are strong and/or more common. However, because they spend most of their time near apocenter, we observe them near the periphery of the cluster. Some may be falling into the core for the first time. For a non-virialized cluster like Virgo, galaxies may encounter either local (nearby galaxies) or global (cluster related) interactions. These interactions may alter the galaxy morphology, and may play a role in driving the Virgo cluster toward dynamical equilibrium.

  2. Kinematic Disturbances in Optical Rotation Curves among 89 Virgo Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Rubin, Vera C.; Waterman, Andrew H.; Kenney, Jeffrey D. P.

    1999-07-01

    For 89 galaxies, mostly spirals, in the Virgo Cluster region, we have obtained optical long-slit major-axis spectra of the ionized gas. We find the following: (1) One-half of the Virgo galaxies we observed have regular rotation patterns, while the other half exhibit kinematic disturbances ranging from mild to major. Velocity complexities are generally consistent with those resulting from tidal encounters or accretion events. Since kinematic disturbances are expected to fade within ~10^9 yr, many Virgo galaxies have experienced several significant kinematic disturbances during their lifetimes. (2) There is no strong correlation of rotation curve complexity with Hubble type, with galaxy luminosity, with local galaxy density, or with H I deficiency. (3) A few Virgo galaxies have ionized gas of limited extent, with velocities exceptionally low for their luminosities. In these galaxies the gas must be not rotationally supported. (4) There is a remarkable difference in the distribution of galaxy systemic velocity for galaxies with regular rotation curves and galaxies with disturbed rotation curves. Galaxies with regular rotation patterns show a flat distribution with velocities ranging from V_0=-300 km s^-1 to V_0=+2500 km s^-1 galaxies with disturbed kinematics have a Gaussian distribution that peaks at V_0=+1172+/-100 km s^-1, close to the cluster mean velocity. This latter distribution is virtually identical to the distribution of systemic velocity for elliptical galaxies in Virgo. However, disturbed galaxies are less concentrated to the cluster core than are the ellipticals; those near the periphery have velocities closer to the mean cluster velocity. Thus, spirals with disturbed kinematics are preferentially on radial orbits, which bring them to the denser core, where tidal interactions are strong and/or more common. Because they spend much time near apocenter, we observe them near the cluster periphery. Some may be falling into the core for the first time. These

  3. ENHANCED NITROGEN IN MORPHOLOGICALLY DISTURBED BLUE COMPACT GALAXIES AT 0.20 < z < 0.35: PROBING GALAXY MERGING FEATURES

    SciTech Connect

    Chung, Jiwon; Rey, Soo-Chang; Yeom, Bum-Suk; Yi, Wonhyeong; Sung, Eon-Chang; Kyeong, Jaemann; Humphrey, Andrew E-mail: screy@cnu.ac.kr

    2013-04-10

    We present a study of correlations between the elemental abundances and galaxy morphologies of 91 blue compact galaxies (BCGs) at z = 0.20-0.35 with Sloan Digital Sky Survey (SDSS) DR7 data. We classify the morphologies of the galaxies as either ''disturbed'' or ''undisturbed'' by visual inspection of the SDSS images, and using the Gini coefficient and M{sub 20}. We derive oxygen and nitrogen abundances using the T{sub e} method. We find that a substantial fraction of BCGs with disturbed morphologies, indicative of merger remnants, show relatively high N/O and low O/H abundance ratios. The majority of the disturbed BCGs exhibit higher N/O values at a given O/H value compared to the morphologically undisturbed galaxies, implying more efficient nitrogen enrichment in disturbed BCGs. We detect Wolf-Rayet (WR) features in only a handful of the disturbed BCGs, which appears to contradict the idea that WR stars are responsible for high nitrogen abundance. Combining these results with Galaxy Evolution Explorer GR6 ultraviolet (UV) data, we find that the majority of the disturbed BCGs show systematically lower values of the H{alpha} to near-UV star formation rate ratio. The equivalent width of the H{beta} emission line is also systematically lower in the disturbed BCGs. Based on these results, we infer that disturbed BCGs have undergone star formation over relatively longer timescales, resulting in a more continuous enrichment of nitrogen. We suggest that this correlation between morphology and chemical abundances in BCGs is due to a difference in their recent star formation histories.

  4. Sleep disturbances as an evidence-based suicide risk factor.

    PubMed

    Bernert, Rebecca A; Kim, Joanne S; Iwata, Naomi G; Perlis, Michael L

    2015-03-01

    Increasing research indicates that sleep disturbances may confer increased risk for suicidal behaviors, including suicidal ideation, suicide attempts, and death by suicide. Despite increased investigation, a number of methodological problems present important limitations to the validity and generalizability of findings in this area, which warrant additional focus. To evaluate and delineate sleep disturbances as an evidence-based suicide risk factor, a systematic review of the extant literature was conducted with methodological considerations as a central focus. The following methodologic criteria were required for inclusion: the report (1) evaluated an index of sleep disturbance; (2) examined an outcome measure for suicidal behavior; (3) adjusted for presence of a depression diagnosis or depression severity, as a covariate; and (4) represented an original investigation as opposed to a chart review. Reports meeting inclusion criteria were further classified and reviewed according to: study design and timeframe; sample type and size; sleep disturbance, suicide risk, and depression covariate assessment measure(s); and presence of positive versus negative findings. Based on keyword search, the following search engines were used: PubMed and PsycINFO. Search criteria generated N = 82 articles representing original investigations focused on sleep disturbances and suicide outcomes. Of these, N = 18 met inclusion criteria for review based on systematic analysis. Of the reports identified, N = 18 evaluated insomnia or poor sleep quality symptoms, whereas N = 8 assessed nightmares in association with suicide risk. Despite considerable differences in study designs, samples, and assessment techniques, the comparison of such reports indicates preliminary, converging evidence for sleep disturbances as an empirical risk factor for suicidal behaviors, while highlighting important, future directions for increased investigation. PMID:25698339

  5. Non-parametric analysis of the rest-frame UV sizes and morphological disturbance amongst L* galaxies at 4 < z < 8

    NASA Astrophysics Data System (ADS)

    Curtis-Lake, E.; McLure, R. J.; Dunlop, J. S.; Rogers, A. B.; Targett, T.; Dekel, A.; Ellis, R. S.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Kocevski, D. D.; Koekemoer, A. M.; Lai, K.; Mármol-Queraltó, E.; Robertson, B. E.

    2016-03-01

    We present the results of a study investigating the sizes and morphologies of redshift 4 < z < 8 galaxies in the CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) GOODS-S (Great Observatories Origins Deep Survey southern field), HUDF (Hubble Ultra-Deep Field) and HUDF parallel fields. Based on non-parametric measurements and incorporating a careful treatment of measurement biases, we quantify the typical size of galaxies at each redshift as the peak of the lognormal size distribution, rather than the arithmetic mean size. Parametrizing the evolution of galaxy half-light radius as r50 ∝ (1 + z)n, we find n = -0.20 ± 0.26 at bright UV-luminosities (0.3L*(z = 3) < L < L*) and n = -0.47 ± 0.62 at faint luminosities (0.12L* < L < 0.3L*). Furthermore, simulations based on artificially redshifting our z ˜ 4 galaxy sample show that we cannot reject the null hypothesis of no size evolution. We show that this result is caused by a combination of the size-dependent completeness of high-redshift galaxy samples and the underestimation of the sizes of the largest galaxies at a given epoch. To explore the evolution of galaxy morphology we first compare asymmetry measurements to those from a large sample of simulated single Sérsic profiles, in order to robustly categorize galaxies as either `smooth' or `disturbed'. Comparing the disturbed fraction amongst bright (M1500 ≤ -20) galaxies at each redshift to that obtained by artificially redshifting our z ˜ 4 galaxy sample, while carefully matching the size and UV-luminosity distributions, we find no clear evidence for evolution in galaxy morphology over the redshift interval 4 < z < 8. Therefore, based on our results, a bright (M1500 ≤ -20) galaxy at z ˜ 6 is no more likely to be measured as `disturbed' than a comparable galaxy at z ˜ 4, given the current observational constraints.

  6. How are quasars fueled? Simulating interstellar gas in tidally disturbed galaxies

    NASA Technical Reports Server (NTRS)

    Byrd, Gene G.

    1986-01-01

    Whether gravitational tides from companions trigger global instabilities in spiral galaxy disks and thus rapid flows of gas into the nucleus to fuel activity is investigated. An n-body computer program is used to simulate the disk of the spiral galaxy within a much more stable, high-velocity dispersion spherical halo. Under sufficient perturbation, the disk undergoes violent distortions due to the disturber and its self-gravitation. The tidal action of companions was simulated and the tidal strengths at which the instabilities appear to match those of the observed companions of Seyferts and quasars was shown. With the additional modifications planned, the gas flow will be more realistically simulated to compare with observations (e.g., colors, velocity fields) of active galaxies.

  7. Galaxy Zoo: Evidence for rapid, recent quenching within a population of AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.

    2016-09-01

    We present a population study of the star formation history of 1244 Type 2 AGN host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualise the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.

  8. Atomic hydrogen in the disturbed edge-on galaxy NGC 4631

    NASA Technical Reports Server (NTRS)

    Rand, Richard J.; Vanderhulst, J. M.

    1993-01-01

    We present WSRT HI observations of the nearby, disturbed, edge-on galaxy NGC 4631. A low-resolution (45 in. x 87 in.) map shows previously unknown tidal debris at large distances from the plane, and two dwarf companions. A high resolution (12 in. x 22 in.) map reveals a very disturbed gas layer in NGC 4631, with a wealth of small-scale structure. The most striking discovery is a supershell in the eastern half of the disk with a diameter of about 3 kpc, a mass of approximately 10 exp 8 solar mass and a tentative expansion velocity of 45 km/s. If the expansion is real, the energy which must have been injected by supernovae to explain the shell's current parameters is roughly 4 x 10(exp 55) ergs. Such a high energy requirement suggests an alternative formation mechanism, such as a collision with a small companion.

  9. Kinematic evidence of satellite galaxy populations in the potential wells of first-ranked cluster galaxies

    SciTech Connect

    Cowie, L.L.; Hu, E.M.

    1986-06-01

    The velocities of 38 centrally positioned galaxies (r much less than 100 kpc) were measured relative to the velocity of the first-ranked galaxy in 14 rich clusters. Analysis of the velocity distribution function of this sample and of previous data shows that the population cannot be fit by a single Gaussian. An adequate fit is obtained if 60 percent of the objects lie in a Gaussian with sigma = 250 km/s and the remainder in a population with sigma = 1400 km/s. All previous data sets are individually consistent with this conclusion. This suggests that there is a bound population of galaxies in the potential well of the central galaxy in addition to the normal population of the cluster core. This is taken as supporting evidence for the galactic cannibalism model of cD galaxy formation. 14 references.

  10. Kinematic evidence of satellite galaxy populations in the potential wells of first-ranked cluster galaxies

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Hu, E. M.

    1986-01-01

    The velocities of 38 centrally positioned galaxies (r much less than 100 kpc) were measured relative to the velocity of the first-ranked galaxy in 14 rich clusters. Analysis of the velocity distribution function of this sample and of previous data shows that the population cannot be fit by a single Gaussian. An adequate fit is obtained if 60 percent of the objects lie in a Gaussian with sigma = 250 km/s and the remainder in a population with sigma = 1400 km/s. All previous data sets are individually consistent with this conclusion. This suggests that there is a bound population of galaxies in the potential well of the central galaxy in addition to the normal population of the cluster core. This is taken as supporting evidence for the galactic cannibalism model of cD galaxy formation.

  11. The dark side of galaxy colour: evidence from new SDSS measurements of galaxy clustering and lensing

    SciTech Connect

    Hearin, Andrew P.; Watson, Douglas F.; Becker, Matthew R.; Reyes, Reinabelle; Berlind, Andreas A.; Zentner, Andrew R.

    2014-08-12

    The age matching model has recently been shown to predict correctly the luminosity L and g-r color of galaxies residing within dark matter halos. The central tenet of the model is intuitive: older halos tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g-r color trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new measurements of the galaxy two-point correlation function and the galaxy-galaxy lensing signal as a function of M* and g-r color from the Sloan Digital Sky Survey, and show that age matching exhibits remarkable agreement with these and other statistics of low-redshift galaxies. In so doing, we also demonstrate good agreement between the galaxy-galaxy lensing observed by SDSS and the signal predicted by abundance matching, a new success of this model. We describe how age matching is a specific example of a larger class of Conditional Abundance Matching models (CAM), a theoretical framework we introduce here for the first time. CAM provides a general formalism to study correlations at fixed mass between any galaxy property and any halo property. The striking success of our simple implementation of CAM provides compelling evidence that this technique has the potential to describe the same set of data as alternative models, but with a dramatic reduction in the required number of parameters. CAM achieves this reduction by exploiting the capability of contemporary N-body simulations to determine dark matter halo properties other than mass alone, which distinguishes our model from conventional approaches to the galaxy-halo connection.

  12. Bright Submillimeter Galaxies: Evidence for Maximal Starbursts

    NASA Astrophysics Data System (ADS)

    Aretxaga, I.

    2014-09-01

    AzTEC is a sensitive bolometer camera that, coupled with 10 - 15m-class sub-mm telescopes, has mapped more than 3 sq. deg of the extragalactic sky to depths between 0.7 and 1.1 mJy at 1.1mm, prior to its current installation and operation on the 32m Large Millimeter Telescope (LMT). These extragalactic surveys targeted towards blank-fields and biased high-z environments alike have allowed us to identify a few thousands of submillimeter galaxies, powerful obscured starbursts at high-redshifts (z > 1), some of which have intrinsic Star Formation Rates SFR > 1000 Msun/yr and furthermore are extremely compact (~ 1 kpc). Our results imply that these extraordinary systems are forming stars in a gravitationally bound regime in which gravity prohibits the formation of superwinds, leading to matter accumulation within the galaxy and further generations of star formation.

  13. Galaxy pairs in deep HST images: Evidence for evolution in the galaxy merger rate

    NASA Technical Reports Server (NTRS)

    Burkey, Jordan M.; Keel, William C.; Windhorst, Rogier A.; Franklin, Barbara E.

    1994-01-01

    We use four deep serendipitous fields observed with the Hubble Space Telescope (HST) Wide-Field Camera to constrain the rate of galaxy merging between the current epoch and z approximately equals 0.7. Since most mergers occur between members of bound pairs, the merger rate is given to a good approximation by (half) the rate of disappearance of galaxies in pairs. An objective criterion for pair membership shows that 34% +/- 9% of our HST galaxies with I = 18-22 belong to pairs, compared to 7% locally. This means that about 13% of the galaxy population has disappeared due to merging in the cosmic epoch corresponding to this magnitude interval (or 0.1 approximately less than z approximately less than 0.7). Our pair fraction is a lower limit: correction for pair members falling below our detection threshold might raise the fraction to approximately 50%. Since we address only two-galaxy merging, these values do not include physical systems of higher multiplicity. Incorporating I-band field-galaxy redshift distributions, the pair fraction grows with redshift as alpha(1 + z)(exp 3.5 +/- 0.5) and the merger rate as (1 + z)(exp 2.5 +/- 0.5). This may have significant implications for the interpretation of galaxy counts (disappearance of faint blue galaxies), the cosmological evolution of faint radio sources and quasars (which evolve approximately as (1 + z)(exp 3), the similarity in the power law is necessary but not sufficient evidence for a causal relation), statistics of QSO companions, the galaxy content in distant clusters, and the merging history of a 'typical' galaxy.

  14. Body image disturbance in children and adolescents with eating disorders. Current evidence and future directions.

    PubMed

    Legenbauer, Tanja; Thiemann, Pia; Vocks, Silja

    2014-01-01

    Body image is multifaceted and incorporates perceptual, affective, and cognitive components as well as behavioral features. Only few studies have examined the character of body-image disturbance in children/adolescents with eating disorders. It is unknown whether body-image disturbances in children/adolescent with eating disturbances are comparable to those of adult patients with eating disorders. Body-image disturbance might differ quantitatively and qualitatively according to the cognitive developmental status and the age of the individual. This paper provides an overview of the current evidence for body-image disturbance in children/adolescents with eating disorders, and how they compare with those adults with eating disorders. Current evidence indicates that older adolescent patients show similar deficits as adult patients with eating disorders, in particular for the attitudinal body-image component. However, evidence for a perceptual body-image disturbance in adolescent patients, in particular anorexia nervosa, is not conclusive. Reliable statements for childhood can hardly be made because clinical studies are not available. Investigations of body-image disturbance in children have focused on the predictive value for eating disorders. Limitations of the current evidence are discussed, and future directions for research and therapy are indicated. PMID:24365963

  15. CO in Hickson compact group galaxies with enhanced warm H2 emission: Evidence for galaxy evolution?

    NASA Astrophysics Data System (ADS)

    Lisenfeld, U.; Appleton, P. N.; Cluver, M. E.; Guillard, P.; Alatalo, K.; Ogle, P.

    2014-10-01

    Context. Galaxies in Hickson Compact Groups (HCGs) are believed to experience morphological transformations from blue, star-forming galaxies to red, early-type galaxies. Galaxies with a high ratio between the luminosities of the warm H2 to the 7.7 μm PAH emission (so-called Molecular Hydrogen Emission Galaxies, MOHEGs) are predominantly in an intermediate phase, the green valley. Their enhanced H2 emission suggests that the molecular gas is affected in the transition. Aims: We study the properties of the molecular gas traced by CO in galaxies in HCGs with measured warm H2 emission in order to look for evidence of the perturbations affecting the warm H2 in the kinematics, morphology and mass of the molecular gas. Methods: We observed the CO(1-0) emission of 20 galaxies in HCGs and complemented our sample with 11 CO(1-0) spectra from the literature. Most of the galaxies have measured warm H2 emission, and 14 of them are classified as MOHEGs. We mapped some of these galaxies in order to search for extra-galactic CO emission. We analyzed the molecular gas mass derived from CO(1-0), MH2, and its kinematics, and then compared it to the mass of the warm molecular gas, the stellar mass and star formation rate (SFR). Results: Our results are the following. (i) The mass ratio between the CO-derived and the warm H2 molecular gas is in the same range as found for field galaxies. (ii) Some of the galaxies, mostly MOHEGs, have very broad CO linewidths of up to 1000 km s-1 in the central pointing. The line shapes are irregular and show various components. (iii) In the mapped objects we found asymmetric distributions of the cold molecular gas. (iv) The star formation efficiency (=SFR/MH2) of galaxies in HCGs is very similar to isolated galaxies. No significant difference between MOHEGs and non-MOHEGs or between early-type and spiral galaxies has been found. In a few objects the SFE is significantly lower, indicating the presence of molecular gas that is not actively forming stars

  16. Gravitational spurs and resonances - Effects of small mass disturbers in spiral galaxy disks

    NASA Technical Reports Server (NTRS)

    Byrd, G. G.; Smith, B. F.; Miller, R. H.

    1984-01-01

    In the present simulations of a disturber in a complete stellar disk without the restrictive assumption, the disturber parameters of the NGC 206 cloud in M 31 were assumed as a realistic example. The resulting spur around the disturber was comparable in shape, size, and strength to Julian and Toomre's (1966) results. In addition, a complicated evolving pattern of strong density peaks appeared well inside and outside the disturber's orbit. Simulation with a ten-times-more-massive disturber showed a more clearly defined version of the same initial pattern, two spiral arms of density peaks rotating with the disturber in the stronger arm. The orbital radii of the density peaks correspond to those of epicyclic resonances with the orbiting disturber potential.

  17. Modeling mountain pine beetle disturbance in Glacier National Park using multiple lines of evidence

    USGS Publications Warehouse

    Assal, Timothy; Sibold, Jason

    2013-01-01

    Temperate forest ecosystems are subject to various disturbances which contribute to ecological legacies that can have profound effects on the structure of the ecosystem. Impacts of disturbance can vary widely in extent, duration and severity over space and time. Given that global climate change is expected to increase rates of forest disturbance, an understanding of these events are critical in the interpretation of contemporary forest patterns and those of the near future. We seek to understand the impact of the 1970s mountain pine beetle outbreak on the landscape of Glacier National Park and investigate any connection between this event and subsequent decades of extensive wildfire. The lack of spatially explicit data on the mountain pine beetle disturbance represents a major data gap and inhibits our ability to test for correlations between outbreak severity and fire severity. To overcome this challenge, we utilized multiple lines of evidence to model forest canopy mortality as a proxy for outbreak severity. We used historical aerial and landscape photos, reports, aerial survey data, a six year collection of Landsat imagery and abiotic data in combination with regression analysis. The use of remotely sensed data is critical in large areas where subsequent disturbance (fire) has erased some of the evidence from the landscape. Results indicate that this method is successful in capturing the spatial heterogeneity of the outbreak in a topographically complex landscape. Furthermore, this study provides an example on the use of existing data to reduce levels of uncertainty associated with an historic disturbance.

  18. Evidence for Tides and Interactions in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Conselice, C. J.; Gallagher, J. S.

    1997-12-01

    We present preliminary results of a search for tidally distorted, or interacting galaxies in the galaxy clusters: Abell 2199, AWM 5, AWM 3, the Coma and Perseus clusters. This is part of a large study to determine the nature of small-scale structure in galaxy clusters of various morphologies. Our B and R band observations were made with the CCD imager on the WIYN 3.5-m telescope, and typically have an angular resolution of 1 arcsec or better. We are able to classify all of the observed structures into seven different types. These include: Galaxy Interactions, Multiple Galaxies, Tailed Galaxies, Dwarf Galaxy Groups, Galaxy Aggregates, Distorted Galaxies, and Line Galaxies. We present examples of objects in these categories and conclude that interactions that perturb individual galaxies are common in clusters of galaxies, despite the high relative random velocities between cluster members.

  19. Risk factors for sleep disturbances in older adults: Evidence from prospective studies.

    PubMed

    Smagula, Stephen F; Stone, Katie L; Fabio, Anthony; Cauley, Jane A

    2016-02-01

    No systematic review of epidemiological evidence has examined risk factors for sleep disturbances among older adults. We searched the PubMed database combining search terms targeting the following domains 1) prospective, 2) sleep, and 3) aging, and identified 21 relevant population-based studies with prospective sleep outcome data. Only two studies utilized objective measures of sleep disturbance, while six used the Pittsburgh sleep quality index (PSQI) and thirteen used insomnia symptoms or other sleep complaints as the outcome measure. Female gender, depressed mood, and physical illness were most consistently identified as risks for future sleep disturbances. Less robust evidence implicated the following as potentially relevant predictors: lower physical activity levels, African-American race, lower economic status, previous manual occupation, widowhood, marital quality, loneliness and perceived stress, preclinical dementia, long-term benzodiazepine and sedative use, low testosterone levels, and inflammatory markers. Chronological age was not identified as a consistent, independent predictor of future sleep disturbances. In conclusion, prospective studies have identified female gender, depressed mood, and physical illness as general risk factors for future sleep disturbances in later life, although specific physiological pathways have not yet been established. Research is needed to determine the precise mechanisms through which these factors influence sleep over time. PMID:26140867

  20. Polarimetric imaging of the polar ring galaxy NGC 660 - evidence for dust outside the stellar disk

    NASA Astrophysics Data System (ADS)

    Alton, P. B.; Stockdale, D. P.; Scarrott, S. M.; Wolstencroft, R. D.

    2000-05-01

    Optical imaging polarimetry has been carried out for the polar ring, starburst galaxy NGC 660. This galaxy has a highly inclined, severely tidally-disturbed disk which is surrounded by a gas-rich, polar ring. We detect scattered light from a large part of the halo and this is attributable to dust grains residing up to =~ 2.5 kpc from the stellar disk. There is evidence from emission-line imaging carried out in the past, that NGC 660 is host to an energetic outflow of hot gas along the minor axis (a `superwind'). Our results indicate that dust grains are entrained in this same outflow. Polarization due to scattering, however, is also present at positions away from the minor axis suggesting that grains may also be displaced from the stellar disk by tidal forces exerted during galactic collisions. Where the polar ring occludes the stellar disk we observe polarization due to magnetically aligned, dichroic grains. By comparing the recorded polarization with the associated optical extinction we infer that the magnetic field in the ring has a lower (but still comparable) strength to the magnetic field in the Milky Way. We also derive a dust-to-gas ratio for the ring and this is about a factor of 2-3 lower than in the solar neighbourhood (but close to the value measured in some nearby spirals). If the ring comprises the remnants of the `interloper' which collided with NGC 660, we expect that the ruptured galaxy was a massive, metal-rich spiral.

  1. Evidence for Tidal Interactions and Mergers as the Origin of Galaxy Morphology Evolution in Compact Groups

    NASA Astrophysics Data System (ADS)

    Coziol, R.; Plauchu-Frayn, I.

    2007-06-01

    We present the results of a morphological study based on NIR images of 25 galaxies, with different levels of nuclear activity (star formation or AGN), in eight compact groups (CGs) of galaxies. We independently perform two different analyses: a study of the deviations of the isophotal levels from pure ellipses and a study of morphological asymmetries. The results yielded by the two analyses are highly consistent. For the first time, it is possible to show that deviations from pure ellipses are produced by inhomogeneous stellar mass distributions related to galaxy interactions and mergers. We find evidence of mass asymmetries in 74% of the galaxies in our sample. In 59% of these cases, the asymmetries come in pairs and are consistent with tidal effects produced by the proximity of companion galaxies. The symmetric galaxies are generally small in size or mass and inactive, and have an early-type morphology. They may have already lost their gas and least-attached envelope of stars to their more massive companions. In 20% of the galaxies we find evidence for cannibalism: a big galaxy swallowing a smaller companion. In 36% of the early-type galaxies the color gradient is positive (blue nucleus) or flat. Summing up these results, as much as 52% of the galaxies in our sample could show evidence of an ongoing or past merger. Our observations also suggest that galaxies in CGs merge more frequently under ``dry'' conditions (that is, once they have lost most of their gas). The high frequency of interacting and merging galaxies observed in our study is consistent with the bias of our sample toward CGs of type B, which represent the most active phase in the evolution of the groups. In these groups we also find a strong correlation between asymmetries and nuclear activity in early-type galaxies. This correlation allows us to identify tidal interactions and mergers as the cause of galaxy morphology transformation in CGs.

  2. MID-INFRARED EVIDENCE FOR ACCELERATED EVOLUTION IN COMPACT GROUP GALAXIES

    SciTech Connect

    Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Hibbard, John E.; Hornschemeier, Ann E.; Tzanavaris, Panayiotis; Charlton, Jane C.; Jarrett, Thomas H.

    2010-11-15

    Compact galaxy groups are at the extremes of the group environment, with high number densities and low velocity dispersions that likely affect member galaxy evolution. To explore the impact of this environment in detail, we examine the distribution in the mid-infrared (MIR) 3.6-8.0 {mu}m color space of 42 galaxies from 12 Hickson compact groups (HCGs) in comparison with several control samples, including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are strongly bimodal, with statistically significant evidence for a gap in their distribution. In contrast, none of the other samples show such a marked gap, and only galaxies in the Coma infall region have a distribution that is statistically consistent with the HCGs in this parameter space. To further investigate the cause of the HCG gap, we compare the galaxy morphologies of the HCG and LVL+SINGS galaxies, and also probe the specific star formation rate (SSFR) of the HCG galaxies. While galaxy morphology in HCG galaxies is strongly linked to position with MIR color space, the more fundamental property appears to be the SSFR, or star formation rate normalized by stellar mass. We conclude that the unusual MIR color distribution of HCG galaxies is a direct product of their environment, which is most similar to that of the Coma infall region. In both cases, galaxy densities are high, but gas has not been fully processed or stripped. We speculate that the compact group environment fosters accelerated evolution of galaxies from star-forming and neutral gas-rich to quiescent and neutral gas-poor, leaving few members in the MIR gap at any time.

  3. Morphologically Disturbed Massive Galaxies: Nature and Evolution During 0.6 < z < 2.5 in the CANDELS UDS and GOODS-S Fields

    NASA Astrophysics Data System (ADS)

    Cook, Joshua S.; McIntosh, Daniel H.; Rizer, Zachary; Kartaltepe, Jeyhan S.; Koekemoer, Anton M.; Lotz, Jennifer; Conselice, Christopher; Hopkins, Philip F.; Wuyts, Stijn; Peth, Michael; Barro, Guillermo; Candels Collaboration

    2015-01-01

    Merging is predicted to be an important process in the early and turbulent assembly of massive galaxies. These violent encounters heavily impact galaxy morphology and structure. As such, the evolution of morphologically disturbed systems may help constrain the relative importance of merging, the answer to which is largely debated especially at higher redshifts. Disagreements between studies however, may be attributed to the various methods used to identify merging galaxies such as visual or quantitative classifications based on different rest-frame wavelengths. Using a new comprehensive catalog of visual rest-frame optical classifications based on HST/WFC3+ACS imaging from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS), we compare the nature and evolution of merging and highly disturbed galaxy subsamples within the UDS and GOODS-S fields. We limit our sample for completeness to high-mass objects (Mstar > 1e10 Msun) with redshifts between 0.6 < z < 2.5. Most disturbed galaxies are star-forming and two-thirds have masses under 3e10 Msun. We note that one-third appear to be neither interacting nor merging, rather they are isolated and visually disk-like. Under the assumption that many disturbed or unusual morphologies are related to merging, we compare visually-selected subsamples to merger selections based on two popular quantitative methods (Gini-M20 and CAS). We find that all selections produce similar fractions across our redshift range, but the individual galaxies making up the respective fractions are often different. This may indicate that different classification methods are preferentially selecting objects undergoing either different processes such as major merging, minor merging and violent disk instabilities, or different stages of the same process.

  4. WELL-SAMPLED FAR-INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF z {approx} 2 GALAXIES: EVIDENCE FOR SCALED UP COOL GALAXIES

    SciTech Connect

    Muzzin, Adam; Van Dokkum, Pieter; Cury, Iara; Kriek, Mariska; Labbe, Ivo; Marchesini, Danilo; Franx, Marijn

    2010-12-10

    We present an analysis of the far-infrared (FIR) spectral energy distributions (SEDs) of two massive K-selected galaxies at z= 2.122 and z= 2.024 detected at 24 {mu}m, 70 {mu}m, 160 {mu}m by Spitzer, 250 {mu}m, 350 {mu}m, 500 {mu}m by BLAST, and 870 {mu}m by APEX. The large wavelength range of these observations and the availability of spectroscopic redshifts allow us to unambiguously identify the peak of the redshifted thermal emission from dust at {approx}300 {mu}m. The SEDs of both galaxies are reasonably well fit by synthetic templates of local galaxies with L{sub IR} {approx} 10{sup 11} L{sub sun}-10{sup 12} L{sub sun} yet both galaxies have L{sub IR} {approx} 10{sup 13} L{sub sun}. This suggests that these galaxies are not high-redshift analogs of the Hyper-LIRGs/ULIRGs used in local templates, but are instead 'scaled up' versions of local ULIRGs/LIRGs. Several lines of evidence point to both galaxies hosting an active galactic nucleus (AGN); however, the relatively cool best-fit templates and the optical emission line ratios suggest that the AGN is not the dominant source heating the dust. For both galaxies, the star formation rate determined from the best-fit FIR SEDs (SFR(L{sub IR})) agrees with the SFR determined from the dust-corrected H{alpha} luminosity (SFR(H{alpha})) to within a factor of {approx}2; however, when the SFR of these galaxies is estimated using only the observed 24 {mu}m flux and the standard luminosity-dependent template method (SFR(24 {mu}m)), it systematically overestimates the SFR by as much as a factor of six. A larger sample of 24 K-selected galaxies at z{approx} 2.3 drawn from the Kriek et al. GNIRS sample shows the same trend between SFR(24 {mu}m) and SFR(H{alpha}). Using that sample, we show that SFR(24 {mu}m) and SFR(H{alpha}) are in better agreement when SFR(24 {mu}m) is estimated using the log average of local templates rather than selecting a single luminosity-dependent template, because this incorporates lower luminosity

  5. Evidence of an infrared luminosity indicator for galaxies

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Isobe, Takashi; Weedman, Daniel W.

    1987-01-01

    To elucidate the nature of infrared-luminous galaxies discovered with the IRAS satellite, the optical and infrared luminosities of 1161 Markarian galaxies and 2146 'normal' galaxies from the CfA redshift survey are compared. Survival analysis statistical methods that take upper limits fully into account are used. It is found that L(IR)/L(B) is statistically correlated with L(60) in both samples, though they differ in the distribution at low luminosities. The derived correlation shows that L(IR)/L(B) provides an indicator for L(60). Since galaxies selected in unbiased IRAS surveys will have higher L(IR)/L(B) than optically selected galaxies, they are therefore also selected for high L(60).

  6. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  7. The dark side of galaxy colour: evidence from new SDSS measurements of galaxy clustering and lensing

    NASA Astrophysics Data System (ADS)

    Hearin, Andrew P.; Watson, Douglas F.; Becker, Matthew R.; Reyes, Reinabelle; Berlind, Andreas A.; Zentner, Andrew R.

    2014-10-01

    The age-matching model has recently been shown to predict correctly the luminosity L and g - r colour of galaxies residing within dark matter haloes. The central tenet of the model is intuitive: older haloes tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g - r colour trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new Sloan Digital Sky Survey (SDSS) measurements of galaxy clustering and the galaxy-galaxy lensing signal ΔΣ as a function of M* and g - r colour, and show that age matching exhibits remarkable agreement with these and other statistics of low-redshift galaxies. In so doing, we also demonstrate good agreement between the galaxy-galaxy lensing observed by SDSS and the ΔΣ signal predicted by abundance matching, a new success of this model. We describe how age matching is a specific example of a larger class of conditional abundance matching models (CAM), a theoretical framework we introduce here for the first time. CAM provides a general formalism to study correlations at fixed mass between any galaxy property and any halo property. The striking success of our simple implementation of CAM suggests that this technique has the potential to describe the same set of data as alternative models, but with a dramatic reduction in the required number of parameters. CAM achieves this reduction by exploiting the capability of contemporary N-body simulations to determine dark matter halo properties other than mass alone, which distinguishes our model from conventional approaches to the galaxy-halo connection.

  8. Searching for evidence of energetic feedback in distant galaxies: a galaxy wide outflow in a z ~ 2 ultraluminous infrared galaxy

    NASA Astrophysics Data System (ADS)

    Alexander, D. M.; Swinbank, A. M.; Smail, Ian; McDermid, R.; Nesvadba, N. P. H.

    2010-03-01

    Leading models of galaxy formation require large-scale energetic outflows to regulate the growth of distant galaxies and their central black holes. However, current observational support for this hypothesis at high redshift is mostly limited to rare z > 2 radio galaxies. Here, we present Gemini-North Near-Infrared Field Spectrometer (NIFS) observations of the [OIII]λ5007 emission from a z ~ 2 ultraluminous infrared galaxy (ULIRG; LIR > 1012Lsolar) with an optically identified active galactic nuclei (AGN). The spatial extent (~4-8 kpc) of the high velocity and broad [OIII] emission is consistent with that found in z > 2 radio galaxies, indicating the presence of a large-scale energetic outflow in a galaxy population potentially orders of magnitude more common than distant radio galaxies. The low radio luminosity of this system indicates that radio-bright jets are unlikely to be responsible for driving the outflow. However, the estimated energy input required to produce the large-scale outflow signatures (of the order of ~1059 erg over ~30 Myr) could be delivered by a wind radiatively driven by the AGN and/or supernovae winds from intense star formation. The energy injection required to drive the outflow is comparable to the estimated binding energy of the galaxy spheroid, suggesting that it can have a significant impact on the evolution of the galaxy. We argue that the outflow observed in this system is likely to be comparatively typical of the high-redshift ULIRG population and discuss the implications of these observations for galaxy formation models.

  9. Evidence for Evolution in the Galaxy Merger Rate

    NASA Astrophysics Data System (ADS)

    Franklin, Barbara E.; Windhorst, Rogier A.; Burkey, Jordan M.; Keel, William C.

    1993-12-01

    We use a set of four deep Cycle 1+2 fields with the HST Wide-Field Camera to constrain the rate of galaxy merging between the current epoch and approximately z=0.7. These fields were selected around weak radio sources not in rich or poor clusters so as to not bias these studies. Since most mergers occur between members of bound pairs, the merger rate is given by (half) the rate of disappearance of galaxy pairs. Using an objective criterion for pair membership, we find that more than 34% of galaxies in the magnitude range I=18-22 mag belong to pairs, while careful study of nearby comparison samples shows that only 7% of local galaxies belong to pairs. Hence, about 13% of the galaxy population has disappeared to merging in the cosmic epoch corresponding to this magnitude interval (or 0.1<= z<=0.7). This pair fraction is a lower limit, since correction for pairs in which one member falls below our detection threshold would raise the fraction of pair members with I=18---22 mag to about 50%. (we do not include physical system of higher multiplicity in these values). Hence, the number of galaxy pairs has dropped significantly between z ~ 0.7 and the current epoch. When using the best available I-band field galaxy redshift distributions, the HST pair-fraction grows with redshift as ~ (1+z)(3.0-3.5) , quite consistent with the expected evolution in the merger-rate from the decrease in comoving volume (~ (1+z)(3) ). This result has very significant implications for the interpretation of the ground-based galaxy counts (it explains the disappearance of faint blue galaxies), the cosmological evolution of faint radio sources and quasars (explains why these should indeed evolve as ~ (1+z)(3) ), the statistics of QSO companions, the galaxy content in distant clusters, and the merging history of a ``typical" galaxy. This work was supported by STScI grants GO-2405.*-87A and GO-3545.*-91A (to WCK and RAW) and in part through EPSCoR grant EHR-9108761 (to WCK).

  10. GALAXY SPIN ALIGNMENT IN FILAMENTS AND SHEETS: OBSERVATIONAL EVIDENCE

    SciTech Connect

    Tempel, Elmo; Libeskind, Noam I. E-mail: nlibeskind@aip.de

    2013-10-01

    The properties of galaxies are known to be affected by their environment. One important question is how their angular momentum reflects the surrounding cosmic web. We use the Sloan Digital Sky Survey to investigate the spin axes of spiral and elliptical galaxies relative to their surrounding filament/sheet orientations. To detect filaments, a marked point process with interactions (the {sup B}isous model{sup )} is used. Sheets are found by detecting 'flattened' filaments. The minor axes of ellipticals are found to be preferentially perpendicular to hosting filaments. A weak correlation is found with sheets. These findings are consistent with the notion that elliptical galaxies formed via mergers, which predominantly occurred along the filaments. The spin axis of spiral galaxies is found to align with the host filament, with no correlation between spiral spin and sheet normal. When examined as a function of distance from the filament axis, a much stronger correlation is found in the outer parts, suggesting that the alignment is driven by the laminar infall of gas from sheets to filaments. When compared with numerical simulations, our results suggest that the connection between dark matter halo and galaxy spin is not straightforward. Our results provide an important input to the understanding of how galaxies acquire their angular momentum.

  11. Galaxy Zoo : Evidence for a Diversity of Routes through the Green Valley

    NASA Astrophysics Data System (ADS)

    Lintott, Chris; Smethurst, Rebecca; Simmons, Brooke; Galaxy Zoo

    2015-01-01

    Understanding the ways in which galaxies change as they move from blue to red is critical to understanding the build up of the present-day galaxy population, and can best be addressed by looking at systems in the process of transitioning. We present the results of a new analysis of the population of galaxies which passes through the 'green valley' evident in optical colour-mass diagrams. Using data from SDSS and Galex, and a Bayesian analysis of their most probable star formation histories, we show that multiple routes through the green valley exist. By using Galaxy Zoo morphologies, we are able to draw on probabilistic estimates of morphology and find - in contrast to previous work - that there is evidence for slow, intermediate and rapid transitions from blue to red. Constraining these populations provides evidence for rapid morphological change in some populations, presumably through major mergers, and underpins our understanding of the build up of the red sequence.

  12. CONNECTIONS BETWEEN GALAXY MERGERS AND STARBURST: EVIDENCE FROM THE LOCAL UNIVERSE

    SciTech Connect

    Luo, Wentao; Yang, Xiaohu; Zhang, Youcai E-mail: xyang@sjtu.edu.cn

    2014-07-01

    Major mergers and interactions between gas-rich galaxies with comparable masses are thought to be the main triggers of starburst. In this work, we study, for a large stellar mass range, the interaction rate of the starburst galaxies in the local universe. We focus independently on central and satellite star forming galaxies extracted from the Sloan Digital Sky Survey. Here the starburst galaxies are selected in the star formation rate (SFR) stellar mass plane with SFRs five times larger than the median value found for ''star forming'' galaxies of the same stellar mass. Through visual inspection of their images together with close companions determined using spectroscopic redshifts, we find that ∼50% of the ''starburst'' populations show evident merger features, i.e., tidal tails, bridges between galaxies, double cores, and close companions. In contrast, in the control sample we selected from the normal star forming galaxies, only ∼19% of galaxies are associated with evident mergers. The interaction rates may increase by ∼5% for the starburst sample and 2% for the control sample if close companions determined using photometric redshifts are considered. The contrast of the merger rate between the two samples strengthens the hypothesis that mergers and interactions are indeed the main causes of starburst.

  13. Late Holocene paleoecology of Andros Island, Bahamas: Evidence of climate change and human disturbance

    SciTech Connect

    Kjellmark, E.W.

    1995-09-01

    Pollen and charcoal data from a transect of three sediment cores taken from deep, water-filled karst sinkholes on Andros Island, Bahamas have yielded a detailed record of late Holocene climate change and human disturbance. The pollen record reveals that a long-term, late Holocene dry period in the Caribbean, which extended from 3000 to 1500 years bp had a variable effect on the vegetation of Andros depending on its proximity to the water table. A site at 10 m elevation above the water table shows evidence of major changes in vegetation, while a low-lying site shows little effect. Both the charcoal and pollen records reveal possible evidence of human disturbance beginning after the dry period ends. A site 1 km from the east coast of Andros shows a peak in charcoal content in sediments that are 900-1000 years old. This post-dates human colonization of the Bahamas, which occurred 1000-1200 years bp and may be evidence of increased burning brought about by humans. A site 7 km inland shows a large peak in charcoal content and a distinct shift in the pollen spectrum from tropical hardwoods pollen to pinewoods pollen in sediments that are 700-800 years old. Charcoal content is low at this site in 450-500 year old sediments, then peaks again in 200-250 year old sediments. This may reflect the removal of humans from the Bahamas shortly after the arrival of Columbus, followed by re-colonization 250 years later. Although the changes in charcoal and pollen over the past 1000 years could have been climatically induced, the timing of the changes correlates closely with known events in the human history of the Bahamas.

  14. Evidence of an Emerging Disturbance of Earthen Levees Causing Disastrous Floods in Italy

    NASA Astrophysics Data System (ADS)

    Orlandini, S.; Moretti, G.; Albertson, J. D.

    2015-12-01

    A levee failure occurred along the Secchia River, Northern Italy, on January 19, 2014, resulting in flood damage in excess of $500 Million (Figure). In response to this failure, immediate surveillance of other levees in the region led to the identification of a second breach developing on the neighboring Panaro River, where rapid mitigation efforts were successful in averting a full levee failure. The paired breach events that occurred along the Secchia and Panaro Rivers provided an excellent window on an emerging disturbance of levees and related failure mechanism. In the Secchia River, by combining the information content of photographs taken from helicopters in the early stage of breach development and 10-cm resolution aerial photographs taken in 2010 and 2012, animal burrows were found to exist in the precise levee location where the breach originated. In the Panaro River, internal erosion was observed to occur at a location where a crested porcupine den was known to exist and this erosion led to the collapse of the levee top. Evidence collected suggested that it is quite likely that the levee failure of the Secchia River was of a similar mechanism as the observed failure of the Panaro River. Detailed numerical modeling of rainfall, river flow, and variably saturated flow occurring in disturbed levees in response to complex hydroclimatic forcing indicated that the levee failure of the Secchia River may have been triggered by direct river inflow into the den system or collapse of a hypothetical den separated by a 1-m earthen wall from the levee riverside, which saturated during the hydroclimatic event. It is important to bring these processes to the attention of hydrologists and geotechnical engineers as well as to trigger an interdisciplinary discussion on habitat fragmentation and wildlife shifts due to development and climate pressures. These disturbances come together with changes in extreme events to inform the broader concern of risk analysis due to floods.

  15. Galaxy NGC5474

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5474 on June 7, 2003. NGC5474 is located 20 million light-years from Earth and is within a group of galaxies dominated by the Messier 101 galaxy. Star formation in this galaxy shows some evidence of a disturbed spiral pattern, which may have been induced by tidal interactions with Messier 101.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  16. Evidence for Multiple Mergers among Ultraluminous Infrared Galaxies: Remnants of Compact Groups?

    PubMed

    Borne; Bushouse; Lucas; Colina

    2000-02-01

    In a large sample of ultraluminous infrared galaxies (ULIRGs) imaged with the Hubble Space Telescope, we have identified a significant subsample that shows evidence for multiple mergers. The evidence is seen among two classes of ULIRGs: (1) those with multiple remnant nuclei in their core, sometimes accompanied by a complex system of tidal tails, and (2) those that are in fact dense groupings of interacting (soon-to-merge) galaxies. We conservatively estimate that, in the redshift range 0.05galaxies (see Hickson). An evolutionary progression is consistent with the results: from compact groups to pairs to ULIRGs to elliptical galaxies. The last step follows the blowout of gas and dust from the ULIRG. PMID:10622759

  17. Evidence of galaxy cluster motions with the kinematic Sunyaev-Zel'dovich effect.

    PubMed

    Hand, Nick; Addison, Graeme E; Aubourg, Eric; Battaglia, Nick; Battistelli, Elia S; Bizyaev, Dmitry; Bond, J Richard; Brewington, Howard; Brinkmann, Jon; Brown, Benjamin R; Das, Sudeep; Dawson, Kyle S; Devlin, Mark J; Dunkley, Joanna; Dunner, Rolando; Eisenstein, Daniel J; Fowler, Joseph W; Gralla, Megan B; Hajian, Amir; Halpern, Mark; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Hughes, John P; Infante, Leopoldo; Irwin, Kent D; Kosowsky, Arthur; Lin, Yen-Ting; Malanushenko, Elena; Malanushenko, Viktor; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Oravetz, Daniel; Page, Lyman A; Palanque-Delabrouille, Nathalie; Pan, Kaike; Reese, Erik D; Schlegel, David J; Schneider, Donald P; Sehgal, Neelima; Shelden, Alaina; Sievers, Jon; Sifón, Cristóbal; Simmons, Audrey; Snedden, Stephanie; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Trac, Hy; Weaver, Benjamin A; Wollack, Edward J; Yeche, Christophe; Zunckel, Caroline

    2012-07-27

    Using high-resolution microwave sky maps made by the Atacama Cosmology Telescope, we for the first time present strong evidence for motions of galaxy clusters and groups via microwave background temperature distortions due to the kinematic Sunyaev-Zel'dovich effect. Galaxy clusters are identified by their constituent luminous galaxies observed by the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. We measure the mean pairwise momentum of clusters, with a probability of the signal being due to random errors of 0.002, and the signal is consistent with the growth of cosmic structure in the standard model of cosmology. PMID:23006072

  18. Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor

    NASA Astrophysics Data System (ADS)

    Tacconi, L. J.; Genzel, R.; Smail, I.; Neri, R.; Chapman, S. C.; Ivison, R. J.; Blain, A.; Cox, P.; Omont, A.; Bertoldi, F.; Greve, T.; Förster Schreiber, N. M.; Genel, S.; Lutz, D.; Swinbank, A. M.; Shapley, A. E.; Erb, D. K.; Cimatti, A.; Daddi, E.; Baker, A. J.

    2008-06-01

    We report subarcsecond resolution IRAM PdBI millimeter CO interferometry of four z ~ 2 submillimeter galaxies (SMGs), and sensitive CO(3-2) flux limits toward three z ~ 2 UV/optically selected star-forming galaxies. The new data reveal for the first time spatially resolved CO gas kinematics in the observed SMGs. Two of the SMGs show double or multiple morphologies, with complex, disturbed gas motions. The other two SMGs exhibit CO velocity gradients of ~500 km s-1 across <=0.2'' (1.6 kpc) diameter regions, suggesting that the star-forming gas is in compact, rotating disks. Our data provide compelling evidence that these SMGs represent extreme, short-lived "maximum" star-forming events in highly dissipative mergers of gas-rich galaxies. The resulting high-mass surface and volume densities of SMGs are similar to those of compact quiescent galaxies in the same redshift range and much higher than those in local spheroids. From the ratio of the comoving volume densities of SMGs and quiescent galaxies in the same mass and redshift ranges, and from the comparison of gas exhaustion timescales and stellar ages, we estimate that the SMG phase duration is about 100 Myr. Our analysis of SMGs and optically/UV selected high-redshift star-forming galaxies supports a "universal" Chabrier IMF as being valid over the star-forming history of these galaxies. We find that the 12CO luminosity to total gas mass conversion factors at z ~ 2-3 are probably similar to those assumed at z ~ 0. The implied gas fractions in our sample galaxies range from 20% to 50%. Based on observations obtained at the IRAM Plateau de Bure Interferometer (PdBI). IRAM is funded by the Centre National de la Recherché Scientifique (France), the Max-Planck Gesellschaft (Germany), and the Instituto Geografico Nacional (Spain).

  19. Early-type Host Galaxies of Type Ia Supernovae. I. Evidence for Downsizing

    NASA Astrophysics Data System (ADS)

    Kang, Yijung; Kim, Young-Lo; Lim, Dongwook; Chung, Chul; Lee, Young-Wook

    2016-03-01

    Type Ia supernova (SN Ia) cosmology provides the most direct evidence for the presence of dark energy. This result is based on the assumption that the lookback time evolution of SN Ia luminosity, after light curve corrections, would be negligible. Recent studies show, however, that the Hubble residual (HR) of SN Ia is correlated with the mass and morphology of host galaxies, implying the possible dependence of SN Ia luminosity on host galaxy properties. In order to investigate this more directly, we have initiated a spectroscopic survey for early-type host galaxies, for which population age and metallicity can be more reliably determined from the absorption lines. In this first paper of the series, we present here the results from high signal-to-noise ratio (≳100 per pixel) spectra for 27 nearby host galaxies in the southern hemisphere. For the first time in host galaxy studies, we find a significant (∼3.9σ) correlation between host galaxy mass (velocity dispersion) and population age, which is consistent with the “downsizing” trend among non-host early-type galaxies. This result is rather insensitive to the choice of population synthesis models. Since we find no correlation with metallicity, our result suggests that stellar population age is mainly responsible for the relation between host mass and HR. If confirmed, this would imply that the luminosity evolution plays a major role in the systematic uncertainties of SN Ia cosmology.

  20. Chandra Survey of Distant Galaxies Provides Evidence for Vigorous Starbursts

    NASA Astrophysics Data System (ADS)

    2000-05-01

    Using NASA's Chandra X-ray Observatory, astronomers have made the first long-duration X-ray survey of the Hubble Deep Field North. They detected X rays from six of the galaxies in the field, and were surprised by the lack of X rays from some of the most energetic galaxies in the field. The X-ray emitting objects discovered by the research team are a distant galaxy thought to contain a central giant black hole, three elliptically shaped galaxies, an extremely red distant galaxy, and a nearby spiral galaxy. "We were expecting about five X-ray sources in this field,"said Professor Niel Brandt of Penn State University, University Park, and one of the leaders of the research team that conducted the survey. "However, it was very surprising to find that none of the X-ray sources lined up with any of the submillimeter sources." The submillimeter sources are extremely luminous, dusty galaxies that produce large amounts of infrared radiation. Because they are over ten billion light years from Earth, their infrared radiation is shifted to longer, submillimeter wavelengths as it traverses the expanding universe. The primary source of the large power of the submillimeter sources is thought to be an unusually high rate of star formation, or the infall, or accretion of matter into a giant black hole in the center of the galaxy. X-ray observations provide the most direct measure of black hole accretion power. X rays, because of their high-energy, would be expected to pass through the gas and dust in these galaxies, unlike visible light. "With Chandra we have been able to place the best X-ray constraints ever on submillimeter sources," said Ann Hornschemeier, also of Penn State, and the lead author of an upcoming Astrophysical Journal paper describing the discovery. "Our results indicate that less than 15 percent of the submillimeter sources can be luminous X-ray sources." "That means," Brandt explains, "Either there is an enormous amount of star formation in those galaxies, or

  1. Multiple Core Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R.H.; Morrison, David (Technical Monitor)

    1994-01-01

    Nuclei of galaxies often show complicated density structures and perplexing kinematic signatures. In the past we have reported numerical experiments indicating a natural tendency for galaxies to show nuclei offset with respect to nearby isophotes and for the nucleus to have a radial velocity different from the galaxy's systemic velocity. Other experiments show normal mode oscillations in galaxies with large amplitudes. These oscillations do not damp appreciably over a Hubble time. The common thread running through all these is that galaxies often show evidence of ringing, bouncing, or sloshing around in unexpected ways, even though they have not been disturbed by any external event. Recent observational evidence shows yet another phenomenon indicating the dynamical complexity of central regions of galaxies: multiple cores (M31, Markarian 315 and 463 for example). These systems can hardly be static. We noted long-lived multiple core systems in galaxies in numerical experiments some years ago, and we have more recently followed up with a series of experiments on multiple core galaxies, starting with two cores. The relevant parameters are the energy in the orbiting clumps, their relative.masses, the (local) strength of the potential well representing the parent galaxy, and the number of cores. We have studied the dependence of the merger rates and the nature of the final merger product on these parameters. Individual cores survive much longer in stronger background potentials. Cores can survive for a substantial fraction of a Hubble time if they travel on reasonable orbits.

  2. EVIDENCE FOR WIDESPREAD ACTIVE GALACTIC NUCLEUS ACTIVITY AMONG MASSIVE QUIESCENT GALAXIES AT z {approx} 2

    SciTech Connect

    Olsen, Karen P.; Rasmussen, Jesper; Toft, Sune; Zirm, Andrew W.

    2013-02-10

    We quantify the presence of active galactic nuclei (AGNs) in a mass-complete (M {sub *} > 5 Multiplication-Sign 10{sup 10} M {sub Sun }) sample of 123 star-forming and quiescent galaxies at 1.5 {<=} z {<=} 2.5, using X-ray data from the 4 Ms Chandra Deep Field-South (CDF-S) survey. 41% {+-} 7% of the galaxies are detected directly in X-rays, 22% {+-} 5% with rest-frame 0.5-8 keV luminosities consistent with hosting luminous AGNs (L {sub 0.5-8keV} > 3 Multiplication-Sign 10{sup 42} erg s{sup -1}). The latter fraction is similar for star-forming and quiescent galaxies, and does not depend on galaxy stellar mass, suggesting that perhaps luminous AGNs are triggered by external effects such as mergers. We detect significant mean X-ray signals in stacked images for both the individually non-detected star-forming and quiescent galaxies, with spectra consistent with star formation only and/or a low-luminosity AGN in both cases. Comparing star formation rates inferred from the 2-10 keV luminosities to those from rest-frame IR+UV emission, we find evidence for an X-ray excess indicative of low-luminosity AGNs. Among the quiescent galaxies, the excess suggests that as many as 70%-100% of these contain low- or high-luminosity AGNs, while the corresponding fraction is lower among star-forming galaxies (43%-65%). Our discovery of the ubiquity of AGNs in massive, quiescent z {approx} 2 galaxies provides observational support for the importance of AGNs in impeding star formation during galaxy evolution.

  3. Jellyfish: Evidence of Extreme Ram-pressure Stripping in Massive Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Ebeling, H.; Stephenson, L. N.; Edge, A. C.

    2014-02-01

    Ram-pressure stripping by the gaseous intracluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to relatively modest examples affecting only the outermost gas layers of galaxies in nearby and/or low-mass galaxy clusters. We here present results from our search for extreme cases of gas-galaxy interactions in much more massive, X-ray selected clusters at z > 0.3. Using Hubble Space Telescope snapshots in the F606W and F814W passbands, we have discovered dramatic evidence of ram-pressure stripping in which copious amounts of gas are first shock compressed and then removed from galaxies falling into the cluster. Vigorous starbursts triggered by this process across the galaxy-gas interface and in the debris trail cause these galaxies to temporarily become some of the brightest cluster members in the F606W passband, capable of outshining even the Brightest Cluster Galaxy. Based on the spatial distribution and orientation of systems viewed nearly edge-on in our survey, we speculate that infall at large impact parameter gives rise to particularly long-lasting stripping events. Our sample of six spectacular examples identified in clusters from the Massive Cluster Survey, all featuring M F606W < -21 mag, doubles the number of such systems presently known at z > 0.2 and facilitates detailed quantitative studies of the most violent galaxy evolution in clusters. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-10491, -10875, -12166, and -12884.

  4. JELLYFISH: EVIDENCE OF EXTREME RAM-PRESSURE STRIPPING IN MASSIVE GALAXY CLUSTERS

    SciTech Connect

    Ebeling, H.; Stephenson, L. N.; Edge, A. C.

    2014-02-01

    Ram-pressure stripping by the gaseous intracluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to relatively modest examples affecting only the outermost gas layers of galaxies in nearby and/or low-mass galaxy clusters. We here present results from our search for extreme cases of gas-galaxy interactions in much more massive, X-ray selected clusters at z > 0.3. Using Hubble Space Telescope snapshots in the F606W and F814W passbands, we have discovered dramatic evidence of ram-pressure stripping in which copious amounts of gas are first shock compressed and then removed from galaxies falling into the cluster. Vigorous starbursts triggered by this process across the galaxy-gas interface and in the debris trail cause these galaxies to temporarily become some of the brightest cluster members in the F606W passband, capable of outshining even the Brightest Cluster Galaxy. Based on the spatial distribution and orientation of systems viewed nearly edge-on in our survey, we speculate that infall at large impact parameter gives rise to particularly long-lasting stripping events. Our sample of six spectacular examples identified in clusters from the Massive Cluster Survey, all featuring M {sub F606W} < –21 mag, doubles the number of such systems presently known at z > 0.2 and facilitates detailed quantitative studies of the most violent galaxy evolution in clusters.

  5. Playtherapy Gives Evidence of Curative Power of Mother-Child Holding as Treatment for Autistic and Emotionally Disturbed Children.

    ERIC Educational Resources Information Center

    Stades-Veth, Jo

    The paper offers a play therapist's evidence for the curative power of intensive mother-child holding of children with emotional problems resulting from separation from the parent and emotional disturbances including autism. Dramatic improvements were observed in the play behaviors of autistic children after enforced cuddling--and these were…

  6. The Calvin 28 cryptoexplosive disturbance, Cass County, Michigan: Evidence for impact origin

    NASA Technical Reports Server (NTRS)

    Milstein, Randall L.

    1988-01-01

    The Calvin 28 cryptoexplosive disturbance is an isolated, nearly circular subsurface structure of Late Ordovician age in southwestern Michigan. The structure is defined by 107 wells, is about 7.24 km in diameter and consists of a central dome, an annular depression and an encircling anticlinal rim. Seismic and geophysical well log data confirm that an intricate system of faults and structural derangement exists within the structure. Deformation decreases with depth and distance from the structure. U.S.G.S. topographic maps and aerial imagery show the structure is reflected as a subtle surface topographic rise controlling local drainage. Igneous or diapiric intrusion and solution collapse are rejected as possible origins for Calvin 28 on the basis of stratigraphic, structural and geophysical evidence. A volcanic origin is inconsistent with calculated energy requirements and an absence of igneous material. Although shock-metamorphic features are unidentified, microbreccias occur in deep wells that penetrate the structure. Morphology and structural parameters support an impact origin.

  7. Evidence of associations between cytokine genes and subjective reports of sleep disturbance in oncology patients and their family caregivers.

    PubMed

    Miaskowski, Christine; Cooper, Bruce A; Dhruva, Anand; Dunn, Laura B; Langford, Dale J; Cataldo, Janine K; Baggott, Christina R; Merriman, John D; Dodd, Marylin; Lee, Kathryn; West, Claudia; Paul, Steven M; Aouizerat, Bradley E

    2012-01-01

    The purposes of this study were to identify distinct latent classes of individuals based on subjective reports of sleep disturbance; to examine differences in demographic, clinical, and symptom characteristics between the latent classes; and to evaluate for variations in pro- and anti-inflammatory cytokine genes between the latent classes. Among 167 oncology outpatients with breast, prostate, lung, or brain cancer and 85 of their FCs, growth mixture modeling (GMM) was used to identify latent classes of individuals based on General Sleep Disturbance Scale (GSDS) obtained prior to, during, and for four months following completion of radiation therapy. Single nucleotide polymorphisms (SNPs) and haplotypes in candidate cytokine genes were interrogated for differences between the two latent classes. Multiple logistic regression was used to assess the effect of phenotypic and genotypic characteristics on GSDS group membership. Two latent classes were identified: lower sleep disturbance (88.5%) and higher sleep disturbance (11.5%). Participants who were younger and had a lower Karnofsky Performance status score were more likely to be in the higher sleep disturbance class. Variation in two cytokine genes (i.e., IL6, NFKB) predicted latent class membership. Evidence was found for latent classes with distinct sleep disturbance trajectories. Unique genetic markers in cytokine genes may partially explain the interindividual heterogeneity characterizing these trajectories. PMID:22844404

  8. Evidence of bacterioplankton community adaptation in response to long-term mariculture disturbance

    PubMed Central

    Xiong, Jinbo; Chen, Heping; Hu, Changju; Ye, Xiansen; Kong, Dingjiang; Zhang, Demin

    2015-01-01

    Understanding the underlying mechanisms that shape the temporal dynamics of a microbial community has important implications for predicting the trajectory of an ecosystem’s response to anthropogenic disturbances. Here, we evaluated the seasonal dynamics of bacterioplankton community composition (BCC) following more than three decades of mariculture disturbance in Xiangshan Bay. Clear seasonal succession and site (fish farm and control site) separation of the BCC were observed, which were primarily shaped by temperature, dissolved oxygen and sampling time. However, the sensitive bacterial families consistently changed in relative abundance in response to mariculture disturbance, regardless of the season. Temporal changes in the BCC followed the time-decay for similarity relationship at both sites. Notably, mariculture disturbance significantly (P < 0.001) flattened the temporal turnover but intensified bacterial species-to-species interactions. The decrease in bacterial temporal turnover under long-term mariculture disturbance was coupled with a consistent increase in the percentage of deterministic processes that constrained bacterial assembly based on a null model analysis. The results demonstrate that the BCC is sensitive to mariculture disturbance; however, a bacterioplankton community could adapt to a long-term disturbance via attenuating temporal turnover and intensifying species-species interactions. These findings expand our current understanding of microbial assembly in response to long-term anthropogenic disturbances. PMID:26471739

  9. XMM-Newton and Chandra Observations of the Galaxy Group NGC 5044. 1; Evidence for Limited Multiphase Hot Gas

    NASA Technical Reports Server (NTRS)

    Buote, David A.; Lewis, Aaron D.; Brighenti, Fabrizio; Mathews, William G.

    2003-01-01

    Using new XMM and Chandra observations, we present an analysis of the temperature structure of the hot gas within a radius of 100 kpc of the bright nearby galaxy group NGC 5044. A spectral deprojection analysis of data extracted from circular annuli reveals that a two-temperature model (2T) of the hot gas is favored over single-phase or cooling flow (M = 4.5 +/- 0.2 solar mass/yr) models within the central approx.30 kpc. Alternatively, the data can be fitted equally well if the temperature within each spherical shell varies continuously from approx.T(sub h) to T(sub c) approx. T(sub h)/2, but no lower. The high spatial resolution of the Chandra data allows us to determine that the temperature excursion T(sub h) approaches T(sub c) required in each shell exceeds the temperature range between the boundaries of the same shell in the best-fitting single-phase model. This is strong evidence for a multiphase gas having a limited temperature range. We do not find any evidence that azimuthal temperature variations within each annulus on the sky can account for the range in temperatures within each shell. We provide a detailed investigation of the systematic errors on the derived spectral models considering the effects of calibration, plasma codes, bandwidth, variable NH, and background rate. We find that the RGS gratings and the EPIC and ACIS CCDs give fully consistent results when the same models are fitted over the same energy ranges for each instrument. The cooler component of the 2T model has a temperature (T(sub c) approx. 0.7 keV) similar to the kinetic temperature of the stars. The hot phase has a temperature (T(sub h) approx. 1.4 keV) characteristic of the virial temperature of the solar mass halo expected in the NGC 5044 group. However, in view of the morphological disturbances and X-ray holes visible in the Chandra image within R approx. equals 10 kpc, bubbles of gas heated to approx.T(sub h) in this region may be formed by intermittent AGN feedback. Some

  10. X-ray evidence of an obscured nucleus in the type 2 Seyfert galaxy Mkn3

    NASA Astrophysics Data System (ADS)

    Awaki, H.; Koyama, K.; Kunieda, H.; Tawara, Y.

    1990-08-01

    Seyfert galaxies are classified as type 1 or 2 according to the presence or absence of broad emission lines in the optical spectrum. The high velocities indicated by the broad lines in Seyfert 1 galaxies are taken to be good evidence of a compact, massive object, as are the strong and variable hard X-ray sources that are also generally observed in these objects. In contrast, Seyfert 2 galaxies possess neither of these characteristics, so the theory that they too have an accreting massive blackhole is less compelling. Since the discovery by spectropolarimetry of a 'hidden' Seyfert 1 nucleus in the prototypical Seyfert 2, NGC1068, the long-standing hope that the two classes may be unified has been revived. Here from observations by the Ginga satellite that another Seyfert 2, Mkn3, has the X-ray spectral signature of a hidden type 1 nucleus.

  11. SED Fitting of Virgo Cluster Galaxies and Evidence for Enhanced Star Formation due to Accretion

    NASA Astrophysics Data System (ADS)

    Fulmer, Leah; Kenney, Jeffrey D.; Edwards, Louise O. V.

    2016-01-01

    Using UV through FIR data in matched apertures, we modeled the spectral energy distributions (SED) of 49 Virgo cluster spiral galaxies with the modeling program Magphys (daCunha+ 2008). We used the results from these models to explore the relationships between the stellar masses (M*), specific star formation rates (sSFR), and HI properties in our sample. The poster highlights one initial result from these comparisons: supportive evidence for gas accretion in the outskirts of the Virgo cluster. The galaxies with the highest sSFRs in the mass range 10^9-10^10 M_sun are all HI-rich, have extended irregular HI envelopes, and lie in the outskirts of the cluster. We propose that these galaxies are accreting gas onto their disks, a process which enhances their SFRs.

  12. Decadal trends in a coral community and evidence of changed disturbance regime

    NASA Astrophysics Data System (ADS)

    Wakeford, M.; Done, T. J.; Johnson, C. R.

    2008-03-01

    A 23 year data set (1981 2003 inclusive) and the spatially explicit individual-based model “Compete©” were used to investigate the implications of changing disturbance frequency on cover and taxonomic composition of a shallow coral community at Lizard Island, Australia. Near-vertical in situ stereo-photography was used to estimate rates of coral growth, mortality, recruitment and outcomes of pair-wise competitive interactions for 17 physiognomic groups of hard and soft corals. These data were used to parameterise the model, and to quantify impacts of three acute disturbance events that caused significant coral mortality: 1982—a combination of coral bleaching and Crown-of-Thorns starfish; 1990—cyclone waves; and 1996—Crown-of-Thorns starfish. Predicted coral community trajectories were not sensitive to the outcomes of competitive interactions (probably because average coral cover was only 32% and there was strong vertical separation among established corals) or to major changes in recruitment rates. The model trajectory of coral cover matched the observed trajectory accurately until the 1996 disturbance, but only if all coral mortality was confined to the 3 years of acute disturbance. Beyond that date (1997 2003), when the observed community failed to recover, it was necessary to introduce annual chronic background mortality to obtain a good match between modelled and observed coral cover. This qualitative switch in the model may reflect actual loss of resilience in the real community. Simulated over a century, an 8 year disturbance frequency most closely reproduced the mean community composition observed in the field prior to major disturbance events. Shorter intervals between disturbances led to reduced presence of the dominant hard coral groups, and a gradual increase in the slow growing, more resilient soft corals, while longer intervals (up to 16 years) resulted in monopolization by the fastest growing table coral, Acropora hyacinthus.

  13. Evidence for evolution of the luminosity function of clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Edge, A. C.; Stewart, G. C.; Fabian, A. C.; Arnaud, K. A.

    1991-01-01

    From an all sky, X-ray flux limited sample of clusters of galaxies evidence for a significant deficit in the number of high luminosity clusters is found in the redshift range z approximately 0.1 to 0.2 compared with numbers of nearby clusters. This indicates that the X-ray luminous clusters are undergoing strong evolution. The strength of the effect is consistent with hierarchical merging models. The implications of such strong evolution for clusters are discussed.

  14. Evidence for evolution of the luminosity function of clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Edge, Alastair C.; Stewart, G. C.; Fabian, A. C.; Arnaud, K. A.

    1991-01-01

    From an all sky, x-ray flux limited sample of clusters of galaxies evidence for a significant deficit in the number of high luminosity clusters is found in the redshift range z approximately 0.1 to 0.2 compared with numbers of nearby clusters. This indicates that the x-ray luminous clusters are undergoing strong evolution. The strength of the effect is consistent with hierarchical merging models. The implications of such strong evolution for clusters are discussed.

  15. Indirect Evidence for Escaping Ionizing Photons in Local Lyman Break Galaxy Analogs

    NASA Astrophysics Data System (ADS)

    Alexandroff, Rachael M.; Heckman, Timothy M.; Borthakur, Sanchayeeta; Overzier, Roderik; Leitherer, Claus

    2015-09-01

    A population of early star-forming galaxies is the leading candidate for the re-ionization of the universe. It is still unclear, however, what conditions and physical processes would enable a significant fraction of the ionizing (Lyman continuum) photons to escape from these gas-rich galaxies. In this paper we present the results of the analysis of Hubble Space Telescope Cosmic Origins Spectrograph far-UV (FUV) spectroscopy plus ancillary multi-waveband data of a sample of 22 low-redshift galaxies that are good analogs to typical star-forming galaxies at high redshift. We measure three parameters that provide indirect evidence of the escape of ionizing radiation (leakiness): (1) the residual intensity in the cores of saturated interstellar low-ionization absorption lines, which indicates incomplete covering by that gas in the galaxy; (2) the relative amount of blueshifted Lyα line emission, which can indicate the existence of holes in the neutral hydrogen on the front-side of the galaxy outflow, and (3) the relative weakness of the [S ii] optical emission lines that trace matter-bounded H ii regions. We show that our residual intensity measures are only negligibly affected by infilling from resonance emission lines. We find all three diagnostics agree well with one another. We use these diagnostics to rank-order our sample in terms of likely leakiness, noting that a direct measure of escaping Lyman continuum has recently been made for one of the leakiest members of our sample. We then examine the correlations between our ranking and other proposed diagnostics of leakiness. We find a good correlation with the equivalent width of the Lyα emission line, but no significant correlations with either the flux ratio of the [O iii]/[O ii] emission lines or the ratio of star-formation rates derived from the (dust-corrected) FUV and Hα luminosities. Turning to galaxy properties, we find the strongest correlations with leakiness are with the compactness of the star

  16. Evidence for dwarf stars at D of about 100 kiloparsecs near the Sextans dwarf spheroidal galaxy

    NASA Technical Reports Server (NTRS)

    Gould, Andrew; Guhathakurta, Puragra; Richstone, Douglas; Flynn, Chris

    1992-01-01

    A method is presented for detecting individual, metal-poor, dwarf stars at distances less than about 150 kpc - a method specifically designed to filter out stars from among the much more numerous faint background field galaxies on the basis of broad-band colors. This technique is applied to two fields at high Galactic latitude, for which there are deep CCD data in four bands ranging from 3600 to 9000 A. The field in Sextans probably contains more than about five dwarf stars with BJ not greater than 25.5. These are consistent with being at a common distance about 100 kpc and lie about 1.7 deg from the newly discovered dwarf galaxy in Sextans whose distance is about 85 +/- 10 kpc. The stars lie near the major axis of the galaxy and are near or beyond the tidal radius. The second field, toward the south Galactic pole, may contain up to about five extra-Galactic stars, but these show no evidence for being at a common distance. Possible applications of this type technique are discussed, and it is shown that even very low surface brightness star clusters or dwarf galaxies may be detected at distances less than about 1 Mpc.

  17. Continuum models for gas in disturbed galaxies. III. Bifurcations and chaos in a deterministic model for bursts of star formation

    SciTech Connect

    Struck-Marcell, C.; Scalo, J.M.

    1987-05-01

    A study of the nonlinear behavior of model equations describing the Oort model for interstellar cloud evolution and star formation is presented. One-zone cloud fluid equations for the Oort model are given, and it is shown how, as the time-delay parameter T(d) is increased, the system bifurcates to limit-cycle behavior accompanied by star formation bursts and, with further increase in T(d), suffers further bifurcations leading to chaotic behavior. A linear stability analysis, including time delay, is used to demonstrate that the behavior of the Oort model does not depend sensitively on the other parameters involved. It is also shown that the onset of bifurcation to a limit cycle can be predicted analytically. The major predictions of the calculations are compared with available relevant observations of star formation activity in galaxies, especially tidally interacting galaxies. 112 references.

  18. Near-infrared line-strengths in elliptical galaxies: evidence for initial mass function variations?

    NASA Astrophysics Data System (ADS)

    Cenarro, A. J.; Gorgas, J.; Vazdekis, A.; Cardiel, N.; Peletier, R. F.

    2003-02-01

    We present new relations between recently defined line-strength indices in the near-infrared (CaT*, CaT, PaT, MgI and sTiO) and central velocity dispersion (σ0) for a sample of 35 early-type galaxies, showing evidence for significant anti-correlations between CaII triplet indices (CaT* and CaT) and log σ0. These relations are interpreted in the light of our recent evolutionary synthesis model predictions, suggesting the existence of important Ca underabundances with respect to Fe and/or an increase of the dwarf to giant stars ratio along the mass sequence of elliptical galaxies.

  19. Does a localized plasma disturbance in the ionosphere evolve to electrostatic equilibrium? Evidence to the contrary

    NASA Astrophysics Data System (ADS)

    Cosgrove, Russell B.

    2016-01-01

    Electrostatic equilibrium must be achieved through electromagnetic evolution. From an initial state with nonzero neutral wind localized along the geomagnetic field, and with all other plasma and electromagnetic perturbations initially zero, evolution progresses from plasma velocity to electric field to magnetic field, where the last step can launch an Alfvén wave that transmits the electromagnetic disturbance along geomagnetic field lines. Without the Alfvén wave the disturbance does not map along geomagnetic field lines, and there is no semblance of electrostatic equilibrium. This paradigm is essentially the traditional magnetosphere/ionosphere coupling paradigm, except addressed to smaller-scale, local ionospheric phenomena. However, Alfvén waves have not been thoroughly studied in the context of the partially ionized, collisional ionospheric plasma, and so the full effects predicted by this modeling paradigm are not known. In this work we adopt the two-fluid equations and investigate whether the ionosphere supports Alfvén-type waves that can transmit disturbances along geomagnetic field lines and perform a wave analysis of the "lumped circuit" parameters normally used to characterize the ionosphere under electrostatic equilibrium. We find that under the wave analysis (1) the Pedersen conductivity is severely modified and has a negative real part at short wavelengths; (2) the mapping distance for electric fields is significantly modified, and there is a nonnegligible wavelength along the geomagnetic field; and (3) the load admittance seen by a localized dynamo is strongly reactive, causing a phase offset between electric field and current, as compared with that when the load is electrostatic.

  20. Kinematical evidence for secular evolution in Spitzer Survey of Stellar Structure in Galaxies (S4G) spirals

    NASA Astrophysics Data System (ADS)

    Erroz-Ferrer, Santiago; Knapen, Johan H.; Font, Joan; Beckman, John E.

    2015-03-01

    We present a study of the kinematics of a sample of isolated spiral galaxies in the Spitzer Survey of Stellar Structure in Galaxies (S4G). We use Hα Fabry-Perot data from the GHαFaS instrument at the William Herschel Telescope (WHT) in La Palma, complemented with images at 3.6 microns, in the R band and in the Hα filter. The resulting data cubes and velocity field maps allow a complete study of the kinematics of a galaxy, including in-depth investigations of the rotation curve, velocity moment maps, velocity residual maps, gradient maps and position-velocity (PV) diagrams. We find clear evidence of the secular evolution processes going on in these galaxies, such as asymmetries in the velocity field in the bar zone, and non-circular motions, probably in response to the potential of the structural components of the galaxies, or to past or present interactions.

  1. Post-fire Gully Rejuvenation - Evidence of Process Thresholds Controlled by Vegetation Disturbance

    NASA Astrophysics Data System (ADS)

    Hyde, K.; Woods, S.

    2011-12-01

    High intensity rainfall may trigger gully rejuvenation on hillslopes recently disturbed by wildfire, leading to debris-laden flows which generally contribute the majority of sediment transported in post-fire erosion events. We investigated the extent to which the occurrence of gully rejuvenation can be predicted based upon burn severity, rainfall data and basin morphometric variables. Field surveys were conducted at six Northern Rockies sites to identify occurrence of gully rejuvenation in first order catchments and to map and characterize the location of gully heads. NEXRAD and rain gage data analysis coupled with field observations characterized rainfall intensity and extent. Building on previous work we quantified burn severity using the Vegetation Disturbance Index (VDI), a continuous metric based upon Burned Area Reflectance Classification (BARC) maps derived from satellite imagery using the dNBR algorithm. GIS analysis combined the VDI with morphometric factors expected to influence hillslope stability. Gully heads marked abrupt transition in channel form. Above gully heads, channels were shallow and U-shaped with gentle transition to the hillslope and fine root hairs intact. Angular edges marked deep gully head incisions which down-cut channel floors from 0.2-0.3 to 1.0 meter or more. Any remaining roots were coarse and the hillslope transition was sharp. Gully heads were located at variable distances below the master rill head of the catchment hollow. Distances were obviously greater where live canopy remained upslope. Gully head morphology strongly suggests flow force transition and exceedance of an erosion process threshold. The variable distance of the gully head below the hollow suggest upslope controls influencing initiation point, possibly degree and spatial pattern of burn severity. Binary logistic regression revealed stronger correlation between gully rejuvenation and VDI than morphometric variables. The statistical strength using the continuous

  2. X-RAY ISOPHOTES IN A RAPIDLY ROTATING ELLIPTICAL GALAXY: EVIDENCE OF INFLOWING GAS

    SciTech Connect

    Brighenti, Fabrizio; Mathews, William G.

    2009-11-10

    We describe two-dimensional gasdynamical computations of the X-ray emitting gas in the rotating elliptical galaxy NGC 4649 that indicate an inflow of approx1 M{sub sun} yr{sup -1} at every radius. Such a large instantaneous inflow cannot have persisted over a Hubble time. The central constant-entropy temperature peak recently observed in the innermost 150 pc is explained by compressive heating as gas flows toward the central massive black hole. Since the cooling time of this gas is only a few million years, NGC 4649 provides the most acutely concentrated known example of the cooling flow problem in which the time-integrated apparent mass that has flowed into the galactic core exceeds the total mass observed there. This paradox can be resolved by intermittent outflows of energy or mass driven by accretion energy released near the black hole. Inflowing gas is also required at intermediate kpc radii to explain the ellipticity of X-ray isophotes due to spin-up by mass ejected by stars that rotate with the galaxy and to explain local density and temperature profiles. We provide evidence that many luminous elliptical galaxies undergo similar inflow spin-up. A small turbulent viscosity is required in NGC 4649 to avoid forming large X-ray luminous disks that are not observed, but the turbulent pressure is small and does not interfere with mass determinations that assume hydrostatic equilibrium.

  3. Missing black holes in brightest cluster galaxies as evidence for the occurrence of superkicks in nature

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Sesana, Alberto

    2015-01-01

    We investigate the consequences of superkicks on the population of supermassive black holes (SMBHs) in the Universe residing in brightest cluster galaxies (BCGs). There is strong observational evidence that BCGs grew prominently at late times (up to a factor 2-4 in mass from z = 1), mainly through mergers with satellite galaxies from the cluster, and they are known to host the most massive SMBHs ever observed. Those SMBHs are also expected to grow hierarchically, experiencing a series of mergers with other SMBHs brought in by merging satellites. Because of the net linear momentum taken away from the asymmetric gravitational wave emission, the remnant SMBH experiences a kick in the opposite direction. Kicks may be as large as 5000 km s-1 (`superkicks'), pushing the SMBHs out in the cluster outskirts for a time comparable to galaxy-evolution time-scales. We predict, under a number of plausible assumptions, that superkicks can efficiently eject SMBHs from BCGs, bringing their occupation fraction down to a likely range 0.9 < f < 0.99 in the local Universe. Future thirty-metre-class telescopes like ELT and TMT will be capable of measuring SMBHs in hundreds of BCGs up to z = 0.2, testing the occurrence of superkicks in nature and the strong-gravity regime of SMBH mergers.

  4. THE FERMI BUBBLES. I. POSSIBLE EVIDENCE FOR RECENT AGN JET ACTIVITY IN THE GALAXY

    SciTech Connect

    Guo Fulai; Mathews, William G.

    2012-09-10

    The Fermi Gamma-ray Space Telescope reveals two large gamma-ray bubbles in the Galaxy, which extend about 50 Degree-Sign ({approx}10 kpc) above and below the Galactic center (GC) and are symmetric about the Galactic plane. Using axisymmetric hydrodynamic simulations with a self-consistent treatment of the dynamical cosmic ray (CR)-gas interaction, we show that the bubbles can be created with a recent active galactic nucleus (AGN) jet activity about 1-3 Myr ago, which was active for a duration of {approx}0.1-0.5 Myr. The bipolar jets were ejected into the Galactic halo along the rotation axis of the Galaxy. Near the GC, the jets must be moderately light with a typical density contrast 0.001 {approx}< {eta} {approx}< 0.1 relative to the ambient hot gas. The jets are energetically dominated by kinetic energy, and overpressured with either CR or thermal pressure which induces lateral jet expansion, creating fat CR bubbles as observed. The sharp edges of the bubbles imply that CR diffusion across the bubble surface is strongly suppressed. The jet activity induces a strong shock, which heats and compresses the ambient gas in the Galactic halo, potentially explaining the ROSAT X-ray shell features surrounding the bubbles. The Fermi bubbles provide plausible evidence for a recent powerful AGN jet activity in our Galaxy, providing new insights into the origin of the halo CR population and the channel through which massive black holes in disk galaxies release feedback energy during their growth.

  5. Evidence for a change in the dominant satellite galaxy quenching mechanism at z = 1

    NASA Astrophysics Data System (ADS)

    Balogh, Michael L.; McGee, Sean L.; Mok, Angus; Muzzin, Adam; van der Burg, Remco F. J.; Bower, Richard G.; Finoguenov, Alexis; Hoekstra, Henk; Lidman, Chris; Mulchaey, John S.; Noble, Allison; Parker, Laura C.; Tanaka, Masayuki; Wilman, David J.; Webb, Tracy; Wilson, Gillian; Yee, Howard K. C.

    2016-03-01

    We present an analysis of galaxies in groups and clusters at 0.8 < z < 1.2, from the GCLASS and GEEC2 spectroscopic surveys. We compute a `conversion fraction' fconvert that represents the fraction of galaxies that were prematurely quenched by their environment. For massive galaxies, Mstar > 1010.3 M⊙, we find fconvert ˜ 0.4 in the groups and ˜0.6 in the clusters, similar to comparable measurements at z = 0. This means the time between first accretion into a more massive halo and final star formation quenching is tp ˜ 2 Gyr. This is substantially longer than the estimated time required for a galaxy's star formation rate to become zero once it starts to decline, suggesting there is a long delay time during which little differential evolution occurs. In contrast with local observations we find evidence that this delay time-scale may depend on stellar mass, with tp approaching tHubble for Mstar ˜ 109.5 M⊙. The result suggests that the delay time must not only be much shorter than it is today, but may also depend on stellar mass in a way that is not consistent with a simple evolution in proportion to the dynamical time. Instead, we find the data are well-matched by a model in which the decline in star formation is due to `overconsumption', the exhaustion of a gas reservoir through star formation and expulsion via modest outflows in the absence of cosmological accretion. Dynamical gas removal processes, which are likely dominant in quenching newly accreted satellites today, may play only a secondary role at z = 1.

  6. HUBBLE REVEALS 'BACKWARDS' SPIRAL GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have found a spiral galaxy that may be spinning to the beat of a different cosmic drummer. To the surprise of astronomers, the galaxy, called NGC 4622, appears to be rotating in the opposite direction to what they expected. Pictures by NASA's Hubble Space Telescope helped astronomers determine that the galaxy may be spinning clockwise by showing which side of the galaxy is closer to Earth. A Hubble telescope photo of the oddball galaxy is this month's Hubble Heritage offering. The image shows NGC 4622 and its outer pair of winding arms full of new stars [shown in blue]. Astronomers are puzzled by the clockwise rotation because of the direction the outer spiral arms are pointing. Most spiral galaxies have arms of gas and stars that trail behind as they turn. But this galaxy has two 'leading' outer arms that point toward the direction of the galaxy's clockwise rotation. To add to the conundrum, NGC 4622 also has a 'trailing' inner arm that is wrapped around the galaxy in the opposite direction it is rotating. Based on galaxy simulations, a team of astronomers had expected that the galaxy was turning counterclockwise. NGC 4622 is a rare example of a spiral galaxy with arms pointing in opposite directions. What caused this galaxy to behave differently from most galaxies? Astronomers suspect that NGC 4622 interacted with another galaxy. Its two outer arms are lopsided, meaning that something disturbed it. The new Hubble image suggests that NGC 4622 consumed a small companion galaxy. The galaxy's core provides new evidence for a merger between NGC 4622 and a smaller galaxy. This information could be the key to understanding the unusual leading arms. Galaxies, which consist of stars, gas, and dust, rotate very slowly. Our Sun, one of many stars in our Milky Way Galaxy, completes a circuit around the Milky Way every 250 million years. NGC 4622 resides 111 million light-years away in the constellation Centaurus. The pictures were taken in May 2001 with Hubble

  7. Self-other disturbance in borderline personality disorder: Neural, self-report, and performance-based evidence.

    PubMed

    Beeney, Joseph E; Hallquist, Michael N; Ellison, William D; Levy, Kenneth N

    2016-01-01

    Individuals with borderline personality disorder (BPD) display an impoverished sense of self and representations of self and others that shift between positive and negative poles. However, little research has investigated the nature of representational disturbance in BPD. The present study takes a multimodal approach. A card sort task was used to investigate complexity, integration, and valence of self-representation in BPD. Impairment in maintenance of self and other representations was assessed using a personality representational maintenance task. Finally, functional MRI (fMRI) was used to assess whether individuals with BPD show neural abnormalities related specifically to the self and what brain areas may be related to poor representational maintenance. Individuals with BPD sorted self-aspects suggesting more complexity of self-representation, but also less integration and more negative valence overall. On the representational maintenance task, individuals with BPD showed less consistency in their representations of self and others over the 3-hr period, but only for abstract, personality-based representations. Performance on this measure mediated between-groups brain activation in several areas supporting social cognition. We found no evidence for social-cognitive disturbance specific to the self. Additionally, the BPD group showed main effects, insensitive to condition, of hyperactivation in the medial prefrontal cortex, temporal parietal junction, several regions of the frontal pole, the precuneus and middle temporal gyrus, all areas crucial social cognition. In contrast, controls evidenced greater activation in visual, sensory, motor, and mirror neuron regions. These findings are discussed in relation to research regarding hypermentalization and the overlap between self- and other-disturbance. PMID:26011577

  8. Evidence against a simple two-component model for the far-infrared emission from galaxies

    NASA Technical Reports Server (NTRS)

    Eales, Stephen A.; Devereux, Nicholas A.

    1990-01-01

    Two of the first Infrared Astronomy Satellite (IRAS) results were that galaxies have a wide range of values for the ratio of 60 micron to 100 micron flux density (0.2 less than or equal to S sub 60/S sub 100 less than or equal to 1.0) and that this ratio is correlated with L sub fir, L sub b, L sub fir being the total far-infrared luminosity and L sub b being the luminosity at visible wavelengths (de Jong et al. 1984; Soifer et al. 1984). From these results arose the following simple model for the far-infrared emission from galaxies (de Jong et al. 1984), which has remained the standard model ever since. In this model, the far-infrared emission comes from two dust components: warm dust (T approx. equals 50 K) intermingled with, and heated by, young massive OB stars in molecular clouds and HII regions, and colder dust (T approx. equals 20 K) associated with the diffuse atomic hydrogen in the interstellar medium and heated by the general interstellar radiation field. As the number of young stars in a galaxy increases, S sub 60/S sub 100 increases, because there is a greater proportion of warm dust, and so does L sub fir/L sub b, because most of the radiation from the young stars is absorbed by the dust, leading to a swifter increase in far-infrared emission than in visible light. Although this model explains the basic IRAS results, it is inelegant. It uses two free parameters to fit two data (the 60 and 100 micron flux densities)-and there are now several observations that contradict it. Despite these major problems with the two-component model, it is not clear what should be put in its place. When considering possible models for the far-infrared emission from galaxies, the observational evidence for our own galaxy must be considered. Researchers suspect that the study by Boulanger and Perault (1988) of the far-infrared properties of the local interstellar medium may be particularly relevant. They showed that molecular clouds are leaky - that most of the light from

  9. Evidence against a simple two-component model for the far-infrared emission from galaxies

    NASA Astrophysics Data System (ADS)

    Eales, Stephen A.; Devereux, Nicholas A.

    1990-07-01

    Two of the first Infrared Astronomy Satellite (IRAS) results were that galaxies have a wide range of values for the ratio of 60 micron to 100 micron flux density (0.2 less than or equal to S60/S sub 100 less than or equal to 1.0) and that this ratio is correlated with Lfir, Lb, Lfir being the total far-infrared luminosity and Lb being the luminosity at visible wavelengths (de Jong et al. 1984; Soifer et al. 1984). From these results arose the following simple model for the far-infrared emission from galaxies (de Jong et al. 1984), which has remained the standard model ever since. In this model, the far-infrared emission comes from two dust components: warm dust (T approx. equals 50 K) intermingled with, and heated by, young massive OB stars in molecular clouds and HII regions, and colder dust (T approx. equals 20 K) associated with the diffuse atomic hydrogen in the interstellar medium and heated by the general interstellar radiation field. As the number of young stars in a galaxy increases, S60/S sub 100 increases, because there is a greater proportion of warm dust, and so does Lfir/L sub b, because most of the radiation from the young stars is absorbed by the dust, leading to a swifter increase in far-infrared emission than in visible light. Although this model explains the basic IRAS results, it is inelegant. It uses two free parameters to fit two data (the 60 and 100 micron flux densities)-and there are now several observations that contradict it. Despite these major problems with the two-component model, it is not clear what should be put in its place. When considering possible models for the far-infrared emission from galaxies, the observational evidence for our own galaxy must be considered. Researchers suspect that the study by Boulanger and Perault (1988) of the far-infrared properties of the local interstellar medium may be particularly relevant. They showed that molecular clouds are leaky - that most of the light from OB stars in molecular clouds does

  10. Sleep disturbance in adults with cancer: a systematic review of evidence for best practices in assessment and management for clinical practice.

    PubMed

    Howell, D; Oliver, T K; Keller-Olaman, S; Davidson, J R; Garland, S; Samuels, C; Savard, J; Harris, C; Aubin, M; Olson, K; Sussman, J; MacFarlane, J; Taylor, C

    2014-04-01

    Sleep disturbance is prevalent in cancer with detrimental effects on health outcomes. Sleep problems are seldom identified or addressed in cancer practice. The purpose of this review was to identify the evidence base for the assessment and management of cancer-related sleep disturbance (insomnia and insomnia syndrome) for oncology practice. The search of the health literature included grey literature data sources and empirical databases from June 2004 to June 2012. The evidence was reviewed by a Canadian Sleep Expert Panel, comprised of nurses, psychologists, primary care physicians, oncologists, physicians specialized in sleep disturbances, researchers and guideline methodologists to develop clinical practice recommendations for pan-Canadian use reported in a separate paper. Three clinical practice guidelines and 12 randomized, controlled trials were identified as the main source of evidence. Additional guidelines and systematic reviews were also reviewed for evidence-based recommendations on the assessment and management of insomnia not necessarily in cancer. A need to routinely screen for sleep disturbances was identified and the randomized, controlled trial (RCT) evidence suggests benefits for cognitive behavioural therapy for improving sleep quality in cancer. Sleep disturbance is a prevalent problem in cancer that needs greater recognition in clinical practice and in future research. PMID:24287882

  11. PEARS Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; Cohen, Seth; Belini, Andrea; Holwerda, Benne W.; Straughn, Amber; Mechtley, Matthew

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 < z < 1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allOW8 us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 [OII], [OIII] and/or H-alpha emission lines have been identified in the PEARS sample of approx 906 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  12. Dwarf galaxies in the Perseus Cluster: further evidence for a disc origin for dwarf ellipticals

    NASA Astrophysics Data System (ADS)

    Penny, Samantha J.; Forbes, Duncan A.; Pimbblet, Kevin A.; Floyd, David J. E.

    2014-10-01

    We present the results of a Keck-ESI (Echellette Spectrograph and Imager) spectroscopic study of six dwarf elliptical (dE) galaxies in the Perseus Cluster core, and confirm two dwarfs as cluster members for the first time. All six dEs follow the size-magnitude relation for dE/dSph galaxies. Central velocity dispersions are measured for three Perseus dwarfs in our sample, and all lie on the σ-luminosity relation for early-type, pressure-supported systems. We furthermore examine SA 0426-002, a unique dE in our sample with a bar-like morphology surrounded by low surface brightness wings/lobes (μB = 27 mag arcsec-2). Given its morphology, velocity dispersion (σ0 = 33.9 ± 6.1 km s-1), velocity relative to the brightest cluster galaxy NGC 1275 (2711 km s-1), size (Re = 2.1 ± 0.10 kpc), and Sérsic index (n = 1.2 ± 0.02), we hypothesize the dwarf has morphologically transformed from a low-mass disc to dE via harassment. The low surface brightness lobes can be explained as a ring feature, with the bar formation triggered by tidal interactions via speed encounters with Perseus Cluster members. Alongside spiral structure found in dEs in Fornax and Virgo, SA 0426-002 provides crucial evidence that a fraction of bright dEs have a disc infall origin, and are not part of the primordial cluster population.

  13. Evidence for the Suppression of Star-Formation in the Centers of Massive Galaxies at z=4

    NASA Astrophysics Data System (ADS)

    JUNG, INTAE; Finkelstein, Steven L.; CANDELS Team

    2016-01-01

    We perform the first spatially-resolved stellar population study of galaxies over the GOODS-S field in the early universe (z = 3.5-6.5), utilizing the Hubble Space Telescope Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) imaging dataset. We select a sample of ~ 550 bright and extended galaxies at z = 3.5-6.5, from a parent sample of ~ 8000 photometric-redshift selected galaxies at z = 3.5-8.5 (Finkelstein et al. 2015). We separate each galaxy into several concentric rings with various radial distances to the galactic center, and perform aperture photometry to calculate the fluxes from each annulus. We derive the radial dependence of the galaxy properties such as stellar mass, star formation rate, and dust content via spectral energy distribution fitting based on a Markov Chain Monte Carlo algorithm. We find that in our highest two redshift bins (z ~ 5 and 6), our sample of galaxies show specific star formation rates (sSFRs) which are generally independent of the radial distance from the center of the galaxies, indicating that stars are formed uniformly at all radii, contrary to massive galaxies at z ≤ 2. However, in our lowest redshift bin of z ~ 4, the majority of galaxies with the highest central mass densities (log M/M⊙ > 9 kpc-2) show evidence for a preferentially lower sSFR in their centers than in their outer regions, indicative of the suppression of star formation in their central regions, possibly leading to the formation of bulges.

  14. Deep Fabry-Perot imaging of NGC 6240: Kinematic evidence for merging galaxies

    NASA Technical Reports Server (NTRS)

    Hawthorn, J. Bland; Wilson, A. S.; Tully, R. B.

    1990-01-01

    The authors have observed the superluminous, infrared galaxy NGC 6240 (z = 0.025) at H alpha with the Hawaii Imaging Fabry-Perot Interferometer (HIFI - Bland and Tully 1989). During the past decade, observational evidence from all wavebands indicates that the unusual appearance of NGC 6240 has resulted from a collision between two gas-rich systems, a view which is supported by our spectrophotometric data. However, the origin of the enormous infrared luminosity (4 times 10(exp 11) solar luminosity) detected by the Infrared Astronomy Satellite (IRAS) remains highly controversial, where opinions differ on the relative roles of large-scale shocks, massive star formation or a buried 'active' nucleus. These mechanisms are discussed in the light of the author's Fabry-Perot observations.

  15. FAST MOLECULAR OUTFLOWS IN LUMINOUS GALAXY MERGERS: EVIDENCE FOR QUASAR FEEDBACK FROM HERSCHEL

    SciTech Connect

    Veilleux, S.; Meléndez, M.; Sturm, E.; Gracia-Carpio, J.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; Genzel, R.; Tacconi, L.; De Jong, J. A.; Fischer, J.; González-Alfonso, E.; Sternberg, A.; Netzer, H.; Hailey-Dunsheath, S.; Verma, A.; Rupke, D. S. N.; Maiolino, R.; Teng, S. H. E-mail: marcio@astro.umd.edu; and others

    2013-10-10

    We report the results from a systematic search for molecular (OH 119 μm) outflows with Herschel/PACS in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7 μm silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than –50 km s{sup –1}, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (∼145°) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km s{sup –1}, is seen in only four objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of ∼–1000 km s{sup –1} are measured in several objects, but median outflow velocities are typically ∼–200 km s{sup –1}. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large active galactic nucleus (AGN) fractions and luminosities [log (L{sub AGN}/L{sub ☉}) ≥ 11.8 ± 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  16. Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Melendez, M.; Sturm, E.; Garcia-Carpio, J.; Fischer, J.; Gonzalez-Alfonso, E.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; Genzel, R.; Tacconi, L.; deJong, J. A.; Sternberg, A.; Netzer, H.; Hailey-Dunsheath, S.; Verma, A.; Rupke, D. S. N.; Maiolino, R.; Teng, S. H.; Polisensky, E.

    2013-01-01

    We report the results from a systematic search for molecular (OH 119 micron) outflows with Herschel/PACS in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7 micron silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than-50 km/s, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (approx. 145 deg.) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km/s is seen in only four objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of approx. -1000 km/s are measured in several objects, but median outflow velocities are typically approx.-200 km/s-1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large active galactic nucleus (AGN) fractions and luminosities [log (L(sub AGN)/L(sub solar)) => 11.8 +/- 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  17. Evidence for Merging or Disruption of Red Galaxies from the Evolution of Their Clustering

    SciTech Connect

    White, Martin; White, Martin; Zheng, Zheng; Brown, Michael J. I.; Dey, Arjun; Jannuzi, Buell T.

    2006-11-29

    The formation and evolution of massive red galaxies form a crucial test of theories of galaxy formation based on hierarchical assembly. In this Letter we use observations of the clustering of luminous red galaxies from the Boötes field and N-body simulations to argue that about of the most luminous satellite galaxies appear to undergo merging or disruption within massive halos between and 0.5.

  18. Observational Evidence for Galaxy Evolution in the Local Group (Invited Talk)

    NASA Astrophysics Data System (ADS)

    Tolstoy, E.

    This review aims to give a summary of our understanding of galaxy evolution as infered from studies of nearby galaxies; how observations made with the Hubble Space Telescope have contributed significantly to our detailed understanding of the older stellar populations in Local Group dwarf galaxies. Recent results from VLT are also promising interesting future prospects for the study of resolved stellar populations in nearby dwarf galaxies.

  19. Colliding and merging galaxies. I - Evidence for the recent merging of two disk galaxies in NGC 7252

    NASA Astrophysics Data System (ADS)

    Schweizer, F.

    1982-01-01

    Results from a photographic, spectroscopic, and photometric study of the 'Atoms-for-Peace' galaxy are presented. The observations reveal that NGC 7252 possesses a single nucleus, a nearly round main body marked by delicate ripples, faint surrounding loops, and two slender tails that project to 80 kpc and 130 kpc from the center. The principal body itself shows a spectrum indicative of young A stars and contains a small central disk of ionized gas. The disk rotates with v sin i approximately equal to 80-100 km/s around a well-defined axis, whereas the gas immediately beyond it follows a totally different motion pattern. Five characteristics taken together indicate a recent merger of two similarly massive disk galaxies: the two tails, the unusual isolation opposite tail motions, the single nucleus and body, and the two surviving motion systems of the gas.

  20. Populations of High-Luminosity Density-Bounded HII Regions in Spiral Galaxies? Evidence and Implications

    NASA Technical Reports Server (NTRS)

    Beckman, J. E.; Rozas, M.; Zurita, A.; Watson, R. A.; Knapen, J. H.

    2000-01-01

    In this paper we present evidence that the H II regions of high luminosity in disk galaxies may be density bounded, so that a significant fraction of the ionizing photons emitted by their exciting OB stars escape from the regions. The key piece of evidence is the presence, in the Ha luminosity functions (LFs) of the populations of H iI regions, of glitches, local sharp peaks at an apparently invariant luminosity, defined as the Stromgren luminosity Lstr), LH(sub alpha) = Lstr = 10(sup 38.6) (+/- 10(sup 0.1)) erg/ s (no other peaks are found in any of the LFs) accompanying a steepening of slope for LH(sub alpha) greater than Lstr This behavior is readily explicable via a physical model whose basic premises are: (a) the transition at LH(sub alpha) = Lstr marks a change from essentially ionization bounding at low luminosities to density bounding at higher values, (b) for this to occur the law relating stellar mass in massive star-forming clouds to the mass of the placental cloud must be such that the ionizing photon flux produced within the cloud is a function which rises more steeply than the mass of the cloud. Supporting evidence for the hypothesis of this transition is also presented: measurements of the central surface brightnesses of H II regions for LH(sub alpha) less than Lstr are proportional to L(sup 1/3, sub H(sub alpha)), expected for ionization bounding, but show a sharp trend to a steeper dependence for LH(sub alpha) greater than Lstr, and the observed relation between the internal turbulence velocity parameter, sigma, and the luminosity, L, at high luminosities, can be well explained if these regions are density bounded. If confirmed, the density-bounding hypothesis would have a number of interesting implications. It would imply that the density-bounded regions were the main sources of the photons which ionize the diffuse gas in disk galaxies. Our estimates, based on the hypothesis, indicate that these regions emit sufficient Lyman continuum not only to

  1. A LARGE NUMBER OF z > 6 GALAXIES AROUND A QSO AT z = 6.43: EVIDENCE FOR A PROTOCLUSTER?

    SciTech Connect

    Utsumi, Yousuke; Kashikawa, Nobunari; Miyazaki, Satoshi; Komiyama, Yutaka; Goto, Tomotsugu; Furusawa, Hisanori; Overzier, Roderik

    2010-10-01

    QSOs have been thought to be important for tracing highly biased regions in the early universe, from which the present-day massive galaxies and galaxy clusters formed. While overdensities of star-forming galaxies have been found around QSOs at 2 < z < 5, the case for excess galaxy clustering around QSOs at z > 6 is less clear. Previous studies with the Hubble Space Telescope (HST) have reported the detection of small excesses of faint dropout galaxies in some QSO fields, but these surveys probed a relatively small region surrounding the QSOs. To overcome this problem, we have observed the most distant QSO at z = 6.4 using the large field of view of the Suprime-Cam (34' x 27'). Newly installed red-sensitive fully depleted CCDs allowed us to select Lyman break galaxies (LBGs) at z {approx} 6.4 more efficiently. We found seven LBGs in the QSO field, whereas only one exists in a comparison field. The significance of this apparent excess is difficult to quantify without spectroscopic confirmation and additional control fields. The Poisson probability to find seven objects when one expects four is {approx}10%, while the probability to find seven objects in one field and only one in the other is less than 0.4%, suggesting that the QSO field is significantly overdense relative to the control field. These conclusions are supported by a comparison with a cosmological smoothed particle hydrodynamics simulation which includes the higher order clustering of galaxies. We find some evidence that the LBGs are distributed in a ring-like shape centered on the QSO with a radius of {approx}3 Mpc. There are no candidate LBGs within 2 Mpc from the QSO, i.e., galaxies are clustered around the QSO but appear to avoid the very center. These results suggest that the QSO is embedded in an overdense region when defined on a sufficiently large scale (i.e., larger than an HST/ACS pointing). This suggests that the QSO was indeed born in a massive halo. The central deficit of galaxies may

  2. EVIDENCE FOR A WIDE RANGE OF ULTRAVIOLET OBSCURATION IN z {approx} 2 DUSTY GALAXIES FROM THE GOODS-HERSCHEL SURVEY

    SciTech Connect

    Penner, Kyle; Dickinson, Mark; Dey, Arjun; Kartaltepe, Jeyhan; Pope, Alexandra; Magnelli, Benjamin; Pannella, Maurilio; Aussel, Herve; Daddi, Emanuele; Elbaz, David; Buat, Veronique; Bussmann, Shane; Hwang, Ho Seong; Charmandaris, Vassilis; Dannerbauer, Helmut; Lin Lihwai; Magdis, Georgios; Morrison, Glenn; and others

    2012-11-01

    Dusty galaxies at z {approx} 2 span a wide range of relative brightness between rest-frame mid-infrared (8 {mu}m) and ultraviolet wavelengths. We attempt to determine the physical mechanism responsible for this diversity. Dust-obscured galaxies (DOGs), which have rest-frame mid-IR to UV flux density ratios {approx}> 1000, might be abnormally bright in the mid-IR, perhaps due to prominent emission from active galactic nuclei and/or polycyclic aromatic hydrocarbons, or abnormally faint in the UV. We use far-infrared data from the GOODS-Herschel survey to show that most DOGs with 10{sup 12} L {sub Sun} {approx}< L {sub IR} {approx}< 10{sup 13} L {sub Sun} are not abnormally bright in the mid-IR when compared to other dusty galaxies with similar IR (8-1000 {mu}m) luminosities. We observe a relation between the median IR to UV luminosity ratios and the median UV continuum power-law indices for these galaxies, and we find that only 24% have specific star formation rates that indicate the dominance of compact star-forming regions. This circumstantial evidence supports the idea that the UV- and IR-emitting regions in these galaxies are spatially coincident, which implies a connection between the abnormal UV faintness of DOGs and dust obscuration. We conclude that the range in rest-frame mid-IR to UV flux density ratios spanned by dusty galaxies at z {approx} 2 is due to differing amounts of UV obscuration. Of galaxies with these IR luminosities, DOGs are the most obscured. We attribute differences in UV obscuration to either (1) differences in the degree of alignment between the spatial distributions of dust and massive stars or (2) differences in the total dust content.

  3. Evidence for a Wide Range of Ultraviolet Obscuration in z ~ 2 Dusty Galaxies from the GOODS-Herschel Survey

    NASA Astrophysics Data System (ADS)

    Penner, Kyle; Dickinson, Mark; Pope, Alexandra; Dey, Arjun; Magnelli, Benjamin; Pannella, Maurilio; Altieri, Bruno; Aussel, Herve; Buat, Veronique; Bussmann, Shane; Charmandaris, Vassilis; Coia, Daniela; Daddi, Emanuele; Dannerbauer, Helmut; Elbaz, David; Hwang, Ho Seong; Kartaltepe, Jeyhan; Lin, Lihwai; Magdis, Georgios; Morrison, Glenn; Popesso, Paola; Scott, Douglas; Valtchanov, Ivan

    2012-11-01

    Dusty galaxies at z ~ 2 span a wide range of relative brightness between rest-frame mid-infrared (8 μm) and ultraviolet wavelengths. We attempt to determine the physical mechanism responsible for this diversity. Dust-obscured galaxies (DOGs), which have rest-frame mid-IR to UV flux density ratios >~ 1000, might be abnormally bright in the mid-IR, perhaps due to prominent emission from active galactic nuclei and/or polycyclic aromatic hydrocarbons, or abnormally faint in the UV. We use far-infrared data from the GOODS-Herschel survey to show that most DOGs with 1012 L ⊙ <~ L IR <~ 1013 L ⊙ are not abnormally bright in the mid-IR when compared to other dusty galaxies with similar IR (8-1000 μm) luminosities. We observe a relation between the median IR to UV luminosity ratios and the median UV continuum power-law indices for these galaxies, and we find that only 24% have specific star formation rates that indicate the dominance of compact star-forming regions. This circumstantial evidence supports the idea that the UV- and IR-emitting regions in these galaxies are spatially coincident, which implies a connection between the abnormal UV faintness of DOGs and dust obscuration. We conclude that the range in rest-frame mid-IR to UV flux density ratios spanned by dusty galaxies at z ~ 2 is due to differing amounts of UV obscuration. Of galaxies with these IR luminosities, DOGs are the most obscured. We attribute differences in UV obscuration to either (1) differences in the degree of alignment between the spatial distributions of dust and massive stars or (2) differences in the total dust content. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  4. MAGIICAT IV. Kinematics of the Circumgalactic Medium and Evidence for Quiescent Evolution Around Red Galaxies

    NASA Astrophysics Data System (ADS)

    Nielsen, Nikole M.; Churchill, Christopher W.; Kacprzak, Glenn G.; Murphy, Michael T.; Evans, Jessica L.

    2016-02-01

    The equivalent widths of {{Mg}} {{II}} absorption in the circumgalactic medium (CGM) trace the global star formation rate up to z < 6, are larger for star-forming galaxies than passively evolving galaxies, and decrease with increasing distance from the galaxy. We delve further into the physics involved by investigating gas kinematics and cloud column density distributions as a function of galaxy color, redshift, and projected distance from the galaxy (normalized by galaxy virial radius, D/Rvir). For 39 isolated galaxies at 0.3 < zgal < 1.0, we have detected {{Mg}} {{II}} absorption in high-resolution (Δv ≃ 6.6 km s-1) spectra of background quasars within a projected distance of 7 < D < 190 kpc. We characterize the absorption velocity spread using pixel-velocity two-point correlation functions. Velocity dispersions and cloud column densities for blue galaxies do not differ with redshift nor with D/Rvir. This suggests that outflows continually replenish the CGM of blue galaxies with high velocity dispersion, large column density gas out to large distances. Conversely, absorption hosted by red galaxies evolves with redshift where the velocity dispersions (column densities) are smaller (larger) at zgal < 0.656. After taking into account larger possible velocities in more massive galaxies, we find that there is no difference in the velocity dispersions or column densities for absorption hosted by red galaxies with D/Rvir. Thus, a lack of outflows in red galaxies causes the CGM to become more quiescent over time, with lower velocity dispersions and larger column densities toward lower zgal. The quenching of star formation appears to affect the CGM out to D/Rvir = 0.75.

  5. EVIDENCE FOR (AND AGAINST) PROGENITOR BIAS IN THE SIZE GROWTH OF COMPACT RED GALAXIES

    SciTech Connect

    Keating, Stephanie K.; Abraham, Roberto G.; Schiavon, Ricardo; Graves, Genevieve; Damjanov, Ivana; Yan, Renbin; Newman, Jeffrey; Simard, Luc

    2015-01-01

    Most massive, passive galaxies are compact at high redshifts, but similarly compact massive galaxies are rare in the local universe. The most common interpretation of this phenomenon is that massive galaxies have grown in size by a factor of about five since redshift z = 2. An alternative explanation is that recently quenched massive galaxies are larger (a {sup p}rogenitor bias{sup )}. In this paper, we explore the importance of progenitor bias by looking for systematic differences in the stellar populations of compact early-type galaxies in the DEEP2 survey as a function of size. Our analysis is based on applying the statistical technique of bootstrap resampling to constrain differences in the median ages of our samples and to begin to characterize the distribution of stellar populations in our co-added spectra. The light-weighted ages of compact early-type galaxies at redshifts 0.5 < z < 1.4 are compared to those of a control sample of larger galaxies at similar redshifts. We find that massive compact early-type galaxies selected on the basis of red color and high bulge-to-total ratio are younger than similarly selected larger galaxies, suggesting that size growth in these objects is not driven mainly by progenitor bias, and that individual galaxies grow as their stellar populations age. However, compact early-type galaxies selected on the basis of image smoothness and high bulge-to-total ratio are older than a control sample of larger galaxies. Progenitor bias will play a significant role in defining the apparent size changes of early-type galaxies if they are selected on the basis of the smoothness of their light distributions.

  6. Environment of Seyfert 2 galaxies: the group of galaxies around NGC5252.

    NASA Astrophysics Data System (ADS)

    Freudling, W.; Prieto, M. Almudena

    1996-02-01

    The relatively large neutral hydrogen contents and enhanced density of companion galaxies around Seyfert 2 galaxies suggests that tidal interaction could play a major role in the evolution of Seyfert 2 galaxies. Recent observations of the distribution of neutral hydrogen in the active S0 galaxy NGC5252 have shown a disturbed morphology which suggests that the HI in this galaxy could have been acquired through interaction with neighboring galaxies (Prieto & Freudling 1993 and 1995). We have searched for other HI rich galaxies within a radius of 25 arcmin and a redshift range of +/-600km/s around the center location and redshift of NGC5252. A total of five galaxies were found, four of them are cataloged galaxies with no previous redshifts available. These five galaxies were mapped with the VLA in order to search for signs of recent tidal interactions. The maps and derived HI parameters are presented and compared to the one of NGC5252, the sixth member of the group. Two of the galaxies (UGC 8635) are an interacting pair. No signs of other recent interactions were found. Using the Arecibo telescope, we also searched for intergalactic neutral hydrogen between the group members as another potential source of gas for NGC5252. Upper limits on intergroup gas are given for three positions. The lack of evidence for interaction among the galaxies could be interpreted in two different ways. Either interaction occurred in the distant past and triggered activity in this galaxy over a long period of time. Alternatively, factors other than the gas supply might be responsible for the observation that Seyfert 2 galaxies tend to be surrounded by a region of enhanced galaxy density.

  7. THE MOLECULAR GAS CONTENT OF z = 3 LYMAN BREAK GALAXIES: EVIDENCE OF A NON-EVOLVING GAS FRACTION IN MAIN-SEQUENCE GALAXIES AT z > 2

    SciTech Connect

    Magdis, Georgios E.; Rigopoulou, D.; Daddi, E.; Sargent, M.; Elbaz, D.; Gobat, R.; Tan, Q.; Aussel, H.; Feruglio, C.; Charmandaris, V.; Dickinson, M.; Reddy, N.

    2012-10-10

    We present observations of the CO[J = 3 {yields} 2] emission toward two massive and infrared luminous Lyman break galaxies (LBGs) at z = 3.21 and z = 2.92, using the IRAM Plateau de Bure Interferometer, placing first constraints on the molecular gas masses (M{sub gas}) of non-lensed LBGs. Their overall properties are consistent with those of typical (main-sequence) galaxies at their redshifts, with specific star formation rates {approx}1.6 and {approx}2.2 Gyr{sup -1}, despite their large infrared luminosities (L{sub IR} Almost-Equal-To (2-3) Multiplication-Sign 10{sup 12} L{sub Sun }) derived from Herschel. With one plausible CO detection (spurious detection probability of 10{sup -3}) and one upper limit, we investigate the evolution of the molecular gas-to-stellar mass ratio (M{sub gas}/M{sub *}) with redshift. Our data suggest that the steep evolution of M{sub gas}/M{sub *} of normal galaxies up to z {approx} 2 is followed by a flattening at higher redshifts, providing supporting evidence for the existence of a plateau in the evolution of the specific star formation rate at z > 2.5.

  8. Galaxy Zoo: evidence for diverse star formation histories through the green valley

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Marshall, P. J.; Bamford, S.; Fortson, L.; Kaviraj, S.; Masters, K. L.; Melvin, T.; Nichol, R. C.; Skibba, R. A.; Willett, K. W.

    2015-06-01

    Does galaxy evolution proceed through the green valley via multiple pathways or as a single population? Motivated by recent results highlighting radically different evolutionary pathways between early- and late-type galaxies, we present results from a simple Bayesian approach to this problem wherein we model the star formation history (SFH) of a galaxy with two parameters, [t, τ] and compare the predicted and observed optical and near-ultraviolet colours. We use a novel method to investigate the morphological differences between the most probable SFHs for both disc-like and smooth-like populations of galaxies, by using a sample of 126 316 galaxies (0.01 < z < 0.25) with probabilistic estimates of morphology from Galaxy Zoo. We find a clear difference between the quenching time-scales preferred by smooth- and disc-like galaxies, with three possible routes through the green valley dominated by smooth- (rapid time-scales, attributed to major mergers), intermediate- (intermediate time-scales, attributed to minor mergers and galaxy interactions) and disc-like (slow time-scales, attributed to secular evolution) galaxies. We hypothesize that morphological changes occur in systems which have undergone quenching with an exponential time-scale τ < 1.5 Gyr, in order for the evolution of galaxies in the green valley to match the ratio of smooth to disc galaxies observed in the red sequence. These rapid time-scales are instrumental in the formation of the red sequence at earlier times; however, we find that galaxies currently passing through the green valley typically do so at intermediate time-scales.†

  9. Decreased Frequency of Strong Bars in S0 Galaxies: Evidence for Secular Evolution?

    NASA Astrophysics Data System (ADS)

    Buta, R.; Laurikainen, E.; Salo, H.; Knapen, J. H.

    2010-09-01

    Using data from the Near-Infrared S0 Survey of nearby, early-type galaxies, we examine the distribution of bar strengths in S0 galaxies as compared to S0/a and Sa galaxies, and as compared to previously published bar strength data for Ohio State University Bright Spiral Galaxy Survey spiral galaxies. Bar strengths based on the gravitational torque method are derived from 2.2 μm Ks -band images for a statistical sample of 138 (98 S0, 40 S0/a,Sa) galaxies having a mean total blue magnitude lang BT rang <= 12.5 and generally inclined less than 65°. We find that S0 galaxies have weaker bars on average than spiral galaxies in general, even compared to their closest spiral counterparts, S0/a and Sa galaxies. The differences are significant and cannot be entirely due to uncertainties in the assumed vertical scale heights or in the assumption of constant mass-to-light ratios. Part of the difference is likely simply due to the dilution of the bar torques by the higher mass bulges seen in S0s. If spiral galaxies accrete external gas, as advocated by Bournaud & Combes, then the fewer strong bars found among S0s imply a lack of gas accretion according to this theory. If S0s are stripped former spirals, or else are evolved from former spirals due to internal secular dynamical processes which deplete the gas as well as grow the bulges, then the weaker bars and the prevalence of lenses in S0 galaxies could further indicate that bar evolution continues to proceed during and even after gas depletion.

  10. X-ray evidence for ultra-fast outflows in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Braito, Valentina; Reeves, James; Cappi, Massimo; Dadina, Mauro

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts observed with XMM-Newton. Similar results are also obtained from a Suzaku analysis of 5 radio galaxies. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1}. The associated mechanical power is also high, in the range ˜10^{43}--10^{45} erg/s, which indicates that UFOs are capable to provide a significant contribution to the AGN cosmological feedback.

  11. Evidence for a supermassive black hole in the nucleus of the Seyfert galaxy NGC 5548

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. Michael; Blackwell, James H., Jr.

    1990-01-01

    The international campaign to monitor the variable Seyfert 1 galaxy NGC 5548 with the IUE has provided an extensive and well-sampled set of spectroscopic observations. These observations are used to study the response of the C IV 1550 A emission-line profile to changes in the photoionizing continuum. Near the end of the IUE campaign, the continuum flux at 1440 A and the total C IV flux dopped by factors of 2.9 and 1.8, respectively, in 16 days. The red wing of the C IV profile responded more rapidly to the sharp continuum drop than the blue wing, indicating that clouds in the inner broad-line region (BLR) are undergoing gravitational infall. These results provide direct evidence that the central engine is a supermassive object, presumably a black hole, with a mass on the order of 10 to the 7th solar masses. Analysis of the profile variations also demonstrates that excess emission in the blue wing of C IV is from a component that is physically distinct from the bulk of the BLR.

  12. Growing Galaxies Gently

    NASA Astrophysics Data System (ADS)

    2010-10-01

    of the flow of pristine gas from the surrounding space and the associated formation of new stars. They were very careful to make sure that their specimen galaxies had not been disturbed by interactions with other galaxies. The selected galaxies were very regular, smoothly rotating discs, similar to the Milky Way, and they were seen about two billion years after the Big Bang (at a redshift of around three). In galaxies in the modern Universe the heavy elements [1] are more abundant close to the centre. But when Cresci's team mapped their selected distant galaxies with the SINFONI spectrograph on the VLT [2] they were excited to see that in all three cases there was a patch of the galaxy, close to the centre, with fewer heavy elements, but hosting vigorously forming stars, suggesting that the material to fuel the star formation was coming from the surrounding pristine gas that is low in heavy elements. This was the smoking gun that provided the best evidence yet of young galaxies accreting primitive gas and using it to form new generations of stars. As Cresci concludes: "This study has only been possible because of the outstanding performance of the SINFONI instrument on the VLT. It has opened a new window for studying the chemical properties of very distant galaxies. SINFONI provides information not only in two spatial dimensions, but also in a third, spectral dimension, which allows us to see the internal motions inside galaxies and study the chemical composition of the interstellar gas." Notes [1] The gas filling the early Universe was almost all hydrogen and helium. The first generations of stars processed this primitive material to create heavier elements such as oxygen, nitrogen and carbon by nuclear fusion. When this material was subsequently spewed back into space by intense particle winds from massive young stars and supernova explosions the amounts of heavy elements in the galaxy gradually increased. Astronomers refer to elements other than hydrogen and

  13. Evidence for a large-scale environmental dependence of galaxy morphology in clusters

    SciTech Connect

    Sanroma, M.; Salvador-Sole, E. Institut d'Estudis Catalans )

    1990-09-01

    By means of a very straightforward test, it is found that clumpiness of substructure in clusters of galaxies, if present, does not apparently play any significant role in the observed spatial distribution of morphological types. The result is in agreement with the interpretation that the well-known dependence of morphological fractions on the local projected number density of galaxies is attached to the general shape of the number density profile of clusters. This may have important implications for the theory of galaxy formation and evolution. 17 refs.

  14. DYNAMICAL VERSUS STELLAR MASSES IN COMPACT EARLY-TYPE GALAXIES: FURTHER EVIDENCE FOR SYSTEMATIC VARIATION IN THE STELLAR INITIAL MASS FUNCTION

    SciTech Connect

    Conroy, Charlie; Dutton, Aaron A.; Graves, Genevieve J.; Mendel, J. Trevor; Van Dokkum, Pieter G.

    2013-10-20

    Several independent lines of evidence suggest that the stellar initial mass function (IMF) in early-type galaxies becomes increasingly 'bottom-heavy' with increasing galaxy mass and/or velocity dispersion, σ. Here we consider evidence for IMF variation in a sample of relatively compact early-type galaxies drawn from the Sloan Digital Sky Survey. These galaxies are of sufficiently high stellar density that a dark halo likely makes a minor contribution to the total dynamical mass, M {sub dyn}, within one effective radius. We fit our detailed stellar population synthesis models to the stacked absorption line spectra of these galaxies in bins of σ and find evidence from IMF-sensitive spectral features for a bottom-heavy IMF at high σ. We also apply simple 'mass-follows-light' dynamical models to the same data and find that M {sub dyn} is significantly higher than what would be expected if these galaxies were stellar dominated and had a universal Milky Way IMF. Adopting M {sub dyn} ≈ M {sub *} therefore implies that the IMF is 'heavier' at high σ. Most importantly, the quantitative amount of inferred IMF variation is very similar between the two techniques, agreeing to within ∼< 0.1 dex in mass. The agreement between two independent techniques, when applied to the same data, provides compelling evidence for systematic variation in the IMF as a function of early-type galaxy velocity dispersion. Any alternative explanations must reproduce both the results from dynamical and stellar population-based techniques.

  15. Astronomers Discover Most Distant Galaxy Showing Key Evidence For Furious Star Formation

    NASA Astrophysics Data System (ADS)

    2003-12-01

    Astronomers have discovered a key signpost of rapid star formation in a galaxy 11 billion light-years from Earth, seen as it was when the Universe was only 20 percent of its current age. Using the National Science Foundation's Very Large Array (VLA) radio telescope, the scientists found a huge quantity of dense interstellar gas -- the environment required for active star formation -- at the greatest distance yet detected. A furious spawning of the equivalent of 1,000 Suns per year in a distant galaxy dubbed the Cloverleaf may be typical of galaxies in the early Universe, the scientists say. Cloverleaf galaxy VLA image (green) of radio emission from HCN gas, superimposed on Hubble Space Telescope image of the Cloverleaf galaxy. The four images of the Cloverleaf are the result of gravitational lensing. CREDIT: NRAO/AUI/NSF, STScI (Click on Image for Larger Version) "This is a rate of star formation more than 300 times greater than that in our own Milky Way and similar spiral galaxies, and our discovery may provide important information about the formation and evolution of galaxies throughout the Universe," said Philip Solomon, of Stony Brook University in New York. While the raw material for star formation has been found in galaxies at even greater distances, the Cloverleaf is by far the most distant galaxy showing this essential signature of star formation. That essential signature comes in the form of a specific frequency of radio waves emitted by molecules of the gas hydrogen cyanide (HCN). "If you see HCN, you are seeing gas with the high density required to form stars," said Paul Vanden Bout of the National Radio Astronomy Observatory (NRAO). Solomon and Vanden Bout worked with Chris Carilli of NRAO and Michel Guelin of the Institute for Millimeter Astronomy in France. They reported their results in the December 11 issue of the scientific journal Nature. In galaxies like the Milky Way, dense gas traced by HCN but composed mainly of hydrogen molecules is always

  16. Spectroscopic observations of propagating disturbances in a polar coronal hole: evidence of slow magneto-acoustic waves

    NASA Astrophysics Data System (ADS)

    Gupta, G. R.; Teriaca, L.; Marsch, E.; Solanki, S. K.; Banerjee, D.

    2012-10-01

    Aims: We focus on detecting and studying quasi-periodic propagating features that have been interpreted in terms of both slow magneto-acoustic waves and of high-speed upflows. Methods: We analyzed long-duration spectroscopic observations of the on-disk part of the south polar coronal hole taken on 1997 February 25 by the SUMER spectrometer onboard SOHO. We calibrated the velocity with respect to the off-limb region and obtained time-distance maps in intensity, Doppler velocity, and line width. We also performed a cross-correlation analysis on different time series curves at different latitudes. We studied average spectral line profiles at the roots of propagating disturbances and along the propagating ridges, and performed a red-blue asymmetry analysis. Results: We clearly find propagating disturbances in intensity and Doppler velocity with a projected propagation speed of about 60 ± 4.8 km s-1 and a periodicity of ≈14.5 min. To our knowledge, this is the first simultaneous detection of propagating disturbances in intensity as well as in Doppler velocity in a coronal hole. During the propagation, an intensity enhancement is associated with a blueshifted Doppler velocity. These disturbances are clearly seen in intensity also at higher latitudes (i.e., closer to the limb), while disturbances in Doppler velocity become faint there. The spectral line profiles averaged along the propagating ridges are found to be symmetric, to be well fitted by a single Gaussian, and have no noticeable red-blue asymmetry. Conclusions: Based on our analysis, we interpret these disturbances in terms of propagating slow magneto-acoustic waves.

  17. The inner regions of the spiral galaxy NGC 3310 - Evidence for galactic cannibalism

    NASA Astrophysics Data System (ADS)

    Balick, B.; Heckman, T.

    1981-03-01

    High resolution optical and radio images of the inner regions of NGC 3310 are presented. Subtle but important differences exist in the distributions of the stellar continuum on the one hand and the ionized gas and high energy particles on the other. These data and others suggest that a galaxy-galaxy collision has lead to a major disruption in the inner regions which has not yet fully relaxed even at radii of 0.5-1 kpc where the relaxation time scales are only 10 to the power 7.8 yr. An encounter in which an Irr 1 galaxy is being cannibalized by NGC 3110 provides a scenario for the recent history of the galaxy which is in accord with published observations.

  18. Searching for Cooling Signatures in Strong Lensing Galaxy Clusters: Evidence Against Baryons Shaping the Matter Distribution in Cluster Cores

    NASA Astrophysics Data System (ADS)

    Blanchard, Peter; Bayliss, M.; McDonald, M.

    2013-01-01

    Despite the growing number of galaxy clusters being discovered which exhibit strong gravitational lensing, the process by which the mass density profile of these clusters becomes centrally concentrated enough to produce high strong lensing cross-sections is not well understood. It has been suggested that the baryonic condensation of the intracluster medium (ICM) due to cooling may drag dark matter to the cores and thus steepen the profile. If this were the case, one would expect to observe signatures of strong ICM cooling (e.g., steep X-ray cores, optical emission line nebulae, star formation) in and around the central brightest cluster galaxy. In this work, we search for such evidence of ICM cooling in the first large, well-defined sample of strong lensing selected galaxy clusters in the redshift range 0.1 < z < 0.6. Based on the known correlations between cooling rate and both optical emission line luminosity and specific star formation, as traced by [OII]λλ3727 emission and the 4000 angstrom break strength, respectively, we measure the fraction of clusters that have cooling signatures in a new sample of hundreds of strong lensing clusters, and compare this result to that in a control sample of thousands of optically-selected galaxy clusters. Our results argue against the ability of baryonic cooling in the cores of galaxy clusters to strongly modify the underlying dark matter potential, leading to an increase in strong lensing cross-sections. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 0754568 and by the Smithsonian Institution.

  19. New observations of z ∼ 7 galaxies: evidence for a patchy reionization

    SciTech Connect

    Pentericci, L.; Fontana, A.; Castellano, M.; Grazian, A.; Galametz, A.; Giallongo, E.; Paris, D.; Santini, P.; Vanzella, E.; Treu, T.; Mesinger, A.; Dijkstra, M.; Bradač, M.; Conselice, C.; Cristiani, S.; Dunlop, J.; McLure, R.; Giavalisco, M.; Koekemoer, A.; Maiolino, R.

    2014-10-01

    We present new results from our search for z ∼ 7 galaxies from deep spectroscopic observations of candidate z dropouts in the CANDELS fields. Despite the extremely low flux limits achieved by our sensitive observations, only two galaxies have robust redshift identifications, one from its Lyα emission line at z = 6.65, the other from its Lyman break, i.e., the continuum discontinuity at the Lyα wavelength consistent with a redshift of 6.42 but with no emission line. In addition, for 23 galaxies we present deep limits in the Lyα equivalent width derived from the nondetections in ultradeep observations. Using this new data as well as previous samples, we assemble a total of 68 candidate z ∼ 7 galaxies with deep spectroscopic observations, of which 12 have a line detection. With this much enlarged sample we can place solid constraints on the declining fraction of Lyα emission in z ∼ 7 Lyman-break galaxies compared to z ∼ 6, both for bright and faint galaxies. Applying a simple analytical model, we show that the present data favor a patchy reionization process rather than a smooth one.

  20. A GMRT study of Seyfert galaxies NGC 4235 and NGC 4594: evidence of episodic activity?

    NASA Astrophysics Data System (ADS)

    Kharb, P.; Srivastava, S.; Singh, V.; Gallimore, J. F.; Ishwara-Chandra, C. H.; Ananda, Hota

    2016-06-01

    Low-frequency observations at 325 and 610 MHz have been carried out for two `radio-loud' Seyfert galaxies, NGC 4235 and NGC 4594 (Sombrero galaxy), using the Giant Meterwave Radio Telescope (GMRT). The 610 MHz total intensity and 325-610 MHz spectral index images of NGC 4235 tentatively suggest the presence of a `relic' radio lobe, most likely from a previous episode of active galactic nucleus (AGN) activity. This makes NGC 4235 only the second known Seyfert galaxy after Mrk 6 to show signatures of episodic activity. Spitzer and Herschel infrared spectral energy distribution (SED) modelling using the CLUMPYDREAM code predicts star formation rates (SFRs) that are an order of magnitude lower than those required to power the radio lobes in these Seyferts (˜0.13-0.23 M⊙ yr-1 compared to the required SFR of ˜2.0-2.7 M⊙ yr-1 in NGC 4594 and NGC 4235, respectively). This finding along with the detection of parsec and sub-kpc radio jets in both Seyfert galaxies, that are roughly along the same position angles as the radio lobes, strongly support the suggestion that Seyfert lobes are AGN powered. SED modelling supports the `true' type 2 classification of NGC 4594: this galaxy lacks significant dust obscuration as well as a prominent broad-line region. Between the two Seyfert galaxies, there is an inverse relation between their radio-loudness and Eddington ratio and a direct relation between their Eddington-scaled jet power and bolometric power.

  1. Human Disturbance Threats the Red-Listed Macrolichen Seirophora villosa (Ach.) Frödén in Coastal Juniperus Habitats: Evidence From Western Peninsular Italy

    NASA Astrophysics Data System (ADS)

    Benesperi, Renato; Lastrucci, Lorenzo; Nascimbene, Juri

    2013-10-01

    In Europe, coastal dune systems with Juniperus spp. (Natura 2000 habitat code 2250) are a priority habitat for conservation according to the Natura 2000 policies. Currently, anthropogenic pressure is threatening the biodiversity of this habitat. While the impact of human pressure on animals and vascular plants is already documented, information is still scanty for other organisms such as epiphytic lichens. The main aim of this study is to test the effect of human disturbance on the occurrence and abundance of the red-listed macrolichen Seirophora villosa. We also tested the effect of human disturbance on the whole community of epiphytic lichens in terms of species richness and composition. The study was performed along the coast of Tuscany by comparing both disturbed and undisturbed Juniperus stands according to a stratified random sampling design. Our results provided evidence that in coastal systems the long-term conservation of the red-listed macrolichen S. villosa and its characteristic community composed by several Mediterranean species of conservation concern depends on the maintenance of undisturbed Juniperus habitats. Results also support the possibility of using S. villosa as an indicator species of habitat conservation importance and habitat integrity since its occurrence is predicted on nestedness in term of species composition, assemblages of species poor disturbed stands being subsets of those of richer undisturbed stands.

  2. Observational evidence of a slow downfall of star formation efficiency in massive galaxies during the past 10 Gyr

    NASA Astrophysics Data System (ADS)

    Schreiber, C.; Elbaz, D.; Pannella, M.; Ciesla, L.; Wang, T.; Koekemoer, A.; Rafelski, M.; Daddi, E.

    2016-05-01

    We study the causes of the reported mass-dependence in the slope of the SFR-M∗ relation, the so-called main sequence of star-forming galaxies, and discuss its implication on the physical processes that shaped the star formation history of massive galaxies over cosmic time. We made use of the near-infrared high-resolution imaging from the Hubble Space Telescope in the CANDELS fields to perform a careful bulge-to-disk decomposition of distant galaxies and measure for the first time the slope of the SFR-Mdisk relation at z = 1. We find that this relation very closely follows the shape of the nominal SFR-M∗ correlation, still with a pronounced flattening at the high-mass end. This clearly excludes, at least at z = 1, the progressive growth of quiescent stellar bulges in star-forming galaxies as the main driver for the change of slope of the main sequence. Then, by stacking the Herschel data available in the CANDELS field, we estimated the gas mass (Mgas = MH i + MH2) and the star formation efficiency (SFE ≡ SFR/Mgas) at different positions on the SFR-M∗ relation. We find that the relatively low SFRs observed in massive galaxies (M∗> 5 × 1010 M⊙) are not caused by a reduced gas content, but by a star formation efficiency that is lower by up to a factor of 3 than in galaxies with lower stellar mass. The trend at the lowest masses is probably linked to the dominance of atomic over molecular gas. We argue that this stellar-mass-dependent SFE can explain the varying slope of the main sequence since z = 1.5, hence over 70% of the Hubble time. The drop in SFE occurs at lower masses in the local Universe (M∗> 2 × 1010 M⊙) and is not present at z = 2. Altogether, this provides evidence for a slow decrease in star formation efficiency in massive main sequence galaxies. The resulting loss of star formation is found to be rising starting from z = 2 to reach a level similar to the mass growth of the quiescent population by z = 1. We finally discuss the possible

  3. Quantitative determination of microbial activity and community nutritional status in estuarine sediments: evidence for a disturbance artifact

    NASA Technical Reports Server (NTRS)

    Findlay, R. H.; Pollard, P. C.; Moriarty, D. J.; White, D. C.

    1985-01-01

    In estuarine sediments with a high degree of vertical heterogeneity in reduced substrate and terminal electron acceptor concentrations, the method of exposure of the microbiota to labeled substrates can introduce a "disturbance artifact" into measures of metabolic activity. The detection of this artifact is based on quantitative measurement of the relative rates of incorporation of [14C]acetate into phospholipid fatty acids (PLFA) and endogenous storage lipid, poly-beta-hydroxyalkanoate (PHA). Previous studies have shown that PLFA synthesis measures cellular growth and that PHA synthesis measures carbon accumulation (unbalanced growth). The "disturbance artifact" of exposure to [14C]acetate was demonstrated by comparing injection of a core with the usual or pore-water replacement or slurry techniques. Only injection of labeled substrate allowed detection of preassay disturbance of the sediment with a garden rake. The raking increased PLFA synthesis with little effect to differences in concentration or distribution of [14C]acetate in the 10-min incubation. Bioturbation induced by sand dollar feeding in estuarine sediment could be detected in an increased PLFA/PHA ratio which was due to decreased PHA synthesis if the addition of labeled substrate was by the injection technique. Addition of labeled precursors to sediment by slurry or pore-water replacement induces greater disturbance artifacts than injection techniques.

  4. EVIDENCE FOR LOW EXTINCTION IN ACTIVELY STAR-FORMING GALAXIES AT z > 6.5

    SciTech Connect

    Walter, F.; Decarli, R.; Carilli, C.; Riechers, D.; Bertoldi, F.; Weiss, A.; Cox, P.; Neri, R.; Maiolino, R.; Ouchi, M.; Egami, E.

    2012-06-20

    We present a search for the [C II] 158 {mu}m fine structure line (a main cooling line of the interstellar medium) and the underlying far-infrared (FIR) continuum in three high-redshift (6.6 < z < 8.2) star-forming galaxies using the IRAM Plateau de Bure Interferometer. We targeted two Ly{alpha}-selected galaxies (Ly{alpha} emitters, LAEs) with moderate UV-based star formation rates (SFRs {approx} 20 M{sub Sun} yr{sup -1}; Himiko at z = 6.6 and IOK-1 at z = 7.0) and a gamma-ray burst (GRB) host galaxy (GRB 090423 at z {approx} 8.2). Based on our 3{sigma} rest-frame FIR continuum limits, previous (rest-frame) UV continuum measurements and spectral energy distribution (SED) fitting, we rule out SED shapes similar to highly obscured galaxies (e.g., Arp 220, M 82) and less extreme dust-rich nearby spiral galaxies (e.g., M 51) for the LAEs. Conservatively assuming an SED shape typical of local spiral galaxies we derive upper limits for the FIR-based star formation rates (SFRs) of {approx}70 M{sub Sun} yr{sup -1}, {approx}50 M{sub Sun} yr{sup -1}, and {approx}40 M{sub Sun} yr{sup -1} for Himiko, IOK-1, and GRB 090423, respectively. For the LAEs these limits are only a factor {approx}3 higher than the published UV-based SFRs (uncorrected for extinction). This indicates that the dust obscuration in the z > 6 LAEs studied here is lower by a factor of a few than what has recently been found in some LAEs at lower redshift (2 < z < 3.5) with similar UV-based SFRs. A low obscuration in our z > 6 LAE sample is consistent with recent rest-frame UV studies of z {approx} 7 Lyman break galaxies.

  5. THE DUST ATTENUATION LAW IN DISTANT GALAXIES: EVIDENCE FOR VARIATION WITH SPECTRAL TYPE

    SciTech Connect

    Kriek, Mariska; Conroy, Charlie

    2013-09-20

    This Letter utilizes composite spectral energy distributions (SEDs) constructed from NEWFIRM Medium-Band Survey photometry to constrain the dust attenuation curve in 0.5 < z < 2.0 galaxies. Based on similarities between the full SED shapes (0.3-8 μm), we have divided galaxies in 32 different spectral classes and stacked their photometry. As each class contains galaxies over a range in redshift, the resulting rest-frame SEDs are well sampled in wavelength and show various spectral features including Hα and the UV dust bump at 2175 Å. We fit all composite SEDs with flexible stellar population synthesis models, while exploring attenuation curves with varying slopes and UV bump strengths. The Milky Way and Calzetti law provide poor fits at UV wavelengths for nearly all SEDs. Consistent with previous studies, we find that the best-fit attenuation law varies with spectral type. There is a strong correlation between the best-fit dust slope and UV bump strength, with steeper laws having stronger bumps. Moreover, the attenuation curve correlates with specific star formation rate (SFR), with more active galaxies having shallower dust curves and weaker bumps. There is also a weak correlation with inclination. The observed trends can be explained by differences in the dust-to-star geometry, a varying grain size distribution, or a combination of both. Our results have several implications for galaxy evolution studies. First, the assumption of a universal dust model leads to biases in derived galaxy properties. Second, the presence of a dust bump may result in underestimated values for the UV slope, used to correct SFRs of distant galaxies.

  6. AN OSIRIS STUDY OF THE GAS KINEMATICS IN A SAMPLE OF UV-SELECTED GALAXIES: EVIDENCE OF 'HOT AND BOTHERED' STARBURSTS IN THE LOCAL UNIVERSE

    SciTech Connect

    Basu-Zych, Antara R.; Schiminovich, David; O'Dowd, Matt; Goncalves, Thiago S.; Martin, Chris; Wyder, Ted; Overzier, Roderik; Law, David R.; Heckman, Tim E-mail: ds@astro.columbia.edu E-mail: tsg@astro.caltech.edu E-mail: wyder@srl.caltech.edu E-mail: heckman@pha.jhu.edu

    2009-07-10

    We present data from Integral Field Spectroscopy for three supercompact UV-Luminous Galaxies (ScUVLGs). As nearby (z {approx} 0.2) compact (R {sub 50} {approx} 1-2 kpc) bright Paschen-{alpha} sources, with unusually high star formation rates (SFR = 3-100 M {sub sun} yr{sup -1}), ScUVLGs are an ideal population for studying detailed kinematics and dynamics in actively star-forming galaxies. In addition, ScUVLGs appear to be excellent analogs to high-redshift Lyman Break Galaxies (LBGs), and our results may offer additional insight into the dynamics of LBGs. Previous work by our team has shown that the morphologies of these galaxies exhibit tidal features and companions, and in this study we find that the dynamics of ScUVLGs are dominated by disturbed kinematics of the emission line gas-suggesting that these galaxies have undergone recent feedback, interactions, or mergers. While two of the three galaxies do display rotation, v/{sigma}<1-suggesting dispersion-dominated kinematics rather than smooth rotation. We also simulate how these observations would appear at z {approx} 2. Lower resolution and loss of low surface brightness features cause some apparent discrepancies between the low-z (observed) and high-z (simulated) interpretations and quantitatively gives different values for v/{sigma}, yet simulations of these low-z analogs manage to detect the brightest regions well and resemble actual high-z observations of LBGs.

  7. Structural Properties and Evidence for Interactions in a Sample of Luminous Blue Compact Galaxies

    NASA Astrophysics Data System (ADS)

    Newton, Cassidy L.; Fanelli, M.; Marcum, P.

    2010-01-01

    Understanding the life cycles of galaxies over cosmic time is a primary effort in modern astrophysics. Here we explore the nature of luminous blue compact galaxies (LBCGs), a class of galaxy in the local (z < 0.05) universe exhibiting blue optical colors [(B-V) < 0.5], high luminosity (MB < -19), one or more high surface brightness regions, and moderate to high star formation rates [> 5 M(sun) per year]. LBCGs appear to be similar in their global properties to the early evolutionary phases of most galaxies, but are more amenable to detailed analysis due to their low redshifts. We describe an ultraviolet and optical investigation of a sample of 50 LBCGs using UBVR & Hα imagery obtained at McDonald Observatory, ultraviolet photometry from GALEX, and correlative data from IRAS, 2MASS, and SDSS. Using these data, we explore the evolutionary state of LBCGs. In particular, we determine the radial and azimuthal light distributions, explore the spatial extent of ionized gas (e.g., centrally- concentrated versus spatially diffuse), compare multiwavelength measures of the high-mass star formation rate, and quantify the interaction strength using a variety of merger diagnostics. Although selected independent of their environment, most systems display either a close companion or the signature of an interaction such as tails, bridges, and possible polar rings. Interpretation of the assembly history of LBCGs provides insight on massive galaxy evolution at earlier epochs.

  8. Evidence of boosted 13CO/12CO ratio in early-type galaxies in dense environments

    NASA Astrophysics Data System (ADS)

    Alatalo, Katherine; Crocker, Alison F.; Aalto, Susanne; Davis, Timothy A.; Nyland, Kristina; Bureau, Martin; Duc, Pierre-Alain; Krajnović, Davor; Young, Lisa M.

    2015-07-01

    We present observations of 13CO(1-0) in 17 Combined Array for Research in Millimeter Astronomy ATLAS3D early-type galaxies (ETGs), obtained simultaneously with 12CO(1-0) observations. The 13CO in six ETGs is sufficiently bright to create images. In these six sources, we do not detect any significant radial gradient in the 13CO/12CO ratio between the nucleus and the outlying molecular gas. Using the 12CO channel maps as 3D masks to stack the 13CO emission, we are able to detect 15/17 galaxies to >3σ (and 12/17 to at least 5σ) significance in a spatially integrated manner. Overall, ETGs show a wide distribution of 13CO/12CO ratios, but Virgo cluster and group galaxies preferentially show a 13CO/12CO ratio about two times larger than field galaxies, although this could also be due to a mass dependence, or the CO spatial extent (RCO/Re). ETGs whose gas has a morphologically settled appearance also show boosted 13CO/12CO ratios. We hypothesize that this variation could be caused by (i) the extra enrichment of gas from molecular reprocessing occurring in low-mass stars (boosting the abundance of 13C to 12C in the absence of external gas accretion), (ii) much higher pressure being exerted on the mid-plane gas (by the intracluster medium) in the cluster environment than in isolated galaxies, or (iii) all but the densest molecular gas clumps being stripped as the galaxies fall into the cluster. Further observations of 13CO in dense environments, particularly of spirals, as well as studies of other isotopologues, should be able to distinguish between these hypotheses.

  9. DUST ATTENUATION IN DISK-DOMINATED GALAXIES: EVIDENCE FOR THE 2175 A DUST FEATURE

    SciTech Connect

    Conroy, Charlie; Schiminovich, David; Blanton, Michael R.

    2010-07-20

    The attenuation of starlight by interstellar dust is investigated in a sample of low-redshift, disk-dominated star-forming galaxies using photometry from GALEX and SDSS. By considering broadband colors as a function of galaxy inclination, we are able to confidently separate trends arising from increasing dust opacity from possible differences in stellar populations, since stellar populations do not correlate with inclination. We are thus able to make firm statements regarding the wavelength-dependent attenuation of starlight for disk-dominated galaxies as a function of gas-phase metallicity and stellar mass. All commonly employed dust attenuation curves (such as the Calzetti curve for starbursts, or a power-law curve) provide poor fits to the ultraviolet colors for moderately and highly inclined galaxies. This conclusion rests on the fact that the average FUV-NUV color varies little from face-on to edge-on galaxies, while other colors such as NUV-u and u - r vary strongly with inclination. After considering a number of model variations, we are led to speculate that the presence of the strong dust extinction feature at 2175 A seen in the Milky Way extinction curve is responsible for the observed trends. If the 2175 A feature is responsible, these results would constitute the first detection of the feature in the attenuation curves of galaxies at low redshift. Independent of our interpretation, these results imply that the modeling of dust attenuation in the ultraviolet is significantly more complicated than traditionally assumed. These results also imply a very weak dependence of the FUV-NUV color on total FUV attenuation, and we conclude from this that it is extremely difficult to use only the observed UV spectral slope to infer the total UV dust attenuation, as is commonly done. We propose several simple tests that might finally identify the grain population responsible for the 2175 A feature.

  10. An evidence for prompt electric field disturbance driven by changes in the solar wind density under northward IMF Bz condition

    NASA Astrophysics Data System (ADS)

    Rout, Diptiranjan; Chakrabarty, D.; Sekar, R.; Reeves, G. D.; Ruohoniemi, J. M.; Pant, Tarun K.; Veenadhari, B.; Shiokawa, K.

    2016-05-01

    Before the onset of a geomagnetic storm on 22 January 2012 (Ap = 24), an enhancement in solar wind number density from 10/cm3 to 22/cm3 during 0440-0510 UT under northward interplanetary magnetic field (IMF Bz) condition is shown to have enhanced the high-latitude ionospheric convection and also caused variations in the geomagnetic field globally. Conspicuous changes in ΔX are observed not only at longitudinally separated low-latitude stations over Indian (prenoon), South American (midnight), Japanese (afternoon), Pacific (afternoon) and African (morning) sectors but also at latitudinally separated stations located over high and middle latitudes. The latitudinal variation of the amplitude of the ΔX during 0440-0510 UT is shown to be consistent with the characteristics of prompt penetration electric field disturbances. Most importantly, the density pulse event caused enhancements in the equatorial electrojet strength and the peak height of the F layer (hmF2) over the Indian dip equatorial sector. Further, the concomitant enhancements in electrojet current and F layer movement over the dip equator observed during this space weather event suggest a common driver of prompt electric field disturbance at this time. Such simultaneous variations are found to be absent during magnetically quiet days. In absence of significant change in solar wind velocity and magnetospheric substorm activity, these observations point toward perceptible prompt electric field disturbance over the dip equator driven by the overcompression of the magnetosphere by solar wind density enhancement.

  11. Galaxies near distant quasars - Observational evidence for statistical gravitational lensing. II

    NASA Astrophysics Data System (ADS)

    Fugmann, W.

    1989-09-01

    A new statistical analysis of the data presented by Fugmann (1988) indicating that the association of the nearest neighboring galaxies with distant flat-spectrum radio quasars is significant at the 97.5 percent level. The distribution of nearest-neighbor distances is consistent with model calculations of gravitational microlensing, although very small angular distances may be systematically depleted. The overdensity of galaxies near the radio-selected flat-spectrum quasars of this sample seems to exceed that implied by the results of Webster et al. (1988) for a sample of optically selected QSOs.

  12. Evidence for Three Subpopulations of Globular Clusters in the Early-Type Poststarburst Shell Galaxy AM 0139-655

    NASA Astrophysics Data System (ADS)

    Maybhate, Aparna; Goudfrooij, Paul; Schweizer, François; Puzia, Thomas; Carter, David

    2007-11-01

    We present deep Hubble Space Telescope ACS images of the poststarburst shell galaxy AM 0139-655. We find evidence for the presence of three distinct globular cluster (GC) subpopulations associated with this galaxy: a centrally concentrated young population (~0.4 Gyr), an intermediate-age population (~1 Gyr), and an old, metal-poor population similar to that seen around normal galaxies. The g - I color distribution of the clusters is bimodal, with peaks at 0.85 and 1.35. The redder peak at g - I = 1.35 is consistent with the predicted color for an old, metal-poor population. The clusters associated with the peak at g - I = 0.85 are centrally concentrated and interpreted as a younger and more metal-rich population. We suggest that these clusters have an age of ~0.4 Gyr and solar metallicity based on a comparison with population synthesis models. The luminosity function of these "blue" clusters is well represented by a power law, phi(L) dL ~ L-1.8 dL. Interestingly, the brightest shell associated with the galaxy harbors some of the youngest clusters observed. This seems to indicate that the same merger event was responsible for the formation of both the shells and the young clusters. The red part of the color distribution contains several very bright clusters, which are not expected for an old, metal-poor population. Furthermore, the luminosity function of the "red" GCs cannot be fit well by either a single Gaussian or a single power law. A composite (Gaussian + power law) fit to the luminosity function of the red clusters yields both a low rms and very plausible properties for an old population (with a Gaussian distribution), plus an intermediate-age population (with a power-law distribution) of GCs. Hence, we suggest that the red clusters in AM 0139-655 consist of two distinct GC subpopulations, one being an old, metal-poor population as seen in normal galaxies and one having formed during a recent dissipative galaxy merger (likely the same event that formed the ~0

  13. Star Formation and Gas Accretion in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Yim, Kijeong; van der Hulst, J. M.

    2016-08-01

    In order to quantify the relationship between gas accretion and star formation, we analyse a sample of 29 nearby galaxies from the WHISP survey which contains galaxies with and without evidence for recent gas accretion. We compare combined radial profiles of FUV (GALEX) and IR 24 μm (Spitzer) characterizing distributions of recent star formation with radial profiles of CO (IRAM, BIMA, or CARMA) and H I (WSRT) tracing molecular and atomic gas contents to examine star formation efficiencies in symmetric (quiescent), asymmetric (accreting), and interacting (tidally disturbed) galaxies. In addition, we investigate the relationship between star formation rate and H I in the outer discs for the three groups of galaxies. We confirm the general relationship between gas surface density and star formation surface density, but do not find a significant difference between the three groups of galaxies.

  14. Growing Galaxies Gently

    NASA Astrophysics Data System (ADS)

    2010-10-01

    of the flow of pristine gas from the surrounding space and the associated formation of new stars. They were very careful to make sure that their specimen galaxies had not been disturbed by interactions with other galaxies. The selected galaxies were very regular, smoothly rotating discs, similar to the Milky Way, and they were seen about two billion years after the Big Bang (at a redshift of around three). In galaxies in the modern Universe the heavy elements [1] are more abundant close to the centre. But when Cresci's team mapped their selected distant galaxies with the SINFONI spectrograph on the VLT [2] they were excited to see that in all three cases there was a patch of the galaxy, close to the centre, with fewer heavy elements, but hosting vigorously forming stars, suggesting that the material to fuel the star formation was coming from the surrounding pristine gas that is low in heavy elements. This was the smoking gun that provided the best evidence yet of young galaxies accreting primitive gas and using it to form new generations of stars. As Cresci concludes: "This study has only been possible because of the outstanding performance of the SINFONI instrument on the VLT. It has opened a new window for studying the chemical properties of very distant galaxies. SINFONI provides information not only in two spatial dimensions, but also in a third, spectral dimension, which allows us to see the internal motions inside galaxies and study the chemical composition of the interstellar gas." Notes [1] The gas filling the early Universe was almost all hydrogen and helium. The first generations of stars processed this primitive material to create heavier elements such as oxygen, nitrogen and carbon by nuclear fusion. When this material was subsequently spewed back into space by intense particle winds from massive young stars and supernova explosions the amounts of heavy elements in the galaxy gradually increased. Astronomers refer to elements other than hydrogen and

  15. DISTANT CLUSTER OF GALAXIES [left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    One of the deepest images to date of the universe, taken with NASA's Hubble Space Telescope (HST), reveals thousands of faint galaxies at the detection limit of present day telescopes. Peering across a large volume of the observable cosmos, Hubble resolves thousands of galaxies from five to twelve billion light-years away. The light from these remote objects has taken billions of years to cross the expanding universe, making these distant galaxies fossil evidence' of events that happened when the universe was one-third its present age. A fraction of the galaxies in this image belong to a cluster located nine billion light-years away. Though the field of view (at the cluster's distance) is only two million light-years across, it contains a multitude of fragmentary objects. (By comparison, the two million light-years between our Milky Way galaxy and its nearest large companion galaxy, in the constellation Andromeda, is essentially empty space!) Very few of the cluster's members are recognizable as normal spiral galaxies (like our Milky Way), although some elongated members might be edge-on disks. Among this zoo of odd galaxies are ``tadpole-like'' objects, disturbed and apparently merging systems dubbed 'train-wrecks,' and a multitude of faint, tiny shards and fragments, dwarf galaxies or possibly an unknown population of objects. However, the cluster also contains red galaxies that resemble mature examples of today's elliptical galaxies. Their red color comes from older stars that must have formed shortly after the Big Bang. The image is the full field view of the Wide Field and Planetary Camera-2. The picture was taken in intervals between May 11 and June 15, 1994 and required an 18-hour long exposure, over 32 orbits of HST, to reveal objects down to 29th magnitude. [bottom right] A close up view of the peculiar radio galaxy 3C324 used to locate the cluster. The galaxy is nine billion light-years away as measured by its spectral redshift (z=1.2), and located in the

  16. FOSSIL EVIDENCE FOR THE TWO-PHASE FORMATION OF ELLIPTICAL GALAXIES

    SciTech Connect

    Huang Song; Ho, Luis C.; Peng, Chien Y.; Li Zhaoyu; Barth, Aaron J.

    2013-05-10

    Massive early-type galaxies (ETGs) have undergone dramatic structural evolution over the last 10 Gyr. A companion paper shows that nearby elliptical galaxies with M{sub *} {>=} 1.3 Multiplication-Sign 10{sup 11} M{sub Sun} generically contain three photometric subcomponents: a compact inner component with effective radius R{sub e} {approx}< 1 kpc, an intermediate-scale middle component with R{sub e} Almost-Equal-To 2.5 kpc, and an extended outer envelope with R{sub e} Almost-Equal-To 10 kpc. Here we attempt to relate these substructures with the properties of ETGs observed at higher redshifts. We find that a hypothetical structure formed from combining the inner and middle components of local ellipticals follows a strikingly tight stellar mass-size relation, one that resembles the distribution of ETGs at z Almost-Equal-To 1. Outside of the central kpc, the median stellar mass surface density profiles of this composite structure agree closest with those of massive galaxies that have similar cumulative number density at 1.5 < z < 2.0 within the uncertainty. We propose that the central substructures in nearby ellipticals are the evolutionary descendants of the ''red nuggets'' formed under highly dissipative (''wet'') conditions at high redshifts, as envisioned in the initial stages of the two-phase formation scenario recently advocated for massive galaxies. Subsequent accretion, plausibly through dissipationless (''dry'') minor mergers, builds the outer regions of the galaxy identified as the outer envelope in our decomposition. The large scatter exhibited by this component on the stellar mass-size plane testifies to the stochastic nature of the accretion events.

  17. Evidence for the enhanced lability of dissolved organic matter following permafrost slope disturbance in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Woods, Gwen C.; Simpson, Myrna J.; Pautler, Brent G.; Lamoureux, Scott F.; Lafrenière, Melissa J.; Simpson, André J.

    2011-11-01

    Arctic landscapes are believed to be highly sensitive to climate change and accelerated disturbance of permafrost is expected to significantly impact the rate of carbon cycling. While half the global soil organic matter (SOM) is estimated to reside in Arctic soils, projected warmer temperatures and permafrost disturbance will release much of this SOM into waterways in the form of dissolved organic matter (DOM). The spring thaw and subsequent flushing of soils releases the highest contributions of DOM annually but has historically been undersampled due to the difficulties of sampling during this period. In this study, passive samplers were placed throughout paired High Arctic watersheds during the duration of the 2008 spring flush in Nunavut, Canada. The watersheds are very similar with the exception of widespread active layer detachments (ALDs) that occurred within one of the catchments during a period of elevated temperatures in the summer of 2007. DOM samples were analyzed for structural and spectral characteristics via nuclear magnetic resonance (NMR) and fluorescence spectroscopy as well as vulnerability to degradation with simulated solar exposure. Lignin-derived phenols were further assessed utilizing copper(II) oxide (CuO) oxidation and gas chromatography/mass spectrometry (GC/MS). The samples were found to have very low dissolved lignin phenol content (˜0.07% of DOC) and appear to originate from primarily non-woody angiosperm vegetation. The acid/aldehyde ratios for dissolved vanillyl phenols were found to be high (up to 3.6), indicating the presence of highly oxidized lignin. Differences between DOM released from the ALD vs. the undisturbed watershed suggest that these shallow detachment slides have significantly impacted the quality of Arctic DOM. Although material released from the disturbed catchment was found to be highly oxidized, DOM in the lake into which this catchment drained had chemical characteristics indicating high contributions from

  18. SEARCHING FOR COOLING SIGNATURES IN STRONG LENSING GALAXY CLUSTERS: EVIDENCE AGAINST BARYONS SHAPING THE MATTER DISTRIBUTION IN CLUSTER CORES

    SciTech Connect

    Blanchard, Peter K.; Bayliss, Matthew B.; McDonald, Michael; Dahle, Hakon; Gladders, Michael D.; Sharon, Keren; Mushotzky, Richard

    2013-07-20

    The process by which the mass density profile of certain galaxy clusters becomes centrally concentrated enough to produce high strong lensing (SL) cross-sections is not well understood. It has been suggested that the baryonic condensation of the intracluster medium (ICM) due to cooling may drag dark matter to the cores and thus steepen the profile. In this work, we search for evidence of ongoing ICM cooling in the first large, well-defined sample of SL selected galaxy clusters in the range 0.1 < z < 0.6. Based on known correlations between the ICM cooling rate and both optical emission line luminosity and star formation, we measure, for a sample of 89 SL clusters, the fraction of clusters that have [O II]{lambda}{lambda}3727 emission in their brightest cluster galaxy (BCG). We find that the fraction of line-emitting BCGs is constant as a function of redshift for z > 0.2 and shows no statistically significant deviation from the total cluster population. Specific star formation rates, as traced by the strength of the 4000 A break, D{sub 4000}, are also consistent with the general cluster population. Finally, we use optical imaging of the SL clusters to measure the angular separation, R{sub arc}, between the arc and the center of mass of each lensing cluster in our sample and test for evidence of changing [O II] emission and D{sub 4000} as a function of R{sub arc}, a proxy observable for SL cross-sections. D{sub 4000} is constant with all values of R{sub arc}, and the [O II] emission fractions show no dependence on R{sub arc} for R{sub arc} > 10'' and only very marginal evidence of increased weak [O II] emission for systems with R{sub arc} < 10''. These results argue against the ability of baryonic cooling associated with cool core activity in the cores of galaxy clusters to strongly modify the underlying dark matter potential, leading to an increase in SL cross-sections.

  19. When the Milky Way turned off the lights: APOGEE provides evidence of star formation quenching in our Galaxy

    NASA Astrophysics Data System (ADS)

    Haywood, M.; Lehnert, M. D.; Di Matteo, P.; Snaith, O.; Schultheis, M.; Katz, D.; Gómez, A.

    2016-05-01

    Quenching, the cessation of star formation, is one of the most significant events in the life cycle of galaxies. While quenching is generally thought to be linked to their central regions, the mechanism responsible for it is not known and may not even be unique. We show here the first evidence that the Milky Way experienced a generalised quenching of its star formation at the end of its thick-disk formation ~9 Gyr ago. The fossil record imprinted on the elemental abundances of stars studied in the solar vicinity and as part of the APOGEE survey (APOGEE is part of the Sloan Digital Sky Survey III) reveals indeed that in less than ~2 Gyr (from 10 to 8 Gyr ago) the star formation rate in our Galaxy dropped by an order of magnitude. Because of the tight correlation that exists between age and α abundance, the general cessation of the star formation activity reflects in the dearth of stars along the inner-disk sequence in the [Fe/H]-[α/Fe] plane. Before this phase, which lasted about 1.5 Gyr, the Milky Way was actively forming stars. Afterwards, the star formation resumed at a much lower level to form the thin disk. These events observed in our Galaxy are very well matched by the latest observation of MW-type progenitors at high redshifts. In late-type galaxies, the quenching mechanism is believed to be related to a long and secular exhaustion of gas. Our results show that in the Milky Way, the shut-down occurred on a much shorter timescale, while the chemical continuity between the stellar populations formed before and after the quenching indicates that it is not the exhaustion of the gas that was responsible for the cessation of the star formation. While quenching is generally associated with spheroids in the literature, our results show that it also occurs in galaxies like the Milky Way, where the classical bulge is thought to be small or non-existent, possibly when they are undergoing a morphological transition from thick to thin disks. Given the demographics of

  20. A systematic investigation of edge-on starburst galaxies: Evidence for supernova-driven superwinds

    NASA Technical Reports Server (NTRS)

    Lehnert, Matthew D.

    1993-01-01

    We are completing a project designed to realistically assess the global/cosmological significance of superwinds by attempting to systematize our understanding of them (determine their incidence rate and the dependence of their properties on the star-formation that drives them). Specifically, we are analyzing data from an optical spectroscopic and narrow-band imaging survey of an infrared flux-limited sample of about 50 starburst galaxies whose stellar disks are viewed nearly edge-on. This edge-on orientation is crucial because the relevant properties of the superwind can be far more easily measured when the flow is seen in isolation against the sky rather than projected onto the much brighter gas associated with the starburst galaxy itself.

  1. X-ray AGN in the XMM-LSS galaxy clusters: no evidence of AGN suppression

    NASA Astrophysics Data System (ADS)

    Koulouridis, E.; Plionis, M.; Melnyk, O.; Elyiv, A.; Georgantopoulos, I.; Clerc, N.; Surdej, J.; Chiappetti, L.; Pierre, M.

    2014-07-01

    We present a study of the overdensity of X-ray-selected active galactic nuclei (AGN) in 33 galaxy clusters in the XMM-LSS field (The XMM-Newton Large Scale Structure Survey), up to redshift z = 1.05 and further divided into a lower (0.14 ≤ z ≤ 0.35) and a higher redshift (0.43 ≤ z ≤ 1.05) subsample. Previous studies have shown that the presence of X-ray-selected AGN in rich galaxy clusters is suppressed, since their number is significantly lower than what is expected from the high galaxy overdensities in the area. In the current study we have investigated the occurrence of X-ray-selected AGN in low (⟨ Lx,bol ⟩ = 2.7 × 1043 erg/s) and moderate (⟨ Lx,bol ⟩ = 2.4 × 1044 erg/s) X-ray luminosity galaxy clusters in an attempt to trace back the relation between high-density environments and nuclear activity. Owing to the wide contiguous XMM-LSS survey area, we were able to extend the study to the cluster outskirts. We therefore determined the projected overdensity of X-ray point-like sources around each cluster out to 6r500 radius, within δr500 = 1 annulus, with respect to the field expectations based on the X-ray source log N - log S of the XMM-LSS field. To provide robust statistical results we also conducted a consistent stacking analysis separately for the two z ranges. We investigated whether the observed X-ray overdensities are to be expected thanks to the obvious enhancement of galaxy numbers in the cluster environment by also estimating the corresponding optical galaxy overdensities, and we assessed the possible enhancement or suppression of AGN activity in clusters. We find a positive X-ray projected overdensity in both redshift ranges at the first radial bins, which however has the same amplitude as that of optical galaxies. Therefore, no suppression (or enhancement) of X-ray AGN activity with respect to the field is found, in sharp contrast to previous results based on rich galaxy clusters, implying that the mechanisms responsible for the

  2. The emission line galaxy TV Reticuli. Evidence for an ultraluminous supernova

    NASA Astrophysics Data System (ADS)

    Schmidtobreick, L.; Tappert, C.; Horst, H.; Saviane, I.; Lidman, C.

    2007-01-01

    Aims:TV Ret was classified as a cataclysmic variable due to an outburst observed in 1977. We intended to confirm this classification and derive some basic properties of the system. Methods: Low resolution optical spectra were obtained for a spectral classification of the object. Results: We find that the object is not a cataclysmic variable but an emission line galaxy with a redshift z=0.0964. An R-image taken in very good seeing conditions shows that the object is extended. Conclusions: .We show that TV Ret is a blue dwarf galaxy, probably compact, with an absolute magnitude of MB = -17.5, a metallicity of 0.12 solar, and an average temperature of 1.3 × 104 K. The line ratios place it among the H II galaxies, although close to the border of the Seyfert 2s. The outburst, which was observed in 1977, could thus be explained by a supernova explosion. However, with an absolute magnitude around MB = -21, it was an extremely bright one.

  3. Evidence for a uniformly small isotope effect of nitrogen leaching loss: results from disturbed ecosystems in seasonally dry climates.

    PubMed

    Mnich, Meagan E; Houlton, Benjamin Z

    2016-06-01

    Nitrogen (N) losses constrain rates of plant carbon dioxide (CO2) uptake and storage in many ecosystems globally. N isotope models have been used to infer that ~30 % of terrestrial N losses occur via microbial denitrification; however, this approach assumes a small isotope effect associated with N leaching losses. Past work across tropical/sub-tropical forest sites has confirmed this expectation; however, the stable N isotope ratio (δ(15)N) of ecosystem leaching has yet to be systematically evaluated in seasonally dry climates or across major ecosystem disturbances. We here present new measurements of the δ(15)N of total dissolved N (TDN) in small streams, bulk deposition, and soil pools across eight watershed sites in California, including grassland, chaparral, and coastal redwood forest ecosystems, with and without fire, grazing, and forest harvesting. Regardless of the dominant vegetation type or disturbance regime, average δ(15)N of TDN in stream water differed only slightly (<~1 ‰) from that of bulk soil δ(15)N, revealing a uniformly small isotope effect associated with N leaching losses even under non-steady state conditions. Rather, lower input δ(15)N compared to TDN δ(15)N in streams pointed to fractionations via gaseous loss pathways as the dominant mechanism behind soil δ(15)N enrichment. We conclude that N leaching does not impart a major isotope effect across a broad range of ecosystems and conditions examined, thereby advancing the N gas-loss hypothesis as the principal explanation for variation in bulk soil δ(15)N. PMID:26343040

  4. Evidence in support of the role of disturbance vegetation for women’s health and childcare in Western Africa

    PubMed Central

    2014-01-01

    Background In savannah-dominated Bénin, West Africa, and forest-dominated Gabon, Central Africa, plants are a major source of healthcare for women and children. Due to this high demand and the reliance on wild populations as sources for medicinal plants, overharvesting of African medicinal plants is a common concern. Few studies in Western Africa, however, have assessed variations in harvest patterns across different ecological zones and within local communities. Methods We investigated which vegetation types women accessed to harvest medicinal plants by conducting 163 questionnaires with market vendors and women from urban and rural communities. We made botanical vouchers of cited species and collected information on their vegetation type and cultivation status. Results Secondary vegetation was a crucial asset; over 80% of the 335 Beninese and 272 Gabonese plant species came from disturbance vegetation and home gardens. In Bénin, access to trade channels allowed female market vendors to use more vulnerable species than rural and urban women who harvested for personal use. In Gabon, no relationship was found between vulnerable plant use and informant type. Conclusions This study highlights the underemphasized point that secondary vegetation is an asset for women and children’s health in both savanna-dominated and forest-dominated landscapes. The use of disturbance vegetation demonstrates women’s resilience in meeting healthcare needs in the limited amount of space that is available to them. Species of conservation concern included forest species and savanna trees sold at markets in Bénin, especially Xylopia aethiopica, Khaya senegalensis, and Monodora myristica, and the timber trees with medicinal values in Gabon, such as Baillonella toxisperma. PMID:24885805

  5. High-Resolution Emission-Line Imaging of Seyfert Galaxies. II. Evidence for Anisotropic Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew S.; Ward, Martin J.; Haniff, Christopher A.

    1988-11-01

    In the preceding paper, we describe a direct imaging survey of Seyfert galaxies with "linear" radio structures and find that the major axes and spatial scales of the circumnuclear emission-line gas are very similar to those of the radio continuum sources. In the present paper, the nature of this close connection between thermal and relativistic gases is assessed in detail. Models in which the kinetic energy of the radio jets or plasmoids powers shock waves, which ionize the gas, seem energetically feasible but disagree with the off-nuclear line intensity ratios. Ionization by relativistic electrons is negligible, but they may contribute to the heating of the gas. We favor a scenario in which the radio jets and plasmoids shock, accelerate, and compress ambient and entrained gas, but the dominant source of ionization is the nonstellar nuclear ultraviolet continuum. This ultraviolet source appears to be partially beamed along the axis of the radio jet. Photoionization by ultraviolet synchrotron radiation generated via shocks in the ejecta may also contribute, especially in Seyfert 2 galaxies. A comparison between the number of ionizing photons, N_i_, inferred by extrapolation of the directly observed continuum, and the number of ionizing photons, N_Hβ_, required to generate the Hβ emission has been made for six galaxies in our sample. In at least two galaxies, we find N_i_ << N_Hβ_, suggesting that the gas is exposed to a higher ionizing flux than inferred from direct observations of the nucleus, and supporting the idea of partial beaming. Similarly, the energy in the continuum between 100 A and 1 micron, if emitted isotropically, is inadequate to fuel the thermal nuclear infrared sources, implying that the radiating dust is heated by a more luminous optical-ultraviolet source. We speculate that the nuclear infrared emission of Seyfert 2 galaxies arises from dust in molecular clouds exposed to the partially beamed radiation, and we predict that the 10 micron

  6. Evidence of a Supermassive Black Hole in the Galaxy NGC 1023 From The Nuclear Stellar Dynamics

    NASA Technical Reports Server (NTRS)

    Bower, G. A.; Green, R. F.; Bender, R.; Gebhardt, K.; Lauer, T. R.; Magorrian, J.; Richstone, D. O.; Danks, A.; Gull, T.; Hutchings, J.

    2000-01-01

    We analyze the nuclear stellar dynamics of the SBO galaxy NGC 1023, utilizing observational data both from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope and from the ground. The stellar kinematics measured from these long-slit spectra show rapid rotation (V equals approx. 70 km/s at a distance of O.1 deg = 4.9 pc from the nucleus) and increasing velocity dispersion toward the nucleus (where sigma = 295 +/- 30 km/s). We model the observed stellar kinematics assuming an axisymmetric mass distribution with both two and three integrals of motion. Both modeling techniques point to the presence of a central dark compact mass (which presumably is a supermassive black hole) with confidence > 99%. The isotropic two-integral models yield a best-fitting black hole mass of (6.0 +/- 0.4) x 10(exp 7) solar masses and mass-to-light ratio (M/L(sub v)) of 5.38 +/- 0.08, and the goodness-of-fit (CHI(exp 2)) is insensitive to reasonable values for the galaxy's inclination. The three-integral models, which non-parametrically fit the observed line-of-sight velocity distribution as a function of position in the galaxy, suggest a black hole mass of (3.9 +/- 0.4) x 10(exp 7) solar masses and M/L(sub v) of 5.56 +/- 0.02 (internal errors), and the edge-on models are vastly superior fits over models at other inclinations. The internal dynamics in NGC 1023 as suggested by our best-fit three-integral model shows that the velocity distribution function at the nucleus is tangentially anisotropic, suggesting the presence of a nuclear stellar disk. The nuclear line of sight velocity distribution has enhanced wings at velocities >= 600 km/s from systemic, suggesting that perhaps we have detected a group of stars very close to the central dark mass.

  7. EVIDENCE FOR AN INTERACTION IN THE NEAREST STARBURSTING DWARF IRREGULAR GALAXY IC 10

    SciTech Connect

    Nidever, David L.; Slater, Colin T.; Bell, Eric F.; Ashley, Trisha; Simpson, Caroline E.; Ott, Jürgen; Johnson, Megan; Stanimirović, Snežana; Putman, Mary; Majewski, Steven R.; Jütte, Eva; Oosterloo, Tom A.; Burton, W. Butler

    2013-12-20

    Using deep 21 cm H I data from the Green Bank Telescope we have detected an ≳18.3 kpc long gaseous extension associated with the starbursting dwarf galaxy IC 10. The newly found feature stretches 1.°3 to the northwest and has a large radial velocity gradient reaching to ∼65 km s{sup –1} lower than the IC 10 systemic velocity. A region of higher column density at the end of the extension that possesses a coherent velocity gradient (∼10 km s{sup –1} across ∼26') transverse to the extension suggests rotation and may be a satellite galaxy of IC 10. The H I mass of IC 10 is 9.5 × 10{sup 7} (d/805 kpc){sup 2} M {sub ☉} and the mass of the new extension is 7.1 × 10{sup 5} (d/805 kpc){sup 2} M {sub ☉}. An IC 10-M31 orbit using known radial velocity and proper motion values for IC 10 show that the H I extension is inconsistent with the trailing portion of the orbit so that an M31-tidal or ram pressure origin seems unlikely. We argue that the most plausible explanation for the new feature is that it is the result of a recent interaction (and possible late merger) with another dwarf galaxy. This interaction could not only have triggered the origin of the recent starburst in IC 10, but could also explain the existence of previously found counter-rotating H I gas in the periphery of the IC 10 which was interpreted as originating from primordial gas infall.

  8. Local dark energy: HST evidence from the vicinity of the M81/M82 galaxy group

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Karachentsev, I. D.; Kashibadze, O. G.; Makarov, D. I.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.

    2007-10-01

    The Hubble Space Telescope observations of the nearby galaxy group M81/M82 and its vicinity indicate that the dynamics of the expansion outflow around the group is dominated by the antigravity of the dark energy background. The local density of dark energy in the area is estimated to be near the global dark energy density or perhaps exactly equal to it. This conclusion agrees well with our previous results for the Local Group vicinity and the vicinity of the Cen A/M83 group.

  9. Evidence for Black Hole Growth in Local Analogs to Lyman Break Galaxies

    NASA Technical Reports Server (NTRS)

    Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Overzier, Roderik A.; Hornschemeier, Ann; LaMassa, Stephanie M.

    2011-01-01

    We have used XMM-Newton to observe six Lyman break analogs (LBAs): members of the rare population of local galaxies that have properties that are very similar to distant Lyman break galaxies. Our six targets were specifically selected because they have optical emission-line properties that are intermediate between starbursts and Type 2 (obscured) active galactic nuclei (AGNs). Our new X-ray data provide an important diagnostic of the presence of an AGN. We find X-ray luminosities of order 10(sup 42) erg per second and ratios of X-ray to far-IR lummositles that are higher than values in pure starburst galaxies by factors ranging from approximately 3 to 30. This strongly suggests the presence of an AGN in at least some of the galaxies. The ratios of the luminosities of the hard (2-10 keV) X-ray to [O III] emission line are low by about an order of magnitude compared with Type 1 AGN, but are consistent with the broad range seen in Type 2 AGN. Either the AGN hard X-rays are significantly obscured or the [O III] emission is dominated by the starburst. We searched for an iron emission line at approximately 6.4 ke V, which is a key feature of obscured AGNs, but only detected emission at the approximately 2sigma level. Finally, we find that the ratios of the mid-infrared (24 micrometer) continuum to [O III]lambda 5007 luminosities in these LBAs are higher than the values for Type 2 AGN by an average of 0.8 dex. Combining all these clues, we conclude that an AGN is likely to be present, but that the bolometric luminosity is produced primarily by an intense starburst. If these black holes are radiating at the Eddington limit, their masses would lie in the range of 10(sup 5) - 10(sup 6) solar mass. These objects may offer ideal local laboratories to investigate the processes by which black holes grew in the early universe.

  10. Volcaniclastic events in coral reef and seagrass environments: evidence for disturbance and recovery (Middle Miocene, Styrian Basin, Austria)

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Piller, W. E.

    2011-12-01

    Volcanic disturbances and ecosystem recovery at sites of neritic carbonate production are rarely documented, neither in the recent nor past geological record. Herein, we present a Middle Miocene (ca 14.5 Ma) shallow-marine carbonate record from the Styrian Basin (Austria) that shows recurrent breakdowns of the carbonate producers (i.e., coralline red algae and zooxanthellate corals) in response to ashfalls from nearby volcanic island sources. These volcanic events are preserved as distinct marl layers with idiomorphic biotite crystals and volcaniclasts that mantle the former seafloor topography. The pyroclastic sediments suffocated the carbonate producers in coral reef and seagrass environments. A subsequent turbid, eutrophic phase caused by the redistribution, suspension, and dissolution of volcaniclastics is characterized by the spreading of suspension-feeding biota, coralline algae, and the larger benthic foraminifer Planostegina. During this stage, rapidly consolidated pyroclastic deposits acted as hard grounds for attached-living bivalves. The fact that the facies below and above the studied ashbeds are almost identical suggests that volcaniclastic events had no long-lasting effects on the structure of the carbonate-producing benthic communities. Although Miocene shallow-water carbonate systems of the circum-Mediterranean region are well known and situated in one of the geodynamically most active regions worldwide, this study is the first that exams the impact of volcanic sedimentation events on shallow marine ecosystems.

  11. Sleep deprivation disturbed regional brain activity in healthy subjects: evidence from a functional magnetic resonance-imaging study

    PubMed Central

    Wang, Li; Chen, Yin; Yao, Ying; Pan, Yu; Sun, Yi

    2016-01-01

    Objective The aim of this study was to use amplitude of low-frequency fluctuation (ALFF) to explore regional brain activities in healthy subjects after sleep deprivation (SD). Materials and methods A total of 16 healthy subjects (eight females, eight males) underwent the session twice: once was after normal sleep (NS), and the other was after SD. ALFF was used to assess local brain features. The mean ALFF-signal values of the different brain areas were evaluated to investigate relationships with clinical features and were analyzed with a receiver-operating characteristic curve. Results Compared with NS subjects, SD subjects showed a lower response-accuracy rate, longer response time, and higher lapse rate. Compared with NS subjects, SD subjects showed higher ALFF area in the right cuneus and lower ALFF area in the right lentiform nucleus, right claustrum, left dorsolateral prefrontal cortex, and left inferior parietal cortex. ALFF differences in regional brain areas showed high sensitivity and specificity. In the SD group, mean ALFF of the right claustrum showed a significant positive correlation with accuracy rate (r=0.687, P=0.013) and a negative correlation with lapse rate (r=−0.706, P=0.01). Mean ALFF of the dorsolateral prefrontal cortex showed a significant positive correlation with response time (r=0.675, P=0.016). Conclusion SD disturbed the regional brain activity of the default-mode network, its anticorrelated “task-positive” network, and the advanced cognitive function brain areas. PMID:27110113

  12. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    SciTech Connect

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P. E-mail: ehardy@nrao.cl

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ {sub R}. An evaluation of the galaxies in the λ {sub R} ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.

  13. THE STELLAR INITIAL MASS FUNCTION OF ULTRA-FAINT DWARF GALAXIES: EVIDENCE FOR IMF VARIATIONS WITH GALACTIC ENVIRONMENT

    SciTech Connect

    Geha, Marla; Brown, Thomas M.; Tumlinson, Jason; Kalirai, Jason S.; Avila, Roberto J.; Ferguson, Henry C.; Simon, Joshua D.; Kirby, Evan N.; VandenBerg, Don A.; Munoz, Ricardo R.; Guhathakurta, Puragra E-mail: tbrown@stsci.edu

    2013-07-01

    We present constraints on the stellar initial mass function (IMF) in two ultra-faint dwarf (UFD) galaxies, Hercules and Leo IV, based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. The Hercules and Leo IV galaxies are extremely low luminosity (M{sub V} = -6.2, -5.5), metal-poor (([Fe/H]) = -2.4, -2.5) systems that have old stellar populations (>11 Gyr). Because they have long relaxation times, we can directly measure the low-mass stellar IMF by counting stars below the main-sequence turnoff without correcting for dynamical evolution. Over the stellar mass range probed by our data, 0.52-0.77 M{sub Sun }, the IMF is best fit by a power-law slope of {alpha}= 1.2{sub -0.5}{sup +0.4} for Hercules and {alpha} = 1.3 {+-} 0.8 for Leo IV. For Hercules, the IMF slope is more shallow than a Salpeter ({alpha} = 2.35) IMF at the 5.8{sigma} level, and a Kroupa ({alpha} = 2.3 above 0.5 M{sub Sun }) IMF slope at 5.4{sigma} level. We simultaneously fit for the binary fraction, f{sub binary}, finding f{sub binary}= 0.47{sup +0.16}{sub -0.14} for Hercules, and 0.47{sup +0.37}{sub -0.17} for Leo IV. The UFD binary fractions are consistent with that inferred for Milky Way stars in the same mass range, despite very different metallicities. In contrast, the IMF slopes in the UFDs are shallower than other galactic environments. In the mass range 0.5-0.8 M{sub Sun }, we see a trend across the handful of galaxies with directly measured IMFs such that the power-law slopes become shallower (more bottom-light) with decreasing galactic velocity dispersion and metallicity. This trend is qualitatively consistent with results in elliptical galaxies inferred via indirect methods and is direct evidence for IMF variations with galactic environment.

  14. THE IMACS CLUSTER BUILDING SURVEY. V. FURTHER EVIDENCE FOR STARBURST RECYCLING FROM QUANTITATIVE GALAXY MORPHOLOGIES

    SciTech Connect

    Abramson, Louis E.; Gladders, Michael D.; Dressler, Alan; Oemler, Augustus Jr.; Monson, Andrew; Persson, Eric; Poggianti, Bianca M.; Vulcani, Benedetta

    2013-11-10

    Using J- and K{sub s}-band imaging obtained as part of the IMACS Cluster Building Survey (ICBS), we measure Sérsic indices for 2160 field and cluster galaxies at 0.31 < z < 0.54. Using both mass- and magnitude-limited samples, we compare the distributions for spectroscopically determined passive, continuously star-forming, starburst, and post-starburst systems and show that previously established spatial and statistical connections between these types extend to their gross morphologies. Outside of cluster cores, we find close structural ties between starburst and continuously star-forming, as well as post-starburst and passive types, but not between starbursts and post-starbursts. These results independently support two conclusions presented in Paper II of this series: (1) most starbursts are the product of a non-disruptive triggering mechanism that is insensitive to global environment, such as minor mergers; (2) starbursts and post-starbursts generally represent transient phases in the lives of 'normal' star-forming and quiescent galaxies, respectively, originating from and returning to these systems in closed 'recycling' loops. In this picture, spectroscopically identified post-starbursts constitute a minority of all recently terminated starbursts, largely ruling out the typical starburst as a quenching event in all but the densest environments.

  15. Strong Evidence for the Density-wave Theory of Spiral Structure in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Pour-Imani, Hamed; Kennefick, Daniel; Kennefick, Julia; Davis, Benjamin L.; Shields, Douglas W.; Shameer Abdeen, Mohamed

    2016-08-01

    The density-wave theory of galactic spiral-arm structure makes a striking prediction that the pitch angle of spiral arms should vary with the wavelength of the galaxy’s image. The reason is that stars are born in the density wave but move out of it as they age. They move ahead of the density wave inside the co-rotation radius, and fall behind outside of it, resulting in a tighter pitch angle at wavelengths that image stars (optical and near-infrared) than those that are associated with star formation (far-infrared and ultraviolet). In this study we combined large sample size with wide range of wavelengths, from the ultraviolet to the infrared to investigate this issue. For each galaxy we used an optical wavelength image (B-band: 445 nm) and images from the Spitzer Space Telescope at two infrared wavelengths (infrared: 3.6 and 8.0 μm) and we measured the pitch angle with the 2DFFT and Spirality codes. We find that the B-band and 3.6 μm images have smaller pitch angles than the infrared 8.0 μm image in all cases, in agreement with the prediction of density-wave theory. We also used images in the ultraviolet from Galaxy Evolution Explorer, whose pitch angles agreed with the measurements made at 8 μm.

  16. EVIDENCE FOR INDIRECT DETECTION OF DARK MATTER FROM GALAXY CLUSTERS IN FERMI {gamma}-RAY DATA

    SciTech Connect

    Hektor, A.; Raidal, M.; Tempel, E. E-mail: martti.raidal@cern.ch

    2013-01-10

    Using the Fermi Large Area Telescope (LAT) we search for spectral features in {gamma}-rays coming from regions corresponding to the 18 brightest nearby galaxy clusters determined by the magnitude of their signal line-of-sight integrals. We observe a double-peak-like excess over the diffuse power-law background at photon energies of 110 GeV and 130 GeV with a global statistical significance of up to 3.6{sigma}, independently confirming earlier claims of the same excess from the Galactic center. Interpreting this result as a signal of dark matter annihilations to two monochromatic photon channels in galaxy cluster halos, and fixing the annihilation cross-section from the Galactic center data, we determine the annihilation boost factor due to dark matter subhalos from the data. Our results contribute to a discrimination of the dark matter annihilations from astrophysical processes and from systematic detector effects, offering them as possible explanations for the Fermi-LAT excess.

  17. SPECTROPOLARIMETRIC EVIDENCE FOR RADIATIVELY INEFFICIENT ACCRETION IN AN OPTICALLY DULL ACTIVE GALAXY

    SciTech Connect

    Trump, Jonathan R.; Murayama, Takashi; Taniguchi, Yoshi; Impey, Christopher D.; Stocke, John T.; Civano, Francesca; Elvis, Martin; Kelly, Brandon C.; Jahnke, Knud; Koekemoer, Anton M.

    2011-05-01

    We present Subaru/FOCAS spectropolarimetry of two active galaxies in the Cosmic Evolution Survey. These objects were selected to be optically dull, with the bright X-ray emission of an active galactic nucleus (AGN) but missing optical emission lines in our previous spectroscopy. Our new observations show that one target has very weak emission lines consistent with an optically dull AGN, while the other object has strong emission lines typical of a host-diluted Type 2 Seyfert galaxy. In neither source do we observe polarized emission lines, with 3{sigma} upper limits of P{sub BLR} {approx}< 2%. This means that the missing broad emission lines (and weaker narrow emission lines) are not due to simple anisotropic obscuration, e.g., by the canonical AGN torus. The weak-lined optically dull AGN exhibits a blue polarized continuum with P = 0.78% {+-} 0.07% at 4400 A < {lambda}{sub rest} < 7200 A (P = 1.37% {+-} 0.16% at 4400 A < {lambda}{sub rest} < 5050 A). The wavelength dependence of this polarized flux is similar to that of an unobscured AGN continuum and represents the intrinsic AGN emission, either as synchrotron emission or the outer part of an accretion disk reflected by a clumpy dust scatterer. Because this intrinsic AGN emission lacks emission lines, this source is likely to have a radiatively inefficient accretion flow.

  18. Evidence That Hydra I is a Tidally Disrupting Milky Way Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Hargis, Jonathan R.; Kimmig, Brian; Willman, Beth; Caldwell, Nelson; Walker, Matthew G.; Strader, Jay; Sand, David J.; Grillmair, Carl J.; Yoon, Joo Heon

    2016-02-01

    The Eastern Banded Structure (EBS) and Hydra I halo overdensities are very nearby (d ˜ 10 kpc) objects discovered in Sloan Digital Sky Survey (SDSS) data. Previous studies of the region have shown that EBS and Hydra I are spatially coincident, cold structures at the same distance, suggesting that Hydra I may be the EBS's progenitor. We combine new wide-field Dark Energy Camera (DECam) imaging and MMT/Hectochelle spectroscopic observations of Hydra I with SDSS archival spectroscopic observations to quantify Hydra I's present-day chemodynamical properties, and to infer whether it originated as a star cluster or dwarf galaxy. While previous work using shallow SDSS imaging assumed a standard old, metal-poor stellar population, our deeper DECam imaging reveals that Hydra I has a thin, well-defined main sequence turnoff of intermediate age (˜5-6 Gyr) and metallicity ([Fe/H] = -0.9 dex). We measure statistically significant spreads in both the iron and alpha-element abundances of {σ }[{Fe/{{H}}]}=0.13+/- 0.02 dex and {σ }[α /{{Fe}]}=0.09+/- 0.03 dex, respectively, and place upper limits on both the rotation and its proper motion. Hydra I's intermediate age and [Fe/H]—as well as its low [α/Fe], apparent [Fe/H] spread, and present-day low luminosity—suggest that its progenitor was a dwarf galaxy, which has subsequently lost more than 99.99% of its stellar mass.

  19. CO(J = 1{yields}0) IN z > 2 QUASAR HOST GALAXIES: NO EVIDENCE FOR EXTENDED MOLECULAR GAS RESERVOIRS

    SciTech Connect

    Riechers, Dominik A.; Carilli, Christopher L.; Maddalena, Ronald J.; Hodge, Jacqueline; Walter, Fabian; Harris, Andrew I.; Baker, Andrew J.; Sharon, Chelsea E.; Wagg, Jeff; Vanden Bout, Paul A.; Weiss, Axel

    2011-09-20

    We report the detection of CO(J = 1{yields}0) emission in the strongly lensed high-redshift quasars IRAS F10214+4724 (z = 2.286), the Cloverleaf (z = 2.558), RX J0911+0551 (z = 2.796), SMM J04135+10277 (z = 2.846), and MG 0751+2716 (z = 3.200), using the Expanded Very Large Array and the Green Bank Telescope. We report lensing-corrected CO(J = 1{yields}0) line luminosities of L'{sub CO} = (0.34-18.4) x 10{sup 10} K km s{sup -1} pc{sup 2} and total molecular gas masses of M(H{sub 2}) = (0.27-14.7) x 10{sup 10} M{sub sun} for the sources in our sample. Based on CO line ratios relative to previously reported observations in J {>=} 3 rotational transitions and line excitation modeling, we find that the CO(J = 1{yields}0) line strengths in our targets are consistent with single, highly excited gas components with constant brightness temperature up to mid-J levels. We thus do not find any evidence for luminous-extended, low-excitation, low surface brightness molecular gas components. These properties are comparable to those found in z > 4 quasars with existing CO(J = 1{yields}0) observations. These findings stand in contrast to recent CO(J = 1{yields}0) observations of z {approx_equal} 2-4 submillimeter galaxies (SMGs), which have lower CO excitation and show evidence for multiple excitation components, including some low-excitation gas. These findings are consistent with the picture that gas-rich quasars and SMGs represent different stages in the early evolution of massive galaxies.

  20. EVIDENCE FOR THREE ACCRETING BLACK HOLES IN A GALAXY AT z {approx} 1.35: A SNAPSHOT OF RECENTLY FORMED BLACK HOLE SEEDS?

    SciTech Connect

    Schawinski, Kevin; Urry, Meg; Treister, Ezequiel; Simmons, Brooke; Natarajan, Priyamvada; Glikman, Eilat

    2011-12-20

    One of the key open questions in cosmology today pertains to understanding when, where, and how supermassive black holes form. While it is clear that mergers likely play a significant role in the growth cycles of black holes, the issue of how supermassive black holes form, and how galaxies grow around them, still needs to be addressed. Here, we present Hubble Space Telescope Wide Field Camera 3/IR grism observations of a clumpy galaxy at z = 1.35, with evidence for 10{sup 6}-10{sup 7} M{sub Sun} rapidly growing black holes in separate sub-components of the host galaxy. These black holes could have been brought into close proximity as a consequence of a rare multiple galaxy merger or they could have formed in situ. Such holes would eventually merge into a central black hole as the stellar clumps/components presumably coalesce to form a galaxy bulge. If we are witnessing the in situ formation of multiple black holes, their properties can inform seed formation models and raise the possibility that massive black holes can continue to emerge in star-forming galaxies as late as z = 1.35 (4.8 Gyr after the big bang).

  1. Extreme Gas Kinematics in the z=2.2 Powerful Radio Galaxy MRC1138-262: Evidence for Efficient AGN Feedback in the Early Universe?

    SciTech Connect

    Nesvadba, N H; Lehnert, M D; Eisenhauer, F; Gilbert, A M; Tecza, M; Abuter, R

    2007-06-26

    To explain the properties of the most massive low-redshift galaxies and the shape of their mass function, recent models of galaxy evolution include strong AGN feedback to complement starburst-driven feedback in massive galaxies. Using the near-infrared integral-field spectrograph SPIFFI on the VLT, we searched for direct evidence for such a feedback in the optical emission line gas around the z = 2.16 powerful radio galaxy MRC1138-262, likely a massive galaxy in formation. The kpc-scale kinematics, with FWHMs and relative velocities {approx}< 2400 km s{sup -1} and nearly spherical spatial distribution, do not resemble large-scale gravitational motion or starburst-driven winds. Order-of-magnitude timescale and energy arguments favor the AGN as the only plausible candidate to accelerate the gas, with a total energy injection of {approx} few x 10{sup 60} ergs or more, necessary to power the outflow, and relatively efficient coupling between radio jet and ISM. Observed outflow properties are in gross agreement with the models, and suggest that AGN winds might have a similar, or perhaps larger, cosmological significance than starburst-driven winds, if MRC1138-262 is indeed archetypal. Moreover, the outflow has the potential to remove significant gas fractions ({approx}< 50%) from a > L* galaxy within a few 10 to 100 Myrs, fast enough to preserve the observed [{alpha}/Fe] overabundance in massive galaxies at low redshift. Using simple arguments, it appears that feedback like that observed in MRC1138-262 may have sufficient energy to inhibit material from infalling into the dark matter halo and thus regulate galaxy growth as required in some recent models of hierarchical structure formation.

  2. EVIDENCE FOR A CLUMPY, ROTATING GAS DISK IN A SUBMILLIMETER GALAXY AT z = 4

    SciTech Connect

    Hodge, J. A.; Walter, F.; Carilli, C. L.; De Blok, W. J. G.; Riechers, D.; Daddi, E.

    2012-11-20

    We present Karl G. Jansky Very Large Array observations of the CO(2-1) emission in the z = 4.05 submillimeter galaxy (SMG) GN20. These high-resolution data allow us to image the molecular gas at 1.3 kpc resolution just 1.6 Gyr after the big bang. The data reveal a clumpy, extended gas reservoir, 14 {+-} 4 kpc in diameter, in unprecedented detail. A dynamical analysis shows that the data are consistent with a rotating disk of total dynamical mass 5.4 {+-} 2.4 Multiplication-Sign 10{sup 11} M {sub Sun }. We use this dynamical mass estimate to constrain the CO-to-H{sub 2} mass conversion factor ({alpha}{sub CO}), finding {alpha}{sub CO} = 1.1 {+-} 0.6 M {sub Sun }(K km s{sup -1} pc{sup 2}){sup -1}. We identify five distinct molecular gas clumps in the disk of GN20 with masses a few percent of the total gas mass, brightness temperatures of 16-31K, and surface densities of >3200-4500 Multiplication-Sign ({alpha}{sub CO}/0.8) M {sub Sun} pc{sup -2}. Virial mass estimates indicate they could be self-gravitating, and we constrain their CO-to-H{sub 2} mass conversion factor to be <0.2-0.7 M {sub Sun }(K km s{sup -1} pc{sup 2}){sup -1}. A multiwavelength comparison demonstrates that the molecular gas is concentrated in a region of the galaxy that is heavily obscured in the rest-frame UV/optical. We investigate the spatially resolved gas excitation and find that the CO(6-5)/CO(2-1) ratio is constant with radius, consistent with star formation occurring over a large portion of the disk. We discuss the implications of our results in the context of different fueling scenarios for SMGs.

  3. Violent galaxy evolution in the Frontier Fields clusters

    NASA Astrophysics Data System (ADS)

    Ebeling, Harald; McPartland, Conor; Blumenthal, Kelly; Roediger, Elke

    2015-08-01

    In a recent study we used customized morphological selection criteria to identify potential ram-pressure stripping events in shallow HST images of MACS clusters at z=0.3-0.7 and found tantalising evidence of such violent evolution (a) being at least partly triggered by galaxy mergers and (b) causing extensive star formation and thus brightening of the affected galaxies. Due to the limited depth of the HST data used, our project focused (by design and necessity) on the brightest galaxies. We here present results of a similar survey for “jellyfish” galaxies conducted using the much deeper, multi-passband imaging data of the Frontier Fields clusters that allow us to probe much farther into the luminosity function of ram-pressure stripping in some of the most massive and most dynamically disturbed clusters known.

  4. SDSS-IV MaNGA: Faint quenched galaxies I- Sample selection and evidence for environmental quenching

    NASA Astrophysics Data System (ADS)

    Penny, Samantha J.; Masters, Karen L.; Weijmans, Anne-Marie; Westfall, Kyle B.; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Falcón-Barroso, Jesús; Law, David; Nichol, Robert C.; Thomas, Daniel; Bizyaev, Dmitry; Brownstein, Joel R.; Freischlad, Gordon; Gaulme, Patrick; Grabowski, Katie; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Roman-Lopes, Alexandre; Pan, Kaike; Simmons, Audrey; Wake, David A.

    2016-08-01

    Using kinematic maps from the Sloan Digital Sky Survey (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we reveal that the majority of low-mass quenched galaxies exhibit coherent rotation in their stellar kinematics. Our sample includes all 39 quenched low-mass galaxies observed in the first year of MaNGA. The galaxies are selected with Mr > -19.1, stellar masses 109 M⊙ < M⋆ < 5 × 109 M⊙, EWHα < 2 Å, and all have red colours (u - r) > 1.9. They lie on the size-magnitude and σ-luminosity relations for previously studied dwarf galaxies. Just six (15 ± 5.7 per cent) are found to have rotation speeds ve, rot < 15 km s-1 at ˜1 Re, and may be dominated by pressure support at all radii. Two galaxies in our sample have kinematically distinct cores in their stellar component, likely the result of accretion. Six contain ionised gas despite not hosting ongoing star formation, and this gas is typically kinematically misaligned from their stellar component. This is the first large-scale Integral Field Unit (IFU) study of low mass galaxies selected without bias against low-density environments. Nevertheless, we find the majority of these galaxies are within ˜1.5 Mpc of a bright neighbour (MK < -23; or M⋆ > 5 × 1010 M⊙), supporting the hypothesis that galaxy-galaxy or galaxy-group interactions quench star formation in low-mass galaxies. The local bright galaxy density for our sample is ρproj = 8.2 ± 2.0 Mpc-2, compared to ρproj = 2.1 ± 0.4 Mpc-2 for a star forming comparison sample, confirming that the quenched low mass galaxies are preferentially found in higher density environments.

  5. Segregation properties of galaxies

    SciTech Connect

    Santiago, B.X.; Da Costa, L.N. )

    1990-10-01

    Using the recently completed Southern Sky Redshift Survey, in conjunction with measurements of the central surface brightness, the existence of segregation in the way galaxies of different morphology and surface brightness are distributed in space is investigated. Results indicate that there is some evidence that low surface brightness galaxies are more randomly distributed than brighter ones and that this effect is independent of the well-known tendency of early-type galaxies to cluster more strongly than spirals. Presuming that the observed clustering was established at the epoch of galaxy formation, it may provide circumstantial evidence for biased galaxy formation. 24 refs.

  6. EVIDENCE OF QUASI-LINEAR SUPER-STRUCTURES IN THE COSMIC MICROWAVE BACKGROUND AND GALAXY DISTRIBUTION

    SciTech Connect

    Inoue, Kaiki Taro; Sakai, Nobuyuki; Tomita, Kenji

    2010-11-20

    Recent measurements of hot and cold spots on the cosmic microwave background (CMB) sky suggest the presence of super-structures on (>100 h {sup -1} Mpc) scales. We develop a new formalism to estimate the expected amplitude of temperature fluctuations due to the integrated Sachs-Wolfe (ISW) effect from prominent quasi-linear structures. Applying the developed tools to the observed ISW signals from voids and clusters in catalogs of galaxies at redshifts z < 1, we find that they indeed imply a presence of quasi-linear super-structures with a comoving radius of 100 {approx} 300 h {sup -1} Mpc and a density contrast |{delta}| {approx} O(0.1). We also find that the observed ISW signals are at odds with the concordant {Lambda} cold dark matter model that predicts Gaussian primordial perturbations at {approx}>3{sigma} level. We confirm that the mean temperature around the CMB cold spot in the southern Galactic hemisphere filtered by a compensating top-hat filter deviates from the mean value at {approx}3{sigma} level, implying that a quasi-linear supervoid or an underdensity region surrounded by a massive wall may reside at low redshifts z < 0.3 and the actual angular size (16{sup 0}-17{sup 0}) may be larger than the apparent size (4{sup 0}-10{sup 0}) discussed in literature. Possible solutions are briefly discussed.

  7. Evidence for Unresolved γ-Ray Point Sources in the Inner Galaxy.

    PubMed

    Lee, Samuel K; Lisanti, Mariangela; Safdi, Benjamin R; Slatyer, Tracy R; Xue, Wei

    2016-02-01

    We present a new method to characterize unresolved point sources (PSs) generalizing traditional template fits to account for non-Poissonian photon statistics. We apply this method to Fermi Large Area Telescope γ-ray data to characterize PS populations at high latitudes and in the Inner Galaxy. We find that PSs (resolved and unresolved) account for ∼50% of the total extragalactic γ-ray background in the energy range ∼1.9 to 11.9 GeV. Within 10° of the Galactic Center with |b|≥2°, we find that ∼5%-10% of the flux can be accounted for by a population of unresolved PSs distributed consistently with the observed ∼GeV γ-ray excess in this region. The excess is fully absorbed by such a population, in preference to dark-matter annihilation. The inferred source population is dominated by near-threshold sources, which may be detectable in future searches. PMID:26894697

  8. On VI Observations of Galaxy Clusters: Evidence for Modest Cooling Flows

    NASA Astrophysics Data System (ADS)

    Bregman, Joel N.; Fabian, A. C.; Miller, Eric D.; Irwin, Jimmy A.

    2006-05-01

    A prediction of the galaxy-cluster cooling flow model is that as gas cools from the ambient cluster temperature, emission lines are produced in gas at subsequently decreasing temperatures. Gas passing through 105.5 K emits in the lines of O VI λλ1032, 1035, and here we report a FUSE study of these lines in three cooling flow clusters, Abell 426, Abell 1795, and AWM 7. No emission was detected from AWM 7, but O VI is detected from the centers of Abell 426 and Abell 1795, and possibly to the south of the center in Abell 1795, where X-ray and optical emission line filaments lie. In Abell 426 these line luminosities imply a cooling rate of 32+/-6 Msolar yr-1 within the central r=6.2 kpc region, while for Abell 1795 the central cooling rate is 26+/-7 Msolar yr-1 (within r=22 kpc), and about 42+/-9 Msolar yr-1 including the southern pointing. Including other studies, three of six clusters have O VI emission, and they also have star formation as well as emission lines from 104 K gas. These observations are generally consistent with the cooling flow model, but at a rate closer to 30 Msolar yr-1 than to the originally suggested values of 102-10 3 Msolar yr-1.

  9. Sixth Graders' Co-construction of Explanations of a Disturbance in an Ecosystem: Exploring relationships between grouping, reflective scaffolding, and evidence-based explanations

    NASA Astrophysics Data System (ADS)

    Kyza, Eleni A.; Constantinou, Costas P.; Spanoudis, George

    2011-12-01

    We report on a study investigating the relationship between cognitive ability grouping, reflective inquiry scaffolding, and students' collaborative explanations of an ecosystem disturbance which took place when a number of flamingo birds died in a salt lake because of nearby intensive human activities. Twenty-six pairs of students from two intact sixth-grade classes participated in the study. All students investigated scientific data relating to the ecosystem problem using a web-based learning environment. One class was provided with web-based reflective inquiry scaffolding (WorkSpace), while the other class used PowerPoint. The main data analyzed for this study consisted of each pair's written explanation and task-related artifacts. Findings show that the web-based reflective scaffolding supported students in providing valid evidence in support of their explanations. The analyses of the students' collaborative explanations showed no statistically significant differences that could be attributed to prior achievement between students in the WorkSpace condition, while differences were found between the different cognitive ability pairs in the PowerPoint class. These findings suggest that the WorkSpace scaffolding may have provided more influential support to lower cognitive ability pairs in creating evidence-based explanations.

  10. Evidence for an extragalactic component of the far-ultraviolet background and constraints on galaxy evolution for z between 0.1 and 0.6

    NASA Technical Reports Server (NTRS)

    Martin, Christopher; Bowyer, Stuart

    1989-01-01

    A sounding rocket experiment that measured the power spectrum of small-scale fluctuations in the far-UV background is described. Evidence is presented that these fluctuations are the integrated light from distant galaxies. If this result is used as an upper limit to the integrated light from galaxies, it provides a constraint on the mean UV luminosity density in the redshift range between 0.1 and 0.6 of L(gal) less than 7 x 10 to the 7th solar luminosities/Mpc. When compared to estimates of the present UV luminosity density, this places a strong constraint on the far-UV evolution of galaxies in the last one-third of a Hubble time. This constraint can be interpreted as a limit on the average past star formation rate relative to the present if dust obscuration was not significantly greater in the past. An upper limit to the average star formation rate is derived.

  11. The H I chronicles of LITTLE THINGS blue compact dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Ashley, Trisha Lynn

    Star formation occurs when the gas (mostly atomic hydrogen; H I) in a galaxy becomes disturbed, forming regions of high density gas, which then collapses to form stars. In dwarf galaxies it is still uncertain which processes contribute to star formation and how much they contribute to star formation. Blue compact dwarf (BCD) galaxies are low mass, low shear, gas rich galaxies that have high star formation rates when compared to other dwarf galaxies. What triggers the dense burst of star formation in BCDs but not other dwarfs is not well understood. It is often suggested that BCDs may have their starburst triggered by gravitational interactions with other galaxies, dwarf-dwarf galaxy mergers, or consumption of intergalactic gas. However, there are BCDs that appear isolated with respect to other galaxies, making an external disturbance unlikely. Here, I study six apparently isolated BCDs from the LITTLE THINGS sample in an attempt to understand what has triggered their burst of star formation. LITTLE THINGS is an H I survey of 41 dwarf galaxies. Each galaxy has high angular and velocity resolution H I data from the Very Large Array (VLA) telescope and ancillary stellar data. I use these data to study the detailed morphology and kinematics of each galaxy, looking for signatures of starburst triggers. In addition to the VLA data, I have collected Green Bank Telescope data for the six BCDs. These high sensitivity, low resolution data are used to search the surrounding area of each galaxy for extended emission and possible nearby companion galaxies. The VLA data show evidence that each BCD has likely experienced some form of external disturbance despite their apparent isolation. These external disturbances potentially seen in the sample include: ongoing/advanced dwarf-dwarf mergers, an interaction with an unknown external object, and external gas consumption. The GBT data result in no nearby, separate H I companions at the sensitivity of the data. These data therefore

  12. Evidence for a non-universal stellar initial mass function in low-redshift high-density early-type galaxies

    NASA Astrophysics Data System (ADS)

    Dutton, Aaron A.; Mendel, J. Trevor; Simard, Luc

    2012-05-01

    We determine an absolute calibration of stellar mass-to-light ratios for the densest ≃3 per cent of early-type galaxies in the local Universe (redshift z≃ 0.08) from Sloan Digital Sky Survey (SDSS) Data Release 7. This sample of ˜4000 galaxies has, assuming a Chabrier initial mass function (IMF), effective stellar surface densities Σe > 2500 M⊙ pc-2, stellar population synthesis (SPS) stellar masses log10(MSPS/M⊙) < 10.8 and aperture velocity dispersions of ? (68 per cent range). In contrast to typical early-type galaxies, we show that these dense early-type galaxies follow the virial Fundamental Plane, which suggests that mass follows light. With the additional assumption that any dark matter does not follow the light, the dynamical masses of dense galaxies provide a direct measurement of stellar masses. Our dynamical masses (Mdyn), obtained from the spherical Jeans equations, are only weakly sensitive to the choice of anisotropy (β) due to the relatively large aperture of the SDSS fibre for these galaxies: Rap≃ 1.5Re. Assuming isotropic orbits (β= 0), we find a median log10(Mdyn/MSPS) = 0.233 ± 0.003, consistent with a Salpeter IMF, while more bottom-heavy IMFs and standard Milky Way IMFs are strongly disfavoured. Our results are consistent with, but do not require, a dependence of the IMF on dynamical mass or velocity dispersion. We find evidence for a colour dependence to the IMF such that redder galaxies have heavier IMFs with Mdyn/MSPS∝ (g-r)1.13 ± 0.09. This may reflect a more fundamental dependence of the IMF on the age or metallicity of a stellar population, or the density at which the stars formed.

  13. Are spiral galaxies heavy smokers

    SciTech Connect

    Davies, J.; Disney, M.; Phillipps, S )

    1990-07-01

    The dustiness of spiral galaxies is discussed. Starburst galaxies and the shortage of truly bright spiral galaxies is cited as evidence that spiral galaxies are far dustier than has been thought. The possibility is considered that the dust may be hiding missing mass.

  14. The Lyα–LyC Connection: Evidence for an Enhanced Contribution of UV-faint Galaxies to Cosmic Deionization

    NASA Astrophysics Data System (ADS)

    Dijkstra, Mark; Gronke, Max; Venkatesan, Aparna

    2016-09-01

    The escape of ionizing Lyman continuum (LyC) photons requires the existence of low-N H i sightlines, which also promote escape of Lyα. We use a suite of 2500 Lyα Monte-Carlo radiative transfer simulations through models of dusty, clumpy interstellar (“multiphase”) media from Gronke & Dijkstra, and compare the escape fractions of Lyα ({f}{{esc}}{{Ly}α }) and LyC radiation ({f}{{esc}}{{ion}}). We find that {f}{{esc}}{{ion}} and {f}{{esc}}{{Ly}α } are correlated: galaxies with a low {f}{{esc}}{{Ly}α } consistently have a low {f}{{esc}}{{ion}}, while galaxies with a high {f}{{esc}}{{Ly}α } exhibit a large dispersion in {f}{{esc}}{{ion}}. We argue that there is increasing observational evidence that Lyα escapes more easily from UV-faint galaxies. The correlation between {f}{{esc}}{{ion}} and {f}{{esc}}{{Ly}α } then implies that UV-faint galaxies contribute more to the ionizing background than implied by the faint-end slope of the UV luminosity function. In multiphase gases, the ionizing escape fraction is most strongly affected by the cloud covering factor, f cl, which implies that {f}{{esc}}{{ion}} is closely connected to the observed Lyα spectral line shape. Specifically, LyC-emitting galaxies typically having narrower, more symmetric line profiles. This prediction is qualitatively similar to that for “shell models.”

  15. Are luminous radio-loud active galactic nuclei triggered by galaxy interactions?

    NASA Astrophysics Data System (ADS)

    Ramos Almeida, C.; Bessiere, P. S.; Tadhunter, C. N.; Pérez-González, P. G.; Barro, G.; Inskip, K. J.; Morganti, R.; Holt, J.; Dicken, D.

    2012-01-01

    We present the results of a comparison between the optical morphologies of a complete sample of 46 southern 2 Jy radio galaxies at intermediate redshifts (0.05 < z < 0.7) and those of two control samples of quiescent early-type galaxies: 55 ellipticals at redshifts z ≤ 0.01 from the Observations of Bright Ellipticals at Yale (OBEY) survey, and 107 early-type galaxies at redshifts 0.2 < z < 0.7 in the Extended Groth Strip (EGS). Based on these comparisons, we discuss the role of galaxy interactions in the triggering of powerful radio galaxies (PRGs). We find that a significant fraction of quiescent ellipticals at low and intermediate redshifts show evidence for disturbed morphologies at relatively high surface brightness levels, which are likely the result of past or on-going galaxy interactions. However, the morphological features detected in the galaxy hosts of the PRGs (e.g. tidal tails, shells, bridges, etc.) are up to 2 mag brighter than those present in their quiescent counterparts. Indeed, if we consider the same surface brightness limits, the fraction of disturbed morphologies is considerably smaller in the quiescent population (53 per cent at z < 0.2 and 48 per cent at 0.2 ≤ z < 0.7) than in the PRGs (93 per cent at z < 0.2 and 95 per cent at 0.2 ≤ z < 0.7 considering strong-line radio galaxies only). This supports a scenario in which PRGs represent a fleeting active phase of a subset of the elliptical galaxies that have recently undergone mergers/interactions. However, we demonstrate that only a small proportion (≲20 per cent) of disturbed early-type galaxies are capable of hosting powerful radio sources.

  16. Jellyfish Galaxy Candidates at Low Redshift

    NASA Astrophysics Data System (ADS)

    Poggianti, B. M.; Fasano, G.; Omizzolo, A.; Gullieuszik, M.; Bettoni, D.; Moretti, A.; Paccagnella, A.; Jaffé, Y. L.; Vulcani, B.; Fritz, J.; Couch, W.; D'Onofrio, M.

    2016-03-01

    Galaxies that are being stripped of their gas can sometimes be recognized from their optical appearance. Extreme examples of stripped galaxies are the so-called “jellyfish galaxies” that exhibit tentacles of debris material with a characteristic jellyfish morphology. We have conducted the first systematic search for galaxies that are being stripped of their gas at low-z (z = 0.04-0.07) in different environments, selecting galaxies with varying degrees of morphological evidence for stripping. We have visually inspected B- and V-band images and identified 344 candidates in 71 galaxy clusters of the OMEGAWINGS+WINGS sample and 75 candidates in groups and lower mass structures in the PM2GC sample. We present the atlas of stripping candidates and a first analysis of their environment and their basic properties, such as morphologies, star formation rates and galaxy stellar masses. Candidates are found in all clusters and at all clustercentric radii, and their number does not correlate with the cluster velocity dispersion σ or X-ray luminosity LX. Interestingly, convincing cases of candidates are also found in groups and lower mass halos (1011-1014M⊙), although the physical mechanism at work needs to be securely identified. All the candidates are disky, have stellar masses ranging from log M/M⊙ < 9 to > 11.5 and the majority of them form stars at a rate that is on average a factor of 2 higher (2.5σ) compared to non-stripped galaxies of similar mass. The few post-starburst and passive candidates have weak stripping evidence. We conclude that disturbed morphologies suggestive of stripping phenomena are ubiquitous in clusters and could be present even in groups and low mass halos. Further studies will reveal the physics of the gas stripping and clarify the mechanisms at work.

  17. Evidence for a Massive, Extended Circumgalactic Medium Around the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Lehner, Nicolas; Howk, J. Christopher; Wakker, Bart P.

    2015-05-01

    We demonstrate the presence of an extended and massive circumgalactic medium (CGM) around Messier 31 using archival HST Cosmic Origins Spectrograph ultraviolet spectroscopy of 18 QSOs projected within two virial radii of M31 ({{R}vir}=300 kpc). We detect absorption from Si iii at -300≲ {{v}LSR}≲ -150 km s-1 toward all three sightlines at R≲ 0.2{{R}vir}, 3 of 4 sightlines at 0.8≲ R/{{R}vir}≲ 1.1, and possibly 1 of 11 at 1.1\\lt R/{{R}vir}≲ 1.8. We present several arguments that the gas at these velocities observed in these directions originates from the M31 CGM rather than the Local Group or Milky Way CGM or Magellanic Stream. We show that the dwarf galaxies located in the CGM of M31 have very similar velocities over similar projected distances from M31. We find a non-trivial relationship only at these velocities between the column densities (N) of all the ions and R, whereby N decreases with increasing R. At R\\lt 0.8{{R}vir}, the covering fraction is close to unity for Si iii and C iv ({{f}c}˜ 60%-97% at the 90% confidence level), but drops to {{f}c}≲ 10%-20% at R≳ {{R}vir}. We show that the M31 CGM gas is bound, multiphase, predominantly ionized, and is more highly ionized gas at larger R. We estimate using Si ii, Si iii, and Si iv, a CGM metal mass of ≳ 2× {{10}6} M⊙ and gas mass of ≳ 3× {{10}9}({{Z}⊙ }/Z) M⊙ within 0.2{{R}vir}, and possibly a factor of ˜10 larger within {{R}vir}, implying substantial metal and gas masses in the CGM of M31. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract No. NAS5-26555.

  18. Sleep Disturbances in Mood Disorders.

    PubMed

    Rumble, Meredith E; White, Kaitlin Hanley; Benca, Ruth M

    2015-12-01

    The article provides an overview of common and differentiating self-reported and objective sleep disturbances seen in mood-disordered populations. The importance of considering sleep disturbances in the context of mood disorders is emphasized, because a large body of evidence supports the notion that sleep disturbances are a risk factor for onset, exacerbation, and relapse of mood disorders. In addition, potential mechanisms for sleep disturbance in depression, other primary sleep disorders that often occur with mood disorders, effects of antidepressant and mood-stabilizing drugs on sleep, and the adjunctive effect of treating sleep in patients with mood disorders are discussed. PMID:26600106

  19. X-radiation from clusters of galaxies: Spectral evidence for a hot evolved gas

    NASA Technical Reports Server (NTRS)

    Serlemitsos, P. J.; Smith, B. W.; Boldt, E. A.; Holt, S. S.; Swank, J. H.

    1976-01-01

    OSO-8 observations of the X-ray flux in the range 2-60 keV from the Virgo, Perseus, and Coma Clusters provide strong evidence for the thermal origin of the radiation, including iron line emission. The data are adequately described by emission from an isothermal plasma with an iron abundance in near agreement with cosmic levels. A power law description is generally less acceptable and is ruled out in the case of Perseus. Implications on the origin of the cluster gas are discussed.

  20. X-radiation from clusters of galaxies - Spectral evidence for a hot evolved gas

    NASA Technical Reports Server (NTRS)

    Serlemitsos, P. J.; Smith, B. W.; Boldt, E. A.; Holt, S. S.; Swank, J. H.

    1977-01-01

    OSO-8 observations of the X-ray flux in the range between 2 and 60 keV from the Virgo, Perseus, and Coma clusters provide strong evidence for the thermal origin of the radiation, including iron-line emission. The data are adequately described by emission from an isothermal plasma with an iron abundance in near agreement with cosmic levels. A power-law description is generally less acceptable and is ruled out in the case of Perseus. Implications of the origin of the cluster gas are discussed.

  1. Evidence of low-latitude daytime large-scale traveling ionospheric disturbances observed by high-frequency multistatic backscatter sounding system during a geomagnetically quiet period

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Zhao, Zhengyu; Yang, Guobin; Chen, Gang; Hu, Yaogai; Zhang, Yuannong

    2012-06-01

    Observations from the high-frequency multistatic backscatter sounding radars on a geomagnetically quiet day (minimum Dst = -14 nT) captured the anti-equatorward propagation of daytime large-scale traveling ionospheric disturbance (LSTID) at the low-latitude regions. The observed LSTID was characterized approximately by a meridional propagation speed of 347 ± 78 m/s and azimuthal angle of -4.7 ± 27.6° (counterclockwise from north), with a period of 76 min and a wavelength of 1583 ± 354 km by means of maximum entropy cross-spectral analysis. Vertical phase velocity was also evaluated to be <˜42 m/s through the Doppler measurements. These results provide evidence that the low-latitude ionosphere can undergo large-scale perturbations even under geomagnetically quiet conditions. We suggest that this observed LSTID could be due to the secondary gravity waves from thermospheric body forces created from the dissipation of primary gravity waves from deep tropospheric convection.

  2. LONG GRBs ARE METALLICITY-BIASED TRACERS OF STAR FORMATION: EVIDENCE FROM HOST GALAXIES AND REDSHIFT DISTRIBUTION

    SciTech Connect

    Wang, F. Y.; Dai, Z. G. E-mail: dzg@nju.edu.cn

    2014-07-01

    We investigate the mass distribution of long gamma-ray burst (GRB) host galaxies and the redshift distribution of long GRBs by considering that long GRBs occur in low-metallicity environments. We calculate the upper limit on the stellar mass of a galaxy which can produce long GRBs by utilizing the mass-metallicity (M-Z) relation of galaxies. After comparing with the observed GRB host galaxies masses, we find that the observed GRB host galaxy masses can fit the predicted masses well if GRBs occur in low-metallicity 12 + log (O/H){sub KK04} < 8.7. GRB host galaxies have low metallicity, low mass, and high star formation rate compared with galaxies of seventh data release of the Sloan Digital Sky Survey. We also study the cumulative redshift distribution of the latest Swift long GRBs by adding dark GRBs and 10 new GRBs redshifts from the TOUGH survey. The observed discrepancy between the GRB rate and the star formation history can be reconciled by considering that GRBs tend to occur in low-metallicity galaxies with 12 + log (O/H){sub KK04} < 8.7. We conclude that the metallicity cutoff that can produce long GRBs is about 12 + log (O/H){sub KK04} < 8.7 from the host mass distribution and redshift distribution.

  3. Evidence for wide-spread active galactic nucleus-driven outflows in the most massive z ∼ 1-2 star-forming galaxies

    SciTech Connect

    Genzel, R.; Förster Schreiber, N. M.; Rosario, D.; Lang, P.; Lutz, D.; Wisnioski, E.; Wuyts, E.; Wuyts, S.; Bandara, K.; Bender, R.; Berta, S.; Kurk, J.; Mendel, J. T.; Tacconi, L. J.; Wilman, D.; Beifiori, A.; Burkert, A.; Buschkamp, P.; Chan, J.; Brammer, G. E-mail: genzel@mpe.mpg.de; and others

    2014-11-20

    In this paper, we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M {sub *}/M {sub ☉}) ≥ 10.9) z ∼ 1-3 star-forming galaxies by increasing the sample size by a factor of six (to 44 galaxies above log(M {sub *}/M {sub ☉}) ≥ 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS{sup 3D}spectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Hα, [N II], and [S II] lines ∼450-5300 km s{sup –1}), with large [N II]/Hα ratios, above log(M {sub *}/M {sub ☉}) ∼ 10.9, with about two-thirds of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z ∼ 1 and ∼2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGNs), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared, or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation.

  4. Evidence for ubiquitous high-equivalent-width nebular emission in z ∼ 7 galaxies: toward a clean measurement of the specific star-formation rate using a sample of bright, magnified galaxies

    SciTech Connect

    Smit, R.; Bouwens, R. J.; Labbé, I.; Zheng, W.; Lemze, D.; Ford, H.; Bradley, L.; Coe, D.; Postman, M.; Donahue, M.; Moustakas, J.; Umetsu, K.; Zitrin, A.; Bartelmann, M.; Gonzalez, V.; Benítez, N.; Jimenez-Teja, Y.; Grillo, C.; Infante, L.; and others

    2014-03-20

    Growing observational evidence indicates that nebular line emission has a significant impact on the rest-frame optical fluxes of z ∼ 5-7 galaxies. This line emission makes z ∼ 5-7 galaxies appear more massive, with lower specific star-formation rates (sSFRs). However, corrections for this line emission have been difficult to perform reliably because of huge uncertainties on the strength of such emission at z ≳ 5.5. In this paper, we present the most direct observational evidence thus far for ubiquitous high-equivalent-width (EW) [O III] + Hβ line emission in Lyman-break galaxies at z ∼ 7, and we present a strategy for an improved measurement of the sSFR at z ∼ 7. We accomplish this through the selection of bright galaxies in the narrow redshift window z ∼ 6.6-7.0 where the Spitzer/Infrared Array Camera (IRAC) 4.5 μm flux provides a clean measurement of the stellar continuum light, in contrast with the 3.6 μm flux, which is contaminated by the prominent [O III] + Hβ lines. To ensure a high signal-to-noise ratio for our IRAC flux measurements, we consider only the brightest (H {sub 160} < 26 mag) magnified galaxies we have identified behind galaxy clusters. It is remarkable that the mean rest-frame optical color for our bright seven-source sample is very blue, [3.6]-[4.5] = –0.9 ± 0.3. Such blue colors cannot be explained by the stellar continuum light and require that the rest-frame EW of [O III] + Hβ is greater than 637 Å for the average source. The four bluest sources from our seven-source sample require an even more extreme EW of 1582 Å. We can also set a robust lower limit of ≳ 4 Gyr{sup –1} on the sSFR of our sample based on the mean spectral energy distribution.

  5. The Sins/zC-Sinf Survey of z ~ 2 Galaxy Kinematics: Evidence for Powerful Active Galactic Nucleus-Driven Nuclear Outflows in Massive Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Förster Schreiber, N. M.; Genzel, R.; Newman, S. F.; Kurk, J. D.; Lutz, D.; Tacconi, L. J.; Wuyts, S.; Bandara, K.; Burkert, A.; Buschkamp, P.; Carollo, C. M.; Cresci, G.; Daddi, E.; Davies, R.; Eisenhauer, F.; Hicks, E. K. S.; Lang, P.; Lilly, S. J.; Mainieri, V.; Mancini, C.; Naab, T.; Peng, Y.; Renzini, A.; Rosario, D.; Shapiro Griffin, K.; Shapley, A. E.; Sternberg, A.; Tacchella, S.; Vergani, D.; Wisnioski, E.; Wuyts, E.; Zamorani, G.

    2014-05-01

    We report the detection of ubiquitous powerful nuclear outflows in massive (>=1011 M ⊙) z ~ 2 star-forming galaxies (SFGs), which are plausibly driven by an active galactic nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics-assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Hα and forbidden [N II] and [S II] line emission, with typical velocity FWHM ~ 1500 km s-1, [N II]/Hα ratio ≈ 0.6, and intrinsic extent of 2-3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ~60 M ⊙ yr-1 and mass loading of ~3. At larger radii, a weaker broad component is detected but with lower FWHM ~485 km s-1 and [N II]/Hα ≈ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest that the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial in confirming the importance and energetics of the nuclear outflow phenomenon and its connection to AGN activity and bulge growth. Based on observations obtained at the Very Large Telescope of the European Southern Observatory, Paranal, Chile (ESO program IDs 074.A-0911, 075.A-0466, 076.A-0527, 078.A-0600, 082.A-0396, 183.A-0781, 088.A-0202, 091.A-0126). Also based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the

  6. Evidence for major mergers of galaxies at 2 ≲ z < 4 in the VVDS and VUDS surveys

    NASA Astrophysics Data System (ADS)

    Tasca, L. A. M.; Le Fèvre, O.; López-Sanjuan, C.; Wang, P.-W.; Cassata, P.; Garilli, B.; Ilbert, O.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Tresse, L.; Bardelli, S.; Contini, T.; Charlot, S.; Cucciati, O.; Fontana, A.; Giavalisco, M.; Kneib, J.-P.; Salvato, M.; Taniguchi, Y.; Vergani, D.; Zamorani, G.; Zucca, E.

    2014-05-01

    Context. The mass assembly of galaxies can proceed through different physical processes. Here we report on the spectroscopic identification of close physical pairs of galaxies at redshifts 2 ≲ z< 4 and discuss the impact of major mergers in building galaxies at these early cosmological times. Aims: We aim to identify and characterize close physical pairs of galaxies destined to merge and use their properties to infer the contribution of merging processes to the early mass assembly of galaxies. Methods: We searched for galaxy pairs with a transverse separation rp ≤ 25h-1 kpc and a velocity difference Δv ≤ 500 km s-1 using early data from the VIMOS Ultra Deep Survey (VUDS) that comprise a sample of 1111 galaxies with spectroscopic redshifts measurements at redshifts 1.8 ≤ z ≤ 4 in the COSMOS, ECDFS, and VVDS-02h fields, combined with VVDS data. We analysed their spectra and associated visible and near-infrared photometry to assess the main properties of merging galaxies that have an average stellar mass M⋆ = 2.3 × 1010 M⊙ at these redshifts. Results: Using the 12 physical pairs found in our sample we obtain a first robust measurement of the major merger fraction at these redshifts, fMM = 19.4-6+9%. These pairs are expected to merge within 1 Gyr on average each producing a more massive galaxy by the time the cosmic star formation peaks at z ~ 1 - 2. Using the pairs' merging time scales, we derive a merging rate of RMM = 0.17-0.05+0.08 Gyr-1. From the average mass ratio between galaxies in the pairs, the stellar mass of the resulting galaxy after merging will be ~60% higher than the most massive galaxy in the pair before merging. We conclude that major merging of galaxy pairs is on-going at 2 ≲ z< 4 and is significantly contributing to the major mass assembly phase of galaxies at this early epoch. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Programmes 070.A-9007, 177.A-0837, and 185.A

  7. Galaxy evolution. Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang.

    PubMed

    Tacchella, S; Carollo, C M; Renzini, A; Förster Schreiber, N M; Lang, P; Wuyts, S; Cresci, G; Dekel, A; Genzel, R; Lilly, S J; Mancini, C; Newman, S; Onodera, M; Shapley, A; Tacconi, L; Woo, J; Zamorani, G

    2015-04-17

    Most present-day galaxies with stellar masses ≥10(11) solar masses show no ongoing star formation and are dense spheroids. Ten billion years ago, similarly massive galaxies were typically forming stars at rates of hundreds solar masses per year. It is debated how star formation ceased, on which time scales, and how this "quenching" relates to the emergence of dense spheroids. We measured stellar mass and star-formation rate surface density distributions in star-forming galaxies at redshift 2.2 with ~1-kiloparsec resolution. We find that, in the most massive galaxies, star formation is quenched from the inside out, on time scales less than 1 billion years in the inner regions, up to a few billion years in the outer disks. These galaxies sustain high star-formation activity at large radii, while hosting fully grown and already quenched bulges in their cores. PMID:25883353

  8. AGN feedback in groups of galaxies: a joint X-ray/low-frequency radio study

    NASA Astrophysics Data System (ADS)

    Giacintucci, S.; O'Sullivan, E.; Vrtilek, J. M.; Raychaudhury, S.; David, L. P.; Venturi, T.; Athreya, R.; Gitti, M.

    2010-07-01

    We present an ongoing, low-frequency radio/X-ray study of 18 nearby galaxy groups, chosen for the evidence, either in the X-ray or radio images, of AGN/intragroup gas interaction. We have obtained radio observations at 235 MHz and 610 MHz with the Giant Metrewave Radio Telescope (GMRT) for all the groups, and 327 MHz and 150 MHz for a few. We present results of the recent Chandra/GMRT study of the interesting case of AWM 4, a relaxed poor cluster of galaxies with no evidence of a large cool core and no X-ray cavities associated with the central radio galaxy. Our analysis shows how joining low-frequency radio data (to track the history of AGN outbursts) with X-ray data (to determine the state of the hot gas, its disturbances, heating and cooling) can provide a unique insight into the nature of the feedback mechanism in galaxy groups.

  9. GINGA LAC and Einstein SSS X-ray Spectral Evidence of Abundance Gradients in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    White, R. E., III; Day, C. S. R.; Hatsukade, I.; Hughes, J. P.

    1993-12-01

    We jointly analyzed the Ginga LAC and Einstein SSS spectra of four cooling flow clusters: A496, A1795, A2142 & A2199. We took advantage of the two instruments' different fields of view (6 arcmin diameter for the SSS, 1times 2 degrees for the LAC) to determine whether there were spatial gradients in temperature, abundances and X-ray absorbing column densities. Each cluster has firm evidence of a relatively cool central component. The inclusion of such cool components in the joint spectral analysis leads to somewhat higher global temperature determinations than are derived from the higher energy LAC data alone. The abundances appear to be centrally enhanced in at least two (A496, A2142) and possibly three (A2199) of the four clusters. In these cases, the central cool component typically has abundances which exceed solar values. We also confirm the presence of large amounts of cold absorbing matter in three of the four clusters (A496, A1795 & A2199) and show that it is likely to be intrinsic to the cluster cooling flows.

  10. EVIDENCE FOR A CONSTANT IMF IN EARLY-TYPE GALAXIES BASED ON THEIR X-RAY BINARY POPULATIONS

    NASA Astrophysics Data System (ADS)

    Zepf, Stephen E.; Maccarone, T. J.; Kundu, A.; Gonzalez, A. H.; Lehmer, B.; Maraston, C.

    2014-01-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having steeper IMFs. These steeper IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars and black holes. In this paper, we specifically predict the variation in the number of black holes and neutron stars in early type galaxies based on the IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary populations (LMXBs) of nearby early-type galaxies. These binaries are field neutron stars or black holes accreting from a low-mass donor star. We specifically compare the number of field LMXBs per K-band light in a well-studied sample of elliptical galaxies, and use this result to distinguish between an invariant IMF and one that is Kroupa/Chabrier-like at low masses and steeper at high masses. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF.

  11. Evidence for a constant initial mass function in early-type galaxies based on their X-ray binary populations

    SciTech Connect

    Peacock, Mark B.; Zepf, Stephen E.; Maccarone, Thomas J.; Kundu, Arunav; Gonzalez, Anthony H.; Lehmer, Bret D.; Maraston, Claudia

    2014-04-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having bottom-heavy IMFs. These bottom-heavy IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars (NSs) and black holes (BHs). In this paper, we specifically predict the variation in the number of BHs and NSs based on the power-law IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary (LMXB) populations of nearby early-type galaxies. In these binaries, an NS or BH accretes matter from a low-mass donor star. Their number is therefore expected to scale with the number of BHs and NSs present in a galaxy. We find that the number of LMXBs per K-band light is similar among the galaxies in our sample. These data therefore demonstrate the uniformity of the slope of the IMF from massive stars down to those now dominating the K-band light and are consistent with an invariant IMF. Our results are inconsistent with an IMF which varies from a Kroupa/Chabrier like IMF for low-mass galaxies to a steep power-law IMF (with slope x = 2.8) for high mass galaxies. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF.

  12. Spitzer 24 Micron Observations of Optical/Near-Infrared-Selected Extremely Red Galaxies: Evidence for Assembly of Massive Galaxies at Z approximately equal to 1-2?

    NASA Technical Reports Server (NTRS)

    Yan, Lin; Choi, Philip I.; Fadda, D.; Marleau, F. R.; Soifer, B. T.; Im, M.; Armus, L.; Frayer, D. T.; Storrie-Lombardi, L. J.; Thompson, D. J.; Teplitz, H. I.; Helou, G.; Appleton, P. N.; Chapman, S.; Fan, F.; Heinrichsen, I.; Lacy, M.; Shupe, D. L.; Squires, G. K.; Surace, J.; Wilson, G.

    2004-01-01

    We carried out direct measurement of the fraction of dusty sources in a sample of extremely red galaxies with (R - Ks) >= 5.3 mag and Ks < 20:2 mag, using 24 micron data from the Spitzer Space Telescope. Combining deep 24 micron Ks- and R-band data over an area of 64 arcmin(sup 2) in ELAIS N1 of the Spitzer First Look Survey (FLS), we find that 50% +/- 6% of our extremely red object (ERO) sample have measurable 24 micron flux above the 3 (sigma) flux limit of 40 (micro)Jy. This flux limit corresponds to a star formation rate (SFR) of 12 solar masses per year 1, much more sensitive than any previous long-wavelength measurement. The 24 micron-detected EROs have 24 micron/2.2 micron and 24 micron/0.7 micron flux ratios consistent with infrared luminous, dusty sources at z >= 1, and are an order of magnitude too red to be explained by an infrared quiescent spiral or a pure old stellar population at any redshift. Some of these 24 micron-detected EROs could be active galactic nuclei; however, the fraction among the whole ERO sample is probably small, 10%-20%, as suggested by deep X-ray observations as well as optical spectroscopy. Keck optical spectroscopy of a sample of similarly selected EROs in the FLS field suggests that most of the EROs in ELAIS N1 are probably at z 1. The mean 24 micron flux (167 (micro)Jy) of the 24 micron-detected ERO sample roughly corresponds to the rest-frame 12 micron luminosity, (nu)L(nu)(12 micron, of 3x10(exp 10)(deg) solar luminosities at z 1. Using the c IRAS (nu)L(nu)(12 (micron) and infrared luminosity LIR(8-1000 (micron), we infer that the (LIR) of the 24 micron- detected EROs is 3 x 10(exp 11) and 1 x 10(exp 12) solar luminosities at z = 1.0 and similar to that of local luminous infrared galaxies (LIRGs) and ultraluminous infrared galaxies (ULIRGs). The corresponding SFR would be roughly 50-170 solar masses per year. If the timescale of this starbursting phase is on the order of 108 yr as inferred for the local LIRGs and ULIRGs, the

  13. Micro-arthropod communities under human disturbance: is taxonomic aggregation a valuable tool for detecting multivariate change? Evidence from Mediterranean soil oribatid coenoses

    NASA Astrophysics Data System (ADS)

    Caruso, Tancredi; Migliorini, Massimo

    2006-07-01

    Animal communities are sensitive to environmental disturbance, and several multivariate methods have recently been developed to detect changes in community structure. The complex taxonomy of soil invertebrates constrains the use of the community level in monitoring environmental changes, since species identification requires expertise and time. However, recent literature data on marine communities indicate that little multivariate information is lost in the taxonomic aggregation of species data to high rank taxa. In the present paper, this hypothesis was tested on two oribatid mite (Oribatida, Acari) assemblages under two different kinds of disturbance: metal pollution and fires. Results indicate that data sets built at the genus and family systematic rank can detect the effects of disturbance with little loss of information. This is an encouraging result in view of the use of the community level as a preliminary tool for describing patterns of human-disturbed soil ecosystems.

  14. X-ray Dips Followed by Superluminal Ejections as Evidence for An Accretion Disc Feeding the Jet in A Radio Galaxy

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Jorstad, Svetlana G.; Gomez, Jose-Luis; Aller, Margo F.; Terasranta, Harri; Lister, Matthew L.; Stirling, Alastair, M.

    2002-01-01

    Accretion onto black holes is thought to power the relativistic jets and other high-energy phenomena in both active galactic nuclei (AGNs) and the "microquasar" binary systems located in our Galaxy. However, until now there has been insufficient multifrequency monitoring to establish a direct observational link between the black hole and the jet in an AGE. This contrasts with the case of microquasars, in which superluminal features appear and propagate down the radio jet shortly after sudden decreases in the X-ray flux. Such an X-ray dip is most likely caused by the disappearance of a section of the inner accretion disc, part of which falls past the event horizon and the remainder of which is injected into the jet. This infusion of energy generates a disturbance that propagates down the jet, creating the appearance of a superluminal bright spot. Here we report the results of three years of intensive monitoring of the X-ray and radio emission of the Seyfert-like radio galaxy 3C 120. As in the case of microquasars, dips in the X-ray emission are followed by ejections of bright superluminal knots in the radio jet. Comparison of the characteristic length and time scales allows us to infer that the rotational states of the black holes in these two objects are different.

  15. Increased tolerance to humans among disturbed wildlife

    PubMed Central

    Samia, Diogo S. M.; Nakagawa, Shinichi; Nomura, Fausto; Rangel, Thiago F.; Blumstein, Daniel T.

    2015-01-01

    Human disturbance drives the decline of many species, both directly and indirectly. Nonetheless, some species do particularly well around humans. One mechanism that may explain coexistence is the degree to which a species tolerates human disturbance. Here we provide a comprehensive meta-analysis of birds, mammals and lizards to investigate species tolerance of human disturbance and explore the drivers of this tolerance in birds. We find that, overall, disturbed populations of the three major taxa are more tolerant of human disturbance than less disturbed populations. The best predictors of the direction and magnitude of bird tolerance of human disturbance are the type of disturbed area (urbanized birds are more tolerant than rural or suburban populations) and body mass (large birds are more tolerant than small birds). By identifying specific features associated with tolerance, these results guide evidence-based conservation strategies to predict and manage the impacts of increasing human disturbance on birds. PMID:26568451

  16. Increased tolerance to humans among disturbed wildlife.

    PubMed

    Samia, Diogo S M; Nakagawa, Shinichi; Nomura, Fausto; Rangel, Thiago F; Blumstein, Daniel T

    2015-01-01

    Human disturbance drives the decline of many species, both directly and indirectly. Nonetheless, some species do particularly well around humans. One mechanism that may explain coexistence is the degree to which a species tolerates human disturbance. Here we provide a comprehensive meta-analysis of birds, mammals and lizards to investigate species tolerance of human disturbance and explore the drivers of this tolerance in birds. We find that, overall, disturbed populations of the three major taxa are more tolerant of human disturbance than less disturbed populations. The best predictors of the direction and magnitude of bird tolerance of human disturbance are the type of disturbed area (urbanized birds are more tolerant than rural or suburban populations) and body mass (large birds are more tolerant than small birds). By identifying specific features associated with tolerance, these results guide evidence-based conservation strategies to predict and manage the impacts of increasing human disturbance on birds. PMID:26568451

  17. The co-evolution of the obscured quasar PKS 1549-79 and its host galaxy: evidence for a high accretion rate and warm outflow

    NASA Astrophysics Data System (ADS)

    Holt, J.; Tadhunter, C.; Morganti, R.; Bellamy, M.; González Delgado, R. M.; Tzioumis, A.; Inskip, K. J.

    2006-08-01

    We use deep optical, infrared and radio observations to explore the symbiosis between nuclear activity and galaxy evolution in the southern compact radio source PKS 1549-79 (z = 0.1523). The optical imaging observations reveal the presence of tidal tail features which provide strong evidence that the host galaxy has undergone a major merger in the recent past. The merger hypothesis is further supported by the detection of a young stellar population (YSP), which, on the basis of spectral synthesis modelling of our deep Very Large Telescope (VLT) optical spectra, was formed 50-250 Myr ago and makes up a significant fraction of the total stellar mass (1-30 per cent). Despite the core-jet structure of the radio source, which is consistent with the idea that the jet is pointing close to our line of sight, our HI 21-cm observations reveal significant HI absorption associated with both the core and the jet. Moreover, the luminous, quasar-like active galactic nucleus (AGN) (MV < -23.5) is highly extinguished (Av > 6.4) at optical wavelengths and show many properties in common with narrow-line Seyfert 1 galaxies (NLS1), including relatively narrow permitted lines [full width at half-maximum (FWHM) ~ 1940 km s-1], highly blueshifted [OIII] λλ5007,4959 lines (ΔV ~ 680 km s-1) and evidence that the putative supermassive black hole is accreting at a high Eddington ratio (0.3 < Lbol/Ledd < 11). The results suggest that accretion at high Eddington ratio does not prevent the formation of powerful relativistic jets. Together, the observations lend strong support to the predictions of some recent numerical simulations of galaxy mergers in which the black hole grows rapidly through merger-induced accretion following the coalescence of the nuclei of two merging galaxies, and the major growth phase is largely hidden at optical wavelengths by the natal gas and dust. Although the models also predict that AGN-driven outflows will eventually remove the gas from the bulge of the host

  18. EVIDENCE THAT GAMMA-RAY BURST 130702A EXPLODED IN A DWARF SATELLITE OF A MASSIVE GALAXY

    SciTech Connect

    Kelly, Patrick L.; Filippenko, Alexei V.; Fox, Ori D.; Zheng Weikang; Clubb, Kelsey I.

    2013-09-20

    GRB 130702A is a nearby long-duration gamma-ray burst (LGRB) discovered by the Fermi satellite whose associated afterglow was detected by the Palomar Transient Factory. Subsequent photometric and spectroscopic monitoring has identified a coincident broad-lined Type Ic supernova (SN), and nebular emission detected near the explosion site is consistent with a redshift of z = 0.145. The SN-GRB exploded at an offset of {approx}7.''6 from the center of an inclined r = 18.1 mag red disk-dominated galaxy, and {approx}0.''6 from the center of a much fainter r = 23 mag object. We obtained Keck-II DEIMOS spectra of the two objects and find a 2{sigma} upper limit on their line-of-sight velocity offset of {approx}<60 km s{sup -1}. If we calculate the inclination angle of the massive red galaxy from its axis ratio and assume that its light is dominated by a very thin disk, the explosion would have a {approx}60 kpc central offset, or {approx}9 times the galaxy's half-light radius. A significant bulge or a thicker disk would imply a higher inclination angle and greater central offset. The substantial offset suggests that the faint source is a separate dwarf galaxy. The star-formation rate of the dwarf galaxy is {approx}0.05 M{sub Sun} yr{sup -1}, and we place an upper limit on its oxygen abundance of 12 + log(O/H) < 8.16 dex. The identification of an LGRB in a dwarf satellite of a massive, metal-rich primary galaxy suggests that recent detections of LGRBs spatially coincident with metal-rich galaxies may be, in some cases, superpositions.

  19. Evidence that Gamma-Ray Burst 130702A Exploded in a Dwarf Satellite of a Massive Galaxy

    NASA Astrophysics Data System (ADS)

    Kelly, Patrick L.; Filippenko, Alexei V.; Fox, Ori D.; Zheng, Weikang; Clubb, Kelsey I.

    2013-09-01

    GRB 130702A is a nearby long-duration gamma-ray burst (LGRB) discovered by the Fermi satellite whose associated afterglow was detected by the Palomar Transient Factory. Subsequent photometric and spectroscopic monitoring has identified a coincident broad-lined Type Ic supernova (SN), and nebular emission detected near the explosion site is consistent with a redshift of z = 0.145. The SN-GRB exploded at an offset of ~7.''6 from the center of an inclined r = 18.1 mag red disk-dominated galaxy, and ~0.''6 from the center of a much fainter r = 23 mag object. We obtained Keck-II DEIMOS spectra of the two objects and find a 2σ upper limit on their line-of-sight velocity offset of lsim60 km s-1. If we calculate the inclination angle of the massive red galaxy from its axis ratio and assume that its light is dominated by a very thin disk, the explosion would have a ~60 kpc central offset, or ~9 times the galaxy's half-light radius. A significant bulge or a thicker disk would imply a higher inclination angle and greater central offset. The substantial offset suggests that the faint source is a separate dwarf galaxy. The star-formation rate of the dwarf galaxy is ~0.05 M ⊙ yr-1, and we place an upper limit on its oxygen abundance of 12 + log(O/H) < 8.16 dex. The identification of an LGRB in a dwarf satellite of a massive, metal-rich primary galaxy suggests that recent detections of LGRBs spatially coincident with metal-rich galaxies may be, in some cases, superpositions.

  20. Evidence for a Constant Initial Mass Function in Early-type Galaxies Based on Their X-Ray Binary Populations

    NASA Astrophysics Data System (ADS)

    Peacock, Mark B.; Zepf, Stephen E.; Maccarone, Thomas J.; Kundu, Arunav; Gonzalez, Anthony H.; Lehmer, Bret D.; Maraston, Claudia

    2014-04-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having bottom-heavy IMFs. These bottom-heavy IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars (NSs) and black holes (BHs). In this paper, we specifically predict the variation in the number of BHs and NSs based on the power-law IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary (LMXB) populations of nearby early-type galaxies. In these binaries, an NS or BH accretes matter from a low-mass donor star. Their number is therefore expected to scale with the number of BHs and NSs present in a galaxy. We find that the number of LMXBs per K-band light is similar among the galaxies in our sample. These data therefore demonstrate the uniformity of the slope of the IMF from massive stars down to those now dominating the K-band light and are consistent with an invariant IMF. Our results are inconsistent with an IMF which varies from a Kroupa/Chabrier like IMF for low-mass galaxies to a steep power-law IMF (with slope x = 2.8) for high mass galaxies. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF. Based in part on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA). The scientific results reported in this article are based in part on data obtained from the Chandra Data Archive and observations made by the

  1. Evidences that human disturbance simplify the ant fauna associated a Stachytarpheta glabra Cham. (Verbenaceae) compromising the benefits of ant-plant mutualism.

    PubMed

    Barbosa, B C; Fagundes, R; Silva, L F; Tofoli, J F V; Santos, A M; Imai, B Y P; Gomes, G G; Hermidorff, M M; Ribeiro, S P

    2015-01-01

    Interaction among species, like ants and plants through extrafloral nectaries (EFNs), are important components of ecological communities' evolution. However, the effect of human disturbance on such specific interactions and its ecological consequences is poorly understood. This study evaluated the outcomes of mutualism between ants and the EFN-bearing plant Stachytarpheta glabra under anthropogenic disturbance. We compared the arthropod fauna composition between two groups of twenty plant individuals, one in an area disturbed by human activities and one in a preserved area. We also check the plant investment in herbivory defense and the consequential leaf damage by herbivore. Our results indicate that such disturbances cause simplification of the associated fauna and lack of proper ant mutualist. This led to four times more herbivory on plants of disturbed areas, despite the equal amount of EFN and ant visitors and low abundance of herbivores. The high pressure of herbivory may difficult the re-establishment of S. glabra, an important pioneer species in ferruginous fields, therefore it may affect resilience of this fragile ecological community. PMID:25945621

  2. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  3. Evidence for particle re-acceleration in the radio relic in the galaxy cluster PLCKG287.0+32.9

    SciTech Connect

    Bonafede, A.; Brüggen, M.; Intema, H. T.; Girardi, M.; Nonino, M.; Kantharia, N.; Van Weeren, R. J.; Röttgering, H. J. A.

    2014-04-10

    Radio relics are diffuse radio sources observed in galaxy clusters, probably produced by shock acceleration during cluster-cluster mergers. Their large size, of the order of 1 Mpc, indicates that the emitting electrons need to be (re)accelerated locally. The usually invoked diffusive shock acceleration models have been challenged by recent observations and theory. We report the discovery of complex radio emission in the Galaxy cluster PLCKG287.0+32.9, which hosts two relics, a radio halo, and several radio filamentary emission. Optical observations suggest that the cluster is elongated, likely along an intergalactic filament, and displays a significant amount of substructure. The peculiar features of this radio relic are that (1) it appears to be connected to the lobes of a radio galaxy and (2) the radio spectrum steepens on either side of the radio relic. We discuss the origins of these features in the context of particle re-acceleration.

  4. The galaxy population of Abell 1367: the stellar mass-metallicity relation

    NASA Astrophysics Data System (ADS)

    Mouhcine, M.; Kriwattanawong, W.; James, P. A.

    2011-04-01

    Using wide baseline broad-band photometry, we analyse the stellar population properties of a sample of 72 galaxies, spanning a wide range of stellar masses and morphological types, in the nearby spiral-rich and dynamically young galaxy cluster Abell 1367. The sample galaxies are distributed from the cluster centre out to approximately half the cluster Abell radius. The optical/near-infrared colours are compared with simple stellar population synthesis models from which the luminosity-weighted stellar population ages and metallicities are determined. The locus of the colours of elliptical galaxies traces a sequence of varying metallicity at a narrow range of luminosity-weighted stellar ages. Lenticular galaxies in the red sequence, however, exhibit a substantial spread of luminosity-weighted stellar metallicities and ages. For red-sequence lenticular galaxies and blue cloud galaxies, low-mass galaxies tend to be on average dominated by stellar populations of younger luminosity-weighted ages. Sample galaxies exhibit a strong correlation between integrated stellar mass and luminosity-weighted stellar metallicity. Galaxies with signs of morphological disturbance and ongoing star formation activity, tend to be underabundant with respect to passive galaxies in the red sequence of comparable stellar masses. We argue that this could be due to tidally driven gas flows towards the star-forming regions, carrying less enriched gas and diluting the pre-existing gas to produce younger stellar populations with lower metallicities than would be obtained prior to the interaction. Finally, we find no statistically significant evidence for changes in the luminosity-weighted ages and metallicities for either red-sequence or blue-cloud galaxies, at fixed stellar mass, with location within the cluster. We dedicate this work to the memory of our friend and colleague C. Moss who died suddenly recently.

  5. Galaxy interactions and star formation: Results of a survey of global H-alpha emission in spiral galaxies in 8 clusters

    NASA Technical Reports Server (NTRS)

    Moss, C.

    1990-01-01

    Kennicutt and Kent (1983) have shown that the global H alpha emission from a spiral galaxy is an indicator of the formation rate of massive stars. Moss, Whittle and Irwin (1988) have surveyed two clusters (Abell 347 and 1367) for galaxies with H alpha emission using a high dispersion objective prism technique. The purpose of the survey is to investigate environmental effects on star formation in spiral galaxies, and in particular to ascertain whether star formation is enhanced in cluster spirals. Approximately 20 percent of CGCG galaxies were detected in emission. Two plates of excellent quality were obtained for each of the two clusters, and galaxies were only identified to have emission if this was detected on both plates of a plate pair. In this way, plate flaws and other spurious identifications of emission could be rejected, and weak emission confirmed. The results of this survey have been discussed by Moss (1987). The detected galaxies are of types SO-a and later. The frequency with which galaxies are detected in emission increases towards later morphological type as expected (cf. Kennicutt and Kent 1983). There is no evidence of any dependence of the frequency of detected emission on the absolute magnitude of the galaxy (cf. Moss and Whittle 1990), but there is a strong correlation between a disturbed morphological appearance of the galaxy and the detection of emission. Furthermore it is found that the emission is more centrally concentrated in those galaxies which show a disturbed morphology. It may be noted that the objective prism plate gives a spectrum of a 400 A region around rest wavelength H alpha, but superposed on this is the H alpha emission from the galaxy which, because the light is essentially monochromatic, results in a true two-dimensional image of the H alpha distribution. The visual appearance of the emission on the prism plates was classified according to its diffuseness on a 5 point scale (very diffuse, diffuse, intermediate, compact, and

  6. Evidence for a Sizable Age Spread among Galaxies from the Ultraviolet-Upturn Phenomenon in Early-type Systems

    NASA Astrophysics Data System (ADS)

    Park, Jang-Hyun; Lee, Young-Wook

    1997-02-01

    The suggestion of Lee that the age spread among galaxies is responsible for the systematic variation of the ultraviolet upturn among early-type systems is examined here with detailed population synthesis models. Our models differ from previous ones by including (1) the effect of metallicity spreads and (2) detailed modeling of the variations in H-R diagram morphology (including the helium-burning phase) with age and metallicity. Our models suggest that the far-UV radiation of these systems is dominated by a minority population of metal-poor, hot horizontal-branch (HB) stars and their post-HB progeny, with some contribution from metal-rich post-asymptotic giant branch stars, while the optical radiation is dominated by a metal-rich population. The systematic variation of the UV upturn depends on the contribution from metal-poor, hot HB stars and their post-HB progeny, which in turn depends on the ages of old stellar populations in galaxies. Our result implies a prolonged epoch of galaxy formation, in the sense that more massive galaxies (in denser environments) formed first. With the assumption that the UV-upturn phenomenon is solely due to the age variations among galaxies, we estimate the difference in age between the giant elliptical galaxies and the spiral bulges of the Local Group to be ~3 Gyr. This suggests that the best estimate for the lower limit of the age of the universe is ~19 Gyr, which of course would be in conflict with the current estimate of H0, together with the standard cosmological models with zero cosmological constant.

  7. Evidence for Wide-spread Active Galactic Nucleus-driven Outflows in the Most Massive z ~ 1-2 Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Förster Schreiber, N. M.; Rosario, D.; Lang, P.; Lutz, D.; Wisnioski, E.; Wuyts, E.; Wuyts, S.; Bandara, K.; Bender, R.; Berta, S.; Kurk, J.; Mendel, J. T.; Tacconi, L. J.; Wilman, D.; Beifiori, A.; Brammer, G.; Burkert, A.; Buschkamp, P.; Chan, J.; Carollo, C. M.; Davies, R.; Eisenhauer, F.; Fabricius, M.; Fossati, M.; Kriek, M.; Kulkarni, S.; Lilly, S. J.; Mancini, C.; Momcheva, I.; Naab, T.; Nelson, E. J.; Renzini, A.; Saglia, R.; Sharples, R. M.; Sternberg, A.; Tacchella, S.; van Dokkum, P.

    2014-11-01

    In this paper, we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M */M ⊙) >= 10.9) z ~ 1-3 star-forming galaxies by increasing the sample size by a factor of six (to 44 galaxies above log(M */M ⊙) >= 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS3Dspectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Hα, [N II], and [S II] lines ~450-5300 km s-1), with large [N II]/Hα ratios, above log(M */M ⊙) ~ 10.9, with about two-thirds of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z ~ 1 and ~2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGNs), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared, or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 073.B-9018, 074.A-9011, 075.A-0466, 076.A-0527, 078.A-0660, 079.A-0341, 080.A-0330, 080.A-0339, 080.A-0635, 081.A-0672, 082.A-0396, 183.A-0781, 087.A-0081, 088.A-0202, 088.A-0209, 091.A-0126, 092.A-0082, 092.A-0091, 093.A-0079). Also based on observations at the Large Binocular Telescope (LBT) on Mt. Graham in Arizona.

  8. SPITZER MID-IR SPECTROSCOPY OF POWERFUL 2 JY AND 3CRR RADIO GALAXIES. I. EVIDENCE AGAINST A STRONG STARBURST-AGN CONNECTION IN RADIO-LOUD AGN

    SciTech Connect

    Dicken, D.; Axon, D.; Robinson, A.; Kharb, P.; Tadhunter, C.; Ramos Almeida, C.; Morganti, R.; Kouwenhoven, M. B. N.; Spoon, H.; Inskip, K. J.; Holt, J.; Nesvadba, N. P. H.

    2012-02-01

    We present deep Spitzer/Infrared Spectrograph (IRS) spectra for complete samples of 46 2 Jy radio galaxies (0.05 < z < 0.7) and 19 3CRR FRII radio galaxies (z < 0.1), and use the detection of polycyclic aromatic hydrocarbon (PAH) features to examine the incidence of contemporaneous star formation and radio-loud active galactic nucleus (AGN) activity. Our analysis reveals PAH features in only a minority (30%) of the objects with good IRS spectra. Using the wealth of complementary data available for the 2 Jy and 3CRR samples we make detailed comparisons between a range of star formation diagnostics: optical continuum spectroscopy, mid- to far-IR (MFIR) color, far-IR excess and PAH detection. There is good agreement between the various diagnostic techniques: most candidates identified to have star formation activity on the basis of PAH detection are also identified using at least two of the other techniques. We find that only 35% of the combined 2 Jy and 3CRR sample show evidence for recent star formation activity (RSFA) at optical and/or MFIR wavelengths. This result argues strongly against the idea of a close link between starburst and powerful radio-loud AGN activity, reinforcing the view that, although a large fraction of powerful radio galaxies may be triggered in galaxy interactions, only a minority are triggered at the peaks of star formation activity in major, gas-rich mergers. However, we find that compact radio sources (D < 15 kpc) show a significantly higher incidence of RSFA (>75%) than their more extended counterparts ( Almost-Equal-To 15%-25%). We discuss this result in the context of a possible bias toward the selection of compact radio sources triggered in gas-rich environments.

  9. Photometry of compact galaxies.

    NASA Technical Reports Server (NTRS)

    Shen, B. S. P.; Usher, P. D.; Barrett, J. W.

    1972-01-01

    Photometric histories of the N galaxies 3C 390.3 and PKS 0521-36. Four other compact galaxies, Markarian 9, I Zw 92, 2 Zw 136, and III Zw 77 showed no evidence of variability. The photometric histories were obtained from an exhaustive study of those plates of the Harvard collection taken with large aperture cameras. The images of all galaxies reported were indistinguishable from stars due to the camera f-ratios and low surface brightness of the outlying nebulosities of the galaxies. Standard techniques for the study of variable stars are therefore applicable.

  10. Ripples in disk galaxies

    SciTech Connect

    Schweizer, F.; Seitzer, P.

    1988-05-01

    Evidence is presented that ripples occur not only in ellipticals but also in disk galaxies of Hubble types S0, S0/Sa, and Sa, and probably even in the Sbc galaxy NGC 3310. It is argued that the ripples cannot usually have resulted from transient spiral waves or other forced vibrations in existing disks, but instead consist of extraneous sheetlike matter. The frequent presence of major disk-shaped companions suggests that ripple material may be acquired not only through wholesale mergers but also through mass transfer from neighbor galaxies. The implications of ripples in early-type disk galaxies are addressed. 40 references.

  11. Detection of the 158 Micrometers[CII] Transition at z=1.3: Evidence for a Galaxy-Wide Starburst

    NASA Technical Reports Server (NTRS)

    Hailey-Dunsheath, S.; Nikola, T.; Oberst, T. E.; Parshley, S. C.; Benford, D. J.; Staguhn, J. G.; Tucker, C. E.

    2010-01-01

    We report the detection of 158 micron [C II] fine-structure line emission from MIPS J142824.0+352619, a hyperluminous ( L(sub IR) approximates 10(exp 13) L (sub solar)) starburst galaxy at z = 1.3. The line is bright, corresponding to a fraction L(sub [Cu II] L(sub Fir) approximates 2 x 10(exp -3) of the far-IR (FIR) continuum. The [C II], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n approximates 10(exp 4.2) /cm(exp 3) , and that are illuminated by a far-UV radiation field approximately 10(exp 3.2) times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L(sub [CII])/L(sub FIR) ratio is higher than observed in local ultralummous infrared galaxies or in the few high-redshift QSOs detected in [C II], but the L(sub [CII])/L(sub FIR) and L(sub CO)/L(sub FIR) ratios are similar to the values seen in nearby starburst galaxies. This suggests that MIPS J142824.0+352619 is a scaled-up version of a starburst nucleus, with the burst extended over several kiloparsecs.

  12. Detection of the 158 Micrometers[CII] Transition at z=1.3: Evidence for a Galaxy-Wide Starburst

    NASA Technical Reports Server (NTRS)

    Hailey-Dunsheath, S.; Nikola, T.; Stacey, G. J.; Oberst, T. E.; Parshley, S. C.; Benford, D. J.; Staguhn, J. G.; Tucker, C. E.

    2010-01-01

    We report the detection of 158 micrometer [C II] fine-structure line emission from MIPS J 142824.0+3526l9, a hyperluminous (L(sub IR) approx. 10(exp 13) Solar Luminosity starburst galaxy at z = 1.3. The line is bright, corresponding to a fraction L[C II]/L(sub FIR) approx. equals 2 x l0(exp -3) of the far-IR(FIR) continuum. The [C II], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n approx. 10(exp 4.2)/cu cm., and that are illuminated by a far-UV radiation field approx. 10(exp 3.2) times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L[C II]/L(sub F1R) ratio is higher than observed in local ultraluminous infrared galaxies or in the few high-redshift QSOs detected in [C II], but the L[CII]/L(sub FIR) and L(sub CO)/L(sub FIR) ratios are similar to the values seen in nearby starburst galaxies

  13. Sixth Graders' Co-Construction of Explanations of a Disturbance in an Ecosystem: Exploring Relationships between Grouping, Reflective Scaffolding, and Evidence-Based Explanations

    ERIC Educational Resources Information Center

    Kyza, Eleni A.; Constantinou, Costas P.; Spanoudis, George

    2011-01-01

    We report on a study investigating the relationship between cognitive ability grouping, reflective inquiry scaffolding, and students' collaborative explanations of an ecosystem disturbance which took place when a number of flamingo birds died in a salt lake because of nearby intensive human activities. Twenty-six pairs of students from two intact…

  14. Evidence of Disturbance in the 26Al-26Mg Systematics of the Efremovka E60 CAI: Implications for the High-Resolution Chronology of the Early Solar System

    NASA Astrophysics Data System (ADS)

    Wadhwa, M.; Janney, P. E.; Krot, A. N.

    2009-03-01

    We report results of a laser ablation MC-ICPMS study of the Efremovka E60 CAI. Our data indicate that the 26Al-26Mg systematics in E60 are disturbed and we present the chronological implications of this finding.

  15. Radial Trends in IMF-sensitive Absorption Features in Two Early-type Galaxies: Evidence for Abundance-driven Gradients

    NASA Astrophysics Data System (ADS)

    McConnell, Nicholas J.; Lu, Jessica R.; Mann, Andrew W.

    2016-04-01

    Samples of early-type galaxies show a correlation between stellar velocity dispersion and the stellar initial mass function (IMF) as inferred from gravity-sensitive absorption lines in the galaxies’ central regions. To search for spatial variations in the IMF, we have observed two early-type galaxies with Keck/LRIS and measured radial gradients in the strengths of absorption features from 4000–5500 Å and 8000–10000 Å. We present spatially resolved measurements of the dwarf-sensitive spectral indices {Na} {{I}} (8190 Å) and Wing-Ford {{FeH}} (9915 Å), as well as indices for species of H, C2, CN, Mg, Ca, {{TiO}}, and Fe. Our measurements show a metallicity gradient in both objects, and Mg/Fe consistent with a shallow gradient in α-enhancement, matching widely observed trends for massive early-type galaxies. The {Na} {{I}} index and the CN1 index at 4160 Å exhibit significantly steeper gradients, with a break at r∼ 0.1 {r}{{eff}} (r∼ 300 pc). Inside this radius, {Na} {{I}} strength increases sharply toward the galaxy center, consistent with a rapid central rise in [Na/Fe]. In contrast, the ratio of the {{FeH}} to Fe index strength decreases toward the galaxy center. This behavior cannot be reproduced by a steepening IMF inside of 0.1 {r}{{eff}} if the IMF is a single power law. While gradients in the mass function above ∼ 0.4 {M}ȯ may occur, exceptional care is required to disentangle these IMF variations from the extreme variations in individual element abundances near the galaxies’ centers.

  16. Backwards Spiral Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Astronomers using NASA's Hubble Space Telescope have found a spiral galaxy that may rotate in the opposite direction from what was expected.

    A picture of the oddball galaxy is available at http://heritage.stsci.edu or http://oposite.stsci.edu/pubinfo/pr/2002/03 or http://www.jpl.nasa.gov/images/wfpc . It was taken in May 2001 by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The picture showed which side of galaxy NGC 4622 is closer to Earth; that information helped astronomers determine that the galaxy may be spinning clockwise. The image shows NGC 4622 and its outer pair of winding arms full of new stars, shown in blue.

    Astronomers are puzzled by the clockwise rotation because of the direction the outer spiral arms are pointing. Most spiral galaxies have arms of gas and stars that trail behind as they turn. But this galaxy has two 'leading' outer arms that point toward the direction of the galaxy's clockwise rotation. NGC 4622 also has a 'trailing' inner arm that is wrapped around the galaxy in the opposite direction. Based on galaxy simulations, a team of astronomers had expected that the galaxy was turning counterclockwise.

    NGC 4622 is a rare example of a spiral galaxy with arms pointing in opposite directions. Astronomers suspect this oddity was caused by the interaction of NGC 4622 with another galaxy. Its two outer arms are lopsided, meaning that something disturbed it. The new Hubble image suggests that NGC 4622 consumed a smaller companion galaxy.

    Galaxies, which consist of stars, gas, and dust, rotate very slowly. Our Sun, one of many stars in our Milky Way galaxy, completes a circuit around the Milky Way every 250 million years. NGC 4622 lies 111 million light-years away in the direction of the constellation Centaurus.

    The science team, consisting of Drs. Ron Buta and Gene Byrd from the University of Alabama, Tuscaloosa, and Tarsh Freeman of Bevill State

  17. Geometrical evidence for dark matter: X-ray constraints on the mass of the elliptical galaxy NGC 720

    NASA Technical Reports Server (NTRS)

    Buote, David A.; Canizares, Claude R.

    1994-01-01

    We describe (1) a new test for dark matter and alternate theories of gravitation based on the relative geometries of the X-ray and optical surface brightness distributions and an assumed form for the potential, of the optical light, (2) a technique to measure the shapes of the total gravitating matter and dark matter of an ellipsoidal system which is insensitive to the precise value of the temperature of the gas and to modest temperature gradients, and (3) a new method to determine the ratio of dark mass to stellar mass that is dependent on the functional forms for the visible star, gas and dark matter distributions, but independent of the distance to the galaxy or the gas temperature. We apply these techniques to X-ray data from the ROSAT Position Sensitive Proportional Counter (PSPC) of the optically flattened elliptical galaxy NGC 720; the optical isophotes have ellipticity epsilon approximately 0.40 extending out to approximately 120 sec. The X-ray isophotes are significantly elongated, epsilon = 0.20-0.30 for semimajor axis a approximately 100 sec. The major axes of the optical and X-ray isophotes are misaligned by approximately 30 deg +/- 15 deg. Spectral analysis of the X-ray data reveals no evidence of temperature gradients or anisotropies and demonstrates that a single-temperature plasma (T approximately 0.6 keV) having subsolar heavy element abundances and a two-temperature model having solar abundances describe the spectrum equally well. Considering only the relative geometries of the X-ray and optical surface brightness distributions and an assumed functional form for the potential of the optical light, we conclude that matter distributed like the optical light cannot produce the observed ellipticities of the X-ray isophotes, independent of the gas pressure, the gas temperature, and the value of the stellar mass; this comparison assumes a state of quasi-hydrostatic equilibrium so that the three-dimensional surfaces of the gas emissivity trace the three

  18. Spitzer 24micron Observations of Optical/Near-IR Selected Extremely Red Galaxies: Evidence for Assembly of Massive Galaxies at z approximately 1 - 2?

    NASA Technical Reports Server (NTRS)

    Yan, Lin; Choi, Philip I.; Fadda, D.; Marleau, F. R.; Soifer, B. T.; Im, M.; Armus, L.; Frayer, D. T.; Storrie-Lombardi, L. J.; Thompson, D. J.; Teplitz, H. I.; Helou, G.; Appleton, P. N.; Chapman, S.; Fan, F.; Heinrichsen, I.; Lacy, M.; Shupe, D. L; Squires, G. K.; Surace, J.; G., Wilson

    2004-01-01

    We carried out the direct measurement of the fraction of dusty sources in a sample of extremely red galaxies with (R-K(sub s)) greater than or equal to 5.3 mag and K(sub s) less than 20.2 mag, using from the Spitzer Space Telescope. Combining deep 24 micrometers, K(sub s)- and R-band data over an area of approximately 64 sq.arcmin in the ELAIS N1 field of the Spitzer First Look Survey (FLS), we find that 50 +/- 60% of our ERO sample have measurable 24 micrometer flux above the 3(sigma) flux limit of 40 microns Jy. This flux limit corresponds to a SFR of 12 solar mass/yr at z approximately 1, much mo previous long wavelength measurement. The 24fJ,m-detected EROs have 24-to2.2 and 24-to-0.7micrometr flux ratios consistent with infrared luminous, dusty sources at z approx. 1, and an order of magnitude too red to be explained by an infrared quiescent spiral or a pure old stellar population at any redshift. Some of these 24 micrometer-detected EROs could be AGN, however, the fraction among the whole ERO sample is probably small, 10-20%, as suggested by deep X-ray observations as well as optical spectroscopy. Keck optical spectroscopy of a sample of similarly selected EROs in the FLS field suggests that most of the EROs in ELAIS Nl are probably at z approx. 1.

  19. Expanded Search for z ~ 10 Galaxies from HUDF09, ERS, and CANDELS Data: Evidence for Accelerated Evolution at z > 8?

    NASA Astrophysics Data System (ADS)

    Oesch, P. A.; Bouwens, R. J.; Illingworth, G. D.; Labbé, I.; Trenti, M.; Gonzalez, V.; Carollo, C. M.; Franx, M.; van Dokkum, P. G.; Magee, D.

    2012-02-01

    We search for z ~ 10 galaxies over ~160 arcmin2 of Wide-Field Camera 3 (WFC3)/IR data in the Chandra Deep Field South, using the public HUDF09, Early Release Science, and CANDELS surveys, that reach to 5σ depths ranging from 26.9 to 29.4 in H 160 AB mag. z >~ 9.5 galaxy candidates are identified via J 125 - H 160 > 1.2 colors and non-detections in any band blueward of J 125. Spitzer Infrared Array Camera (IRAC) photometry is key for separating the genuine high-z candidates from intermediate-redshift (z ~ 2-4) galaxies with evolved or heavily dust obscured stellar populations. After removing 16 sources of intermediate brightness (H 160 ~ 24-26 mag) with strong IRAC detections, we only find one plausible z ~ 10 galaxy candidate in the whole data set, previously reported in Bouwens et al.. The newer data cover a 3 × larger area and provide much stronger constraints on the evolution of the UV luminosity function (LF). If the evolution of the z ~ 4-8 LFs is extrapolated to z ~ 10, six z ~ 10 galaxies are expected in our data. The detection of only one source suggests that the UV LF evolves at an accelerated rate before z ~ 8. The luminosity density is found to increase by more than an order of magnitude in only 170 Myr from z ~ 10 to z ~ 8. This increase is >=4 × larger than expected from the lower redshift extrapolation of the UV LF. We are thus likely witnessing the first rapid buildup of galaxies in the heart of cosmic reionization. Future deep Hubble Space Telescope WFC3/IR data, reaching to well beyond 29 mag, can enable a more robust quantification of the accelerated evolution around z ~ 10. Based on data obtained with the Hubble Space Telescope operated by AURA, Inc., for NASA under contract NAS5-26555. Partially based on observations made with the Spitzer Space Telescope, operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  20. THE EVOLUTION OF THE STELLAR MASS FUNCTION OF GALAXIES FROM z = 4.0 AND THE FIRST COMPREHENSIVE ANALYSIS OF ITS UNCERTAINTIES: EVIDENCE FOR MASS-DEPENDENT EVOLUTION

    SciTech Connect

    Marchesini, Danilo; Van Dokkum, Pieter G.; Foerster Schreiber, Natascha M.; Franx, Marijn; Labbe, Ivo; Wuyts, Stijn

    2009-08-20

    We present the evolution of the stellar mass function (SMF) of galaxies from z = 4.0 to z = 1.3 measured from a sample constructed from the deep near-infrared Multi-wavelength Survey by Yale-Chile, the Faint Infrared Extragalactic Survey, and the Great Observatories Origins Deep Survey-Chandra Deep Field South surveys, all having very high-quality optical to mid-infrared data. This sample, unique in that it combines data from surveys with a large range of depths and areas in a self-consistent way, allowed us to (1) minimize the uncertainty due to cosmic variance and empirically quantify its contribution to the total error budget; (2) simultaneously probe the high-mass end and the low-mass end (down to {approx}0.05 times the characteristic stellar mass) of the SMF with good statistics; and (3) empirically derive the redshift-dependent completeness limits in stellar mass. We provide, for the first time, a comprehensive analysis of random and systematic uncertainties affecting the derived SMFs, including the effect of metallicity, extinction law, stellar population synthesis model, and initial mass function. We find that the mass density evolves by a factor of {approx}17{sup +7}{sub -10} since z = 4.0, mostly driven by a change in the normalization {phi}*. If only random errors are taken into account, we find evidence for mass-dependent evolution, with the low-mass end evolving more rapidly than the high-mass end. However, we show that this result is no longer robust when systematic uncertainties due to the SED-modeling assumptions are taken into account. Another significant uncertainty is the contribution to the overall stellar mass density of galaxies below our mass limit; future studies with WFC3 will provide better constraints on the SMF at masses below 10{sup 10} M{sub sun} at z>2. Taking our results at face value, we find that they are in conflict with semianalytic models of galaxy formation. The models predict SMFs that are in general too steep, with too many

  1. ALFALFA Hα Reveals How Galaxies Use their HI Fuel

    NASA Astrophysics Data System (ADS)

    Jaskot, Anne; Oey, Sally; Salzer, John; Van Sistine, Angela; Bell, Eric; Haynes, Martha

    2015-08-01

    Atomic hydrogen traces the raw material from which molecular clouds and stars form. With the ALFALFA Hα survey, a statistically complete subset of the ALFALFA survey, we examine the processes that affect galaxies’ abilities to access and consume their HI gas. On galaxy-wide scales, HI gas fractions correlate only weakly with instantaneous specific star formation rates (sSFRs) but tightly with galaxy color. We show that a connection between dust and HI content, arising from the fundamental mass-metallicity-HI relation, leads to this tight color correlation. We find that disk galaxies follow a relation between stellar surface density and HI depletion time, consistent with a scenario in which higher mid-plane pressure leads to more efficient molecular cloud formation from HI. In contrast, spheroids show no such trend. Starbursts, identified by Hα equivalent width, do not show enhanced HI gas fractions relative to similar mass non-starburst galaxies. The starbursts’ shorter HI depletion times indicate more efficient consumption of HI, and galaxy interactions drive this enhanced star formation efficiency in several starbursts. Interestingly, the most disturbed starbursts show greater enhancements in HI gas fraction, which may indicate an excess of HI at early merger stages. At low galaxy stellar masses, the triggering mechanism for starbursts is less clear; the high scatter in efficiency and sSFR among low-mass galaxies may result from periodic bursts. We find no evidence for depleted HI reservoirs in starbursts, which suggests that galaxies may maintain sufficient HI to fuel multiple starburst episodes.

  2. Star formation activity in spiral galaxy disks and the properties of radio halos: Observational evidence for a direct dependence

    NASA Technical Reports Server (NTRS)

    Dahlem, Michael; Lisenfeld, Ute; Golla, Gotz

    1995-01-01

    In this article we address observationally the questions: how does star formation (SF) in the disks of galaxies lead to the creation of radio halos, and what minimum energy input into the interstellar medium (ISM) is needed to facilitate this? For the investigation we use a sample of five edge-on galaxies exhibiting radio continuum emmission in their halos and enhanced SF spread over large parts of their disks. In a detailed study of the two galaxies in our sample for which we have the best data, NGC 891 and NGC 4631, we show that the radio halos cut off abruptly at galactocentric radii smaller than those of the underlying thin radio disks. Our most important result is that the halo cutoffs are spatially coincident with the radii where the SF activity in the underlying disks drops sharply. The difference in radius of the emission distributions tracing ongoing SF in the disks (IRAS 50 micrometers, H alpha) versus that of the nonthermal radio continuum thin disks (tracing the distribution of cosmic-ray (CR) electrons) is typically a few kpc. This difference in extent is caused by CR diffusion. We have measured the CR diffusion coefficients in the thin disks of both NGC 891 and NGC 4631. For radial diffusion of CR electrons within the galactic disks the values are D(sub r) = 1.1-2.5 x 10 (exp 29) sq cm/s (NGC 4631) and D(sub r) = 1.2 x 10(exp 29) sq cm/s (NGC 891). For motions in the z-direction in areas within the thin disks where no outflows occur, we derive a firm upper limit of D(sub z) less than or equal to 0.2 x 10(exp 28) sq cm/s for NGC 891. The value for NGC 4631 is D(sub z = 1.4 x 10 (exp 28) sq cm/s. The other three galaxies in our sample, NGC 3044, NGC 4666, and NGC 5775 show (at the sensitivity of our data) less extended, more filamentary radio halos. Isolates spurs or filaments of nonthermal radio continuum emission in their halos are traced only above the most actively star-forming regions in the disks. This, in conjuction with the results obtained for

  3. The red and blue galaxy populations in the GOODS field: evidence for an excess of red dwarfs

    NASA Astrophysics Data System (ADS)

    Salimbeni, S.; Giallongo, E.; Menci, N.; Castellano, M.; Fontana, A.; Grazian, A.; Pentericci, L.; Trevese, D.; Cristiani, S.; Nonino, M.; Vanzella, E.

    2008-01-01

    Aims: We study the evolution of the galaxy population up to z˜ 3 as a function of its colour properties. In particular, luminosity functions and luminosity densities were derived as a function of redshift for the blue/late and red/early populations. Methods: We use data from the GOODS-MUSIC catalogue, which have typical magnitude limits z850≤ 26 and K_s≤ 23.5 for most of the sample. About 8% of the galaxies have spectroscopic redshifts; the remaining have well calibrated photometric redshifts derived from the extremely wide multi-wavelength coverage in 14 bands (from the U band to the Spitzer 8~ μm band). We have derived a catalogue of galaxies complete in the rest-frame B-band, which has been divided into two subsamples according to their rest-frame U-V colour (or derived specific star formation rate) properties. Results: We confirm a bimodality in the U-V colour and specific star formation rate of the galaxy sample up to z˜ 3. This bimodality is used to compute the luminosity functions of the blue/late and red/early subsamples. The luminosity functions of the blue/late and total samples are well represented by steep Schechter functions evolving in luminosity with increasing redshifts. The volume density of the luminosity functions of the red/early populations decreases with increasing redshift. The shape of the red/early luminosity functions shows an excess of faint red dwarfs with respect to the extrapolation of a flat Schechter function and can be represented by the sum of two Schechter functions. Our model for galaxy formation in the hierarchical clustering scenario, which also includes external feedback due to a diffuse UV background, shows a general broad agreement with the luminosity functions of both populations, the larger discrepancies being present at the faint end for the red population. Hints on the nature of the red dwarf population are given on the basis of their stellar mass and spatial distributions.

  4. The spiral structure of the Galaxy revealed by CS sources and evidence for the 4:1 resonance

    NASA Astrophysics Data System (ADS)

    Lépine, J. R. D.; Roman-Lopes, A.; Abraham, Zulema; Junqueira, T. C.; Mishurov, Yu. N.

    2011-06-01

    We present a map of the spiral structure of the Galaxy, as traced by molecular carbon monosulphide (CS) emission associated with IRAS sources which are believed to be compact H II regions. The CS line velocities are used to determine the kinematic distances of the sources in order to investigate their distribution in the galactic plane. This allows us to use 870 objects to trace the arms, a number larger than that of previous studies based on classical H II regions. The distance ambiguity of the kinematic distances, when it exists, is solved by different procedures, including the latitude distribution and an analysis of the longitude-velocity diagram. The study of the spiral structure is complemented with other tracers: open clusters, Cepheids, methanol masers and H II regions. The well-defined spiral arms are seen to be confined inside the corotation radius, as is often the case in spiral galaxies. We identify a square-shaped sub-structure in the CS map with that predicted by stellar orbits at the 4:1 resonance (four epicycle oscillations in one turn around the galactic centre). The sub-structure is found at the expected radius, based on the known pattern rotation speed and epicycle frequency curve. An inner arm presents an end with strong inwards curvature and intense star formation that we tentatively associate with the region where this arm surrounds the extremity of the bar, as seen in many barred galaxies. Finally, a new arm with concave curvature is found in the Sagitta to Cepheus region of the sky. The observed arms are interpreted in terms of perturbations similar to grooves in the gravitational potential of the disc, produced by crowding of stellar orbits.

  5. The SINS/zC-SINF survey of z ∼ 2 galaxy kinematics: Evidence for gravitational quenching

    SciTech Connect

    Genzel, R.; Förster Schreiber, N. M.; Lang, P.; Tacconi, L. J.; Wuyts, S.; Bandara, K.; Burkert, A.; Buschkamp, P.; Davies, R.; Eisenhauer, F.; Kurk, J.; Lutz, D.; Tacchella, S.; Carollo, C. M.; Lilly, S. J.; Cresci, G.; Hicks, E. K. S.; Mancini, C.; Naab, T.; Newman, S.; and others

    2014-04-10

    As part of the SINS/zC-SINF surveys of high-z galaxy kinematics, we derive the radial distributions of Hα surface brightness, stellar mass surface density, and dynamical mass at ∼2 kpc resolution in 19 z ∼ 2 star-forming disks with deep SINFONI adaptive optics spectroscopy at the ESO Very Large Telescope. From these data we infer the radial distribution of the Toomre Q-parameter for these main-sequence star-forming galaxies (SFGs), covering almost two decades of stellar mass (10{sup 9.6}-10{sup 11.5} M {sub ☉}). In more than half of our SFGs, the Hα distributions cannot be fit by a centrally peaked distribution, such as an exponential, but are better described by a ring, or the combination of a ring and an exponential. At the same time the kinematic data indicate the presence of a mass distribution more centrally concentrated than a single exponential distribution for 5 of the 19 galaxies. The resulting Q-distributions are centrally peaked for all, and significantly exceed unity there for three-quarters of the SFGs. The occurrence of Hα rings and of large nuclear Q-values appears to be more common for the more massive SFGs. While our sample is small and biased to larger SFGs, and there remain uncertainties and caveats, our observations are consistent with a scenario in which cloud fragmentation and global star formation are secularly suppressed in gas-rich high-z disks from the inside out, as the central stellar mass density of the disks grows.

  6. EVIDENCE FOR DARK MATTER CONTRACTION AND A SALPETER INITIAL MASS FUNCTION IN A MASSIVE EARLY-TYPE GALAXY

    SciTech Connect

    Sonnenfeld, A.; Treu, T.; Auger, M. W.; Suyu, S. H.; Gavazzi, R.; Marshall, P. J.; Koopmans, L. V. E.; Bolton, A. S.

    2012-06-20

    Stars and dark matter account for most of the mass of early-type galaxies, but uncertainties in the stellar population and the dark matter profile make it challenging to distinguish between the two components. Nevertheless, precise observations of stellar and dark matter are extremely valuable for testing the many models of structure formation and evolution. We present a measurement of the stellar mass and inner slope of the dark matter halo of a massive early-type galaxy at z = 0.222. The galaxy is the foreground deflector of the double Einstein ring gravitational lens system SDSSJ0946+1006, also known as the 'Jackpot'. By combining the tools of lensing and dynamics we first constrain the mean slope of the total mass density profile ({rho}{sub tot}{proportional_to}r{sup -{gamma}{sup '}}) within the radius of the outer ring to be {gamma}' = 1.98 {+-} 0.02 {+-} 0.01. Then we obtain a bulge-halo decomposition, assuming a power-law form for the dark matter halo. Our analysis yields {gamma}{sub DM} = 1.7 {+-} 0.2 for the inner slope of the dark matter profile, in agreement with theoretical findings on the distribution of dark matter in ellipticals, and a stellar mass from lensing and dynamics M{sup LD}{sub *} = 5.5{sub -1.3}{sup +0.4} Multiplication-Sign 10{sup 11} M{sub Sun }. By comparing this measurement with stellar masses inferred from stellar population synthesis fitting we find that a Salpeter initial mass function (IMF) provides a good description of the stellar population of the lens while the probability of the IMF being heavier than Chabrier is 95%. Our data suggest that growth by accretion of small systems from a compact red nugget is a plausible formation scenario for this object.

  7. SpARCS Brightest Cluster Galaxies: Evidence for significant star formation down to z~0.7

    NASA Astrophysics Data System (ADS)

    Bonaventura, Nina

    2015-08-01

    We present the first stacked Spitzer/Herschel IR broadband SED of the largest and highest-redshift sample of optically selected Brightest Cluster Galaxies (BCGs), from 1014-Msun clusters in the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS). While semi-analytic models of structure formation predict that star formation ceases at very early times in BCGs, leaving them to passively evolve subsequently, the updated models of Tonini et al. (2012) suggest that star formation persists in BCGs to much lower redshifts than originally predicted. To address this tension between various models and gain a better understanding of the mechanisms guiding BCG stellar mass growth since z~2, we identify their dominant source of IR energy output through a comparison of their SEDs to a variety of model templates in the literature, in multiple redshift bins between z = 0.1 and 1.9. We derive estimates of LIR,TOT , SFR and sSFR , M* , Tdust , and various measures of 'starburstiness' (Chary & Elbaz 2011) from the stacked SEDs.From the observed redshift evolution of the SED emerges a picture of a star-forming BCG down to z~0.1, vigorously producing hundreds of solar masses per year at z>~0.7, with high efficiency at z>~1 and mostly between 1 and 10 solar mass at lower redshifts, with a small subset representing extreme sources and likely marking a period of intense merging activity between z = 0.4 and 0.6. We find a significant AGN contribution to the small 24μm-bright subset of the BCG sample down to z~0.4, mostly coexisting with vigorous star formation and indicative of a relatively ineffective AGN feedback mechanism in BCGs.We conclude that the star formation and AGN activity we observe in BCGs down to lower redshifts than expected is due to their unique environment at the centers of galaxy clusters, where they are continuously subjected to galaxy merger events at mid-to-high redshift, and likely cooling flows and the associated AGN response towards lower redshifts

  8. [Climacteric disturbances. 2. Therapy of climacteric disturbances].

    PubMed

    Döring, G K

    1976-07-01

    After defining the terms climacterium and menopause the causes of climacteric disturbances are explained. During the premenopausal stage disturbances of the cycle are prevailing, caused by an insufficiency of the corpus luteum. Of climacteric disturbances should be spoken only after menopause. They are divided into: vegetative disturbances, troubles of metabolism, cardiovascular dysregulation, psychic deviations, sexual troubles and changes of the skin. The therapy of disturbances during the premenopausal stage mainly consists of the substitution of progesterone or in a cycle-like estrogen-progesterone-therapy. In the premenopausal stage estrogens are the therapy of choice. Among orally efficient estrogens the conjugated estrogen and the estradiol-valerianat are preferred. Side-effects and contraindications are discussed in detail. Among gynecologists there exists no disagreement about the necessity of therapy of serious climacteric disturbances, the opinions about prophylactic estrogen-therapy in women differ. PMID:184019

  9. Changes of soil prokaryotic communities after clear-cutting in a karst forest: evidences for cutting-based disturbance promoting deterministic processes.

    PubMed

    Zhang, Xiao; Liu, Shirong; Li, Xiangzhen; Wang, Jingxin; Ding, Qiong; Wang, Hui; Tian, Chao; Yao, Minjie; An, Jiaxing; Huang, Yongtao

    2016-03-01

    To understand the temporal responses of soil prokaryotic communities to clear-cutting disturbance, we examined the changes in soil bacterial and archaeal community composition, structure and diversity along a chronosequence of forest successional restoration using high-throughput 16S rRNA gene sequencing. Our results demonstrated that clear-cutting significantly altered soil bacterial community structure, while no significant shifts of soil archaeal communities were observed. The hypothesis that soil bacterial communities would become similar to those of surrounding intact primary forest with natural regeneration was supported by the shifts in the bacterial community composition and structure. Bacterial community diversity patterns induced by clear-cutting were consistent with the intermediate disturbance hypothesis. Dynamics of bacterial communities was mostly driven by soil properties, which collectively explained more than 70% of the variation in bacterial community composition. Community assembly data revealed that clear-cutting promoted the importance of the deterministic processes in shaping bacterial communities, coinciding with the resultant low resource environments. But assembly processes in the secondary forest returned a similar level compared to the intact primary forest. These findings suggest that bacterial community dynamics may be predictable during the natural recovery process. PMID:26880783

  10. Evidence for shock acceleration and intergalactic magnetic fields in a large-scale filament of galaxies ZwCl 2341.1+0000

    NASA Astrophysics Data System (ADS)

    Bagchi, Joydeep; Enßlin, Torsten A.; Miniati, Francesco; Stalin, C. S.; Singh, M.; Raychaudhury, Somak; Humeshkar, N. B.

    2002-07-01

    We report the discovery of large-scale diffuse radio emission from what appears to be a large-scale filamentary network of galaxies in the region of cluster ZwCl 2341.1+0000, and stretching over an area of at least 6 h50-1 Mpc in diameter. Multicolour CCD observations yield photometric redshifts indicating that a significant fraction of the optical galaxies in this region is at a redshift of z=0.3. This is supported by spectroscopic measurements of 4 galaxies in the Sloan Digitized Sky Survey (SDSS) survey at a mean z=0.27. We present VLA images at λ=20 cm (NVSS) and 90 cm, showing the detailed radio structure of the filaments. Comparison with the high resolution FIRST radio survey shows that the diffuse emission is not due to known individual point sources. The diffuse radio-emission has a spectral index α≲-0.5, and is most likely synchrotron emission from relativistic charged particles in an inter-galactic magnetic field. Furthermore, this optical/radio structure is detected in X-rays by the ROSAT all-sky survey. It has a 0.1-2.4 keV luminosity of about 10 44 erg s -1 and shows an extended highly non-relaxed morphology. These observations suggest that ZwCl 2341.1+0000 is possibly a proto-cluster of galaxies in which we are witnessing the process of structure formation. We show that the energetics of accretion shocks generated in forming large-scale structures are sufficient to produce enough high energy cosmic-ray (CR) electrons required to explain the observed radio emission, provided a magnetic field of strength B≳0.3 μG is present there. The latter is only a lower limit and the actual magnetic field is likely to be higher depending on the morphology of the emitting region. Finally, we show results from a numerical simulation of large-scale structure formation including acceleration of CR electrons at cosmological shocks and magnetic field evolution. Our results are in accord with the observed radio synchrotron and X-ray thermal bremsstrahlung fluxes

  11. KECK SPECTROSCOPY OF FAINT 3 < z < 8 LYMAN BREAK GALAXIES: EVIDENCE FOR A DECLINING FRACTION OF EMISSION LINE SOURCES IN THE REDSHIFT RANGE 6 < z < 8

    SciTech Connect

    Schenker, Matthew A.; Ellis, Richard S.; Robertson, Brant E.; Stark, Daniel P.; Dunlop, James S.; McLure, Ross J.; Kneib, Jean-Paul; Richard, Johan

    2012-01-10

    Using deep Keck spectroscopy of Lyman break galaxies selected from infrared imaging data taken with the Wide Field Camera 3 on board the Hubble Space Telescope, we present new evidence for a reversal in the redshift-dependent fraction of star-forming galaxies with detectable Lyman alpha (Ly{alpha}) emission in the redshift range 6.3 < z < 8.8. Our earlier surveys with the DEIMOS spectrograph demonstrated a significant increase with redshift in the fraction of line emitting galaxies over the interval 4 < z < 6, particularly for intrinsically faint systems which dominate the luminosity density. Using the longer wavelength sensitivities of Low Resolution Imaging Spectrometer and NIRSPEC, we have targeted 19 Lyman break galaxies selected using recent WFC3/IR data whose photometric redshifts are in the range 6.3 < z < 8.8 and which span a wide range of intrinsic luminosities. Our spectroscopic exposures typically reach a 5{sigma} sensitivity of <50 A for the rest-frame equivalent width (EW) of Ly{alpha} emission. Despite the high fraction of emitters seen only a few hundred million years later, we find only two convincing and one possible line emitter in our more distant sample. Combining with published data on a further seven sources obtained using FORS2 on the ESO Very Large Telescope, and assuming continuity in the trends found at lower redshift, we discuss the significance of this apparent reversal in the redshift-dependent Ly{alpha} fraction in the context of our range in continuum luminosity. Assuming all the targeted sources are at their photometric redshift and our assumptions about the Ly{alpha} EW distribution are correct, we would expect to find so few emitters in less than 1% of the realizations drawn from our lower redshift samples. Our new results provide further support for the suggestion that, at the redshifts now being probed spectroscopically, we are entering the era where the intergalactic medium is partially neutral. With the arrival of more

  12. Regional boreal biodiversity peaks at intermediate human disturbance.

    PubMed

    Mayor, S J; Cahill, J F; He, F; Sólymos, P; Boutin, S

    2012-01-01

    The worldwide biodiversity crisis has intensified the need to better understand how biodiversity and human disturbance are related. The 'intermediate disturbance hypothesis' suggests that disturbance regimes generate predictable non-linear patterns in species richness. Evidence often contradicts intermediate disturbance hypothesis at small scales, and is generally lacking at large regional scales. Here, we present the largest extent study of human impacts on boreal plant biodiversity to date. Disturbance extent ranged from 0 to 100% disturbed in vascular plant communities, varying from intact forest to agricultural fields, forestry cut blocks and oil sands. We show for the first time that across a broad region species richness peaked in communities with intermediate anthropogenic disturbance, as predicted by intermediate disturbance hypothesis, even when accounting for many environmental covariates. Intermediate disturbance hypothesis was consistently supported across trees, shrubs, forbs and grasses, with temporary and perpetual disturbances. However, only native species fit this pattern; exotic species richness increased linearly with disturbance. PMID:23072810

  13. MULTIPLE GALAXY COLLISIONS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  14. Pre-clinical studies of toxin-specific Nanobodies: Evidence of in vivo efficacy to prevent fatal disturbances provoked by scorpion envenoming

    SciTech Connect

    Hmila, Issam; Cosyns, Bernard; Tounsi, Hayfa; Roosens, Bram; Caveliers, Vicky; Abderrazek, Rahma Ben; Boubaker, Samir; Muyldermans, Serge; El Ayeb, Mohamed; Bouhaouala-Zahar, Balkiss; Lahoutte, Tony

    2012-10-15

    Scorpions represent a significant threat to humans and animals in various countries throughout the world. Recently, we introduced Nanobodies (Nbs) to combat more efficiently scorpion envenoming and demonstrated the performance of NbAahIF12 and NbAahII10 to neutralize scorpion toxins of Androctonus australis hector venom. A bispecific Nb construct (NbF12-10) comprising these two Nbs is far more protective than the classic Fab′{sub 2} based therapy and is the most efficient antivenom therapy against scorpion sting in preclinical studies. Now we investigate the biodistribution and pharmacokinetics of {sup 99m}Tc labeled Nbs by in vivo imaging in rodents and compared these data with those of the Fab′{sub 2} product (PAS). The pharmacodynamics of the Nbs was investigated in rats by in vivo echocardiography and it is shown that NbF12-10 prevents effectively the hemodynamic disturbances induced by a lethal dose of venom. Moreover, even a late injection of NbF12-10 restores the heart rate and brings the blood pressure to baseline values. Histology confirms that NbF12-10 prevents lung and heart lesions of treated mice after envenoming. In conjunction, in this preclinical study, we provide proof of concept that NbF12-10 prevents effectively the fatal disturbances induced by Androctonus venom, and that the Nanobody based therapeutic has a potential to substitute the classic Fab′{sub 2} based product as immunotherapeutic in scorpion envenoming. Further clinical study using larger cohorts of animals should be considered to confirm the full protecting potential of our NbF12-10. -- Highlights: ► Nanobody therapy prevents the hemodynamic disturbances induced by a lethal dose. ► Late injection of Nanobody restores hemodynamic parameters to baseline values. ► Nanobody therapy prevents lung and heart lesions of treated mice after envenoming. ► Labeled Nanobody and Fab’2 pharmacokinetics curves reach plateau in favour of Nanobody.

  15. NGC 5291: Implications for the Formation of Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Malphrus, Benjamin K.; Simpson, Caroline E.; Gottesman, S. T.; Hawarden, Timothy G.

    1997-01-01

    The possible formation and evolution of dwarf irregular galaxies from material derived from perturbed evolved galaxies is addressed via an H I study of a likely example, the peculiar system NGC 5291. This system, located in the western outskirts of the cluster Abell 3574, contains the lenticular galaxy NGC 5291 which is in close proximity to a disturbed companion and is flanked by an extensive complex of numerous knots extending roughly 4 min north and 4 min south of the galaxy. In an initial optical and radio study, Longmore et al. (1979, MNRAS, 188, 285) showed that these knots have the spectra of vigorous star-forming regions, and suggested that some may in fact be young dwarf irregular galaxies. High resolution 21-cm line observations taken with the VLA are presented here and reveal that the H I distribution associated with this system encompasses not only the entire N-S complex of optical knots, but also forms an incomplete ring or tail that extends approximately 3 min to the west. The H I associated with NGC 5291 itself shows a high velocity range; the Seashell is not detected. The formation mechanism for this unusual system is unclear and two models - a large, low-luminosity ram-swept disk, and a ram-swept interaction-are discussed. The H I in the system contains numerous concentrations, mostly along the N-S arc of the star-forming complexes, which generally coincide with one or more optical knots; the larger H I features contain several x 10(exp 9) solar mass of gas. Each of the knots is compared to a set of criteria designed to determine if these objects are bound against their own internal kinetic energy and are tidally stable relative to the host galaxy. An analysis of the properties of the H I concentrations surrounding the optical star-forming complexes indicates that at least the largest of these is a bound system; it also possesses a stellar component. It is suggested that this object is a genuinely young dwarf irregular galaxy that has evolved from

  16. J0454-0309: evidence of a strong lensing fossil group falling into a poor galaxy cluster

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Suyu, S.; Schrabback, T.; Hildebrandt, H.; Erben, T.; Halkola, A.

    2010-05-01

    Aims: We have discovered a strong lensing fossil group (J0454) projected near the well-studied cluster MS0451-0305. Using the large amount of available archival data, we compare J0454 to normal groups and clusters. A highly asymmetric image configuration of the strong lens enables us to study the substructure of the system. Methods: We used multicolour Subaru/Suprime-Cam and CFHT/Megaprime imaging, together with Keck spectroscopy to identify member galaxies. A VLT/FORS2 spectrum was taken to determine the redshifts of the brightest elliptical and the lensed arc. Using HST/ACS images, we determined the group's weak lensing signal and modelled the strong lens system. This is the first time that a fossil group is analysed with lensing methods. The X-ray luminosity and temperature were derived from XMM-Newton data. Results: J0454 is located at z = 0.26, with a gap of 2.5 mag between the brightest and second brightest galaxies within half the virial radius. Outside a radius of 1.5 Mpc, we find two filaments extending over 4 Mpc, and within we identify 31 members spectroscopically and 33 via the red sequence with i < 22 mag. They segregate into spirals (σ_v = 590 km s-1) and a central concentration of ellipticals (σ_v = 480 km s-1), establishing a morphology-density relation. Weak lensing and cluster richness relations yield consistent values of r200 = 810-850 kpc and M200 = (0.75-0.90) × 1014 M_⊙. The brightest group galaxy (BGG) is inconsistent with the dynamic centre of J0454. It strongly lenses a galaxy at z = 2.1 ± 0.3, and we model the lens with a pseudo-isothermal elliptical mass distribution. A high external shear, and a discrepancy between the Einstein radius and the weak lensing velocity dispersion requires that the BGG must be offset from J0454's dark halo centre by at least 90-130 kpc. The X-ray halo is offset by 24 ± 16 kpc from the BGG, shows no signs of a cooling flow and can be fit by a single β-model. With LX = (1.4 ± 0.2) × 1043 erg s-1 J0454

  17. Disturbed Sleep and Postpartum Depression.

    PubMed

    Okun, Michele L

    2016-07-01

    The perinatal period introduces a myriad of changes. One important but often overlooked change is an increased reporting of sleep disturbance. Although casually regarded as a consequence of pregnancy or postpartum, there is emerging evidence implicating significant sleep disturbance, characterized by insomnia symptoms and/or poor sleep quality, with adverse outcomes, such as an increase in depressive symptomatology or the development postpartum depression (PPD). Significant consequences may arise as a result including issues with maternal-infant bonding, effective care for the infant, and behavioral or emotional difficulties in the infant. This review discusses the relevant literature as to how disturbed sleep during pregnancy as well as in the postpartum may increase the risk for PPD. PMID:27222140

  18. Life in the Galaxy?

    NASA Astrophysics Data System (ADS)

    Shostak, G. S.

    The arguments for and against the SETI (Search for Extra Terrestrial Intelligence) program are discussed. Based on apparently reasonable assumptions regarding the number of civilizations likely to exist in the Galaxy, it seems that ten million years would be sufficient time for an ambitious group of aliens to colonize the Galaxy; since no concrete evidence of aliens has turned up, the assumptions have to be reconsidered. The views of Sagan, Hart, Drake and a number of other researchers are noted.

  19. Triple Scoop from Galaxy Hunter

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    Silver Dollar Galaxy: NGC 253 (figure 1) Located 10 million light-years away in the southern constellation Sculptor, the Silver Dollar galaxy, or NGC 253, is one of the brightest spiral galaxies in the night sky. In this edge-on view from NASA's Galaxy Evolution Explorer, the wisps of blue represent relatively dustless areas of the galaxy that are actively forming stars. Areas of the galaxy with a soft golden glow indicate regions where the far-ultraviolet is heavily obscured by dust particles.

    Gravitational Dance: NGC 1512 and NGC 1510 (figure 2) In this image, the wide ultraviolet eyes of NASA's Galaxy Evolution Explorer show spiral galaxy NGC 1512 sitting slightly northwest of elliptical galaxy NGC 1510. The two galaxies are currently separated by a mere 68,000 light-years, leading many astronomers to suspect that a close encounter is currently in progress.

    The overlapping of two tightly wound spiral arm segments makes up the light blue inner ring of NGC 1512. Meanwhile, the galaxy's outer spiral arm is being distorted by strong gravitational interactions with NGC 1510.

    Galaxy Trio: NGC 5566, NGC 5560, and NGC 5569 (figure 3) NASA's Galaxy Evolution Explorer shows a triplet of galaxies in the Virgo cluster: NGC 5560 (top galaxy), NGC 5566 (middle galaxy), and NGC 5569 (bottom galaxy).

    The inner ring in NGC 5566 is formed by two nearly overlapping bright arms, which themselves spring from the ends of a central bar. The bar is not visible in ultraviolet because it consists of older stars or low mass stars that do not emit energy at ultraviolet wavelengths. The outer disk of NGC 5566 appears warped, and the disk of NGC 5560 is clearly disturbed. Unlike its galactic neighbors, the disk of NGC 5569 does not appear to have been distorted by any passing

  20. The Evolution of the Stellar Mass Function of Galaxies from z = 4.0 and the First Comprehensive Analysis of its Uncertainties: Evidence for Mass-Dependent Evolution

    NASA Astrophysics Data System (ADS)

    Marchesini, Danilo; van Dokkum, Pieter G.; Förster Schreiber, Natascha M.; Franx, Marijn; Labbé, Ivo; Wuyts, Stijn

    2009-08-01

    We present the evolution of the stellar mass function (SMF) of galaxies from z = 4.0 to z = 1.3 measured from a sample constructed from the deep near-infrared Multi-wavelength Survey by Yale-Chile, the Faint Infrared Extragalactic Survey, and the Great Observatories Origins Deep Survey-Chandra Deep Field South surveys, all having very high-quality optical to mid-infrared data. This sample, unique in that it combines data from surveys with a large range of depths and areas in a self-consistent way, allowed us to (1) minimize the uncertainty due to cosmic variance and empirically quantify its contribution to the total error budget; (2) simultaneously probe the high-mass end and the low-mass end (down to ~0.05 times the characteristic stellar mass) of the SMF with good statistics; and (3) empirically derive the redshift-dependent completeness limits in stellar mass. We provide, for the first time, a comprehensive analysis of random and systematic uncertainties affecting the derived SMFs, including the effect of metallicity, extinction law, stellar population synthesis model, and initial mass function. We find that the mass density evolves by a factor of ~17+7 -10 since z = 4.0, mostly driven by a change in the normalization Φsstarf. If only random errors are taken into account, we find evidence for mass-dependent evolution, with the low-mass end evolving more rapidly than the high-mass end. However, we show that this result is no longer robust when systematic uncertainties due to the SED-modeling assumptions are taken into account. Another significant uncertainty is the contribution to the overall stellar mass density of galaxies below our mass limit; future studies with WFC3 will provide better constraints on the SMF at masses below 1010 M sun at z>2. Taking our results at face value, we find that they are in conflict with semianalytic models of galaxy formation. The models predict SMFs that are in general too steep, with too many low-mass galaxies and too few high

  1. Host galaxies of luminous type II AGN: Winds, shocks, and comparisons to The SAMI Galaxy Survey

    NASA Astrophysics Data System (ADS)

    McElroy, Rebecca; Croom, Scott; Pracy, Michael; SAMI Galaxy Survey Team

    2016-01-01

    We present IFS observations of luminous (log(L[O III]/L⊙) > 8.7) local (z < 0.11) type II AGN, and demonstrate that winds are ubiquitous within this sample and have a direct influence on the ISM of the host galaxies. We use both non-parametric (e.g. line width and asymmetry) and multi-Gaussian fitting to decompose the complex emission profiles close to the AGN. We find line widths containing 80% flux in the range 400 - 1600 km/s with a mean of 790 ± 90 km/s, such high velocities are strongly suggestive that these AGN are driving ionized outflows. Additionally, multi-Gaussian fitting reveals that 14/17 of our targets require 3 separate kinematic components in the ionized gas in their central regions. The broadest components of these fits have FWHM = 530 - 2520 km/s, with a mean value of 920 ± 50 km/s. By simultaneously fitting both the Hβ/[O III] and Hα/[N II] complexes we construct ionization diagnostic diagrams for each component. 13/17 of our galaxies show a significant (> 95 %) correlation between the [N II]/Hα ratio and the velocity dispersion of the gas. Such a correlation is the natural consequence of a contribution to the ionization from shock excitation and we argue that this demonstrates that the outflows from these AGN are directly impacting the surrounding ISM within the galaxies. In addition, we use stellar absorption features to measure kinematics for these AGN host galaxies and those of a control sample selected from the SAMI Galaxy Survey to search for evidence of these luminous AGN being preferentially hosted by disturbed or merging systems.

  2. Interacting binary galaxies. III - Observations of NGC 1587/1588 and NGC 7236/7237

    NASA Astrophysics Data System (ADS)

    Borne, Kirk D.; Hoessel, John G.

    1988-07-01

    The catalog of isolated galaxy pairs prepared by Karachentsev has been culled for its E-E constituents, and the results are reported. Radial variations of rotation velocity and velocity dispersion are extracted from the spectroscopic data for each of the two galaxies of a given pair. Such observations are described for two Karachentsev pairs, Nos. 99 and 564. The observed disturbances in rotation velocity and luminosity distribution are discussed in terms of the gravitational interaction hypothesis. It is argued that observational evidence of tidal friction in action is evidenced by these findings. One of the highest rotation rates known for an E2 galaxy of average luminosity is found in NGC 1587, the brighter component of K99. Because this rotation is in the same sense as the binary orbital motion, the net angular momentum in this isolated binary system is large, challenging simple tidal torque theories to identify the source of the momentum.

  3. Interacting binary galaxies. III. Observations of NGC 1587/1588 and NGC 7236/7237

    SciTech Connect

    Borne, K.D.; Hoessel, J.G.

    1988-07-01

    The catalog of isolated galaxy pairs prepared by Karachentsev has been culled for its E-E constituents, and the results are reported. Radial variations of rotation velocity and velocity dispersion are extracted from the spectroscopic data for each of the two galaxies of a given pair. Such observations are described for two Karachentsev pairs, Nos. 99 and 564. The observed disturbances in rotation velocity and luminosity distribution are discussed in terms of the gravitational interaction hypothesis. It is argued that observational evidence of tidal friction in action is evidenced by these findings. One of the highest rotation rates known for an E2 galaxy of average luminosity is found in NGC 1587, the brighter component of K99. Because this rotation is in the same sense as the binary orbital motion, the net angular momentum in this isolated binary system is large, challenging simple tidal torque theories to identify the source of the momentum. 62 references.

  4. RADIO STACKING REVEALS EVIDENCE FOR STAR FORMATION IN THE HOST GALAXIES OF X-RAY-SELECTED ACTIVE GALACTIC NUCLEI AT z < 1

    SciTech Connect

    Pierce, C. M.; Ballantyne, D. R.; Ivison, R. J.

    2011-11-20

    Nuclear starbursts may contribute to the obscuration of active galactic nuclei (AGNs). The predicted star formation rates (SFRs) are modest, and, for the obscured AGNs that form the X-ray background at z < 1, the associated faint radio emission lies just beyond the sensitivity limits of the deepest surveys. Here, we search for this level of star formation by studying a sample of 359 X-ray-selected AGNs at z < 1 from the Cosmic Evolution Survey field that are not detected by current radio surveys. The AGNs are separated into bins based on redshift, X-ray luminosity, obscuration, and mid-infrared characteristics. An estimate of the AGN contribution to the radio flux density is subtracted from each radio image, and the images are then stacked to uncover any residual faint radio flux density. All of the bins containing 24 {mu}m detected AGNs are detected with a signal-to-noise >3{sigma} in the stacked radio images. In contrast, AGNs not detected at 24 {mu}m are not detected in the resulting stacked radio images. This result provides strong evidence that the stacked radio signals are likely associated with star formation. The estimated SFRs derived from the radio stacks range from 3 M{sub Sun} yr{sup -1} to 29 M{sub Sun} yr{sup -1}. Although it is not possible to associate the radio emission with a specific region of the host galaxies, these results are consistent with the predictions of nuclear starburst disks in AGN host galaxies.

  5. Very high redshift radio galaxies

    SciTech Connect

    van Breugel, W.J.M., LLNL

    1997-12-01

    High redshift radio galaxies (HzRGs) provide unique targets for the study of the formation and evolution of massive galaxies and galaxy clusters at very high redshifts. We discuss how efficient HzRG samples ae selected, the evidence for strong morphological evolution at near-infracd wavelengths, and for jet-induced star formation in the z = 3 800 HzRG 4C41 17

  6. Evidence for a supermassive object in the nucleus of the galaxy M87 from SIT and CCD area photometry

    NASA Technical Reports Server (NTRS)

    Young, P. J.; Westphal, J. A.; Kristian, J.; Wilson, C. P.; Landauer, F. P.

    1978-01-01

    Results are presented for broadband three-color (BVR) photometric observations of the peculiar elliptical radio galaxy M87, which were obtained with digital two-dimensional SIT and CCD detector systems on the Palomar 60-in. and 200-in. telescopes. The observations and the reduction procedures for the digital data are outlined, the luminosity profile of M87 is given, and a nuclear luminosity spike is found to be centered within 0.02 arcsec of the center of M87. Attempts are made to fit various theoretical models to the luminosity profile, and a satisfactory fit is obtained between the observed profile and a model involving a massive black hole in the galactic nucleus. A model-independent dynamical analysis of the central regions is performed which indicates that the nucleus of M87 contains a supermassive object of about 5 billion solar masses with a radius of no more than 100 pc and an M/L ratio of at least 60. The possible nature of this object is considered, and it is concluded that M87 is probably the most plausible candidate for a massive black hole in a galactic nucleus.

  7. EVIDENCE FOR SPATIALLY COMPACT Ly{alpha} EMISSION IN z = 3.1 Ly{alpha}-EMITTING GALAXIES

    SciTech Connect

    Bond, Nicholas A.; Gawiser, Eric; Feldmeier, John J.; Matkovic, Ana; Gronwall, Caryl; Ciardullo, Robin E-mail: gawiser@physics.rutgers.ed E-mail: matkovic@astro.psu.ed E-mail: rbc@astro.psu.ed

    2010-06-20

    We present the results of a high spatial resolution study of the line emission in a sample of z = 3.1 Ly{alpha}-emitting galaxies (LAEs) in the Extended Chandra Deep Field-South. Of the eight objects with coverage in our HST/WFPC2 narrowband imaging, two have clear detections and two are barely detected ({approx}2 {sigma}). The clear detections are within {approx}0.5 kpc of the centroid of the corresponding rest-UV continuum source, suggesting that the line-emitting gas and young stars in LAEs are spatially coincident. The brightest object exhibits extended emission with a half-light radius of {approx}1.5 kpc, but a stack of the remaining LAE surface brightness profiles is consistent with the WFPC2 point-spread function. This suggests that the Ly{alpha} emission in these objects originates from a compact ({approx}<2 kpc) region and cannot be significantly more extended than the far-UV continuum emission ({approx}<1 kpc). Comparing our WFPC2 photometry to previous ground-based measurements of their monochromatic fluxes, we find at 95% (99.7%) confidence that we cannot be missing more than 22% (32%) of the Ly{alpha} emission.

  8. Galaxy disruption in a halo of dark matter.

    PubMed

    Forbes, Duncan A; Beasley, Michael A; Bekki, Kenji; Brodie, Jean P; Strader, Jay

    2003-08-29

    The relics of disrupted satellite galaxies have been found around the Milky Way and Andromeda, but direct evidence of a satellite galaxy in the early stages of disruption has remained elusive. We have discovered a dwarf satellite galaxy in the process of being torn apart by gravitational tidal forces as it merges with a larger galaxy's dark matter halo. Our results illustrate the morphological transformation of dwarf galaxies by tidal interaction and the continued buildup of galaxy halos. PMID:12907809

  9. An Elegant Galaxy in an Unusual Light

    NASA Astrophysics Data System (ADS)

    2010-09-01

    A new image taken with the powerful HAWK-I camera on ESO's Very Large Telescope at Paranal Observatory in Chile shows the beautiful barred spiral galaxy NGC 1365 in infrared light. NGC 1365 is a member of the Fornax cluster of galaxies, and lies about 60 million light-years from Earth. NGC 1365 is one of the best known and most studied barred spiral galaxies and is sometimes nicknamed the Great Barred Spiral Galaxy because of its strikingly perfect form, with the straight bar and two very prominent outer spiral arms. Closer to the centre there is also a second spiral structure and the whole galaxy is laced with delicate dust lanes. This galaxy is an excellent laboratory for astronomers to study how spiral galaxies form and evolve. The new infrared images from HAWK-I are less affected by the dust that obscures parts of the galaxy than images in visible light (potw1037a) and they reveal very clearly the glow from vast numbers of stars in both the bar and the spiral arms. These data were acquired to help astronomers understand the complex flow of material within the galaxy and how it affects the reservoirs of gas from which new stars can form. The huge bar disturbs the shape of the gravitational field of the galaxy and this leads to regions where gas is compressed and star formation is triggered. Many huge young star clusters trace out the main spiral arms and each contains hundreds or thousands of bright young stars that are less than ten million years old. The galaxy is too remote for single stars to be seen in this image and most of the tiny clumps visible in the picture are really star clusters. Over the whole galaxy, stars are forming at a rate of about three times the mass of our Sun per year. While the bar of the galaxy consists mainly of older stars long past their prime, many new stars are born in stellar nurseries of gas and dust in the inner spiral close to the nucleus. The bar also funnels gas and dust gravitationally into the very centre of the galaxy

  10. Down-the-barrel and Transverse Observations of the Large Magellanic Cloud: Evidence for a Symmetric Galactic Wind on the Near and Far Sides of the Galaxy

    NASA Astrophysics Data System (ADS)

    Barger, K. A.; Lehner, N.; Howk, J. C.

    2016-02-01

    We compare the properties of gas flows on both the near and far side of the Large Magellanic Cloud (LMC) disk using Hubble Space Telescope UV absorption-line observations toward an active galactic nucleus behind (transverse) and a star within (down-the-barrel) the LMC disk at an impact parameter of 3.2 {kpc}. We find that even in this relatively quiescent region gas flows away from the disk at speeds up to ˜ 100 {km} {{{s}}}-1 in broad and symmetrical absorption in the low and high ions. The symmetric absorption profiles combined with previous surveys showing little evidence that the ejected gas returns to the LMC and provide compelling evidence that the LMC drives a global, large-scale outflow across its disk, which is the likely result of a recent burst of star formation in the LMC. We find that the outflowing gas is multiphase, ionized by both photoionization (Si ii and Si iii) and collisional ionization (Si iv and C iv). We estimate a total mass and outflow rate to be ≳ {10}7 {M}⊙ and ≳ \\quad 0.4 {M}⊙ {{yr}}-1. Since the velocity of this large-scale outflow does not reach the LMC escape velocity, the gas removal is likely aided by either ram-pressure stripping with the Milky Way (MW) halo or tidal interactions with the surrounding galaxies, implying that the environment of LMC-like or dwarf galaxies plays an important role in their ultimate gas starvation. Finally we reassess the mass and plausible origins of the high-velocity complex toward the LMC given its newly determined distance that places it in the lower MW halo and sky-coverage that shows it extends well beyond the LMC disk. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract No. NAS5-26555.

  11. IDENTIFICATION OF A COMPLETE 160 {mu}m FLUX-LIMITED SAMPLE OF INFRARED GALAXIES IN THE ISO LOCKMAN HOLE 1 deg{sup 2} DEEP FIELDS: SOURCE PROPERTIES AND EVIDENCE FOR STRONG EVOLUTION IN THE FIR LUMINOSITY FUNCTION FOR ULIRGs

    SciTech Connect

    Jacobs, B. A.; Sanders, D. B.; Rupke, D. S. N. E-mail: sanders@ifa.hawaii.edu

    2011-04-15

    We have identified a complete, flux-limited (S{sub 160}>120 mJy) sample of 160 {mu}m selected sources from Spitzer observations of the 1 deg{sup 2} Infrared Space Observatory (ISO) Deep Field region in the Lockman Hole (LH). Ground-based UV, optical, and near-infrared (NIR) photometry and optical spectroscopy have been used to determine colors, redshifts, and masses for the complete sample of 40 galaxies. Spitzer-IRAC+MIPS photometry, supplemented by ISOPHOT data at 90 {mu}m and 170 {mu}m, has been used to calculate accurate total infrared luminosities, L{sub IR}(8-1000 {mu}m), and to determine the IR luminosity function (LF) of luminous infrared galaxies (LIRGs). The maximum observed redshift is z {approx} 0.80 and the maximum total infrared luminosity is log (L{sub IR}/L{sub sun}) = 12.74. Over the luminosity range log (L{sub IR}/L{sub sun}) = 10-12, the LF for LIRGs in the LH Deep Field is similar to that found previously for local sources at similar infrared luminosities. The mean host galaxy mass, log (M/M{sub sun}) = 10.7, and dominance of H II-region spectral types, is also similar to what has been found for local LIRGs, suggesting that intense starbursts likely power the bulk of the infrared luminosity for sources in this range of L{sub IR}. However for the most luminous sources, log (L{sub IR}/L{sub sun})>12.0, we find evidence for strong evolution in the LF {proportional_to}(1 + z){sup 6{+-}1}, assuming pure number density evolution. These ultraluminous infrared galaxies (ULIRGs) have a larger mean host mass, log (M/M{sub sun}) = 11.0, and exhibit disturbed morphologies consistent with strong interactions/mergers, and they are also more likely to be characterized by starburst-active galactic nucleus (AGN) composite or AGN spectral types.

  12. The UV colours of high-redshift early-type galaxies: evidence for recent star formation and stellar mass assembly over the last 8 billion years

    NASA Astrophysics Data System (ADS)

    Kaviraj, S.; Khochfar, S.; Schawinski, K.; Yi, S. K.; Gawiser, E.; Silk, J.; Virani, S. N.; Cardamone, C. N.; van Dokkum, P. G.; Urry, C. M.

    2008-07-01

    We combine deep optical and NIR (UBVRIzJK) photometry from the Multiwavelength Survey by Yale-Chile (MUSYC) with redshifts from the COMBO-17 survey to perform a large-scale study of the rest-frame ultraviolet (UV) properties of 674 high-redshift (0.5 < z < 1) early-type galaxies, drawn from the Extended Chandra Deep Field-South (E-CDFS). Galaxy morphologies are determined through visual inspection of Hubble Space Telescope (HST) images taken from the GEMS survey. We harness the sensitivity of the UV to young (<1-Gyr old) stars to quantify the recent star formation history of early-type galaxies across a range of luminosities [-23.5 < M(V) < -18]. Comparisons to simple stellar populations forming at high redshift indicate that ~1.1 per cent of early-types in this sample are consistent with purely passive ageing since z = 2 - this value drops to ~0.24 per cent and ~0.15 per cent for z = 3 and 5, respectively. Parametrizing the recent star formation (RSF) in terms of the mass fraction of stars less than a Gyr old, we find that the early-type population as a whole shows a typical RSF between 5 and 13 per cent in the redshift range 0.5 < z < 1. Early-types on the broad UV `red sequence' show RSF values less than 5 per cent, while the reddest early-types (which are also the most luminous) are virtually quiescent with RSF values of ~1 per cent. In contrast to their low-redshift (z < 0.1) counterparts, the high-redshift early-types in this sample show a pronounced bimodality in the rest-frame UV-optical colour, with a minor but significant peak centred on the blue cloud. Furthermore, star formation in the most active early-types is a factor of 2 greater at z ~ 0.7 than in the local universe. Given that evolved sources of UV flux (e.g. horizontal branch stars) should be absent at z > 0.5, implying that the UV is dominated by young stars, we find compelling evidence that early-types of all luminosities form stars over the lifetime of the Universe, although the bulk of their

  13. High-Resolution Ultraviolet Spectra of the Dwarf Seyfert 1 Galaxy NGC 4395: Evidence for Intrinsic Absorption

    NASA Astrophysics Data System (ADS)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Schmitt, H. R.; Filippenko, A. V.; Ho, L. C.; Shields, J. C.; Turner, T. J.

    2004-09-01

    We present ultraviolet spectra of the dwarf Seyfert 1 nucleus of NGC 4395, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Hubble Space Telescope Space Telescope Imaging Spectrograph at velocity resolutions of 7-15 km s-1. We confirm our earlier claim of C IV absorption in low-resolution UV spectra and detect a number of other absorption lines with lower ionization potentials. In addition to the Galactic lines, we identify two kinematic components of absorption that are likely to be intrinsic to NGC 4395. We consider possible origins of the absorption, including the interstellar medium (ISM) of NGC 4395, the narrow-line region, the outflowing UV absorbers, and the X-ray ``warm absorbers.'' Component 1, at a radial velocity of -770 km s-1 with respect to the nucleus, is only identified in the C IV λ1548.2 line. It most likely represents an outflowing UV absorber, similar to those seen in a majority of Seyfert 1 galaxies, although additional observations are needed to confirm the reality of this feature. Component 2, at -114 km s-1, most likely arises in the ISM of NGC 4395; its ionic column densities cannot be matched by photoionization models with a power-law continuum. Our models of the highly ionized X-ray absorbers claimed for this active galactic nucleus indicate that they would have undetectable C IV absorption, but large O VI and H I columns should be present. We attribute our lack of detection of the O VI and Lyβ absorption from the X-ray absorbers to a combination of noise and dilution of the nuclear spectrum by hot stars in the large FUSE aperture. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 these observations are associated with proposal GO-9362. Also based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer

  14. From tidal dwarf galaxies to satellite galaxies

    NASA Astrophysics Data System (ADS)

    Bournaud, F.; Duc, P.-A.

    2006-09-01

    The current popular cosmological models have granted the population of dwarf satellite galaxies a key role: their number, location, and masses constrain both the distribution of dark matter and the physical evolution of their hosts. In the past years, there has been increasing observational evidence that objects with masses of dwarf galaxies can form in the tidal tails of colliding galaxies, as well as speculations that they could become satellite-like galaxies orbiting around their progenitors and thus be cosmologically important. Yet, whether the so-called "Tidal Dwarf Galaxy" (TDG) candidates are really long-lived objects and not transient features only present in young interacting systems is still largely an open question to which numerical simulations may give precise answers. We present here a set of 96 N-body simulations of colliding galaxies with various mass ratios and encounter geometries, including gas dynamics and star formation. We study the formation and long-term evolution of their TDG candidates. Among the 593 substructures initially identified in tidal tails, about 75% fall back onto their progenitor or are disrupted in a few 108 years. The remaining 25% become long-lived bound objects that typically survive more than 2 Gyr with masses above 108 M⊙. These long-lived, satellite-like objects, are found to form in massive gaseous accumulations originally located in the outermost regions of the tidal tails. Studying the statistical properties of the simulated TDGs, we infer several basic properties that dwarf galaxies should meet to have a possible tidal origin and apply these criteria to the Local Group dwarfs. We further found that the presence of TDGs would foster the anisotropy observed in the distribution of classical satellite galaxies around their host. Identifying the conditions fulfilled by interacting systems that were able to form long-lived tidal dwarfs - a spiral merging with a galaxy between 1/4 and 8 times its mass, on a prograde orbit

  15. Do elliptical galaxies have thick disks?

    NASA Technical Reports Server (NTRS)

    Thomson, R. C.; Wright, A. E.

    1990-01-01

    The authors discuss new evidence which supports the existence of thick disks in elliptical/SO galaxies. Numerical simulations of weak interactions with thick disk systems produce shell structures very similar in appearance to those observed in many shell galaxies. The authors think this model presents a more plausible explanation for the formation of shell structures in elliptical/SO galaxies than does the merger model and, if correct, supports the existence of thick disks in elliptical/SO galaxies.

  16. High resolution imaging of galaxy cores

    NASA Technical Reports Server (NTRS)

    Crane, P.; Stiavelli, M.; King, I. R.; Deharveng, J. M.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Boksenberg, A.; Disney, M. J.; Jakobsen, P.

    1993-01-01

    Surface photometry data obtained with the Faint Object Camera of the Hubble Space Telescope in the cores of ten galaxies is presented. The major results are: (1) none of the galaxies show truly 'isothermal' cores, (2) galaxies with nuclear activity show very similar light profiles, (3) all objects show central mass densities above 10 exp 3 solar masses/cu pc3, and (4) four of the galaxies (M87, NGC 3862, NGC 4594, NGC 6251) show evidence for exceptional nuclear mass concentrations.

  17. Evidence for a Circum-Nuclear and Ionised Absorber in the X-ray Obscured Broad Line Radio Galaxy 3C 445

    NASA Technical Reports Server (NTRS)

    Braito, V.; Reeves, J. N.; Sambruna, R. M.; Gofford, J.

    2012-01-01

    Here we present the results of a Suzaku observation of the Broad Line Radio Galaxy 3C 445. We confirm the results obtained with the previous X-ray observations which unveiled the presence of several soft X-ray emission lines and an overall X-ray emission which strongly resembles a typical Seyfert 2 despite of the optical classification as an unobscured AGN. The broad band spectrum allowed us to measure for the first time the amount of reflection (R approximately 0.9) which together with the relatively strong neutral Fe Ka emission line (EW approximately 100 eV) strongly supports a scenario where a Compton-thick mirror is present. The primary X ray continuum is strongly obscured by an absorber with a column density of NH = 2 - 3 x 10(exp 23) per square centimeter. Two possible scenarios are proposed for the absorber: a neutral partial covering or a mildly ionised absorber with an ionisation parameter log xi approximately 1.0 erg centimeter per second. A comparison with the past and more recent X-ray observations of 3C 445 performed with XMM-Newton and Chandra is presented, which provided tentative evidence that the ionised and outflowing absorber varied. We argue that the absorber is probably associated with an equatorial diskwind located within the parsec scale molecular torus.

  18. High-velocity blueshifted Fe II absorption in the dwarf star-forming galaxy PHL 293B: evidence for a wind driven supershell?

    NASA Astrophysics Data System (ADS)

    Terlevich, Roberto; Terlevich, Elena; Bosch, Guillermo; Díaz, Ángeles; Hägele, Guillermo; Cardaci, Mónica; Firpo, Verónica

    2014-12-01

    X-shooter and WHT-ISIS spectra of the star-forming galaxy PHL 293B also known as A2228-00 and SDSS J223036.79-000636.9 are presented in this paper. We find broad (FWHM = 1000 km s-1) and very broad (FWZI = 4000 km s-1) components in the Balmer lines, narrow absorption components in the Balmer series blueshifted by 800 km s-1, previously undetected Fe II multiplet (42) absorptions also blueshifted by 800 km s-1, IR Ca II triplet stellar absorptions consistent with [Fe/H] < -2.0 and no broad components or blueshifted absorptions in the He I lines. Based on historical records, we found no optical variability at the 5σ level of 0.02 mag between 2005 and 2013 and no optical variability at the level of 0.1 mag for the past 24 yr. The lack of variability rules out transient phenomena like luminous blue variables or Type IIn supernovae as the origin of the blueshifted absorptions of H I and Fe II. The evidence points to either a young and dense expanding supershell or a stationary cooling wind, in both cases driven by the young cluster wind.

  19. Interacting binary galaxies. IV - Simulations, masses, and spatial orientations for NGC 1587/1588 and NGC 7236/7237

    NASA Astrophysics Data System (ADS)

    Borne, Kirk D.

    1988-07-01

    Successful efforts to match interaction models to all of the available data for two pairs of interacting binary galaxies, Nos. 99 and 564 in the Karachentsev catalog of isolated pairs, are described. The results validate simple Newtonian gravity on the 10 kpc scale. The dynamical orbital status of both K99 and K564 is uniquely determined, and the masses and spatial orientations of the pairs are tightly constrained. Total masses for the pairs are derived which are quite reasonable and yield M/L values near 10. It is concluded that the observed disturbances in rotation velocity and luminosity distribution for these binary galaxies are entirely consistent with the merger hypothesis. Distortions including U-shaped rotation profiles and one-sided luminosity disturbances provide solid observational evidence of tidal friction in action.

  20. Interacting binary galaxies. IV. Simulations, masses, and spatial orientations for NGC 1587/1588 and NGC 7236/7237

    SciTech Connect

    Borne, K.D.

    1988-07-01

    Successful efforts to match interaction models to all of the available data for two pairs of interacting binary galaxies, Nos. 99 and 564 in the Karachentsev catalog of isolated pairs, are described. The results validate simple Newtonian gravity on the 10 kpc scale. The dynamical orbital status of both K99 and K564 is uniquely determined, and the masses and spatial orientations of the pairs are tightly constrained. Total masses for the pairs are derived which are quite reasonable and yield M/L values near 10. It is concluded that the observed disturbances in rotation velocity and luminosity distribution for these binary galaxies are entirely consistent with the merger hypothesis. Distortions including U-shaped rotation profiles and one-sided luminosity disturbances provide solid observational evidence of tidal friction in action. 18 references.

  1. Recovery of lotic macroinvertebrate communities from disturbance

    NASA Astrophysics Data System (ADS)

    Wallace, J. Bruce

    1990-09-01

    Ecosystem disturbances produce changes in macrobenthic community structure (abundances, biomass, and production) that persist for a few weeks to many decades. Examples of disturbances with extremely long-term effects on benthic communities include contamination by persistent toxic agents, physical changes in habitats, and altered energy inputs. Stream size, retention, and local geomorphology may ameliorate the influence of disturbances on invertebrates. Disturbances can alter food webs and may select for favorable genotypes (e.g., insecticidal resistance). Introductions of pesticides into lotic ecosystems, which do not result in major physical changes within habitats, illustrate several factors that influence invertebrate recovery time from disturbance. These include: (1) magnitude of original contamination, toxicity, and extent of continued use; (2) spatial scale of the disturbance; (3) persistence of the pesticide; (4) timing of the contamination in relation to the life history stages of the organisms; (5) vagility of populations influenced by pesticides; and (6) position within the drainage network. The ability of macroinvertebrates to recolonize denuded stream habitats may vary greatly depending on regional life histories, dispersal abilities, and position within the stream network (e.g., headwaters vs larger rivers). Although downstream drift is the most frequently cited mechanism of invertebrate recolonization following disturbance in middle- and larger-order streams, evidence is presented that shows aerial recolonization to be potentially important in headwater streams. There is an apparent stochastic element operating for aerial recolonization, depending on the timing of disturbance and flight periods of various taxa. Available evidence indicates that recolonization of invertebrate taxa without an aerial adult stage requires longer periods of time than for those that possess winged, terrestrial adult stages (i.e., most insects). Innovative, manipulative

  2. Amphetamine withdrawal and sleep disturbance.

    PubMed

    Gossop, M R; Bradley, B P; Brewis, R K

    1982-01-01

    Sleep duration and indices of disturbed sleep, such as night-time waking and day-time sleep, were investigated in amphetamine users following hospital admission and withdrawal from the drug. Compared to controls, the amphetamine group showed an initial period of oversleeping and, towards the end of the first week, they showed a considerable degree of reduced sleep which persisted for the 20 days of this study. There was greater variability in sleep duration within the amphetamine group on almost all nights, and the variability in sleep duration from one night to the next was also greater. More night-time sleep disturbance was evident among the amphetamine ex-users. These results are discussed with respect to previous work and the pattern is seen to be more complex than had been imagined. A tentative neurochemical model is suggested and clinical implications are considered. PMID:7166130

  3. Globular clusters as tracers of the halo assembly of nearby central cluster galaxies

    NASA Astrophysics Data System (ADS)

    Hilker, Michael; Richtler, Tom

    2016-08-01

    The properties of globular cluster systems (GCSs) in the core of the nearby galaxy clusters Fornax and Hydra I are presented. In the Fornax cluster we have gathered the largest radial velocity sample of a GCS system so far, which enables us to identify photometric and kinematic sub-populations around the central galaxy NGC 1399. Moreover, ages, metallicities and [α/Fe] abundances of a sub-sample of 60 bright globular clusters (GCs) with high S/N spectroscopy show a multi-modal distribution in the correlation space of these three parameters, confirming heterogeneous stellar populations in the halo of NGC 1399. In the Hydra I cluster very blue GCs were identified. They are not uniformly distributed around the central galaxies. 3-color photometry including the U-band reveals that some of them are of intermediate age. Their location coincides with a group of dwarf galaxies under disruption. This is evidence of a structurally young stellar halo ``still in formation'', which is also supported by kinematic measurements of the halo light that point to a kinematically disturbed system. The most massive GCs divide into generally more extended ultra-compact dwarf galaxies (UCDs) and genuine compact GCs. In both clusters, the spatial distribution and kinematics of UCDs are different from those of genuine GCs. Assuming that some UCDs represent nuclei of stripped galaxies, the properties of those UCDs can be used to trace the assembly of nucleated dwarf galaxies into the halos of central cluster galaxies. We show via semi-analytical approaches within a cosmological simulation that only the most massive UCDs in Fornax-like clusters can be explained by stripped nuclei, whereas the majority of lower mass UCDs belong to the star cluster family.

  4. Coma cluster of galaxies

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  5. Asymmetric Galaxies: Nature or Nurture?

    NASA Astrophysics Data System (ADS)

    Wilcots, E. M.

    2010-10-01

    Asymmetry is a common characteristic of many disk galaxies, but we have little understanding of its causes. In this contribution we look at the H I properties of a sample of Magellanic spirals, some of the most lopsided galaxies in the local Universe, and a sample of isolated spirals. In neither case do we see evidence of a link between the presence of a companion and asymmetry; indeed, asymmetry persists even in the absence of a companion or evidence of a recent interaction. These results suggest that once it arises, asymmetry may be a very long-lived characteristic of disk galaxies.

  6. Is There Evidence for a Hubble Bubble? The Nature of SN Ia Colors And Dust in External Galaxies

    SciTech Connect

    Conley, A.; Carlberg, R.G.; Guy, J.; Howell, D.A.; Jha, S.; Riess, A.G.; Sullivan, M.; /Toronto U., Astron. Dept.

    2007-06-06

    We examine recent evidence from the luminosity-redshift relation of Type Ia Supernovae for the {approx} 3 {sigma} detection of a ''Hubble bubble'' -- a departure of the local value of the Hubble constant from its globally averaged value. By comparing the MLCS2k2 fits used in that study to the results from other light-curve fitters applied to the same data, we demonstrate that this is related to the interpretation of SN color excesses (after correction for a light-curve shape-color relation) and the presence of a color gradient across the local sample. If the slope of the linear relation ({beta}) between SN color excess and luminosity is fit empirically, then the bubble disappears. If, on the other hand, the color excess arises purely from Milky-Way like dust, then SN data clearly favors a Hubble bubble. We demonstrate that SN data give {beta} {approx} 2, instead of the {beta} {approx} 4 one would expect from purely Milky-Way-like dust. This suggests that either SN intrinsic colors are more complicated than can be described with a single light-curve shape parameter, or that dust around SN is unusual. Disentangling these possibilities is both a challenge and an opportunity for large-survey SN Ia cosmology.

  7. Black Holes Are The Rhythm at The Heart of Galaxies

    NASA Astrophysics Data System (ADS)

    2008-11-01

    circulatory systems to keep us alive, black holes give galaxies a vital warm component. They are a careful creation of nature, allowing a galaxy to maintain a fragile equilibrium," Finoguenov said. X-rayChandra X-ray Image This finding helps to explain a decades-long paradox of the existence of large amounts of warm gas around certain galaxies, making them appear bright to the Chandra X-ray telescope. "For decades astronomers were puzzled by the presence of the warm gas around these objects. The gas was expected to cool down and form a lot of stars," said Mateusz Ruszkowski, an assistant professor in the University of Michigan Department of Astronomy. "Now, we see clear and direct evidence that the heating mechanism of black holes is persistent, producing enough heat to significantly suppress star formation. These plasma bubbles are caused by bursts of energy that happen one after another rather than occasionally, and the direct evidence for such periodic behavior is difficult to find." The bubbles form one inside to another, for a sort of Russian doll effect that has not been seen before, Ruszkowski said. One of the bubbles of hot plasma appears to be bursting and its contents spilling out, further contributing to the heating of the interstellar gas. "Disturbed gas in old galaxies is seen in many images that NASA's Chandra observatory obtained, but seeing multiple events is a really impressive evidence for persistent black hole activity," says Christine Jones, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics. A paper on the research called "In-depth Chandra study of the AGN feedback in Virgo Elliptical Galaxy M84" has been published in Astrophysical Journal.

  8. Evidence for significant radial increase of the mass-to-light ratio based on phenomenological analysis of eight early-type galaxies

    NASA Astrophysics Data System (ADS)

    Samurović, Srdjan

    2016-01-01

    In this paper we study the sample of eight nearby early-type galaxies for which we have reliable estimates of their total dynamical mass in their interior and exterior parts based on the observed globular clusters. We use a phenomenological approach in the study of the gradient of the mass-to-light ratio of the galaxies in the sample. Since the outermost point for which we have the estimates of the mass-to-light ratios is fixed at 5 effective radii, this provides the opportunity to study the dark matter content of early-type galaxies which is expected to dominate in their outer parts, i.e., beyond ˜ 2-3 effective radii. We find that all the galaxies in our sample show the increase of the cumulative mass-to-light ratio which indicates various amount of additional, dark, component in their mass content. We show that galaxies with higher values of α+β (where α and β are slope parameters) have higher virial masses. We show that two galaxies which are slow rotators (NGC 1407 and NGC 5846) have α+β>1 whereas the remaining 6 galaxies are all fast rotators, and for these objects we found that α+β≤ 1. We also compare our findings with the theoretical expectations coming from numerical simulations.

  9. The SINS/zC-SINF survey of z ∼ 2 galaxy kinematics: Evidence for powerful active galactic nucleus-driven nuclear outflows in massive star-forming galaxies

    SciTech Connect

    Förster Schreiber, N. M.; Genzel, R.; Kurk, J. D.; Lutz, D.; Tacconi, L. J.; Wuyts, S.; Bandara, K.; Buschkamp, P.; Davies, R.; Eisenhauer, F.; Lang, P.; Newman, S. F.; Burkert, A.; Carollo, C. M.; Lilly, S. J.; Cresci, G.; Daddi, E.; Mainieri, V.; Mancini, C.; and others

    2014-05-20

    We report the detection of ubiquitous powerful nuclear outflows in massive (≥10{sup 11} M {sub ☉}) z ∼ 2 star-forming galaxies (SFGs), which are plausibly driven by an active galactic nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics-assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Hα and forbidden [N II] and [S II] line emission, with typical velocity FWHM ∼ 1500 km s{sup –1}, [N II]/Hα ratio ≈ 0.6, and intrinsic extent of 2-3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ∼60 M {sub ☉} yr{sup –1} and mass loading of ∼3. At larger radii, a weaker broad component is detected but with lower FWHM ∼485 km s{sup –1} and [N II]/Hα ≈ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest that the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial in confirming the importance and energetics of the nuclear outflow phenomenon and its connection to AGN activity and bulge growth.

  10. Rebuilding Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Major Observing Programme Leads to New Theory of Galaxy Formation Summary Most present-day large galaxies are spirals, presenting a disc surrounding a central bulge. Famous examples are our own Milky Way or the Andromeda Galaxy. When and how did these spiral galaxies form? Why do a great majority of them present a massive central bulge? An international team of astronomers [1] presents new convincing answers to these fundamental questions. For this, they rely on an extensive dataset of observations of galaxies taken with several space- and ground-based telescopes. In particular, they used over a two-year period, several instruments on ESO's Very Large Telescope. Among others, their observations reveal that roughly half of the present-day stars were formed in the period between 8,000 million and 4,000 million years ago, mostly in episodic burst of intense star formation occurring in Luminous Infrared Galaxies. From this and other evidence, the astronomers devised an innovative scenario, dubbed the "spiral rebuilding". They claim that most present-day spiral galaxies are the results of one or several merger events. If confirmed, this new scenario could revolutionise the way astronomers think galaxies formed. PR Photo 02a/05: Luminosity - Oxygen Abundance Relation for Galaxies (VLT) PR Photo 02b/05: The Spiral Rebuilding Scenario A fleet of instruments How and when did galaxies form? How and when did stars form in these island universes? These questions are still posing a considerable challenge to present-day astronomers. Front-line observational results obtained with a fleet of ground- and space-based telescopes by an international team of astronomers [1] provide new insights into these fundamental issues. For this, they embarked on an ambitious long-term study at various wavelengths of 195 galaxies with a redshift [2] greater than 0.4, i.e. located more than 4000 million light-years away. These galaxies were studied using ESO's Very Large Telescope, as well as the

  11. Galaxy masses

    NASA Astrophysics Data System (ADS)

    Courteau, Stéphane; Cappellari, Michele; de Jong, Roelof S.; Dutton, Aaron A.; Emsellem, Eric; Hoekstra, Henk; Koopmans, L. V. E.; Mamon, Gary A.; Maraston, Claudia; Treu, Tommaso; Widrow, Lawrence M.

    2014-01-01

    Galaxy masses play a fundamental role in our understanding of structure formation models. This review addresses the variety and reliability of mass estimators that pertain to stars, gas, and dark matter. The different sections on masses from stellar populations, dynamical masses of gas-rich and gas-poor galaxies, with some attention paid to our Milky Way, and masses from weak and strong lensing methods all provide review material on galaxy masses in a self-consistent manner.

  12. Ionized outflows in luminous type 2 AGNs at z < 0.6: no evidence for significant impact on the host galaxies

    NASA Astrophysics Data System (ADS)

    Villar-Martín, M.; Arribas, S.; Emonts, B.; Humphrey, A.; Tadhunter, C.; Bessiere, P.; Cabrera Lavers, A.; Ramos Almeida, C.

    2016-04-01

    We investigate the presence of extended ionized outflows in 18 luminous type 2 AGNs (11 quasars and 7 high luminosity Seyfert 2s) at 0.3evidence is found supporting that typical outflows can affect the interstellar medium of the host galaxies accross spatial scales ≳ 1-2 kpc.

  13. Ionized outflows in luminous type 2 AGNs at z < 0.6: no evidence for significant impact on the host galaxies

    NASA Astrophysics Data System (ADS)

    Villar-Martín, M.; Arribas, S.; Emonts, B.; Humphrey, A.; Tadhunter, C.; Bessiere, P.; Cabrera Lavers, A.; Ramos Almeida, C.

    2016-07-01

    We investigate the presence of extended ionized outflows in 18 luminous type 2 AGNs (11 quasars and 7 high-luminosity Seyfert 2s) at 0.3 < z < 0.6 based on VLT-FORS2 spectroscopy. We infer typical lower limits on the radial sizes of the outflows Ro ≳ several × 100 pc and upper limits Ro ≲ 1-2 kpc. Our results are inconsistent with related studies which suggest that large scale (Ro ˜ several-15 kpc) are ubiquitous in QSO2. We study the possible causes of discrepancy and propose that seeing smearing is the cause of the large inferred sizes. The implications in our understanding of the feedback phenomenon are important since the mass Mo (through the density), mass injection skew3dot{M}_o and energy injection dot{E}_o rates of the outflows become highly uncertain. One conclusion seems unavoidable: Mo, skew3dot{M}_o and dot{E}_o are modest or low compared with previous estimations. We obtain typically Mo ≲ (0.4-22) × 106 M⊙ (median 1.1 × 106 M⊙) assuming n = 1000 cm-3. These are ˜102-104 times lower than values reported in the literature. Even under the most favourable assumptions, we obtain \\dot{M}_o ≲ 10 M⊙ yr-1 in general, 100-1000 times lower than claimed in related studies. Although the uncertainties are large, it is probable that these are lower than typical star-forming rates. In conclusion, no evidence is found supporting that typical outflows can affect the interstellar medium of the host galaxies across spatial scales ≳ 1-2 kpc.

  14. Evidence for a nuclear radio jet and its structure down to ≲100 Schwarzschild radii in the center of the Sombrero galaxy (M 104, NGC 4594)

    SciTech Connect

    Hada, Kazuhiro; Giroletti, Marcello; Giovannini, Gabriele; Doi, Akihiro; Nagai, Hiroshi; Honma, Mareki; Inoue, Makoto

    2013-12-10

    The Sombrero galaxy (M 104, NGC 4594) is associated with one of the nearest low-luminosity active galactic nuclei (AGNs). We investigated the detailed radio structure of the Sombrero nucleus using high-resolution, quasi-simultaneous, multi-frequency, phase-referencing Very Long Baseline Array observations. We obtained high-quality images of this nucleus at seven frequencies, where those at 15, 24, and 43 GHz are the first clear very long baseline interferometry detections. At 43 GHz, the nuclear structure was imaged on a linear scale under 0.01 pc or 100 Schwarzschild radii, revealing a compact, high-brightness-temperature (≳ 3 × 10{sup 9} K) radio core. We discovered the presence of the extended structure emanating from the core on two sides in the northwest and southeast directions. The nuclear radio spectra show a clear spatial gradient, which is similar to that seen in more luminous AGNs with powerful relativistic jets. Moreover, the size and position of the core tend to be frequency dependent. These findings provide evidence that the central engine of the Sombrero is powering radio jets and the jets are overwhelming the emission from the underlying radiatively inefficient accretion flow over the observed frequencies. Based on these radio characteristics, we constrained the following physical parameters for the M 104 jets: (1) the northern side is approaching, whereas the southern one is receding; (2) the jet viewing angle is relatively close to our line-of-sight (≲ 25°); and (3) the intrinsic jet velocity is highly sub-relativistic (≲ 0.2c). The derived pole-on nature of the M 104 jets is consistent with the previous argument that this nucleus contains a true type II AGN, i.e., the broad line region is actually absent or intrinsically weak if the plane of the circumnuclear torus is perpendicular to the jet axis.

  15. Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    This image is a Galaxy Evolution Explorer observation of the large galaxy in Andromeda, Messier 31. The Andromeda galaxy is the most massive in the local group of galaxies that includes our Milky Way. Andromeda is the nearest large galaxy to our own. The image is a mosaic of 10 separate Galaxy Evolution Explorer images taken in September, 2003. The color image (with near ultraviolet shown by red and far ultraviolet shown by blue) shows blue regions of young, hot, high mass stars tracing out the spiral arms where star formation is occurring, and the central orange-white 'bulge' of old, cooler stars formed long ago. The star forming arms of Messier 31 are unusual in being quite circular rather than the usual spiral shape. Several companion galaxies can also be seen. These include Messier 32, a dwarf elliptical galaxy directly below the central bulge and just outside the spiral arms, and Messier 110 (M110), which is above and to the right of the center. M110 has an unusual far ultraviolet bright core in an otherwise 'red,' old star halo. Many other regions of star formation can be seen far outside the main body of the galaxy.

  16. Starburst galaxies

    NASA Technical Reports Server (NTRS)

    Weedman, Daniel W.

    1987-01-01

    The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.

  17. THE ROLE OF MERGERS IN EARLY-TYPE GALAXY EVOLUTION AND BLACK HOLE GROWTH

    SciTech Connect

    Schawinski, Kevin; Dowlin, Nathan; Urry, C. Megan; Thomas, Daniel; Edmondson, Edward

    2010-05-01

    Models of galaxy formation invoke the major merger of gas-rich progenitor galaxies as the trigger for significant phases of black hole growth and the associated feedback that suppresses star formation to create red spheroidal remnants. However, the observational evidence for the connection between mergers and active galactic nucleus (AGN) phases is not clear. We analyze a sample of low-mass early-type galaxies known to be in the process of migrating from the blue cloud to the red sequence via an AGN phase in the green valley. Using deeper imaging from Sloan Digital Sky Survey Stripe 82, we show that the fraction of objects with major morphological disturbances is high during the early starburst phase, but declines rapidly to the background level seen in quiescent early-type galaxies by the time of substantial AGN radiation several hundred Myr after the starburst. This observation empirically links the AGN activity in low-redshift early-type galaxies to a significant merger event in the recent past. The large time delay between the merger-driven starburst and the peak of AGN activity allows for the merger features to decay to the background and hence may explain the weak link between merger features and AGN activity in the literature.

  18. VERY BLUE UV-CONTINUUM SLOPE {beta} OF LOW LUMINOSITY z {approx} 7 GALAXIES FROM WFC3/IR: EVIDENCE FOR EXTREMELY LOW METALLICITIES?

    SciTech Connect

    Bouwens, R. J.; Illingworth, G. D.; Magee, D.; Trenti, M.; Stiavelli, M.; Franx, M.; Van Dokkum, P. G.; Labbe, I.

    2010-01-10

    We use the ultra-deep WFC3/IR data over the Hubble Ultra Deep Field and the Early Release Science WFC3/IR data over the CDF-South GOODS field to quantify the broadband spectral properties of candidate star-forming galaxies at z {approx} 7. We determine the UV-continuum slope {beta} in these galaxies, and compare the slopes with galaxies at later times to measure the evolution in {beta}. For luminous L* {sub z=3} galaxies, we measure a mean UV-continuum slope {beta} of -2.0 {+-} 0.2, which is comparable to the {beta} {approx} -2 derived at similar luminosities at z {approx} 5-6. However, for the lower luminosity 0.1L* {sub z=3} galaxies, we measure a mean {beta} of -3.0 {+-} 0.2. This is substantially bluer than is found for similar luminosity galaxies at z {approx} 4, just 800 Myr later, and even at z {approx} 5-6. In principle, the observed {beta} of -3.0 can be matched by a very young, dust-free stellar population, but when nebular emission is included the expected {beta} becomes {>=}-2.7. To produce these very blue {beta}s (i.e., {beta} {approx} -3), extremely low metallicities and mechanisms to reduce the red nebular emission seem to be required. For example, a large escape fraction (i.e., f {sub esc} {approx}> 0.3) could minimize the contribution from this red nebular emission. If this is correct and the escape fraction in faint z {approx} 7 galaxies is {approx}>0.3, it may help to explain how galaxies reionize the universe.

  19. DISCOVERY OF 'WARM DUST' GALAXIES IN CLUSTERS AT z {approx} 0.3: EVIDENCE FOR STRIPPING OF COOL DUST IN THE DENSE ENVIRONMENT?

    SciTech Connect

    Rawle, T. D.; Rex, M.; Egami, E.; Walth, G.; Pereira, M. J.; Chung, S. M.; Gonzalez, A. H.; Perez-Gonzalez, P. G.; Smail, I.; Altieri, B.; Valtchanov, I.; Appleton, P.; Fadda, D.; Alba, A. Berciano; Blain, A. W.; Dessauges-Zavadsky, M.; Van der Werf, P. P.; Zemcov, M.

    2012-09-10

    Using far-infrared imaging from the 'Herschel Lensing Survey', we derive dust properties of spectroscopically confirmed cluster member galaxies within two massive systems at z {approx} 0.3: the merging Bullet Cluster and the more relaxed MS2137.3-2353. Most star-forming cluster sources ({approx}90%) have characteristic dust temperatures similar to local field galaxies of comparable infrared (IR) luminosity (T{sub dust} {approx} 30 K). Several sub-luminous infrared galaxy (LIRG; L{sub IR} < 10{sup 11} L{sub Sun }) Bullet Cluster members are much warmer (T{sub dust} > 37 K) with far-infrared spectral energy distribution (SED) shapes resembling LIRG-type local templates. X-ray and mid-infrared data suggest that obscured active galactic nuclei do not contribute significantly to the infrared flux of these 'warm dust' galaxies. Sources of comparable IR luminosity and dust temperature are not observed in the relaxed cluster MS2137, although the significance is too low to speculate on an origin involving recent cluster merging. 'Warm dust' galaxies are, however, statistically rarer in field samples (>3{sigma}), indicating that the responsible mechanism may relate to the dense environment. The spatial distribution of these sources is similar to the whole far-infrared bright population, i.e., preferentially located in the cluster periphery, although the galaxy hosts tend toward lower stellar masses (M{sub *} < 10{sup 10} M{sub Sun }). We propose dust stripping and heating processes which could be responsible for the unusually warm characteristic dust temperatures. A normal star-forming galaxy would need 30%-50% of its dust removed (preferentially stripped from the outer reaches, where dust is typically cooler) to recover an SED similar to a 'warm dust' galaxy. These progenitors would not require a higher IR luminosity or dust mass than the currently observed normal star-forming population.

  20. The Swift GRB Host Galaxy Legacy Survey. II. Rest-frame Near-IR Luminosity Distribution and Evidence for a Near-solar Metallicity Threshold

    NASA Astrophysics Data System (ADS)

    Perley, D. A.; Tanvir, N. R.; Hjorth, J.; Laskar, T.; Berger, E.; Chary, R.; de Ugarte Postigo, A.; Fynbo, J. P. U.; Krühler, T.; Levan, A. J.; Michałowski, M. J.; Schulze, S.

    2016-01-01

    We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ˜ 0.5 and z ˜ 1.5, but little variation between z ˜ 1.5 and z ˜ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass-metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2 metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.

  1. U-Th-Pb geochronology of the Massabesic Gneiss and the granite near Milford, South-Central New Hampshire: New evidence for avalonian basement and taconic and alleghenian disturbances in Eastern New England

    USGS Publications Warehouse

    Aleinikoff, J.N.; Zartman, R.E.; Lyons, J.B.

    1979-01-01

    U-Th-Pb systematics for zircon and monazite from Massabesic Gneiss (paragneiss and orthogneiss) and the granite near Milford, New Hampshire, were determined. Zircon morphology suggests that the paragneiss may be volcaniclastic (igneous) in origin, and thus the age data probably record the date (minimum of 646 m.y.) at which the rock was extruded. A two-stage lead-loss model is proposed to explain the present array of data points on a concordia diagram. Orthogneiss ages range only narrowly and are clustered around 475 m.y. Data for the granite of Milford, New Hampshire, are scattered, but may be interpreted in terms of inheritance and modern lead loss, yielding a crystallization age of 275 m.y. This is the only known occurrence of Avalonian-type basement in New Hampshire and as such provides evidence for the location of the paleo-Africa-paleo- North America suture. The geochronology also further documents the occurrence of disturbances during the Ordovician and Permian. ?? 1979 Springer-Verlag.

  2. Resolved Spectroscopy of a Gravitationally Lensed L^{*} Lyman Break Galaxy at z˜5: Evidence for a Starburst-Driven, Galactic-Scale Bi-Polar Outflow

    NASA Astrophysics Data System (ADS)

    Swinbank, M.

    2007-12-01

    We exploit the gravitational potential of a massive, rich cluster as a natural magnifying glass to study the internal properties of the highly magnified galaxy at z=4.88. Using high resolution HST imaging we construct a detailed mass model and, together with optical (VIMOS) and near-infrared (SINFONI) Integral Field Spectroscopy, we have mapped the source-frame morphology of the lensed galaxy behind galaxy cluster RCS0224-002 on 200pc scales to find an ˜L^{*} Lyman-break galaxy with a dynamical mass of 1.0×10^{10} M_{⊙} within 2 kpc and infer an integrated star-formation rate of just 12±2 M_{⊙} yr^{-1}. By combing the spatially resolved velocities from the [O II] and Lyα emission and UV ISM absorption lines we suggest that this galaxy is surrounded by a galactic-scale bi-polar outflow which has recently burst out of the system and is escaping at a speed of ˜500 km s^{-1}. The geometry and velocity of the outflow suggests that the ejected material is travelling far faster than escape velocity and we estimate that it will travel at least 1 Mpc (comoving) before eventually stalling. The enriched, outflowing material is therefore efficient at expelling baryons which are likely to subsequently play no further part in the star-formation history of this galaxy, but rather will pollute the IGM in a volume of at least 3Mpc^{3}.

  3. Edge-on Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Hubble Space Telescope has imaged an unusual edge-on galaxy, revealing remarkable details of its warped dusty disc and showing how colliding galaxies trigger the birth of new stars.

    The image, taken by Hubble's Wide Field and Planetary Camera 2 (WFPC2), is online at http://heritage.stsci.edu and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. During observations of the galaxy, the camera passed a milestone, taking its 100,000th image since shuttle astronauts installed it in Hubble in 1993.

    The dust and spiral arms of normal spiral galaxies, like our Milky Way, look flat when seen edge- on. The new image of the galaxy ESO 510-G13 shows an unusual twisted disc structure, first seen in ground-based photographs taken at the European Southern Observatory in Chile. ESO 510-G13 lies in the southern constellation Hydra, some 150 million light-years from Earth. Details of the galaxy's structure are visible because interstellar dust clouds that trace its disc are silhouetted from behind by light from the galaxy's bright, smooth central bulge.

    The strong warping of the disc indicates that ESO 510-G13 has recently collided with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort galaxies as their stars, gas, and dust merge over millions of years. When the disturbances die out, ESO 510-G13 will be a single galaxy.

    The galaxy's outer regions, especially on the right side of the image, show dark dust and bright clouds of blue stars. This indicates that hot, young stars are forming in the twisted disc. Astronomers believe star formation may be triggered when galaxies collide and their interstellar clouds are compressed.

    The Hubble Heritage Team used WFPC2 to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty

  4. Dark Times for the Fluffiest Galaxies

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Beasley, Michael A.; Burkert, Andreas; Abraham, Roberto G.; Brodie, Jean P.; Deich, Aaron; Martin-navarro, Ignacio; Martinez-Delgado, David; Pota, Vincenzo; Rider, Nicole; Sandoval, Michael; Santhanakrishnan, Vakini; Stone, Maria; Van Dokkum, Pieter G.

    2016-06-01

    Ultra-diffuse galaxies (UDGs) were recently recognized as an abundant class of low-surface brightness galaxies with unusually large sizes -- found both in galaxy clusters and in the field. The nature and origins of these galaxies are unclear, with one intriguing possibility that some of them are "failed Milky Ways" with massive halos but a paucity of stars. I will present observations of stars and globular clusters in UDGs that constrain their stellar populations and masses -- including evidence for being ultra-rich in dark matter. I will also show results from simulations of UDG formation through ram-pressure stripping of gas-rich disk galaxies.

  5. Microvariability in Seyfert galaxies

    USGS Publications Warehouse

    Carini, M.T.; Noble, J.C.; Miller, H.R.

    2003-01-01

    We present the results of a search for microvariability in a sample of eight Seyfert galaxies. Microvariability (i.e., variations occurring on timescales of tens of minutes to hours) has been conclusively demonstrated to exist in the class of active galactic nuclei (AGNs) known as blazars. Its existence in other classes of AGNs is far less certain. We present the results of a study of eight Seyfert 1 galaxies, which were intensively monitored in order to determine whether such variations exist in these objects. Only one object, Ark 120, displayed any evidence of microvariations. The implications of these results with respect to current models of the mechanisms responsible for the observed emission in Seyfert galaxies are discussed. We compare our results with those obtained from other studies of microvariability in different classes of AGNs.

  6. Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.

    2013-01-01

    Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.

  7. Giant disc galaxies: where environment trumps mass in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Courtois, H. M.; Zaritsky, D.; Sorce, J. G.; Pomarède, D.

    2015-04-01

    We identify some of the most H I-massive and fastest rotating disc galaxies in the local universe with the aim of probing the processes that drive the formation of these extreme disc galaxies. By combining data from the Cosmic Flows project, which has consistently reanalysed archival galaxy H I profiles, and 3.6 μm photometry obtained with the Spitzer Space Telescope, with which we can measure stellar mass, we use the baryonic Tully-Fisher (BTF) relationship to explore whether these massive galaxies are distinct. We discuss several results, but the most striking is the systematic offset of the H I-massive sample above the BTF. These galaxies have both more gas and more stars in their discs than the typical disc galaxy of similar rotational velocity. The `condensed' baryon fraction, fC, the fraction of the baryons in a dark matter halo that settle either as cold gas or stars into the disc, is twice as high in the H I-massive sample than typical, and almost reaches the universal baryon fraction in some cases, suggesting that the most extreme of these galaxies have little in the way of a hot baryonic component or cold baryons distributed well outside the disc. In contrast, the star formation efficiency, measured as the ratio of the mass in stars to that in both stars and gas, shows no difference between the H I-massive sample and the typical disc galaxies. We conclude that the star formation efficiency is driven by an internal, self-regulating process, while fC is affected by external factors. Neither the morphology nor the star formation rate of these galaxies is primarily determined by either their dark or stellar mass. We also found that the most massive H I detected galaxies are located preferentially in filaments. We present the first evidence of an environmental effect on galaxy evolution using a dynamical definition of a filament.

  8. Giant disk galaxies : Where environment trumps mass in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Courtois, Helene M.; Zaritsky, Dennis; Sorce, Jenny G.; Pomarede, Daniel

    2015-08-01

    We identify some of the most HI massive and fastest rotating disk galaxies in the local universe with the aim of probing the processes that drive the formation of these extreme disk galaxies. By combining data from the Cosmic Flows project, which has consistently reanalyzed archival galaxy HI profiles, and 3.6 micron photometry obtained with the Spitzer Space Telescope, with which we can measure stellar mass, we use the baryonic Tully-Fisher relationship to explore whether these massive galaxies are distinct.We discuss several results, but the most striking is the systematic offset of the HI-massive sample above the baryonic Tully-Fisher. These galaxies have both more gas and more stars in their disks than the typical disk galaxy of similar rotational velocity. The ``condensed" baryon fraction, fC, the fraction of the baryons in a dark matter halo that settle either as cold gas or stars into the disk, is twice as high in the HI-massive sample than typical, and almost reaches the universal baryon fraction in some cases, suggesting that the most extreme of these galaxies have little in the way of a hot baryonic component or cold baryons distributed well outside the disk. In contrast, the star formation efficiency, measured as the ratio of the mass in stars to that in both stars and gas, shows no difference between the HI-massive sample and the typical disk galaxies. We conclude that the star formation efficiency is driven by an internal, self-regulating process, while fC is affected by external factors. Neither the morphology nor the star formation rate of these galaxies is primarily determined by either their dark or stellar mass. We also found that the most massive HI detected galaxies are located preferentially in filaments. We present the first evidence of an environmental effect on galaxy evolution using a dynamical definition of a filament.

  9. Nuclear sources in galaxies

    NASA Astrophysics Data System (ADS)

    Elvis, M.

    In the local Universe most massive black holes at the centers of galaxies are not luminous quasars. Is this because (1) they are starved of gas, (2) they accrete without emitting radiation, (3) they refuse to eat, ejecting the incoming material, or (4) they are storing up matter in an accretion disk to feast later?With Chandra ACIS we have imaged a pilot sample of 6 nearby (D 30 Mpc) elliptical galaxies chosen to be especially quiescent based on the careful optical spectroscopy of Ho, measured black hole masses (Mbh > 10(7)Msol), and with existing X-ray upper limits (Lx 10(40)erg/s) implying far sub-Eddington accretion. In these galaxies we can measure, or limit, the diffuse hot interstellar medium, and so constrain the Bondi accretion rate.Faint X-ray emission is detected at or around the nucleus in each galaxy. The morphology of these weak X-ray sources is complex. The X-ray colors of the sources can be determined, and a moderate quality spectrum for one was obtained. We discuss these results against the possible explanations of black hole quiescence.On the other hand, a few percent of all galaxies shows evidence for nuclear activity and a brief review of the high energy emission from Active Galactic Nuclei is given.

  10. Hydrological disturbance diminishes predator control in wetlands.

    PubMed

    Dorn, Nathan J; Cook, Mark I

    2015-11-01

    Effects of predators on prey populations can be especially strong in aquatic ecosystems, but disturbances may mediate the strength of predator limitation and even allow outbreaks of some prey populations. In a two-year study we investigated the numerical responses of crayfish (Procambarus fallax) and small fishes (Poeciliidae and Fundulidae) to a brief hydrological disturbance in replicated freshwater wetlands with an experimental drying and large predatory fish reduction. The experiment and an in situ predation assay tested the component of the consumer stress model positing that disturbances release prey from predator limitation. In the disturbed wetlands, abundances of large predatory fish were seasonally reduced, similar to dynamics in the Everglades (southern Florida). Densities of small fish were unaffected by the disturbance, but crayfish densities, which were similar across all wetlands before drying, increased almost threefold in the year after the disturbance. Upon re-flooding, juvenile crayfish survival was inversely related to the abundance of large fish across wetlands, but we found no evidence for enhanced algal food quality. At a larger landscape scale (500 km2 of the Everglades), crayfish densities over eight years were positively correlated with the severity of local dry disturbances (up to 99 days dry) during the preceding dry season. In contrast, densities of small-bodied fishes in the same wetlands were seasonally depressed by dry disturbances. The results from our experimental wetland drought and the observations of crayfish densities in the Everglades represent a large-scale example of prey population release following a hydrological disturbance in a freshwater ecosystem. The conditions producing crayfish pulses in the Everglades appear consistent with the mechanics of the consumer stress model, and we suggest crayfish pulses may influence the number of nesting wading birds in the Everglades. PMID:27070017

  11. Disturbance maintains alternative biome states.

    PubMed

    Dantas, Vinícius de L; Hirota, Marina; Oliveira, Rafael S; Pausas, Juli G

    2016-01-01

    Understanding the mechanisms controlling the distribution of biomes remains a challenge. Although tropical biome distribution has traditionally been explained by climate and soil, contrasting vegetation types often occur as mosaics with sharp boundaries under very similar environmental conditions. While evidence suggests that these biomes are alternative states, empirical broad-scale support to this hypothesis is still lacking. Using community-level field data and a novel resource-niche overlap approach, we show that, for a wide range of environmental conditions, fire feedbacks maintain savannas and forests as alternative biome states in both the Neotropics and the Afrotropics. In addition, wooded grasslands and savannas occurred as alternative grassy states in the Afrotropics, depending on the relative importance of fire and herbivory feedbacks. These results are consistent with landscape scale evidence and suggest that disturbance is a general factor driving and maintaining alternative biome states and vegetation mosaics in the tropics. PMID:26493189

  12. Street lighting disturbs commuting bats.

    PubMed

    Stone, Emma Louise; Jones, Gareth; Harris, Stephen

    2009-07-14

    Anthropogenic disturbance is a major cause of worldwide declines in biodiversity. Understanding the implications of this disturbance for species and populations is crucial for conservation biologists wishing to mitigate negative effects. Anthropogenic light pollution is an increasing global problem, affecting ecological interactions across a range of taxa and impacting negatively upon critical animal behaviors including foraging, reproduction, and communication (for review see). Almost all bats are nocturnal, making them ideal subjects for testing the effects of light pollution. Previous studies have shown that bat species adapted to foraging in open environments feed on insects attracted to mercury vapor lamps. Here, we use an experimental approach to provide the first evidence of a negative effect of artificial light pollution on the commuting behavior of a threatened bat species. We installed high-pressure sodium lights that mimic the intensity and light spectra of streetlights along commuting routes of lesser horseshoe bats (Rhinolophus hipposideros). Bat activity was reduced dramatically and the onset of commuting behavior was delayed in the presence of lighting, with no evidence of habituation. These results demonstrate that light pollution may have significant negative impacts upon the selection of flight routes by bats. PMID:19540116

  13. CONFIRMATION OF ENHANCED DWARF-SENSITIVE ABSORPTION FEATURES IN THE SPECTRA OF MASSIVE ELLIPTICAL GALAXIES: FURTHER EVIDENCE FOR A NON-UNIVERSAL INITIAL MASS FUNCTION

    SciTech Connect

    Van Dokkum, Pieter G.; Conroy, Charlie

    2011-07-01

    We recently found that massive cluster elliptical galaxies have strong Na I {lambda}8183, 8195 and FeH {lambda}9916 Wing-Ford band absorption, indicating the presence of a very large population of stars with masses {approx}< 0.3 M{sub sun}. Here we test this result by comparing the elliptical galaxy spectra to those of luminous globular clusters associated with M31. These globular clusters have similar metallicities, abundance ratios, and ages as massive elliptical galaxies but their low dynamical mass-to-light ratios rule out steep stellar initial mass functions (IMFs). From high-quality Keck spectra we find that the dwarf-sensitive absorption lines in globular clusters are significantly weaker than in elliptical galaxies and consistent with normal IMFs. The differences in the Na I and Wing-Ford indices are 0.027 {+-} 0.007 mag and 0.017 {+-} 0.006 mag, respectively. We directly compare the two classes of objects by subtracting the averaged globular cluster spectrum from the averaged elliptical galaxy spectrum. The difference spectrum is well fit by the difference between a stellar population synthesis model with a bottom-heavy IMF and one with a bottom-light IMF. We speculate that the slope of the IMF may vary with velocity dispersion, although it is not yet clear what physical mechanism would be responsible for such a relation.

  14. Galaxy Zoo: Observing Secular Evolution Through Bars

    NASA Astrophysics Data System (ADS)

    Cheung, E.; Athanassoula, E.; Masters, K. L.; Nichol, R. C.; Bosma, A.; Bell, E. F.; Faber, S. M.; Koo, D. C.; Lintott, C.; Melvin, T.; Schawinski, K.; Skibba, R. A.; Willett, K. W.

    2014-03-01

    Although often seen in galaxies, the role that bars play in galaxy evolution has been largely overlooked. Observations show that bars — stellar linear-shaped structures — have been present in galaxies since z ˜ 1, about 8 billion years ago, and that more and more galaxies are becoming barred with time. This trend has continued to the present, where about two-thirds of all disk galaxies are barred. Observations have also shown that there is a connection between the presence of a bar and the properties of a galaxy, including morphology, star formation, chemical abundance gradients, and nuclear activity. These trends are consistent with the predicted effects of bars on galaxy evolution, i.e., secular evolution. Thus, observations and simulations indicate that bars are important drivers of galaxy evolution. But despite these evidence, bars are still commonly omitted in the lore of galaxy evolution. This proceeding briefly highlights work by Cheung et al. (2013), which tries to change this common omission by presenting the best evidence of bar-driven secular evolution yet. This work implies that bars are not stagnant structures within galaxies, but are instead, critical drivers of galaxy evolution.

  15. Galaxy And Mass Assembly (GAMA): the life and times of L★ galaxies

    NASA Astrophysics Data System (ADS)

    Robotham, A. S. G.; Liske, J.; Driver, S. P.; Sansom, A. E.; Baldry, I. K.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Colless, M.; Christodoulou, L.; Drinkwater, M. J.; Grootes, M. W.; Hopkins, A. M.; Kelvin, L. S.; Norberg, P.; Loveday, J.; Phillipps, S.; Sharp, R.; Taylor, E. N.; Tuffs, R. J.

    2013-05-01

    In this work, we investigate in detail the effects the local environment (groups and pairs) has on galaxies with stellar mass similar to the Milky Way (L* galaxies). A volume limited sample of 6150 galaxies are visually classified to determine the emission features, morphological type and presence of a disc. This large sample allows for the significant characteristics of galaxies to be isolated (e.g. stellar mass and group halo mass), and their codependencies determined. We observe that galaxy-galaxy interactions play the most important role in shaping the evolution within a group halo; the main role of halo mass is in gathering the galaxies together to encourage such interactions. Dominant pair galaxies find their overall star formation enhanced when the pair's mass ratio is close to 1; otherwise, we observe the same galaxies as we would in an unpaired system. The minor galaxy in a pair is greatly affected by its companion galaxy, and while the star-forming fraction is always suppressed relative to equivalent stellar mass unpaired galaxies, it becomes lower still when the mass ratio of a pair system increases. We find that, in general, the close galaxy-galaxy interaction rate drops as a function of halo mass for a given amount of stellar mass. We find evidence of a local peak of interactions for Milky Way stellar mass galaxies in Milky Way halo mass groups. Low-mass haloes, and in particular Local Group mass haloes, are an important environment for understanding the typical evolutionary path of a unit of stellar mass. We find compelling evidence for galaxy conformity in both groups and pairs, where morphological type conformity is dominant in groups, and emission class conformity is dominant in pairs. This suggests that group scale conformity is the result of many galaxy encounters over an extended period of time, while pair conformity is a fairly instantaneous response to a transitory interaction.

  16. Probing the tides in interacting galaxy pairs

    NASA Technical Reports Server (NTRS)

    Borne, Kirk D.

    1990-01-01

    Detailed spectroscopic and imaging observations of colliding elliptical galaxies revealed unmistakable diagnostic signatures of the tidal interactions. It is possible to compare both the distorted luminosity distributions and the disturbed internal rotation profiles with numerical simulations in order to model the strength of the tidal gravitational field acting within a given pair of galaxies. Using the best-fit numerical model, one can then measure directly the mass of a specific interacting binary system. This technique applies to individual pairs and therefore complements the classical methods of measuring the masses of galaxy pairs in well-defined statistical samples. The 'personalized' modeling of galaxy pairs also permits the derivation of each binary's orbit, spatial orientation, and interaction timescale. Similarly, one can probe the tides in less-detailed observations of disturbed galaxies in order to estimate some of the physical parameters for larger samples of interacting galaxy pairs. These parameters are useful inputs to the more universal problems of (1) the galaxy merger rate, (2) the strength and duration of the driving forces behind tidally stimulated phenomena (e.g., starbursts and maybe quasi steller objects), and (3) the identification of long-lived signatures of interaction/merger events.

  17. Evidence for the Universality of Properties of Red-sequence Galaxies in X-Ray- and Red-Sequence-Selected Clusters at z ~ 1

    NASA Astrophysics Data System (ADS)

    Foltz, R.; Rettura, A.; Wilson, G.; van der Burg, R. F. J.; Muzzin, A.; Lidman, C.; Demarco, R.; Nantais, Julie; DeGroot, A.; Yee, H.

    2015-10-01

    We study the slope, intercept, and scatter of the color-magnitude and color-mass relations for a sample of 10 infrared red-sequence-selected clusters at z ˜ 1. The quiescent galaxies in these clusters formed the bulk of their stars above z ≳ 3 with an age spread Δt ≳ 1 Gyr. We compare UVJ color-color and spectroscopic-based galaxy selection techniques, and find a 15% difference in the galaxy populations classified as quiescent by these methods. We compare the color-magnitude relations from our red-sequence selected sample with X-ray- and photometric-redshift-selected cluster samples of similar mass and redshift. Within uncertainties, we are unable to detect any difference in the ages and star formation histories of quiescent cluster members in clusters selected by different methods, suggesting that the dominant quenching mechanism is insensitive to cluster baryon partitioning at z ˜ 1.

  18. Les galaxies

    NASA Astrophysics Data System (ADS)

    Combes, Francoise

    2016-08-01

    Considerable progress has been made on galaxy formation and evolution in recent years, and new issues. The old Hubble classification according to the tuning fork of spirals, lenticulars and ellipticals, is still useful but has given place to the red sequence, the blue cloud and the green valley, showing a real bimodality of types between star forming galaxies (blue) and quenched ones (red). Large surveys have shown that stellar mass and environment density are the two main factors of the evolution from blue to red sequences. Evolution is followed directly with redshift through a look-back time of more than 12 billion years. The most distant galaxy at z=11. has already a stellar mass of a billion suns. In an apparent anti-hierarchical scenario, the most massive galaxies form stars early on, while essentially dwarf galaxies are actively star-formers now. This downsizing feature also applies to the growth of super-massive black holes at the heart of each bulgy galaxy. The feedback from active nuclei is essential to explain the distribution of mass in galaxies, and in particular to explain why the fraction of baryonic matter is so low, lower by more than a factor 5 than the baryonic fraction of the Universe. New instruments just entering in operation, like MUSE and ALMA, provide a new and rich data flow, which is developed in this series of articles.

  19. The hydrodynamics of dead radio galaxies

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher S.; Heinz, Sebastian; Begelman, Mitchell C.

    2002-05-01

    We present a numerical investigation of dead, or relic, radio galaxies and the environmental impact that radio galaxy activity has on the host galaxy or galaxy cluster. We perform axisymmetric hydrodynamical calculations of light, supersonic, back-to-back jets propagating in a β -model galaxy/cluster atmosphere. We then shut down the jet activity and let the resulting structure evolve passively. The dead source undergoes an initial phase of pressure driven expansion until it achieves pressure equilibrium with its surroundings. Thereafter, buoyancy forces drive the evolution and lead to the formation of two oppositely directed plumes that float high into the galaxy/cluster atmosphere. These plumes entrain a significant amount of low entropy material from the galaxy/cluster core and lift it high into the atmosphere. An important result is that a large fraction (at least half) of the energy injected by the jet activity is thermalized in the interstellar medium (ISM)/intracluster medium (ICM) core. The whole ISM/ICM atmosphere inflates in order to regain hydrostatic equilibrium. This inflation is mediated by an approximately spherical disturbance which propagates into the atmosphere at the sound speed. The fact that such a large fraction of the injected energy is thermalized suggests that radio galaxies may have an important role in the overall energy budget of rich ISM/ICM atmospheres. In particular, they may act as a strong and highly time-dependent source of negative feedback for galaxy/cluster cooling flows.

  20. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    NASA Technical Reports Server (NTRS)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; Ptak, A.; Sivakoff, G. R.; Tzanavaris, P.; Yukita, M.

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  1. The X-ray luminosity functions of field low-mass X-ray binaries in early-type galaxies: Evidence for a stellar age dependence

    SciTech Connect

    Lehmer, B. D.; Tzanavaris, P.; Yukita, M.; Berkeley, M.; Basu-Zych, A.; Hornschemeier, A. E.; Ptak, A.; Zezas, A.; Alexander, D. M.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Kalogera, V.; Sivakoff, G. R.

    2014-07-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span ≈3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background active galactic nuclei/galaxies. We find that the 'young' early-type galaxy NGC 3384 (≈2-5 Gyr) has an excess of luminous field LMXBs (L {sub X} ≳ (5-10) × 10{sup 37} erg s{sup –1}) per unit K-band luminosity (L{sub K} ; a proxy for stellar mass) than the 'old' early-type galaxies NGC 3115 and 3379 (≈8-10 Gyr), which results in a factor of ≈2-3 excess of L {sub X}/L{sub K} for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  2. Psychopharmacology with the Behaviorally Disturbed: A Review.

    ERIC Educational Resources Information Center

    McClain, William A.; Jerman, George

    Reviewed on a layman's level was research on psychopharmacology with the emotionally and behaviorally disturbed. General conclusions drawn from the man y studies were that the effect of drugs on intellectual functioning had not been determined and that there was little evidence to indicate that the learning process was consistently and reliably…

  3. AGN Feedback in Galaxy Groups: A Joint GMRT/X-ray Study

    NASA Astrophysics Data System (ADS)

    Giacintucci, S.; Vrtilek, J. M.; O'Sullivan, E.; Raychaudhury, S.; David, L. P.; Venturi, T.; Athreya, R.; Gitti, M.

    2009-12-01

    We present an ongoing study of 18 nearby galaxy groups, chosen for the availability of Chandra and/or XMM-Newton data and evidence for AGN/hot intragroup gas interaction. We have obtained 235 and 610 MHz observations at the GMRT for all the groups, and 327 and 150 MHz for a few. We discuss two interesting cases-NGC 5044 and AWM 4-which exhibit different kinds of AGN/hot gas interaction. With the help of these examples we show how joining low-frequency radio data (to track the history of AGN outbursts through emission from aged electron populations) with X-ray data (to determine the state of hot gas, its disturbances, heating and cooling) can provide a unique insight into the nature of the feedback mechanism in galaxy groups.

  4. Pharmacology for sleep disturbance in PTSD.

    PubMed

    Lipinska, Gosia; Baldwin, David S; Thomas, Kevin G F

    2016-03-01

    Symptoms of sleep disturbance, particularly nightmares and insomnia, are a central feature of post-traumatic stress disorder (PTSD). Emerging evidence suggests that specific treatment of PTSD-related sleep disturbance improves other symptoms of the disorder, which in turn suggests that such disturbance may be fundamental to development and maintenance of the disorder. This mini-review focuses on pharmacological treatment of sleep disturbance in adult PTSD (specifically, studies testing the efficacy of antidepressants, adrenergic inhibiting agents, antipsychotics and benzodiazepine and non-benzodiazepine hypnotics). We conclude that only prazosin, an adrenergic inhibiting agent, has had its efficacy established by multiple randomised controlled trials. There is also high-level evidence supporting use of eszopiclone, as well as risperidone and olanzapine as adjunct therapy. Antidepressants such as sertraline, venlafaxine and mirtazapine, benzodiazepines such as alprazolam and clonazepam and non-benzodiazepine hypnotics such as zolpidem appear ineffective in treating PTSD-related sleep disturbance. Most studies that report reduced frequency of nightmares and insomnia also report decreases in overall symptom severity. Such findings suggest that (i) sleep disruption is central to PTSD; (ii) treating sleep disruption may be an effective way to address other symptoms of the disorder and (iii) PTSD symptoms tend to cluster together in predictable ways. PMID:26856810

  5. Galaxy Zoo: Mergers - Dynamical models of interacting galaxies

    NASA Astrophysics Data System (ADS)

    Holincheck, Anthony J.; Wallin, John F.; Borne, Kirk; Fortson, Lucy; Lintott, Chris; Smith, Arfon M.; Bamford, Steven; Keel, William C.; Parrish, Michael

    2016-06-01

    The dynamical history of most merging galaxies is not well understood. Correlations between galaxy interaction and star formation have been found in previous studies, but require the context of the physical history of merging systems for full insight into the processes that lead to enhanced star formation. We present the results of simulations that reconstruct the orbit trajectories and disturbed morphologies of pairs of interacting galaxies. With the use of a restricted three-body simulation code and the help of citizen scientists, we sample 105 points in parameter space for each system. We demonstrate a successful recreation of the morphologies of 62 pairs of interacting galaxies through the review of more than 3 million simulations. We examine the level of convergence and uniqueness of the dynamical properties of each system. These simulations represent the largest collection of models of interacting galaxies to date, providing a valuable resource for the investigation of mergers. This paper presents the simulation parameters generated by the project. They are now publicly available in electronic format at http://data.galaxyzoo.org/mergers.html. Though our best-fitting model parameters are not an exact match to previously published models, our method for determining uncertainty measurements will aid future comparisons between models. The dynamical clocks from our models agree with previous results of the time since the onset of star formation from starburst models in interacting systems and suggest that tidally induced star formation is triggered very soon after closest approach.

  6. DETECTION OF THE 158 {mu}m [C II] TRANSITION AT z = 1.3: EVIDENCE FOR A GALAXY-WIDE STARBURST

    SciTech Connect

    Hailey-Dunsheath, S.; Nikola, T.; Stacey, G. J.; Oberst, T. E.; Parshley, S. C.; Benford, D. J.; Staguhn, J. G.; Tucker, C. E.

    2010-05-01

    We report the detection of 158 {mu}m [C II] fine-structure line emission from MIPS J142824.0+352619, a hyperluminous (L {sub IR} {approx} 10{sup 13} L {sub sun}) starburst galaxy at z = 1.3. The line is bright, corresponding to a fraction L {sub [CII]}/L {sub FIR} {approx} 2 x 10{sup -3} of the far-IR (FIR) continuum. The [C II], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n {approx} 10{sup 4.2} cm{sup -3}, and that are illuminated by a far-UV radiation field {approx}10{sup 3.2} times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L {sub [CII]}/L {sub FIR} ratio is higher than observed in local ultraluminous infrared galaxies or in the few high-redshift QSOs detected in [C II], but the L {sub [CII]}/L {sub FIR} and L {sub CO}/L {sub FIR} ratios are similar to the values seen in nearby starburst galaxies. This suggests that MIPS J142824.0+352619 is a scaled-up version of a starburst nucleus, with the burst extended over several kiloparsecs.

  7. Faint Blue Galaxies and the Epoch of Dwarf Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Babul, Arif; Ferguson, Henry C.

    1996-02-01

    Several independent lines of reasoning, both theoretical and observational, suggest that the very faint (B ≳ 24) galaxies seen in deep images of the sky are small low-mass galaxies that experienced a short starburst at redshifts 0.5 ≲ z ≲ 1 and have since faded into low-luminosity, low surface brightness (LSB) objects. We examine this hypothesis in detail in order to determine whether a model incorporating such dwarfs can account for the observed wavelength-dependent number counts, as well as redshift, color, and size distributions. Low-mass galaxies generically arise in large numbers in hierarchical clustering scenarios with realistic initial conditions. Generally, these galaxies are expected to form at high redshifts. Babul & Rees have argued that the formation epoch of these galaxies is, in fact, delayed until z ≲ 1 due to the photoionization of the gas by the metagalactic UV radiation at high redshifts. We combine these two elements, along with simple heuristic assumptions regarding star formation histories and efficiency, to construct our bursting dwarf model. The slope and the normalization of the mass function of the dwarf galaxies are derived from the initial conditions and are not adjusted to fit the data. We further augment the model with a phenomenological prescription for the formation and evolution of the locally observed population of galaxies (E, S0, Sab, Sbc, and Sdm types). We use spectral synthesis and Monte Carlo methods to generate realistic model galaxy catalogs for comparison with observations. We find that for reasonable choices of the star formation histories for the dwarf galaxies, the model results are in very good agreement with the results of the deep galaxy surveys. Such a dwarf-dominated model is also qualitatively supported by recent studies of faint galaxy gravitational lensing and clustering, by galaxy size distributions measured with the Hubble Space Telescope, and by the evidence for very modest evolution in regular galaxy

  8. Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Walterbos, R.; Murdin, P.

    2000-11-01

    The Andromeda galaxy is the closest SPIRAL GALAXY to the MILKY WAY, just visible to the naked eye on a dark night as a faint smudge of light in the constellation Andromeda. The earliest records of the Andromeda nebula, as it is still often referred to, date back to AD 964, to the `Book of the Fixed Stars' published by the Persian astronomer AL-SÛFI. The first European to officially note the Andro...

  9. The nature of faint emission-line galaxies

    NASA Technical Reports Server (NTRS)

    Smetanka, John J.

    1993-01-01

    One of the results of faint galaxy redshift surveys is the increased fraction of galaxies which have strong emission-line spectra. These faint surveys find that roughly 50 percent of the galaxies have an equivalent width of (OII), W sub 3727, greater than 20 A while this fraction is less than 20 percent in the DARS survey. This has been interpreted as evidence for strong evolution in the galaxy population at redshifts less than 0.5. In order to further investigate the properties of the galaxies in faint redshift surveys, two important factors must be addressed. The first is the observed correlation between color, luminosity, and W sub 3727. There is a correlation between color and the strength of emission lines, bluer galaxies having stronger emission features, as evident for Markarian galaxies and for galaxies in Kennicutt's spectrophotometric atlas. This correlation also applies galaxies in faint redshift surveys. In addition, low luminosity galaxies have a larger average W sub 3727 (and bluer colors) than higher luminosity galaxies. This is illustrated for Kennicutt's low z late-type galaxies, for the Durham Faint Surveys, and for galaxies in SA68. The second factor which must be incorporated into any interpretation of the faint emission galaxies is the different luminosity functions for galaxies depending on color. This is usually modeled by varying M* for different color classes (or morphological types); however, the shape of the luminosity function is different for galaxies with different colors. Low luminosity, blue galaxies have a much larger number density than low luminosity, red galaxies. Furthermore, the low luminosity end of the blue galaxy luminosity function is not well fit by a Schechter function. These two factors have been included in a very simple, no-evolution, model for the galaxy population. This model uses the luminosity functions from Shanks (1990) and spectral energy distributions (SED's) from Bruzual (1988). W sub 3727 is predicted using

  10. Ring Galaxies

    NASA Astrophysics Data System (ADS)

    Dennefeld, M.; Materne, J.

    1980-09-01

    Among the 338 exotic, intriguing and/or fascinating objects contained in Arp's catalogue of peculiar galaxies, two, Arp 146 and 147, are calling special attention as a presumably separate class of objects displaying closed rings with almost empty interior. It is difficult to find out when, historically speaking, attention was called first to this type of object as a peculiar class, but certainly ga1axies with rings were widely found and recognized in the early sixties, ul}der others by Vorontsov-Velyaminov (1960), Sandage (1961) in the Hubble Atlas or de Vaucouleurs (1964) in the first reference catalogue of ga1axies. The most recent estimates by Arp and Madore (1977) from a search on about 200 Schmidt plates covering 7,000 square degrees give 3.6 per cent of ring galaxies among 2,784 peculiar galaxies found. However, despite the mythological perfection associated with a circle, some ordering is necessary before trying to understand the nature of such objects. This is particularly true because a large fraction of those galaxies with rings are probably normal spiral galaxies of type RS or S(r) as defined by de Vaucouleurs, where the spiral arms are simply "closing the circle". A good example of such "ordinary" galaxy is NGC 3081 in the Hubble Atlas .

  11. METAL-POOR, COOL GAS IN THE CIRCUMGALACTIC MEDIUM OF A z = 2.4 STAR-FORMING GALAXY: DIRECT EVIDENCE FOR COLD ACCRETION?

    SciTech Connect

    Crighton, Neil H. M.; Hennawi, Joseph F.; Prochaska, J. Xavier

    2013-10-20

    In our current galaxy formation paradigm, high-redshift galaxies are predominantly fueled by accretion of cool, metal-poor gas from the intergalactic medium. Hydrodynamical simulations predict that this material should be observable in absorption against background sightlines within a galaxy's virial radius, as optically thick Lyman limit systems (LLSs) with low metallicities. Here we report the discovery of exactly such a strong metal-poor absorber at an impact parameter R = 58 kpc from a star-forming galaxy at z = 2.44. Besides strong neutral hydrogen (N{sub H{sup 0}}=10{sup 19.50±0.16} cm{sup -2}) we detect neutral deuterium and oxygen, allowing a precise measurement of the metallicity: log{sub 10}(Z/Z {sub ☉}) = –2.0 ± 0.17, or (7-15) × 10{sup –3} solar. Furthermore, the narrow deuterium linewidth requires a cool temperature <20,000 K. Given the striking similarities between this system and the predictions of simulations, we argue that it represents the direct detection of a high-redshift cold-accretion stream. The low-metallicity gas cloud is a single component of an absorption system exhibiting a complex velocity, ionization, and enrichment structure. Two other components have metallicities >0.1 solar, 10 times larger than the metal-poor component. We conclude that the photoionized circumgalactic medium (CGM) of this galaxy is highly inhomogeneous: the majority of the gas is in a cool, metal-poor and predominantly neutral phase, but the majority of the metals are in a highly ionized phase exhibiting weak neutral hydrogen absorption but strong metal absorption. If such inhomogeneity is common, then high-resolution spectra and detailed ionization modeling are critical to accurately appraise the distribution of metals in the high-redshift CGM.

  12. HST/COS SPECTRA OF THREE QSOs THAT PROBE THE CIRCUMGALACTIC MEDIUM OF A SINGLE SPIRAL GALAXY: EVIDENCE FOR GAS RECYCLING AND OUTFLOW

    SciTech Connect

    Keeney, Brian A.; Stocke, John T.; Danforth, Charles W.; Shull, J. Michael; Green, James C.; Rosenberg, Jessica L.; Ryan-Weber, Emma V.; Savage, Blair D.

    2013-03-01

    We have used the Cosmic Origins Spectrograph (COS) to obtain far-UV spectra of three closely spaced QSO sight lines that probe the circumgalactic medium (CGM) of an edge-on spiral galaxy, ESO 157-49, at impact parameters of 74 and 93 h {sup -1} {sub 70} kpc near its major axis and 172 h {sup -1} {sub 70} kpc along its minor axis. H I Ly{alpha} absorption is detected at the galaxy redshift in the spectra of all three QSOs, and metal lines of Si III, Si IV, and C IV are detected along the two major-axis sight lines. Photoionization models of these clouds suggest metallicities close to the galaxy metallicity, cloud sizes of {approx}1 kpc, and gas masses of {approx}10{sup 4} M {sub Sun }. Given the high covering factor of these clouds, ESO 157-49 could harbor {approx}2 Multiplication-Sign 10{sup 9} M {sub Sun} of warm CGM gas. We detect no metals in the sight line that probes the galaxy along its minor axis, but gas at the galaxy metallicity would not have detectable metal absorption with ionization conditions similar to the major-axis clouds. The kinematics of the major-axis clouds favor these being portions of a 'galactic fountain' of recycled gas, while two of the three minor-axis clouds are constrained geometrically to be outflowing gas. In addition, one of our QSO sight lines probes a second more distant spiral, ESO 157-50, along its major axis at an impact parameter of 88 h {sup -1} {sub 70} kpc. Strong H I Ly{alpha} and C IV absorption only are detected in the QSO spectrum at the redshift of ESO 157-50.

  13. New southern galaxies with active nuclei

    SciTech Connect

    Maia, M.A.G.; Da costa, L.N.; Willmer, C.; Pellegrini, P.S.; Rite, C.

    1987-03-01

    A list of AGN candidates, identified from optical spectra taken as part of an ongoing redshift survey of southern galaxies, is presented. The identification, coordinates, morphological type, measured heliocentric radial velocity, and proposed emission type are given for the galaxies showing evidence of nonstellar nuclear activity. Using standard diagnostics, several new Seyferts and low-ionization nuclear-emission regions (LINERs) are identified among the emission-line galaxies observed. 14 references.

  14. Galaxy populations in rich environments

    NASA Astrophysics Data System (ADS)

    Tran, Kim-Vy Huu

    2002-11-01

    Combining two color HST/WFPC2 mosaics with extensive Keck/LRIS spectroscopy, we derive physical properties for over 400 confirmed cluster members at z = 0.33, 0.58, and 0.83 to provide key tests of current CDM models of hierarchical galaxy formation. Morphological characteristics such as bulge to total luminosity, half-light radius, bulge/disk scale length, and galaxy asymmetry are measured by determining the best-fit 2D bulge + disk model for each galaxy. We rigorously test these measurements using extensive mock galaxy catalogs to quantify systematic and random errors. Utilizing quantitative structural parameters, spectral indices ([OII] λ3727, HS, and H-γ), Hubble types, internal velocity dispersions (for a subset), and galaxy colors, we find that: (1)Galaxies spanning the range of Hubble type (-5 ≤ T ≤ 8) are well-fit by a de Vaucouleurs bulge with exponential disk profile; (2)The average [OII] equivalent width of the most disk-dominated members (B/T < 0.25) is significantly higher than the average of the bulge-dominated members (B/T ≥ 0.4); (3)The physical properties, e.g. half-light radii, bulge-to-total luminosities, and bulge ellipticities, of cluster elliptical and S0 galaxies (-17.3 ≥ MBz - 5log h 70 ≥ -19.3) are consistent with the two types sharing a common parent galaxy population; (4)In these three clusters, the distributions of cluster disk sizes are indistinguishable, a result contrary to predictions from current hierarchical formation models; (5)Post- starburst (“E + A”) galaxies are a non- negligible fraction (˜5 20%) of the cluster population at these redshifts; (6)We find compelling evidence that the E + A mass distribution evolves with redshift (“downsizing”) such that E + A galaxies span the range in mass at high redshift but only low mass E + A's exist in nearby clusters.

  15. On Chu's disturbance energy

    NASA Astrophysics Data System (ADS)

    Joseph George, K.; Sujith, R. I.

    2011-10-01

    Chu [On the energy transfer to small disturbances in fluid flow (part I), Acta Mechanica 1 (1965) 215-234] proposed a positive definite energy norm for characterizing the level of fluctuation in a disturbance. In the absence of heat transfer at the boundaries, work done by boundary or body forces, heat and material sources of energy, this norm is a monotone, non-increasing function of time. In this paper, we show that Chu's disturbance energy defines an inner product, with respect to which the conservation equations of fluid motion linearized about a uniform base flow are self-adjoint. This ensures that the eigenvectors of the linearized operator are orthogonal to each other, and the property that the energy norm is a non-increasing function of time in the absence of physical sources of energy follows as an immediate consequence. Examples from numerical simulations of Euler equations are presented to highlight the importance of choosing an energy norm that is consistent with the underlying physics. We demonstrate that the disturbance energy as measured by Chu's norm does not exhibit spurious transient growth in the absence of physical sources of energy and hence is suitable for analyzing thermoacoustic instability.

  16. Functioning of Adolescents with Symptoms of Disturbed Sleep.

    ERIC Educational Resources Information Center

    Roberts, Robert E.; Roberts, Catherine R.; Chen, Irene G.

    2001-01-01

    Studied the association between disturbed sleep and the functioning of adolescents, especially cumulative effects across multiple life domains. Results from 5,423 students suggest that adolescents experiencing disturbed sleep also experience a range of deficits in functioning. Available evidence does not make it possible to specify causal…

  17. Galaxy dynamics in clustered environments

    NASA Astrophysics Data System (ADS)

    Pereira, Maria J. R. R.

    Galaxy orientations have been studied statistically for over 70 years now, but it is only recently that alignments have been found on scales larger than those of close interacting pairs. Large scale alignments between galaxies and their surrounding tidal fields are expected to occur during formation, but what happens when these galaxies fall into larger systems? Can their orientations tell us anything about the accretion process itself? In this dissertation I will focus on the radial alignment of satellite galaxies, in which a satellite's long axis points preferentially toward the center of its host. I present observational evidence for this type of galaxy alignment in the SDSS DR3 using a sample of X-ray selected massive clusters. Then, using results from N-body cosmological simulations, I will argue that this effect is the result of a secular tidal interaction between the galaxies and their host potential. The analysis shows that subhalos are effectively torqued by their host throughout their orbits, so that their major axes tend to be aligned with the gradient of the host potential. The significant discrepancy between the magnitude of the effect as seen in these simulations and that detected in observations motivates the work of the next chapter, where I perform numerical experiments on idealized, high resolution N-body models of elliptical galaxies. These experiments show that the more centrally concentrated luminous components of galaxies take longer to react to the external torque, and, in the particular case of mildly eccentric orbits, their orientations can figure rotate in periodic patterns that are not radially aligned on average. The mechanism is more effective on galaxies that have larger triaxialities, but the overall effect of torquing is to make galaxies rounder, since radially misaligned galaxies tend to become more spherical as they are torqued towards equilibrium. In the last chapter, I briefly discuss the impact of these results for galaxy

  18. Cosmic Collisions: Galaxy Mergers and Evolution

    NASA Astrophysics Data System (ADS)

    Trouille, Laura; Willett, Kyle; Masters, Karen; Lintott, Christopher; Whyte, Laura; Lynn, Stuart; Tremonti, Christina A.

    2014-08-01

    Over the years evidence has mounted for a significant mode of galaxy evolution via mergers. This process links gas-rich, spiral galaxies; starbursting galaxies; active galactic nuclei (AGN); post-starburst galaxies; and gas-poor, elliptical galaxies, as objects representing different phases of major galaxy mergers. The post-starburst phase is particularly interesting because nearly every galaxy that evolves from star-forming to quiescent must pass through it. In essence, this phase is a sort of galaxy evolution “bottleneck” that indicates that a galaxy is actively evolving through important physical transitions. In this talk I will present the results from the ‘Galaxy Zoo Quench’ project - using post-starburst galaxies to place observational constraints on the role of mergers and AGN activity in quenching star formation. `Quench’ is the first fully collaborative research project with Zooniverse citizen scientists online; engaging the public in all phases of research, from classification to data analysis and discussion to writing the article and submission to a refereed journal.

  19. EXPANDED SEARCH FOR z {approx} 10 GALAXIES FROM HUDF09, ERS, AND CANDELS DATA: EVIDENCE FOR ACCELERATED EVOLUTION AT z > 8?

    SciTech Connect

    Oesch, P. A.; Illingworth, G. D.; Gonzalez, V.; Magee, D.; Trenti, M.; Carollo, C. M.; Van Dokkum, P. G.

    2012-02-01

    We search for z {approx} 10 galaxies over {approx}160 arcmin{sup 2} of Wide-Field Camera 3 (WFC3)/IR data in the Chandra Deep Field South, using the public HUDF09, Early Release Science, and CANDELS surveys, that reach to 5{sigma} depths ranging from 26.9 to 29.4 in H{sub 160} AB mag. z {approx}> 9.5 galaxy candidates are identified via J{sub 125} - H{sub 160} > 1.2 colors and non-detections in any band blueward of J{sub 125}. Spitzer Infrared Array Camera (IRAC) photometry is key for separating the genuine high-z candidates from intermediate-redshift (z {approx} 2-4) galaxies with evolved or heavily dust obscured stellar populations. After removing 16 sources of intermediate brightness (H{sub 160} {approx} 24-26 mag) with strong IRAC detections, we only find one plausible z {approx} 10 galaxy candidate in the whole data set, previously reported in Bouwens et al.. The newer data cover a 3 Multiplication-Sign larger area and provide much stronger constraints on the evolution of the UV luminosity function (LF). If the evolution of the z {approx} 4-8 LFs is extrapolated to z {approx} 10, six z {approx} 10 galaxies are expected in our data. The detection of only one source suggests that the UV LF evolves at an accelerated rate before z {approx} 8. The luminosity density is found to increase by more than an order of magnitude in only 170 Myr from z {approx} 10 to z {approx} 8. This increase is {>=}4 Multiplication-Sign larger than expected from the lower redshift extrapolation of the UV LF. We are thus likely witnessing the first rapid buildup of galaxies in the heart of cosmic reionization. Future deep Hubble Space Telescope WFC3/IR data, reaching to well beyond 29 mag, can enable a more robust quantification of the accelerated evolution around z {approx} 10.

  20. FIR statistics of paired galaxies

    NASA Technical Reports Server (NTRS)

    Sulentic, Jack W.

    1990-01-01

    Much progress has been made in understanding the effects of interaction on galaxies (see reviews in this volume by Heckman and Kennicutt). Evidence for enhanced emission from galaxies in pairs first emerged in the radio (Sulentic 1976) and optical (Larson and Tinsley 1978) domains. Results in the far infrared (FIR) lagged behind until the advent of the Infrared Astronomy Satellite (IRAS). The last five years have seen numerous FIR studies of optical and IR selected samples of interacting galaxies (e.g., Cutri and McAlary 1985; Joseph and Wright 1985; Kennicutt et al. 1987; Haynes and Herter 1988). Despite all of this work, there are still contradictory ideas about the level and, even, the reality of an FIR enhancement in interacting galaxies. Much of the confusion originates in differences between the galaxy samples that were studied (i.e., optical morphology and redshift coverage). Here, the authors report on a study of the FIR detection properties for a large sample of interacting galaxies and a matching control sample. They focus on the distance independent detection fraction (DF) statistics of the sample. The results prove useful in interpreting the previously published work. A clarification of the phenomenology provides valuable clues about the physics of the FIR enhancement in galaxies.

  1. Uncovering Blue Diffuse Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    James, Bethan; Koposov, Sergey; Stark, Daniel; Belokurov, Vasily; Pettini, Max; Olszewski, Edward W.

    2015-01-01

    Extremely metal-poor galaxies (XMPs) and the star-formation within their chemically pristine environments are fundamental to our understanding of the galaxy formation process at early times. However, traditional emission-line surveys detect only the brightest metal-poor galaxies where star-formation occurs in compact, starbursting environments, and thereby give us only a partial view of the dwarf galaxy population. To avoid such biases, we have developed a new search algorithm based on the morphological, rather then spectral, properties of XMPs and have applied to the Sloan Digital Sky Survey database of images. Using this novel approach, we have discovered ~100 previously undetected, faint blue galaxies, each with isolated HII regions embedded in a diffuse continuum. In this talk I will present the first results from follow-up optical spectroscopy of this sample, which reveals these blue diffuse dwarfs (BDDs) to be young, very metal-poor and actively forming stars despite their intrinsically low luminosities. I will present evidence showing that BDDs appear to bridge the gap between quiescent dwarf irregular (dIrr) galaxies and blue compact galaxies (BCDs) and as such offer an ideal opportunity to assess how star-formation occurs in more `normal' metal-poor systems.

  2. Galaxies in extreme environments: Isolated galaxies versus compact groups

    NASA Astrophysics Data System (ADS)

    Durbala, Adriana

    2009-06-01

    . In spite of long standing theoretical predictions of a major merger of the galaxy members into a giant one, we find evidence that compact groups are in fact long-lived and form by sequential acquisition of galaxies, coalescing via slow dissolution.

  3. Searches for High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Stevens, R.

    In recent years, the technique of Lyman break imaging has proven very effective at identifying large numbers of galaxies at high redshifts through deep multicolour imaging (Steidel et al 1996b; Steidel et al 1999). The combination of an intrinsic break in the spectra of star-forming galaxies below the rest-frame wavelength of Lyman-alpha and attenuation by intervening HI systems on the line of sight to high redshifts makes for a pronounced drop in the flux of high redshift galaxies between 912 Å and 1216 Å in the rest-frame. At redshifts z> 3, the break is shifted sufficiently far into the optical window accessible to ground-based telescopes for galaxies at such redshift to be distinguished from the foreground galaxy population through photometry alone. Through modelling of the expected colours of a wide range of galaxy types, ages and redshifts, taking into account the effects of reddening (Calzetti, Kinney and Storchi-Bergmann 1994) and intergalactic attenuation (Madau 1995), we assess the likely colours of high redshift galaxies and determine the redshift ranges most effectively probed by the imaging filters. We obtain multicolour imaging of the fields of four high redshift radio galaxies, covering around 40 arcmin2 in each, allowing us to attempt to find ordinary galaxies at similar redshifts to the central radio galaxies through photometric colour selection techniques. Some idea as to the effectiveness comes through additional colour and morphological information obtained from high-resolution Hubble Space Telescope images and from data taken in the near infra-red. While we do not have spectroscopic evidence for the redshifts of our candidates, given the available evidence we conclude that the number densities of Lyman break galaxies in the radio galaxy fields are in broad agreement with the data of Steidel et al (1999). Finally, we assess the prospects for future studies of the high redshift Universe, in particular the potential of the Oxford Deep Wide Field

  4. SLOSHING COLD FRONTS IN GALAXY GROUPS AND THEIR PERTURBING DISK GALAXIES: AN X-RAY, OPTICAL, AND RADIO CASE STUDY

    SciTech Connect

    Gastaldello, Fabio; Di Gesu, Laura; Ghizzardi, Simona; Rossetti, Mariachiara; Giacintucci, Simona; Girardi, Marisa; Roediger, Elke; Brighenti, Fabrizio; Buote, David A.; Humphrey, Philip J.; Eckert, Dominique; Ettori, Stefano; Mathews, William G.

    2013-06-10

    We present a combined X-ray, optical, and radio analysis of the galaxy group IC 1860 using the currently available Chandra and XMM data, multi-object spectroscopy data from the literature, and Giant Metrewave Radio Telescope (GMRT) data. The Chandra and XMM imaging and spectroscopy reveal two surface brightness discontinuities at 45 and 76 kpc shown to be consistent with a pair of cold fronts. These features are interpreted as due to sloshing of the central gas induced by an off-axis minor merger with a perturber. This scenario is further supported by the presence of a peculiar velocity of the central galaxy IC 1860 and the identification of a possible perturber in the optically disturbed spiral galaxy IC 1859. The identification of the perturber is consistent with the comparison with numerical simulations of sloshing. The GMRT observation at 325 MHz shows faint, extended radio emission contained within the inner cold front, as seen in some galaxy clusters hosting diffuse radio mini-halos. However, unlike mini-halos, no particle reacceleration is needed to explain the extended radio emission, which is consistent with aged radio plasma redistributed by the sloshing. There is a strong analogy between the X-ray and optical phenomenology of the IC 1860 group and that of two other groups, NGC 5044 and NGC 5846, showing cold fronts. The evidence presented in this paper is among the strongest supporting the currently favored model of cold-front formation in relaxed objects and establishes the group scale as a chief environment for studying this phenomenon.

  5. From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Burkert, A.; Bouché, N.; Cresci, G.; Förster Schreiber, N. M.; Shapley, A.; Shapiro, K.; Tacconi, L. J.; Buschkamp, P.; Cimatti, A.; Daddi, E.; Davies, R.; Eisenhauer, F.; Erb, D. K.; Genel, S.; Gerhard, O.; Hicks, E.; Lutz, D.; Naab, T.; Ott, T.; Rabien, S.; Renzini, A.; Steidel, C. C.; Sternberg, A.; Lilly, S. J.

    2008-11-01

    We present Hα integral field spectroscopy of well-resolved, UV/optically selected z ~ 2 star-forming galaxies as part of the SINS survey with SINFONI on the ESO VLT. Our laser guide star adaptive optics and good seeing data show the presence of turbulent rotating star-forming outer rings/disks, plus central bulge/inner disk components, whose mass fractions relative to the total dynamical mass appear to scale with the [N II]/Hα flux ratio and the star formation age. We propose that the buildup of the central disks and bulges of massive galaxies at z ~ 2 can be driven by the early secular evolution of gas-rich proto-disks. High-redshift disks exhibit large random motions. This turbulence may in part be stirred up by the release of gravitational energy in the rapid "cold" accretion flows along the filaments of the cosmic web. As a result, dynamical friction and viscous processes proceed on a timescale of <1 Gyr, at least an order of magnitude faster than in z ~ 0 disk galaxies. Early secular evolution thus drives gas and stars into the central regions and can build up exponential disks and massive bulges, even without major mergers. Secular evolution along with increased efficiency of star formation at high surface densities may also help to account for the short timescales of the stellar buildup observed in massive galaxies at z ~ 2. Based on observations at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile.

  6. The galaxy luminosity function at z ≃ 6 and evidence for rapid evolution in the bright end from z ≃ 7 to 5

    NASA Astrophysics Data System (ADS)

    Bowler, R. A. A.; Dunlop, J. S.; McLure, R. J.; McCracken, H. J.; Milvang-Jensen, B.; Furusawa, H.; Taniguchi, Y.; Le Fèvre, O.; Fynbo, J. P. U.; Jarvis, M. J.; Häußler, B.

    2015-09-01

    We present the results of a search for bright (-22.7 ≤ MUV ≤ -20.5) Lyman-break galaxies at z ≃ 6 within a total of 1.65 deg2 of imaging in the UltraVISTA/Cosmological Evolution Survey (COSMOS) and United Kingdom Infrared Telescope Deep Sky Survey (UKIDSS) Ultra Deep Survey (UDS) fields. The deep near-infrared imaging available in the two independent fields, in addition to deep optical (including z'-band) data, enables the sample of z ≃ 6 star-forming galaxies to be securely detected longward of the break (in contrast to several previous studies). We show that the expected contamination rate of our initial sample by cool Galactic brown dwarfs is ≲3 per cent and demonstrate that they can be effectively removed by fitting brown dwarf spectral templates to the photometry. At z ≃ 6, the galaxy surface density in the UltraVISTA field exceeds that in the UDS by a factor of ≃ 1.8, indicating strong cosmic variance even between degree-scale fields at z > 5. We calculate the bright end of the rest-frame Ultraviolet (UV) luminosity function (LF) at z ≃ 6. The galaxy number counts are a factor of ˜1.7 lower than predicted by the recent LF determination by Bouwens et al. In comparison to other smaller area studies, we find an evolution in the characteristic magnitude between z ≃ 5 and z ≃ 7 of ΔM* ˜ 0.4, and show that a double power law or a Schechter function can equally well describe the LF at z = 6. Furthermore, the bright end of the LF appears to steepen from z ≃ 7 to z ≃ 5, which could indicate the onset of mass quenching or the rise of dust obscuration, a conclusion supported by comparing the observed LFs to a range of theoretical model predictions.

  7. Properties of QSO Metal-line Absorption Systems at High Redshifts: Nature and Evolution of the Absorbers and New Evidence on Escape of Ionizing Radiation from Galaxies

    NASA Astrophysics Data System (ADS)

    Boksenberg, Alec; Sargent, Wallace L. W.

    2015-05-01

    Using Voigt-profile-fitting procedures on Keck High Resolution Spectrograph spectra of nine QSOs, we identify 1099 C IV absorber components clumped in 201 systems outside the Lyman forest over 1.6 <~ z <~ 4.4. With associated Si IV, C II, Si II and N V where available, we investigate the bulk statistical and ionization properties of the components and systems and find no significant change in redshift for C IV and Si IV while C II, Si II and N V change substantially. The C IV components exhibit strong clustering, but no clustering is detected for systems on scales from 150 km s-1 out to 50,000 km s-1. We conclude that the clustering is due entirely to the peculiar velocities of gas present in the circumgalactic media of galaxies. Using specific combinations of ionic ratios, we compare our observations with model ionization predictions for absorbers exposed to the metagalactic ionizing radiation background augmented by proximity radiation from their associated galaxies and find that the generally accepted means of radiative escape by transparent channels from the internal star-forming sites is spectrally not viable for our stronger absorbers. We develop an active scenario based on runaway stars with resulting changes in the efflux of radiation that naturally enable the needed spectral convergence, and in turn provide empirical indicators of morphological evolution in the associated galaxies. Together with a coexisting population of relatively compact galaxies indicated by the weaker absorbers in our sample, the collective escape of radiation is sufficient to maintain the intergalactic medium ionized over the full range 1.9 < z <~ 4.4. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck

  8. Galaxy and Mass Assembly (GAMA): merging galaxies and their properties

    NASA Astrophysics Data System (ADS)

    De Propris, Roberto; Baldry, Ivan K.; Bland-Hawthorn, Joss; Brough, Sarah; Driver, Simon P.; Hopkins, Andrew M.; Kelvin, Lee; Loveday, Jon; Phillipps, Steve; Robotham, Aaron S. G.

    2014-11-01

    We derive the close pair fractions and volume merger rates for galaxies in the Galaxy and Mass Assembly (GAMA) survey with -23 < Mr < -17 (ΩM = 0.27, ΩΛ = 0.73, H0 = 100 km s-1 Mpc-1) at 0.01 < z < 0.22 (look-back time of <2 Gyr). The merger fraction is approximately 1.5 per cent Gyr-1 at all luminosities (assuming 50 per cent of pairs merge) and the volume merger rate is ≈3.5 × 10-4 Mpc-3 Gyr-1. We examine how the merger rate varies by luminosity and morphology. Dry mergers (between red/spheroidal galaxies) are found to be uncommon and to decrease with decreasing luminosity. Fainter mergers are wet, between blue/discy galaxies. Damp mergers (one of each type) follow the average of dry and wet mergers. In the brighter luminosity bin (-23 < Mr < -20), the merger rate evolution is flat, irrespective of colour or morphology, out to z ˜ 0.2. The makeup of the merging population does not appear to change over this redshift range. Galaxy growth by major mergers appears comparatively unimportant and dry mergers are unlikely to be significant in the buildup of the red sequence over the past 2 Gyr. We compare the colour, morphology, environmental density and degree of activity (BPT class, Baldwin, Phillips & Terlevich) of galaxies in pairs to those of more isolated objects in the same volume. Galaxies in close pairs tend to be both redder and slightly more spheroid dominated than the comparison sample. We suggest that this may be due to `harassment' in multiple previous passes prior to the current close interaction. Galaxy pairs do not appear to prefer significantly denser environments. There is no evidence of an enhancement in the AGN fraction in pairs, compared to other galaxies in the same volume.

  9. DEPENDENCE OF BARRED GALAXY FRACTION ON GALAXY PROPERTIES AND ENVIRONMENT

    SciTech Connect

    Lee, Gwang-Ho; Lee, Myung Gyoon; Park, Changbom; Choi, Yun-Young E-mail: mglee@astro.snu.ac.kr E-mail: yy.choi@khu.ac.kr

    2012-02-01

    We investigate the dependence of the occurrence of bars in galaxies on galaxy properties and environment. We use a volume-limited sample of 33,391 galaxies brighter than M{sub r} = -19.5 + 5logh at 0.02 {<=} z {<=} 0.05489, drawn from the Sloan Digital Sky Survey Data Release 7. We classify the galaxies into early and late types, and identify bars by visual inspection. Among 10,674 late-type galaxies with axis ratio b/a > 0.60, we find 3240 barred galaxies (f{sub bar} = 30.4%) which divide into 2542 strong bars (f{sub SB1} = 23.8%) and 698 weak bars (f{sub SB2} = 6.5%). We find that f{sub SB1} increases as u - r color becomes redder and that it has a maximum value at intermediate velocity dispersion ({sigma} {approx_equal}150 km s{sup -1}). This trend suggests that strong bars are dominantly hosted by intermediate-mass systems. Weak bars prefer bluer galaxies with lower mass and lower concentration. In the case of strong bars, their dependence on the concentration index appears only for massive galaxies with {sigma} > 150 km s{sup -1}. We also find that f{sub bar} does not directly depend on the large-scale background density when other physical parameters (u - r color or {sigma}) are fixed. We discover that f{sub SB1} decreases as the separation to the nearest neighbor galaxy becomes smaller than 0.1 times the virial radius of the neighbor regardless of neighbor's morphology. These results imply that strong bars are likely to be destroyed during strong tidal interactions and that the mechanism for this phenomenon is gravitational and not hydrodynamical. The fraction of weak bars has no correlation with environmental parameters. We do not find any direct evidence for environmental stimulation of bar formation.

  10. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  11. Galaxy interactions and the stimulation of nuclear activity

    NASA Technical Reports Server (NTRS)

    Heckman, Timothy M.

    1990-01-01

    The author discusses the idea that interactions between galaxies can lead to enhanced galactic activity. He discusses whether, apart from the observational evidence, there is a strong theoretical or heuristic motivation for investigating galaxy interactions as stimulators of nuclear activity in galaxies. Galactic interactions as mechanisms for triggering nuclear starbursts are covered.

  12. Excitation properties of galaxies with the highest [O iii]/[O ii] ratios. No evidence for massive escape of ionizing photons

    NASA Astrophysics Data System (ADS)

    Stasińska, G.; Izotov, Yu.; Morisset, C.; Guseva, N.

    2015-04-01

    The possibility that star-forming galaxies may leak ionizing photons is at the heart of many present-day studies that investigate the reionization of the Universe. We test this hypothesis on local blue compact dwarf galaxies of very high excitation. We assembled a sample of such galaxies by examining the spectra from data releases 7 and 10 of the Sloan Digital Sky Survey. We argue that reliable conclusions cannot be based on strong lines alone, and adopt a strategy that includes important weak lines such as [O i] and the high-excitation He ii and [Ar iv] lines. Our analysis is based on purely observational diagrams and on a comparison of photoionization models with well-chosen emission-line ratio diagrams. We show that spectral energy distributions from current stellar population synthesis models cannot account for all the observational constraints, which led us to mimick several scenarios that could explain the data. These include the additional presence of hard X-rays or of shocks. We find that only ionization-bounded models (or models with an escape fraction of ionizing photons lower than 10%) are able to simultaneously explain all the observational constraints. Appendices are available in electronic form at http://www.aanda.org

  13. Waveguide disturbance detection method

    DOEpatents

    Korneev, Valeri A.; Nihei, Kurt T.; Myer, Larry R.

    2000-01-01

    A method for detection of a disturbance in a waveguide comprising transmitting a wavefield having symmetric and antisymmetric components from a horizontally and/or vertically polarized source and/or pressure source disposed symmetrically with respect to the longitudinal central axis of the waveguide at one end of the waveguide, recording the horizontal and/or vertical component or a pressure of the wavefield with a vertical array of receivers disposed at the opposite end of the waveguide, separating the wavenumber transform of the wavefield into the symmetric and antisymmetric components, integrating the symmetric and antisymmetric components over a broad frequency range, and comparing the magnitude of the symmetric components and the antisymmetric components to an expected magnitude for the symmetric components and the antisymmetric components for a waveguide of uniform thickness and properties thereby determining whether or not a disturbance is present inside the waveguide.

  14. 300 Area Disturbance Report

    SciTech Connect

    LL Hale; MK Wright; NA Cadoret

    1999-01-07

    The objective of this study was to define areas of previous disturbance in the 300 Area of the U.S. Department of Energy (DOE) Hanford Site to eliminate these areas from the cultural resource review process, reduce cultural resource monitoring costs, and allow cultural resource specialists to focus on areas where subsurface disturbance is minimal or nonexistent. Research into available sources suggests that impacts from excavations have been significant wherever the following construction activities have occurred: building basements and pits, waste ponds, burial grounds, trenches, installation of subsurface pipelines, power poles, water hydrants, and well construction. Beyond the areas just mentioned, substrates in the' 300 Area consist of a complex, multidimen- sional mosaic composed of undisturbed stratigraphy, backfill, and disturbed sediments; Four Geographic Information System (GIS) maps were created to display known areas of disturbance in the 300 Area. These maps contain information gleaned from a variety of sources, but the primary sources include the Hanford GIS database system, engineer drawings, and historic maps. In addition to these maps, several assumptions can be made about areas of disturbance in the 300 Area as a result of this study: o o Buried pipelines are not always located where they are mapped. As a result, cultural resource monitors or specialists should not depend on maps depicting subsurface pipelines for accurate locations of previous disturbance. Temporary roads built in the early 1940s were placed on layers of sand and gravel 8 to 12 in. thick. Given this information, it is likely that substrates beneath these early roads are only minimally disturbed. Building foundations ranged from concrete slabs no more than 6 to 8 in. thick to deeply excavated pits and basements. Buildings constructed with slab foundations are more numerous than may be expected, and minimally disturbed substrates may be expected in these locations. Historic black

  15. Atmospheric Disturbance Environment Definition

    NASA Technical Reports Server (NTRS)

    Tank, William G.

    1994-01-01

    Traditionally, the application of atmospheric disturbance data to airplane design problems has been the domain of the structures engineer. The primary concern in this case is the design of structural components sufficient to handle transient loads induced by the most severe atmospheric "gusts" that might be encountered. The concern has resulted in a considerable body of high altitude gust acceleration data obtained with VGH recorders (airplane velocity, V, vertical acceleration, G, altitude, H) on high-flying airplanes like the U-2 (Ehernberger and Love, 1975). However, the propulsion system designer is less concerned with the accelerations of the airplane than he is with the airflow entering the system's inlet. When the airplane encounters atmospheric turbulence it responds with transient fluctuations in pitch, yaw, and roll angles. These transients, together with fluctuations in the free-stream temperature and pressure will disrupt the total pressure, temperature, Mach number and angularity of the inlet flow. For the mixed compression inlet, the result is a disturbed throat Mach number and/or shock position, and in extreme cases an inlet unstart can occur (cf. Section 2.1). Interest in the effects of inlet unstart on the vehicle dynamics of large, supersonic airplanes is not new. Results published by NASA in 1962 of wind tunnel studies of the problem were used in support of the United States Supersonic Transport program (SST) (White, at aI, 1963). Such studies continued into the late 1970's. However, in spite of such interest, there never was developed an atmospheric disturbance database for inlet unstart analysis to compare with that available for the structures load analysis. Missing were data for the free-stream temperature and pressure disturbances that also contribute to the unStart problem.

  16. The Mass Distribution in the Elliptical Galaxy NGC 3377: Evidence for a 2 X 10^8 M_⊙ Black Hole

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Bender, Ralf; Evans, Aaron S.; Richstone, Douglas

    1998-05-01

    This paper is a study of the mass distribution in the central 35" ~= 1.7 kpc of the E5 galaxy NGC 3377. Stellar rotation velocity and velocity dispersion profiles (seeing sigma_* = 0.20"-0.56") and V-band surface photometry (sigma_* = 0.20"-0.26") have been obtained with the Canada-France-Hawaii Telescope. NGC 3377 is kinematically similar to M32: the central kinematic gradients are steep. There is an unresolved central rise in rotation velocity to V = 110 +/- 3 km s^-1 (internal error) at r = 1.0". The apparent velocity dispersion rises from 95 +/- 2 km s^-1 at 1.0" <= r < 4" to 178 +/- 10 km s^-1 at the center. To search for a central black hole, we derive three-dimensional velocity and velocity dispersion fields that fit the above observations and Hubble Space Telescope surface photometry after projection and seeing convolution. Isotropic models imply that the mass-to-light ratio rises by a factor of ~4 at r < 2", to M/L_V >~ 10. If the mass-to-light ratio of the stars, M/L_V = 2.4 +/- 0.2, is constant with radius, then NGC 3377 contains a central massive dark object (MDO), probably a black hole, of mass M_• ~= (1.8 +/- 0.8) x 10^8 M_⊙. Several arguments suggest that NGC 3377 is likely to be nearly isotropic. However, flattened anisotropic maximum entropy models can fit the present data without an MDO. Therefore, the MDO detection in NGC 3377 is weaker than those in our Galaxy, M31, M32, and NGC 3115. The above masses are corrected for the E5 shape of the galaxy and for the difference between velocity moments and velocities given by Gaussian fits to the line profiles. We show that the latter correction does not affect the strength of the MDO detection, but it slightly reduces M_• and M/L_V. At 3" <~ r <~ 35", M/L_V is constant at ~2.4. Therefore, the inner parts of NGC 3377 are dominated by a normal old stellar population. In this elliptical galaxy, as in the bulge-dominated galaxies NGC 3115 and NGC 4594, halo dark matter is unimportant over a significant

  17. Galaxy formation

    SciTech Connect

    Silk, J.

    1984-11-01

    Implications of the isotropy of the cosmic microwave background on large and small angular scales for galaxy formation are reviewed. In primeval adiabatic fluctuations, a universe dominated by cold, weakly interacting nonbaryonic matter, e.g., the massive photino is postulated. A possible signature of photino annihilation in our galactic halo involves production of cosmic ray antiprotons. If the density is near its closure value, it is necessary to invoke a biasing mechanism for suppressing galaxy formation throughout most of the universe in order to reconcile the dark matter density with the lower astronomical determinations of the mean cosmological density. A mechanism utilizing the onset of primordial massive star formation to strip gaseous protogalaxies is described. Only the densest, early collapsing systems form luminous galaxies. (ESA)

  18. Hidden interaction in SBO galaxies

    NASA Technical Reports Server (NTRS)

    Galletta, G.; Bettoni, D.; Oosterloo, T.; Fasano, G.

    1990-01-01

    Galaxies, like plants, show a large variety of grafts: an individual of some type connects physically with a neighborhood of same or different type. The effects of these interactions between galaxies have a broad range of morphologies depending, among other quantities, on the distance of the closest approach between systems and the relative size of the two galaxies. A sketch of the possible situations is shown in tabular form. This botanical classification is just indicative, because the effects of interactions can be notable also at relatively large separations, when additional conditions are met, as for example low density of the interacting systems or the presence of intra-cluster gas. In spite of the large variety of encounters and effects, in the literature the same terms are often used to refer to different types of interactions. Analysis indicates that only few of the situations show evident signs of interaction. They appear to be most relevant when the size of the two galaxies is comparable. Bridges and tails, like the well known case of NGC 4038/39, the Antennae, are only observed for a very low percentage of all galaxies (approx. 0.38 percent, Arp and Madore 1977). In most cases of gravitational bond between two galaxies, the effects of interactions are not relevant or evident. For instance, the detection of stellar shells (Malin and Carter 1983), which have been attributed to the accretion of gas stripped from another galaxy or to the capture and disruption of a small stellar system (Quinn 1984), requires particular observing and reduction techniques. Besides these difficulties of detection, time plays an important role in erasing, within a massive galaxy, the effects of interactions with smaller objects. This can happen on a timescale shorter than the Hubble time, so the number of systems now showing signs of interaction suggests lower limits to the true frequency of interactions in the life-time of a stellar system.

  19. Vehicle Disturbance Test

    NASA Astrophysics Data System (ADS)

    Clapp, Brian

    2001-07-01

    The Vehicle Disturbance Test {VDT} is used to characterize uncompensated environmental disturbances acting upon the HST during normal operation. The VDT is a passive test {not a forced-response test} used to obtain signatures for both externally induced {e.g. SA-3} and internally induced {e.g. NCC and ACS mechanisms} disturbances for comparison with past VDT results. The disturbances observed will be used as the nominal on-orbit disturbances in pointing control simulations until the next VDT is run. The test occurs after release, and most of the VDT can be run during the BEA period. The -V1 sunpoint portion of the VDT occurs after the BEA period is complete. The VDT shall consist of five separate tests that need not occur consecutively. The overall duration of the VDT tests is at least 17 orbits of spacecraft time including {1} at least 1 full orbit at +V3 sunpoint prior to NCS CPL turn-on while performing ACS mechanism motions simulating routine flight operations, {2} at least 5 full orbits at +V3 sunpoint prior to NCS CPL turn-on, {3} at least 1 full orbit at +V3 sunpoint during NCC startup, {4} at least 5 full orbits at +V3 sunpoint while NCC is operating at steady-state, and {5} at least 5 full orbits at -V1 sunpoint with the NCC operating at steady-state. Each test is initiated via SMS execution of stored program macros in the HST flight computer to switch the attitude control law gains to low-bandwidth maneuver gains, command the gyros into low mode, terminate Velocity aberration and parallax {VAP} processing, and modify flight computer diagnostic mnemonics to display the roll component of DVTHEP. The nominal attitude control law configuration will be restored at the end of each test via SMS execution of stored program macros. The stored program command macros are developed specifically for the VDT by the Flight Software and Pointing Control System groups.

  20. Whirlpool Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists are seeing unprecedented detail of the spiral arms and dust clouds in the nearby Whirlpool galaxy, thanks to a new Hubble Space Telescope image, available at http://www.jpl.nasa.gov/pictures/wfpc/wfpc.html. The image uses data collected January 15 and 24, 1995, and July 21, 1999, by Hubble's Wide Field and Planetary Camera 2, designed and built by JPL. Using the image, a research group led by Dr. Nick Scoville of the California Institute of Technology, Pasadena, clearly defined the structure of the galaxy's cold dust clouds and hot hydrogen, and they linked star clusters within the galaxy to their parent dust clouds.

    The Whirlpool galaxy is one of the most photogenic galaxies. This celestial beauty is easily seen and photographed with smaller telescopes and studied extensively from large ground- and space-based observatories. The new composite image shows visible starlight and light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms.

    The galaxy is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of the image. The companion's gravitational pull is triggering star formation in the main galaxy, lit up by numerous clusters of young and energetic stars in brilliant detail. Luminous clusters are highlighted in red by their associated emission from glowing hydrogen gas.

    This image was composed by the Hubble Heritage Team from Hubble archive data and was superimposed onto data taken by Dr. Travis Rector of the National Optical Astronomy Observatory at the .9-meter (35-inch) telescope at the National Science Foundation's Kitt Peak National Observatory, Tucson, Ariz. Scoville's team includes M. Polletta of the University of Geneva, Switzerland; S. Ewald and S. Stolovy of Caltech; and R. Thompson and M. Rieke of the University of Arizona, Tucson.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space

  1. A Disturbed Galactic Duo

    NASA Astrophysics Data System (ADS)

    2011-04-01

    The galaxies in this cosmic pairing, captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, display some curious features, demonstrating that each member of the duo is close enough to feel the distorting gravitational influence of the other. The gravitational tug of war has warped the spiral shape of one galaxy, NGC 3169, and fragmented the dust lanes in its companion NGC 3166. Meanwhile, a third, smaller galaxy to the lower right, NGC 3165, has a front-row seat to the gravitational twisting and pulling of its bigger neighbours. This galactic grouping, found about 70 million light-years away in the constellation Sextans (The Sextant), was discovered by the English astronomer William Herschel in 1783. Modern astronomers have gauged the distance between NGC 3169 (left) and NGC 3166 (right) as a mere 50 000 light-years, a separation that is only about half the diameter of the Milky Way galaxy. In such tight quarters, gravity can start to play havoc with galactic structure. Spiral galaxies like NGC 3169 and NGC 3166 tend to have orderly swirls of stars and dust pinwheeling about their glowing centres. Close encounters with other massive objects can jumble this classic configuration, often serving as a disfiguring prelude to the merging of galaxies into one larger galaxy. So far, the interactions of NGC 3169 and NGC 3166 have just lent a bit of character. NGC 3169's arms, shining bright with big, young, blue stars, have been teased apart, and lots of luminous gas has been drawn out from its disc. In NGC 3166's case, the dust lanes that also usually outline spiral arms are in disarray. Unlike its bluer counterpart, NGC 3166 is not forming many new stars. NGC 3169 has another distinction: the faint yellow dot beaming through a veil of dark dust just to the left of and close to the galaxy's centre [1]. This flash is the leftover of a supernova detected in 2003 and known accordingly as SN 2003cg. A supernova of this

  2. A Disturbed Galactic Duo

    NASA Astrophysics Data System (ADS)

    2011-04-01

    The galaxies in this cosmic pairing, captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, display some curious features, demonstrating that each member of the duo is close enough to feel the distorting gravitational influence of the other. The gravitational tug of war has warped the spiral shape of one galaxy, NGC 3169, and fragmented the dust lanes in its companion NGC 3166. Meanwhile, a third, smaller galaxy to the lower right, NGC 3165, has a front-row seat to the gravitational twisting and pulling of its bigger neighbours. This galactic grouping, found about 70 million light-years away in the constellation Sextans (The Sextant), was discovered by the English astronomer William Herschel in 1783. Modern astronomers have gauged the distance between NGC 3169 (left) and NGC 3166 (right) as a mere 50 000 light-years, a separation that is only about half the diameter of the Milky Way galaxy. In such tight quarters, gravity can start to play havoc with galactic structure. Spiral galaxies like NGC 3169 and NGC 3166 tend to have orderly swirls of stars and dust pinwheeling about their glowing centres. Close encounters with other massive objects can jumble this classic configuration, often serving as a disfiguring prelude to the merging of galaxies into one larger galaxy. So far, the interactions of NGC 3169 and NGC 3166 have just lent a bit of character. NGC 3169's arms, shining bright with big, young, blue stars, have been teased apart, and lots of luminous gas has been drawn out from its disc. In NGC 3166's case, the dust lanes that also usually outline spiral arms are in disarray. Unlike its bluer counterpart, NGC 3166 is not forming many new stars. NGC 3169 has another distinction: the faint yellow dot beaming through a veil of dark dust just to the left of and close to the galaxy's centre [1]. This flash is the leftover of a supernova detected in 2003 and known accordingly as SN 2003cg. A supernova of this

  3. AGN feedback in galaxy clusters and groups

    NASA Astrophysics Data System (ADS)

    Hardcastle, Martin

    2016-07-01

    Mechanical feedback via Active Galactic Nuclei (AGN) jets in the centres of galaxy groups and clusters is a crucial ingredient in current models of galaxy formation and cluster evolution. Jet feedback is believed to regulate gas cooling and thus star formation in the most massive galaxies, but a robust physical understanding of this feedback mode is currently lacking. Athena will provide (1) the first kinematic measurements on relevant spatial scales of the hot gas in galaxy, group and cluster haloes as it absorbs the impact of AGN jets, and (2) vastly improved ability to map thermodynamic conditions on scales well-matched to the jets, lobes and gas disturbances produced by them. I will present new predictions of Athena's ability to measure the energetic impact of powerful jets based on our most recent set of numerical models.

  4. Extended Source/Galaxy All Sky 2

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This panoramic view encompasses the entire sky and reveals the distribution of galaxies beyond the Milky Way galaxy, which astronomers call extended sources, as observed by Two Micron All-Sky Survey. The image is assembled from a database of over 1.6 million galaxies listed in the survey's All-Sky Survey Extended Source Catalog,; more than half of the galaxies have never before been catalogued. The colors represent how the many galaxies appear at three distinct wavelengths of infrared light (blue at 1.2 microns, green at 1.6 microns, and red at 2.2 microns). Quite evident are the many galactic clusters and superclusters, as well as some streamers composing the large-scale structure of the nearby universe. The blue overlay represents the very close and bright stars from our own Milky Way galaxy. In this projection, the bluish Milky Way lies predominantly toward the upper middle and edges of the image.

  5. IUE observations of amorphous hot galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, S. A.; Hjellming, M. S.; Gallagher, J. S., III; Hunter, D. A.

    1985-01-01

    Blue amorphous galaxies are star-forming, irregularlike systems which lack the spatially distinct OB stellar groups that are characteristic of most late-type galaxies. In order to better understand the nature of star-formation processes in these unusual galaxies, short-wavelength IUE spectra of the amorphous galaxies NGC 1705 and NGC 1800 have been obtained. It is found that NGC 1705 contains a normal mix of OB stars, which is consistent with the nearly constant recent star-formation rate inferred from new optical data. NGC 1800 is likely to have similar properties, and blue galaxies with amorphous structures thus do not show evidence for anomalies in stellar populations. The UV spectra of these galaxies and a variety of other hot extragalactic stellar systems in fact have similar characteristics, which suggests OB stellar populations are often homogeneous in their properties.

  6. Disturbing Behavior Checklists" Technical Manual

    ERIC Educational Resources Information Center

    Algozzine, Bob

    2012-01-01

    Ecological theorists have suggested that "disturbance" may result from an interaction between a child's behavior and reactions to that behavior within ecosystems such as schools. In this context, behavior is viewed as "disturbing" rather than "disturbed" and equal emphasis is given to the child and to individuals with whom the child interacts when…

  7. Vehicle Disturbance Test

    NASA Astrophysics Data System (ADS)

    Clapp, Brian

    2009-07-01

    The purpose of the VDT is to measure and characterize uncompensated environmental disturbances acting upon the HST during normal operation. The VDT is a passive test {not a forced-response test} used to obtain signatures for both externally induced {e.g. SCM, SA-3, SSM thermal gradients} and internally induced {e.g. HGA, RWA, COS and WFC3 mechanisms} disturbances affecting HST LOS pointing. The disturbances observed will be used as the nominal on-orbit disturbances in pointing control simulations until the next VDT is run.The test occurs after release, and most of the VDT can be run during the BEA period. The ?V1 sunpoint portion of the VDT usually occurs after the BEA period is complete. The VDT shall consist of two separate tests that need not occur consecutively. The overall duration of the VDT is at least 13 orbits of spacecraft time including {1} at least 8 orbits at +V3 sunpoint after achieving thermal equilibrium {at least 36-hours at +V3 sunpoint} and three out of 8-orbits have RWA Friction Compensation turned Off, and {2} at least 5 orbits at ?V1 sunpoint {all or part of this segment have RWA Friction Compensation turned Off}. At the beginning of each test, the attitude control law gains are switched to maneuver gains, and the gyros are commanded to low mode. The nominal attitude control law configuration will be restored at the end of each test.Each test is initiated via SMS execution of stored program macros in the HST flight computer to switch the attitude control law gains to low-bandwidth maneuver gains, command the gyros into low mode, terminate Velocity aberration and parallax {VAP} processing, and manage the status of on-board RWA Friction Compensation. The nominal attitude control law configuration will be restored at the end of each test via SMS execution of stored program macros. The stored program command macros are developed specifically for the VDT by the Flight Software and Pointing Control System groups.

  8. Radio structures in QSO-galaxy pairs

    NASA Technical Reports Server (NTRS)

    Akujor, Chidi E.

    1990-01-01

    It is now generally agreed that if quasars and nearby low redshift galaxies are associated, then there should be luminous connections between them. However, most of the observational evidence being presented is in the optical domain, whereas such evidence should also exist at radio frequencies. The author is, therefore, investigating some quasar-galaxy pairs at radio frequencies to search for luminous connections and other structural peculiarities. Radio maps of some of these sources are presented.

  9. Sleep Disturbances in Neurodevelopmental Disorders.

    PubMed

    Robinson-Shelton, Althea; Malow, Beth A

    2016-01-01

    Sleep disturbances are extremely prevalent in children with neurodevelopmental disorders compared to typically developing children. The diagnostic criteria for many neurodevelopmental disorders include sleep disturbances. Sleep disturbance in this population is often multifactorial and caused by the interplay of genetic, neurobiological and environmental overlap. These disturbances often present either as insomnia or hypersomnia. Different sleep disorders present with these complaints and based on the clinical history and findings from diagnostic tests, an appropriate diagnosis can be made. This review aims to provide an overview of causes, diagnosis, and treatment of sleep disturbances in neurodevelopmental disorders that present primarily with symptoms of hypersomnia and/or insomnia. PMID:26719309

  10. Disturbed 40Ar 39Ar systematics in hydrothermal biotite and hornblende at the Scotia gold mine, Western Australia: Evidence for argon loss associated with post-mineralisation fluid movement

    NASA Astrophysics Data System (ADS)

    Kent, Adam J. R.; Campbell McCuaig, T.

    1997-11-01

    Homblende and biotite that formed during gold mineralisation at the Scotia mine, Western Australia, have erratic 40Ar 39Ar release spectra and total gas ages that are ˜200-900 million year younger than the ca. 2600-2620 Ma minimum age of gold mineralisation, as given by 40Ar 39Ar plateau (muscovite) ages of crosscutting pegmatite dykes. Analysed hornblendes are dominated by magnesio hornblende but also contain small domains of ferro-actinolitic hornblende, actinolitic hornblende, and actinolite. Biotite also appears to be substantially altered to chlorite along cleavage planes. Relatively young apparent ages and high K/Ca ratios of argon released from hornblendes at temperatures less than ˜1000°C are interpreted to be the result of degassing of contaminant biotite. However, this cannot totally explain the young ages of hornblendes. Gas fractions released at furnace temperatures above 1000 C, where the effect of biotite degassing is demonstrably negligible, still have apparent ages that are ˜200-900 million years younger than the age of muscovite from post-gold pegmatite dykes. The close proximity of disturbed hydrothermal hornblende samples to apparently undisturbed pegmatite muscovite samples (less than a few metres in some cases) is difficult to reconcile with argon loss in hydrothermal hornblende being the product of thermally-driven volume diffusion. Given a suitable thermal history, argon loss could occur preferentially in hornblendes if (1) the closure (for slow cooling) and blocking (for reheating) temperatures of hydrothermal hornblendes were lower than published estimates, as has been observed in structurally complex metamorphic hornblendes and/or (2) the closure and blocking temperature of pegmatite muscovite were higher than commonly estimated. However, neither of these interpretations can easily explain the large variation in hornblende ages. It is instead suggested that argon loss occurred during mineral-fluid interaction during movement of a

  11. Extragalatic zoo. I. [New galaxies

    SciTech Connect

    Schorn, R.A.

    1988-01-01

    The characteristics of various types of extragalactic objects are described. Consideration is given to cD galaxies, D galaxies, N galaxies, Markarian galaxies, liners, starburst galaxies, and megamasers. Emphasis is also placed on the isolated extragalatic H I region; the isolated extragalatic H II region; primeval galaxies or photogalaxies; peculiar galaxies; Arp galaxies; interacting galaxies; ring galaxies; and polar-ring galaxies. Diagrams of these objects are provided.

  12. Tidally triggered galaxy formation. I - Evolution of the galaxy luminosity function

    NASA Astrophysics Data System (ADS)

    Lacey, Cedric; Silk, Joseph

    1991-11-01

    Motivated by accumulating evidence that large-scale galactic star formation is initiated and sustained by tidal interactions, a phenomenological model is developed for the galaxy luminosity function, commencing from a galaxy mass function that is predicted by a hierarchical model of structure formation such as the cold dark matter dominated cosmology. The epoch of luminous galaxy formation and the galactic star-formation rate are determined by the environment. Gas cooling and star-formation feedback are incorporated; the present epoch luminosity function of bright galaxies and the distribution of galaxy colors are well reproduced. Biasing, via the preferential formation of luminous galaxies in denser regions associated with groups of clusters, is a natural outcome of this tidally triggered star-formation model. A large frequency is inferred of 'failed' galaxies, prematurely stripped by supernova-driven winds, that populate groups and clusters in the form of low surface brightness gas-poor dwarfs, and of 'retarded' galaxies, below the threshold for effective star formation, in the field, detectable as gas-rich, extremely low surface brightness objects. Predictions are presented for the evolution with redshift of the distribution of characteristic star formation timescales, galaxy ages, and colors. Estimates are also made of galaxy number counts, and it is suggested that dwarf galaxies undergoing bursts of star formation at z of about 1 may dominate the counts at the faintest magnitudes.

  13. Robustness of disturbance attenuation with respect to disturbance model uncertainty

    NASA Astrophysics Data System (ADS)

    Davison, Daniel Edward

    In contrast to the case of robustness with respect to plant model uncertainty, the control systems community has paid relatively little attention to the issue of robustness with respect to disturbance model uncertainty. However, disturbance model uncertainty is of significance in many practical problems, including, for example, aircraft control (where the disturbance is turbulence), ship control (where the disturbances are wind and waves), and active suspension problems (where the disturbance is road roughness). Motivated, in particular, by turbulence model uncertainty, this dissertation considers the analysis and design of linear time-invariant controllers that are robust with respect to uncertainty in the disturbance intensity and bandwidth, where disturbance attenuation is measured by the output variance. Five aspects of the robust disturbance attenuation problem are considered. First, an expression for the output variance in terms of the uncertain disturbance parameters is derived. This expression is written in terms of an operator called the V-transform. Second, the notions of disturbance gain margin and disturbance bandwidth margin are introduced as quantitative measures of robustness with respect to uncertainty in the disturbance gain and disturbance bandwidth, respectively. Third, lower bounds on the achievable output variance are found under constraints of practical importance, e.g., constraints on bandwidth and stability robustness. The lower bounds are used to show that, in almost every practical situation, there is a limitation on both the achievable nominal performance and the achievable robustness margins. Fourth, tradeoffs between nominal performance and robust performance are investigated. The main result is that good nominal and good robust performance are neither incompatible nor equivalent. Fifth, a design procedure to achieve a prespecified level of robustness is proposed; the principal idea is to reduce the robust performance design problem to

  14. Soil disturbance by airbags

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Disturbance of the drift at the Pathfinder landing site reveals a shallow subsurface that is slightly darker but has similar spectral properties. The top set of images, in true color, shows the soils disturbed by the last bounce of the lander on its airbags before coming to rest and the marks created by retraction of the airbags. In the bottom set of images color differences have been enhanced. The mast at center is the Atmospheric Structure Instrument/Meteorology Package (ASI/MET). The ASI/MET is an engineering subsytem that acquired atmospheric data during Pathfinder's descent, and will continue to get more data through the entire landed mission. A shadow of the ASI/MET appears on a rock at left.

    Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  15. Crashing galaxies, cosmic fireworks

    SciTech Connect

    Keel, W.C.

    1989-01-01

    The study of binary systems is reviewed. The history of the study of interacting galaxies, the behavior of gas in binary systems, studies to identify the processes that occur when galaxies interact, and the relationship of Seyfert galaxies and quasars to binary systems are discussed. The development of an atlas of peculiar galaxies (Arp, 1966) and methods for modeling galaxy interactions are examined.

  16. Discovery of a compact gas-rich damped Lyman-α galaxy at z = 2.2: evidence of a starburst-driven outflow

    NASA Astrophysics Data System (ADS)

    Noterdaeme, P.; Laursen, P.; Petitjean, P.; Vergani, S. D.; Maureira, M. J.; Ledoux, C.; Fynbo, J. P. U.; López, S.; Srianand, R.

    2012-04-01

    We present the detection of Ly α, [O iii], and H α emission associated with an extremely strong damped Lyman-α (DLA) system (N(H i) = 1022.10 cm-2) at z = 2.207 towards the quasar SDSS J113520.39 - 001053.56. This is the largest H I column density ever measured along a quasi-stellar object (QSO) line of sight, though typical of those often found in DLAs associated to gamma-ray bursts (GRBs). This absorption system can also be classified as an ultra-strong Mg II system with W_rλ2796≃3.6 Å. The mean metallicity of the gas ( [Zn/H] = -1.1) and dust depletion factors ( [Zn/Fe] = 0.72, [Zn/Cr] = 0.49) are consistent with (and only marginally larger than) the mean values found in the general QSO-DLA population. The [O iii]-Hα emitting region has a very small impact parameter with respect to the QSO line of sight, b ≈ 0.1'' (0.9 kpc proper distance), and is unresolved. From the H α line, we measure a significant star formation rate (SFR) ≈ 25 M⊙ yr-1 (uncorrected for dust). The shape of the Ly α line is double-peaked, which is the signature of a resonant scattering of Ly α photons, and the Ly α emission is spatially extended. More strikingly, the blue and red Ly α peaks arise from distinct regions extended over a few kpc on either side of the star-forming region. We propose that this is the consequence of a Ly α transfer in outflowing gas. The presence of starburst-driven outflows is also in agreement with the high SFR together with the small size and low mass of the galaxy (Mvir ~ 1010 M⊙). By placing constraints on the stellar UV continuum luminosity of the galaxy, we estimate an age of at most a few 107 yr, again consistent with a recent starburst scenario. We interpret these data as the observation of a young, gas-rich, compact starburst galaxy, from which material is expelled through collimated winds powered by the vigorous star formation activity. We substantiate this picture by modelling the radiative transfer of Ly α photons in the galactic

  17. Postoperative circadian disturbances.

    PubMed

    Gögenur, Ismail

    2010-12-01

    An increasing number of studies have shown that circadian variation in the excretion of hormones, the sleep wake circle, the core body temperature rhythm, the tone of the autonomic nervous system and the activity rhythm are important both in health and in disease processes. An increasing attention has also been directed towards the circadian variation in endogenous rhythms in relation to surgery. The attention has been directed to the question whether the circadian variation in endogenous rhythms can affect postoperative recovery, morbidity and mortality. Based on the lack of studies where these endogenous rhythms have been investigated in relation to surgery we performed a series of studies exploring different endogenous rhythms and factors affecting these rhythms. We also wanted to examine whether the disturbances in the postoperative circadian rhythms could be correlated to postoperative recovery parameters, and if pharmacological administration of chronobiotics could improve postoperative recovery. Circadian rhythm disturbances were found in all the examined endogenous rhythms. A delay was found in the endogenous rhythm of plasma melatonin and excretion of the metabolite of melatonin (AMT6s) in urine the first night after both minor and major surgery. This delay after major surgery was correlated to the duration of surgery. The amplitude in the melatonin rhythm was unchanged the first night but increased in the second night after major surgery. The amplitude in AMT6s was reduced the first night after minimally invasive surgery. The core body temperature rhythm was disturbed after both major and minor surgery. There was a change in the sleep wake cycle with a significantly increased duration of REM-sleep in the day and evening time after major surgery compared with preoperatively. There was also a shift in the autonomic nervous balance after major surgery with a significantly increased number of myocardial ischaemic episodes during the nighttime period. The

  18. FINDING DWARF GALAXIES FROM THEIR TIDAL IMPRINTS

    SciTech Connect

    Chakrabarti, Sukanya; Bigiel, Frank; Chang, Philip; Blitz, Leo E-mail: chang65@uwm.edu

    2011-12-10

    We describe ongoing work on a new method that allows one to approximately determine the mass and relative position (in galactocentric radius and azimuth) of galactic companions purely from analysis of observed disturbances in gas disks. We demonstrate the validity of this method, which we call Tidal Analysis, by applying it to local spirals with known optical companions, namely M51 and NGC 1512. These galaxies span the range from having a very low mass companion ({approx}one-hundredth the mass of the primary galaxy) to a fairly massive companion ({approx}one-third the mass of the primary galaxy). This approach has broad implications for many areas of astrophysics-for the indirect detection of dark matter (or dark-matter-dominated dwarf galaxies), and for galaxy evolution in its use to decipher the dynamical impact of satellites on galactic disks. Here, we provide a proof of principle of the method by applying it to infer and quantitatively characterize optically visible galactic companions of local spirals, from the analysis of observed disturbances in outer gas disks.

  19. Dark Galaxies and Lost Baryons (IAU S244)

    NASA Astrophysics Data System (ADS)

    Davies, Jonathan I.; Disney, Michael J.

    2008-05-01

    ; Numerical simulation of the dwarf companions of giant galaxies A. Nelson and P. Williams; Delayed galaxies C. Struck, M. Hancock, B. Smith, P. Appleton, V. Charmandaris and M. Giroux; Probe of dark galaxies via disturbed/lopsided isolated galaxies I. Karachentsev, V. Karachentseva, W. Huchtmeier, D. Makarov and S. Kaisin; Star formation thresholds J. Schaye; Scaling relations of dwarf galaxies without supernova-driven winds K. Tassis, A. Kravtsov and N. Gnedin; Star formation in massive low surface brightness galaxies K. O'Neil; Linking clustering properties and the evolution of low surface brightness galaxies D. Bomans and S. Rosenbaum; Too small to form a galaxy: how the UV background determines the baryon fraction M. Hoeft, G. Yepes and S. Gottlober; Star formation in damped Lyman selected galaxies L. Christensen; Dark-matter content of early-type galaxies with planetary nebulae N. Napolitano et al.; Hunting for ghosts: low surface brightnesses from pixels R. Scaramella and S. Sabatini; Baryonic properties of the darkest galaxies E. Grebel; The dwarf low surface brightness population in different environments of the local universe S. Sabatini, J. Davies, S. Roberts and R. Scaramella; Mass modelling of dwarf spheroidal galaxies J. Klimentowski et al.; Evolution of dwarf galaxies in the Centaurus A Group L. Makarova and D. Makarov; A flat faint end of the Fornax cluster galaxy luminosity function S. Mieske, M. Hilker, L. Infante and C. Mendes de Oliveira; Can massive dark halos destroy the discs of dwarf galaxies? B. Fuchs and O. Esquivel; 'Dark galaxies' and local very metal-poor gas-rich galaxies: possible interrelations S. Pustilnik; Morphology and environment of dwarf galaxies in the local universe H. Ann; Arecibo survey of HI emission from disk galaxies at redshift z 0.2 B. Catinella, M. Haynes, J. Gardner, A. Connolly and R. Giovanelli; AGES observations of

  20. Technical Civilizations in the Galaxy

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Are there other technical civilizations in the galaxy? Past analyses come to different conclusions. Cocconi and Morrison demonstrated in 1959 that interstellar radio communication was possible and Drake conducted the first search for beacons in 1960. The Drake equation estimates the number of galactic civilizations that are transmitting beacons as the product of the rate of star formation in the galaxy, the fraction of stars with planets, their average number of earthlike planets, the fraction with intelligent life and interstellar communication, and the average lifetime of a technical civilization. The Drake model of the galaxy contains many technical civilizations with communication but no interstellar travel. Michael Hart in 1975 strongly challenged this model. Starting with the fact that no extraterrestrials have been observed on Earth, and assuming that interstellar colonization is possible, he concluded that it was very likely that we are the first civilization in our galaxy and that searching or beacons is probably a waste of time and money. The Fermi paradox similarly reasons that if extraterrestrials exist: they should be here, and asks, Where are they? The Hart/Fermi model of the galaxy contains only our civilization and suggests we may colonize the galaxy. A third galactic model is that we are alone but will never develop interstellar travel. The fourth alternate model has many technical civilizations, with interstellar travel and colonization. The possibilities are clear and momentous. Either we are the only technical civilization in the galaxy or there are others. Technical civilizations will colonize the galaxy or not. We have four cosmic conjectures - one or many, colonization or not - but however unlikely they seem based on our limited evidence, one of these four models must be collect.

  1. Radio emission in peculiar galaxies

    NASA Technical Reports Server (NTRS)

    Demellorabaca, Dulia F.; Abraham, Zulema

    1990-01-01

    During the last decades a number of surveys of peculiar galaxies have been carried out and accurate positions become available. Since peculiarities are a possible evidence of radio emission (Wright, 1974; Sulentic, 1976; Stocke et al., 1978), the authors selected a sample of 24 peculiar galaxies with optical jet-like features or extensions in different optical catalogues, mainly the Catalogue of Southern Peculiar Galaxies and Associations (Arp and Madore, 1987) and the ESO/Uppsala Survey of the ESO(B) Atlas (Lauberts, 1982) for observation at the radio continuum frequency of 22 GHz. The sample is listed in a table. Sol (1987) studied this sample and concluded that the majority of the jet-like features seem to admit an explanation in terms of interactive galaxies with bridges and/or tails due to tidal effects. Only in a few cases do the jets seem to be possibly linked to some nuclear activity of the host galaxy. The observations were made with the 13.7m-radome enclosed Itapetinga Radiotelescope (HPBW of 4.3 arcmin), in Brazil. The receiver was a 1 GHz d.s.b. super-heterodine mixer operated in total-power mode, with a system temperature of approximately 800 K. The observational technique consisted in scans in right ascention, centralized in the optical position of the galaxy. The amplitude of one scan was 43 arcmin, and its duration time was 20 seconds. The integration time was at least 2 hours (12 ten-minute observations) and the sensibility limit adopted was an antenna temperature greater than 3 times the r.m.s. error of the baseline determination. Virgo A was used as the calibrator source. Three galaxies were detected for the first time as radio sources and four other known galaxies at low frequencies had their flux densities measured at 22 GHz. The results for these sources are presented.

  2. VLT-VIMOS integral field spectroscopy of luminous and ultraluminous infrared galaxies. II. Evidence for shock ionization caused by tidal forces in the extra-nuclear regions of interacting and merging LIRGs

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Arribas, S.; Colina, L.; Rodríguez-Zaurín, J.; Alonso-Herrero, A.; García-Marín, M.

    2010-07-01

    Context. Luminous infrared galaxies (LIRGs) are an important class of objects in the low-z universe bridging the gap between normal spirals and the strongly interacting and starbursting ultraluminous infrared galaxies (ULIRGs). Since a large fraction of the stars in the Universe have been formed in these objects, LIRGs are also relevant in a high-z context. Studies of the two-dimensional physical properties of LIRGs are still lacking. Aims: We aim to understand the nature and origin of the ionization mechanisms operating in the extra-nuclear regions of LIRGs as a function of the interaction phase and infrared luminosity. Methods: This study uses optical integral field spectroscopy (IFS) data obtained with VIMOS. Our analysis is based on over 25 300 spectra of 32 LIRGs covering all types of morphologies (isolated galaxies, interacting pairs, and advanced mergers), and the entire 1011-1012 L⊙ infrared luminosity range. Results: We found strong evidence for shock ionization, with a clear trend with the dynamical status of the system. Specifically, we quantified the variation with interaction phase of several line ratios indicative of the excitation degree. While the [N ii]λ6584/Hα ratio does not show any significant change, the [S ii]λλ6717,6731/Hα and [O i]λ6300/Hα ratios are higher for more advanced interaction stages. Velocity dispersions are higher than in normal spirals and increase with the interaction class (medians of 37, 46, and 51 km s-1 for class 0-2, respectively). We constrained the main mechanisms causing the ionization in the extra-nuclear regions (typically for distances ranging from ~0.2-2.1 kpc to ~0.9-13.2 kpc) using diagnostic diagrams. Isolated systems are mainly consistent with ionization caused by young stars. Large fractions of the extra-nuclear regions in interacting pairs and more advanced mergers are consistent with ionization caused by shocks of vs ⪉ 200 km s-1. This is supported by the relation between the excitation degree and

  3. Secular Evolution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-10-01

    bulges because the latter retain a `memory' of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions with respect to the Faber-Jackson correlation between velocity dispersion and bulge luminosity, (4) spiral structure or nuclear bars in the `bulge' part of the light profile, (5) nearly exponential brightness profiles and (6) starbursts. So the cleanest examples of pseudobulges are recognisable. However, pseudo and classical bulges can coexist in the same galaxy. I review two important implications of secular evolution: (1) The existence of pseudobulges highlights a problem with our theory of galaxy formation by hierarchical clustering. We cannot explain galaxies that are completely bulgeless. Galaxy mergers are expected to happen often enough so that every giant galaxy should have a classical bulge. But we observe that bulgeless giant galaxies are common in field environments. We now realise that many dense centres of galaxies that we used to think are bulges were not made by mergers; they were grown out of disks. So the challenge gets more difficult. This is the biggest problem faced by our theory of galaxy formation. (2) Pseudobulges are observed to contain supermassive black holes (BHs), but they do not show the well-known, tight correlations between BH mass and the mass and velocity dispersion of the host bulge. This leads to the suggestion that there are two fundamentally different BH feeding processes. Rapid global inward gas transport in galaxy mergers leads to giant BHs that correlate with host ellipticals and classical bulges, whereas local and more stochastic feeding of small BHs in largely bulgeless galaxies evidently involves too little energy feedback to result in BH-host coevolution. It is an important success of the secular evolution picture that morphological differences can be used to

  4. A Survey of nearby, nearly face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2014-09-01

    This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole. These are alternate targets.

  5. A Survey of nearby, nearly face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2014-09-01

    This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole.

  6. Shaping galaxy evolution with galaxy structure

    NASA Astrophysics Data System (ADS)

    Cheung, Edmond

    A fundamental pursuit of astronomy is to understand galaxy evolution. The enormous scales and complex physics involved in this endeavor guarantees a never-ending journey that has enamored both astronomers and laymen alike. But despite the difficulty of this task, astronomers have still attempted to further this goal. Among of these astronomers is Edwin Hubble. His work, which includes the famous Hubble sequence, has immeasurably influenced our understanding of galaxy evolution. In this thesis, we present three works that continues Hubble's line of study by using galaxy structure to learn about galaxy evolution. First, we examine the dependence of galaxy quiescence on inner galactic structure with the AEGIS/ DEEP2 survey at 0.5In this thesis, we present three works that continues Hubble's line of study by using galaxy structure to learn about galaxy evolution. First, we examine the dependence of galaxy quiescence on inner galactic structure with the AEGIS/ DEEP2 survey at 0.5galaxies from quiescent galaxies. Our method indicates that the inner stellar mass is the most correlated parameter of quenching, implying that the process that quenches galaxies must also buildup their inner structure. Second, we explore the relationship between galactic bars and their host galaxies with Galaxy Zoo 2 at z˜0. The correlations of bar properties and galaxy properties are consistent with simulations of bar formation and evolution, indicating that bars affect their host galaxies. Finally, we investigate whether bars can drive supermassive black hole growth with data from Chandra and Galaxy Zoo: Hubble at 0.2galaxies to a matched sample of inactive, control galaxies shows that there is no statistically significant excess of bars in active hosts. Our result shows that bars are not the primary fueling mechanism of supermassive black hole

  7. Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Blain, A. W.

    2009-12-01

    The Universe was a more exciting place at moderate to high redshifts z˜3, after reionization took place, but before the present day galaxy properties were firmly established. From a wide variety of directions, we are gaining insight into the Universe at these epochs. Less gas was sequestered into stars and had been ejected into the interstellar medium as weakly emitting, slowly cooling debris, because a significant amount of star formation and supermassive blackhole growth in active galactic nuclei (AGNs) was still to occur. Furthermore, the processes that shape today’s galaxies were at work, and can be seen in real time with the appropriate tools. The most active regions of galaxies at these redshifts are deeply obscured at ultraviolet and optical wavelengths by an opaque interstellar medium (ISM) that absorbs most of their radiation, and then re-emits at far-infrared (IR) wavelengths. This emission provides us with a very powerful probe of the regions within galaxies where the most intense activity takes place; both their total energy output, and from spectroscopy, about the physics and chemistry of the atomic and molecular gas that fuels, hides and surrounds these regions. This information is unique, but not complete: radio, mid- and near-IR, optical and X-ray observations each provide unique complementary views. Nevertheless, probing the obscured Universe, with the Atacama Large (Sub-)Millimeter Array (ALMA), James Webb Space Telescope (JWST), Herschel Space Observatory, Wide Field Infrared Survey Explorer (WISE), and missions and telescopes that are not yet in construction, like an actively cooled sub-10-m class IR space telescope and a 25-m class ground-based submillimeter/THz telescope (CCAT) will provide a more complete picture of in which neighborhoods, by what means and how quickly the most vigorous bursts of activity take place.

  8. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  9. Investigations of Galaxy Clusters Using Gravitational Lensing

    SciTech Connect

    Wiesner, Matthew P.

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  10. Disturbing the solar system. Impacts, close encounters, and coming attractions

    NASA Astrophysics Data System (ADS)

    Rubin, Alan E.

    The solar system is not akin to a well-oiled machine whose parts move smartly along prescribed paths. It has always been - and continues to be - a messy place in which gravity wreaks havoc. Moons form, asteroids and comets crash into planets, ice ages commence, and dinosaurs disappear. By describing the dramatic consequences of such disturbances, this fascinating book reveals the fundamental interconnectedness of the solar system - and what it means for life on its most interesting planet. After relating a brief history of the solar system, Alan Rubin describes how astronomers determined our location in the Milky Way. He provides succinct and up-to-date accounts of the energetic interactions among planetary bodies, the generation of the Earth's magnetic field, the effects of other solar-system objects on our climate, the moon's genesis, the heating of asteroids, and the origin of the mysterious tektites. Along the way, Rubin introduces us to the individual scientists - including the famous, the now obscure, and the newest generation of researchers - who have enhanced our understanding of the galactic neighborhood. He shows how scientific discoveries are made; he discusses the uncertainty that presides over the boundaries of knowledge as well as the occasional reluctance of scientists to change their minds even when confronted by compelling evidence. This fresh historical perspective reveals science as it is: an imperfect but self-correcting enterprise. Journeying to the frontiers of knowledge, Rubin concludes with the exciting realm of astrobiology. He chronicles the history of the search for life on Mars and describes cutting-edge lines of astrobiological inquiry, including panspermia (the possible transfer of life from planet to planet), the likelihood of technologically advanced alien civilizations in our galaxy, and our probable responses to alien contact.

  11. Analysis of forest disturbance using TM and AVHRR data

    NASA Technical Reports Server (NTRS)

    Spanner, Michael A.; Hlavka, Christine A.; Pierce, Lars L.

    1989-01-01

    A methodology that will be used to determine the proportions of undisturbed, successional vegetation and recently disturbed land cover within coniferous forests using remotely sensed data from the advanced very high resolution radiometer (AVHRR) is presented. The method uses thematic mapper (TM) data to determine the proportions of the three stages of forest disturbance and regrowth for each AVHRR pixel in the sample areas, and is then applied to interpret all AVHRR imagery. Preliminary results indicate that there are predictable relationships between TM spectral response and the disturbance classes. Analysis of ellipse plots from a TM classification of the disturbed forested landscape indicates that the forest classes are separable in the red (0.63-0.69 micron) and near-infrared (0.76-0.90 micron) bands, providing evidence that the proportion of disturbance classes may be determined from AVHRR data.

  12. Chronic stress, catecholamines, and sleep disturbance at Three Mile Island.

    PubMed

    Davidson, L M; Fleming, R; Baum, A

    1987-01-01

    The present study was concerned with the relationship between chronic stress and sleep disturbance. Previous research has provided evidence of chronic stress responding among people living near the Three Mile Island nuclear generating facility. Compared to control subjects, the TMI group has exhibited greater symptom reporting, poorer performance on behavioral measures of concentration, and elevated levels of urinary norepinephrine and epinephrine. Other research has suggested a relationship between arousal and insomnia. The extent to which stress and sleep disturbances were experienced by residents at TMI was examined and compared to levels of stress and sleep disturbance among a group of control subjects. The relationship between stress and sleep disturbances was also examined. Results indicated that TMI area residents exhibited more stress than the controls and reported greater disturbance of sleep. Modest relationships among stress and sleep measures suggested that the symptoms of stress measured in this study were not primary determinants of sleep problems. PMID:3611754

  13. Kinematics of Baryons Cycling Through Galaxy Halos

    NASA Astrophysics Data System (ADS)

    Nielsen, Nikole M.

    2015-01-01

    In a modern view of galaxy evolution, the baryon cycle is key to understanding the observed global properties of galaxies. Red galaxies passively evolve due to quenching of their star formation, whereas blue galaxies actively evolve, presumably due to a replenishing gas supply. Signatures of the baryon cycle such as IGM accretion, minor mergers, and stellar-driven outflows and fountains are best probed in gaseous halos, i.e., the circumgalactic medium (CGM). We study the spatial and kinematic distribution of the low-ionization metal-enriched CGM with QSO absorption lines for a population of 182 galaxies in the MgII Absorber-Galaxy Catalog (MAGIICAT). We present our findings detailing how the extent and patchiness of the CGM depends on MgII absorption strength, and galaxy luminosity and color. For the first time, we placed the kinematics of 39 MgII absorbers with high-resolution spectra in the context of their host galaxy color, redshift, and orientation. By examining the velocity dispersions of absorbers, we find possible effects of quenching on red galaxies where the velocity dispersions decrease over 2 Gyrs time and are smaller at larger radii. The velocity dispersions for blue galaxies remain constant over time and radius and possibly indicate a sustained flow of baryons feeding star formation. Blue, face-on galaxies probed along the minor axis show the largest velocity dispersions to very high significance. This result provides the strongest direct evidence to date for galactic-scale outflows which, for this orientation, are pointing nearly towards the observer. We discuss how our results place observational constraints on simulations which are just now beginning to accurately model the baryon cycle and its role in galaxy evolution.

  14. H I-deficient galaxies in intermediate-density environments

    NASA Astrophysics Data System (ADS)

    Dénes, H.; Kilborn, V. A.; Koribalski, B. S.; Wong, O. I.

    2016-01-01

    Observations show that spiral galaxies in galaxy clusters tend to have on average less neutral hydrogen (H I) than galaxies of the same type and size in the field. There is accumulating evidence that such H I-deficient galaxies are also relatively frequent in galaxy groups. An important question is that which mechanisms are responsible for the gas deficiency in galaxy groups. To gain a better understanding of how environment affects the gas content of galaxies, we identified a sample of six H I-deficient galaxies from the H I Parkes All Sky Survey (HIPASS) using H I-optical scaling relations. One of the galaxies is located in the outskirts of the Fornax cluster, four are in loose galaxy groups and one is in a galaxy triplet. We present new high-resolution H I observations with the Australia Telescope Compact Array (ATCA) of these galaxies. We discuss the possible cause of H I-deficiency in the sample based on H I observations and various multi-wavelength data. We find that the galaxies have truncated H I discs, lopsided gas distribution and some show asymmetries in their stellar discs. We conclude that both ram-pressure stripping and tidal interactions are important gas removal mechanisms in low-density environments.

  15. Metal enriched gaseous halos around distant radio galaxies: Clues to feedback in galaxy formation

    SciTech Connect

    Reuland, M; van Breugel, W; de Vries, W; Dopita, A; Dey, A; Miley, G; Rottgering, H; Venemans, B; Stanford, S A; Lacy, M; Spinrad, H; Dawson, S; Stern, D; Bunker, A

    2006-08-01

    We present the results of an optical and near-IR spectroscopic study of giant nebular emission line halos associated with three z > 3 radio galaxies, 4C 41.17, 4C 60.07 and B2 0902+34. Previous deep narrow band Ly{alpha} imaging had revealed complex morphologies with sizes up to 100 kpc, possibly connected to outflows and AGN feedback from the central regions. The outer regions of these halos show quiet kinematics with typical velocity dispersions of a few hundred km s{sup -1}, and velocity shears that can mostly be interpreted as being due to rotation. The inner regions show shocked cocoons of gas closely associated with the radio lobes. These display disturbed kinematics and have expansion velocities and/or velocity dispersions >1000 km s{sup -1}. The core region is chemically evolved, and we also find spectroscopic evidence for the ejection of enriched material in 4C 41.17 up to a distance of {approx} 60 kpc along the radio-axis. The dynamical structures traced in the Ly{alpha} line are, in most cases, closely echoed in the Carbon and Oxygen lines. This shows that the Ly{alpha} line is produced in a highly clumped medium of small filling factor, and can therefore be used as a tracer of the dynamics of HzRGs. We conclude that these HzRGs are undergoing a final jet-induced phase of star formation with ejection of most of their interstellar medium before becoming 'red and dead' Elliptical galaxies.

  16. NGC 3934: a shell galaxy in a compact galaxy environment

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Galletta, G.; Rampazzo, R.; Marino, A.; Mazzei, P.; Buson, L. M.

    2011-10-01

    Context. Mergers/accretions are considered the main drivers of the evolution of galaxies in groups. We investigate the NGC 3933 poor galaxy association that contains NGC 3934, which is classified as a polar-ring galaxy. Aims: The multi-band photometric analysis of NGC 3934 allows us to investigate the nature of this galaxy and to re-define the NGC 3933 group members with the aim to characterize the group's dynamical properties and its evolutionary phase. Methods: We imaged the group in the far (FUV, λeff = 1539 Å) and near (NUV, λeff = 2316 Å) ultraviolet (UV) bands of the Galaxy Evolution Explorer (GALEX). From the deep optical imaging we determined the fine structure of NGC 3934. We measured the recession velocity of PGC 213894 which shows that it belongs to the NGC 3933 group. We derived the spectral energy distribution (SED) from FUV to far-IR emission of the two brightest members of the group. We compared a grid of smooth particle hydrodynamical (SPH) chemo-photometric simulations with the SED and the integrated properties of NGC 3934 and NGC 3933 to devise their possible formation/evolutionary scenarios. Results: The NGC 3933 group has six bright members: a core composed of five galaxies, which have Hickson's compact group characteristics, and a more distant member, PGC 37112. The group velocity dispersion is relatively low (157 ± 44 km s-1). The projected mass, from the NUV photometry, is ~7 × 1012 M⊙ with a crossing time of 0.04 Hubble times, suggesting that at least in the center the group is virialized. We do not find evidence that NGC 3934 is a polar-ring galaxy, as suggested by the literature, but find that it is a disk galaxy with a prominent dust-lane structure and a wide type-II shell structure. Conclusions: NGC 3934 is a quite rare example of a shell galaxy in a likely dense galaxy region. The comparison between physically motivated SPH simulations with multi-band integrated photometry suggests that NGC 3934 is the product of a major merger.

  17. Dual Stellar Halos in Early-type Galaxies and Formation of Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-08-01

    M105 in the Leo I Group is a textbook example of a standard elliptical galaxy. It is only one of the few elliptical galaxies for which we can study their stellar halos using the resolved stars. It is an ideal target to study the structure and composition of stellar halos in elliptical galaxies. We present photometry and metallicity of the resolved stars in the inner and outer regions of M105. These provide strong evidence that there are two distinct stellar halos in this galaxy, a metal-poor (blue) halo and a metal-rich (red) halo. Then we compare them with those in other early-type galaxies and use the dual halo mode formation scenario to describe how massive galaxies formed.

  18. THE GALAXY OPTICAL LUMINOSITY FUNCTION FROM THE AGN AND GALAXY EVOLUTION SURVEY

    SciTech Connect

    Cool, Richard J.; Eisenstein, Daniel J.; Kochanek, Christopher S.; Brown, Michael J. I.; Caldwell, Nelson; Forman, William R.; Hickox, Ryan C.; Jones, Christine; Murray, Stephen S.; Dey, Arjun; Jannuzi, Buell T.; Moustakas, John

    2012-03-20

    We present the galaxy optical luminosity function for the redshift range 0.05 < z < 0.75 from the AGN and Galaxy Evolution Survey, a spectroscopic survey of 7.6 deg{sup 2} in the Booetes field of the NOAO Deep Wide-Field Survey. Our statistical sample is composed of 12,473 galaxies with known redshifts down to I = 20.4 (AB). Our results at low redshift are consistent with those from Sloan Digital Sky Survey; at higher redshift, we find strong evidence for evolution in the luminosity function, including differential evolution between blue and red galaxies. We find that the luminosity density evolves as (1 + z){sup (0.54{+-}0.64)} for red galaxies and (1 + z){sup (1.64{+-}0.39)} for blue galaxies.

  19. Atomic hydrogen properties of active galactic nuclei host galaxies: H I in 16 nuclei of galaxies (NUGA) sources

    SciTech Connect

    Haan, Sebastian; Schinnerer, Eva; Mundell, Carole G.; García-Burillo, Santiago; Combes, Francoise E-mail: schinner@mpia.de E-mail: burillo@oan.es

    2008-01-01

    We present a comprehensive spectroscopic imaging survey of the distribution and kinematics of atomic hydrogen (H I) in 16 nearby spiral galaxies hosting low luminosity active galactic nuclei (AGN), observed with high spectral and spatial resolution (resolution: ∼20'', ∼5 km s{sup –1}) using the NRAO Very Large Array (VLA). The sample contains a range of nuclear types ranging from Seyfert to star-forming nuclei, and was originally selected for the NUclei of GAlaxies project (NUGA)—a spectrally and spatially resolved interferometric survey of gas dynamics in nearby galaxies designed to identify the fueling mechanisms of AGN and the relation to host galaxy evolution. Here we investigate the relationship between the H I properties of these galaxies, their environment, their stellar distribution, and their AGN type. The large-scale H I morphology of each galaxy is classified as ringed, spiral, or centrally concentrated; comparison of the resulting morphological classification with the AGN type reveals that ring structures are significantly more common in low-ionization narrow emission-line regions (LINER) than in Seyfert host galaxies, suggesting a time evolution of the AGN activity together with the redistribution of the neutral gas. Dynamically disturbed H I disks are also more prevalent in LINER host galaxies than in Seyfert host galaxies. While several galaxies are surrounded by companions (some with associated H I emission), there is no correlation between the presence of companions and the AGN type (Seyfert/LINER).

  20. The High-Risk (Disturbed and Disturbing) College Student

    ERIC Educational Resources Information Center

    Hollingsworth, Kathy R.; Dunkle, John H.; Douce, Louise

    2009-01-01

    The disturbed and disturbing college student causes the most vexing concerns for student affairs administrators. The Assessment-Intervention of Student Problems (AISP) model offers a useful and easily understood framework for dealing with the various challenges of this high-risk student population. This chapter focuses on changes that have…

  1. Galaxies Collide to Create Hot, Huge Galaxy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This image of a pair of colliding galaxies called NGC 6240 shows them in a rare, short-lived phase of their evolution just before they merge into a single, larger galaxy. The prolonged, violent collision has drastically altered the appearance of both galaxies and created huge amounts of heat turning NGC 6240 into an 'infrared luminous' active galaxy.

    A rich variety of active galaxies, with different shapes, luminosities and radiation profiles exist. These galaxies may be related astronomers have suspected that they may represent an evolutionary sequence. By catching different galaxies in different stages of merging, a story emerges as one type of active galaxy changes into another. NGC 6240 provides an important 'missing link' in this process.

    This image was created from combined data from the infrared array camera of NASA's Spitzer Space Telescope at 3.6 and 8.0 microns (red) and visible light from NASA's Hubble Space Telescope (green and blue).

  2. Radio continuum observations of the quasar-galaxy pair 3C 232-NGC 3067

    NASA Technical Reports Server (NTRS)

    Haxthausen, Eric; Carilli, Chris; Vangorkom, Jacqueline H.

    1990-01-01

    The quasar-galaxy pair 3C 232-NGC 3067 is well known to show absorption by gas associated with the foreground galaxy against the background quasar (see Stocke et al. this volume). Observations by Carilli, van Gorkom, and Stocke (Nature 338, 134, 1989) found that the absorbing gas is located in a long tail of gas which extends from the galaxy toward the quasar and beyond (in projection). Though the HI observations of NGC 3067 indicate that the galaxy has been severely disturbed, there is no obvious candidate in the field which could cause such a disturbance, leading to the conclusion that the system has undergone a recent merger. The radio continuum observations of this system were designed to study the nature of this highly disturbed galaxy. New continuum observations confirm the notion that NGC 3067 is a highly disturbed system, and, in particular, the notion that the western half of the galaxy extends only 1/2 as far in radius as the eastern half. This disturbance must have occurred recently, since the galactic rotation would smooth out the observed asymmetry in about 10(exp 8) years. Researchers are left with the problem that there are no obvious candidates which could have caused such a disturbance.

  3. Environmentally driven star formation during a super galaxy group merger

    NASA Astrophysics Data System (ADS)

    Monroe, Jonathan; Tran, Kim-Vy; Gonzalez, Anthony H.

    2016-01-01

    We find evidence for outside-in growth of galaxies within a merging super galaxy group at a redshift of z~0.37. We utilize Hubble Space Telescope imaging in rest-frame UV and visual to measure color gradients across the super group and internally within 138 individual galaxies that are spectroscopically confirmed members. The group members show enhanced star formation at intermediate environmental densities. The high resolution imaging shows that the group galaxies have bluer disks, i.e. most of the new stars are forming in the disk which supports outside-in growth. These disk-dominated galaxies will likely fade to become S0 members.

  4. Secular Evolution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-10-01

    bulges because the latter retain a `memory' of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions with respect to the Faber-Jackson correlation between velocity dispersion and bulge luminosity, (4) spiral structure or nuclear bars in the `bulge' part of the light profile, (5) nearly exponential brightness profiles and (6) starbursts. So the cleanest examples of pseudobulges are recognisable. However, pseudo and classical bulges can coexist in the same galaxy. I review two important implications of secular evolution: (1) The existence of pseudobulges highlights a problem with our theory of galaxy formation by hierarchical clustering. We cannot explain galaxies that are completely bulgeless. Galaxy mergers are expected to happen often enough so that every giant galaxy should have a classical bulge. But we observe that bulgeless giant galaxies are common in field environments. We now realise that many dense centres of galaxies that we used to think are bulges were not made by mergers; they were grown out of disks. So the challenge gets more difficult. This is the biggest problem faced by our theory of galaxy formation. (2) Pseudobulges are observed to contain supermassive black holes (BHs), but they do not show the well-known, tight correlations between BH mass and the mass and velocity dispersion of the host bulge. This leads to the suggestion that there are two fundamentally different BH feeding processes. Rapid global inward gas transport in galaxy mergers leads to giant BHs that correlate with host ellipticals and classical bulges, whereas local and more stochastic feeding of small BHs in largely bulgeless galaxies evidently involves too little energy feedback to result in BH-host coevolution. It is an important success of the secular evolution picture that morphological differences can be used to

  5. Galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the 'local group' of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.

  6. Geomagnetic disturbance and the orientation of nocturnally migrating birds.

    PubMed

    Moore, F R

    1977-05-01

    Free-flying passerine migrants respond to natural fluctuations in the earth's magnetic field. The variability in flight directions of nocturnal migrants is significantly correlated with increasing geomagnetic disturbance as measured by both the K index and various components of the earth's magnetic field. The results indicate that such disturbances influence the orientation of free-flying migrants, but the evidence is not sufficient to show that geomagnetism is a cue in their orientation system. PMID:854743

  7. [Sleep disturbances in critically ill patients].

    PubMed

    Walder, B; Haase, U; Rundshagen, I

    2007-01-01

    Sleep is an essential part of life with many important roles which include immunologic, cognitive and muscular functions. Of the working population 20% report sleep disturbances and in critically ill patients an incidence of more than 50% has been shown. However, sleep disturbances in the intensive care unit (ICU) population have not been investigated in detail. Sleep disturbances in ICU patients have a variety of reasons: e.g. patient-related pathologies like sepsis, acute or chronic pulmonary diseases, cardiac insufficiency, stroke or epilepsy, surgery, therapeutical interventions like mechanical ventilation, noise of monitors, pain or medication. Numerous scales and questionnaires are used to quantify sleep and the polysomnogramm is used to objectify sleep architecture. To improve sleep in ICU patients concepts are needed which include in addition to pharmacological treatment (pain reduction and sedation) synchronization of ICU activities with daylight, noise reduction and music for relaxation. In order to establish evidence-based guidelines, research activities about sleep and critical illness should be intensified. Questions to be answered are: 1) Which part of sleep disturbances in critically ill patients is directly related to the illness or trauma? 2) Is the grade of sleep disturbance correlated with the severity of the illness or trauma? 3) Which part is related to the medical treatment and can be modified or controlled? In order to define non-pharmacological and pharmacological concepts to improve sleep quality, studies need to be randomized and to include different ICU populations. The rate of nosocomial infections, cognitive function and respiratory muscle function should be considered in these studies as well. This will help to answer the question, whether it is useful to monitor sleep in ICU patients as a parameter to indicate therapeutical success and short-term quality of life. Follow-up needs to be long enough to detect adverse effects of

  8. Vegetarianism and menstrual cycle disturbances: is there an association?

    PubMed

    Barr, S I

    1999-09-01

    The question of whether menstrual disturbances are more common in vegetarian than in nonvegetarian women is complex. Disturbances of the cycle may be clinical (ie, amenorrhea or oligomenorrhea) or subclinical (i.e., normal-length cycles with anovulation or a short or defective luteal phase). Detection of the latter requires that the menstrual cycle be monitored, but may help prevent recruitment bias in studies comparing vegetarians with nonvegetarians because vegetarians with menstrual disturbances may be more likely to volunteer for a study on menstrual disturbances and vegetarianism. Three general mechanisms that could contribute to menstrual disturbances that may differ between vegetarians and nonvegetarians include energy imbalances associated with body-weight disturbances or exercise, psychosocial and cognitive factors, and dietary components. Evidence for each of these mechanisms is reviewed and studies comparing menstrual function between vegetarians and nonvegetarians are described in this article. Although results from several cross-sectional studies suggest that clinical menstrual disturbances may be more common in vegetarians, a prospective study that controlled for many potential confounders found that subclinical disturbances were less common in weight-stable, healthy vegetarian women. Because the sample studied may not be representative of all vegetarian women, however, these results cannot be generalized. Population studies are needed to draw definitive conclusions. PMID:10479230

  9. Infrared images of merging galaxies

    NASA Technical Reports Server (NTRS)

    Wright, G. S.; James, P. A.; Joseph, R. D.; Mclean, I. S.; Doyon, R.

    1990-01-01

    Infrared imaging of interacting galaxies is especially interesting because their optical appearance is often so chaotic due to extinction by dust and emission from star formation regions, that it is impossible to locate the nuclei or determine the true stellar distribution. However, at near-infrared wavelengths extinction is considerably reduced, and most of the flux from galaxies originates from red giant stars that comprise the dominant stellar component by mass. Thus near infrared images offer the opportunity to study directly components of galactic structure which are otherwise inaccessible. Such images may ultimately provide the framework in which to understand the activity taking place in many of the mergers with high Infrared Astronomy Satellite (IRAS) luminosities. Infrared images have been useful in identifying double structures in the nuclei of interacting galaxies which have not even been hinted at by optical observations. A striking example of this is given by the K images of Arp 220. Graham et al. (1990) have used high resolution imaging to show that it has a double nucleus coincident with the radio sources in the middle of the dust lane. The results suggest that caution should be applied in the identification of optical bright spots as multiple nuclei in the absence of other evidence. They also illustrate the advantages of using infrared imaging to study the underlying structure in merging galaxies. The authors have begun a program to take near infrared images of galaxies which are believed to be mergers of disk galaxies because they have tidal tails and filaments. In many of these the merger is thought to have induced exceptionally luminous infrared emission (cf. Joseph and Wright 1985, Sanders et al. 1988). Although the optical images of the galaxies show spectacular dust lanes and filaments, the K images all have a very smooth distribution of light with an apparently single nucleus.

  10. Galaxies of all Shapes Host Black Holes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This artist's concept illustrates the two types of spiral galaxies that populate our universe: those with plump middles, or central bulges (upper left), and those lacking the bulge (foreground).

    New observations from NASA's Spitzer Space Telescope provide strong evidence that the slender, bulgeless galaxies can, like their chubbier counterparts, harbor supermassive black holes at their cores. Previously, astronomers thought that a galaxy without a bulge could not have a supermassive black hole. In this illustration, jets shooting away from the black holes are depicted as thin streams.

    The findings are reshaping theories of galaxy formation, suggesting that a galaxy's 'waistline' does not determine whether it will be home to a big black hole.

  11. Linear clusters of galaxies - A194

    NASA Technical Reports Server (NTRS)

    Chapman, G. N. F.; Geller, M. J.; Huchra, J. P.

    1988-01-01

    New measurements for 160 redshifts and previous measurements for 108 other redshifts are presented for galaxies within 5 deg of A194. The galaxy distribution in A194 is shown to be inconsistent with a spherically symmetric King model. A mass-to-light ratio is derived using the virial theorem which is lower than the mean for the groups in the CfA redshift survey (Huchra and Geller, 1982; Geller, 1984). A nonparametric test for galaxy-cluster alignment and a Chi-squared test are used to search for alignment of galaxy major axes with the axis of A194. Evidence for neither luminosity segregation nor significant differences in the velocity or surface distributions of galaxies as a function of morphological type is found.

  12. Hostility disturbs learning.

    PubMed

    Shimojima, Yumi; Tujii, Takeo; Yanagisawa, Atsuo; Tajino, Kazuhiro; Kanda, Hiroko; Yamagami, Masako

    2003-04-01

    Many studies have shown that there is a strong correlation between hostility and coronary artery disease; however, the pathogenic mechanisms by which hostility causes coronary artery disease have not been identified. Several studies have shown that hostility is associated with increased cardiovascular reactivity to mental stress. Sloan and colleagues used mental arithmetic and the Stroop Color-Word Task as psychological stressors and suggested that hostility is associated with diminished cardiac vagal control. It is supposed that the diminished cardiac vagal control results in uncontrollability of increased heart rate under stressful conditions so performance on mental stress tasks is poor. However, performance was not analyzed on the Stroop Color-Word Task. If hostility influences the autonomic nervous system, the performance of this mental stress task may also differ according to extent of hostility. In the present study, whether hostility disturbed performance of a mental stress task and the practice on it was examined. Subjects completed the Cook-Medley Hostility Scale and were divided into three groups (High, Middle, and Low) by their total scores and three subscales (Cynicism, Hostile Affect, and Aggressive Responding). They also completed the Stroop Color-Word Task. Analysis showed practice by High and Middle scoring groups on Aggressive Responding had a significantly smaller effect than that by Low scoring groups. The pathogenic mechanisms by which hostility may underlie coronary artery disease were discussed. PMID:12776844

  13. Very metal-poor galaxies: ionized gas kinematics in nine objects

    NASA Astrophysics Data System (ADS)

    Moiseev, A. V.; Pustilnik, S. A.; Kniazev, A. Y.

    2010-07-01

    The study of ionized gas morphology and kinematics in nine extremely metal-deficient (XMD) galaxies with the scanning Fabry-Perot interferometer on the Special Astrophysical Observatory (SAO) 6-m telescope is presented. Some of these very rare objects (with currently known range of O/H of 7.12 < 12 + log(O/H) < 7.65, or ) are believed to be the best proxies of `young' low-mass galaxies in the high-redshift Universe. One of the main goals of this study is to look for possible evidence of star formation (SF) activity induced by external perturbations. Recent results from HI mapping of a small subsample of XMD star-forming galaxies provided confident evidence for the important role of interaction-induced SF. Our observations provide complementary or new information that the great majority of the studied XMD dwarfs have strongly disturbed gas morphology and kinematics or the presence of detached components. We approximate the observed velocity fields by simple models of a rotating tilted thin disc, which allows us the robust detection of non-circular gas motions. These data, in turn, indicate the important role of current/recent interactions and mergers in the observed enhanced SF. As a by-product of our observations, we obtained data for two Low Surface Brightness (LSB) dwarf galaxies: Anon J012544+075957 that is a companion of the merger system UGC 993, and SAO 0822+3545 which shows off-centre, asymmetric, low star formation rate star-forming regions, likely induced by the interaction with the companion XMD dwarf HS 0822+3542. Based on observations obtained with the Special Astrophysical Observatory RAS 6-m telescope. E-mail: moisav@gmail.com (AVM); sap@sao.ru (SAP); akniazev@saao.ac.za (AYK)

  14. ASCA Observation of the Poor Cluster of Galaxies AWM 7: Evidence of an Abundance Increase in the Intra-Cluster Medium at the Center

    NASA Astrophysics Data System (ADS)

    Xu, Haiguang; Ezawa, Hajime; Fukazawa, Yasushi; Kikuchi, Ken'ichi; Makishima, Kazuo; Ohashi, Takaya; Tamura, Takayuki

    1997-02-01

    We present the results of the ASCA central-pointing observation of the poor cD cluster AWM 7. The Performance Verification phase data of GIS 2, GIS 3, SIS 0 chip 1, and SIS 1 chip 3 were used to study the properties of the intra-cluster medium (ICM) within 16' around the X-ray centroid. We found that, compared with the outer regions, the equivalent width of the Fe-K lines increases in the central 4' ( ~ 123 h(-1_{50) kpc)} region by a factor of ~ 1.5. Although the ICM temperature tends to decrease in the same region, the observed increase in the Fe-K line equivalent width cannot be explained away by a possible temperature drop. The model fitting indicates that the abundance increases from ~ 0.4 solar outside 4' to ~ 0.6 solar at the center. Thus, after the Centaurus cluster and the Virgo cluster, AWM 7 is the third poor cD cluster confirmed to show an abundance increase in the central region. The 0.5--3 keV flux of the cool emission within 4' is constrained to be <8*E(42) h(-2}_{50) erg s(-1) , or <21% of the total 0.5--3 keV flux from the same spatial region. We discuss possible relations of these phenomena to the cD galaxy.

  15. Subclassification of School Phobic Disturbances.

    ERIC Educational Resources Information Center

    Atkinson, Leslie; And Others

    The confusion surrounding all aspects of school refusal may rest partly on the misguided assumption that the disturbance represents a single syndrome. Five consistently emerging variables which may help distinguish among school phobic types were abstracted from the literature: extensiveness of disturbance, mode of onset, age, fear source, and…

  16. The star formation histories of local group dwarf galaxies. II. Searching for signatures of reionization

    SciTech Connect

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2014-07-10

    We search for signatures of reionization in the star formation histories (SFHs) of 38 Local Group dwarf galaxies (10{sup 4} < M{sub *} < 10{sup 9} M{sub ☉}). The SFHs are derived from color-magnitude diagrams using archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. Only five quenched galaxies (And V, And VI, And XIII, Leo IV, and Hercules) are consistent with forming the bulk of their stars before reionization, when full uncertainties are considered. Observations of 13 of the predicted 'true fossils' identified by Bovill and Ricotti show that only two (Hercules and Leo IV) indicate star formation quenched by reionization. However, both are within the virial radius of the Milky Way and evidence of tidal disturbance complicates this interpretation. We argue that the late-time gas capture scenario posited by Ricotti for the low mass, gas-rich, and star-forming fossil candidate Leo T is observationally indistinguishable from simple gas retention. Given the ambiguity between environmental effects and reionization, the best reionization fossil candidates are quenched low mass field galaxies (e.g., KKR 25).

  17. The Impossibly Early Galaxy Problem

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles L.; Capak, Peter L.; Masters, Daniel; Speagle, Josh S.

    2016-01-01

    The current hierarchical merging paradigm and ΛCDM predict that the z ~ 4-8 universe should be a time in which the most massive galaxies are transitioning from their initial halo assembly to the later baryonic evolution seen in star-forming galaxies and quasars. However, no evidence of this transition has been found in many high redshift galaxy surveys including CFHTLS, CANDELS and SPLASH, the first studies to probe the high-mass end at these redshifts. Indeed, if halo mass to stellar mass ratios estimated at lower-redshift continue to z ~ 6-8, CANDELS and SPLASH report several orders of magnitude more M ~ 10^12-13 M⊙ halos than are possible to have formed by those redshifts, implying these massive galaxies formed impossibly early. We consider various systematics in the stellar synthesis models used to estimate physical parameters and possible galaxy formation scenarios in an effort to reconcile observation with theory. Although known uncertainties can greatly reduce the disparity between recent observations and cold dark matter merger simulations, even taking the most conservative view of the observations, there remains considerable tension with current theory.

  18. The Impossibly Early Galaxy Problem

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles. L.; Capak, Peter; Masters, Dan; Speagle, Josh S.

    2016-06-01

    The current hierarchical merging paradigm and ΛCDM predict that the z˜ 4-8 universe should be a time in which the most massive galaxies are transitioning from their initial halo assembly to the later baryonic evolution seen in star-forming galaxies and quasars. However, no evidence of this transition has been found in many high-redshift galaxy surveys including CFHTLS, Cosmic Assembly Near-infrared Deep Extragalactic Survey (CANDELS), and Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH), which were the first studies to probe the high-mass end at these redshifts. Indeed, if halo mass to stellar mass ratios estimated at lower-redshift continue to z˜ 6-8, CANDELS and SPLASH report several orders of magnitude more M˜ {10}12-13{M}ȯ halos than is possible to have been formed by those redshifts, implying that these massive galaxies formed impossibly early. We consider various systematics in the stellar synthesis models used to estimate physical parameters and possible galaxy formation scenarios in an effort to reconcile observation with theory. Although known uncertainties can greatly reduce the disparity between recent observations and cold dark matter merger simulations, there remains considerable tension with current theory even if taking the most conservative view of the observations.

  19. GALAXY ENVIRONMENTS OVER COSMIC TIME: THE NON-EVOLVING RADIAL GALAXY DISTRIBUTIONS AROUND MASSIVE GALAXIES SINCE z = 1.6

    SciTech Connect

    Tal, Tomer; Franx, Marijn; Wake, David A.; Whitaker, Katherine E.

    2013-05-20

    We present a statistical study of the environments of massive galaxies in four redshift bins between z = 0.04 and z = 1.6, using data from the Sloan Digital Sky Survey and the NEWFIRM Medium Band Survey. We measure the projected radial distribution of galaxies in cylinders around a constant number density selected sample of massive galaxies and utilize a statistical subtraction of contaminating sources. Our analysis shows that massive primary galaxies typically live in group halos and are surrounded by 2-3 satellites with masses more than one-tenth of the primary galaxy mass. The cumulative stellar mass in these satellites roughly equals the mass of the primary galaxy itself. We further find that the radial number density profile of galaxies around massive primaries has not evolved significantly in either slope or overall normalization in the past 9.5 Gyr. A simplistic interpretation of this result can be taken as evidence for a lack of mergers in the studied groups and as support for a static evolution model of halos containing massive primaries. Alternatively, there exists a tight balance between mergers and accretion of new satellites such that the overall distribution of galaxies in and around the halo is preserved. The latter interpretation is supported by a comparison to a semi-analytic model, which shows a similar constant average satellite distribution over the same redshift range.

  20. The stellar populations of massive galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.

    2013-07-01

    I present a brief review of the stellar population properties of massive galaxies, focusing on early-type galaxies in particular, with emphasis on recent results from the ATLAS3D Survey. I discuss the occurence of young stellar ages, cold gas, and ongoing star formation in early-type galaxies, the presence of which gives important clues to the evolutionary path of these galaxies. Consideration of empirical star formation histories gives a meaningful picture of galaxy stellar population properties, and allows accurate comparison of mass estimates from populations and dynamics. This has recently provided strong evidence of a non-universal IMF, as supported by other recent evidences. Spatially-resolved studies of stellar populations are also crucial to connect distinct components within galaxies to spatial structures seen in other wavelengths or parameters. Stellar populations in the faint outer envelopes of early-type galaxies are a formidable frontier for observers, but promise to put constraints on the ratio of accreted stellar mass versus that formed `in situ' - a key feature of recent galaxy formation models. Galaxy environment appears to play a key role in controlling the stellar population properties of low mass galaxies. Simulations remind us, however, that current day galaxies are the product of a complex assembly and environment history, which gives rise to the trends we see. This has strong implications for our interpretation of environmental trends.

  1. Galaxy groups

    SciTech Connect

    Brent Tully, R.

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times 10{sup 12}M{sub ⊙} are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of Ω{sub matter}∼0.15 in a flat topology, with a 68% probability of being less than 0.44.

  2. Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Tully, R. Brent

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times {{10}12}{{M}⊙ } are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of {{Ω}matter}˜ 0.15 in a flat topology, with a 68% probability of being less than 0.44.

  3. Western Disturbances: A review

    NASA Astrophysics Data System (ADS)

    Dimri, A. P.; Niyogi, D.; Barros, A. P.; Ridley, J.; Mohanty, U. C.; Yasunari, T.; Sikka, D. R.

    2015-06-01

    Cyclonic storms associated with the midlatitude Subtropical Westerly Jet (SWJ), referred to as Western Disturbances (WDs), play a critical role in the meteorology of the Indian subcontinent. WDs embedded in the southward propagating SWJ produce extreme precipitation over northern India and are further enhanced over the Himalayas due to orographic land-atmosphere interactions. During December, January, and February, WD snowfall is the dominant precipitation input to establish and sustain regional snowpack, replenishing regional water resources. Spring melt is the major source of runoff to northern Indian rivers and can be linked to important hydrologic processes from aquifer recharge to flashfloods. Understanding the dynamical structure, evolution-decay, and interaction of WDs with the Himalayas is therefore necessary to improve knowledge which has wide ranging socioeconomic implications beyond short-term disaster response including cold season agricultural activities, management of water resources, and development of vulnerability-adaptive measures. In addition, WD wintertime precipitation provides critical mass input to existing glaciers and modulates the albedo characteristics of the Himalayas and Tibetan Plateau, affecting large-scale circulation and the onset of the succeeding Indian Summer Monsoon. Assessing the impacts of climate variability and change on the Indian subcontinent requires fundamental understanding of the dynamics of WDs. In particular, projected changes in the structure of the SWJ will influence evolution-decay processes of the WDs and impact Himalayan regional water availability. This review synthesizes past research on WDs with a perspective to provide a comprehensive assessment of the state of knowledge to assist both researchers and policymakers, and context for future research.

  4. A Stellar Stream Surrounds the Whale Galaxy

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    The -cold dark matter cosmological model predicts that galaxies are assembled through the disruption and absorption of small satellite dwarf galaxies by their larger hosts. A recent study argues that NGC 4631, otherwise known as the Whale galaxy, shows evidence of such a recent merger in the form of an enormous stellar stream extending from it.Stream SignaturesAccording to the -CDM model, stellar tidal streams should be a ubiquitous feature among galaxies. When satellite dwarf galaxies are torn apart, they spread out into such streams before ultimately feeding the host galaxy. Unfortunately, these streams are very faint, so were only recently starting to detect these features.Stellar tidal streams have been discovered around the Milky Way and Andromeda, providing evidence of these galaxies growth via recent (within the last 8 Gyr) mergers. But discovering stellar streams around other Milky Way-like galaxies would help us to determine if the model of hierarchical galaxy assembly applies generally.To this end, the Stellar Tidal Stream Survey, led by PI David Martnez-Delgado (Center for Astronomy of Heidelberg University), is carrying out the first systematic survey of stellar tidal streams. In a recent study, Martnez-Delgado and collaborators present their detection of a giant (85 kpc long!) stellar tidal stream extending into the halo of NGC 4631, the Whale galaxy.Modeling a SatelliteThe top image is a snapshot from an N-body simulation of a single dwarf satellite, 3.5 Gyr after it started interacting with the Whale galaxy. The satellite has been torn apart and spread into a stream that reproduces observations, which are shown in the lower image (scale is not the same). [Martnez-Delgado et al. 2015]The Whale galaxy is a nearby edge-on spiral galaxy interacting with a second spiral, NGC 4656. But the authors dont believe that the Whale galaxys giant tidal stellar stream is caused by its interactions with NGC 4656. Instead, based on their observations, they believe

  5. Is the Milky Way an interacting galaxy

    SciTech Connect

    Verschuur, G.L.

    1988-01-01

    The Milky Way Galaxy is an interacting galaxy, according to radio astronomers. The disk of stars we live in is linked to the Magellanic Clouds, our Galaxy's satellites, by an enormous arc of neutral hydrogen called the Magellanic Stream. These startling facts have recently been established by piecing together many seemingly unrelated bits of evidence into a new picture of our Milky Way Galaxy. The discoveries that led up to this grand picture of the Milky Way's interaction data back over fifty years to create one of the best detective stories in modern astronomy. The realization that ours is an interacting galaxy is only the latest result of an intensive effort to map the Milky Way. Since the 1930s, astronomers have tried to discover just how our Galaxy is built. Charting the Milky Way hasn't been easy, because we are inside it and our view of the Milky Way is obscured by cosmic dust. This dust creates a region called the zone of avoidance, a band centered along the galactic plane that blocks visible light from objects beyond nearby objects in the Galaxy. Thus radio astronomers have become the Milky Way mappers because cosmic radio waves penetrate the dust and reveal the grand scheme of our Galaxy.

  6. STRONG C{sup +} EMISSION IN GALAXIES AT z ∼ 1-2: EVIDENCE FOR COLD FLOW ACCRETION POWERED STAR FORMATION IN THE EARLY UNIVERSE

    SciTech Connect

    Brisbin, Drew; Ferkinhoff, Carl; Nikola, Thomas; Parshley, Stephen; Spoon, Henrik; Stacey, Gordon J.; Hailey-Dunsheath, Steven; Verma, Aprajita

    2015-01-20

    We have recently detected the [C II] 157.7 μm line in eight star-forming galaxies at redshifts 1 to 2 using the redshift (z) Early Universe Spectrometer (ZEUS). Our sample targets star formation dominant sources detected in PAH emission. This represents a significant addition to [C II] observations during the epoch of peak star formation. We have augmented this survey with observations of the [O I] 63 μm line and far infrared photometry from the PACS and SPIRE Herschel instruments as well as Spitzer IRS spectra from the literature showing PAH features. Our sources exhibit above average gas heating efficiency, many with both [O I]/FIR and [C II]/FIR of ∼1% or more. The relatively strong [C II] emission is consistent with our sources being dominated by star formation powered photo-dissociation regions, extending to kiloparsec scales. We suggest that the star formation mode in these systems follows a Schmidt-Kennicutt law similar to local systems, but at a much higher rate due to molecular gas surface densities 10-100 times that of local star-forming systems. The source of the high molecular gas surface densities may be the infall of neutral gas from the cosmic web. In addition to the high [C II]/FIR values, we also find high [C II]/PAH ratios and, in at least one source, a cool dust temperature. This source, SWIRE 4-5, bears a resemblance in these diagnostics to shocked regions of Stephan's Quintet, suggesting that another mode of [C II] excitation in addition to normal photoelectric heating may be contributing to the observed [C II] line.

  7. Galaxy and the solar system

    SciTech Connect

    Smoluchowski, R.; Bahcall, J.M.; Matthews, M.S.

    1986-01-01

    The solar-Galactic neighborhood, massive interstellar clouds and other Galactic features, the Oort cloud, perturbations of the solar system, and the existence and stability of a solar companion star are examined in chapters based on contributions to a conference held in Tucson, AZ during January 1985. The individual topics addressed include: the Galactic environment of the solar system; stars within 25 pc of the sun; the path of the sun in 100 million years; the local velocity field in the last billion years; interstellar clouds near the sun; and evidence for a local recent supernova. Also considered are: dynamic influence of Galactic tides and molecular clouds on the Oort cloud; cometary evidence for a solar companion; dynamical interactions between the Oort cloud and the Galaxy; geological periodicities and the Galaxy; giant comets and the Galaxy; dynamical evidence for Planet X; evolution of the solar system in the presence of a solar companion star; mass extinctions, crater ages, and comet showers; evidence for Nemesis, a solar companion star.

  8. The dynamical fingerprint of core scouring in massive elliptical galaxies

    SciTech Connect

    Thomas, J.; Saglia, R. P.; Bender, R.; Erwin, P.; Fabricius, M.

    2014-02-10

    The most massive elliptical galaxies have low-density centers or cores that differ dramatically from the high-density centers of less massive ellipticals and bulges of disk galaxies. These cores have been interpreted as the result of mergers of supermassive black hole binaries, which depopulate galaxy centers by gravitationally slingshotting central stars toward large radii. Such binaries naturally form in mergers of luminous galaxies. Here, we analyze the population of central stellar orbits in 11 massive elliptical galaxies that we observed with the integral field spectrograph SINFONI at the European Southern Observatory Very Large Telescope. Our dynamical analysis is orbit-based and includes the effects of a central black hole, the mass distribution of the stars, and a dark matter halo. We show that the use of integral field kinematics and the inclusion of dark matter is important to conclude on the distribution of stellar orbits in galaxy centers. Six of our galaxies are core galaxies. In these six galaxies, but not in the galaxies without cores, we detect a coherent lack of stars on radial orbits in the core region and a uniform excess of radial orbits outside of it: when scaled by the core radius r{sub b} , the radial profiles of the classical anisotropy parameter β(r) are nearly identical in core galaxies. Moreover, they quantitatively match the predictions of black hole binary simulations, providing the first convincing dynamical evidence for core scouring in the most massive elliptical galaxies.

  9. Effects of Forest Disturbance on Water Quality in Appalachian Watersheds

    NASA Astrophysics Data System (ADS)

    Eshleman, K. N.; Townsend, P.

    2006-12-01

    Land use/land cover changes and a variety of transient watershed disturbances are regarded as important factors that can significantly influence water quality in associated aquatic ecosystems. In forest ecosystems, nitrate-N losses to surface waters provide a sensitive integrative indicator of the biogeochemical status of the forest and of its response to disturbances. While effects of human-induced forest disturbances (e.g., forest harvesting) have been relatively well studied in carefully controlled field experiments, natural forest disturbances and their ecosystem-level impacts are far less well understood. The purpose of this research is to quantify the eco-hydrological effects of historical and current forest disturbances in three large predominantly forested areas of the eastern U.S.: Savage River watershed (Maryland), Fifteenmile Creek watershed (Maryland & Pennsylvania), and Shenandoah National Park (Virginia). Each of these study areas is predominantly forested, has been extensively disturbed within the last 15 years by one or more human- induced or natural disturbance agents (e.g., ice storms, blow-downs, insect defoliations, etc.), and covers an area of several hundred square kilometers. Our research integrates the study of disturbances at multiple scales using remote sensing analyses (landscape scale), observations of surface water quality (watershed scale), and measurements of ecosystem processes within forests (plot scale). In the paper we provide evidence of relationships between transient land cover alterations/disturbances and systematic measurements of surface water quality. In particular, we use our water monitoring data to test whether nitrate-N concentrations in soil water and streamwater vary as linear functions of the magnitude (intensity, frequency, and extensity) and timing of disturbance at three different spatial scales (plot, watershed, and landscape).

  10. SPATIAL ANISOTROPY OF GALAXY KINEMATICS IN SLOAN DIGITAL SKY SURVEY GALAXY CLUSTERS

    SciTech Connect

    Skielboe, Andreas; Wojtak, Radoslaw; Pedersen, Kristian; Rozo, Eduardo; Rykoff, Eli S.

    2012-10-10

    Measurements of galaxy cluster kinematics are important in understanding the dynamical state and evolution of clusters of galaxies, as well as constraining cosmological models. While it is well established that clusters exhibit non-spherical geometries, evident in the distribution of galaxies on the sky, azimuthal variations of galaxy kinematics within clusters have yet to be observed. Here we measure the azimuthal dependence of the line-of-sight velocity dispersion profile in a stacked sample of 1743 galaxy clusters from the Sloan Digital Sky Survey (SDSS). The clusters are drawn from the SDSS DR8 redMaPPer catalog. We find that the line-of-sight velocity dispersion of galaxies lying along the major axis of the central galaxy is larger than those that lie along the minor axis. This is the first observational detection of anisotropic kinematics of galaxies in clusters. We show that the result is consistent with predictions from numerical simulations. Furthermore, we find that the degree of projected anisotropy is strongly dependent on the line-of-sight orientation of the galaxy cluster, opening new possibilities for assessing systematics in optical cluster finding.

  11. Binary pairs of supermassive black holes - Formation in merging galaxies

    NASA Astrophysics Data System (ADS)

    Valtaoja, L.; Valtonen, M. J.; Byrd, G. G.

    1989-08-01

    A process in which supermassive binary blackholes are formed in nuclei of supergiant galaxies due to galaxy mergers is examined. There is growing evidence that mergers of galaxies are common and that supermassive black holes in center of galaxies are also common. Consequently, it is expected that binary black holes should arise in connection with galaxy mergers. The merger process in a galaxy modeled after M87 is considered. The capture probability of a companion is derived as a function of its mass. Assuming a correlation between the galaxy mass and the blackholes mass, the expected mass ratio in binary black holes is calculated. The binary black holes formed in this process are long lived, surviving longer than the Hubble time unless they are perturbed by black holes from successive mergers. The properties of these binaries agree with Gaskell's (1988) observational work on quasars and its interpretation in terms of binary black holes.

  12. Isolated Galaxies versus Interacting Pairs with MaNGA

    NASA Astrophysics Data System (ADS)

    Fernández, María; Yuan, Fangting; Shen, Shiyin; Yin, Jun; Chang, Ruixiang; Feng, Shuai

    2015-10-01

    We present preliminary results of the spectral analysis on the radial distributions of the star formation history in both, a galaxy merger and a spiral isolated galaxy observed with MaNGA. We find that the central part of the isolated galaxy is composed by older stellar population ($\\sim$2 Gyr) than in the outskirts ($\\sim$7 Gyr). Also, the time-scale is gradually larger from 1 Gyr in the inner part to 3 Gyr in the outer regions of the galaxy. In the case of the merger, the stellar population in the central region is older than in the tails, presenting a longer time-scale in comparison to central part in the isolated galaxy. Our results are in agreement with a scenario where spiral galaxies are built from inside-out. In the case of the merger, we find evidence that interactions enhance star formation in the central part of the galaxy.

  13. Merging Galaxies Create a Binary Quasar

    NASA Astrophysics Data System (ADS)

    2010-02-01

    Astronomers have found the first clear evidence of a binary quasar within a pair of actively merging galaxies. Quasars are the extremely bright centers of galaxies surrounding super-massive black holes, and binary quasars are pairs of quasars bound together by gravity. Binary quasars, like other quasars, are thought to be the product of galaxy mergers. Until now, however, binary quasars have not been seen in galaxies that are unambiguously in the act of merging. But images of a new binary quasar from the Carnegie Institution's Magellan telescope in Chile show two distinct galaxies with "tails" produced by tidal forces from their mutual gravitational attraction. "This is really the first case in which you see two separate galaxies, both with quasars, that are clearly interacting," says Carnegie astronomer John Mulchaey who made observations crucial to understanding the galaxy merger. Most, if not all, large galaxies, such as our galaxy the Milky Way, host super-massive black holes at their centers. Because galaxies regularly interact and merge, astronomers have assumed that binary super-massive black holes have been common in the Universe, especially during its early history. Black holes can only be detected as quasars when they are actively accreting matter, a process that releases vast amounts of energy. A leading theory is that galaxy mergers trigger accretion, creating quasars in both galaxies. Because most such mergers would have happened in the distant past, binary quasars and their associated galaxies are very far away and therefore difficult for most telescopes to resolve. The binary quasar, labeled SDSS J1254+0846, was initially detected by the Sloan Digital Sky Survey, a large scale astronomical survey of galaxies and over 120,000 quasars. Further observations by Paul Green of the Harvard-Smithsonian Center for Astrophysics and colleagues* using NASA's Chandra's X-ray Observatory and telescopes at Kitt Peak National Observatory in Arizona and Palomar

  14. Adaptation to (non)valent task disturbance.

    PubMed

    Kunde, Wilfried; Augst, Susanne; Kleinsorge, Thomas

    2012-12-01

    The cognitive system adapts to disturbances caused by task-irrelevant information. For example, interference due to irrelevant spatial stimulation (e.g., the spatial Simon effect) typically diminishes right after a spatially incongruent event. These adaptation effects reflect processes that help to overcome the impact of task-irrelevant information. Interference with (or interruption of) task processing can also result from valent (i.e., positive or negative) stimuli, such as in the "affective Simon" task. In the present study, we tested whether the resolution of valence-based task disturbances generalizes to the resolution of other cognitive (spatial) types of interference, and vice versa. Experiments 1 and 2 explored the interplay of adaptation effects triggered by spatial and affective interference. Incongruent spatial information modified the spatial Simon effect but not affective interference effects, whereas incongruent affective information modified affective interference effects to some extent, but not spatial Simon effects. In Experiment 3, we investigated the interplay of adaptation effects triggered by spatial interference and by the interruption of task processing from valent information that did not overlap with the main task ("emotional Stroop" effect). Again we observed domain-specific adaptation for the spatial Simon effect but found no evidence for cross-domain modulations. We assume that the processes used to resolve task disturbance from irrelevant affective and spatial information operate in largely independent manners. PMID:22936069

  15. Grassland plant composition alters vehicular disturbance effects in Kansas, USA.

    PubMed

    Dickson, Timothy L; Wilsey, Brian J; Busby, Ryan R; Gebhart, Dick L

    2008-05-01

    Many "natural" areas are exposed to military or recreational off-road vehicles. The interactive effects of different types of vehicular disturbance on vegetation have rarely been examined, and it has been proposed that some vegetation types are less susceptible to vehicular disturbance than others. At Fort Riley, Kansas, we experimentally tested how different plant community types changed after disturbance from an M1A1 Abrams tank driven at different speeds and turning angles during different seasons. The greatest vegetation change was observed because of driving in the spring in wet soils and the interaction of turning while driving fast (vegetation change was measured with Bray-Curtis dissimilarity). We found that less vegetation change occurred in communities with high amounts of native prairie vegetation than in communities with high amounts of introduced C(3) grasses, which is the first experimental evidence we are aware of that suggests plant communities dominated by introduced C(3) grasses changed more because of vehicular disturbance than communities dominated by native prairie grasses. We also found that vegetation changed linearly with vehicular disturbance intensity, suggesting that at least initially there was no catastrophic shift in vegetation beyond a certain disturbance intensity threshold. Overall, the intensity of vehicular disturbance appeared to play the greatest role in vegetation change, but the plant community type also played a strong role and this should be considered in land use planning. The reasons for greater vegetation change in introduced C(3) grass dominated areas deserve further study. PMID:18204985

  16. Tides, Interactions, and Fine-Scale Substructures in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Conselice, Christopher J.; Gallagher, John S., III

    1999-01-01

    We present the results of a study on galaxy interactions, tides, and other processes that produce luminous fine-scale substructures in the galaxy clusters: Coma, Perseus, Abell 2199, AWM 3, and AWM 5. All unusual structures in these clusters can be categorized into seven morphologies: interacting galaxies, multiple galaxies (noninteracting), distorted galaxies, tailed galaxies, line galaxies, dwarf galaxy groups, and galaxy aggregates. The various morphologies are described, and a catalog is presented, of 248 objects in these five clusters along with color, and positional information obtained from CCD images taken with the WIYN 3.5 m telescope in broadband B and R filters. Distorted, interacting, and fine-scale substructures have a range of colors extending from blue objects with B-R~0 to redder colors at B-R~2.5. We also find that the structures with the most disturbed morphology have the bluest colors. In addition, the relative number distributions of these structures suggest that two separate classes of galaxy clusters exist: one dominated by distorted structures and the other dominated by galaxy associations. The Coma and Perseus clusters, respectively, are proposed as models for these types of clusters. These structures avoid the deep potentials of the dominant D or cD galaxies in the Coma and Perseus clusters, and tend to clump together. Possible mechanisms for the production of fine-scale substructure are reviewed and compared with observations of z~0.4 Butcher-Oemler clusters. We conclude, based on color, positional, and statistical data, that the most likely mechanism for the creation of these structures is through an interaction with the gravitational potential of the cluster, possibly coupled with effects of weak interactions with cluster ellipticals.

  17. Landscape Disturbance History and Belowground Carbon Dynamics.

    NASA Astrophysics Data System (ADS)

    Marin-Spiotta, E.; Smith, A. P.; Atkinson, E. E.; Chaopricha, N. T.

    2014-12-01

    Earth system models vary in their predictions of carbon (C) uptake and release by the terrestrial biosphere, partly due to great uncertainties in the response of soils, one of the largest C reservoirs. The world's soils play a major role in the exchange of greenhouse gases with the atmosphere, in sustaining primary production, and in providing food security. Despite this, the sensitivity of soils to disturbance is highly uncertain. One reason for this is geographic variability in the importance of different mechanisms regulating soil C turnover. Most of our understanding of factors influencing soil organic C dynamics comes from research in temperate soils, despite the major role of tropical soils in the global C cycle. Even in the tropics, the diversity of soil environments is grossly underrepresented in the literature. This has important implications for predictions of soil C change across latitudes. We discuss results from the response of soil C pools and microbial communities to land use legacies on two contrasting tropical soil environments. Uncertainties in the response of soil C to disturbance also stem from a historic focus on shallow depths and the assumption that deep soil C is unreactive to landscape change. Growing evidence indicates that soil C pools in deep mineral horizons can be sensitive to changes in land cover and climate. This realization highlights the need to reassess the source of soil C at depth and the processes contributing to its stabilization. We discuss results from the interaction between multiple disturbances: drought, fire and erosion, on the accumulation of soil C at depths beyond those typically included in regional or global inventories. Our data show that deep soil C can be reactive and be a potential source of C if reconnected to the atmosphere. A deeper, mechanistic appreciation for a landscape's history of disturbance is critical for predicting feedbacks between the terrestrial biosphere and the climate system.

  18. Suites of dwarfs around Nearby giant galaxies

    SciTech Connect

    Karachentsev, Igor D.; Kaisina, Elena I.; Makarov, Dmitry I. E-mail: kei@sao.ru

    2014-01-01

    The Updated Nearby Galaxy Catalog (UNGC) contains the most comprehensive summary of distances, radial velocities, and luminosities for 800 galaxies located within 11 Mpc from us. The high density of observables in the UNGC makes this sample indispensable for checking results of N-body simulations of cosmic structures on a ∼1 Mpc scale. The environment of each galaxy in the UNGC was characterized by a tidal index Θ{sub 1}, depending on the separation and mass of the galaxy's main disturber (MD). We grouped UNGC galaxies with a common MD in suites, and ranked suite members according to their Θ{sub 1}. All suite members with positive Θ{sub 1} are assumed to be physical companions of the MD. About 58% of the sample are members of physical groups. The distribution of suites by the number of members, n, follows a relation N(n) ∼ n {sup –2}. The 20 most populated suites contain 468 galaxies, i.e., 59% of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at M{sub B} = –18{sup m}. We discuss various properties of MDs, as well as galaxies belonging to their suites. The suite abundance practically does not depend on the morphological type, linear diameter, or hydrogen mass of the MD, the tightest correlation being with the MD dynamical mass. Dwarf galaxies around MDs exhibit well-known segregation effects: the population of the outskirts has later morphological types, richer H I contents, and higher rates of star formation activity. Nevertheless, there are some intriguing cases where dwarf spheroidal galaxies occur at the far periphery of the suites, as well as some late-type dwarfs residing close to MDs. Comparing simulation results with galaxy groups, most studies assume the Local Group is fairly typical. However, we recognize that the nearby groups significantly differ from each other and there is considerable variation in their properties. The suites of companions around the Milky Way and M31, consisting of the

  19. Suites of Dwarfs around nearby Giant Galaxies

    NASA Astrophysics Data System (ADS)

    Karachentsev, Igor D.; Kaisina, Elena I.; Makarov, Dmitry I.

    2014-01-01

    The Updated Nearby Galaxy Catalog (UNGC) contains the most comprehensive summary of distances, radial velocities, and luminosities for 800 galaxies located within 11 Mpc from us. The high density of observables in the UNGC makes this sample indispensable for checking results of N-body simulations of cosmic structures on a ~1 Mpc scale. The environment of each galaxy in the UNGC was characterized by a tidal index Θ1, depending on the separation and mass of the galaxy's main disturber (MD). We grouped UNGC galaxies with a common MD in suites, and ranked suite members according to their Θ1. All suite members with positive Θ1 are assumed to be physical companions of the MD. About 58% of the sample are members of physical groups. The distribution of suites by the number of members, n, follows a relation N(n) ~ n -2. The 20 most populated suites contain 468 galaxies, i.e., 59% of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at MB = -18m. We discuss various properties of MDs, as well as galaxies belonging to their suites. The suite abundance practically does not depend on the morphological type, linear diameter, or hydrogen mass of the MD, the tightest correlation being with the MD dynamical mass. Dwarf galaxies around MDs exhibit well-known segregation effects: the population of the outskirts has later morphological types, richer H I contents, and higher rates of star formation activity. Nevertheless, there are some intriguing cases where dwarf spheroidal galaxies occur at the far periphery of the suites, as well as some late-type dwarfs residing close to MDs. Comparing simulation results with galaxy groups, most studies assume the Local Group is fairly typical. However, we recognize that the nearby groups significantly differ from each other and there is considerable variation in their properties. The suites of companions around the Milky Way and M31, consisting of the Local Group, do not quite seem to be a typical

  20. Our Cannibalistic Galaxy

    NASA Astrophysics Data System (ADS)

    Majewski, S. R.

    2004-12-01

    It is now evident that our Milky Way has cannibalistic tendencies. Recently found examples of satellite star systems being digested by our galaxy demonstrate that Milky Way-like spiral galaxies continue to grow through the piecemeal accumulation of mass from smaller neighbors, as predicted by Cold Dark Matter (CDM) models of structure formation. Cross-sections of the Milky Way halo reveal it to be networked with long-lived, coherent debris streams of stars and star clusters that attest to its accretive formation. These dynamically cold streams, created from the tidal disruption of satellite star systems, in turn provide useful tools to explore both the nature of Galactic dwarf satellites as well as the the dark matter distribution of the Milky Way; the results of such work, however, yield some unexpected results compared to current CDM models. (Research described has been supported by NASA/JPL, the National Science Foundation, The David and Lucile Packard Foundation, the Research Corporation, and the F.H. Levinson Fund of the Peninsula Community Foundation.)

  1. Star Formation in Irregular Galaxies.

    ERIC Educational Resources Information Center

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  2. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    SciTech Connect

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-03-20

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 < z < 0.07. We discover a significant population of superdense massive galaxies with masses and sizes comparable to those observed at high redshift. They approximately represent 22% of all cluster galaxies more massive than 3 x 10{sup 10} M{sub sun}, are mostly S0 galaxies, have a median effective radius (R{sub e} ) = 1.61 +- 0.29 kpc, a median Sersic index (n) = 3.0 +- 0.6, and very old stellar populations with a median mass-weighted age of 12.1 +- 1.3 Gyr. We calculate a number density of 2.9 x 10{sup -2} Mpc{sup -3} for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10{sup -5} Mpc{sup -3} in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z {approx} 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M{sub *} > 4 x 10{sup 11} M{sub sun} compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  3. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    SciTech Connect

    Park, Youngsoo; Krause, Elisabeth; Dodelson, Scott; Jain, Bhuvnesh; Amara, Adam; Becker, Matt; Bridle, Sarah; Clampitt, Joseph; Crocce, Martin; Honscheid, Klaus; Gaztanaga, Enrique; Sanchez, Carles; Wechsler, Risa

    2015-01-01

    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  4. Study of the Lynx-Cancer void galaxies. - V. The extremely isolated galaxy UGC 4722

    NASA Astrophysics Data System (ADS)

    Chengalur, J. N.; Pustilnik, S. A.; Makarov, D. I.; Perepelitsyna, Y. A.; Safonova, E. S.; Karachentsev, I. D.

    2015-04-01

    We present a detailed study of the extremely isolated Sdm galaxy UGC 4722 (MB = -17.4) located in the nearby Lynx-Cancer void. UGC 4722 is a member of the Catalogue of Isolated Galaxies, and has also been identified as one of the most isolated galaxies in the Local Supercluster. Optical images of the galaxy however show that it has a peculiar morphology with an elongated ˜14 kpc-long plume. New observations with the Russian 6-m telescope (BTA) and the Giant Metrewave Radio Telescope (GMRT) of the ionized and neutral gas in UGC 4722 reveal the second component responsible for the disturbed morphology of the system. This is a small, almost completely destroyed, very gas-rich dwarf (MB = -15.2, M(H I)/LB ˜ 4.3) We estimate the oxygen abundance for both galaxies to be 12 + log (O/H) ˜ 7.5-7.6 which is two to three times lower than what is expected from the luminosity-metallicity relation for similar galaxies in denser environments. The ugr colours of the plume derived from Sloan Digital Sky Survey (SDSS) images are consistent with a simple stellar population with a post starburst age of 0.45-0.5 Gyr. This system hence appears to be the first known case of a minor merger with a prominent tidal feature consisting of a young stellar population.

  5. Minor mergers: fundamental but unexplored drivers of galaxy evolution

    NASA Astrophysics Data System (ADS)

    Kaviraj, Sugata

    We use the SDSS Stripe 82 to study the stellar-mass growth that is triggered by minor mergers in local disk galaxies. Since major mergers destroy disks and create spheroids, morphologically disturbed spirals are likely remnants of minor mergers (since the disk remains intact). Disturbed spirals exhibit enhanced specific star formation rates (SSFRs), with the enhancement increasing in galaxies with `later' morphological type (that have larger gas reservoirs and smaller bulges). By combining the SSFR enhancements with the fraction of time spirals in various morphological classes spend in this `enhanced' mode, we estimate that ~40% of the star formation activity in local spirals is directly triggered by minor mergers. Combining our results with the star formation in local early-type galaxies - which is almost completely driven by minor mergers - suggests that around half the star formation activity at the present day is likely to be triggered by the minor-merger process.

  6. Disturbance regime and disturbance interactions in Rocky Mountain subalpine forest

    USGS Publications Warehouse

    Veblen, Thomas T.; Hadley, Keith S.; Nel, Elizabeth M.; Kitzberger, Thomas; Reid, Marion; Villalba, Ricardo

    1994-01-01

    1 The spatial and temporal patterns of fire, snow avalanches and spruce beetle out-breaks were investigated in Marvine Lakes Valley in the Colorado Rocky Mountains in forests of Picea engelmannii, Abies lasiocarpa, Pseudotsuga menziesiiand Populus tremuloides. Dates and locations of disturbances were determined by dendrochronological techniques. A geographic information system (GIS) was used to calculate areas affected by the different disturbance agents and to examine the spatial relationships of the different disturbances. 2 In the Marvine Lakes Valley, major disturbance was caused by fire in the 1470s, the 1630s and the 1870s and by spruce beetle outbreak in c. 1716, 1827 and 1949. 3 Since c. 1633, 9% of the Marvine Lakes Valley has been affected by snow avalanches, 38.6% by spruce beetle outbreak and 59.1% by fire. At sites susceptible to avalanches, avalanches occur at a near-annual frequency. The mean return intervals for fire and spruce beetle outbreaks are 202 and 116.5 years, respectively. Turnover times for fire and spruce beetle outbreaks are 521 and 259 years, respectively. 4 Several types of disturbance interaction were identified. For example, large and severe snow avalanches influence the spread of fire. Similarly, following a stand-devastating fire or avalanche, Picea populations will not support a spruce beetle outbreak until individual trees reach a minimum diameter which represents at least 70 years' growth. Thus, recent fires and beetle outbreaks have nonoverlapping distributions.

  7. Evolution of luminous IRAS galaxies: Radio imaging

    NASA Technical Reports Server (NTRS)

    Neff, S. G.; Hutchings, J. B.

    1993-01-01

    In a recent study of IRAS galaxies' optical morphologies, we found that luminous IR sources lie in the IR color-luminosity plane in groups which separate out by optical spectroscopic type and also by degree of tidal disturbance. We found that the most luminous steep-IR-spectrum sources are generally galaxies in the initial stages of a major tidal interaction. Galaxies with active nuclei were generally found to have flatter IR spectra, to cover a range of IR luminosity, and to be in the later stages of a tidal interaction. We proposed a sequence of events by which luminous IR sources evolve: they start as interacting or merging galaxies, some develop active nuclei, and most undergo extensive star-formation in their central regions. Another way to study these objects and their individual evolution is to study their radio morphologies. Radio emission may arise at a detectable level from supernovae in star-forming regions and/or the appearance of an active nucleus can be accompanied by a nuclear radio source (which may develop extended structure). Therefore, the compact radio structure may trace the evolution of the inner regions of IRAS-luminous sources. If the radio sources are triggered by the interactions, we would expect to find the radio morphology related to the optical 'interactivity' of the systems. Here, we explore using the radio emission of IRAS galaxies as a possible tracer of galaxy evolution. We present and discuss observations of the compact radio morphology of 111 luminous IRAS-selected active galaxies covering a wide range of IR and optical properties.

  8. Linking the structural properties of galaxies and their star formation histories with STAGES

    NASA Astrophysics Data System (ADS)

    Hoyos, Carlos; Aragón-Salamanca, Alfonso; Gray, Meghan E.; Wolf, Christian; Maltby, David T.; Bell, Eric F.; Böhm, Asmus; Jogee, Shardha

    2016-01-01

    We study the links between star formation history and structure for a large mass-selected galaxy sample at 0.05 ≤ zphot ≤ 0.30. The galaxies inhabit a very broad range of environments, from cluster cores to the field. Using Hubble Space Telescope (HST) images, we quantify their structure following Hoyos et al., and divide them into disturbed and undisturbed. We also visually identify mergers. Additionally, we provide a quantitative measure of the degree of disturbance for each galaxy (`roughness'). The majority of elliptical and lenticular galaxies have relaxed structure, showing no signs of ongoing star formation. Structurally disturbed galaxies, which tend to avoid the lowest density regions, have higher star formation activity and younger stellar populations than undisturbed systems. Cluster spirals with reduced/quenched star formation have somewhat less disturbed morphologies than spirals with `normal' star formation activity, suggesting that these `passive' spirals have started their morphological transformation into S0s. Visually identified mergers and galaxies not identified as mergers but with similar roughness have similar specific star formation rates and stellar ages. The degree of enhanced star formation is thus linked to the degree of structural disturbance, regardless of whether it is caused by major mergers or not. This suggests that merging galaxies are not special in terms of their higher-than-normal star formation activity. Any physical process that produces `roughness', or regions of enhanced luminosity density, will increase the star formation activity in a galaxy with similar efficiency. An alternative explanation is that star formation episodes increase the galaxies' roughness similarly, regardless of whether they are merger induced or not.

  9. Kinematics in the Interacting, Star-Forming Galaxies NGC 3395/3396 and NGC 3991/3994/3995

    NASA Technical Reports Server (NTRS)

    Weistrop, Donna; Nelson, Charles H.

    1999-01-01

    It has been suggested that induced star formation is more sensitive to galaxy dynamics than to local phenomena and that enhanced star formation is found in galaxies with disturbed velocity structures. We are studying the stellar populations of several UV-bright, interacting galaxies to try to understand the detailed star formation process in these systems. We present preliminary results of an investigation of the kinematics of star-forming regions in the interacting systems NGC 3395/3396 and NGC 3991/3994/3995. Regions of powerful star formation are observed throughout these galaxies. The observatation will be used to investigate rotation curves in the galaxies and motion in the tidal tails.

  10. A Zoo of Galaxies

    NASA Astrophysics Data System (ADS)

    Masters, Karen L.

    2015-03-01

    We live in a universe filled with galaxies with an amazing variety of sizes and shapes. One of the biggest challenges for astronomers working in this field is to understand how all these types relate to each other in the background of an expanding universe. Modern astronomical surveys (like the Sloan Digital Sky Survey) have revolutionised this field of astronomy, by providing vast numbers of galaxies to study. The sheer size of the these databases made traditional visual classification of the types galaxies impossible and in 2007 inspired the Galaxy Zoo project (www.galaxyzoo.org); starting the largest ever scientific collaboration by asking members of the public to help classify galaxies by type and shape. Galaxy Zoo has since shown itself, in a series of now more than 30 scientific papers, to be a fantastic database for the study of galaxy evolution. In this Invited Discourse I spoke a little about the historical background of our understanding of what galaxies are, of galaxy classification, about our modern view of galaxies in the era of large surveys. I finish with showcasing some of the contributions galaxy classifications from the Galaxy Zoo project are making to our understanding of galaxy evolution.

  11. Bright galaxies, dark matters.

    NASA Astrophysics Data System (ADS)

    Rubin, V.

    This book charts two extraordinary journeys: the road to a better understanding of the structure and composition of the universe, and V. Rubin's own pathbreaking career. The scientific papers included here offer an overview of the topic that has been the major focus of her career: the motions of stars within galaxies and the evidence from these motions that most of the matter in the universe is dark. Elsewhere the author examines some of the tools of her trade - from star charts to the Hubble Telescope to some of the observatories where she has worked. The concluding section, "The astronomical life", finds V. Rubin writing candidly about the demands and rewards of her career, offering insightful portraits of colleagues, friends, and other notable women in science.

  12. Galaxy interactions and strength of nuclear activity

    NASA Technical Reports Server (NTRS)

    Simkin, S. M.

    1990-01-01

    Analysis of data in the literature for differential velocities and projected separations of nearby Seyfert galaxies with possible companions shows a clear difference in projected separations between type 1's and type 2's. This kinematic difference between the two activity classes reinforces other independent evidence that their different nuclear characteristics are related to a non-nuclear physical distinction between the two classes. The differential velocities and projected separations of the galaxy pairs in this sample yield mean galaxy masses, sizes, and mass to light ratios which are consistent with those found by the statistical methods of Karachentsev. Although the galaxy sample discussed here is too small and too poorly defined to provide robust support for these conclusions, the results strongly suggest that nuclear activity in Seyfert galaxies is associated with gravitational perturbations from companion galaxies, and that there are physical distinctions between the host companions of Seyfert 1 and Seyfert 2 nuclei which may depend both on the environment and the structure of the host galaxy itself.

  13. SEYFERT GALAXIES: NUCLEAR RADIO STRUCTURE AND UNIFICATION

    SciTech Connect

    Lal, Dharam V.; Shastri, Prajval; Gabuzda, Denise C.

    2011-04-10

    A radio study of a carefully selected sample of 20 Seyfert galaxies that are matched in orientation-independent parameters, which are measures of intrinsic active galactic nucleus power and host galaxy properties, is presented to test the predictions of the unified scheme hypothesis. Our sample sources have core flux densities greater than 8 mJy at 5 GHz on arcsec scales due to the feasibility requirements. These simultaneous parsec-scale and kiloparsec-scale radio observations reveal (1) that Seyfert 1 and Seyfert 2 galaxies have an equal tendency to show compact radio structures on milliarcsecond scales, (2) the distributions of parsec-scale and kiloparsec-scale radio luminosities are similar for both Seyfert 1 and Seyfert 2 galaxies, (3) there is no evidence for relativistic beaming in Seyfert galaxies, (4) similar distributions of source spectral indices in spite of the fact that Seyferts show nuclear radio flux density variations, and (5) the distributions of the projected linear size for Seyfert 1 and Seyfert 2 galaxies are not significantly different as would be expected in the unified scheme. The latter could be mainly due to a relatively large spread in the intrinsic sizes. We also find that a starburst alone cannot power these radio sources. Finally, an analysis of the kiloparsec-scale radio properties of the CfA Seyfert galaxy sample shows results consistent with the predictions of the unified scheme.

  14. Optical emission line nebulae in galaxy cluster cores 1: the morphological, kinematic and spectral properties of the sample

    NASA Astrophysics Data System (ADS)

    Hamer, S. L.; Edge, A. C.; Swinbank, A. M.; Wilman, R. J.; Combes, F.; Salomé, P.; Fabian, A. C.; Crawford, C. S.; Russell, H. R.; Hlavacek-Larrondo, J.; McNamara, B. R.; Bremer, M. N.

    2016-08-01

    We present an Integral Field Unit survey of 73 galaxy clusters and groups with the VIsible Multi Object Spectrograph on the Very Large Telescope. We exploit the data to determine the H α gas dynamics on kpc scales to study the feedback processes occurring within the dense cluster cores. We determine the kinematic state of the ionized gas and show that the majority of systems (˜2/3) have relatively ordered velocity fields on kpc scales that are similar to the kinematics of rotating discs and are decoupled from the stellar kinematics of the brightest cluster galaxy. The majority of the H α flux (>50 per cent) is typically associated with these ordered kinematics and most systems show relatively simple morphologies suggesting they have not been disturbed by a recent merger or interaction. Approximately 20 per cent of the sample (13/73) have disturbed morphologies which can typically be attributed to active galactic nuclei activity disrupting the gas. Only one system shows any evidence of an interaction with another cluster member. A spectral analysis of the gas suggests that the ionization of the gas within cluster cores is dominated by non-stellar processes, possibly originating from the intracluster medium itself.

  15. Optical Emission Line Nebulae in Galaxy Cluster Cores 1: The Morphological, Kinematic and Spectral Properties of the Sample

    NASA Astrophysics Data System (ADS)

    Hamer, S. L.; Edge, A. C.; Swinbank, A. M.; Wilman, R. J.; Combes, F.; Salomé, P.; Fabian, A. C.; Crawford, C. S.; Russell, H. R.; Hlavacek-Larrondo, J.; McNamara, B.; Bremer, M. N.

    2016-05-01

    We present an Integral Field Unit survey of 73 galaxy clusters and groups with the VIsible Multi Object Spectrograph (VIMOS) on VLT. We exploit the data to determine the Hα gas dynamics on kpc-scales to study the feedback processes occurring within the dense cluster cores. We determine the kinematic state of the ionised gas and show that the majority of systems (˜ 2/3) have relatively ordered velocity fields on kpc scales that are similar to the kinematics of rotating discs and are decoupled from the stellar kinematics of the Brightest Cluster Galaxy. The majority of the Hα flux (> 50 %) is typically associated with these ordered kinematics and most systems show relatively simple morphologies suggesting they have not been disturbed by a recent merger or interaction. Approximately 20 % of the sample (13/73) have disturbed morphologies which can typically be attributed to AGN activity disrupting the gas. Only one system shows any evidence of an interaction with another cluster member. A spectral analysis of the gas suggests that the ionisation of the gas within cluster cores is dominated by non stellar processes, possibly originating from the intracluster medium itself.

  16. The Neutral Hydrogen Disk of ARP 10 (=VV 362): A Nonequilibrium Disk Associated with a Galaxy with Rings and Ripples

    NASA Astrophysics Data System (ADS)

    Charmandaris, V.; Appleton, P. N.

    1996-04-01

    We present VLA H I and optical spectra of the peculiar galaxy Arp 10. Originally believed to be an example of a classical colliding ring galaxy with multiple rings, the new observations show a large disturbed neutral hydrogen disk extending 2.7 times the radius of the bright optical ring. We also present evidence for optical shells or ripples in the outer isophotes of the galaxy reminiscent of the ripples seen in some early type systems. The small elliptical originally believed to be the companion is shown to be a background galaxy. The H I disk consists of two main parts: a very irregular outer structure, and a more regular inner disk associated with the main bright optical ring. In both cases, the H I structures do not exactly trace the optical morphology. In the outer parts, the H I distribution does not correlate well with the optical ripples. Even the inner H I disk does not correspond well morphologically nor kinematically to the optical rings. These peculiarities lead us to believe that the potential in which the H I disk resides is significantly out of equilibrium --- a situation which would inherently produce rings of star formation. We suggest that Arp 10 is the result of the intermediate stage of a merger between a large H I rich disk and a gas-poor disk system. As such, it may represent an example of a class of mergers which lies intermediate between the ``ripple and shell'' accretion systems and the head-on collisional ring galaxies.

  17. Evolutionary phenomena in galaxies; Summer School, Puerto de la Cruz, Spain, July 4-15, 1988, Contributed Papers

    NASA Astrophysics Data System (ADS)

    Beckman, John E.; Pagel, Bernard E.

    1989-07-01

    Topics discussed in this symposium are on the Galaxy, the Magellanic Clouds, elliptical galaxies, the structure of spirals and galaxy interactions, and the gas and star formation in galaxies. Papers are presented on the Galactic evolution and the star counts in the Galaxy, the physical parameters of reflection nebulae in the Galaxy, chemical abundances in the LMC and SMC planetary nebulae, and the initial mass functions of Magellanic Cloud star clusters, the morphological properties of radio elliptical galaxies, and the synthetic integrated fluxes and colors for elliptical galaxies. Attention is also given to the magnetic fields in M31, NGC 7331, NGC 2841, NGC 6946, and our Galaxy, two high-velocity encounters of elliptical galaxies, evidence for high-velocity gas in giant H II regions, molecules in external galaxies, a photometric study of the double-ring structure of NGC 4736, and the chemical and dynamical evolution of galactic discs.

  18. Star Formation in Galaxies

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.

  19. Low-disturbance wind tunnels

    NASA Technical Reports Server (NTRS)

    Beckwith, I. E.; Applin, Z. T.; Stainback, P. C.; Maestrello, L.

    1986-01-01

    During the past years, there was an extensive program under way at the Langley Research Center to upgrade the flow quality in several of the large wind tunnels. This effort has resulted in significant improvements in flow quality in these tunnels and has also increased the understanding of how and where changes in existing and new wind tunnels are most likely to yield the desired improvements. As part of this ongoing program, flow disturbance levels and spectra were measured in several Langley tunnels before and after modifications were made to reduce acoustic and vorticity fluctuations. A brief description of these disturbance control features is given for the Low-Turbulence Pressure Tunnel, the 4 x 7 Meter Tunnel, and the 8 Foot Transonic Pressure Tunnel. To illustrate typical reductions in disturbance levels obtained in these tunnels, data from hot-wire or acoustic sensors are presented. A concept for a subsonic quiet tunnel designed to study boundary layer stability and transition is also presented. Techniques developed at Langley in recent years to eliminate the high intensity and high-frequency acoustic disturbances present in all previous supersonic wind tunnels are described. In conclusion, the low-disturbance levels present in atmospheric flight can now be simulated in wind tunnels over the speed range from low subsonic through high supersonic.

  20. The dwarf spheroidal galaxy Andromeda I

    SciTech Connect

    Mould, J.; Kristian, J. Mount Wilson and Las Campanas Observatories, Pasadena, CA )

    1990-05-01

    Images of Andromeda I in the visual and near-infrared show a giant branch characteristic of galactic globular clusters of intermediate metallicity. The distance of the galaxy is estimated from the tip of the giant branch to be 790 + or - 60 kpc. The physical dimensions and luminosity are similar to those of the dwarf spheroidal in Sculptor. There is no evidence for an intermediate age population in Andromeda I, and appropriate upper limits are specified. There is marginal evidence for a color gradient in the galaxy, a phenomenon not previously noted in a dwarf spheroidal. 21 refs.

  1. Dynamics of gas disks in triaxial galaxies

    SciTech Connect

    Steiman-Cameron, T.Y.

    1984-01-01

    Increasing evidence has accumulated since the mid 1970's arguing that many, if not all, undisturbed galaxies may have triaxial mass distributions. The steady state configurations (preferred planes) of gas disks in triaxial galaxies with static and rotating surface figures is determined. In addition, the evolution of a gas disk as it settles into the steady state is followed for both axisymmetric and triaxial galaxies. Observational tests are provided for triaxial galactic geometry and give more accurate measures of settling times than those previously published. The preferred planes for gas disks in static and tumbling triaxial galaxies are determined using an analytic method derived from celestial mechanics. The evolution of gas disks which are not in the steady state is followed using numerical methods.

  2. SCUBA Observations of High Redshift Radio Galaxies

    SciTech Connect

    Reuland, M; Rottgering, H; van Breugel, W

    2003-03-11

    High redshift radio galaxies (HzRGs) are key targets for studies of the formation and evolution of massive galaxies.The role of dust in these processes is uncertain. We have therefore observed the dust continuum emission from a sample of z > 3 radio galaxies with the SCUBA bolometer array. We confirm and strengthen the result found by Archibald et al. (1), that HzRGs are massive starforming systems and that submillimeter detection rate appears to be primarily a strong function of redshift. We also observed HzRG-candidates that have so far eluded spectroscopic redshift determination. Four of these have been detected, and provide evidence that they may be extremely obscured radio galaxies, possibly in an early stage of their evolution.

  3. The Butcher-Oemler effect in a nearby cluster of galaxies

    SciTech Connect

    Vigroux, L.; Boulade, O.; Rose, J.A. North Carolina Univ., Chapel Hill )

    1989-12-01

    The integrated spectra of early-type galaxies in the nearby Abell 262, Pegasus I, and Virgo clusters are compared with those of several field galaxies. The spectra of five galaxies in Pegasus I and one galaxy in the Virgo Cluster show evidence of recent star formation. The average blue magnitude for the star-forming galaxies is M(B) = -20. The star-formation activity in Pegasus I is found to be similar to that of starburst and poststarburst galaxies in Butcher-Oemler clusters at redshifts greater than 2. 38 refs.

  4. Childhood Abuse, Body Image Disturbance, and Eating Disorders.

    ERIC Educational Resources Information Center

    Schaaf, Kristin K.; McCanne, Thomas R.

    1994-01-01

    This study examined the relationships among childhood sexual and physical abuse, body image disturbance, and eating disorder symptomatology in college students, of whom 29 had been sexually abused, 32 physically abused, and 29 nonabused. There was no evidence that child sexual or physical abuse was associated with the development of body image…

  5. Serious Emotional Disturbance in Children and Adolescents: Multisystemic Therapy.

    ERIC Educational Resources Information Center

    Henggeler, Scott W.; Schoenwald, Sonja K.; Rowland, Melisa D.; Cunningham, Phillippe B.

    Originally developed to treat antisocial behavior, multisystemic therapy (MST) has emerged as a leading evidence-based treatment for serious emotional disturbance in children and adolescents. This manual presents the MST approach to working with this challenging population. Delineated are ways to develop and implement collaborative interventions…

  6. Experimenting with galaxies

    NASA Technical Reports Server (NTRS)

    Miller, Richard H.

    1992-01-01

    A study to demonstrate how the dynamics of galaxies may be investigated through the creation of galaxies within a computer model is presented. The numerical technique for simulating galaxies is shown to be both highly efficient and highly robust. Consideration is given to the anatomy of a galaxy, the gravitational N-body problem, numerical approaches to the N-body problem, use of the Poisson equation, and the symplectic integrator.

  7. The star formation histories of Hickson compact group galaxies

    NASA Astrophysics Data System (ADS)

    Plauchu-Frayn, I.; Del Olmo, A.; Coziol, R.; Torres-Papaqui, J. P.

    2012-10-01

    Aims: We study the star formation fistory (SFH) of 210 galaxy members of 55 Hickson compact groups (HCG) and 309 galaxies from the Catalog of Isolated Galaxies (CIG). The SFH traces the variation of star formation over the lifetime of a galaxy, and consequently yields a snapshot picture of its formation. Comparing the SFHs in these extremes in galaxy density allows us to determine the main effects of compact groups (CG) on the formation of galaxies. Methods: We fit our spectra using the spectral synthesis code STARLIGHT and obtained the stellar population contents and mean stellar ages of HCG and CIG galaxies in three different morphological classes: early-type galaxies (EtG), early-type spirals (EtS), and late-type spirals (LtS). Results: We find that EtG and EtS galaxies in HCG show higher contents of old and intermediate stellar populations as well as an important deficit of the young stellar population, which clearly implies an older average stellar age in early galaxies in HCG. For LtS galaxies we find similar mean values for the stellar content and age in the two samples. However, we note that LtS can be split into two subclasses, namely old and young LtS. In HCG we find a higher fraction of young LtS than in the CIG sample, in addition, most of these galaxies belong to groups in which most of the galaxies are also young and actively forming stars. The specific star formation rate (SSFR) of spiral galaxies in the two samples differ. The EtS in HCG show lower SSFR values, while LtS peak at higher values compared with their counterparts in isolation. We also measured the shorter star formation time scale (SFTS) in HCG galaxies, which indicates that they have a shorter star formation activity than CIG galaxies. We take these observations as evidence that galaxies in CG have evolved more rapidly than galaxies in isolation, regardless of their morphology. Our observations are consistent with the hierarchical galaxy formation model, which states that CGs are

  8. Managing Sleep Disturbances in Cirrhosis

    PubMed Central

    Zhao, Xun

    2016-01-01

    Sleep disturbances, particularly daytime sleepiness and insomnia, are common problems reported by patients suffering from liver cirrhosis. Poor sleep negatively impacts patients' quality of life and cognitive functions and increases mortality. Although sleep disturbances can be an early sign of hepatic encephalopathy (HE), many patients without HE still complain of poor quality sleep. The pathophysiology of these disturbances is not fully understood but is believed to be linked to impaired hepatic melatonin metabolism. This paper provides an overview for the clinician of common comorbidities contributing to poor sleep in patients with liver disease, mainly restless leg syndrome and obstructive sleep apnea. It discusses nondrug and pharmacologic treatment options in these patients, such as the use of light therapy and histamine (H1) blockers. PMID:27242950

  9. Dust formation in a galaxy with primitive abundances.

    PubMed

    Sloan, G C; Matsuura, M; Zijlstra, A A; Lagadec, E; Groenewegen, M A T; Wood, P R; Szyszka, C; Bernard-Salas, J; van Loon, J Th

    2009-01-16

    Interstellar dust plays a crucial role in the evolution of galaxies. It governs the chemistry and physics of the interstellar medium. In the local universe, dust forms primarily in the ejecta from stars, but its composition and origin in galaxies at very early times remain controversial. We report observational evidence of dust forming around a carbon star in a nearby galaxy with a low abundance of heavy elements, 25 times lower than the solar abundance. The production of dust by a carbon star in a galaxy with such primitive abundances raises the possibility that carbon stars contributed carbonaceous dust in the early universe. PMID:19150838

  10. Galaxy Zoo: Observing secular evolution through bars

    SciTech Connect

    Cheung, Edmond; Faber, S. M.; Koo, David C.; Athanassoula, E.; Bosma, A.; Masters, Karen L.; Nichol, Robert C.; Melvin, Thomas; Bell, Eric F.; Lintott, Chris; Schawinski, Kevin; Skibba, Ramin A.; Willett, Kyle W.

    2013-12-20

    In this paper, we use the Galaxy Zoo 2 data set to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR) and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of 23.6% ± 0.4%, of which 1154 barred galaxies also have bar length (BL) measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anticorrelated with SSFR, regardless of stellar mass or bulge prominence. We find that the trends of bar likelihood and BL with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution that include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks, a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as being due to the complicated effects of classical bulges and central mass concentrations on bar evolution and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies but are a critical evolutionary driver of their host galaxies in the local universe (z < 1).

  11. Galaxy Cluster Smashes Distance Record

    NASA Astrophysics Data System (ADS)

    2009-10-01

    he most distant galaxy cluster yet has been discovered by combining data from NASA's Chandra X-ray Observatory and optical and infrared telescopes. The cluster is located about 10.2 billion light years away, and is observed as it was when the Universe was only about a quarter of its present age. The galaxy cluster, known as JKCS041, beats the previous record holder by about a billion light years. Galaxy clusters are the largest gravitationally bound objects in the Universe. Finding such a large structure at this very early epoch can reveal important information about how the Universe evolved at this crucial stage. JKCS041 is found at the cusp of when scientists think galaxy clusters can exist in the early Universe based on how long it should take for them to assemble. Therefore, studying its characteristics - such as composition, mass, and temperature - will reveal more about how the Universe took shape. "This object is close to the distance limit expected for a galaxy cluster," said Stefano Andreon of the National Institute for Astrophysics (INAF) in Milan, Italy. "We don't think gravity can work fast enough to make galaxy clusters much earlier." Distant galaxy clusters are often detected first with optical and infrared observations that reveal their component galaxies dominated by old, red stars. JKCS041 was originally detected in 2006 in a survey from the United Kingdom Infrared Telescope (UKIRT). The distance to the cluster was then determined from optical and infrared observations from UKIRT, the Canada-France-Hawaii telescope in Hawaii and NASA's Spitzer Space Telescope. Infrared observations are important because the optical light from the galaxies at large distances is shifted into infrared wavelengths because of the expansion of the universe. The Chandra data were the final - but crucial - piece of evidence as they showed that JKCS041 was, indeed, a genuine galaxy cluster. The extended X-ray emission seen by Chandra shows that hot gas has been detected

  12. The photometric properties of brightest cluster galaxies. II - SIT and CCD surface photometry

    NASA Technical Reports Server (NTRS)

    Hoessel, J. G.

    1980-01-01

    Surface photometry of the first-ranked galaxy in 108 Abell clusters is presented. Galaxy structure, as parameterized by simple Hubble law models, is found to correlate with galaxy absolute magnitude and cluster structure. All the structure data support the dynamical friction evolution model. Twenty-eight percent of the galaxies have multiple component nuclei; the short lifetimes of such systems provide the best available evidence that ongoing evolution actually occurs. Average magnitude and structure evolution rates are derived from the data.

  13. What's This about a Ring Around the Galaxy?

    SciTech Connect

    Newberg, Heidi Jo

    2003-06-25

    The newspapers recently reported that scientists found 'A Ring of Stars' around the Milky Way galaxy. I will explain the evidence for this, and argue that it could be the remains of a galaxy that merged with the Milky Way. Data from the Sloan Digital Sky Survey has produced many recent results which advance our knowledge of how our galaxy formed, and have the potential to shed light on its dark matter content. I will explain the current state of knowledge about our galaxy's structure and origins, and argue that the machinery currently being used by the Sloan Digital Sky Survey primarily to map the distributions of galaxies in the sky should be turned to the task of mapping our own Milky Way galaxy.

  14. The centre of the Galaxy

    NASA Technical Reports Server (NTRS)

    Townes, C. H.; Lacy, J. H.; Geballe, T. R.; Hollenbach, D. J.

    1983-01-01

    X-ray, gamma-ray and IR observations of the Galaxy's nucleus show that it contains the densest concentration of stars in the Galaxy, as well as a quantity of ionized gas and warm dust, which is clumped into a small number of rapidly expanding individual clouds whose velocities approach + or - 300 km/sec. The detection of electron-positron anihilation radiation, and a peculiar radio point source very close to the galactic center, add to the belief that the nucleus may contain some unusual object, such as a black hole, which is responsible for the cloud velocities and dust-heating radiation observed. Attention is given to IR intensity contours of the region, as well as a review of the observational evidence for the presence of a black hole. It is noted that a massive black hole fails to account for the unusual ionizing radiation field detected.

  15. The role of galaxy interaction in the SFR-M {sub *} relation: characterizing morphological properties of Herschel-selected galaxies at 0.2 < z < 1.5

    SciTech Connect

    Hung, Chao-Ling; Sanders, D. B.; Casey, C. M.; Lee, N.; Barnes, J. E.; Koss, M.; Larson, K. L.; Lockhart, K.; Man, A. W. S.; Mann, A. W.; Capak, P.; Kartaltepe, J. S.; Le Floc'h, E.; Riguccini, L.; Scoville, N.; Symeonidis, M.

    2013-12-01

    Galaxy interactions/mergers have been shown to dominate the population of IR-luminous galaxies (L {sub IR} ≳ 10{sup 11.6} L {sub ☉}) in the local universe (z ≲ 0.25). Recent studies based on the relation between galaxies' star formation rates and stellar mass (the SFR-M {sub *} relation or the {sup g}alaxy main sequence{sup )} have suggested that galaxy interaction/mergers may only become significant when galaxies fall well above the galaxy main sequence. Since the typical SFR at a given M {sub *} increases with redshift, the existence of the galaxy main sequence implies that massive, IR-luminous galaxies at high z may not necessarily be driven by galaxy interactions. We examine the role of galaxy interactions in the SFR-M {sub *} relation by carrying out a morphological analysis of 2084 Herschel-selected galaxies at 0.2 < z < 1.5 in the COSMOS field. Using a detailed visual classification scheme, we show that the fraction of 'disk galaxies' decreases and the fraction of 'irregular' galaxies increases systematically with increasing L {sub IR} out to z ≲ 1.5 and z ≲ 1.0, respectively. At L {sub IR} >10{sup 11.5} L {sub ☉}, ≳ 50% of the objects show evident features of strongly interacting/merger systems, where this percentage is similar to the studies of local IR-luminous galaxies. The fraction of interacting/merger systems also systematically increases with the deviation from the SFR-M {sub *} relation, supporting the view that galaxies falling above the main sequence are more dominated by mergers than the main-sequence galaxies. Meanwhile, we find that ≳ 18% of massive IR-luminous 'main-sequence galaxies' are classified as interacting systems, where this population may not evolve through the evolutionary track predicted by a simple gas exhaustion model.

  16. Watching the Birth of a Galaxy Cluster?

    NASA Astrophysics Data System (ADS)

    1999-07-01

    First Visiting Astronomers to VLT ANTU Observe the Early Universe When the first 8.2-m VLT Unit Telescope (ANTU) was "handed over" to the scientists on April 1, 1999, the first "visiting astronomers" at Paranal were George Miley and Huub Rottgering from the Leiden Observatory (The Netherlands) [1]. They obtained unique pictures of a distant exploding galaxy known as 1138 - 262 . These images provide new information about how massive galaxies and clusters of galaxies may have formed in the early Universe. Formation of clusters of galaxies An intriguing question in modern astronomy is how the first galaxies and groupings or clusters of galaxies emerged from the primeval gas produced in the Big Bang. Some theories predict that giant galaxies, often found at the centres of rich galaxy clusters, are built up through a step-wise process. Clumps develop in this gas and stars condense out of those clumps to form small galaxies. Finally these small galaxies merge together to form larger units. An enigmatic class of objects important for investigating such scenarios are galaxies which emit intense radio emission from explosions that occur deep in their nuclei. The explosions are believed to be triggered when material from the merging swarm of smaller galaxies is fed into a rotating black hole located in the central regions. There is strong evidence that these distant radio galaxies are amongst the oldest and most massive galaxies in the early Universe and are often located at the heart of rich clusters of galaxies. They can therefore help pinpoint regions of the Universe in which large galaxies and clusters of galaxies are being formed. The radio galaxy 1138-262 The first visiting astronomers pointed ANTU towards a particularly important radio galaxy named 1138-262 . It is located in the southern constellation Hydra (The Water Snake). This galaxy was discovered some years ago using ESO's 3.5-m New Technology Telescope (NTT) at La Silla. Because 1138-262 is at a distance of

  17. Dynamics of clusters of galaxies with central dominant galaxies. I - Galaxy redshifts

    NASA Technical Reports Server (NTRS)

    Malumuth, Eliot M.; Kriss, Gerard A.; Van Dyke Dixon, W.; Ferguson, Henry C.; Ritchie, Christine

    1992-01-01

    Optical redshifts are presented for a sample of 638 galaxies in the fields of the clusters Abell 85, DC 0107-46, Abell 496, Abell 2052, and DC 1842-63. The velocity histograms and wedge diagrams show evidence for a foreground sheet of galaxies in Abell 85 and background sheets of galaxies in DC 0107-46 and Abell 2052. The foreground group projected against the center of Abell 85 found by Beers et al. (1991) is confirmed. No evidence of substructure was found in Abell 496, Abell 2052, and DC 1842-63. The clusters have global velocity dispersions ranging from 551 km/s for DC 1842-63 to 714 km/s for A496, and flat dispersion profiles. Mass estimates using the virial theorem and the projected mass method range from 2.3 x 10 exp 14 solar masses for DC 0107-46 to 1.1 x 10 exp 15 solar masses for A85.

  18. Sleep Disturbances in Frontotemporal Dementia.

    PubMed

    McCarter, Stuart J; St Louis, Erik K; Boeve, Bradley F

    2016-09-01

    Sleep disorders appear to be frequent comorbidities in patients with frontotemporal dementia (FTD). Insomnia and excessive daytime sleepiness commonly occur in patients with FTD and significantly contribute to caregiver burden and burnout. Sleep is severely fragmented in FTD patients, likely secondary to behavioral disturbances, other primary sleep disorders such as sleep disordered breathing and restless leg syndrome, and neurodegeneration of nuclei involved in sleep and wakefulness. Treatment of primary sleep disorders may improve excessive daytime sleepiness and sleep quality and may improve daytime cognitive functioning. Rapid eye movement (REM) sleep behavior disorder is rare in FTD and may be confused with excessive nocturnal activity due to disturbed circadian rhythm. The relationship between FTD, sleep quality, and sleep disorders requires further study to better understand the contribution of disturbed sleep to daytime neurocognitive functioning and quality of life in FTD. Further, future studies should focus on comparing sleep disturbances between different FTD syndromes, especially behavioral variant FTD and primary progressive aphasia. Comorbid sleep disorders should be promptly sought and treated in patients with FTD to improve patient and caregiver quality of life. PMID:27485946

  19. Identifying, Assisting the Disturbed Adolescent.

    ERIC Educational Resources Information Center

    Carlson, Patricia L.; Schaefer, William

    1986-01-01

    Educators are in an excellent position to identify seriously troubled young people. Major causes of adolescent problems are discussed, including drugs, parental failure, and biochemical disturbances. Educators can best intervene by becoming aware of support services within their own school and community. (TE)

  20. [Sleep Disturbances in the Elderly].

    PubMed

    Mahlberg, Richard

    2016-08-01

    Sleep disturbances are common in the elderly. Endogen regulation mechanisms are often unstable. Light treatment and melatonin are proved chronobiological interventions. Cataract surgery is effective to enhance the sleep-wake-rhythm.Mandibular advancement devices are a reliable alternative to continuous positive air pressure (CPAP) in obstructive sleep apnea syndrome (OSAS). PMID:27509339

  1. RESILIENCE OF ECOSYSTEMS TO DISTURBANCES

    EPA Science Inventory

    Resilience, in an ecological context, is one of several terms that characterize the response of an ecosystem to disturbance. Other such terms include persistence, resistance and stability. Two definitions of resilience have become prominent in the literature, both of which derive...

  2. State Definitions of Emotional Disturbance

    ERIC Educational Resources Information Center

    Wery, Jessica J.; Cullinan, Douglas

    2013-01-01

    This article examines definitions state education agencies use to describe the federal education disability called "emotional disturbance." State definitions were collected so that various aspects of them could be analyzed and compared with results of similar studies completed in the 1970s and 1980s. Among results are that state definitions have…

  3. Quantitative Morphology of Moderate-Redshift Galaxies: How Many Peculiar Galaxies Are There?

    NASA Astrophysics Data System (ADS)

    Naim, Avi; Ratnatunga, Kavan U.; Griffiths, Richard E.

    1997-02-01

    The advent of the Hubble Space Telescope (HST) has provided images of galaxies at moderate and high redshifts and changed the scope of galaxy morphologies considerably. It is evident that the Hubble sequence requires modifications in order to incorporate all the various morphologies one encounters at such redshifts. We investigate and compare different approaches to quantifying peculiar galaxy morphologies on images obtained from the Medium Deep Survey (MDS) and other surveys using the Wide Field Planetary Camera 2 (WFPC2) on board the HST, in the I band (filter F814W). We define criteria for peculiarity and put them to use on a sample of 978 galaxies, classifying them by eye as either normal or peculiar. Based on our criteria and on concepts borrowed from digital image processing, we design a set of four purely morphological parameters, which comprise the overall texture (or ``blobbiness'') of the image; the distortion of isophotes; the filling factor of isophotes; and the skeletons of detected structures. We also examine the parameters suggested by Abraham and coworkers. An artificial neural network (ANN) is trained to distinguish between normal and peculiar galaxies. While the majority of peculiar galaxies are disk dominated, we also find evidence for a significant population of bulge-dominated peculiar galaxies. Consequently, peculiar galaxies do not all form a ``natural'' continuation of the Hubble sequence beyond the late spirals and the irregulars. The trained neural network is applied to a second, larger sample of 1999 WFPC2 images, and its probabilistic capabilities are used to estimate the frequency of peculiar galaxies at moderate redshifts as 35% +/- 15%.

  4. APPLICATION OF ECOLOGICAL THEORY TO DETERMINING RECOVERY POTENTIAL OF DISTURBED LOTIC ECOSYSTEMS: RESEARCH NEEDS AND PRIORITIES

    EPA Science Inventory

    This article summarizes the views of aquatic scientists who gathered to assess the ability of stream ecosystem theory to predict recovery from disturbance. wo views of disturbance were evident: a discrete removal of organisms vs an unusual deviation from normal. hese were perceiv...

  5. How Do Galaxies Grow?

    NASA Astrophysics Data System (ADS)

    2008-08-01

    Astronomers have caught multiple massive galaxies in the act of merging about 4 billion years ago. This discovery, made possible by combining the power of the best ground- and space-based telescopes, uniquely supports the favoured theory of how galaxies form. ESO PR Photo 24/08 ESO PR Photo 24/08 Merging Galaxies in Groups How do galaxies form? The most widely accepted answer to this fundamental question is the model of 'hierarchical formation', a step-wise process in which small galaxies merge to build larger ones. One can think of the galaxies forming in a similar way to how streams merge to form rivers, and how these rivers, in turn, merge to form an even larger river. This theoretical model predicts that massive galaxies grow through many merging events in their lifetime. But when did their cosmological growth spurts finish? When did the most massive galaxies get most of their mass? To answer these questions, astronomers study massive galaxies in clusters, the cosmological equivalent of cities filled with galaxies. "Whether the brightest galaxies in clusters grew substantially in the last few billion years is intensely debated. Our observations show that in this time, these galaxies have increased their mass by 50%," says Kim-Vy Tran from the University of Zürich, Switzerland, who led the research. The astronomers made use of a large ensemble of telescopes and instruments, including ESO's Very Large Telescope (VLT) and the Hubble Space Telescope, to study in great detail galaxies located 4 billion light-years away. These galaxies lie in an extraordinary system made of four galaxy groups that will assemble into a cluster. In particular, the team took images with VIMOS and spectra with FORS2, both instruments on the VLT. From these and other observations, the astronomers could identify a total of 198 galaxies belonging to these four groups. The brightest galaxies in each group contain between 100 and 1000 billion of stars, a property that makes them comparable

  6. Stellar halos around Local Group galaxies

    NASA Astrophysics Data System (ADS)

    McConnachie, Alan W.

    2016-08-01

    The Local Group is now home to 102 known galaxies and candidates, with many new faint galaxies continuing to be discovered. The total stellar mass range spanned by this population covers a factor of close to a billion, from the faintest systems with stellar masses of order a few thousand to the Milky Way and Andromeda, with stellar masses of order 1011 M ⊙. Here, I discuss the evidence for stellar halos surrounding Local Group galaxies spanning from dwarf scales (with the case of the Andromeda II dwarf spheroidal), though to intermediate mass systems (M33) and finishing with M31. Evidence of extended stellar populations and merging is seen across the luminosity function, indicating that the processes that lead to halo formation are common at all mass scales.

  7. Production of minimally disturbed synchronous cultures of hematopoietic cells

    NASA Technical Reports Server (NTRS)

    Thornton, Maureen; Eward, Kathryn Leigh; Helmstetter, Charles E.; Edward, K. L. (Principal Investigator)

    2002-01-01

    A method is describedforproducing sizable quantities of synchronously dividing, minimally disturbed mammalian cells. Cultures were grown immobilized on surfaces such that cell division within the population resulted in the continuous release of synchronous newborn cells. As judged by the quality and duration of synchronous growth, cell size distributions, and DNA compositions, newborn mouse L1210 cells grew with a very high level of synchrony without overt evidence of growth disturbances. The technology should be applicable to a variety of hematopoietic cells, as evidenced by similar results with human MOLT-4 and U937 cell lines.

  8. High-resolution spectra of distant compact narrow emission line galaxies: Progrenitors of spheroidal galaxies

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Guzman, Rafael; Faber, S. M.; Illingworth, Garth D.; Bershady, Matthew A.; Kron, Richard G.; Takamiya, Marianne

    1995-01-01

    Emission-line velocity widths have been determined for 17 faint (B approximately 20-23) very blue, compact galaxies whose redshifts range from z = 0.095 to 0.66. The spectra have a resolution of 8 Km/s and were taken with the HIRES echelle spectrograph of the Keck 10 m telescope. The galaxies are luminous with all but two within 1 mag of M(sub B) approximately -21. Yet they exhibit narrow velocity widths between sigma = 28-157 km/s, more consistent with typical values of extreme star-forming galaxies than with those of nearby spiral galaxies of similar luminosity. In particular, objects with sigma is less than or equal to 65 km/s follow the same correlations between sigma and both blue and H beta luminosities as those of nearby H II galaxies. These results strengthen the identification of H II glaxies as thier local counterparts. The blue colors and strong emission lines suggest these compact galaxies are undergoing a recent, strong burst of star formation. Like those which characterize some H II galaxies, this burst could be a nuclear star-forming event within a much larger, older stellar population. If the burst is instead a major episode in the total star-forming history, these distant galaxies could fade enough to match the low luminosities and surface brightnesses typical of nearby spheroidals like NGC 185 or NGC 205. Together with evidence for recent star formation, exponential light profiles, and subsolar metallicities, the postfading correlations between luminosity and velocity width and bewtween luminosity and surface brightness suggest that among the low-sigma galaxies, we may be witnessing, in situ, the progenitors of today's spheroidal galaxies.

  9. Massive Quiescent Disk Galaxies in the CANDELS survey

    NASA Astrophysics Data System (ADS)

    Kesseli, Aurora; McGrath, E. J.; CANDELS Collaboration

    2014-01-01

    Using data from the GOODS-S field of the CANDELS survey, we find evidence for an increasing fraction of disk-dominated galaxies at high-redshift ( 2) among the quiescent, or non-star-forming galaxy population, in agreement with a growing body of evidence from recent results in the literature. We selected all galaxies with mass M>1010 Msun within the redshift range 0.5 ≤ z ≤ 2.5, and imposed a two-color selection criteria using rest-frame U, V, and J-band flux to separate quiescent from star-forming galaxies. From this sample, we performed a qualitative visual classification and a quantitative classification using the galaxy-fitting program Galfit. Of the original 140 quiescent galaxies, 23 have a disk component that contributes 50% or more of the total integrated galaxy light, and most of these are at high-redshift. At a redshift of z ~ 2 a significant fraction of all quiescent galaxies showed strong disk components with 30% being disk-dominated. We also find that massive disk galaxies seem to live in less densely populated environments while massive ellipticals live in environments with more neighbors, which leads us to believe that there are two mechanisms for the creation of massive quiescent galaxies. For the disks, the lower density environment and the disk nature of these galaxies lead us to favor cold streams over the major merger model of galaxy formation. The ellipticals, which live in higher density environments, could be assembled through major mergers of already aged stellar populations (e.g., dry mergers). This research is supported by the Clare Boothe Luce Foundation.

  10. Galaxy Zoo: Observing Secular Evolution Through Bars

    NASA Astrophysics Data System (ADS)

    Cheung, Edmond; Athanassoula, L.; Masters, K.; Faber, S. M.; Koo, D. C.; Zoo, Galaxy

    2014-01-01

    In this talk, I use the Galaxy Zoo 2 dataset to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR), and inner galactic structure, i.e., the prominence of the bulge as parameterized by Sérsic index and central surface stellar mass density. Our sample consists of 13,295 disk galaxies, with an overall bar fraction of 23.6 ± 0.4%, of which 1,154 barred galaxies also have bar length measurements. These samples are the largest ever used to study the role of bars in disk galaxy evolution. I find that the likelihood of a galaxy hosting a bar is anti-correlated with SSFR, regardless of stellar mass or bulge prominence. I find that the trends of bar likelihood with bulge prominence are bimodal with SSFR, i.e., in star-forming galaxies, bulges are more prominent in galaxies more likely to host bars, while in quiescent disk galaxies, bars are less frequent where there are prominent bulges. Our observations of bar length reveal a complex picture. In star-forming disks, longer bars are found where the bulges are more prominent, while in quiescent disks there is a maximum in the average bar length as a function of bulge prominence. I interpret these observations using state-of-the-art simulations of bar evolution which include live halos and the effects of gas and star formation. I suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks; a factor demonstrated to significantly retard both bar formation and evolution in models. I interpret the bimodal relationship between bulge prominence and bar properties as due to the complicated effects of classical bulges and central mass concentrations on bar evolution, and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies, but are a critical evolutionary driver of their

  11. On the Nature of Hydrostatic Equilibrium in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Biffi, V.; Borgani, S.; Murante, G.; Rasia, E.; Planelles, S.; Granato, G. L.; Ragone-Figueroa, C.; Beck, A. M.; Gaspari, M.; Dolag, K.

    2016-08-01

    In this paper, we investigate the level of hydrostatic equilibrium (HE) in the intracluster medium of simulated galaxy clusters, extracted from state-of-the-art cosmological hydrodynamical simulations performed with the Smoothed-Particle-Hydrodynamic code GADGET-3. These simulations include several physical processes, among which are stellar and active galactic nucleus feedback, and have been performed with an improved version of the code that allows for a better description of hydrodynamical instabilities and gas mixing processes. Evaluating the radial balance between the gravitational and hydrodynamical forces via the gas accelerations generated, we effectively examine the level of HE in every object of the sample and its dependence on the radial distance from the center and on the classification of the cluster in terms of either cool-coreness or dynamical state. We find an average deviation of 10%–20% out to the virial radius, with no evident distinction between cool-core and non-cool-core clusters. Instead, we observe a clear separation between regular and disturbed systems, with a more significant deviation from HE for the disturbed objects. The investigation of the bias between the hydrostatic estimate and the total gravitating mass indicates that, on average, this traces the deviation from HE very well, even though individual cases show a more complex picture. Typically, in the radial ranges where mass bias and deviation from HE are substantially different, the gas is characterized by a significant amount of random motions (≳ 30 % ), relative to thermal ones. As a general result, the HE-deviation and mass bias, at a given distance from the cluster center, are not very sensitive to the temperature inhomogeneities in the gas.

  12. Geomagnetic disturbance effects on power systems

    SciTech Connect

    Albertson, V.D.; Bozoki, B.; Feero, W.E.; Kappenman, J.G.; Larsen, E.V.; Nordell, D.E.; Ponder, J.; Prabhakara, F.S.; Thompson, K.; Walling, R.

    1993-07-01

    In the northern hemisphere, the aurora borealis is visual evidence of simultaneous fluctuations in the earth's magnetic field (geomagnetic field). These geomagnetic disturbances (GMD's), or geomagnetic storms, can affect a number of man-made systems, including electric power systems. The GMD's are caused by the electromagnetic interaction of the solar wind plasma of protons and electrons with the geomagnetic field. These dynamic impulses in the solar wind are due to solar flares, coronal holes, and disappearing filaments, and reach the earth from one to six days after being emitted by a solar event. Instances of geomagnetic storms affecting telegraph systems were noted in England in 1846, and power system disturbances linked to GMD's were first reported in the United States in 1940. This Working Group report is a summary of the state of knowledge and research activity to the present time, and covers the GMD/Geomagnetically-induced currents (GIC) phenomena, transformer effects, the impact on generators, protective relay effects, and communication system effects. It also summarizes modeling and predicting GIC, measuring and monitoring GIC, mitigation methods, system operating guidelines during GMD's, and alerting and forecasting procedures and needs for the power industry.

  13. Revealing the nature of star forming blue early-type galaxies at low redshift

    NASA Astrophysics Data System (ADS)

    George, Koshy; Zingade, Kshama

    2015-11-01

    Context. Star forming early-type galaxies with blue optical colours at low redshift can be used to test our current understanding of galaxy formation and evolution. Aims: We want to reveal the fuel and triggering mechanism for star formation in these otherwise passively evolving red and dead stellar systems. Methods: We undertook an optical and ultraviolet study of 55 star forming blue early-type galaxies, searching for signatures of recent interactions that could be driving the molecular gas into the galaxy and potentially triggering the star formation. Results: We report here our results on star forming blue early-type galaxies with tidal trails and in close proximity to neighbouring galaxies that are evidence of ongoing or recent interactions between galaxies. There are 12 galaxies with close companions with similar redshifts, among which two galaxies are having ongoing interactions that potentially trigger the star formation. Two galaxies show a jet feature that could be due to the complete tidal disruption of the companion galaxy. The interacting galaxies have high star formation rates and very blue optical colours. Galaxies with no companion could have undergone a minor merger in the recent past. Conclusions: The recent or ongoing interaction with a gas-rich neighbouring galaxy could be responsible for bringing cold gas to an otherwise passively evolving early-type galaxy. The sudden gas supply could trigger the star formation, eventually creating a blue early-type galaxy. The galaxies with ongoing tidal interaction are blue and star forming, thereby implying that blue early-type galaxies can exist even when the companion is on flyby so does not end up in a merger. Based on data compiled from Galaxy Zoo project, and the volunteers contribution are acknowledged at http://www.galaxyzoo.org/Volunteers.aspx

  14. The Cosmic Dance of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    2006-03-01

    detail, since they had to select a single slit, i.e. a single direction, across the galaxy. Things changed with the availability of the multi-object GIRAFFE spectrograph [2], now installed on the 8.2-m Kueyen Unit Telescope of ESO's Very Large Telescope (VLT) at the Paranal Observatory (Chile). In one mode, known as "3-D spectroscopy" or "integral field", this instrument can obtain simultaneous spectra of smaller areas of extended objects like galaxies or nebulae. For this, 15 deployable fibre bundles, the so-called Integral Field Units (IFUs) , cf. ESO PR 01/02 , are used to make meticulous measurements of distant galaxies. Each IFU is a microscopic, state-of-the-art two-dimensional lens array with an aperture of 3 x 2 arcsec2 on the sky. It is like an insect's eye, with twenty micro-lenses coupled with optical fibres leading the light recorded at each point in the field to the entry slit of the spectrograph. ESO PR Photo 10c/06 ESO PR Photo 10c/06 Dark Matter and Stellar Mass in Distant Galaxies "GIRAFFE on ESO's VLT is the only instrument in the world that is able to analyze simultaneously the light coming from 15 galaxies covering a field of view almost as large as the full moon," said Mathieu Puech, lead author of one the papers presenting the results [3]. "Every galaxy observed in this mode is split into continuous smaller areas where spectra are obtained at the same time." The astronomers used GIRAFFE to measure the velocity fields of several tens of distant galaxies, leading to the surprising discovery that as much as 40% of distant galaxies were "out of balance" - their internal motions were very disturbed - a possible sign that they are still showing the aftermath of collisions between galaxies. When they limited themselves to only those galaxies that have apparently reached their equilibrium, the scientists found that the relation between the dark matter and the stellar content did not appear to have evolved during the last 6 billions years. Thanks to its

  15. ONLY THE LONELY: H I IMAGING OF VOID GALAXIES

    SciTech Connect

    Kreckel, K.; Van Gorkom, J. H.; Platen, E.; Van de Weygaert, R.; Van der Hulst, J. M.; Aragon-Calvo, M. A.; Yip, C.-W.; Kovac, K.; Peebles, P. J. E.

    2011-01-15

    Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, as well as provide an observational test for theories of cosmological structure formation. We have completed a pilot survey for the H I imaging aspects of a new Void Galaxy Survey (VGS), imaging 15 void galaxies in H I in local (d < 100 Mpc) voids. H I masses range from 3.5 x 10{sup 8} to 3.8 x 10{sup 9} M{sub sun}, with one nondetection with an upper limit of 2.1 x 10{sup 8} M{sub sun}. Our galaxies were selected using a structural and geometric technique to produce a sample that is purely environmentally selected and uniformly represents the void galaxy population. In addition, we use a powerful new backend of the Westerbork Synthesis Radio Telescope that allows us to probe a large volume around each targeted galaxy, simultaneously providing an environmentally constrained sample of fore- and background control samples of galaxies while still resolving individual galaxy kinematics and detecting faint companions in H I. This small sample makes up a surprisingly interesting collection of perturbed and interacting galaxies, all with small stellar disks. Four galaxies have significantly perturbed H I disks, five have previously unidentified companions at distances ranging from 50 to 200 kpc, two are in interacting systems, and one was found to have a polar H I disk. Our initial findings suggest void galaxies are a gas-rich, dynamic population which present evidence of ongoing gas accretion, major and minor interactions, and filamentary alignment despite the surrounding underdense environment.

  16. Only the Lonely: H I Imaging of Void Galaxies

    NASA Astrophysics Data System (ADS)

    Kreckel, K.; Platen, E.; Aragón-Calvo, M. A.; van Gorkom, J. H.; van de Weygaert, R.; van der Hulst, J. M.; Kovač, K.; Yip, C.-W.; Peebles, P. J. E.

    2011-01-01

    Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, as well as provide an observational test for theories of cosmological structure formation. We have completed a pilot survey for the H I imaging aspects of a new Void Galaxy Survey (VGS), imaging 15 void galaxies in H I in local (d < 100 Mpc) voids. H I masses range from 3.5 × 108 to 3.8 × 109 M sun, with one nondetection with an upper limit of 2.1 × 108 M sun. Our galaxies were selected using a structural and geometric technique to produce a sample that is purely environmentally selected and uniformly represents the void galaxy population. In addition, we use a powerful new backend of the Westerbork Synthesis Radio Telescope that allows us to probe a large volume around each targeted galaxy, simultaneously providing an environmentally constrained sample of fore- and background control samples of galaxies while still resolving individual galaxy kinematics and detecting faint companions in H I. This small sample makes up a surprisingly interesting collection of perturbed and interacting galaxies, all with small stellar disks. Four galaxies have significantly perturbed H I disks, five have previously unidentified companions at distances ranging from 50 to 200 kpc, two are in interacting systems, and one was found to have a polar H I disk. Our initial findings suggest void galaxies are a gas-rich, dynamic population which present evidence of ongoing gas accretion, major and minor interactions, and filamentary alignment despite the surrounding underdense environment.

  17. A spectropolarimetric atlas of Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Smith, J. E.; Young, S.; Robinson, A.; Corbett, E. A.; Giannuzzo, M. E.; Axon, D. J.; Hough, J. H.

    2002-09-01

    We present optical spectropolarimetry of the nuclei of 36 Seyfert 1 galaxies, obtained with the William Herschel and the Anglo-Australian Telescopes from 1996 to 1999. In 20 of these, the optical emission from the active nucleus is intrinsically polarized. We have measured a significant level of polarization in a further seven objects but these may be heavily contaminated by Galactic interstellar polarization. The intrinsically polarized Seyfert 1 galaxies exhibit a variety of characteristics, with the average polarization ranging from <0.5 to 5 per cent and with many showing variations in both the degree and position angle of polarization across the broad Hα emission line. We identify a small group of Seyfert 1 galaxies that exhibit polarization properties similar to those of Seyfert 2 galaxies in which polarized broad lines have been discovered. These objects represent direct observational evidence that a Seyfert 2-like far-field polar scattering region is also present in Seyfert 1 galaxies. Several other objects have features that can be explained in terms of equatorial scattering of line emission from a rotating disc. We propose that much of the diversity in the polarization properties of Seyfert galaxies can be understood in terms of a model involving both equatorial and polar scattering, the relative importance of the two geometries as sources of polarized light being determined principally by the inclination of the system axis to the line of sight.

  18. Hα Velocity Mapping of Ultraluminous Infrared Galaxies</