Science.gov

Sample records for disturbed immune response

  1. Human disturbance alters endocrine and immune responses in the Galapagos marine iguana (Amblyrhynchus cristatus).

    PubMed

    French, Susannah S; DeNardo, Dale F; Greives, Timothy J; Strand, Christine R; Demas, Gregory E

    2010-11-01

    Anthropogenic disturbance is a relevant and widespread facilitator of environmental change and there is clear evidence that it impacts natural populations. While population-level responses to major anthropogenic changes have been well studied, individual physiological responses to mild disturbance can be equally critical to the long-term survival of a species, yet they remain largely unexamined. The current study investigated the impact of seemingly low-level anthropogenic disturbance (ecotourism) on stress responsiveness and specific fitness-related immune measures in different breeding stages of the marine iguana (Amblyrhynchus cristatus). Specifically, we found stress-induced elevations in plasma corticosterone among tourist-exposed populations relative to undisturbed populations. We also found changes in multiple immunological responses associated with stress-related effects of human disturbance, including bacterial killing ability, cutaneous wound healing, and hemolytic complement activity, and the responses varied according to reproductive state. By identifying health-related consequences of human disturbance, this study provides critical insight into the conservation of a well-known species that has a very distinct ecology. The study also broadens the foundation of knowledge needed to understand the global significance of various levels of human disturbance. PMID:20708010

  2. Human disturbance alters endocrine and immune responses in the Galapagos marine iguana (Amblyrhynchus cristatus)

    PubMed Central

    French, Susannah S; DeNardo, Dale F.; Greives, Timothy J.; Strand, Christine R.; Demas, Gregory E.

    2010-01-01

    Anthropogenic disturbance is a relevant and widespread facilitator of environmental change and there is clear evidence that it impacts natural populations. While population-level responses to major anthropogenic changes have been well studied, individual physiological responses to mild disturbance can be equally critical to the long-term survival of a species, yet they remain largely unexamined. The current study investigated the impact of seemingly low-level anthropogenic disturbance (ecotourism) on stress responsiveness and specific fitness-related immune measures in different breeding stages of the marine iguana (Amblyrhynchus cristatus). Specifically, we found stress-induced elevations in plasma corticosterone among tourist-exposed populations relative to undisturbed populations. We also found changes in multiple immunological responses associated with stress-related effects of human disturbance, including bacterial killing ability, cutaneous wound healing, and hemolytic complement activity, and the responses varied according to reproductive state. By identifying health-related consequences of human disturbance, this study provides critical insight into the conservation of a well-known species that has a very distinct ecology. The study also broadens the foundation of knowledge needed to understand the global significance of various levels of human disturbance. PMID:20708010

  3. Immune response

    MedlinePlus

    Innate immunity; Humoral immunity; Cellular immunity; Immunity; Inflammatory response; Acquired (adaptive) immunity ... and usually does not react against them. INNATE IMMUNITY Innate, or nonspecific, immunity is the defense system ...

  4. Immune response

    MedlinePlus Videos and Cool Tools

    ... cells. T cells are responsible for cell-mediated immunity. This type of immunity becomes deficient in persons with HIV, the virus ... blood. B lymphocytes provide the body with humoral immunity as they circulate in the fluids in search ...

  5. Immune System Disturbances in Schizophrenia

    PubMed Central

    Horváth, Szatmár; Mirnics, Károly

    2013-01-01

    Epidemiological, genetic, transcriptome, postmortem, peripheral biomarker, and therapeutic studies of schizophrenia all point to a dysregulation of both innate and adaptive immune systems in the disease, and it is likely that these immune changes actively contribute to disease symptoms. Gene expression disturbances in the brain of subjects with schizophrenia show complex, region-specific changes with consistently replicated and potentially interdependent induction of serpin peptidase inhibitor, clade A member 3 (SERPINA3) and interferon inducible transmembrane protein (IFITM) family transcripts in the prefrontal cortex. Recent data suggest that IFITM3 expression is a critical mediator of maternal immune activation. As the IFITM gene family is primarily expressed in the endothelial cells and meninges, and as the meninges play a critical role in interneuron development, we suggest that these two non-neuronal cell populations might play an important role in the disease pathophysiology. Finally, we propose that IFITM3 in particular might be a novel, appealing, knowledge-based drug target for treatment of schizophrenia. Gene*environment interactions play a critical role in the emergence of schizophrenia pathophysiology. Epidemiological, genetic, transcriptome, postmortem, peripheral biomarker, and therapeutic studies of schizophrenia all point to a dysregulation of both innate and adaptive immune systems in the disease (1-3) and it is likely that these immune changes actively contribute to disease symptoms (1, 4, 5). Regardless of the abundance of data obtained to date, our understanding of the mechanism by which the immune system disturbances arise is limited: we do not have a good insight into the origin or sequence of events by which the immune dysregulation develops, and to date we have not taken full advantage of these changes as potential therapeutic targets. PMID:23890736

  6. Immune response

    MedlinePlus

    ... inflammation and tissue repair. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 24th ed. Philadelphia, PA: ... and adaptive immune systems. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 24th ed. Philadelphia, PA: ...

  7. Immune response

    MedlinePlus Videos and Cool Tools

    The immune system includes specialized white blood cells, called lymphocytes that adapt themselves to fight specific foreign invaders. These cells develop into two groups in the bone marrow. From the bone ...

  8. Overview of the Immune Response

    PubMed Central

    Chaplin, David D.

    2010-01-01

    The immune system has evolved to protect the host from a universe of pathogenic microbes that are themselves constantly evolving. The immune system also helps the host eliminate toxic or allergenic substances that enter through mucosal surfaces. Central to the immune system’s ability to mobilize a response to an invading pathogen, toxin or allergen is its ability to distinguish self from non-self. The host uses both innate and adaptive mechanisms to detect and eliminate pathogenic microbes. Both of these mechanisms include self-nonself discrimination. This overview identifies key mechanisms used by the immune system to respond to invading microbes and other exogenous threats and identifies settings in which disturbed immune function exacerbates tissue injury. PMID:20176265

  9. Immune Responses in Neonates

    PubMed Central

    Basha, Saleem; Surendran, Naveen; Pichichero, Michael

    2015-01-01

    Neonates have little immunological memory and a developing immune system, which increases their vulnerability to infectious agents. Recent advances in understanding of neonatal immunity indicate that both innate and adaptive responses are dependent on precursor frequency of lymphocytes, antigenic dose and mode of exposure. Studies in neonatal mouse models and human umbilical cord blood cells demonstrate the capability of neonatal immune cells to produce immune responses similar to adults in some aspects but not others. This review focuses mainly on the developmental and functional mechanisms of the human neonatal immune system. In particular, the mechanism of innate and adaptive immunity and the role of neutrophils, antigen presenting cells, differences in subclasses of T lymphocytes (Th1, Th2, Tregs) and B cells are discussed. In addition, we have included the recent developments in neonatal mouse immune system. Understanding neonatal immunity is essential to development of therapeutic vaccines to combat newly emerging infectious agents. PMID:25088080

  10. Monitoring response to disturbance in dynamic rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arid and semi-arid rangelands worldwide provide important ecosystem services and see a diversity of land uses. To maintain the health of these lands, it is necessary to monitor rangeland conditions in response to management and disturbance. Spatial patterns from disturbance are superimposed on patte...

  11. Sequential Immune Responses: The Weapons of Immunity

    PubMed Central

    Mills, Charles D.; Ley, Klaus; Buchmann, Kurt; Canton, Johnathan

    2016-01-01

    Sequential immune responses (SIR) is a new model that describes what ‘immunity’ means in higher animals. Existing models, such as self/nonself discrimination or danger, focus on how immune responses are initiated. However, initiation is not protection. SIR describes the actual immune responses that provide protection. SIR resulted from a comprehensive analysis of the evolution of immune systems that revealed that several very different types of host innate responses occur (and at different tempos) which together provide host protection. SIR1 uses rapidly activated enzymes like the NADPH oxidases and is present in all animal cells. SIR2 is mediated by the first ‘immune’ cells: macrophage-like cells. SIR3 evolved in animals like invertebrates and provides enhanced protection through advanced macrophage recognition and killing of pathogens and through other innate immune cells such as neutrophils. Finally, in vertebrates, macrophages developed SIR4: the ability to present antigens to T cells. Though much slower than SIR1–3, adaptive responses provide a unique new protection for higher vertebrates. Importantly, newer SIR responses were added on top of older, evolutionarily conserved functions to provide ‘layers’ of host protection. SIR transcends existing models by elucidating the different weapons of immunity that provide host protection in higher animals. PMID:25871013

  12. Ubiquitin signaling in immune responses

    PubMed Central

    Hu, Hongbo; Sun, Shao-Cong

    2016-01-01

    Ubiquitination has emerged as a crucial mechanism that regulates signal transduction in diverse biological processes, including different aspects of immune functions. Ubiquitination regulates pattern-recognition receptor signaling that mediates both innate immune responses and dendritic cell maturation required for initiation of adaptive immune responses. Ubiquitination also regulates the development, activation, and differentiation of T cells, thereby maintaining efficient adaptive immune responses to pathogens and immunological tolerance to self-tissues. Like phosphorylation, ubiquitination is a reversible reaction tightly controlled by the opposing actions of ubiquitin ligases and deubiquitinases. Deregulated ubiquitination events are associated with immunological disorders, including autoimmune and inflammatory diseases. PMID:27012466

  13. Cellular immune responses to HIV

    NASA Astrophysics Data System (ADS)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  14. Response of Ionosphere to the Tropospheric disturbances

    NASA Astrophysics Data System (ADS)

    Maurya, A. K.; Dube, A.; Singh, R.; Cohen, M.

    2015-12-01

    The aim of the present work is to find out response of the ionosphere to the various cases of tropical cyclones. The main process involved is suggested through Atmospheric Gravity waves (AGWs) originating from strong convective systems, propagating upward upto the ionospheric heights and perturbing ionospheric parameters (Bishop et al., 2006). We have used ground and satellite data to extract cyclone induced perturbations at different ionospheric heights along with the various parameters of AGWs during cyclones and associated thunderstorm. The initial results suggest that there is increase in total electron content of the ionosphere with wave like signatures in ionosphere. The satellite observation in optical band shows presence of concentric gravity wave pattern associated with troposphere disturbances with horizontal wavelength of ~50-200km and periods ranging from hours to days. The ground based Very Low Frequency (VLF) measurement shows fluctuations in VLF navigational transmitter signal passing over the region of disturbance. The lightning data from GLD360 lightning network shows intense activity associated with cyclones and increase in lightning peak current and energy during main phase of cyclones which seems to be sufficient enough to derive ionospheric disturbances in the ionosphere. This multi-instrument analysis provide detail information of the three dimensional structure of cyclone and their effect at different altitudes of the ionosphere in the Indian subcontinent.

  15. Forest response and recovery following disturbance (Invited)

    NASA Astrophysics Data System (ADS)

    Schafer, K. V.; Clark, K. L.; Renninger, H. J.; Carlo, N.; Medvigy, D.

    2013-12-01

    Forest management and global climate change may modulate forest responses to disturbances such as drought, insect infestation or windthrow. Forest responses to drought and gypsy moth defoliation measured from 2005 to present in an oak/pine ecosystem in the Atlantic Coastal Plain (New Jersey Pinelands) show a relative conservatism of water use but longer lasting effects on carbon balance. While post-defoliation transpiration and evapotranspiration were similar to pre-defoliation levels, post-defoliation carbon fluxes have not returned to pre-disturbance levels even after five years of recovery due to a 25% reduction in basal area following tree mortality. Defoliation frequency also affects recovery with modeled carbon fluxes under various defoliation scenarios, showing pronounced reduction in productivity under frequent defoliation, but no effect if defoliation occurs at a rate of less than 15 years. Despite a relatively consistent seasonal water use through various disturbances, defoliation and drought affect water use differently. For example, canopy transpiration (EC) after defoliation and subsequent re-sprouting, was reduced by 25% compared to pre-defoliation levels, even though only half of the leaf area was replaced. However under severe drought conditions in 2006 and 2010, EC was only reduced by 8% and 18% respectively. Therefore, prolonged drought had a lesser effect on EC than reduced foliage or episodic defoliation, suggesting these trees have access to deeper soil moisture. These data also suggest that defoliation may make trees more sensitive to drought as evidenced by the higher reduction of Ec in 2010 compared to 2006 (pre-defoliation). Differential physiological responses of the various oak species as well as pitch pine may also create a species shift in an ecosystem that is also prone to fire. In this ecosystem, Quercus prinus showed consistently lower stomatal conductance, photosynthesis and maximum carboxylation rate compared to Quercus velutina

  16. Disturbance regimes and ecological responses across sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disturbances affect ecosystems in almost limitless ways. The effects of disturbances extend beyond the initial impacts that are usually visible to the human eye. Therefore, for many disturbances long-term data are needed to unravel their effects. This chapter first presents characteristics of distu...

  17. Immune responses to improving welfare.

    PubMed

    Berghman, L R

    2016-09-01

    The relationship between animal welfare and the immune status of an animal has a complex nature. Indeed, the intuitive notion that "increased vigilance of the immune system is by definition better" because it is expected to better keep the animal healthy, does not hold up under scrutiny. This is mostly due to the fact that the immune system consists of 2 distinct branches, the innate and the adaptive immune system. While they are intimately intertwined and synergistic in the living organism, they are profoundly different in their costs, both in terms of performance and wellbeing. In contrast to the adaptive immune system, the action of the innate immune system has a high metabolic cost as well as undesirable behavioral consequences. When a pathogen breaches the first line of defense (often a mucosal barrier), that organism's molecular signature is recognized by resident macrophages. The macrophages respond by releasing a cocktail of pro-inflammatory cytokines (including interleukin-1 and -6) that signal the brain via multiple pathways (humoral as well as neural) of the ongoing peripheral innate immune response. The behavioral response to the release of proinflammatory cytokines, known as "sickness behavior," includes nearly all the behavioral aspects that are symptomatic for clinical depression in humans. Hence, undesired innate immune activity, such as chronic inflammation, needs to be avoided by the industry. From an immunological standpoint, one of the most pressing poultry industry needs is the refinement of our current veterinary vaccine arsenal. The response to a vaccine, especially to a live attenuated vaccine, is often a combination of innate and adaptive immune activities, and the desired immunogenicity comes at the price of high reactogenicity. The morbidity, albeit limited and transient, caused by live vaccines against respiratory diseases and coccidiosis are good examples. Thankfully, the advent of various post-genomics technologies, such as DNA

  18. Immune response to H pylori

    PubMed Central

    Suarez, Giovanni; Reyes, Victor E; Beswick, Ellen J

    2006-01-01

    The gastric mucosa separates the underlying tissue from the vast array of antigens that traffic through the stomach lumen. While the extreme pH of this environment is essential in aiding the activation of enzymes and food digestion, it also renders the gastric epithelium free from bacterial colonization, with the exception of one important human pathogen, H pylori. This bacterium has developed mechanisms to survive the harsh environment of the stomach, actively move through the mucosal layer, attach to the epithelium, evade immune responses, and achieve persistent colonization. While a hallmark of this infection is a marked inflammatory response with the infiltration of various immune cells into the infected gastric mucosa, the host immune response is unable to clear the infection and may actually contribute to the associated pathogenesis. Here, we review the host responses involved during infection with H pylori and how they are influenced by this bacterium. PMID:17007009

  19. Physiology of the Immune Response

    PubMed Central

    Denburg, J. A.; Bienenstock, J.

    1979-01-01

    The established mechanisms of immune responsiveness to foreign or self components are reviewed, with particular reference to relevant clinical problems and current research. A multitiered immunological system of cellular and subcellular elements are involved when the body deals with perturbations from without or within. The concept exists that a delicate balance between positive ('helper') and negative ('suppressor') forces is essential to maintaining health. Brief discussion is given to diagnosis of immune abnormalities in the light of these facts. PMID:21297689

  20. Immune responses in space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1998-01-01

    Space flight has been shown to have profound effects on immunological parameters of humans, monkeys and rodents. These studies have been carried out by a number of different laboratories. Among the parameters affected are leukocyte blastogenesis, natural killer cell activity, leukocyte subset distribution, cytokine production - including interferons and interleukins, and macrophage maturation and activity. These changes start to occur only after a few days space flight, and some changes continue throughout long-term space flight. Antibody responses have received only very limited study, and total antibody levels have been shown to be increased after long-term space flight. Several factors could be involved in inducing these changes. These factors could include microgravity, lack of load-bearing, stress, acceleration forces, and radiation. The mechanism(s) for space flight-induced changes in immune responses remain(s) to be established. Certainly, there can be direct effects of microgravity, or other factors, on cells that play a fundamental role in immune responses. However, it is now clear that there are interactions between the immune system and other physiological systems that could play a major role. For example, changes occurring in calcium use in the musculoskeletal system induced by microgravity or lack of use could have great impact on the immune system. Most of the changes in immune responses have been observed using samples taken immediately after return from space flight. However, there have been two recent studies that have used in-flight testing. Delayed-type hypersensitivity responses to common recall antigens of astronauts and cosmonauts have been shown to be decreased when tested during space flights. Additionally, natural killer cell and blastogenic activities are inhibited in samples taken from rats during space flight. Therefore, it is now clear that events occurring during space flight itself can affect immune responses. The biological

  1. Childhood immunization 1979. Disturbing statistics for metropolitan Sydney.

    PubMed

    Menser, M A; Collins, E; Wu, S W; Hudson, J

    1980-08-01

    Twenty-seven per cent of children (24 out of 90) born consecutively in an inner-city hospital had not completed their primary courses of immunization at the end of the first year of life. Many of the parents of these children had no knowledge of how many doses of vaccine their children required. When 578 schoolchildren aged 12 years were studied, only 40% of these were found to be immune to all three poliovirus serotypes and 12% were not immune to diphtheria. The proportion of children who were not immune to diphtheria varied greatly, and was 24% in one school. The reasons for these low levels of immunity are discussed, and several recommendations are made. It is suggested that a standard immunization record card or book be adopted throughout Australia, and that this card be issued to the newborn child. It is also suggested that consideration be given to the introduction of laws which require that evidence of immunization (or certification of exemption from immunization) be presented at the time of school entry. In the meantime, mopping-up programmes should be conducted in schools where herd immunity is low and a poliomyelitis vaccine (Sabin) booster should be recommended for all children at the age of 12 years. PMID:7421679

  2. Immune responses to improving welfare

    PubMed Central

    Berghman, L. R.

    2016-01-01

    The relationship between animal welfare and the immune status of an animal has a complex nature. Indeed, the intuitive notion that “increased vigilance of the immune system is by definition better” because it is expected to better keep the animal healthy, does not hold up under scrutiny. This is mostly due to the fact that the immune system consists of 2 distinct branches, the innate and the adaptive immune system. While they are intimately intertwined and synergistic in the living organism, they are profoundly different in their costs, both in terms of performance and wellbeing. In contrast to the adaptive immune system, the action of the innate immune system has a high metabolic cost as well as undesirable behavioral consequences. When a pathogen breaches the first line of defense (often a mucosal barrier), that organism's molecular signature is recognized by resident macrophages. The macrophages respond by releasing a cocktail of pro-inflammatory cytokines (including interleukin-1 and -6) that signal the brain via multiple pathways (humoral as well as neural) of the ongoing peripheral innate immune response. The behavioral response to the release of proinflammatory cytokines, known as “sickness behavior,” includes nearly all the behavioral aspects that are symptomatic for clinical depression in humans. Hence, undesired innate immune activity, such as chronic inflammation, needs to be avoided by the industry. From an immunological standpoint, one of the most pressing poultry industry needs is the refinement of our current veterinary vaccine arsenal. The response to a vaccine, especially to a live attenuated vaccine, is often a combination of innate and adaptive immune activities, and the desired immunogenicity comes at the price of high reactogenicity. The morbidity, albeit limited and transient, caused by live vaccines against respiratory diseases and coccidiosis are good examples. Thankfully, the advent of various post-genomics technologies, such as DNA

  3. Immune Responses in Hookworm Infections

    PubMed Central

    Loukas, Alex; Prociv, Paul

    2001-01-01

    Hookworms infect perhaps one-fifth of the entire human population, yet little is known about their interaction with our immune system. The two major species are Necator americanus, which is adapted to tropical conditions, and Ancylostoma duodenale, which predominates in more temperate zones. While having many common features, they also differ in several key aspects of their biology. Host immune responses are triggered by larval invasion of the skin, larval migration through the circulation and lungs, and worm establishment in the intestine, where adult worms feed on blood and mucosa while injecting various molecules that facilitate feeding and modulate host protective responses. Despite repeated exposure, protective immunity does not seem to develop in humans, so that infections occur in all age groups (depending on exposure patterns) and tend to be prolonged. Responses to both larval and adult worms have a characteristic T-helper type 2 profile, with activated mast cells in the gut mucosa, elevated levels of circulating immunoglobulin E, and eosinoophilia in the peripheral blood and local tissues, features also characteristic of type I hypersensitivity reactions. The longevity of adult hookworms is determined probably more by parasite genetics than by host immunity. However, many of the proteins released by the parasites seem to have immunomodulatory activity, presumably for self-protection. Advances in molecular biotechnology enable the identification and characterization of increasing numbers of these parasite molecules and should enhance our detailed understanding of the protective and pathogenetic mechanisms in hookworm infections. PMID:11585781

  4. An FRIT Method for Disturbance Attenuation Using Input-Output Data Generated from Disturbance Responses

    NASA Astrophysics Data System (ADS)

    Masuda, Shiro; Takeda, Kyohei

    This paper considers controller parameters tuning method for regulator problems using FRIT method. The FRIT method for regulator problems tunes the control parameters so that the disturbance response follows the reference model output. The paper tries to give a method for estimating disturbances for an FRIT method using input-output data generated by disturbances. The proposed method assumes that the disturbance is an impulse-type signal, but its magnitude is unknown, and estimates the magnitude of the disturbance, while it obtains the control parameters simultaneously. Hence, the proposed method gives an FRIT method for regulator problems by only using one-shot input-output data for unknown impulse-type distrubances. The efficiency of the proposed method can be shown through a numerical example.

  5. Surviving Sepsis: Taming a Deadly Immune Response

    MedlinePlus

    ... disclaimer . Subscribe Surviving Sepsis Taming a Deadly Immune Response Many people have never heard of sepsis, or ... tract infection) and then a powerful and harmful response by your body’s own immune system . “With sepsis, ...

  6. Eosinophils in mucosal immune responses

    PubMed Central

    Travers, J; Rothenberg, M E

    2015-01-01

    Eosinophils, multifunctional cells that contribute to both innate and adaptive immunity, are involved in the initiation, propagation and resolution of immune responses, including tissue repair. They achieve this multifunctionality by expression of a diverse set of activation receptors, including those that directly recognize pathogens and opsonized targets, and by their ability to store and release preformed cytotoxic mediators that participate in host defense, to produce a variety of de novo pleotropic mediators and cytokines and to interact directly and indirectly with diverse cell types, including adaptive and innate immunocytes and structural cells. Herein, we review the basic biology of eosinophils and then focus on new emerging concepts about their role in mucosal immune homeostasis, particularly maintenance of intestinal IgA. We review emerging data about their development and regulation and describe new concepts concerning mucosal eosinophilic diseases. We describe recently developed therapeutic strategies to modify eosinophil levels and function and provide collective insight about the beneficial and detrimental functions of these enigmatic cells. PMID:25807184

  7. Tilapia show immunization response against Ich

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compares the immune response of Nile tilapia and red tilapia against parasite Ichthyophthirius multifiliis (Ich) using a cohabitation challenge model. Both Nile and red tilapia showed strong immune response post immunization with live Ich theronts by IP injection or immersion. Blood serum...

  8. A genetic inference on cancer immune responsiveness

    PubMed Central

    Wang, Ena; Uccellini, Lorenzo; Marincola, Francesco M.

    2012-01-01

    A cancer immune signature implicating good prognosis and responsiveness to immunotherapy was described that is observed also in other aspects of immune-mediated, tissue-specific destruction (TSD). Its determinism remains, however, elusive. Based on limited but unique clinical observations, we propose a multifactorial genetic model of human cancer immune responsiveness. PMID:22754772

  9. Linking geology, climate and disturbance response in California mountain environments

    NASA Astrophysics Data System (ADS)

    Tague, C.; Garcia, E.; Chen, X.; Heckman, C.

    2014-12-01

    Fire, drought and insect related forest mortality are abrupt disturbances that can result in substantial loss of ecosystem biomass with consequences for both water quality and water quantity. The short-term magnitude of these responses depend strongly on the meteorology in the year following disturbance. Intermediate and long-term impacts, however, depend on post-disturbance recovery rates and potential species change, that may reflect longer-term climate drivers. In mountain environments, underlying geology shape both of these responses, through topographic influences on climate and through geologic controls on water storage and lateral redistribution. We use RHESSys, a coupled eco-hydrologic model, to quantify potential across site variation in responses to disturbance for several transects along in California mountains. At within watershed scales, we also look at how hydrologic responses to vegetation loss are influenced by subsurface geologic controls and contrast estimated disturbance effects as a function of different assumption of subsurface storage capacity and connectivity. Results highlight the tight coupling between geology and climate that influence hydrologic responses to disturbance.

  10. Immune response during space flight.

    PubMed

    Criswell-Hudak, B S

    1991-01-01

    The health status of an astronaut prior to and following space flight has been a prime concern of NASA throughout the Apollo series of lunar landings, Skylab, Apollo-Soyuz Test Projects (ASTP), and the new Spacelab-Shuttle missions. Both humoral and cellular immunity has been studied using classical clinical procedures. Serum proteins show fluctuations that can be explained with adaptation to flight. Conversely, cellular immune responses of lymphocytes appear to be depressed in both in vivo as well as in vitro. If this depression in vivo and in vitro is a result of the same cause, then man's adaptation to outer space living will present interesting challenges in the future. Since the cause may be due to reduced gravity, perhaps the designs of the experiments for space flight will offer insights at the cellular levels that will facilitate development of mechanisms for adaptation. Further, if the aging process is viewed as an adaptational concept or model and not as a disease process then perhaps space flight could very easily interact to supply some information on our biological time clocks. PMID:1915698

  11. A model of channel response in disturbed alluvial channels

    USGS Publications Warehouse

    Simon, A.

    1989-01-01

    Dredging and straightening of alluvial channels between 1959 and 1978 in West Tennessee caused a series of morphologic changes along modified reaches and tributary streams. Degradation occurred for 10 to 15 years at sites upstream of the area of maximum disturbance and lowered bed-levels by as much as 6.1 m. Following degradation, reaches upstream of the area of maximum disturbance experienced a secondary aggradation phase in response to excessive incision and gradient reduction. -from Author

  12. NUTRITION AND THE AGING IMMUNE RESPONSE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence of neoplastic and infectious diseases is increased in the elderly, as is the resulting morbidity and mortality. The age-related changes of the immune response have mainly been reported for cell-mediated immune functions such as DTH skin response, antibody response to T cell-dependent a...

  13. Medium term ecohydrological response of peatland bryophytes to canopy disturbance

    NASA Astrophysics Data System (ADS)

    Leonard, Rhoswen; Kettridge, Nick; Krause, Stefan; Devito, Kevin; Granath, Gustaf; Petrone, Richard; Mandoza, Carl; Waddington, James Micheal

    2016-04-01

    Canopy disturbance in northern forested peatlands is widespread. Canopy changes impact the ecohydrological function of moss and peat, which provide the principal carbon store within these carbon rich ecosystems. Different mosses have contrasting contributions to carbon and water fluxes (e.g. Sphagnum fuscum and Pleurozium schreberi) and are strongly influenced by canopy cover. As a result, changes in canopy cover lead to long-term shifts in species composition and associated ecohydrological function. Despite this, the medium-term response to such disturbance, the associated lag in this transition to a new ecohydrological and biogeochemical regime, is not understood. Here we investigate this medium term ecohydrological response to canopy removal using a randomised plot design within a north Albertan peatland. We show no significant ecohydrological change in treatment plots four years after canopy removal. Notably, Pleurozium schreberi and Sphagnum fuscum remained within respective plots post treatment and there was no significant difference in plot resistance to evapotranspiration or carbon exchange. Our results show that canopy removal alone has little impact on bryophyte ecohydrology in the short/medium term. This resistance to disturbance contrasts strongly with dramatic short-term changes observed within mineral soils suggesting that concurrent shifts in the large scale hydrology induced within such disturbances are necessary to cause rapid ecohydrological transitions. Understanding this lagged response is critical to determine the decadal response of carbon and water fluxes in response to disturbance and the rate at which important medium term ecohydrological feedbacks are invoked.

  14. Spaceflight and immune responses of Rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1994-01-01

    Evidence from both human and rodent studies indicates that alterations in immunological parameters occur after space flight. The objective of this project is to determine the effects of space flight on immune responses of Rhesus monkeys. The expected significance of the work is a determination of the range of immunological functions of the Rhesus monkey, a primate similar in many ways to man, affected by space flight. Changes in immune responses that could yield alterations in resistance to infection may be determined as well as the duration of alterations in immune responses. Additional information on the nature of cellular interactions for the generation of immune responses may also be obtained.

  15. Scaling Stream Flow Response to Forest Disturbance: the SID Project

    NASA Astrophysics Data System (ADS)

    Buttle, J. M.; Beall, F. D.; Creed, I. F.; Gordon, A. M.; Mackereth, R.; McLaughlin, J. W.; Sibley, P. K.

    2004-05-01

    We do not have a good understanding of the hydrologic implications of forest harvesting in Ontario, either for current or alternative management approaches. Attempts to address these implications face a three-fold problem: data on hydrologic response to forest disturbance in Ontario are lacking; most studies of these responses have been in regions with forest cover and hydrologic conditions that differ from the Ontario context; and these studies have generally been conducted at relatively small scales (<1 km2). It is generally assumed that hydrologic changes induced by forest disturbance should diminish with increasing scale due to the buffering capacity of large drainage basins. Recent modeling exercises and reanalysis of paired-basin results call this widespread applicability of this assumption into question, with important implications for assessing the cumulative impacts of forest disturbance on basin stream flow. The SID (Scalable Indicators of Disturbance) project combines stream flow monitoring across basin scales with the RHESSys modeling framework to identify forest disturbance impacts on stream flow characteristics in Ontario's major forest ecozones. As a precursor to identifying stream flow response to forest disturbance, we are examining the relative control of basin geology, topography, typology and topology on stream flow characteristics under undisturbed conditions. This will assist in identifying the dominant hydrologic processes controlling basin stream flow that must be incorporated into the RHESSys model framework in order to emulate forest disturbance and its hydrologic impacts. We present preliminary results on stream flow characteristics in a low-relief boreal forest landscape, and explore how the dominant processes influencing these characteristics change with basin scale in this landscape under both reference and disturbance conditions.

  16. Immune responses to infectious laryngotracheitis virus.

    PubMed

    Coppo, Mauricio J C; Hartley, Carol A; Devlin, Joanne M

    2013-11-01

    Infectious laryngotracheitis (ILT) is an upper respiratory tract disease in chickens caused by infectious laryngotracheitis virus (ILTV), an alphaherpesvirus. Despite the extensive use of attenuated, and more recently recombinant, vaccines for the control of this disease, ILT continues to affect the intensive poultry industries worldwide. Innate and cell-mediated, rather than humoral immune responses, have been identified as responsible for protection against disease. This review examines the current understandings in innate and adaptive immune responses towards ILTV, as well as the role of ILTV glycoprotein G in modulating the host immune response towards infection. Protective immunity induced by ILT vaccines is also examined. The increasing availability of tools and reagents for the characterisation of avian innate and cell-mediated immune responses are expected to further our understanding of immunity against ILTV and drive the development of new generation vaccines towards enhanced control of this disease. PMID:23567343

  17. Noninvasive imaging of immune responses

    PubMed Central

    Rashidian, Mohammad; Keliher, Edmund J.; Bilate, Angelina M.; Duarte, Joao N.; Wojtkiewicz, Gregory R.; Jacobsen, Johanne Tracey; Cragnolini, Juanjo; Swee, Lee Kim; Victora, Gabriel D.; Weissleder, Ralph; Ploegh, Hidde L.

    2015-01-01

    At their margins, tumors often contain neutrophils, dendritic cells, and activated macrophages, which express class II MHC and CD11b products. The interplay between stromal cells, tumor cells, and migratory cells such as lymphocytes creates opportunities for noninvasive imaging of immune responses. We developed alpaca-derived antibody fragments specific for mouse class II MHC and CD11b products, expressed on the surface of a variety of myeloid cells. We validated these reagents by flow cytometry and two-photon microscopy to obtain images at cellular resolution. To enable noninvasive imaging of the targeted cell populations, we developed a method to site-specifically label VHHs [the variable domain (VH) of a camelid heavy-chain only antibody] with 18F or 64Cu. Radiolabeled VHHs rapidly cleared the circulation (t1/2 ≈ 20 min) and clearly visualized lymphoid organs. We used VHHs to explore the possibility of imaging inflammation in both xenogeneic and syngeneic tumor models, which resulted in detection of tumors with remarkable specificity. We also imaged the infiltration of myeloid cells upon injection of complete Freund’s adjuvant. Both anti-class II MHC and anti-CD11b VHHs detected inflammation with excellent specificity. Given the ease of manufacture and labeling of VHHs, we believe that this method could transform the manner in which antitumor responses and/or infectious events may be tracked. PMID:25902531

  18. Noninvasive imaging of immune responses.

    PubMed

    Rashidian, Mohammad; Keliher, Edmund J; Bilate, Angelina M; Duarte, Joao N; Wojtkiewicz, Gregory R; Jacobsen, Johanne Tracey; Cragnolini, Juanjo; Swee, Lee Kim; Victora, Gabriel D; Weissleder, Ralph; Ploegh, Hidde L

    2015-05-12

    At their margins, tumors often contain neutrophils, dendritic cells, and activated macrophages, which express class II MHC and CD11b products. The interplay between stromal cells, tumor cells, and migratory cells such as lymphocytes creates opportunities for noninvasive imaging of immune responses. We developed alpaca-derived antibody fragments specific for mouse class II MHC and CD11b products, expressed on the surface of a variety of myeloid cells. We validated these reagents by flow cytometry and two-photon microscopy to obtain images at cellular resolution. To enable noninvasive imaging of the targeted cell populations, we developed a method to site-specifically label VHHs [the variable domain (VH) of a camelid heavy-chain only antibody] with (18)F or (64)Cu. Radiolabeled VHHs rapidly cleared the circulation (t1/2 ≈ 20 min) and clearly visualized lymphoid organs. We used VHHs to explore the possibility of imaging inflammation in both xenogeneic and syngeneic tumor models, which resulted in detection of tumors with remarkable specificity. We also imaged the infiltration of myeloid cells upon injection of complete Freund's adjuvant. Both anti-class II MHC and anti-CD11b VHHs detected inflammation with excellent specificity. Given the ease of manufacture and labeling of VHHs, we believe that this method could transform the manner in which antitumor responses and/or infectious events may be tracked. PMID:25902531

  19. Hypothalamic neurohormones and immune responses

    PubMed Central

    Quintanar, J. Luis; Guzmán-Soto, Irene

    2013-01-01

    The aim of this review is to provide a comprehensive examination of the current literature describing the neural-immune interactions, with emphasis on the most recent findings of the effects of neurohormones on immune system. Particularly, the role of hypothalamic hormones such as Thyrotropin-releasing hormone (TRH), Corticotropin-releasing hormone (CRH) and Gonadotropin-releasing hormone (GnRH). In the past few years, interest has been raised in extrapituitary actions of these neurohormones due to their receptors have been found in many non-pituitary tissues. Also, the receptors are present in immune cells, suggesting an autocrine or paracrine role within the immune system. In general, these neurohormones have been reported to exert immunomodulatory effects on cell proliferation, immune mediators release and cell function. The implications of these findings in understanding the network of hypothalamic neuropeptides and immune system are discussed. PMID:23964208

  20. Lichen Persistence and Recovery in Response to Varied Volcanic Disturbances

    NASA Astrophysics Data System (ADS)

    Nelson, P.; Wheeler, T. B.

    2015-12-01

    Volcanic eruptions produce many ecological disturbances that structure vegetation. While lichens are sensitive to disturbances, little is known about their responses to volcanic disturbances, except for colonization of lava. We examined lichen community responses through time to different disturbances produced by the May 1, 2008 eruption of Volcan Chaiten in south-central Chile. Pre-eruption vegetation near the volcano was old-growth Valdivian temperate rainforest dominated by closed-canopy Nothofagus sp... In 2012, we installed thirteen 1-acre plots across volcanic disturbance zones on which a time-constrained search was done for all macrolichen species, each of which was assigned an approximate log10 categorical abundance. We also installed a 0.2 m2 quadrat on two representative trees per plot for repeat photography of lichen cover. We remeasured at least one plot per disturbance zone in 2014 and re-photographed tree quadrats in 2013 and 2014. We then analyzed species composition and abundance differences among disturbance zones. In 2012, the blast (pyroclastic density flow), scorch (standing scorched forest at the edge of the blast) and deep tephra (>10 cm) zones had the lowest lichen species richness (5-13 species), followed by reference (unimpacted) and shallow (<10 cm) tephra (17-20 species). Gravel rain (preexisting rock ejected by eruption initiation), gravel rain + pumice and flooded forests (fluvially reworked volcanic material entrained by heavy rains) were species-rich (25-42 species). In 2014, the blast and deep tephra had regained 2-3 times the number of lichen species since 2012 while the light tephra and reference were essentially unchanged. Gravel rain, gravel rain + pumice and flooded forest plots all had about the same number of species in 2014 as 2012. Lichen colonization and growth in tree quadrats varied widely, from very little colonization in the blast to prolific colonization in the gravel rain + pumice zone. Lichen's varied responses to

  1. Nonlinear responses of mesospheric emission layers to wave disturbances

    NASA Astrophysics Data System (ADS)

    Belyaev, Alexey

    2016-09-01

    Model-based investigations of the wave-induced responses of O(1S), O2(b,0-0) and OH(8-3) emissions have been performed. A series of digital experiments performed using the one-dimensional simulation model proposed by Liu and Swenson (2003) demonstrated that, in addition to the variable component, the wave disturbance of airglow emissions has a constant component. This component is the enhancement/depletion of the background emission intensity of an emission layer. To interpret its appearance, the simplest analytical model of airglow disturbance due to a gravity wave has been constructed. This model indicates that enhancement/depletion of the background emission intensity is a nonlinear airglow response to a wave disturbance. Its magnitude depends quadratically on the wave amplitude and can reach a few dozen percent relative to the value of the zenith brightness of the unperturbed OH(8-3)/O(1S) emission layer.

  2. Frequency response of slot coating flow to gap disturbances

    NASA Astrophysics Data System (ADS)

    Lee, Semi; Nam, Jaewook

    2016-03-01

    Slot coating is a common method of manufacturing films such as optical films, adhesive tapes, etc. It is a pre-metered method: the final wet film thickness is set by the flow rate and the web speed, and independent of other operating parameters and coating liquid properties. Therefore, it is ideal for precise film thickness control. To produce uniform film, the coating flow needs to be steady-state, two-dimensional, and stable. In the slot coating process, however, there are always some small-scale disturbances generated by rotating process units, such as pumps, rolls, etc., and they usually have periodicity. These disturbances cause a non-uniformity of the moving web direction and could spoil the film quality. Therefore, the sensitivity analysis of coating flow under the periodic disturbances is important. Among all disturbances, a change of coating gap, i.e. the distance between the die lip and the moving substrate, is known to the most dangerous disturbance. This type of disturbance is usually called the gap oscillation, and caused by the substrate thickness variations, mechanical vibration of the coating die or roll, and roll run outs. Here, we analyze the effect of fluid properties, operating conditions and die configurations on response of slot coating flow to gap disturbances. In this study, we use Galerkin/finite element method to solve transient Navier-Stokes equation under periodic disturbance. We define the amplification factor as an indicator of film non-uniformity and analyze the effect of different parameters by comparing the factor. In particular, we use Carreau-Yasuda model to describe shear-thinning property of xanthan gum solution and compare with Newtonian fluid.

  3. Monitoring immune responses in the tumor microenvironment.

    PubMed

    Wargo, Jennifer A; Reddy, Sangeetha M; Reuben, Alexandre; Sharma, Padmanee

    2016-08-01

    Immune monitoring in the tumor microenvironment allows for important insights into immune mechanisms of response and resistance to various cancer treatments; however clinical challenges exist using current strategies. Significant questions remain regarding monitoring of archival versus fresh tissue, assessment of static versus dynamic markers, evaluation of limited tissue samples, and the translation of insights gained from immunologically 'hot' tumors such as melanoma to other 'cold' tumor microenvironments prevalent in other cancer types. Current and emerging immune monitoring strategies will be examined herein, and genomic-based assays complementing these techniques will also be discussed. Finally, host genomic and external environmental factors influencing anti-tumor immune responses will be considered, including the role of the gut microbiome. Though optimal immune monitoring techniques are in evolution, great promise exists in recent advances that will help guide patient selection as far as type, sequence, and combination of therapeutic regimens to enhance anti-tumor immunity and clinical responses. PMID:27240055

  4. Protective host immune responses to Salmonella infection

    PubMed Central

    Pham, Oanh H; McSorley, Stephen J.

    2015-01-01

    Salmonella enterica serovars Typhi and Paratyphi are the causative agents of human typhoid fever. Current typhoid vaccines are ineffective and are not widely used in endemic areas. Greater understanding of host–pathogen interactions during Salmonella infection should facilitate the development of improved vaccines to combat typhoid and nontyphoidal Salmonellosis. This review will focus on our current understanding of Salmonella pathogenesis and the major host immune components that participate in immunity to Salmonella infection. In addition, recent findings regarding host immune mechanisms in response to Salmonella infection will be also discussed, providing a new perspective on the utility of improved tools to study the immune response to Salmonella infections. PMID:25598340

  5. Multi-taxa trait and functional responses to physical disturbance.

    PubMed

    Pedley, Scott M; Dolman, Paul M

    2014-11-01

    Examining assemblage trait responses to environmental stressors extends our understanding beyond patterns of taxonomic diversity and composition, with results potentially transferable among bioregions. But the degree to which trait responses may be generalized across taxonomic groups remains incompletely understood. We compared trait responses among carabids, spiders and plants to an experimentally manipulated gradient of physical disturbance, replicated in open habitats within a forested landscape. Recolonization of recently disturbed habitats is expected to favour species with traits that promote greater dispersal ability, independent of taxa. We specifically predicted that physical disturbance would increase the representation of carabids with smaller body size, wings or wing dimorphism, spiders able to disperse aerially, and plants with therophyte life-history and wind-dispersed seed. We sampled 197 arthropod species (14,738 individuals) and 164 species of plant. The strength of association between each trait and the disturbance intensity was quantified by correlating matrices of species by traits, species abundance by sites and sites by environment, with significance assessed by comparison with a null model. Responses of biological traits varied among taxa but could be consistently interpreted in terms of dispersal ability. Trait shifts for carabid and plant assemblages were as predicted and correspond to those observed in other disturbance regimes. Assemblages after disturbance comprised smaller and winged carabids, and smaller plants with wind-dispersed seed, consistent with selection for species with better dispersal ability. In contrast, aerial dispersal did not appear important in spider recolonization, instead terrestrial dispersal ability was suggested by the increased abundance of larger-bodied and cursorial species. However, larger spider body size was also associated with an active-hunting strategy, also favoured in the post-disturbance environment

  6. Idiosyncratic responses of Amazonian birds to primary forest disturbance.

    PubMed

    Moura, Nárgila G; Lees, Alexander C; Aleixo, Alexandre; Barlow, Jos; Berenguer, Erika; Ferreira, Joice; Mac Nally, Ralph; Thomson, James R; Gardner, Toby A

    2016-03-01

    As humans continue to alter tropical landscapes across the world, it is important to understand what environmental factors help determine the persistence of biodiversity in modified ecosystems. Studies on well-known taxonomic groups can offer critical insights as to the fate of biodiversity in these modified systems. Here we investigated species-specific responses of 44 forest-associated bird species with different behavioural traits to forest disturbance in 171 transects distributed across 31 landscapes in two regions of the eastern Brazilian Amazon. We investigated patterns of species occurrence in primary forests varyingly disturbed by selective-logging and fire and examined the relative importance of local, landscape and historical environmental variables in determining species occurrences. Within undisturbed and disturbed primary forest transects, we found that distance to forest edge and the biomass of large trees were the most important predictors driving the occurrence of individual species. However, we also found considerable variation in species responses to different environmental variables as well as inter-regional variation in the responses of the same species to the same environmental variables. We advocate the utility of using species-level analyses to complement community-wide responses in order to uncover highly variable and species-specific responses to environmental change that remain so poorly understood. PMID:26566810

  7. Cellular immune response in intraventricular experimental neurocysticercosis.

    PubMed

    Moura, Vania B L; Lima, Sarah B; Matos-Silva, Hidelberto; Vinaud, Marina C; Loyola, Patricia R A N; Lino, Ruy S

    2016-03-01

    Neurocysticercosis (NCC) is considered a neglected parasitic infection of the human central nervous system. Its pathogenesis is due to the host immune response, stage of evolution and location of the parasite. The aim of this study was to evaluate the in situ and systemic immune response through cytokines dosage (IL-4, IL-10, IL-17 and IFN-γ) as well as the local inflammatory response of the experimental NCC with Taenia crassiceps. The in situ and systemic cellular and inflammatory immune response were evaluated through the cytokines quantification at 7, 30, 60 and 90 days after inoculation and histopathological analysis. All cysticerci were found within the cerebral ventricles. There was a discrete intensity of inflammatory cells of mixed immune profile, polymorphonuclear and mononuclear cells, at the beginning of the infection and predominance of mononuclear cells at the end. The systemic immune response showed a significant increase in all the analysed cytokines and predominance of the Th2 immune profile cytokines at the end of the infection. These results indicate that the location of the cysticerci may lead to ventriculomegaly. The acute phase of the infection showed a mixed Th1/Th17 profile accompanied by high levels of IL-10 while the late phase showed a Th2 immune profile. PMID:26626017

  8. Human papillomavirus vaccines--immune responses.

    PubMed

    Stanley, Margaret; Pinto, Ligia A; Trimble, Connie

    2012-11-20

    Prophylactic human papillomavirus (HPV) virus-like particle (VLP) vaccines are highly effective. The available evidence suggests that neutralising antibody is the mechanism of protection. However, despite the robust humoral response elicited by VLP vaccines, there is no immune correlate, no minimum level of antibody, or any other immune parameter, that predicts protection against infection or disease. The durability of the antibody response and the importance of antibody isotype, affinity and avidity for vaccine effectiveness are discussed. Once infection and disease are established, then cellular immune responses are essential to kill infected cells. These are complex processes and understanding the local mucosal immune response is a prerequisite for the rational design of therapeutic HPV vaccines. This article forms part of a special supplement entitled "Comprehensive Control of HPV Infections and Related Diseases" Vaccine Volume 30, Supplement 5, 2012. PMID:23199968

  9. EFFECTS OF PESTICIDES ON THE IMMUNE RESPONSE

    EPA Science Inventory

    The influence of various pesticides on the humoral and cellular immune response to fluorescein labeled ovalbumin has been analyzed. Pesticides (Aroclor 1260, Dinoseb, Parathion, pentachloronitrobenzene, piperonyl butoxide, mixed pyrethrins and Resmethrin) were administered intrag...

  10. The immune response to resistance exercise.

    PubMed

    Simonson, S R

    2001-08-01

    The immune response to exercise has received increased attention in the last decade. Most of this attention has focused on aerobic exercise (AEX), whereas the effect of resistance exercise (REX) has received comparatively little notice. Resistance exercise and AEX have different physiologic impacts; perhaps this also applies to the immune system. The purpose of this review was to determine a consensus from the REX immune studies that have been completed. This is complicated by the multitude of immune parameters, the varying methods used to assess them, and the paucity of studies performed. Thus, it is difficult to make a blanket statement. There is a REX-induced leukocytosis. Resistance conditioning (RCO) does not alter this response or affect the resting immune system. From these data, it appears that neither REX nor RCO demonstrates a significant impact on peripheral immunosurveillance. PMID:11710669

  11. Single-walled carbon nanotubes disturbed the immune and metabolic regulation function 13-weeks after a single intratracheal instillation.

    PubMed

    Park, Eun-Jung; Hong, Young-Shick; Lee, Byoung-Seok; Yoon, Cheolho; Jeong, Uiseok; Kim, Younghun

    2016-07-01

    Due to their unique physicochemical properties, the potential health effects of single-walled carbon nanotubes (SWCNTs) have attracted continuous attention together with their extensive application. In this study, we aimed to identify local and systemic health effects following pulmonary persistence of SWCNTs. As expected, SWCNTs remained in the lung for 13 weeks after a single intratracheal instillation (50, 100, and 200μg/kg). In the lung, the total number of cells and the percentages of lymphocytes and neutrophils significantly increased at 200μg/kg compared to the control, and the Th1-polarized immune response was induced accompanying enhanced expression of tissue damage-related genes and increased release of chemokines. Additionally, SWCNTs enhanced the expression of antigen presentation-related proteins on the surface of antigen-presenting cells, however, maturation of dendritic cells was inhibited by their persistence. As compared to the control, a significant increase in the percentage of neutrophils and a remarkable decrease of BUN and potassium level were observed in the blood of mice treated with the highest dose. This was accompanied by the down-regulation of the expression of antigen presentation-related proteins on splenocytes. Moreover, protein and glucose metabolism were disturbed with an up-regulation of fatty acid β-oxidation. Taken together, we conclude that SWCNTs may induce adverse health effects by disturbing immune and metabolic regulation functions in the body. Therefore, careful application of SWCNTs is necessary for the enforcement of safety in nano-industries. PMID:27078092

  12. Oxidative stress and immune disturbance after long-term exposure to bisphenol A in juvenile common carp (Cyprinus carpio).

    PubMed

    Qiu, Wenhui; Chen, Jingsi; Li, Yijie; Chen, Zhong; Jiang, Lihui; Yang, Ming; Wu, Minghong

    2016-08-01

    Bisphenol A (BPA) is a well-known endocrine disrupting chemical (EDC), ubiquitous in the aquatic environment, which poses an ecotoxicological risk to the health of aquatic organisms. However, the immunotoxic effects of its long-term exposure on fish have received limited attention. We examined a number of typical immune-related parameters and oxidative stress indices in the liver and blood serum of the red common carp (Cyprinus carpio), following a 30-day exposure to five different concentrations of BPA (0.1, 1, 10, 100, and 1000μg/L). A significant increase in the hepato somatic index was observed in fish upon exposure to 1000µg/L BPA, which correlated strongly with the accumulated BPA concentrations in fish bile. Induced oxidative stress was also apparent in the exposed fish liver, based on the enhanced levels of lipid peroxidation and inhibited activities of catalase, superoxide dismutase, and glutathione peroxidase. Serum lysozyme and C-reaction protein levels increased at low concentrations of exposure; however, they were significantly suppressed upon exposure to high concentrations. A significant increase was observed in the levels of immunoglobulin M, complement component 3, and alkaline phosphatase, in both fish liver and serum at low doses of 0.1 and 1μg/L. This suggests that long-term exposure to environmentally relevant concentrations of BPA (even as low as 0.1μg/L) could significantly disturb the immune response of fish. Moreover, RXRα expression in the liver was significantly altered upon BPA exposure and the trend underlying this change correlated closely with those of the most immune-related parameters, implying the involvement of the PPARγ/RXRα signaling pathway in regulating the immune response of fish upon long-term BPA exposure. In short, our results demonstrate the susceptibility of fish immune system to long-term BPA exposure. Therefore, the immunotoxicity of EDCs in aquatic organisms should not have been underestimated. PMID:27088622

  13. The innate immune response in human tuberculosis

    PubMed Central

    Lerner, Thomas R.; Borel, Sophie

    2015-01-01

    Summary M ycobacterium tuberculosis (Mtb) infection can be cleared by the innate immune system before the initiation of an adaptive immune response. This innate protection requires a variety of robust cell autonomous responses from many different host immune cell types. However, Mtb has evolved strategies to circumvent some of these defences. In this mini‐review, we discuss these host–pathogen interactions with a focus on studies performed in human cells and/or supported by human genetics studies (such as genome‐wide association studies). PMID:26135005

  14. Cellular immune response experiment MA-031

    NASA Technical Reports Server (NTRS)

    Criswell, B. S.

    1976-01-01

    Significant changes in phytohemagglutinin (PHA) lymphocytic responsiveness occurred in the cellular immune response of three astronauts during the 9 day flight of the Apollo Soyuz Test Project. Parameters studied were white blood cell concentrations, lymphocyte numbers, B- and T-lymphocyte distributions in peripheral blood, and lymphocyte responsiveness to PHA, pokeweed mitogen, Concanavalin A, and influenza virus antigen.

  15. Historic Response of Forests to Disturbance; Hydrologic Implications (Invited)

    NASA Astrophysics Data System (ADS)

    Millar, C. I.

    2013-12-01

    Mountain hydrology is influenced by the composition, structure, and function of forests, which in turn are affected by patterns and types of disturbance, both ecological (insect, disease) and physical (fire, wind, avalanche/landslide, weather/climate). Paleo-historic data provide inferences about the natural roles of disturbance in governing forest condition at landscape scale (e.g., forest die-offs, widespread changes in composition, forest type, or structure), and offer insights for vegetation and hydrological management under conditions of current and future climate change. Millennial (Holocene), centennial, and decadal temporal scales are presented for analysis of forest responses in mountains of western North America. Examples focus on the long-term effects of short-term disturbance, beneficial effects of disturbance on forest health, importance of legacy (sequencing of events), pace of climate variability, topographic control on forest health, lag effects, and interactions of multiple stressors. Historic forest condition and hydrologic relations inferred through dendrochronological analysis are put into current context.

  16. Modulating immune responses with probiotic bacteria.

    PubMed

    Matsuzaki, T; Chin, J

    2000-02-01

    For many years, probiotic bacteria have been known to confer health benefits to the consumer. One possible mechanism for this may be the ability of probiotic bacteria to modulate immune responses. Oral administration of Lactobacillus casei strain Shirota (LcS) has been found to enhance innate immunity by stimulating the activity of splenic NK cells. Oral feeding with killed LcS was able to stimulate the production of Th1 cytokines, resulting in repressed production of IgE antibodies against Ovalbumin in experimental mice. The ability to switch mucosal immune responses towards Th1 with probiotic bacteria provides a strategy for treatment of allergic disorders. Growth of Meth A tumour cells in the lungs was also inhibited by intrapleural injection of LcS. Oral administration of other probiotic bacteria, such as Streptococcus thermophilus (St), Lactobacillus fermentum (Lf) and yeast (Y), elicited different immune responses. Mice that were prefed yeast or Lf followed by feeding with ovalbumin (OVA) responded better to vaccination with OVA than mice not given either probiotic or OVA or mice that had been prefed only OVA. However, antibody responses were significantly suppressed in response to vaccination with OVA in mice that had been prefed yeast followed by yeast and OVA as well as mice prefed Lf followed by Lf and OVA. Prefeeding St followed by OVA feeding enhanced cellular immune responses against ovalbumin. In contrast, mice prefed St followed by St + OVA were hyporesponsive against OVA. While antigen feeding alone appears to prime for an immune response, cofeeding antigen with probiotic bacteria can suppress both antibody and cellular immune responses and may provide an efficacious protocol to attenuate autoimmune diseases, such as experimental allergic encephalomyelitis, by jointly dosing with myelin basic protein and probiotic bacteria. PMID:10651931

  17. Immune Response to Biologic Scaffold Materials

    PubMed Central

    Badylak, Stephen F.; Gilbert, Thomas W.

    2008-01-01

    Biologic scaffold materials composed of mammalian extracellular matrix are commonly used in regenerative medicine and in surgical procedures for the reconstruction of numerous tissue and organs. These biologic materials are typically allogeneic or xenogeneic in origin and are derived from tissues such as small intestine, urinary bladder, dermis, and pericardium. The innate and acquired host immune response to these biologic materials and the effect of the immune response upon downstream remodeling events has been largely unexplored. Variables that affect the host response include manufacturing processes, the rate of scaffold degradation, and the presence of cross species antigens. This manuscript provides an overview of studies that have evaluated the immune response to biologic scaffold materials and variables that affect this response. PMID:18083531

  18. Host innate immune responses to sepsis

    PubMed Central

    Wiersinga, Willem Joost; Leopold, Stije J; Cranendonk, Duncan R; van der Poll, Tom

    2014-01-01

    The immune response to sepsis can be seen as a pattern recognition receptor-mediated dysregulation of the immune system following pathogen invasion in which a careful balance between inflammatory and anti-inflammatory responses is vital. Invasive infection triggers both pro-inflammatory and anti-inflammatory host responses, the magnitude of which depends on multiple factors, including pathogen virulence, site of infection, host genetics, and comorbidities. Toll-like receptors, the inflammasomes, and other pattern recognition receptors initiate the immune response after recognition of danger signals derived from microorganisms, so-called pathogen-associated molecular patterns or derived from the host, so-called danger-associated molecular patterns. Further dissection of the role of host–pathogen interactions, the cytokine response, the coagulation cascade, and their multidirectional interactions in sepsis should lead toward the development of new therapeutic strategies in sepsis. PMID:23774844

  19. Plasticity of immunity in response to eating.

    PubMed

    Luoma, Rachel L; Butler, Michael W; Stahlschmidt, Zachary R

    2016-07-01

    Following a meal, an animal can exhibit dramatic shifts in physiology and morphology, as well as a substantial increase in metabolic rate associated with the energetic costs of processing a meal (i.e. specific dynamic action, SDA). However, little is known about the effects of digestion on another important physiological and energetically costly trait: immune function. Thus, we tested two competing hypotheses. (1) Digesting animals up-regulate their immune systems (putatively in response to the increased microbial exposure associated with ingested food). (2) Digesting animals down-regulate their immune systems (presumably to allocate energy to the breakdown of food). We assayed innate immunity (lytic capacity and agglutination) in cornsnakes (Pantherophis guttatus) during and after meal digestion. Lytic capacity was higher in females, and (in support of our first hypothesis) agglutination was higher during absorption. Given its potential energetic cost, immune up-regulation may contribute to SDA. PMID:27099367

  20. Effect of cellular mobility on immune response

    NASA Astrophysics Data System (ADS)

    Pandey, R. B.; Mannion, R.; Ruskin, H. J.

    2000-08-01

    Mobility of cell types in our HIV immune response model is subject to an intrinsic mobility and an explicit directed mobility, which is governed by Pmob. We investigate how restricting the explicit mobility, while maintaining the innate mobility of a viral-infected cell, affects the model's results. We find that increasing the explicit mobility of the immune system cells leads to viral dominance for certain levels of viral mutation. We conclude that increasing immune system cellular mobility indirectly increases the virus’ inherent mobility.

  1. Mosquito immune responses to arbovirus infections

    PubMed Central

    Blair, Carol D.; Olson, Ken E.

    2014-01-01

    The principal mosquito innate immune response to virus infections, RNA interference (RNAi), differs substantially from the immune response to bacterial and fungal infections. The exo-siRNA pathway constitutes the major anti-arboviral RNAi response and its essential genetic components have been identified. Recent research has also implicated the Piwi-interacting RNA pathway in mosquito anti-arboviral immunity, but Piwi gene-family components involved are not well-defined. Arboviruses must evade or suppress RNAi without causing pathogenesis in the vector to maintain their transmission cycle, but little is known about mechanisms of arbovirus modulation of RNAi. Genetic manipulation of mosquitoes to enhance their RNAi response can limit arbovirus infection and replication and could be used in novel strategies for interruption of arbovirus transmission and greatly reduce disease. PMID:25401084

  2. Vaccination Strategies for Mucosal Immune Responses

    PubMed Central

    Ogra, Pearay L.; Faden, Howard; Welliver, Robert C.

    2001-01-01

    Mucosal administration of vaccines is an important approach to the induction of appropriate immune responses to microbial and other environmental antigens in systemic sites and peripheral blood as well as in most external mucosal surfaces. The development of specific antibody- or T-cell-mediated immunologic responses and the induction of mucosally induced systemic immunologic hyporesponsiveness (oral or mucosal tolerance) depend on complex sets of immunologic events, including the nature of the antigenic stimulation of specialized lymphoid structures in the host, antigen-induced activation of different populations of regulatory T cells (Th1 versus Th2), and the expression of proinflammatory and immunoregulatory cytokines. Availability of mucosal vaccines will provide a painless approach to deliver large numbers of vaccine antigens for human immunization. Currently, an average infant will receive 20 to 25 percutaneous injections for vaccination against different childhood infections by 18 months of age. It should be possible to develop for human use effective, nonliving, recombinant, replicating, transgenic, and microbial vector- or plant-based mucosal vaccines to prevent infections. Based on the experience with many dietary antigens, it is also possible to manipulate the mucosal immune system to induce systemic tolerance against environmental, dietary, and possibly other autoantigens associated with allergic and autoimmune disorders. Mucosal immunity offers new strategies to induce protective immune responses against a variety of infectious agents. Such immunization may also provide new prophylactic or therapeutic avenues in the control of autoimmune diseases in humans. PMID:11292646

  3. The immune response to Nipah virus infection.

    PubMed

    Prescott, Joseph; de Wit, Emmie; Feldmann, Heinz; Munster, Vincent J

    2012-09-01

    Nipah virus has recently emerged as a zoonotic agent that is highly pathogenic in humans. Outbreaks have occurred regularly over the last two decades in South and Southeast Asia, where mortality rates reach as high as 100 %. The natural reservoir of Nipah virus has been identified as bats from the Pteropus family, where infection is largely asymptomatic. Human disease is characterized by both respiratory and encephalitic components, and thus far, no effective vaccine or intervention strategies are available. Little is know about how the immune response of either the reservoir host or incidental hosts responds to infection, and how this immune response is either inadequate or might contribute to disease in the dead-end host. Experimental vaccines strategies have given us some insight into the immunological requirements for protection. This review summarizes our current understanding of the immune response to Nipah virus infection and emphasizes the need for further research. PMID:22669317

  4. Studies of Immune Responses in Candida vaginitis.

    PubMed

    De Bernardis, Flavia; Arancia, Silvia; Sandini, Silvia; Graziani, Sofia; Norelli, Sandro

    2015-01-01

    The widespread occurrence of vaginal candidiasis and the development of resistance against anti-fungal agents has stimulated interest in understanding the pathogenesis of this disease. The aim of our work was to characterize, in an animal model of vaginal candidiasis, the mechanisms that play a role in the induction of mucosal immunity against C. albicans and the interaction between innate and adaptive immunity. Our studies evidenced the elicitation of cell-mediated immunity (CMIs) and antibody (Abs)-mediated immunity with a Th1 protective immunity. An immune response of this magnitude in the vagina was very encouraging to identify the proper targets for new strategies for vaccination or immunotherapy of vaginal candidiasis. Overall, our data provide clear evidence that it is possible to prevent C. albicans vaginal infection by active intravaginal immunization with aspartyl proteinase expressed as recombinant protein. This opens the way to a modality for anti-Candida protection at the mucosa. The recombinant protein Sap2 was assembled with virosomes, and a vaccine PEVION7 (PEV7) was obtained. The results have given evidence that the vaccine, constituted of virosomes and Secretory aspartyl proteinase 2 (Sap2) (PEV7), has an encouraging therapeutic potential for the treatment of recurrent vulvovaginal candidiasis. PMID:26473934

  5. Studies of Immune Responses in Candida vaginitis

    PubMed Central

    De Bernardis, Flavia; Arancia, Silvia; Sandini, Silvia; Graziani, Sofia; Norelli, Sandro

    2015-01-01

    The widespread occurrence of vaginal candidiasis and the development of resistance against anti-fungal agents has stimulated interest in understanding the pathogenesis of this disease. The aim of our work was to characterize, in an animal model of vaginal candidiasis, the mechanisms that play a role in the induction of mucosal immunity against C. albicans and the interaction between innate and adaptive immunity. Our studies evidenced the elicitation of cell-mediated immunity (CMIs) and antibody (Abs)-mediated immunity with a Th1 protective immunity. An immune response of this magnitude in the vagina was very encouraging to identify the proper targets for new strategies for vaccination or immunotherapy of vaginal candidiasis. Overall, our data provide clear evidence that it is possible to prevent C. albicans vaginal infection by active intravaginal immunization with aspartyl proteinase expressed as recombinant protein. This opens the way to a modality for anti-Candida protection at the mucosa. The recombinant protein Sap2 was assembled with virosomes, and a vaccine PEVION7 (PEV7) was obtained. The results have given evidence that the vaccine, constituted of virosomes and Secretory aspartyl proteinase 2 (Sap2) (PEV7), has an encouraging therapeutic potential for the treatment of recurrent vulvovaginal candidiasis. PMID:26473934

  6. Damage signals in the insect immune response

    PubMed Central

    Krautz, Robert; Arefin, Badrul; Theopold, Ulrich

    2014-01-01

    Insects and mammals share an ancient innate immune system comprising both humoral and cellular responses. The insect immune system consists of the fat body, which secretes effector molecules into the hemolymph and several classes of hemocytes, which reside in the hemolymph and of protective border epithelia. Key features of wound- and immune responses are shared between insect and mammalian immune systems including the mode of activation by commonly shared microbial (non-self) patterns and the recognition of these patterns by dedicated receptors. It is unclear how metazoan parasites in insects, which lack these shared motifs, are recognized. Research in recent years has demonstrated that during entry into the insect host, many eukaryotic pathogens leave traces that alert potential hosts of the damage they have afflicted. In accordance with terminology used in the mammalian immune systems, these signals have been dubbed danger- or damage-associated signals. Damage signals are necessary byproducts generated during entering hosts either by mechanical or proteolytic damage. Here, we briefly review the current stage of knowledge on how wound closure and wound healing during mechanical damage is regulated and how damage-related signals contribute to these processes. We also discuss how sensors of proteolytic activity induce insect innate immune responses. Strikingly damage-associated signals are also released from cells that have aberrant growth, including tumor cells. These signals may induce apoptosis in the damaged cells, the recruitment of immune cells to the aberrant tissue and even activate humoral responses. Thus, this ensures the removal of aberrant cells and compensatory proliferation to replace lost tissue. Several of these pathways may have been co-opted from wound healing and developmental processes. PMID:25071815

  7. Injury-induced immune responses in Hydra.

    PubMed

    Wenger, Yvan; Buzgariu, Wanda; Reiter, Silke; Galliot, Brigitte

    2014-08-01

    The impact of injury-induced immune responses on animal regenerative processes is highly variable, positive or negative depending on the context. This likely reflects the complexity of the innate immune system that behaves as a sentinel in the transition from injury to regeneration. Early-branching invertebrates with high regenerative potential as Hydra provide a unique framework to dissect how injury-induced immune responses impact regeneration. A series of early cellular events likely require an efficient immune response after amputation, as antimicrobial defence, epithelial cell stretching for wound closure, migration of interstitial progenitors toward the wound, cell death, phagocytosis of cell debris, or reconstruction of the extracellular matrix. The analysis of the injury-induced transcriptomic modulations of 2636 genes annotated as immune genes in Hydra identified 43 genes showing an immediate/early pulse regulation in all regenerative contexts examined. These regulations point to an enhanced cytoprotection via ROS signaling (Nrf, C/EBP, p62/SQSMT1-l2), TNFR and TLR signaling (TNFR16-like, TRAF2l, TRAF5l, jun, fos-related, SIK2, ATF1/CREB, LRRC28, LRRC40, LRRK2), proteasomal activity (p62/SQSMT1-l1, Ced6/Gulf, NEDD8-conjugating enzyme Ubc12), stress proteins (CRYAB1, CRYAB2, HSP16.2, DnaJB9, HSP90a1), all potentially regulating NF-κB activity. Other genes encoding immune-annotated proteins such as NPYR4, GTPases, Swap70, the antiproliferative BTG1, enzymes involved in lipid metabolism (5-lipoxygenase, ACSF4), secreted clotting factors, secreted peptidases are also pulse regulated upon bisection. By contrast, metalloproteinases and antimicrobial peptide genes largely follow a context-dependent regulation, whereas the protease inhibitor α2macroglobulin gene exhibits a sustained up-regulation. Hence a complex immune response to injury is linked to wound healing and regeneration in Hydra. PMID:25086685

  8. Regulation of Immune Responses by Extracellular Vesicles

    PubMed Central

    Robbins, Paul D.; Morelli, Adrian E.

    2015-01-01

    Extracellular vesicles (EVs) including exosomes, are small membrane vesicles derived from multivesicular bodies or from the plasma membrane. Most, if not all, cell types release EVs that then enter the bodily fluids. These vesicles contain a subset of proteins, lipids and nucleic acids that are derived from the parent cell. It is postulated that EVs have important roles in intercellular communication, both locally and systemically, by transferring their contents, including protein, lipids and RNAs, between cells. EVs are involved in numerous physiological processes, and vesicles from both non-immune and immune cells have important roles in immune regulation. Moreover, EV-based therapeutics are being developed and tested clinically for treatment of inflammatory and autoimmune diseases and cancer. Given the tremendous therapeutic potential of EVs this review focuses on the role of EVs in modulating immune responses and the therapeutic applications. PMID:24566916

  9. Optically Triggered Immune Response through Photocaged Oligonucleotides

    PubMed Central

    Govan, Jeane M.; Young, Douglas D.; Lively, Mark O.

    2015-01-01

    Bacterial and viral CpG oligonculeotides are unmethylated cytosine-phosphate-guanosine dinucleotide sequences and trigger an innate immune response through activation of the toll-like receptor 9 (TLR9). We have developed synthetic photocaged CpGs via site-specific incorporation of nitropiperonyloxymethyl (NPOM)-caged thymidine residues. These oligonucleotides enable the optical control of TLR9 function and thereby provide light-activation of an immune response. We provide a proof-of-concept model by applying a reporter assay in live cells and by quantification of endogenous production of interleukin 6. PMID:26034339

  10. Immune response from a resource allocation perspective

    PubMed Central

    Rauw, Wendy M.

    2012-01-01

    The immune system is a life history trait that can be expected to trade off against other life history traits. Whether or not a trait is considered to be a life history trait has consequences for the expectation on how it responds to natural selection and evolution; in addition, it may have consequences for the outcome of artificial selection when it is included in the breeding objective. The immune system involved in pathogen resistance comprises multiple mechanisms that define a host's defensive capacity. Immune resistance involves employing mechanisms that either prevent pathogens from invading or eliminate the pathogens when they do invade. On the other hand, tolerance involves limiting the damage that is caused by the infection. Both tolerance and resistance traits require (re)allocation of resources and carry physiological costs. Examples of trade-offs between immune function and growth, reproduction and stress response are provided in this review, in addition to consequences of selection for increased production on immune function and vice versa. Reaction norms are used to deal with questions of immune resistance vs. tolerance to pathogens that relate host health to infection intensity. In essence, selection for immune tolerance in livestock is a particular case of selection for animal robustness. Since breeding goals that include robustness traits are required in the implementation of more sustainable agricultural production systems, it is of interest to investigate whether immune tolerance is a robustness trait that is positively correlated with overall animal robustness. Considerably more research is needed to estimate the shapes of the cost functions of different immune strategies, and investigate trade-offs and cross-over benefits of selection for disease resistance and/or disease tolerance in livestock production. PMID:23413205

  11. Coastal Bacterioplankton Community Dynamics in Response to a Natural Disturbance

    PubMed Central

    Rappé, Michael S.

    2013-01-01

    In order to characterize how disturbances to microbial communities are propagated over temporal and spatial scales in aquatic environments, the dynamics of bacterial assemblages throughout a subtropical coastal embayment were investigated via SSU rRNA gene analyses over an 8-month period, which encompassed a large storm event. During non-perturbed conditions, sampling sites clustered into three groups based on their microbial community composition: an offshore oceanic group, a freshwater group, and a distinct and persistent coastal group. Significant differences in measured environmental parameters or in the bacterial community due to the storm event were found only within the coastal cluster of sampling sites, and only at 5 of 12 locations; three of these sites showed a significant response in both environmental and bacterial community characteristics. These responses were most pronounced at sites close to the shoreline. During the storm event, otherwise common bacterioplankton community members such as marine Synechococcus sp. and members of the SAR11 clade of Alphaproteobacteria decreased in relative abundance in the affected coastal zone, whereas several lineages of Gammaproteobacteria, Betaproteobacteria, and members of the Roseobacter clade of Alphaproteobacteria increased. The complex spatial patterns in both environmental conditions and microbial community structure related to freshwater runoff and wind convection during the perturbation event leads us to conclude that spatial heterogeneity was an important factor influencing both the dynamics and the resistance of the bacterioplankton communities to disturbances throughout this complex subtropical coastal system. This heterogeneity may play a role in facilitating a rapid rebound of regions harboring distinctly coastal bacterioplankton communities to their pre-disturbed taxonomic composition. PMID:23409156

  12. Coral community response to bleaching on a highly disturbed reef

    PubMed Central

    Guest, J. R.; Low, J.; Tun, K.; Wilson, B.; Ng, C.; Raingeard, D.; Ulstrup, K. E.; Tanzil, J. T. I.; Todd, P. A.; Toh, T. C.; McDougald, D.; Chou, L. M.; Steinberg, P. D.

    2016-01-01

    While many studies of coral bleaching report on broad, regional scale responses, fewer examine variation in susceptibility among coral taxa and changes in community structure, before, during and after bleaching on individual reefs. Here we report in detail on the response to bleaching by a coral community on a highly disturbed reef site south of mainland Singapore before, during and after a major thermal anomaly in 2010. To estimate the capacity for resistance to thermal stress, we report on: a) overall bleaching severity during and after the event, b) differences in bleaching susceptibility among taxa during the event, and c) changes in coral community structure one year before and after bleaching. Approximately two thirds of colonies bleached, however, post-bleaching recovery was quite rapid and, importantly, coral taxa that are usually highly susceptible were relatively unaffected. Although total coral cover declined, there was no significant change in coral taxonomic community structure before and after bleaching. Several factors may have contributed to the overall high resistance of corals at this site including Symbiodinium affiliation, turbidity and heterotrophy. Our results suggest that, despite experiencing chronic anthropogenic disturbances, turbid shallow reef communities may be remarkably resilient to acute thermal stress. PMID:26876092

  13. Coral community response to bleaching on a highly disturbed reef.

    PubMed

    Guest, J R; Low, J; Tun, K; Wilson, B; Ng, C; Raingeard, D; Ulstrup, K E; Tanzil, J T I; Todd, P A; Toh, T C; McDougald, D; Chou, L M; Steinberg, P D

    2016-01-01

    While many studies of coral bleaching report on broad, regional scale responses, fewer examine variation in susceptibility among coral taxa and changes in community structure, before, during and after bleaching on individual reefs. Here we report in detail on the response to bleaching by a coral community on a highly disturbed reef site south of mainland Singapore before, during and after a major thermal anomaly in 2010. To estimate the capacity for resistance to thermal stress, we report on: a) overall bleaching severity during and after the event, b) differences in bleaching susceptibility among taxa during the event, and c) changes in coral community structure one year before and after bleaching. Approximately two thirds of colonies bleached, however, post-bleaching recovery was quite rapid and, importantly, coral taxa that are usually highly susceptible were relatively unaffected. Although total coral cover declined, there was no significant change in coral taxonomic community structure before and after bleaching. Several factors may have contributed to the overall high resistance of corals at this site including Symbiodinium affiliation, turbidity and heterotrophy. Our results suggest that, despite experiencing chronic anthropogenic disturbances, turbid shallow reef communities may be remarkably resilient to acute thermal stress. PMID:26876092

  14. Plant Immune Responses: Aphids Strike Back.

    PubMed

    Reymond, Philippe; Calandra, Thierry

    2015-07-20

    To survive and complete their life cycle, herbivorous insects face the difficult challenge of coping with the arsenal of plant defences. A new study reports that aphids secrete evolutionarily conserved cytokines in their saliva to suppress host immune responses. PMID:26196486

  15. [Modulation of immune response by bacterial lipopolysaccharides].

    PubMed

    Aldapa-Vega, Gustavo; Pastelín-Palacios, Rodolfo; Isibasi, Armando; Moreno-Eutimio, Mario A; López-Macías, Constantino

    2016-01-01

    Lipopolysaccharide (LPS) is a molecule that is profusely found on the outer membrane of Gram-negative bacteria and is also a potent stimulator of the immune response. As the main molecule on the bacterial surface, is also the most biologically active. The immune response of the host is activated by the recognition of LPS through Toll-like receptor 4 (TLR4) and this receptor-ligand interaction is closely linked to LPS structure. Microorganisms have evolved systems to control the expression and structure of LPS, producing structural variants that are used for modulating the host immune responses during infection. Examples of this include Helicobacter pylori, Francisella tularensis, Chlamydia trachomatis and Salmonella spp. High concentrations of LPS can cause fever, increased heart rate and lead to septic shock and death. However, at relatively low concentrations some LPS are highly active immunomodulators, which can induce non-specific resistance to invading microorganisms. The elucidation of the molecular and cellular mechanisms involved in the recognition of LPS and its structural variants has been fundamental to understand inflammation and is currently a pivotal field of research to understand the innate immune response, inflammation, the complex host-pathogen relationship and has important implications for the rational development of new immunomodulators and adjuvants. PMID:27560917

  16. Differential regional immune response in Chagas disease.

    PubMed

    de Meis, Juliana; Morrot, Alexandre; Farias-de-Oliveira, Désio Aurélio; Villa-Verde, Déa Maria Serra; Savino, Wilson

    2009-01-01

    Following infection, lymphocytes expand exponentially and differentiate into effector cells to control infection and coordinate the multiple effector arms of the immune response. Soon after this expansion, the majority of antigen-specific lymphocytes die, thus keeping homeostasis, and a small pool of memory cells develops, providing long-term immunity to subsequent reinfection. The extent of infection and rate of pathogen clearance are thought to determine both the magnitude of cell expansion and the homeostatic contraction to a stable number of memory cells. This straight correlation between the kinetics of T cell response and the dynamics of lymphoid tissue cell numbers is a constant feature in acute infections yielded by pathogens that are cleared during the course of response. However, the regional dynamics of the immune response mounted against pathogens that are able to establish a persistent infection remain poorly understood. Herein we discuss the differential lymphocyte dynamics in distinct central and peripheral lymphoid organs following acute infection by Trypanosoma cruzi, the causative agent of Chagas disease. While the thymus and mesenteric lymph nodes undergo a severe atrophy with massive lymphocyte depletion, the spleen and subcutaneous lymph nodes expand due to T and B cell activation/proliferation. These events are regulated by cytokines, as well as parasite-derived moieties. In this regard, identifying the molecular mechanisms underlying regional lymphocyte dynamics secondary to T. cruzi infection may hopefully contribute to the design of novel immune intervention strategies to control pathology in this infection. PMID:19582140

  17. Immune Response in Mussels To Environmental Pollution.

    ERIC Educational Resources Information Center

    Pryor, Stephen C.; Facher, Evan

    1997-01-01

    Describes the use of mussels in measuring the extent of chemical contamination and its variation in different coastal regions. Presents an experiment to introduce students to immune response and the effects of environmental pollution on marine organisms. Contains 14 references. (JRH)

  18. Innate Immune Sensing and Response to Influenza

    PubMed Central

    Pulendran, Bali; Maddur, Mohan S.

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocom-promised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza. PMID:25078919

  19. [Response of Sediment Micro Environment and Micro Interface to Physical Disturbance Intensity Under the Disturbance of Chironomus plumosus].

    PubMed

    Shi, Xiao-dan; Li, Yong; Li, Da-peng; Wang, Ren; Deng, Meng; Huang, Yong

    2015-05-01

    The response of sediment micro environment and micro intertace to physical disturbance intensity under the physical and Chironomus plumosus disturbance was investigated by means of sediment Rhizon samplers and Unisense micro sensor system. The sediment and overlying water were taken from Meiliang bay of Taihu Lake. The results showed that the OPD reached up to 12.1 mm under the high intensity (240 r · min(-1)), while it was higher than 3. 8. mm under low intensity (60 r · min(-1)). The TOE, the difference of TOE and DOE, OPD, ORP and the difference of DO spatial distribution were all positively correlated with the physical disturbance intensity. The increasing magnitude and range of pH as well as the decreasing magnitude and range of ferrous followed the same response tendency. Within the 0-6 cm sediment, the water content and porosity as well as the microbial activity at the same depth increased with the increase of physical disturbance intensity. In addition, the degree of response of the above parameters to the physical disturbance intensity was weakened with the increase of sediment depth. It was suggested that Chironomus plumosus dug more and deeper galleries under high intensity physical disturbance. Therefore, the sediment micro environment and micro interface were transformed in the vertical direction of the sediment. PMID:26314108

  20. Humoral Immune Response to AAV

    PubMed Central

    Calcedo, Roberto; Wilson, James M.

    2013-01-01

    Adeno-associated virus (AAV) is a member of the family Parvoviridae that has been widely used as a vector for gene therapy because of its safety profile, its ability to transduce both dividing and non-dividing cells, and its low immunogenicity. AAV has been detected in many different tissues of several animal species but has not been associated with any disease. As a result of natural infections, antibodies to AAV can be found in many animals including humans. It has been shown that pre-existing AAV antibodies can modulate the safety and efficacy of AAV vector-mediated gene therapy by blocking vector transduction or by redirecting distribution of AAV vectors to tissues other than the target organ. This review will summarize antibody responses against natural AAV infections, as well as AAV gene therapy vectors and their impact in the clinical development of AAV vectors for gene therapy. We will also review and discuss the various methods used for AAV antibody detection and strategies to overcome neutralizing antibodies in AAV-mediated gene therapy. PMID:24151496

  1. Humoral immune responses in foetal sheep.

    PubMed Central

    Fahey, K J; Morris, B

    1978-01-01

    A total of fifty-two foetal sheep between 49 and 126 days gestation were injected with polymeric and monomeric flagellin, dinitrophenylated monomeric flagellin, chicken red blood cells, ovalbumin, ferritin, chicken gamma-globulin and the somatic antigens of Salmonella typhimurium in a variety of combinations. Immune responses were followed in these animals by taking serial blood samples from them through indwelling vascular cannulae and measuring the circulating titres of antibody. Of the antigens tested, ferritin induced immune responses in the youngest foetuses. A short time later in gestation, the majority of foetuses responded to chicken red blood cells, polymeric flagellin, monomeric flagellin and dinitrophenylated monomeric flagellin. Only older foetuses responded regularly to chicken gamma-globulin and ovalbumin. However, antibodies to all these antigens were first detected over the relatively short period of development between 64 and 82 days gestation and this made it difficult to define any precise order in the development of immune responsiveness. Of the antigens tested only the somatic antigens of S. typhimurium failed to induce a primary antibody response during foetal life. The character and magnitude of the antibody responses in foetuses changed throughout in utero development. Both the total amount of antibody produced and the duration of the response increased with foetal age. Foetuses younger than 87 days gestation did not synthesize 2-mercaptoethanol resistant antibodies or IgG1 immunoglobulin to any of the antigens tested, whereas most foetuses older than this regularly did so. PMID:711249

  2. Clinical iron deficiency disturbs normal human responses to hypoxia

    PubMed Central

    Frise, Matthew C.; Cheng, Hung-Yuan; Nickol, Annabel H.; Curtis, M. Kate; Pollard, Karen A.; Roberts, David J.; Ratcliffe, Peter J.; Dorrington, Keith L.; Robbins, Peter A.

    2016-01-01

    BACKGROUND. Iron bioavailability has been identified as a factor that influences cellular hypoxia sensing, putatively via an action on the hypoxia-inducible factor (HIF) pathway. We therefore hypothesized that clinical iron deficiency would disturb integrated human responses to hypoxia. METHODS. We performed a prospective, controlled, observational study of the effects of iron status on hypoxic pulmonary hypertension. Individuals with absolute iron deficiency (ID) and an iron-replete (IR) control group were exposed to two 6-hour periods of isocapnic hypoxia. The second hypoxic exposure was preceded by i.v. infusion of iron. Pulmonary artery systolic pressure (PASP) was serially assessed with Doppler echocardiography. RESULTS. Thirteen ID individuals completed the study and were age- and sex-matched with controls. PASP did not differ by group or study day before each hypoxic exposure. During the first 6-hour hypoxic exposure, the rise in PASP was 6.2 mmHg greater in the ID group (absolute rises 16.1 and 10.7 mmHg, respectively; 95% CI for difference, 2.7–9.7 mmHg, P = 0.001). Intravenous iron attenuated the PASP rise in both groups; however, the effect was greater in ID participants than in controls (absolute reductions 11.1 and 6.8 mmHg, respectively; 95% CI for difference in change, –8.3 to –0.3 mmHg, P = 0.035). Serum erythropoietin responses to hypoxia also differed between groups. CONCLUSION. Clinical iron deficiency disturbs normal responses to hypoxia, as evidenced by exaggerated hypoxic pulmonary hypertension that is reversed by subsequent iron administration. Disturbed hypoxia sensing and signaling provides a mechanism through which iron deficiency may be detrimental to human health. TRIAL REGISTRATION. ClinicalTrials.gov (NCT01847352). FUNDING. M.C. Frise is the recipient of a British Heart Foundation Clinical Research Training Fellowship (FS/14/48/30828). K.L. Dorrington is supported by the Dunhill Medical Trust (R178/1110). D.J. Roberts was

  3. Ovine model for studying pulmonary immune responses

    SciTech Connect

    Joel, D.D.; Chanana, A.D.

    1984-11-25

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with /sup 125/I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables.

  4. Disturbance of ion environment and immune regulation following biodistribution of magnetic iron oxide nanoparticles injected intravenously.

    PubMed

    Park, Eun-Jung; Kim, Sang-Wook; Yoon, Cheolho; Kim, Younghun; Kim, Jong Sung

    2016-01-22

    Although it is expected that accumulation of metal oxide nanoparticles that can induce redox reaction in the biological system may influence ion homeostasis and immune regulation through generation of free radicals, the relationship is still unclear. In this study, mice received magnetic iron oxide nanoparticles (M-FeNPs, 2 and 4 mg/kg) a single via the tail vein, and their distribution in tissues was investigated over time (1, 4, and 13 weeks). In addition, we evaluated the effects on homeostasis of redox reaction-related elements, the ion environment and immune regulation. The iron level in tissues reached at the maximum on 4 weeks after injection and M-FeNPs the most distributed in the spleen at 13 weeks. Additionally, levels of redox reaction-related elements in tissues were notably altered since 1 week post-injection. While levels of K(+) and Na(+) in tissue tended to decrease with time, Ca(2+) levels reached to the maximum at 4 weeks post-injection. On 13 weeks post-injection, the increased percentages of neutrophils and eosinophils, the enhanced release of LDH, and the elevated secretion of IL-8 and IL-6 were clearly observed in the blood of M-FeNP-treated mice compared to the control. While expression of antigen presentation related-proteins and the maturation of dendritic cells were markedly inhibited following distribution of M-FeNPs, the expression of several chemokines, including CXCR2, CCR5, and CD123, was enhanced on the splenocytes of the treated groups. Taken together, we suggest that accumulation of M-FeNPs may induce adverse health effects by disturbing homeostasis of the immune regulation and ion environment. PMID:26687879

  5. Vitamin E, immune response, and disease resistance.

    PubMed

    Tengerdy, R P

    1989-01-01

    Vitamin E as a dietary supplement or as part of an adjuvant vaccine formulation increases humoral and cell-mediated immunity and disease resistance in laboratory animals, farm animals, and humans. Adjuvant administration has far greater effect than dietary supplementation. Vitamin E as an antioxidant protects the cells of the immune response from peroxidative damage; possibly through a modulation of lipoxygenation of arachidonic acid, vitamin E alters cell membrane functions and cell-cell interactions. The most pronounced effect of vitamin E is on immune phagocytosis. Dietary supplementation is beneficial to animals, especially under stress, in decreasing susceptibility to infections. Vitamin E adjuvant vaccines have provided greater immunoprotection against enterotoxemia and epididymitis in sheep than conventional vaccines. PMID:2698109

  6. Immunological signaling networks: Integrating the body's immune response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The immune system’s role is to eliminate disease from the host. Immune cells are primarily responsible for eliminating pathogens or cancerous cells. In addition, immune cells regulate the immune response affecting the types of cells that are activated or suppressed. The following discussion is an...

  7. Chitin Modulates Innate Immune Responses of Keratinocytes

    PubMed Central

    Koller, Barbara; Müller-Wiefel, Alisa Sophie; Rupec, Rudolph; Korting, Hans Christian; Ruzicka, Thomas

    2011-01-01

    Background Chitin, after cellulose the second most abundant polysaccharide in nature, is an essential component of exoskeletons of crabs, shrimps and insects and protects these organisms from harsh conditions in their environment. Unexpectedly, chitin has been found to activate innate immune cells and to elicit murine airway inflammation. The skin represents the outer barrier of the human host defense and is in frequent contact with chitin-bearing organisms, such as house-dust mites or flies. The effects of chitin on keratinocytes, however, are poorly understood. Methodology/Principal Findings We hypothesized that chitin stimulates keratinocytes and thereby modulates the innate immune response of the skin. Here we show that chitin is bioactive on primary and immortalized keratinocytes by triggering production of pro-inflammatory cytokines and chemokines. Chitin stimulation further induced the expression of the Toll-like receptor (TLR) TLR4 on keratinocytes at mRNA and protein level. Chitin-induced effects were mainly abrogated when TLR2 was blocked, suggesting that TLR2 senses chitin on keratinocytes. Conclusions/Significance We speculate that chitin-bearing organisms modulate the innate immune response towards pathogens by upregulating secretion of cytokines and chemokines and expression of MyD88-associated TLRs, two major components of innate immunity. The clinical relevance of this mechanism remains to be defined. PMID:21383982

  8. Multiscale modeling of mucosal immune responses

    PubMed Central

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut

  9. The roles of exercise-induced immune system disturbances in the pathology of heat stroke : the dual pathway model of heat stroke.

    PubMed

    Lim, Chin Leong; Mackinnon, Laurel T

    2006-01-01

    Heat stroke is a life-threatening condition that can be fatal if not appropriately managed. Although heat stroke has been recognised as a medical condition for centuries, a universally accepted definition of heat stroke is lacking and the pathology of heat stroke is not fully understood. Information derived from autopsy reports and the clinical presentation of patients with heat stroke indicates that hyperthermia, septicaemia, central nervous system impairment and cardiovascular failure play important roles in the pathology of heat stroke. The current models of heat stroke advocate that heat stroke is triggered by hyperthermia but is driven by endotoxaemia. Endotoxaemia triggers the systemic inflammatory response, which can lead to systemic coagulation and haemorrhage, necrosis, cell death and multi-organ failure. However, the current heat stroke models cannot fully explain the discrepancies in high core temperature (Tc) as a trigger of heat stroke within and between individuals. Research on the concept of critical Tc as a limitation to endurance exercise implies that a high Tc may function as a signal to trigger the protective mechanisms against heat stroke. Athletes undergoing a period of intense training are subjected to a variety of immune and gastrointestinal (GI) disturbances. The immune disturbances include the suppression of immune cells and their functions, suppression of cell-mediated immunity, translocation of lipopolysaccharide (LPS), suppression of anti-LPS antibodies, increased macrophage activity due to muscle tissue damage, and increased concentration of circulating inflammatory and pyrogenic cytokines. Common symptoms of exercise-induced GI disturbances include diarrhoea, vomiting, gastrointestinal bleeding, and cramps, which may increase gut-related LPS translocation. This article discusses the current evidence that supports the argument that these exercise-induced immune and GI disturbances may contribute to the development of endotoxaemia and

  10. Evolutionary responses of innate Immunity to adaptive immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Innate immunity is present in all metazoans, whereas the evolutionarily more novel adaptive immunity is limited to jawed fishes and their descendants (gnathostomes). We observe that the organisms that possess adaptive immunity lack diversity in their innate pattern recognition receptors (PRRs), rais...

  11. Humoral innate immune response and disease

    PubMed Central

    Shishido, Stephanie N.; Varahan, Sriram; Yuan, Kai; Li, Xiangdong; Fleming, Sherry D.

    2012-01-01

    The humoral innate immune response consists of multiple components, including the naturally occurring antibodies (NAb), pentraxins and the complement and contact cascades. As soluble, plasma components, these innate proteins provide key elements in the prevention and control of disease. However, pathogens and cells with altered self proteins utilize multiple humoral components to evade destruction and promote pathogy. Many studies have examined the relationship between humoral immunity and autoimmune disorders. This review focuses on the interactions between the humoral components and their role in promoting the pathogenesis of bacterial and viral infections and chronic diseases such as atherosclerosis and cancer. Understanding the beneficial and detrimental aspects of the individual components and the interactions between proteins which regulate the innate and adaptive response will provide therapeutic targets for subsequent studies. PMID:22771788

  12. Regulation of immune responses by neutrophils.

    PubMed

    Wang, Jing; Arase, Hisashi

    2014-06-01

    Neutrophils, the most abundant circulating cells in humans, are major pathogen-killing immune cells. For many years, these cells were considered to be simple killers at the "bottom" of immune responses. However, recent studies have revealed more sophisticated mechanisms associated with neutrophilic cytotoxic functions, and neutrophils have been shown to contribute to various infectious and inflammatory diseases. In this review, we discuss the key features of neutrophils during inflammatory responses, from their release from the bone marrow to their death in inflammatory loci. We also discuss the expanding roles of neutrophils that have been identified in the context of several inflammatory diseases. We further focus on the mechanisms that regulate neutrophil recruitment to inflamed tissues and neutrophil cytotoxic activities against both pathogens and host tissues. PMID:24850053

  13. A meta-analysis of soil microbial biomass responses to forest disturbances

    PubMed Central

    Holden, Sandra R.; Treseder, Kathleen K.

    2013-01-01

    Climate warming is likely to increase the frequency and severity of forest disturbances, with uncertain consequences for soil microbial communities and their contribution to ecosystem C dynamics. To address this uncertainty, we conducted a meta-analysis of 139 published soil microbial responses to forest disturbances. These disturbances included abiotic (fire, harvesting, storm) and biotic (insect, pathogen) disturbances. We hypothesized that soil microbial biomass would decline following forest disturbances, but that abiotic disturbances would elicit greater reductions in microbial biomass than biotic disturbances. In support of this hypothesis, across all published studies, disturbances reduced soil microbial biomass by an average of 29.4%. However, microbial responses differed between abiotic and biotic disturbances. Microbial responses were significantly negative following fires, harvest, and storms (48.7, 19.1, and 41.7% reductions in microbial biomass, respectively). In contrast, changes in soil microbial biomass following insect infestation and pathogen-induced tree mortality were non-significant, although biotic disturbances were poorly represented in the literature. When measured separately, fungal and bacterial responses to disturbances mirrored the response of the microbial community as a whole. Changes in microbial abundance following disturbance were significantly positively correlated with changes in microbial respiration. We propose that the differential effect of abiotic and biotic disturbances on microbial biomass may be attributable to differences in soil disruption and organic C removal from forests among disturbance types. Altogether, these results suggest that abiotic forest disturbances may significantly decrease soil microbial abundance, with corresponding consequences for microbial respiration. Further studies are needed on the effect of biotic disturbances on forest soil microbial communities and soil C dynamics. PMID:23801985

  14. Depleted uranium disturbs immune parameters in zebrafish, Danio rerio: an ex vivo/in vivo experiment.

    PubMed

    Gagnaire, Béatrice; Bado-Nilles, Anne; Sanchez, Wilfried

    2014-10-01

    In this study, we investigated the effects of depleted uranium (DU), the byproduct of nuclear enrichment of uranium, on several parameters related to defence system in the zebrafish, Danio rerio, using flow cytometry. Several immune cellular parameters were followed on kidney leucocytes: cell proportion, cell mortality, phagocytosis activity and associated oxidative burst and lysosomal membrane integrity (LMI). Effects of DU were tested ex vivo after 17 h of contact between DU and freshly isolated leucocytes from 0 to 500 µg DU/L. Moreover, adult zebrafish were exposed in vivo during 3 days at 20 and 250 µg DU/L. Oxidative burst results showed that DU increased reactive oxygen species (ROS) basal level and therefore reduced ROS stimulation index in both ex vivo and in vivo experiments. ROS PMA-stimulated level was also increased at 250 µg DU/L in vivo only. Furthermore, a decrease of LMI was detected after in vivo experiments. Cell mortality was also decreased at 20 µg DU/L in ex vivo experiment. However, phagocytosis activity was not modified in both ex vivo and in vivo experiments. A reduction of immune-related parameters was demonstrated in zebrafish exposed to DU. DU could therefore decrease the ability of fish to stimulate its own immune system which could, in turn, enhance the susceptibility of fish to infection. These results encourage the development and the use of innate immune analysis by flow cytometry in order to understand the effects of DU and more generally radionuclides on fish immune system and response to infectious diseases. PMID:24723161

  15. Immune responses to pertussis vaccines and disease.

    PubMed

    Edwards, Kathryn M; Berbers, Guy A M

    2014-04-01

    In this article we discuss the following: (1) acellular vaccines are immunogenic, but responses vary by vaccine; (2) pertussis antibody levels rapidly wane but promptly increase after vaccination; (3) whole-cell vaccines vary in immunogenicity and efficacy; (4) whole-cell vaccines and naturally occurring pertussis generate predominantly T-helper 1 (Th1) responses, whereas acellular vaccines generate mixed Th1/Th2 responses; (5) active transplacental transport of pertussis antibody is documented; (6) neonatal immunization with diphtheria toxoid, tetanus toxoid, and acellular pertussis vaccine has been associated with some suppression of pertussis antibody, but suppression has been seen less often with acellular vaccines; (7) memory B cells persist in both acellular vaccine- and whole cell vaccine-primed children; and (8) in acellular vaccine-primed children, T-cell responses remain elevated and do not increase with vaccine boosters, whereas in whole-cell vaccine-primed children, these responses can be increased by vaccine boosting and natural exposure. Despite these findings, challenges remain in understanding the immune response to pertussis vaccines. PMID:24158958

  16. Form of the compensatory stepping response to repeated laterally directed postural disturbances.

    PubMed

    Hurt, Christopher P; Rosenblatt, Noah J; Grabiner, Mark D

    2011-10-01

    A compensatory stepping response (CSR) is a common strategy to restore dynamic stability in response to a postural disturbance. Currently, few studies have investigated the CSR to laterally directed disturbances delivered to subjects during quiet standing. The purpose of this study was to characterize the CSR of younger adults following exposure to a series of similar laterally directed disturbances for which no instructions were given with regard to the recovery response. We hypothesized that in the absence of externally applied constraints to the recovery response, subjects would be equally as likely to perform a crossover step as a sidestep sequence (SSS). We further hypothesized that there would be an asymmetry in arm abduction that would be dependent on the disturbance direction. Finally, we were interested in characterizing the effect of practice on the CSR to repeated disturbances. Ten younger adults were exposed to thirty laterally directed platform disturbances that forced a stepping response. Subjects responded by primarily utilizing a SSS that differs from previously reported results. Further, five of the ten subjects utilized a different recovery response that was dependent on the direction of the disturbance (i.e., left or right). Greater arm abduction was characterized for the arm in the direction of the external disturbance in comparison with the contralateral arm. Lastly, subjects modified their recovery response to this task within 12 disturbances. Taken together, these results suggest that recovery responses to laterally directed disturbances can be quickly modified but can be quite variable between and within subjects. PMID:21915670

  17. Staphylococcal manipulation of host immune responses.

    PubMed

    Thammavongsa, Vilasack; Kim, Hwan Keun; Missiakas, Dominique; Schneewind, Olaf

    2015-09-01

    Staphylococcus aureus, a bacterial commensal of the human nares and skin, is a frequent cause of soft tissue and bloodstream infections. A hallmark of staphylococcal infections is their frequent recurrence, even when treated with antibiotics and surgical intervention, which demonstrates the bacterium's ability to manipulate innate and adaptive immune responses. In this Review, we highlight how S. aureus virulence factors inhibit complement activation, block and destroy phagocytic cells and modify host B cell and T cell responses, and we discuss how these insights might be useful for the development of novel therapies against infections with antibiotic resistant strains such as methicillin-resistant S. aureus. PMID:26272408

  18. Staphylococcal manipulation of host immune responses

    PubMed Central

    Thammavongsa, Vilasack; Kim, Hwan Keun; Missiakas, Dominique; Schneewind, Olaf

    2015-01-01

    Staphylococcus aureus, a bacterial commensal of the human nares and skin, is a frequent cause of soft tissue and bloodstream infections. A hallmark of staphylococcal infections is their frequent recurrence, even when treated with antibiotics and surgical intervention, which demonstrates the bacterium’s ability to manipulate innate and adaptive immune responses. In this Review, we highlight how S. aureus virulence factors inhibit complement activation, block and destroy phagocytic cells and modify host B and T cell responses, and we discuss how these insights might be useful for the development of novel therapies against infections with antibiotic resistant strains such as methicillin-resistant S. aureus. PMID:26272408

  19. Antiviral immune responses of bats: a review.

    PubMed

    Baker, M L; Schountz, T; Wang, L-F

    2013-02-01

    Despite being the second most species-rich and abundant group of mammals, bats are also among the least studied, with a particular paucity of information in the area of bat immunology. Although bats have a long history of association with rabies, the emergence and re-emergence of a number of viruses from bats that impact human and animal health has resulted in a resurgence of interest in bat immunology. Understanding how bats coexist with viruses in the absence of disease is essential if we are to begin to develop therapeutics to target viruses in humans and susceptible livestock and companion animals. Here, we review the current status of knowledge in the field of bat antiviral immunology including both adaptive and innate mechanisms of immune defence and highlight the need for further investigations in this area. Because data in this field are so limited, our discussion is based on both scientific discoveries and theoretical predictions. It is hoped that by provoking original, speculative or even controversial ideas or theories, this review may stimulate further research in this important field. Efforts to understand the immune systems of bats have been greatly facilitated in recent years by the availability of partial genome sequences from two species of bats, a megabat, Pteropus vampyrus, and a microbat, Myotis lucifugus, allowing the rapid identification of immune genes. Although bats appear to share most features of the immune system with other mammals, several studies have reported qualitative and quantitative differences in the immune responses of bats. These observations warrant further investigation to determine whether such differences are associated with the asymptomatic nature of viral infections in bats. PMID:23302292

  20. Ubiquitination in the Antiviral Immune Response

    PubMed Central

    Davis, Meredith E.; Gack, Michaela U.

    2016-01-01

    Ubiquitination has long been known to regulate fundamental cellular processes through the induction of proteasomal degradation of target proteins. More recently, ‘atypical’ nondegradative types of polyubiquitin chains have been appreciated as important regulatory moieties by modulating the activity or subcellular localization of key signaling proteins. Intriguingly, many of these non-degradative types of ubiquitination regulate the innate sensing pathways initiated by pattern recognition receptors (PRRs), ultimately coordinating an effective antiviral immune response. Here we discuss recent advances in understanding the functional roles of degradative and atypical types of ubiquitination in innate immunity to viral infections, with a specific focus on the signaling pathways triggered by RIG-I-like receptors, Toll-like receptors, and the intracellular viral DNA sensor cGAS. PMID:25753787

  1. Spaceflight and Development of Immune Responses

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1996-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. The number of flight experiments has been small, and the full breadth of immunological alterations occurring after space flight remains to be established. Among the major effects on immune responses after space flight that have been reported are: alterations in lymphocyte blastogenesis and natural killer cell activity, alterations in production of cytokines, changes in leukocyte sub-population distribution, and decreases in the ability of bone marrow cells to respond to colony stimulating factors. Changes have been reported in immunological parameters of both humans and rodents. The significance of these alterations in relation to resistance to infection remains to be established. The objective of the studies contained in this project was to determine the effects of space flight on immune responses of pregnant rats and their offspring. The hypothesis was that space flight and the attendant period of microgravity will result in alteration of immunological parameters of both the pregnant rats as well as their offspring carried in utero during the flight. The parameters tested included: production of cytokines, composition of leukocyte sub- populations, response of bone marrow/liver cells to granulocyte/monocyte colony stimulating factor, and leukocyte blastogenesis. Changes in immune responses that could yield alterations in resistance to infection were determined. This yielded useful information for planning studies that could contribute to crew health. Additional information that could eventually prove useful to determine the potential for establishment of a permanent colony in space was obtained.

  2. Hydrological and geochemical response and recovery in disturbed Arctic ecosystems

    SciTech Connect

    Not Available

    1992-01-01

    This progress report is a funding, extension request to continue the database work for the Hydrological and Geochemical Response and Recovery in Disturbed Arctic Ecosystems Program. Throughout the period from 1985 to 1992 the Department of Energy supported research on the hydrology and geochemistry of the headwater basin of Imnavait Creek has focused on the quantification of the input from atmospheric sources of biologically significant and other related chemical variables; the transport of these variables in surface and subsurface flow and their efflux from the basin; and the development of geochemical budgets. The acquisition of multi-year data sets (the longest and most detailed sets in the Arctic) have made it possible to define seasonal ranges and amplitudes; determine spatial and temporal relationships within the different flow compartments; to begin to model the pathways and rates of movement through and across different landscape units. The length of record has also made it possible to examine the quantity and influence of local and extra-regional additions.

  3. The Soil Hydraulic Response to Disturbance and Recovery

    NASA Astrophysics Data System (ADS)

    Zimmermann, B.; Elsenbeer, H.

    2006-12-01

    While the rate of deforestation in the humid tropics seems to wax and wane with the global demand for certain commodities, the rate of reforestation on degraded lands has been less spectacular. Nonetheless, this process has affected substantial tracts of land in the Amazon basin. We are interested in the rates at which soil hydraulic properties respond to deforestation and reforestation, and in the effect of land-use history before reforestation on these rates. The preliminary results from ongoing true and false time series experiments in the south-western Amazon basin of Brazil and the montane rainforest of eastern Ecuador emphasize a pronounced asymmetry of the soil hydraulic response to disturbance and recovery: whereas just one year of extensive grazing upon pasture establishment reduces infiltrability and topsoil permeability by more than half, more than ten years of secondary succession or afforestation with commercial tree species are required to elicit an increase in these soil properties. The rate of recovery depends on the kind and duration of land-use before abandonment and reforestation: it is slow after prolonged grazing and rapid after short agricultural use. We conclude that a soil hydraulic pasture imprint may be preserved for many years during secondary succession, and hence that secondary forests and plantations continue to behave hydrologically like pastures for many years.

  4. Response of High Subsonic Jet to Nonaxisymmetric Disturbances

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Maestrello, L.

    1997-01-01

    A model of sound generated in a high subsonic (Mach 0.9) circular jet is solved numerically in cylindrical coordinates for nonaxisymmetric disturbances. The jet is excited by transient mass injection by a finite duration pulse via a modulated ring source. The nonaxisymmetric solution is computed for long times after the initial disturbance has exited the computational domain. The long time behavior of the jet is dominated by vorticity and pressure disturbances generated at the nozzle lip and growing as they convect down-stream in the jet. These disturbances generate sound as they propagate. The primary non-axisymmetric effect that we simulate is that of a flapping mode where regions of high and low pressure alternate on opposite sides of the jet. The predominant feature of this mode is the appearance of relatively large deviations of the pressure from the ambient pressure on opposite sides of the jet and the convection of these regions downstream. We illustrate flow field, near field and far field data. Important nonaxisymmetric characteristics of the near and flow field disturbances include roughly periodic pressure elevations and depressions at opposite values of the azimuthal angle psi. These correspond to pressure disturbances propagating in the axial direction. The azimuthal velocity exhibits a sinusoidal dependence on psi with similar roughly periodic disturbances. For every azimuthal angle psi, the jet radiation peaks about 30 deg. from the jet axis, however there is now a pronounced dependence of the far field radiation pattern on psi.

  5. Monitoring Regulatory Immune Responses in Tumor Immunotherapy Clinical Trials

    PubMed Central

    Olson, Brian M.; McNeel, Douglas G.

    2013-01-01

    While immune monitoring of tumor immunotherapy often focuses on the generation of productive Th1-type inflammatory immune responses, the importance of regulatory immune responses is often overlooked, despite the well-documented effects of regulatory immune responses in suppressing anti-tumor immunity. In a variety of malignancies, the frequency of regulatory cell populations has been shown to correlate with disease progression and a poor prognosis, further emphasizing the importance of characterizing the effects of immunotherapy on these populations. This review focuses on the role of suppressive immune populations (regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages) in inhibiting anti-tumor immunity, how these populations have been used in the immune monitoring of clinical trials, the prognostic value of these responses, and how the monitoring of these regulatory responses can be improved in the future. PMID:23653893

  6. Compartmentalization of Immune Responses in Human Tuberculosis

    PubMed Central

    Rahman, Sayma; Gudetta, Berhanu; Fink, Joshua; Granath, Anna; Ashenafi, Senait; Aseffa, Abraham; Derbew, Milliard; Svensson, Mattias; Andersson, Jan; Brighenti, Susanna Grundström

    2009-01-01

    Immune responses were assessed at the single-cell level in lymph nodes from children with tuberculous lymphadenitis. Tuberculosis infection was associated with tissue remodeling of lymph nodes as well as altered cellular composition. Granulomas were significantly enriched with CD68+ macrophages expressing the M. tuberculosis complex-specific protein antigen MPT64 and inducible nitric oxide synthase. There was a significant increase in CD8+ cytolytic T cells surrounding the granuloma; however, CD8+ T cells expressed low levels of the cytolytic and antimicrobial effector molecules perforin and granulysin in the granulomatous lesions. Quantitative real-time mRNA analysis revealed that interferon-γ, tumor necrosis factor-α, and interleukin-17 were not up-regulated in infected lymph nodes, but there was a significant induction of both transforming growth factor-β and interleukin-13. In addition, granulomas contained an increased number of CD4+FoxP3+ T cells co-expressing the immunoregulatory cytotoxic T-lymphocyte antigen-4 and glucocorticoid-induced tumor necrosis factor receptor molecules. Low numbers of CD8+ T cells in the lesions correlated with high levels of transforming growth factor-β and FoxP3+ regulatory T cells, suggesting active immunosuppression at the local infection site. Compartmentalization and skewing of the immune response toward a regulatory phenotype may result in an uncoordinated effector T-cell response that reduces granule-mediated killing of M. tuberculosis-infected cells and subsequent disease control. PMID:19435796

  7. Immune Response of Amebiasis and Immune Evasion by Entamoeba histolytica

    PubMed Central

    Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2016-01-01

    Entamoeba histolytica is a protozoan parasite and the causative agent of amebiasis. It is estimated approximately 1% of humans are infected with E. histolytica, resulting in an estimate of 100,000 deaths annually. Clinical manifestations of amebic infection range widely from asymptomatic to severe symptoms, including dysentery and extra-intestinal abscesses. Like other infectious diseases, it is assumed that only ~20% of infected individuals develop symptoms, and genetic factors of both the parasite and humans as well as the environmental factors, e.g., microbiota, determine outcome of infection. There are multiple essential steps in amebic infection: degradation of and invasion into the mucosal layer, adherence to the intestinal epithelium, invasion into the tissues, and dissemination to other organs. While the mechanisms of invasion and destruction of the host tissues by the amebae during infection have been elucidated at the molecular levels, it remains largely uncharacterized how the parasite survive in the host by evading and attacking host immune system. Recently, the strategies for immune evasion by the parasite have been unraveled, including immunomodulation to suppress IFN-γ production, elimination of immune cells and soluble immune mediators, and metabolic alterations against reactive oxygen and nitrogen species to fend off the attack from immune system. In this review, we summarized the latest knowledge on immune reaction and immune evasion during amebiasis. PMID:27242782

  8. Immune Response of Amebiasis and Immune Evasion by Entamoeba histolytica.

    PubMed

    Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2016-01-01

    Entamoeba histolytica is a protozoan parasite and the causative agent of amebiasis. It is estimated approximately 1% of humans are infected with E. histolytica, resulting in an estimate of 100,000 deaths annually. Clinical manifestations of amebic infection range widely from asymptomatic to severe symptoms, including dysentery and extra-intestinal abscesses. Like other infectious diseases, it is assumed that only ~20% of infected individuals develop symptoms, and genetic factors of both the parasite and humans as well as the environmental factors, e.g., microbiota, determine outcome of infection. There are multiple essential steps in amebic infection: degradation of and invasion into the mucosal layer, adherence to the intestinal epithelium, invasion into the tissues, and dissemination to other organs. While the mechanisms of invasion and destruction of the host tissues by the amebae during infection have been elucidated at the molecular levels, it remains largely uncharacterized how the parasite survive in the host by evading and attacking host immune system. Recently, the strategies for immune evasion by the parasite have been unraveled, including immunomodulation to suppress IFN-γ production, elimination of immune cells and soluble immune mediators, and metabolic alterations against reactive oxygen and nitrogen species to fend off the attack from immune system. In this review, we summarized the latest knowledge on immune reaction and immune evasion during amebiasis. PMID:27242782

  9. Erosion response of a disturbed sagebrush steppe hillslope

    USGS Publications Warehouse

    Goff, B.F.; Bent, G.C.; Hart, G.E.

    1993-01-01

    Land management activities that disrupt surface vegetation cover pose a serious threat to the long-term stability of buried-waste sites located within the semiarid sagebrush (Artemisia tridentata Nutt.) steppe region of the northwestern USA. In this study, we evaluated the erosion response of a sagebrush hillslope subjected to three vegetation cover treatments: natural (undisturbed), bare (plant canopy and litter cover removed), and clipped (canopy removed). A rotating boom rainfall simulator was used to apply rain at 60 or 120 mm/h intensities to runoff plots (3.0 m by 10.7 m) with dry, wet, and very wet antecedent moisture conditions, and during two late and one early summer seasons. Supplemental overland flow was added at the upper end of each plot to simulate increased slope length during very wet runs. Maximum soil loss rates on the natural, clipped, and bare treatments were, respectively, 1, 5, and 216 mg/m2 per s during the 60 mm/h rainfall intensity, and 13, 79, and 1473 mg/m2 per s during the 120 mm/h rainfall intensity. Cumulative soil loss was typically 100 to 1000 times greater on the bare treatment than on the natural or clipped treatments. Increases in simulated slope length produced a near linear increase in soil loss from the bare treatment plots (about 0.02 g/m2 per s soil loss per m of slope length) until 30 m, after which the effect of slope length declined. Surface crust development and mound-intermound microtopography played important roles in governing soil detachment and transport on the hillslope. Despite high rainfall intensity and surface runoff rates, rill erosion was negligible on both the undisturbed and disturbed portions of the hillslope.

  10. Precision Immunization: NASA Studies Immune Response to Flu Vaccine

    NASA Video Gallery

    NASA Human Research Program Twins Study investigator Emmanuel Mignot, M.D., Ph.D, known for discovering the cause of narcolepsy is related to the immune system, is studying twin astronauts Scott an...

  11. Immune responses to coiled coil supramolecular biomaterials

    PubMed Central

    Rudra, Jai S.; Tripathi, Pulak; Hildeman, David A.; Jung, Jangwook P.; Collier, Joel H.

    2010-01-01

    Self-assembly has been increasingly utilized in recent years to create peptide-based biomaterials for 3D cell culture, tissue engineering, and regenerative medicine, but the molecular determinants of these materials' immunogenicity have remained largely unexplored. In this study, a set of molecules that self-assembled through coiled coil oligomerization was designed and synthesized, and immune responses against them were investigated in mice. Experimental groups spanned a range of oligomerization behaviors and included a peptide from the coiled coil region of mouse fibrin that did not form supramolecular structures, an engineered version of this peptide that formed coiled coil bundles, and a peptide-PEG-peptide triblock bioconjugate that formed coiled coil multimers and supramolecular aggregates. In mice, the native peptide and engineered peptide did not produce any detectable antibody response, and none of the materials elicited detectable peptide-specific T cell responses, as evidenced by the absence of IL-2 and interferon-gamma in cultures of peptide-challenged splenocytes or draining lymph node cells. However, specific antibody responses were elevated in mice injected with the multimerizing peptide-PEG-peptide. Minimal changes in secondary structure were observed between the engineered peptide and the triblock peptide-PEG-peptide, making it possible that the triblock's multimerization was responsible for this antibody response. PMID:20708258

  12. Impact of nutrition on immune function and the inflammatory response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The review utilizes data on three micronutrients (vitamin A, zinc and iron), anthropometrically defined undernutrition (stunting, wasting and underweight) and obesity to evaluate the effect on immune function, recovery of immune function in response to nutritional interventions, related health outco...

  13. Neuroendocrine and immune system responses with spaceflights.

    PubMed

    Tipton, C M; Greenleaf, J E; Jackson, C G

    1996-08-01

    Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldosterone, and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flights data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T

  14. Neuroendocrine and Immune System Responses with Spaceflights

    NASA Technical Reports Server (NTRS)

    Tipton, Charles M.; Greenleaf, John E.; Jackson, Catherine G. R.

    1996-01-01

    Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldo-sterone. and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flight data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T

  15. Host immune response to infection and cancer: unexpected commonalities

    PubMed Central

    Goldszmid, Romina S.; Dzutsev, Amiran; Trinchieri, Giorgio

    2014-01-01

    Summary Both microbes and tumors activate innate resistance, tissue repair and adaptive immunity. Unlike acute infection, tumor growth is initially inapparent; however, inflammation and immunity affect all phases of tumor growth from initiation to progression and dissemination. Here, we discuss the shared features involved in the immune response to infection and cancer including modulation by commensal microbiota, reactive hematopoiesis, chronic immune responses and regulatory mechanisms to prevent collateral tissue damage. This comparative analysis of immunity to infection and cancer furthers our understanding of the basic mechanisms underlying innate resistance and adaptive immunity and their translational application to the design of new therapeutic approaches. PMID:24629336

  16. Long-term effects of early life microbiota disturbance on adaptive immunity in laying hens.

    PubMed

    Simon, K; Verwoolde, M B; Zhang, J; Smidt, H; de Vries Reilingh, G; Kemp, B; Lammers, A

    2016-07-01

    Due to an interplay between intestinal microbiota and immune system, disruption of intestinal microbiota composition during immune development may have consequences for immune responses later in life. The present study investigated the effects of antibiotic treatment in the first weeks of life on the specific antibody response later in life in chickens. Layer chicks received an antibiotic cocktail consisting of vancomycin, neomycin, metronidazole, and amphotericin-B by oral gavage every 12 h, and ampicillin and colistin in drinking water for the first week of life. After the first week of life, chicks received ampicillin and colistin in drinking water for two more weeks. Control birds received no antibiotic cocktail and plain drinking water. Fecal microbiota composition was determined during antibiotic treatment (d 8 and 22), two weeks after cessation of antibiotic treatment (d 36), and at the end of the experimental period at d 175 using a 16S ribosomal RNA gene targeted microarray, the Chicken Intestinal Tract Chip (ChickChip). During antibiotic treatment fecal microbiota composition differed strongly between treatment groups. Fecal microbiota of antibiotic treated birds consisted mainly of Proteobacteria, and in particular E.coli, whereas fecal microbiota of control birds consisted mainly of Firmicutes, such as lactobacilli and clostridia. Two weeks after cessation of antibiotic treatment fecal microbiota composition of antibiotic treated birds had recovered and was similar to that of control birds. On d 105, 12 weeks after cessation of antibiotic treatment, chicks of both treatment groups received an intra-tracheal lipopolysaccharide (LPS)/human serum albumin (HuSA) challenge. Antibody titers against LPS and HuSA were measured 10 days after administration of the challenge. While T cell independent antibody titers (LPS) were not affected by antibiotic treatment, antibiotic treated birds showed lower T cell dependent antibody titers (HuSA) compared with control

  17. Realtime Prediction in Disturbed Landscapes: Identifying Highest Priority Disturbance Characteristics Impacting Streamflow Response in a CONUS-Scale Operational Model

    NASA Astrophysics Data System (ADS)

    Dugger, A. L.; Gochis, D. J.; Yu, W.; McCreight, J. L.; Barlage, M. J.

    2015-12-01

    The "next generation" of hydrologic prediction systems - targeting unified, process-based, real-time prediction of the total water cycle - bring with them an increased need for real-time land surface characterization. Climatologically-derived estimates may perform well under stationary conditions, however disturbance can significantly alter hydrologic behavior and may be poorly represented by mean historical conditions. Fortunately, remote sensing and on-the-ground observation networks are collecting snapshots of these land characteristics over an increasing fraction of the globe. Given the computing constraints of operating a large-domain, real-time prediction system, to take advantage of these data streams we need a way to prioritize which landscape characteristics are most important to hydrologic prediction post-disturbance. To address this need, we setup a model experiment over the contiguous US using the community WRF-Hydro system with the NoahMP land surface model to assess the value of incorporating various aspects of disturbed landscapes into a real-time streamflow prediction model. WRF-Hydro will serve as the initial operational model for the US National Weather Service's new national water prediction effort, so use of WRF-Hydro allows us to leverage both an existing CONUS-scale model implementation and a short research-to-operations path. We first identify USGS GAGES-II basins that experienced more than 25% forest loss between 2000 and 2013. Based on basin disturbance type, geophysical setting, and climate regime, we formulate a conceptual model of which "disturbed" landscape characteristics we expect to dominate streamflow response. We test our conceptual model using WRF-Hydro by modeling a baseline (no disturbance) case, and then bringing in empirically-derived model state shifts representing key disturbance characteristics (e.g., leaf area index, rooting depth, overland roughness, surface detention). For each state update and each basin, we quantify

  18. Convergent structural responses of tropical forests to diverse disturbance regimes.

    PubMed

    Kellner, James R; Asner, Gregory P

    2009-09-01

    Size frequency distributions of canopy gaps are a hallmark of forest dynamics. But it remains unknown whether legacies of forest disturbance are influencing vertical size structure of landscapes, or space-filling in the canopy volume. We used data from LiDAR remote sensing to quantify distributions of canopy height and sizes of 434,501 canopy gaps in five tropical rain forest landscapes in Costa Rica and Hawaii. The sites represented a wide range of variation in structure and natural disturbance history, from canopy gap dynamics in lowland Costa Rica and Hawaii, to stages and types of stand-level dieback on upland Mauna Kea and Kohala volcanoes. Large differences in vertical canopy structure characterized these five tropical rain forest landscapes, some of which were related to known disturbance events. Although there were quantitative differences in the values of scaling exponents within and among sites, size frequency distributions of canopy gaps followed power laws at all sites and in all canopy height classes. Scaling relationships in gap size at different heights in the canopy were qualitatively similar at all sites, revealing a remarkable similarity despite clearly defined differences in species composition and modes of prevailing disturbance. These findings indicate that power-law gap-size frequency distributions are ubiquitous features of these five tropical rain forest landscapes, and suggest that mechanisms of forest disturbance may be secondary to other processes in determining vertical and horizontal size structure in canopies. PMID:19614757

  19. The immune response in steroid deficient mice

    PubMed Central

    Streng, Charlotte B.; Nathan, P.

    1973-01-01

    Adrenalectomy, gonadectomy and combined adrenalectomy—gonadectomy resulted in increased spleen weights, spleen cell counts and 19S plaque-forming cells following primary and secondary immunization of mice with SRBC when compared to controls. Plaque-forming cells of the 7S type in the spleen did not increase when measured on the eleventh day following the primary or the third day following secondary sensitization. Combined adrenalectomy—gonadectomy had a greater effect on spleen cell counts, spleen weights and plaque-forming cells in the primary and secondary response than either operation alone. Haemolysin titres were not significantly different between test and sham operated animals in the primary and secondary responses. In the primary responses, it appears that the increase in spleen weight and cell count is responsible for the increase in 19S plaque-forming cells. The response to a second injection of SRBC demonstrated that 19S antibody-producing cells increased three-fold in steroid depleted mice above the control values. In the test animals the 19S antibody-producing cells of the spleen were relatively enriched above that of the controls. PMID:4574579

  20. Electrodermal responsivity to interrogation questions and its relation to self-reported emotional disturbance.

    PubMed

    Gudjonsson, G H

    1982-01-01

    The relationship between skin resistance responses (SRRs) and self-reported emotional disturbance was studied in 24 males and 24 females. SRRs to seven interrogation questions were recorded and subjects were requested to rate on visual analogue scales how disturbing they had found each question. The mean within subject correlations were significant for both groups, suggesting that electrodermal responses to interrogation questions are significantly related to the extent to which the subjects find such questions disturbing. A particular question may elicit disturbance for a number of reasons including embarrassment, conflict over how to answer the question, and fear of the consequences of possible detection. PMID:7126718

  1. Molecular immune response of channel catfish immunized with live theronts of Ichthyophthirius multifiliis.

    PubMed

    Xu, De-Hai; Zhang, Qi-Zhong; Shoemaker, Craig A; Zhang, Dunhua; Moreira, Gabriel S A

    2016-07-01

    The parasite Ichthyophthirius multifiliis (Ich) has been reported in various freshwater fishes worldwide and results in severe losses to both food and aquarium fish production. The fish surviving natural infections or immunized with live theronts develop strong specific and non-specific immune responses. Little is known about how these immune genes are induced or how they interact and lead to specific immunity against Ichthyophthirius multifiliis in channel catfish Ictalurus punctatus. This study evaluated the differential expression of immune-related genes, including immunoglobulin, immune cell receptor, cytokine, complement factor and toll-like receptors in head kidney from channel catfish at different time points after immunization with live theronts of I. multifiliis. The immunized fish showed significantly higher anti-Ich antibody expressed as immobilization titer and ELISA titer than those of control fish. The vast majority of immunized fish (95%) survived theront challenge. Expression of IgM and IgD heavy chain genes exhibited a rapid increase from 4 hour (h4) to 2 days (d2) post immunization. Expression of immune cell receptor genes (CD4, CD8-α, MHC I, MHC II β, TcR-α, and TcR-β) showed up-regulation from h4 to d6 post immunization, indicating that different immune cells were actively involved in cellular immune response. Cytokine gene expression (IL-1βa, IL-1βb, IFN-γ and TNF-α) increased rapidly at h4 post immunization and were at an up-regulated level until d2 compared to the bovine serum albumin control. Expression of complement factor and toll-like receptor genes exhibited a rapid increase from h4 to d2 post immunization. Results of this study demonstrated differential expression of genes involved in the specific or non-specific immune response post immunization and that the vaccination against Ich resulted in protection against infection by I. multifiliis. PMID:27044331

  2. Extracellular Adenosine Mediates a Systemic Metabolic Switch during Immune Response

    PubMed Central

    Bajgar, Adam; Kucerova, Katerina; Jonatova, Lucie; Tomcala, Ales; Schneedorferova, Ivana; Okrouhlik, Jan; Dolezal, Tomas

    2015-01-01

    Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the “selfish” immune cells send during infection to secure more energy at the expense of other tissues. PMID:25915062

  3. The immune response to resistive breathing.

    PubMed

    Vassilakopoulos, T; Roussos, C; Zakynthinos, S

    2004-12-01

    Resistive breathing is an "immune challenge" for the body, initiating an inflammatory response consisting of an elevation of plasma cytokines, and the recruitment and activation of lymphocyte subpopulations. These cytokines do not originate from monocytes, but are, instead, produced within the diaphragm, secondary to the increased muscle activation. Oxidative stress is a major stimulus for the cytokine induction, secondary to resistive breathing. The production of cytokines within the diaphragm may be mediating the diaphragm muscle fibre injury that occurs with strenuous contractions, or contributing towards the expected repair process. These cytokines may also compromise diaphragmatic contractility or contribute towards the development of muscle cachexia. They may also have systemic effects, mobilising glucose from the liver and free fatty acid from the adipose tissue to the strenuously working respiratory muscles. At the same time, they stimulate the hypothalamic-pituitary-adrenal axis, leading to production of adrenocorticotropin and beta-endorphins. The adrenocorticotropin response may represent an attempt of the organism to reduce the injury occurring in the respiratory muscles via the production of glucocorticoids and the induction of the acute phase-response proteins. The beta-endorphin response would decrease the activation of the respiratory muscles and change the pattern of breathing, which becomes more rapid and shallow, possibly in an attempt to reduce and/or prevent further injury to the respiratory muscles. PMID:15572550

  4. Ontogeny of the Bovine Immune Response 1

    PubMed Central

    Schultz, R. D.; Dunne, H. W.; Heist, C. E.

    1973-01-01

    The ontogenesis of the bovine immune response was studied in three embryos (<40 days) and 106 fetuses of various ages. In the absence of overt antigenic stimulation, fetuses had lymphoid development of the thymus at 42 days of gestation, the spleen was structurally present at 55 days, and certain peripheral lymph nodes were present at 60 days. Mesenteric lymph nodes were structurally present by 100 days of gestation, and lymphoid tissue of the gastrointestinal tract, particularly the lower ileum, was observed in histologic sections of a 175-day fetus with a bacterial infection. Pyroninophilic cells, plasma cells, and germinal centers were present in lymph node sections of antigenically stimulated fetuses. Lymphoid tissue developed more rapidly in fetuses with bacteria, viral antigens, or apparent maternal red-blood-cell antigens than in the normal fetus. Thymic and splenic indices reached maximal values in the 205- to 220-day fetal age group. Immunoglobulin M (IgM)-containing cells were first observed, by immunofluorescence, in a single fetus at 59 days of gestation. Immunoglobulin G (IgG)-containing cells were observed at 145 days of gestation in one fetus with a bacterial and viral infection. IgM-containing cells were observed in 36 fetuses and IgM and IgG cells were present in seven fetuses. Spleen, lymph nodes, thymus, bone marrow, and liver of one fetus from a dam with lymphosarcoma had immunoglobulin-containing cells. Hemal lymph nodes, blood (buffy coat), Peyer patches, and heart and lung sections from fetuses with immunoglobulin-containing cells in spleen or lymph node did not have immunoglobulin-containing cells. Antigens of the virus of bovine virus diarrhea-mucosal disease (BVD) were detected in one fetus, and antigens of infectious bovine rhinotracheitis (IBR) virus were detected in three fetuses; however, viruses were not isolated in primary bovine embryonic kidney cells. Two of the three fetuses with IBR virus antigens had neutralizing serum antibody

  5. Human immune response to Mycobacterium tuberculosis antigens.

    PubMed Central

    Havlir, D V; Wallis, R S; Boom, W H; Daniel, T M; Chervenak, K; Ellner, J J

    1991-01-01

    Little is known about the immunodominant or protective antigens of Mycobacterium tuberculosis in humans. Cell-mediated immunity is necessary for protection, and healthy tuberculin-positive individuals are relatively resistant to exogenous reinfection. We compared the targets of the cell-mediated immune response in healthy tuberculin-positive individuals to those of tuberculosis patients and tuberculin-negative persons. By using T-cell Western blotting (immunoblotting) of nitrocellulose-bound M. tuberculosis culture filtrate, peaks of T-cell blastogenic activity were identified in the healthy tuberculin reactors at 30, 37, 44, 57, 64, 71 and 88 kDa. Three of these fractions (30, 64, and 71 kDa) coincided with previously characterized proteins: antigen 6/alpha antigen, HSP60, and HSP70, respectively. The blastogenic responses to purified M. tuberculosis antigen 6/alpha antigen and BCG HSP60 were assessed. When cultured with purified antigen 6/alpha antigen, lymphocytes of healthy tuberculin reactors demonstrated greater [3H]thymidine incorporation than either healthy tuberculin-negative controls or tuberculous patients (8,113 +/- 1,939 delta cpm versus 645 +/- 425 delta cpm and 1,019 +/- 710 delta cpm, respectively; P less than 0.01). Healthy reactors also responded to HSP60, although to a lesser degree than antigen 6/alpha antigen (4,276 +/- 1,095 delta cpm; P less than 0.05). Partially purified HSP70 bound to nitrocellulose paper elicited a significant lymphocyte blastogenic response in two of six of the tuberculous patients but in none of the eight healthy tuberculin reactors. Lymphocytes of none of five tuberculin-negative controls responded to recombinant antigens at 14 or 19 kDa or to HSP70. Antibody reactivity generally was inversely correlated with blastogenic response: tuberculous sera had high titer antibody to M. tuberculosis culture filtrate in a range from 35 to 180 kDa. This is the first systematic evaluation of the human response to a panel of native

  6. Local Immune Response in Helicobacter pylori Infection.

    PubMed

    Kivrak Salim, Derya; Sahin, Mehmet; Köksoy, Sadi; Adanir, Haydar; Süleymanlar, Inci

    2016-05-01

    There have been few studies concerning the cytokine profiles in gastric mucosa of Helicobacter pylori-infected patients with normal mucosa, chronic gastritis, and gastric carcinoma (GAC).In the present study, we aimed to elucidate the genomic expression levels and immune pathological roles of cytokines-interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-6, IL-10, transforming growth factor (TGF)-β, IL-17A, IL-32-in H pylori-infected patients with normal gastric mucosa (NGM; control), chronic active gastritis (CAG), and GAC. Genomic expression levels of these cytokines were assayed by real-time PCR analysis in gastric biopsy specimens obtained from 93 patients.We found that the genomic expression levels of IFN-γ, TNF-α, IL-6, IL-10, IL-17A mRNA were increased in the CAG group and those of TNF-α, IL-6, IL-10, IL-17A, TGF-β mRNA were increased in the GAC group with reference to H pylori-infected NGM group.This study is on the interest of cytokine profiles in gastric mucosa among individuals with normal, gastritis, or GAC. Our findings suggest that the immune response of gastric mucosa to infection of H pylori differs from patient to patient. For individual therapy, levels of genomic expression of IL-6 or other cytokines may be tracked in patients. PMID:27196487

  7. Nanomaterial Induced Immune Responses and Cytotoxicity.

    PubMed

    Ali, Ashraf; Suhail, Mohd; Mathew, Shilu; Shah, Muhammad Ali; Harakeh, Steve M; Ahmad, Sultan; Kazmi, Zulqarnain; Alhamdan, Mohammed Abdul Rahman; Chaudhary, Adeel; Damanhouri, Ghazi Abdullah; Qadri, Ishtiaq

    2016-01-01

    Nanomaterials are utilized in a wide array of end user products such as pharmaceuticals, electronics, clothes and cosmetic products. Due to its size (< 100 nm), nanoparticles have the propensity to enter through the airway and skin, making its path perilous with the potential to cause damages of varying severity. Once within the body, these particles have unconstrained access to different tissues and organs including the brain, liver, and kidney. As a result, nanomaterials may cause the perturbation of the immune system eliciting an inflammatory response and cytotoxicity. This potential role is dependent on many factors such as the characteristics of the nanomaterials, presence or absence of diseases, and genetic predisposition. Cobalt and nickel nanoparticles, for example, were shown to have inflammogenic properties, while silver nanoparticles were shown to reduce allergic inflammation. Just as asbestos fibers, carbon nanotubes were shown to cause lungs damage. Some nanomaterials were shown, based on animal studies, to result in cell damage, leading to the formation of pre-cancerous lesions. This review highlights the impact of nanomaterials on immune system and its effect on human health with toxicity consideration. It recommends the development of suitable animal models to study the toxicity and bio-clearance of nanomaterials and propose safety guidelines. PMID:27398432

  8. Malaria vaccines and human immune responses.

    PubMed

    Long, Carole A; Zavala, Fidel

    2016-08-01

    Despite reductions in malaria episodes and deaths over the past decade, there is still significant need for more effective tools to combat this serious global disease. The positive results with the Phase III trial of RTS,S directed to the circumsporozoite protein of Plasmodium falciparum have established that a vaccine against malaria can provide partial protection to children in endemic areas, but its limited efficacy and relatively short window of protection mandate that new generations of more efficacious vaccines must be sought. Evidence shows that anti-parasite immune responses can control infection against other stages as well, but translating these experimental findings into vaccines for blood stages has been disappointing and clinical efforts to test a transmission blocking vaccine are just beginning. Difficulties include the biological complexity of the organism with a large array of stage-specific genes many of which in the erythrocytic stages are antigenically diverse. In addition, it appears necessary to elicit high and long-lasting antibody titers, address the redundant pathways of merozoite invasion, and still seek surrogate markers of protective immunity. Most vaccine studies have focused on a single or a few antigens with an apparent functional role, but this is likely to be too restrictive, and broad, multi-antigen, multi-stage vaccines need further investigation. Finally, novel tools and biological insights involving parasite sexual stages and the mosquito vector will provide new avenues for reducing or blocking malaria transmission. PMID:27262417

  9. Local Immune Response in Helicobacter pylori Infection

    PubMed Central

    Kivrak Salim, Derya; Sahin, Mehmet; Köksoy, Sadi; Adanir, Haydar; Süleymanlar, Inci

    2016-01-01

    Abstract There have been few studies concerning the cytokine profiles in gastric mucosa of Helicobacter pylori–infected patients with normal mucosa, chronic gastritis, and gastric carcinoma (GAC). In the present study, we aimed to elucidate the genomic expression levels and immune pathological roles of cytokines—interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-6, IL-10, transforming growth factor (TGF)-β, IL-17A, IL-32—in H pylori–infected patients with normal gastric mucosa (NGM; control), chronic active gastritis (CAG), and GAC. Genomic expression levels of these cytokines were assayed by real-time PCR analysis in gastric biopsy specimens obtained from 93 patients. We found that the genomic expression levels of IFN-γ, TNF-α, IL-6, IL-10, IL-17A mRNA were increased in the CAG group and those of TNF-α, IL-6, IL-10, IL-17A, TGF-β mRNA were increased in the GAC group with reference to H pylori–infected NGM group. This study is on the interest of cytokine profiles in gastric mucosa among individuals with normal, gastritis, or GAC. Our findings suggest that the immune response of gastric mucosa to infection of H pylori differs from patient to patient. For individual therapy, levels of genomic expression of IL-6 or other cytokines may be tracked in patients. PMID:27196487

  10. The ionospheric response to disturbances initiated by an industrial explosion - The ionogram technique

    NASA Astrophysics Data System (ADS)

    Drobzhev, V. I.; Molostov, G. F.; Rudina, M. P.; Solonitsyna, N. F.; Fatkullin, M. N.

    It is proposed that vertical sounding can be used to study ionospheric conditions far away from an explosion. Three ionospheric responses to the explosion-initiated disturbances are found; the propagation velocities of the disturbances are 1500, 540, and 150 m/s. It is concluded that the vertical ionospheric sounding method is highly effective for the detection of disturbances initiated by ground-based explosions having a power of 100 to 1000 tons of TNT.

  11. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity. PMID:21796701

  12. Disentangling the relationship between tumor genetic programs and immune responsiveness.

    PubMed

    Bedognetti, Davide; Hendrickx, Wouter; Ceccarelli, Michele; Miller, Lance D; Seliger, Barbara

    2016-04-01

    Correlative studies in humans have demonstrated that an active immune microenvironment characterized by the presence of a T-helper 1 immune response typifies a tumor phenotype associated with better outcome and increased responsiveness to immune manipulation. This phenotype also signifies the counter activation of immune-regulatory mechanisms. Variables modulating the development of an effective anti-tumor immune response are increasingly scrutinized as potential therapeutic targets. Genetic alterations of cancer cells that functionally influence intratumoral immune response include mutational load, specific mutations of genes involved in oncogenic pathways and copy number aberrations involving chemokine and cytokine genes. Inhibiting oncogenic pathways that prevent the development of the immune-favorable cancer phenotype may complement modern immunotherapeutic approaches. PMID:26967649

  13. The effect of doxycycline treatment on the postvaccinal immune response in pigs

    SciTech Connect

    Pomorska-Mól, Małgorzata Kwit, Krzysztof; Markowska-Daniel, Iwona; Pejsak, Zygmunt

    2014-07-01

    The effect of a seven-day antibiotic therapy with doxycycline was investigated on the postvaccinal humoral and cellular immune response in pigs. The selected parameters of non-specific immunity were also studied. Fifty pigs were used (control not vaccinated (C, n = 10), control vaccinated (CV, n = 20), and experimental — received doxycycline (DOXY, n = 20)). For vaccination live-attenuated vaccine against pseudorabies (PR) was used. From day − 1 to day 5 pigs from DOXY group received doxycycline orally with drinking water, at the recommended dose. Pigs from DOXY and CV groups were vaccinated at 8 and 10 weeks of age. The results of the present study showed that cell-mediated postvaccinal immune response can be modulated by oral treatment with doxycycline. Significantly lower values of stimulation index were observed after PRV restimulation in doxycycline-treated pigs. Moreover, in the DOXY group a significant decrease in IFN-γ production after PRV restimulation was noted. The significantly lower number of CD4+CD8 + cells was also observed in doxy-treated, vaccinated pigs, 2 weeks after final vaccination. Simultaneously, specific humoral response was not disturbed. This study demonstrated the importance of defining the immune modulatory activity of doxycycline because it may alter the immune responses to vaccines. The exact mechanism of T-cell response suppression by doxycycline remains to be elucidated, however the influence of doxycycline on the secretion of various cytokines, including IFN-γ, may be considered as a possible cause. The present observations should prompt further studies on the practical significance of such phenomena in terms of clinical implications. - Highlights: • We examine the postvaccinal immune response in pigs treated with doxycycline. • Doxycycline negatively influenced the specific proliferation after recall stimulation. • Doxycycline negatively influenced secretion of IFN-γ after recall stimulation. • The lower number of

  14. Meeting report VLPNPV: Session 3: Immune responses.

    PubMed

    Morrison, Trudy G

    2014-01-01

    Virus-like particles (VLPs) and nano-particles (NP) are increasingly considered for both prophylactic and therapeutic vaccines for a wide variety of human and animal diseases. Indeed, 2 VLPs have already been licensed for use in humans, the human papilloma virus vaccine and the hepatitis B virus vaccine. (1) Reflecting this increased interest, a second international conference with a specific focus on VLPs and NP was held at the Salk Institute for Biological Studies in La Jolla, California, in June 2014. Approximately 100 attendees, hailing from many nations, came from academic institutions, research institutes, and biotech companies. A wide variety of topics were discussed, ranging from development and characterization of specific VLP and NP vaccine candidates to methods of production of these particles. Session three was focused on the general question of immune responses to VLPs. PMID:25529229

  15. Population-expression models of immune response

    NASA Astrophysics Data System (ADS)

    Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya

    2013-06-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.

  16. NKT Cell Immune Responses to Viral Infection

    PubMed Central

    Tessmer, Marlowe S.; Fatima, Ayesha; Paget, Christophe; Trottein, François; Brossay, Laurent

    2010-01-01

    Background Natural killer T (NKT) cells are a heterogeneous population of innate T cells that have attracted recent interest because of their potential to regulate immune responses to a variety of pathogens. The most widely studied NKT cell subset is the invariant (i)NKT cells that recognize glycolipids in the context of the CD1d molecule. The multifaceted methods of activation iNKT cells possess and their ability to produce regulatory cytokines has made them a primary target for therapeutic studies. Objective/Methods This review gives insight into the roles of iNKT cells during infectious diseases, particularly viral infections. We also highlight the different mechanisms leading to iNKT cell activation in response to pathogens. Conclusions The iNKT cell versatility allows them to detect and respond to several viral infections. However, therapeutic approaches to specifically target iNKT cells will require additional research. Notably, examination of the roles of non-invariant NKT cells in response to pathogens warrant further investigations. PMID:19236234

  17. Location, location, location: tissue-specific regulation of immune responses

    PubMed Central

    Hu, Wei; Pasare, Chandrashekhar

    2013-01-01

    Discovery of DCs and PRRs has contributed immensely to our understanding of induction of innate and adaptive immune responses. Activation of PRRs leads to secretion of inflammatory cytokines that regulate priming and differentiation of antigen-specific T and B lymphocytes. Pathogens enter the body via different routes, and although the same set of PRRs is likely to be activated, it is becoming clear that the route of immune challenge determines the nature of outcome of adaptive immunity. In addition to the signaling events initiated following innate-immune receptor activation, the cells of the immune system are influenced by the microenvironments in which they reside, and this has a direct impact on the resulting immune response. Specifically, immune responses could be influenced by specialized DCs, specific factors secreted by stromal cells, and also, by commensal microbiota present in certain organs. Following microbial detection, the complex interactions among DCs, stromal cells, and tissue-specific factors influence outcome of immune responses. In this review, we summarize recent findings on the phenotypic heterogeneity of innate and adaptive immune cells and how tissue-specific factors in the systemic and mucosal immune system influence the outcome of adaptive-immune responses. PMID:23825388

  18. Identifying functional groups for response to disturbance in an abandoned pasture

    NASA Astrophysics Data System (ADS)

    Lavorel, Sandra; Touzard, Blaise; Lebreton, Jean-Dominique; Clément, Bernard

    1998-06-01

    In an abandoned pasture in Brittany, we compared artificial small-scale disturbances to natural disturbances by wild boar and undisturbed vegetation. We developed a multivariate statistical approach which analyses how species biological attributes explain the response of community composition to disturbances. This technique, which reconciles the inductive and deductive approaches for functional classifications, identifies groups of species with similar responses to disturbance and characterizes their biological profiles. After 5 months of recolonization, artificial disturbances had a greater species richness than undisturbed vegetation as a result of recruitment of new species without the exclusion of pre-existing matrix species. Species morphology, described by canopy structure, canopy height and lateral spread, explained a large part (16 %) of community response to disturbance. Regeneration strategies, described by life history, seed mass, dispersal agent, dormancy and the existence of vegetative multiplication, explained a smaller part of community response to disturbance (8 %). Artificial disturbances were characterized by therophyte and compact rosettes with moderately dormant seeds, including a number of Asteraceae and other early successional species. Natural disturbances were colonized by leafy guerrilla species without seed dormancy. Few species were tightly related to undisturbed vegetation and were essentially grasses with a phalanx rosette morphology. The functional classification obtained is consistent with the classification of the community into fugitives, regenerators and persistors. These groups are structured according to Grubb's model for temperate grasslands, with regenerators and persistors in the matrix and fugitives taking advantage of gaps open by small-scale disturbances. The conjunction of functional diversity and species diversity within functional groups is the key to resilience to disturbance, an important ecosystem function.

  19. Responses of temperate forest productivity to insect and pathogen disturbances.

    PubMed

    Flower, Charles E; Gonzalez-Meler, Miquel A

    2015-01-01

    Pest and pathogen disturbances are ubiquitous across forest ecosystems, impacting their species composition, structure, and function. Whereas severe abiotic disturbances (e.g., clear-cutting and fire) largely reset successional trajectories, pest and pathogen disturbances cause diffuse mortality, driving forests into nonanalogous system states. Biotic perturbations that disrupt forest carbon dynamics either reduce or enhance net primary production (NPP) and carbon storage, depending on pathogen type. Relative to defoliators, wood borers and invasive pests have the largest negative impact on NPP and the longest recovery time. Forest diversity is an important contributing factor to productivity: NPP is neutral, marginally enhanced, or reduced in high-diversity stands in which a small portion of the canopy is affected (temperate deciduous or mixed forests) but very negative in low-diversity stands in which a large portion of the canopy is affected (western US forests). Pests and pathogens reduce forest structural and functional redundancy, affecting their resilience to future climate change or new outbreaks. Therefore, pests and pathogens can be considered biotic forcing agents capable of causing consequences of similar magnitude to climate forcing factors. PMID:25580836

  20. Responses of temperate forest productivity to insect and pathogen disturbances

    NASA Astrophysics Data System (ADS)

    Flower, C. E.; Gonzalez-Meler, M. A.

    2014-12-01

    Climate forcing factors have been documented to directly (e.g. CO2 fertilization) or indirectly (e.g. temperature and vapor pressure deficit) affect net primary productivity (NPP) of forests. Climate variations can also affect the vulnerability of forests to pests and pathogens, causing diffuse or widespread mortality. The introduction of novel pests is causing rapid mortality of targeted species with undetermined effects on forest productivity: NPP could decrease or increase depending on the severity (proportion of basal area impacted) and species diversity. We attempted to document the impact of diffuse mortality caused by insect outbreaks on North American temperate forests through synthesis of literature. Despite the large number of studies (>500) only a few (12) documented NPP in a systematic manner. The magnitude of insect and pathogen disturbance was larger in western than eastern forests due to the redundancy and functional diversity of temperate deciduous and mixed deciduous forests. Recovery from disturbance was more rapid from diffuse short duration defoliation events relative to the long lasting impacts of wood boring insects. Forest resilience may decrease as insect disturbance increases, particularly with generalist invasive pests that target a variety of species. We conclude that these biotic interactions, particularly when caused by invasive pests, impose biological forcing to forest NPP at similar magnitude and time scales than climate forcing.

  1. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    PubMed

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993

  2. Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance

    PubMed Central

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993

  3. Disturbance-specific social responses in long-finned pilot whales, Globicephala melas

    PubMed Central

    Visser, Fleur; Curé, Charlotte; Kvadsheim, Petter H.; Lam, Frans-Peter A.; Tyack, Peter L.; Miller, Patrick J. O.

    2016-01-01

    Social interactions among animals can influence their response to disturbance. We investigated responses of long-finned pilot whales to killer whale sound playbacks and two anthropogenic sources of disturbance: tagging effort and naval sonar exposure. The acoustic scene and diving behaviour of tagged individuals were recorded along with the social behaviour of their groups. All three disturbance types resulted in larger group sizes, increasing social cohesion during disturbance. However, the nature and magnitude of other responses differed between disturbance types. Tagging effort resulted in a clear increase in synchrony and a tendency to reduce surface logging and to become silent (21% of cases), whereas pilot whales increased surface resting during sonar exposure. Killer whale sounds elicited increased calling rates and the aggregation of multiple groups, which approached the sound source together. This behaviour appears to represent a mobbing response, a likely adaptive social defence against predators or competitors. All observed response-tactics would reduce risk of loss of group coordination, suggesting that, in social pilot whales, this could drive behavioural responses to disturbance. However, the behavioural means used to achieve social coordination depends upon other considerations, which are disturbance-specific. PMID:27353529

  4. Disturbance-specific social responses in long-finned pilot whales, Globicephala melas.

    PubMed

    Visser, Fleur; Curé, Charlotte; Kvadsheim, Petter H; Lam, Frans-Peter A; Tyack, Peter L; Miller, Patrick J O

    2016-01-01

    Social interactions among animals can influence their response to disturbance. We investigated responses of long-finned pilot whales to killer whale sound playbacks and two anthropogenic sources of disturbance: tagging effort and naval sonar exposure. The acoustic scene and diving behaviour of tagged individuals were recorded along with the social behaviour of their groups. All three disturbance types resulted in larger group sizes, increasing social cohesion during disturbance. However, the nature and magnitude of other responses differed between disturbance types. Tagging effort resulted in a clear increase in synchrony and a tendency to reduce surface logging and to become silent (21% of cases), whereas pilot whales increased surface resting during sonar exposure. Killer whale sounds elicited increased calling rates and the aggregation of multiple groups, which approached the sound source together. This behaviour appears to represent a mobbing response, a likely adaptive social defence against predators or competitors. All observed response-tactics would reduce risk of loss of group coordination, suggesting that, in social pilot whales, this could drive behavioural responses to disturbance. However, the behavioural means used to achieve social coordination depends upon other considerations, which are disturbance-specific. PMID:27353529

  5. Targeting the tumor microenvironment to enhance antitumor immune responses

    PubMed Central

    Van der Jeught, Kevin; Bialkowski, Lukasz; Daszkiewicz, Lidia; Broos, Katrijn; Goyvaerts, Cleo; Renmans, Dries; Van Lint, Sandra; Heirman, Carlo; Thielemans, Kris; Breckpot, Karine

    2015-01-01

    The identification of tumor-specific antigens and the immune responses directed against them has instigated the development of therapies to enhance antitumor immune responses. Most of these cancer immunotherapies are administered systemically rather than directly to tumors. Nonetheless, numerous studies have demonstrated that intratumoral therapy is an attractive approach, both for immunization and immunomodulation purposes. Injection, recruitment and/or activation of antigen-presenting cells in the tumor nest have been extensively studied as strategies to cross-prime immune responses. Moreover, delivery of stimulatory cytokines, blockade of inhibitory cytokines and immune checkpoint blockade have been explored to restore immunological fitness at the tumor site. These tumor-targeted therapies have the potential to induce systemic immunity without the toxicity that is often associated with systemic treatments. We review the most promising intratumoral immunotherapies, how these affect systemic antitumor immunity such that disseminated tumor cells are eliminated, and which approaches have been proven successful in animal models and patients. PMID:25682197

  6. Spaceflight and immune responses of rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Morton, Darla S.; Swiggett, Jeanene P.; Hakenewerth, Anne M.; Fowler, Nina A.

    1995-01-01

    The effects of restraint on immunological parameters was determined in an 18 day ARRT (adult rhesus restraint test). The monkeys were restrained for 18 days in the experimental station for the orbiting primate (ESOP), the chair of choice for Space Shuttle experiments. Several immunological parameters were determined using peripheral blood, bone marrow, and lymph node specimens from the monkeys. The parameters included: response of bone marrow cells to GM-CSF (granulocyte-macrophage colony stimulating factor), leukocyte subset distribution, and production of IFN-a (interferon-alpha) and IFN-gamma (interferon-gamma). The only parameter changed after 18 days of restraint was the percentage of CD8+ T cells. No other immunological parameters showed changes due to restraint. Handling and changes in housing prior to the restraint period did apparently result in some restraint-independent immunological changes. Handling must be kept to a minimum and the animals allowed time to recover prior to flight. All experiments must be carefully controlled. Restraint does not appear to be a major issue regarding the effects of space flight on immune responses.

  7. Spaceflight and Immune Responses of Rhesus Monkeys

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1997-01-01

    In the grant period, we perfected techniques for determination of interleukin production and leukocyte subset analysis of rhesus monkeys. These results are outlined in detail in publication number 2, appended to this report. Additionally, we participated in the ARRT restraint test to determine if restraint conditions for flight in the Space Shuttle could contribute to any effects of space flight on immune responses. All immunological parameters listed in the methods section were tested. Evaluation of the data suggests that the restraint conditions had minimal effects on the results observed, but handling of the monkeys could have had some effect. These results are outlined in detail in manuscript number 3, appended to this report. Additionally, to help us develop our rhesus monkey immunology studies, we carried out preliminary studies in mice to determine the effects of stressors on immunological parameters. We were able to show that there were gender-based differences in the response of immunological parameters to a stressor. These results are outlined in detail in manuscript number 4, appended to this report.

  8. Evidence of bacterioplankton community adaptation in response to long-term mariculture disturbance

    PubMed Central

    Xiong, Jinbo; Chen, Heping; Hu, Changju; Ye, Xiansen; Kong, Dingjiang; Zhang, Demin

    2015-01-01

    Understanding the underlying mechanisms that shape the temporal dynamics of a microbial community has important implications for predicting the trajectory of an ecosystem’s response to anthropogenic disturbances. Here, we evaluated the seasonal dynamics of bacterioplankton community composition (BCC) following more than three decades of mariculture disturbance in Xiangshan Bay. Clear seasonal succession and site (fish farm and control site) separation of the BCC were observed, which were primarily shaped by temperature, dissolved oxygen and sampling time. However, the sensitive bacterial families consistently changed in relative abundance in response to mariculture disturbance, regardless of the season. Temporal changes in the BCC followed the time-decay for similarity relationship at both sites. Notably, mariculture disturbance significantly (P < 0.001) flattened the temporal turnover but intensified bacterial species-to-species interactions. The decrease in bacterial temporal turnover under long-term mariculture disturbance was coupled with a consistent increase in the percentage of deterministic processes that constrained bacterial assembly based on a null model analysis. The results demonstrate that the BCC is sensitive to mariculture disturbance; however, a bacterioplankton community could adapt to a long-term disturbance via attenuating temporal turnover and intensifying species-species interactions. These findings expand our current understanding of microbial assembly in response to long-term anthropogenic disturbances. PMID:26471739

  9. The unfolded protein response in immunity and inflammation.

    PubMed

    Grootjans, Joep; Kaser, Arthur; Kaufman, Randal J; Blumberg, Richard S

    2016-08-01

    The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses. PMID:27346803

  10. Q fever in pregnant goats: humoral and cellular immune responses

    PubMed Central

    2013-01-01

    Q fever is a zoonosis caused by the intracellular bacterium Coxiella burnetii. Both humoral and cellular immunity are important in the host defence against intracellular bacteria. Little is known about the immune response to C. burnetii infections in domestic ruminants even though these species are the major source of Q fever in humans. To investigate the goat’s immune response we inoculated groups of pregnant goats via inhalation with a Dutch outbreak isolate of C. burnetii. All animals were successfully infected. Phase 1 and Phase 2 IgM- and IgG-specific antibodies were measured. Cellular immune responses were investigated by interferon-gamma, enzyme-linked immunosorbent spot test (IFN-γ Elispot), lymphocyte proliferation test (LPT) and systemic cytokines. After two weeks post inoculation (wpi), a strong anti-C. burnetii Phase 2 IgM and IgG antibody response was observed while the increase in IgM anti-Phase 1 antibodies was less pronounced. IgG anti-Phase 1 antibodies started to rise at 6 wpi. Cellular immune responses were observed after parturition. Our results demonstrated humoral and cellular immune responses to C. burnetii infection in pregnant goats. Cell-mediated immune responses did not differ enough to distinguish between Coxiella-infected and non-infected pregnant animals, whereas a strong-phase specific antibody response is detected after 2 wpi. This humoral immune response may be useful in the early detection of C. burnetii-infected pregnant goats. PMID:23915213

  11. Maternal antibodies and infant immune responses to vaccines.

    PubMed

    Edwards, Kathryn M

    2015-11-25

    Infants are born with immature immune systems, making it difficult for them to effectively respond to the infectious pathogens encountered shortly after birth. Maternal antibody is actively transported across the placenta and serves to provide protection to the newborn during the first weeks to months of life. However, maternal antibody has been shown repeatedly to inhibit the immune responses of young children to vaccines. The mechanisms for this inhibition are presented and the impact on ultimate immune responses is discussed. PMID:26256526

  12. Innate immune response development in nestling tree swallows

    USGS Publications Warehouse

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  13. Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response

    PubMed Central

    Curtale, Graziella; Citarella, Franca

    2013-01-01

    Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs) in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs) are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs) could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response. PMID:23975170

  14. A framework to assess biogeochemical response to ecosystem disturbance using nutrient partitioning ratios

    USGS Publications Warehouse

    Kranabetter, J. Marty; McLauchlan, Kendra K.; Enders, Sara K.; Fraterrigo, Jennifer M.; Higuera, Philip E.; Morris, Jesse L.; Rastetter, Edward B.; Barnes, Rebecca; Buma, Brian; Gavin, Daniel G.; Gerhart, Laci M.; Gillson, Lindsey; Hietz, Peter; Mack, Michelle C.; McNeil, Brenden; Perakis, Steven

    2016-01-01

    Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of soil and plant nutrient stocks in mature ecosystems represents a characteristic site property. Focusing on nitrogen (N), we hypothesize that this partitioning ratio (soil N: plant N) will undergo a predictable trajectory after disturbance. We investigate the nature of this partitioning ratio with three approaches: (1) nutrient stock data from forested ecosystems in North America, (2) a process-based ecosystem model, and (3) conceptual shifts in site nutrient availability with altered disturbance frequency. Partitioning ratios could be applied to a variety of ecosystems and successional states, allowing for improved temporal scaling of disturbance events. The generally short-term empirical evidence for recovery trajectories of nutrient stocks and partitioning ratios suggests two areas for future research. First, we need to recognize and quantify how disturbance effects can be accreting or depleting, depending on whether their net effect is to increase or decrease ecosystem nutrient stocks. Second, we need to test how altered disturbance frequencies from the present state may be constructive or destructive in their effects on biogeochemical cycling and nutrient availability. Long-term studies, with repeated sampling of soils and vegetation, will be essential in further developing this framework of biogeochemical response to disturbance.

  15. Simulation of the low latitude ionosphere response to disturbed winds and electric fields: Brazilian region

    NASA Astrophysics Data System (ADS)

    Batista, Inez S.; Souza, Jonas; Bailey, Graham; Bravo, Manuel

    2016-07-01

    Modeling the ionosphere during disturbed periods is one of the most challenging tasks due to the complexity of the phenomena that affect the electric fields and the thermosphere environment as whole. It is well known that depending on the direction of the interplanetary magnetic field disturbance electric fields (undershielding or overshielding) can penetrate from high to low latitudes causing significant disturbances in the electron density distribution and in the equatorial ionization anomaly (EIA) development. Besides that, the large amount of energy deposited in the polar region during disturbed periods will be responsible for the generation of disturbed winds that will flow towards the equator where they produce a disturbance dynamo which also affects the EIA density distribution. The TIDs and TADs are also sources of disturbances that propagate at high velocity reaching the equator 2-3 hours after the beginning of the magnetic storm. In this work we use the Sheffield University Plasmasphere-Ionosphere Model at INPE (SUPIM-INPE), to simulate the drastic effects that were observed at the low latitude ionosphere in the Brazilian region during a very intense magnetic storm event. A few models are tested for the disturbed electric field and wind. The simulation results showed that the observations are better explained when considering a traveling waveform disturbance propagating from north to south at a velocity equal to 200 m/s.

  16. Highly variable functional response of microbial communities to experimental temperature disturbances

    NASA Astrophysics Data System (ADS)

    Wanek, Wolfgang; Mooshammer, Maria; Hofhansl, Florian; Frank, Alexander H.; Leitner, Sonja; Schnecker, Jörg; Wild, Birgit; Watzka, Margarete; Keiblinger, Katharina M.; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2015-04-01

    Climate change is expected to alter the frequency and intensity of climate excursions, such as heat, drought and freeze-thaw events, requiring a thorough mechanistic understanding of the response of microbially-mediated nutrient cycling processes to such transient but severe disturbances. Here, we investigated the resistance and resilience of major gross processes of microbial carbon (C), nitrogen (N) and phosphorus (P) cycling, determined by isotope pool dilution assays, as well as potential enzyme activities in decomposing beech litter to two contrasting temperature disturbances (freeze-thaw and heat treatment for 9 days) in four different litter types. Microbial processes were substantially altered by the temperature disturbances but both the magnitude and direction of the disturbance effect varied among them. Phosphorus processes and hydrolytic enzyme activities showed lowest resistance as well as resilience, whereas N processes were more resistant and C processes intermediate. In general, responses of microbial processes were mainly consistent across disturbances but partially dependent on litter-specific microbial communities. The transient disturbances affected the relative availability of essential nutrients through a decoupling of microbial C, N and P cycling processes. Understanding the underlying mechanisms through which a decoupling of the supply of these elements as a result of microbial responses to environmental disturbances occurs will help to better predicting ecosystem responses to global change.

  17. Local immune response and protection in the guinea pig keratoconjunctivitis model following immunization with Shigella vaccines.

    PubMed Central

    Hartman, A B; Van de Verg, L L; Collins, H H; Tang, D B; Bendiuk, N O; Taylor, D N; Powell, C J

    1994-01-01

    This study used the guinea pig keratoconjunctivitis model to examine the importance of route of administration (mucosal versus parenteral), frequency and timing of immunization (primary versus boosting immunization), and form of antigen given (live attenuated vaccine strain versus O-antigen-protein conjugate) on the production of protective immunity against Shigella infection. Since local immune response to the lipopolysaccharide (LPS) O-antigen of Shigella spp. is thought to be important for protection against disease, O-antigen-specific antibody-secreting cells (ASC) in the spleen and regional lymph nodes of immunized animals were measured by using an ELISPOT assay. Results indicated that protective efficacy was associated with a strong O-antigen-specific ASC response, particularly in the superficial ventral cervical lymph nodes draining the conjunctivae. In naive animals, a strong ASC response in the cervical lymph nodes and protection against challenge were detected only in animals that received a mucosal immunization. Protection in these animals was increased by a boosting mucosal immunization. While parenteral immunization alone with an O-antigen-protein conjugate vaccine did not protect naive animals against challenge, a combined parenteral-mucosal regimen elicited enhanced protection without the addition of a boosting immunization. Although O-antigen-specific serum immunoglobulin A titers were significantly higher in animals receiving a mucosal immunization, there was no apparent correlation between levels of serum antibody and protection against disease. PMID:7507892

  18. The anticancer immune response: indispensable for therapeutic success?

    PubMed Central

    Zitvogel, Laurence; Apetoh, Lionel; Ghiringhelli, François; André, Fabrice; Tesniere, Antoine; Kroemer, Guido

    2008-01-01

    Although the impact of tumor immunology on the clinical management of most cancers is still negligible, there is increasing evidence that anticancer immune responses may contribute to the control of cancer after conventional chemotherapy. Thus, radiotherapy and some chemotherapeutic agents, in particular anthracyclines, can induce specific immune responses that result either in immunogenic cancer cell death or in immunostimulatory side effects. This anticancer immune response then helps to eliminate residual cancer cells (those that fail to be killed by chemotherapy) or maintains micrometastases in a stage of dormancy. Based on these premises, in this Review we address the question, How may it be possible to ameliorate conventional therapies by stimulating the anticancer immune response? Moreover, we discuss the rationale of clinical trials to evaluate and eventually increase the contribution of antitumor immune responses to the therapeutic management of neoplasia. PMID:18523649

  19. Tipping a favorable CNS intratumoral immune response using immune stimulation combined with inhibition of tumor-mediated immune suppression.

    PubMed

    Kong, Ling-Yuan; Wei, Jun; Fuller, Gregory N; Schrand, Brett; Gabrusiewicz, Konrad; Zhou, Shouhao; Rao, Ganesh; Calin, George; Gilboa, Eli; Heimberger, Amy B

    2016-05-01

    High-grade gliomas are notoriously heterogeneous regarding antigen expression, effector responses, and immunosuppressive mechanisms. Therefore, combinational immune therapeutic approaches are more likely to impact a greater number of patients and result in longer, durable responses. We have previously demonstrated the monotherapeutic effects of miR-124, which inhibits the signal transducer and activator of transcription 3 (STAT3) immune suppressive pathway, and immune stimulatory 4-1BB aptamers against a variety of malignancies, including genetically engineered immune competent high-grade gliomas. To evaluate potential synergy, we tested an immune stimulatory aptamer together with microRNA-124 (miRNA-124), which blocks tumor-mediated immune suppression, and found survival to be markedly enhanced, including beyond that produced by monotherapy. The synergistic activity appeared to be not only secondary to enhanced CD3(+) cell numbers but also to reduced macrophage immune tumor trafficking, indicating that a greater therapeutic benefit can be achieved with approaches that both induce immune activation and inhibit tumor-mediated immune suppression within the central nervous system (CNS) tumors. PMID:27467917

  20. [Physiological and growth responses of Sabina vulgaris to disturbance of leaf removal].

    PubMed

    He, W

    2001-04-01

    To examine the physiological and growth responses to Sabina vulgaris to natural disturbance, a field experiment to simulate the grazing and pest disturbance was conducted in Maowusu sandy land through artificially removing leaves. The disturbance of leaf removal could modify the species' diurnal physiological dynamics through changing the timing of extreme values, and moreover, change the average daily values of physiological indexes significantly. Leaf removal could affect the growth traits, but not biomass allocation significantly. The consequences of the disturbance were confined by its means and intensity, and there existed significant differences in sensitivity of different physiological and growth characteristics e.g., net photosynthesis rate and transpiration rate to leaf removal. The disturbance of leaf removal, especially that of old leaf removal, had compensation effects. Therefore, moderately removing the leaves on the shoots with less than 2 years old could enhance the growth and the biomass accumulation of current-year shoots. PMID:11757356

  1. Biomimetic and synthetic interfaces to tune immune responses (Review)

    PubMed Central

    Garapaty, Anusha; Champion, Julie A.

    2015-01-01

    Organisms depend upon complex intercellular communication to initiate, maintain, or suppress immune responses during infection or disease. Communication occurs not only between different types of immune cells, but also between immune cells and nonimmune cells or pathogenic entities. It can occur directly at the cell–cell contact interface, or indirectly through secreted signals that bind cell surface molecules. Though secreted signals can be soluble, they can also be particulate in nature and direct communication at the cell–particle interface. Secreted extracellular vesicles are an example of native particulate communication, while viruses are examples of foreign particulates. Inspired by communication at natural immunological interfaces, biomimetic materials and designer molecules have been developed to mimic and direct the type of immune response. This review describes the ways in which native, biomimetic, and designer materials can mediate immune responses. Examples include extracellular vesicles, particles that mimic immune cells or pathogens, and hybrid designer molecules with multiple signaling functions, engineered to target and bind immune cell surface molecules. Interactions between these materials and immune cells are leading to increased understanding of natural immune communication and function, as well as development of immune therapeutics for the treatment of infection, cancer, and autoimmune disease. PMID:26178262

  2. The innate immune response in the central nervous system and its role in glioma immune surveillance.

    PubMed

    Friese, M A; Steinle, A; Weller, M

    2004-10-01

    The innate immune system encompasses natural killer (NK) cells, macrophages and granulocytes, the complement system and antimicrobial peptides. Recognition pathways of the innate immune system include microbial non-self recognition, missing-self recognition and induced- self recognition. The central nervous system (CNS) participates in responses of the innate immune system. However, immune inhibitory and anti-inflammatory mechanisms physiologically outbalance and counteract immune activity and thereby limit immune-mediated tissue damage in the brain. Human gliomas appear to take advantage of this immunosuppressive milieu. Moreover, glioma cells themselves interfere with anti-tumor immune responses by expressing immune inhibitory cell surface molecules, such as HLA-G, or by releasing soluble immunosuppressants such as transforming growth factor (TGF)-beta. Yet, although glioma cells exhibit all cellular features of malignancy, these tumors very rarely metastasize outside the brain, raising the possibility of immune-mediated control of these cells outside, but not inside, the brain. Accordingly, activating the innate immune system by forcing glioma cells to express danger signals such as NKG2D ligands is a promising strategy of immunotherapy for these tumors. PMID:15585981

  3. Transcriptional analysis of the innate immune response using the avian innate immunity microarray

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The avian innate immunity microarray (AIIM) is a genomics tool designed to study the transcriptional activity of the avian immune response (Cytogenet. Genome Res. 117:139-145, 2007). It is an avian cDNA microarray representing 4,959 avian genes spotted in triplicate. The AIIM contains 25 avian int...

  4. Immune markers and correlates of protection for vaccine induced immune responses.

    PubMed

    Thakur, Aneesh; Pedersen, Lasse E; Jungersen, Gregers

    2012-07-13

    Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against chronic infections in neither human nor veterinary medicine. Technological and conceptual advancements within cell-mediated immunology have led to a number of new immunological read-outs with the potential to emerge as correlates of vaccine induced protection. For T(H)1 type responses, antigen-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination, through recombinant major histocompatibility complex (MHC) class I tetramers loaded with relevant peptides, has opened a new vista to include CTL responses in the evaluation of protective immune responses. Here, we review different immune markers and new candidates for correlates of a protective vaccine induced immune response against chronic infections and how successful they have been in defining the protective immunity in human and veterinary medicine. PMID:22658928

  5. Endocrine factors modulating immune responses in pregnancy.

    PubMed

    Schumacher, Anne; Costa, Serban-Dan; Zenclussen, Ana Claudia

    2014-01-01

    How the semi-allogeneic fetus is tolerated by the maternal immune system remains a fascinating phenomenon. Despite extensive research activity in this field, the mechanisms underlying fetal tolerance are still not well understood. However, there are growing evidences that immune-immune interactions as well as immune-endocrine interactions build up a complex network of immune regulation that ensures fetal survival within the maternal uterus. In the present review, we aim to summarize emerging research data from our and other laboratories on immune modulating properties of pregnancy hormones with a special focus on progesterone, estradiol, and human chorionic gonadotropin. These pregnancy hormones are critically involved in the successful establishment, maintenance, and termination of pregnancy. They suppress detrimental maternal alloresponses while promoting tolerance pathways. This includes the reduction of the antigen-presenting capacity of dendritic cells (DCs), monocytes, and macrophages as well as the blockage of natural killer cells, T and B cells. Pregnancy hormones also support the proliferation of pregnancy supporting uterine killer cells, retain tolerogenic DCs, and efficiently induce regulatory T (Treg) cells. Furthermore, they are involved in the recruitment of mast cells and Treg cells into the fetal-maternal interface contributing to a local accumulation of pregnancy-protective cells. These findings highlight the importance of endocrine factors for the tolerance induction during pregnancy and encourage further research in the field. PMID:24847324

  6. Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest

    NASA Astrophysics Data System (ADS)

    Matheny, Ashley M.; Bohrer, Gil; Vogel, Christoph S.; Morin, Timothy H.; He, Lingli; Frasson, Renato Prata de Moraes; Mirfenderesgi, Golnazalsadat; Schäfer, Karina V. R.; Gough, Christopher M.; Ivanov, Valeriy Y.; Curtis, Peter S.

    2014-12-01

    Intermediate disturbances shape forest structure and composition, which may in turn alter carbon, nitrogen, and water cycling. We used a large-scale experiment in a forest in northern lower Michigan where we prescribed an intermediate disturbance by stem girdling all canopy-dominant early successional trees to simulate an accelerated age-related senescence associated with natural succession. Using 3 years of eddy covariance and sap flux measurements in the disturbed area and an adjacent control plot, we analyzed disturbance-induced changes to plot level and species-specific transpiration and stomatal conductance. We found transpiration to be ~15% lower in disturbed plots than in unmanipulated control plots. However, species-specific responses to changes in microclimate varied. While red oak and white pine showed increases in stomatal conductance during postdisturbance (62.5 and 132.2%, respectively), red maple reduced stomatal conductance by 36.8%. We used the hysteresis between sap flux and vapor pressure deficit to quantify diurnal hydraulic stress incurred by each species in both plots. Red oak, a ring porous anisohydric species, demonstrated the largest mean relative hysteresis, while red maple, bigtooth aspen, and paper birch, all diffuse porous species, had the lowest relative hysteresis. We employed the Penman-Monteith model for LE to demonstrate that these species-specific responses to disturbance are not well captured using current modeling strategies and that accounting for changes to leaf area index and plot microclimate are insufficient to fully describe the effects of disturbance on transpiration.

  7. The Application of Disturbance Response Decoupling to the Vibration Control of an Electron Beam Lithography System

    NASA Astrophysics Data System (ADS)

    Wang, Fu-Cheng; Tsao, Yu-Chia; Yen, Jia-Yush

    2009-06-01

    This paper demonstrates a method to control an electron beam lithography (EBL) system's vibrations with a newly developed technique called disturbance response decoupling (DRD). Resolution requirements make the vibration control of EBL systems increasingly important. Satisfying performance criteria requires considering two kinds of disturbances, load disturbances from the machine and ground disturbances from the environment, in EBL systems. Controlling lithography tools' vibrations has been studied for many years; however, designing controllers by traditional approaches can be very complicated because of these two types of disturbances' conflicting requirements. Therefore, DRD techniques were applied for this paper to deal independently with these performance requirements. The DRD control method was initially proposed in 2001 to address vehicle suspension control problems. This paper proposes a generalized and experimentally realized DRD control structure to suppress an EBL system's vibrations. The work was carried out in three parts. First, passive isolators were used to isolate ground disturbances. Second, active components were applied to improve the system's responses to load disturbances. Finally, the system was integrated to verify its overall performance. Simulations and experiments verify the proposed control strategies' effectiveness.

  8. Immune Response in Thyroid Cancer: Widening the Boundaries

    PubMed Central

    Ward, Laura Sterian

    2014-01-01

    The association between thyroid cancer and thyroid inflammation has been repeatedly reported and highly debated in the literature. In fact, both molecular and epidemiological data suggest that these diseases are closely related and this association reinforces that the immune system is important for thyroid cancer progression. Innate immunity is the first line of defensive response. Unlike innate immune responses, adaptive responses are highly specific to the particular antigen that induced them. Both branches of the immune system may interact in antitumor immune response. Major effector cells of the immune system that directly target thyroid cancer cells include dendritic cells, macrophages, polymorphonuclear leukocytes, mast cells, and lymphocytes. A mixture of immune cells may infiltrate thyroid cancer microenvironment and the balance of protumor and antitumor activity of these cells may be associated with prognosis. Herein, we describe some evidences that immune response may be important for thyroid cancer progression and may help us identify more aggressive tumors, sparing the vast majority of patients from costly unnecessary invasive procedures. The future trend in thyroid cancer is an individualized therapy. PMID:25328756

  9. Proteasome function shapes innate and adaptive immune responses.

    PubMed

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively. PMID:27343191

  10. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses.

    PubMed

    Doran, Todd M; Sarkar, Mohosin; Kodadek, Thomas

    2016-05-18

    Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field. PMID:27115249

  11. Disturbance of intertidal sediments: the response of bacteria and foraminifera

    NASA Astrophysics Data System (ADS)

    Langezaal, A. M.; Ernst, S. R.; Haese, R. R.; van Bergen, P. F.; van der Zwaan, G. J.

    2003-10-01

    Incubation experiments are common in marine experimental studies but the impact on organisms and geochemical parameters is poorly understood. Here, the re-establishment of vertical bacterial and foraminiferal zonation in intertidal sediments was studied after sieving and subsequent incubation of sediment. Living (Rose Bengal stained) foraminifera were counted and redox sensitive elements in the pore water were measured using a voltammetric microelectrode. Bacterial abundances were quantified using phospholipid derived fatty acid (PLFA) methyl esters in the range of C12-C22 released from intact phospholipids. Foraminifera appeared to be predominantly dependent on the presence of oxygen; they re-migrated to the top oxygenated 3 mm of the sediment within 21 days. Total bacterial abundance did not re-establish to original levels even after 49 days. Total fatty acid concentration increased to a depth of at least 70 mm in the field, but decreased with depth in the sieved sediments of the microcosms. This difference is attributed to macrobenthic activity and physical mixing in the field, causing an increased downward flux of electron acceptors (O 2, NO 3-, Mn(IV), Fe(III)) which is essential for dissimilatory processes at some centimetres depth. In the experimental microcosms, where macrobenthos was removed by sieving, foraminifera alone were not capable of this sediment mixing. The relative amounts of the individual PLFAs were constant with depth, which indicates that no differentiation with depth of the bacterial population by means of bacterial PLFAs could be established both in the field and in the experimental situation. The artificial disturbance led to a long-term change in the vertical bacterial distribution, which was not re-established during the incubation time of 49 days.

  12. Soil Response to Aeolian Disturbance in West Greenland

    NASA Astrophysics Data System (ADS)

    Heindel, R. C.; Culler, L. E.; Chipman, J. W.; Virginia, R. A.

    2015-12-01

    Arctic soils are a critical ecological resource, yet are increasingly vulnerable to global change. In the Kangerlussuaq region of West Greenland, aeolian disturbance is the greatest threat to soil stability, with strong katabatic winds eroding vegetation and soil down to the underlying glacial till or bedrock. Little is known about what controls the distribution and rate of the aeolian erosion, which initially results in a state change from tundra to a deflated and nearly unvegetated ground. It is unclear if vegetation can eventually reestablish after erosion occurs, potentially aided by the biological soil crust (BSC) that develops within the eroded areas, or if this soil loss is an irreversible change in vegetation and soil carbon (C) and nitrogen (N) cycling. Our analysis of high-resolution satellite imagery shows that across the entire study region, deflated ground covers 22% of the terrestrial landscape. Aeolian erosion occurs more frequently closer to the Greenland Ice Sheet and on S-facing slopes. Using lichenometry, we estimate that erosional fronts move across the landscape at rates of 2.5 cm yr-1, leaving unproductive ground in their wake. The onset of widespread aeolian erosion occurred roughly 700-1000 years ago, pointing toward regional cooling and aridity as the drivers behind erosion. Finally, we consider whether the BSCs can improve soil quality enough to allow for full vegetation regrowth. Preliminary results show that while the BSCs fix atmospheric N and increase C storage, the rate of soil quality recovery is extremely slow. Understanding the thresholds between vegetated tundra and eroded ground is critical for predicting how the Kangerlussuaq landscape will respond to anticipated changes in climate and ice sheet dynamics.

  13. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness

    PubMed Central

    Furman, David; Jojic, Vladimir; Kidd, Brian; Shen-Orr, Shai; Price, Jordan; Jarrell, Justin; Tse, Tiffany; Huang, Huang; Lund, Peder; Maecker, Holden T; Utz, Paul J; Dekker, Cornelia L; Koller, Daphne; Davis, Mark M

    2013-01-01

    Despite the importance of the immune system in many diseases, there are currently no objective benchmarks of immunological health. In an effort to identifying such markers, we used influenza vaccination in 30 young (20–30 years) and 59 older subjects (60 to >89 years) as models for strong and weak immune responses, respectively, and assayed their serological responses to influenza strains as well as a wide variety of other parameters, including gene expression, antibodies to hemagglutinin peptides, serum cytokines, cell subset phenotypes and in vitro cytokine stimulation. Using machine learning, we identified nine variables that predict the antibody response with 84% accuracy. Two of these variables are involved in apoptosis, which positively associated with the response to vaccination and was confirmed to be a contributor to vaccine responsiveness in mice. The identification of these biomarkers provides new insights into what immune features may be most important for immune health. PMID:23591775

  14. Tissue engineering tools for modulation of the immune response

    PubMed Central

    Boehler, Ryan M.; Graham, John G.; Shea, Lonnie D.

    2012-01-01

    Tissue engineering scaffolds have emerged as a powerful tool within regenerative medicine. These materials are being designed to create environments that promote regeneration through a combination of: (i) scaffold architecture, (ii) the use of scaffolds as vehicles for transplanting progenitor cells, and/or (iii) localized delivery of inductive factors or genes encoding for these inductive factors. This review describes the techniques associated with each of these components. Additionally, the immune response is increasingly recognized as a factor influencing regeneration. The immune reaction to an implant begins with an acute response to the injury and innate recognition of foreign materials, with the subsequent chronic immune response involving specific recognition of antigens (e.g., transplanted cells) by the adaptive immune response, which can eventually lead to rejection of the implant. Thus, we also describe the impact of each component on the immune response, and strategies (e.g., material design, anti-inflammatory cytokine delivery, and immune cell recruitment/transplantation) to modulate, yet not eliminate, the local immune response in order to promote regeneration, which represents another important tool for regenerative medicine. PMID:21988690

  15. Subversion of the Immune Response by Rabies Virus.

    PubMed

    Scott, Terence P; Nel, Louis H

    2016-01-01

    Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV) evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses-including age, sex, cerebral lateralization and temperature-are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host's response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment. PMID:27548204

  16. Global analysis of the immune response

    NASA Astrophysics Data System (ADS)

    Ribeiro, Leonardo C.; Dickman, Ronald; Bernardes, Américo T.

    2008-10-01

    The immune system may be seen as a complex system, characterized using tools developed in the study of such systems, for example, surface roughness and its associated Hurst exponent. We analyze densitometric (Panama blot) profiles of immune reactivity, to classify individuals into groups with similar roughness statistics. We focus on a population of individuals living in a region in which malaria endemic, as well as a control group from a disease-free region. Our analysis groups individuals according to the presence, or absence, of malaria symptoms and number of malaria manifestations. Applied to the Panama blot data, our method proves more effective at discriminating between groups than principal-components analysis or super-paramagnetic clustering. Our findings provide evidence that some phenomena observed in the immune system can be only understood from a global point of view. We observe similar tendencies between experimental immune profiles and those of artificial profiles, obtained from an immune network model. The statistical entropy of the experimental profiles is found to exhibit variations similar to those observed in the Hurst exponent.

  17. Paradoxical acclimation responses in the thermal performance of insect immunity.

    PubMed

    Ferguson, Laura V; Heinrichs, David E; Sinclair, Brent J

    2016-05-01

    Winter is accompanied by multiple stressors, and the interactions between cold and pathogen stress potentially determine the overwintering success of insects. Thus, it is necessary to explore the thermal performance of the insect immune system. We cold-acclimated spring field crickets, Gryllus veletis, to 6 °C for 7 days and measured the thermal performance of potential (lysozyme and phenoloxidase activity) and realised (bacterial clearance and melanisation) immune responses. Cold acclimation decreased the critical thermal minimum from -0.5 ± 0.25 to -2.1 ± 0.18 °C, and chill coma recovery time after 72 h at -2 °C from 16.8 ± 4.9 to 5.2 ± 2.0 min. Measures of both potential and realised immunity followed a typical thermal performance curve, decreasing with decreasing temperature. However, cold acclimation further decreased realised immunity at low, but not high, temperatures; effectively, immune activity became paradoxically specialised to higher temperatures. Thus, cold acclimation induced mismatched thermal responses between locomotor and immune systems, as well as within the immune system itself. We conclude that cold acclimation in insects appears to preferentially improve cold tolerance over whole-animal immune performance at low temperatures, and that the differential thermal performance of physiological responses to multiple pressures must be considered when predicting ectotherms' response to climate change. PMID:26846428

  18. Superficial Immunity: Antimicrobial Responses Are More Than Skin Deep.

    PubMed

    Mack, Madison R; Kim, Brian S

    2016-07-19

    The skin barrier is essential for host defense, but how the skin provides protection when the barrier is breached is not well understood. In this issue of Immunity, Gallo and colleagues report that keratinocytes integrate signals from antimicrobial peptides via MAVS signaling to amplify their antiviral immune response. PMID:27438760

  19. Rotavirus immune responses and correlates of protection

    PubMed Central

    Angel, Juana; Franco, Manuel A.; Greenberg, Harry B.

    2012-01-01

    Selected topics in the field of rotavirus immunity are reviewed focusing on recent developments that may improve efficacy and safety of current and future vaccines. Rotaviruses have developed multiple mechanisms to evade interferon-mediated innate immunity. Compared to more developed regions of the world, protection induced by natural infection and vaccination is reduced in developing countries where, among other factors, high viral challenge loads are common and where infants are infected at an early age. Studies in developing countries indicate that rotavirus-specific serum IgA levels are not an optimal correlate of protection following vaccination, and better correlates need to be identified. Protection against rotavirus following vaccination is substantially heterotypic; nonetheless, a role for homotypic immunity in selection of circulating post vaccination strains needs further study. PMID:22677178

  20. Host Immune Response to Histophilus somni.

    PubMed

    Corbeil, Lynette B

    2016-01-01

    Histophilus somni is known to cause several overlapping syndromes or to be found in genital or upper respiratory carrier states in ruminants. Vaccines have been used for decades, yet efficacy is controversial and mechanisms of protective immunity are not well understood. Since H. somni survives phagocytosis, it has sometimes been considered to be a facultative intercellular parasite, implying that cell-mediated immunity would be critical in protection. However, H. somni not only inhibits phagocyte function, but also is cytotoxic for macrophages. Therefore, it does not live for long periods in healthy phagocytes. Protection of calves against H. somni pneumonia by passive immunization is also evidence that H. somni is more like an extracellular pathogen than an intracellular pathogen. Several studies showed that bovine IgG2 antibodies are more protective than IgG1 antibodies. Even the IgG2 allotypes tend to vary in protection. Of course, antigenic specificity also determines protection. So far, there is most evidence for protection by a 40 K outer membrane protein and by Immunoglobulin binding protein A fibrils. Serology and immunohistochemistry have both been used for immunodiagnosis. Many evasive mechanisms by H. somni have been defined, including decreased phagocyte function, antibodies bound by shed antigens, decreased immune stimulation, and antigenic variation. Interaction of H. somni with other bovine respiratory disease organisms is another layer of pathogenesis. Studies of bovine respiratory syncytial virus (BRSV) and H. somni in calfhood pneumonia revealed an increase in IgE antibodies to H. somni, which were associated with more severe disease of longer duration than with either agent alone. Innate immune mechanisms at the epithelial cell level are also affected by dual infection by BRSV and H. somni as compared to either pathogen alone. Although much more work needs to be done, the complex mechanisms of H. somni immunity are becoming clearer. PMID

  1. Improved immune response to recombinant influenza nucleoprotein formulated with ISCOMATRIX.

    PubMed

    Cargnelutti, Diego E; Sanchez, Maria V; Alvarez, Paula; Boado, Lorena; Glikmann, Graciela; Mattion, Nora; Scodeller, Eduardo A

    2012-03-01

    Current influenza vaccines elicit antibodies effective against homologous strains, but new strategies are urgently needed for protection against emerging epidemic or pandemic strains. Although influenza vaccine candidates based on the viral nucleoprotein (NP) or matrix protein do not elicit sterilizing immunity, they have the advantage of inducing immunity that may cover a larger number of viral strains. In this study, recombinant NP produced in Escherichia coli was purified and formulated in combination with the adjuvant ISCOMATRIX. This formulation increased a NP-specific immunity in mice, with a Th1 profile, and may constitute a promising low-cost influenza vaccine candidate, with ability to stimulate humoral and cellular immune responses.. PMID:22450799

  2. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows.

    PubMed

    Esposito, Giulia; Irons, Pete C; Webb, Edward C; Chapwanya, Aspinas

    2014-01-30

    The biological cycles of milk production and reproduction determine dairying profitability thus making management decisions dynamic and time-dependent. Diseases also negatively impact on net earnings of a dairy enterprise. Transition cows in particular face the challenge of negative energy balance (NEB) and/or disproportional energy metabolism (fatty liver, ketosis, subacute, acute ruminal acidosis); disturbed mineral utilization (milk fever, sub-clinical hypocalcemia); and perturbed immune function (retained placenta, metritis, mastitis). Consequently NEB and reduced dry matter intake are aggravated. The combined effects of all these challenges are reduced fertility and milk production resulting in diminishing profits. Risk factors such as NEB, inflammation and impairment of the immune response are highly cause-and-effect related. Thus, managing cows during the transition period should be geared toward reducing NEB or feeding specially formulated diets to improve immunity. Given that all cows experience a reduced feed intake and body condition, infection and inflammation of the uterus after calving, there is a need for further research on the immunology of transition dairy cows. Integrative approaches at the molecular, cellular and animal level may unravel the complex interactions between disturbed metabolism and immune function that predispose cows to periparturient diseases. PMID:24378117

  3. Response latencies to postural disturbances in three species of teleostean fishes.

    PubMed

    Webb, Paul W

    2004-02-01

    Flow in aquatic systems is characterized by unsteadiness that creates destabilizing perturbations. Appropriate correction responses depend on response latency. The time between a disturbance induced by either removal of a flow refuge or striking various parts of the body with a narrow water jet was measured for three species, chosen as examples of modes in teleostean body/fin organization that are expected to affect stability. Creek chub Semotilus atromaculatus is representative of fusiform-bodied soft-rayed teleosts, smallmouth bass Micropterus dolomieu of fusiform-bodied spiny-rayed forms and bluegill Lepomis macrochirus of deep-bodied spiny-rayed forms. Observations were made at 23 degrees C. Loss of refuge resulted in a surge that fish corrected by starting to swim within 129+/-29 ms (mean +/- 2 S.E.M.) for chub, which was significantly shorter than minimal times of approximately 200 ms for bluegill and bass. Slips and heaves induced by water jets initially resulted in extension of the median and paired fins that would damp growth of the disturbance, but otherwise these disturbances were ignored. Yaws and pitches were more likely to cause fish to swim away from the stimulus, making corrections as they did so. There were no differences in latencies for slip, heave, yaw and pitch disturbances within each species, but latencies varied among species. For these disturbances, responses averaged 123+/-19 ms for chub, again significantly smaller than those of 201+/-24 ms for bass and 208+/-52 ms for bluegill. Values for the two centrarchids were not significantly different (P>0.08). The response latency for rolling disturbances did not differ among species but was significantly smaller than that for other disturbances, with an overall latency of 70+/-15 ms. The greater responsiveness to hydrostatic rolling instability is attributed to functions requiring an upright posture and differences among species in habitat preferences. PMID:14766954

  4. Understanding Nonproductive System Responses to Emotionally Disturbed and Behaviorally Disordered Students.

    ERIC Educational Resources Information Center

    Rubinstein, Maria Frudden; Rezmierski, Virginia

    1983-01-01

    The paper describes a model for understanding system level responses to the cognitive dissonance produced by working with emotionally disturbed/behavior disordered students. Responses to mild, moderate, and severe levels of dissonance are cited, and the dibilitating effects of increasing threats to a system's order are portrayed. (CL)

  5. Subversion of the Immune Response by Rabies Virus

    PubMed Central

    Scott, Terence P.; Nel, Louis H.

    2016-01-01

    Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV) evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses—including age, sex, cerebral lateralization and temperature—are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host’s response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment. PMID:27548204

  6. Regulation of Immune Responses by mTOR

    PubMed Central

    Powell, Jonathan D.; Pollizzi, Kristen N.; Heikamp, Emily B.; Horton, Maureen R.

    2013-01-01

    mTOR is an evolutionarily conserved serine/threonine kinase that plays a central role in integrating environmental cues in the form of growth factors, amino acids, and energy. In the study of the immune system, mTOR is emerging as a critical regulator of immune function because of its role in sensing and integrating cues from the immune microenvironment. With the greater appreciation of cellular metabolism as an important regulator of immune cell function, mTOR is proving to be a vital link between immune function and metabolism. In this review, we discuss the ability of mTOR to direct the adaptive immune response. Specifically, we focus on the role of mTOR in promoting differentiation, activation, and function in T cells, B cells, and antigen-presenting cells. PMID:22136167

  7. Virus-like nanostructures for tuning immune response

    NASA Astrophysics Data System (ADS)

    Mammadov, Rashad; Cinar, Goksu; Gunduz, Nuray; Goktas, Melis; Kayhan, Handan; Tohumeken, Sehmus; Topal, Ahmet E.; Orujalipoor, Ilghar; Delibasi, Tuncay; Dana, Aykutlu; Ide, Semra; Tekinay, Ayse B.; Guler, Mustafa O.

    2015-11-01

    Synthetic vaccines utilize viral signatures to trigger immune responses. Although the immune responses raised against the biochemical signatures of viruses are well characterized, the mechanism of how they affect immune response in the context of physical signatures is not well studied. In this work, we investigated the ability of zero- and one-dimensional self-assembled peptide nanostructures carrying unmethylated CpG motifs (signature of viral DNA) for tuning immune response. These nanostructures represent the two most common viral shapes, spheres and rods. The nanofibrous structures were found to direct immune response towards Th1 phenotype, which is responsible for acting against intracellular pathogens such as viruses, to a greater extent than nanospheres and CpG ODN alone. In addition, nanofibers exhibited enhanced uptake into dendritic cells compared to nanospheres or the ODN itself. The chemical stability of the ODN against nuclease-mediated degradation was also observed to be enhanced when complexed with the peptide nanostructures. In vivo studies showed that nanofibers promoted antigen-specific IgG production over 10-fold better than CpG ODN alone. To the best of our knowledge, this is the first report showing the modulation of the nature of an immune response through the shape of the carrier system.

  8. Virus-like nanostructures for tuning immune response

    PubMed Central

    Mammadov, Rashad; Cinar, Goksu; Gunduz, Nuray; Goktas, Melis; Kayhan, Handan; Tohumeken, Sehmus; Topal, Ahmet E.; Orujalipoor, Ilghar; Delibasi, Tuncay; Dana, Aykutlu; Ide, Semra; Tekinay, Ayse B.; Guler, Mustafa O.

    2015-01-01

    Synthetic vaccines utilize viral signatures to trigger immune responses. Although the immune responses raised against the biochemical signatures of viruses are well characterized, the mechanism of how they affect immune response in the context of physical signatures is not well studied. In this work, we investigated the ability of zero- and one-dimensional self-assembled peptide nanostructures carrying unmethylated CpG motifs (signature of viral DNA) for tuning immune response. These nanostructures represent the two most common viral shapes, spheres and rods. The nanofibrous structures were found to direct immune response towards Th1 phenotype, which is responsible for acting against intracellular pathogens such as viruses, to a greater extent than nanospheres and CpG ODN alone. In addition, nanofibers exhibited enhanced uptake into dendritic cells compared to nanospheres or the ODN itself. The chemical stability of the ODN against nuclease-mediated degradation was also observed to be enhanced when complexed with the peptide nanostructures. In vivo studies showed that nanofibers promoted antigen-specific IgG production over 10-fold better than CpG ODN alone. To the best of our knowledge, this is the first report showing the modulation of the nature of an immune response through the shape of the carrier system. PMID:26577983

  9. Transcriptional Profiling of the Immune Response to Marburg Virus Infection

    PubMed Central

    Yen, Judy; Caballero, Ignacio S.; Garamszegi, Sara; Malhotra, Shikha; Lin, Kenny; Hensley, Lisa; Goff, Arthur J.

    2015-01-01

    ABSTRACT Marburg virus is a genetically simple RNA virus that causes a severe hemorrhagic fever in humans and nonhuman primates. The mechanism of pathogenesis of the infection is not well understood, but it is well accepted that pathogenesis is appreciably driven by a hyperactive immune response. To better understand the overall response to Marburg virus challenge, we undertook a transcriptomic analysis of immune cells circulating in the blood following aerosol exposure of rhesus macaques to a lethal dose of Marburg virus. Using two-color microarrays, we analyzed the transcriptomes of peripheral blood mononuclear cells that were collected throughout the course of infection from 1 to 9 days postexposure, representing the full course of the infection. The response followed a 3-stage induction (early infection, 1 to 3 days postexposure; midinfection, 5 days postexposure; late infection, 7 to 9 days postexposure) that was led by a robust innate immune response. The host response to aerosolized Marburg virus was evident at 1 day postexposure. Analysis of cytokine transcripts that were overexpressed during infection indicated that previously unanalyzed cytokines are likely induced in response to exposure to Marburg virus and further suggested that the early immune response is skewed toward a Th2 response that would hamper the development of an effective antiviral immune response early in disease. Late infection events included the upregulation of coagulation-associated factors. These findings demonstrate very early host responses to Marburg virus infection and provide a rich data set for identification of factors expressed throughout the course of infection that can be investigated as markers of infection and targets for therapy. IMPORTANCE Marburg virus causes a severe infection that is associated with high mortality and hemorrhage. The disease is associated with an immune response that contributes to the lethality of the disease. In this study, we investigated how the

  10. SURVIVAL AND IMMUNE RESPONSE OF COHO SALMON EXPOSED TO COPPER

    EPA Science Inventory

    Vaccination with Vibrio anguillarum by oral administration during copper exposure and intraperitoneal injection prior to copper exposure was employed to investigate the effects of copper upon survival and the immune response of juvenile coho salmon (Oncorhynchus kisutch). Followi...

  11. Does Nutrient Enrichment Alter the Response of Stream Macroinvertebrates to Disturbance?

    NASA Astrophysics Data System (ADS)

    Gafner, K.; Robinson, C. T.

    2005-05-01

    We examined the influence of nutrient enrichment on the response of benthic macroinvertebrates to disturbance in springbrooks of an alpine floodplain. Individual stones in three different springs were physically disturbed at frequencies of 0, 4, 8 and 16 days, and then collected on day 32. In another experiment, nutrients (slow-release fertilizer pellets) were added to one of two streams, and stones in both treated as in the first experiment. In both experiments, stones were analyzed for periphyton biomass, total invertebrate density, and the density and relative abundance of four common families: Baetidae, Nemouridae, Chironomidae, and Simuliidae. N, P, and C were analyzed for periphyton, benthic sediments and invertebrates in the 2nd experiment to test for stoichiometric changes resulting from nutrient enrichment. In the 1st experiment, disturbance affected the relative abundance of the four families. Fertilization changed the stoichiometry of periphyton, invertebrates and sediments and altered macroinvertebrate assemblages. Here, the effect of disturbance differed between the two streams, and the non-fertilized stream displayed a similar disturbance response pattern by macroinvertebrates as in the 1st experiment. These results suggest that nutrient enrichment alters the effects of physical disturbance on macroinvertebrates by changing food resource stoichiometry and shifting macroinvertebrate assemblage structure.

  12. Response diversity can increase ecological resilience to disturbance in coral reefs.

    PubMed

    Baskett, Marissa L; Fabina, Nicholas S; Gross, Kevin

    2014-08-01

    Community-level resilience depends on the interaction between multiple populations that vary in individual responses to disturbance. For example, in tropical reefs, some corals can survive higher stress (resistance) while others exhibit faster recovery (engineering resilience) following disturbances such as thermal stress. While each type will negatively affect the other through competition, each might also benefit the other by reducing the potential for an additional competitor such as macroalgae to invade after a disturbance. To determine how community composition affects ecological resilience, we modeled coral-macroalgae interactions given either a resistant coral, a resilient coral, or both together. Having both coral types (i.e., response diversity) can lead to observable enhanced ecological resilience if (1) the resilient coral is not a superior competitor and (2) disturbance levels are high enough such that the resilient coral would collapse when considered alone. This enhanced resilience occurs through competitor-enabled rescue where each coral increases the potential for the other to recover from disturbance through external recruitment, such that both corals benefit from the presence of each other in terms of total cover and resilience. Therefore, conservation management aimed at protecting resilience under global change requires consideration of both diversity and connectivity between sites experiencing differential disturbance. PMID:25058289

  13. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Earl, David J.; Deem, Michael W.

    2005-09-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self-antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely, gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system’s search for antibodies, a balance has evolved between binding affinity and specificity.

  14. Role of nutrients in the development of neonatal immune response.

    PubMed

    Cunningham-Rundles, Susanna; Lin, Hong; Ho-Lin, Deborah; Dnistrian, Ann; Cassileth, Barrie R; Perlman, Jeffrey M

    2009-11-01

    Nutrients exert unique regulatory effects in the perinatal period that mold the developing immune system. The interactions of micronutrients and microbial and environmental antigens condition the post-birth maturation of the immune system, influencing reactions to allergens, fostering tolerance towards the emerging gastrointestinal flora and ingested antigens, and defining patterns of host defense against potential pathogens. The shared molecular structures that are present on microbes or certain plants, but not expressed by human cells, are recognized by neonatal innate immune receptors. Exposure to these activators in the environment through dietary intake in early life can modify the immune response to allergens and prime the adaptive immune response towards pathogens that express the corresponding molecular structures. PMID:19906219

  15. Role of nutrients in the development of neonatal immune response

    PubMed Central

    Cunningham-Rundles, Susanna; Lin, Hong; Ho-Lin, Deborah; Dnistrian, Ann; Cassileth, Barrie R; Perlman, Jeffrey M

    2015-01-01

    Nutrients exert unique regulatory effects in the perinatal period that mold the developing immune system. The interactions of micronutrients and microbial and environmental antigens condition the post-birth maturation of the immune system, influencing reactions to allergens, fostering tolerance towards the emerging gastrointestinal flora and ingested antigens, and defining patterns of host defense against potential pathogens. The shared molecular structures that are present on microbes or certain plants, but not expressed by human cells, are recognized by neonatal innate immune receptors. Exposure to these activators in the environment through dietary intake in early life can modify the immune response to allergens and prime the adaptive immune response towards pathogens that express the corresponding molecular structures. PMID:19906219

  16. DNA Damage Response and Immune Defense: Links and Mechanisms

    PubMed Central

    Nakad, Rania; Schumacher, Björn

    2016-01-01

    DNA damage plays a causal role in numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR) orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signaling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signaling. We highlight evidence gained into (i) which molecular and cellular pathways of DDR activate immune signaling, (ii) how DNA damage drives chronic inflammation, and (iii) how chronic inflammation causes DNA damage and pathology in humans. PMID:27555866

  17. Heat-Based Tumor Ablation: Role of the Immune Response.

    PubMed

    Wu, Feng

    2016-01-01

    The ideal cancer therapy not only induces the death of all localized tumor cells with less damage to surrounding normal tissue, but also activates a systemic antitumor immunity. Heat-based tumor ablation has the potential to be such a treatment as it can minimal-invasively ablate a targeted tumor below the skin surface, and may subsequently augment host antitumor immunity. This chapter primarily introduces increasing pre-clinical and clinical evidence linking antitumor immune response to thermal tumor ablation, and then discusses the potential mechanisms involved in ablation-enhanced host antitumor immunity. The seminal studies performed so far indicate that although it is not possible to make definite conclusions on the connection between thermal ablation and antitumor immune response, it is nonetheless important to conduct extensive studies on the subject in order to elucidate the processes involved. PMID:26486336

  18. Forest response and recovery following disturbance in upland forests of the Atlantic Coastal Plain

    PubMed Central

    Schäfer, Karina V. R.; Renninger, Heidi J.; Carlo, Nicholas J.; Vanderklein, Dirk W.

    2014-01-01

    Carbon and water cycling of forests contribute significantly to the Earth's overall biogeochemical cycling and may be affected by disturbance and climate change. As a larger body of research becomes available about leaf-level, ecosystem and regional scale effects of disturbances on forest ecosystems, a more mechanistic understanding is developing which can improve modeling efforts. Here, we summarize some of the major effects of physical and biogenic disturbances, such as drought, prescribed fire, and insect defoliation, on leaf and ecosystem-scale physiological responses as well as impacts on carbon and water cycling in an Atlantic Coastal Plain upland oak/pine and upland pine forest. During drought, stomatal conductance and canopy stomatal conductance were reduced, however, defoliation increased conductance on both leaf-level and canopy scale. Furthermore, after prescribed fire, leaf-level stomatal conductance was unchanged for pines but decreased for oaks, while canopy stomatal conductance decreased temporarily, but then rebounded the following growing season, thus exhibiting transient responses. This study suggests that forest response to disturbance varies from the leaf to ecosystem level as well as species level and thus, these differential responses interplay to determine the fate of forest structure and functioning post disturbance. PMID:25018759

  19. Modeling the interactions between pathogenic bacteria, bacteriophage and immune response

    NASA Astrophysics Data System (ADS)

    Leung, Chung Yin (Joey); Weitz, Joshua S.

    The prevalence of antibiotic-resistant strains of pathogenic bacteria has led to renewed interest in the use of bacteriophage (phage), or virus that infects bacteria, as a therapeutic agent against bacterial infections. However, little is known about the theoretical mechanism by which phage therapy may work. In particular, interactions between the bacteria, the phage and the host immune response crucially influences the outcome of the therapy. Few models of phage therapy have incorporated all these three components, and existing models suffer from unrealistic assumptions such as unbounded growth of the immune response. We propose a model of phage therapy with an emphasis on nonlinear feedback arising from interactions with bacteria and the immune response. Our model shows a synergistic effect between the phage and the immune response which underlies a possible mechanism for phage to catalyze the elimination of bacteria even when neither the immune response nor phage could do so alone. We study the significance of this effect for different parameters of infection and immune response, and discuss its implications for phage therapy.

  20. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    PubMed Central

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  1. Ontogeny of Intestinal Epithelial Innate Immune Responses

    PubMed Central

    Hornef, Mathias W.; Fulde, Marcus

    2014-01-01

    Emerging evidence indicates that processes during postnatal development might significantly influence the establishment of mucosal host-microbial homeostasis. Developmental and adaptive immunological processes but also environmental and microbial exposure early after birth might thus affect disease susceptibility and health during adult life. The present review aims at summarizing the current understanding of the intestinal epithelial innate immune system and its developmental and adaptive changes after birth. PMID:25346729

  2. Mucosal immune responses following intestinal nematode infection

    PubMed Central

    Zaph, C; Cooper, P J; Harris, N L

    2014-01-01

    In most natural environments, the large majority of mammals harbour parasitic helminths that often live as adults within the intestine for prolonged periods (1–2 years) 1. Although these organisms have been eradicated to a large extent within westernized human populations, those living within rural areas of developing countries continue to suffer from high infection rates. Indeed, recent estimates indicate that approximately 2·5 billion people worldwide, mainly children, currently suffer from infection with intestinal helminths (also known as geohelminths and soil-transmitted helminths) 2. Paradoxically, the eradication of helminths is thought to contribute to the increased incidence of autoimmune diseases and allergy observed in developed countries. In this review, we will summarize our current understanding of host–helminth interactions at the mucosal surface that result in parasite expulsion or permit the establishment of chronic infections with luminal dwelling adult worms. We will also provide insight into the adaptive immune mechanisms that provide immune protection against re-infection with helminth larvae, a process that is likely to be key to the future development of successful vaccination strategies. Lastly, the contribution of helminths to immune modulation and particularly to the treatment of allergy and inflammatory bowel disease will be discussed. PMID:25201407

  3. Source-based subjective responses to sleep disturbance from transportation noise.

    PubMed

    Douglas, O; Murphy, E

    2016-01-01

    There is increasing evidence to suggest that the use of subjective responses to questions concerning night-time environmental noise exposure is a robust method of assessing sleep disturbance from road traffic noise. However, there have only been a few studies exploring this issue in a real world context beyond controlled laboratory settings. This paper presents results from such a study. It utilises 208 household questionnaire surveys to assess subjective responses to levels of night-time sleep disturbance and annoyance from four different residential sites. Each residential site is characterised by a dominant noise source - road, light rail, and aircraft - and these sites are compared to a control site that is relatively free from transportation noise. The results demonstrate the inadequacy of continuous equivalent noise level measures as indicators of night-time disturbance. Furthermore, they suggest that the use of these measures alone is likely to result in inaccurate appraisals of night-time sleep disturbance from transportation noise. Ultimately, the research implies that measurement data should be used in conjunction with subjective response data to accurately gauge the level of night-time disturbance from transportation noise. PMID:27164553

  4. Charon Mediates Immune Deficiency-Driven PARP-1-Dependent Immune Responses in Drosophila.

    PubMed

    Ji, Yingbiao; Thomas, Colin; Tulin, Nikita; Lodhi, Niraj; Boamah, Ernest; Kolenko, Vladimir; Tulin, Alexei V

    2016-09-15

    Regulation of NF-κB nuclear translocation and stability is central to mounting an effective innate immune response. In this article, we describe a novel molecular mechanism controlling NF-κB-dependent innate immune response. We show that a previously unknown protein, termed as Charon, functions as a regulator of antibacterial and antifungal immune defense in Drosophila Charon is an ankyrin repeat-containing protein that mediates poly(ADP-ribose) polymerase-1 (PARP-1)-dependent transcriptional responses downstream of the innate immune pathway. Our results demonstrate that Charon interacts with the NF-κB ortholog Relish inside perinuclear particles and delivers active Relish to PARP-1-bearing promoters, thus triggering NF-κB/PARP-1-dependent transcription of antimicrobial peptides. Ablating the expression of Charon prevents Relish from targeting promoters of antimicrobial genes and effectively suppresses the innate immune transcriptional response. Taken together, these results implicate Charon as an essential mediator of PARP-1-dependent transcription in the innate immune pathway. Thus, to our knowledge, our results are the first to describe the molecular mechanism regulating translocation of the NF-κB subunit from cytoplasm to chromatin. PMID:27527593

  5. Autophagy-associated immune responses and cancer immunotherapy

    PubMed Central

    Xu, Yinghua; Han, Weidong; Lou, Fang; Fei, Weiqiang; Liu, Shuiping; Jing, Zhao; Sui, Xinbing

    2016-01-01

    Autophagy is an evolutionarily conserved catabolic process by which cellular components are sequestered into a double-membrane vesicle and delivered to the lysosome for terminal degradation and recycling. Accumulating evidence suggests that autophagy plays a critical role in cell survival, senescence and homeostasis, and its dysregulation is associated with a variety of diseases including cancer, cardiovascular disease, neurodegeneration. Recent studies show that autophagy is also an important regulator of cell immune response. However, the mechanism by which autophagy regulates tumor immune responses remains elusive. In this review, we will describe the role of autophagy in immune regulation and summarize the possible molecular mechanisms that are currently well documented in the ability of autophagy to control cell immune response. In addition, the scientific and clinical hurdles regarding the potential role of autophagy in cancer immunotherapy will be discussed. PMID:26788909

  6. (Hydrological and geochemical response and recovery in disturbed arctic ecosystems)

    SciTech Connect

    Everett, K.R.

    1990-08-31

    Ionic concentration of snow prior to meltoff in 1990 as in previous years ranged widely from point to point within the basin. Overland flow began on May 12 and was monitored at closely-spaced time intervals for discharge volume and ionic concentrations to better define this relationship in non-channelized flow. Ionic concentration in both watertrack flow and in Imnavait Creek were closely monitored during meltoff. During the post melt period daily sampling was maintained in watertrack 7 and Imnavait Creek. Rainfall collection and analysis on an eight day schedule was maintained as in previous years. Soil solution composition was monitored on an event basis in conjunction with a similar schedule of precipitation sampling to determine relationships between precipitation and near surface and overland flow. Composition of deeper soil solution was also monitored and sampled for {sup 18}O analyses to determine the age structure of water contributed by the active layer to stream and watertracks. A pilot experiment employing salt tracers was conducted across landscape units to determine rates and pathways of soil solution movement in response to individual rain events. Nutrient addition in rime and fog were also recorded to add detail to the input side of the balance equation.

  7. Maternal immunity enhances Mycoplasma hyopneumoniae vaccination induced cell-mediated immune responses in piglets

    PubMed Central

    2014-01-01

    Background Passively acquired maternal derived immunity (MDI) is a double-edged sword. Maternal derived antibody-mediated immunity (AMI) and cell-mediated immunity (CMI) are critical immediate defenses for the neonate; however, MDI may interfere with the induction of active immunity in the neonate, i.e. passive interference. The effect of antigen-specific MDI on vaccine-induced AMI and CMI responses to Mycoplasma hyopneumoniae (M. hyopneumoniae) was assessed in neonatal piglets. To determine whether CMI and AMI responses could be induced in piglets with MDI, piglets with high and low levels of maternal M. hyopneumoniae-specific immunity were vaccinated against M. hyopneumoniae at 7 d of age. Piglet M. hyopneumoniae-specific antibody, lymphoproliferation, and delayed type hypersensitivity (DTH) responses were measured 7 d and 14 d post vaccination. Results Piglets with M. hyopneumoniae-specific MDI failed to show vaccine-induced AMI responses; there was no rise in M. hyopneumoniae antibody levels following vaccination of piglets in the presence of M. hyopneumoniae-specific MDI. However, piglets with M. hyopneumoniae-specific MDI had primary (antigen-specific lymphoproliferation) and secondary (DTH) M. hyopneumoniae-specific CMI responses following vaccination. Conclusions In this study neonatal M. hyopneumoniae-specific CMI was not subject to passive interference by MDI. Further, it appears that both maternal derived and endogenous CMI contribute to M. hyopneumoniae-specific CMI responses in piglets vaccinated in the face of MDI. PMID:24903770

  8. Modeling Systems-Level Regulation of Host Immune Responses

    PubMed Central

    Thakar, Juilee; Pilione, Mylisa; Kirimanjeswara, Girish; Harvill, Eric T; Albert, Réka

    2007-01-01

    Many pathogens are able to manipulate the signaling pathways responsible for the generation of host immune responses. Here we examine and model a respiratory infection system in which disruption of host immune functions or of bacterial factors changes the dynamics of the infection. We synthesize the network of interactions between host immune components and two closely related bacteria in the genus Bordetellae. We incorporate existing experimental information on the timing of immune regulatory events into a discrete dynamic model, and verify the model by comparing the effects of simulated disruptions to the experimental outcome of knockout mutations. Our model indicates that the infection time course of both Bordetellae can be separated into three distinct phases based on the most active immune processes. We compare and discuss the effect of the species-specific virulence factors on disrupting the immune response during their infection of naive, antibody-treated, diseased, or convalescent hosts. Our model offers predictions regarding cytokine regulation, key immune components, and clearance of secondary infections; we experimentally validate two of these predictions. This type of modeling provides new insights into the virulence, pathogenesis, and host adaptation of disease-causing microorganisms and allows systems-level analysis that is not always possible using traditional methods. PMID:17559300

  9. A Cognitive Computational Model Inspired by the Immune System Response

    PubMed Central

    Abdo Abd Al-Hady, Mohamed; Badr, Amr Ahmed; Mostafa, Mostafa Abd Al-Azim

    2014-01-01

    The immune system has a cognitive ability to differentiate between healthy and unhealthy cells. The immune system response (ISR) is stimulated by a disorder in the temporary fuzzy state that is oscillating between the healthy and unhealthy states. However, modeling the immune system is an enormous challenge; the paper introduces an extensive summary of how the immune system response functions, as an overview of a complex topic, to present the immune system as a cognitive intelligent agent. The homogeneity and perfection of the natural immune system have been always standing out as the sought-after model we attempted to imitate while building our proposed model of cognitive architecture. The paper divides the ISR into four logical phases: setting a computational architectural diagram for each phase, proceeding from functional perspectives (input, process, and output), and their consequences. The proposed architecture components are defined by matching biological operations with computational functions and hence with the framework of the paper. On the other hand, the architecture focuses on the interoperability of main theoretical immunological perspectives (classic, cognitive, and danger theory), as related to computer science terminologies. The paper presents a descriptive model of immune system, to figure out the nature of response, deemed to be intrinsic for building a hybrid computational model based on a cognitive intelligent agent perspective and inspired by the natural biology. To that end, this paper highlights the ISR phases as applied to a case study on hepatitis C virus, meanwhile illustrating our proposed architecture perspective. PMID:25003131

  10. Receptivity and Forced Response to Acoustic Disturbances in High-Speed Boundary Layers

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; King, Rudolph A.; Chou, Amanda; Owens, Lewis R.; Kegerise, Michael A.

    2016-01-01

    Supersonic boundary-layer receptivity to freestream acoustic disturbances is investigated by solving the Navier-Stokes equations for Mach 3.5 flow over a sharp flat plate and a 7-deg half-angle cone. The freestream disturbances are generated from a wavy wall placed at the nozzle wall. The freestream acoustic disturbances radiated by the wavy wall are obtained by solving the linearized Euler equations. The results for the flat plate show that instability modes are generated at all the incident angles ranging from zero to highly oblique. However, the receptivity coefficient decreases by about 20 times when the incident angle increases from zero to a highly oblique angle of 68 degrees. The results for the cone show that no instability modes are generated when the acoustic disturbances impinge the cone obliquely. The results show that the perturbations generated inside the boundary layer by the acoustic disturbances are the response of the boundary layer to the external forcing. The amplitude of the forced disturbances inside the boundary layer are about 2.5 times larger than the incoming field for zero azimuthal wavenumber and they are about 1.5 times for large azimuthal wavenumbers.

  11. Agouron and immune response to commercialize remune immune-based treatment.

    PubMed

    James, J S

    1998-06-19

    Agouron Pharmaceuticals agreed in June to collaborate with The Immune Response Corporation on the final development and marketing of an immune-based treatment for HIV. Remune, the vaccine developed by Dr. Jonas Salk, is currently in Phase III randomized trials with 2,500 patients, and the trials are expected to be completed in April 1999. Immune-based treatments have been difficult to test, as there is no surrogate marker, like viral load, to determine if the drug is working. Agouron agreed to participate in the joint venture after reviewing encouraging results from preliminary trials in which remune was taken in combination with highly active antiretroviral drugs. PMID:11365593

  12. Plant hydraulic controls over ecosystem responses to climate-enhanced disturbances

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Ewers, B. E.; Reed, D. E.; Pendall, E.; McDowell, N. G.

    2012-12-01

    Climate-enhanced disturbances such as drought and insect infestation range in severity, contributing minor to severe stress to forests including forest mortality. While neither form of disturbance has been unambiguously implicated as a mechanism of mortality, both induce changes in water, carbon, and nutrient cycling that are key to understanding forest ecosystem response to, and recovery from, disturbance. Each disturbance type has different biophysical, ecohydrological, and biogeochemical signatures that potentially complicate interpretation and development of theory. Plant hydraulic function is arguably a unifying control over these responses to disturbance because it regulates stomatal conductance, leaf biochemistry, carbon (C) uptake and utilization, and nutrient cycling. We demonstrated this idea by focusing on water and C, including non-structural (NSC), resources, and nitrogen (N) uptake across a spectrum of forest ecosystems (e.g., northern temperate mixed forests, lodgepole pine forests in the Rocky Mountains, and pinon pine - juniper woodlands in New Mexico) using the Terrestrial Regional Ecosystem Exchange Simulator (TREES). TREES is grounded in the biophysics of water movement through soil and plants, respectively via hydraulic conductivity of the soil and cavitation of xylem. It combines this dynamic plant hydraulic conductance with canopy biochemical controls over photosynthesis, and the dynamics of structural and non-structural carbon through a carbon budget that responds to plant hydraulic status. As such, the model can be used to develop testable hypotheses on a multitude of disturbance and recovery responses including xylem dysfunction, stomatal and non-stomatal controls on photosynthesis and carbon allocation, respiration, and allocation to defense compounds. For each of the ecosystems we constrained and evaluated the model with allometry, sap flux and/or eddy covariance data, leaf gas exchange measurements, and vulnerability to cavitation data

  13. Mapping immune response profiles: the emerging scenario from helminth immunology.

    PubMed

    Díaz, Alvaro; Allen, Judith E

    2007-12-01

    Metazoan parasites of mammals (helminths) belong to highly divergent animal groups and yet induce a stereotypical host response: Th2-type immunity. It has long been debated whether this response benefits the host or the parasite. We review the current literature and suggest that Th2 immunity is an evolutionarily appropriate response to metazoan invaders both in terms of controlling parasites and repairing the damage they inflict. However, successful parasites induce regulatory responses, which become superimposed with, and control, Th2 responses. Beyond helminth infection, this superimposition of response profiles may be the norm: both Th1 and Th2 responses coexist with regulatory responses or, on the contrary, with the inflammatory Th17 responses. Thus, typical responses to helminth infections may differ from Th2-dominated allergic reactions in featuring not only a stronger regulatory component but also a weaker Th17 component. The similarity of immune response profiles to phylogenetically distinct helminths probably arises from mammalian evolution having hard-wired diverse worm molecules, plus tissue-damage signals, to the beneficial Th2 response, and from the convergent evolution of different helminths to elicit regulatory responses. We speculate that initiation of both Th2 and regulatory responses involves combinatorial signaling, whereby TLR-mediated signals are modulated by signals from other innate receptors, including lectins. PMID:18000958

  14. Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers.

    PubMed

    Tomas, Fiona; Martínez-Crego, Begoña; Hernán, Gema; Santos, Rui

    2015-11-01

    Coastal communities are under threat from many and often co-occurring local (e.g., pollution, eutrophication) and global stressors (e.g., climate change), yet understanding the interactive and cumulative impacts of multiple stressors in ecosystem function is far from being accomplished. Ecological redundancy may be key for ecosystem resilience, but there are still many gaps in our understanding of interspecific differences within a functional group, particularly regarding response diversity, that is, whether members of a functional group respond equally or differently to anthropogenic stressors. Herbivores are critical in determining plant community structure and the transfer of energy up the food web. Human disturbances may alter the ecological role of herbivory by modifying the defense strategies of plants and thus the feeding patterns and performance of herbivores. We conducted a suite of experiments to examine the independent and interactive effects of anthropogenic (nutrient and CO2 additions) and natural (simulated herbivory) disturbances on a seagrass and its interaction with two common generalist consumers to understand how multiple disturbances can impact both a foundation species and a key ecological function (herbivory) and to assess the potential existence of response diversity to anthropogenic and natural changes in these systems. While all three disturbances modified seagrass defense traits, there were contrasting responses of herbivores to such plant changes. Both CO2 and nutrient additions influenced herbivore feeding behavior, yet while sea urchins preferred nutrient-enriched seagrass tissue (regardless of other experimental treatments), isopods were deterred by these same plant tissues. In contrast, carbon enrichment deterred sea urchins and attracted isopods, while simulated herbivory only influenced isopod feeding choice. These contrasting responses of herbivores to disturbance-induced changes in seagrass help to better understand the ecological

  15. [Effect of anabolic steroid on immune response].

    PubMed

    Yamagishi, H; Kobayashi, M; Konosu, H; Kurioka, H; Naito, K; Sonoyama, T; Nishimoto, T; Hashimoto, I

    1984-03-01

    Using lymphocyte, monocyte and eosinophil counts of the peripheral blood, PHA-blastoid transformation, immunoglobulin and beta 2-microglobulin, the influence of anabolic steroid on the immune reactivity of the host was dissected by administration of Deca-Durabolin ( nandrolone decanoate) to both tumor-bearing host and tumor-free host after operation for alimentary tract. The number of peripheral lymphocytes and monocytes, the PHA-blastoid transformation of peripheral lymphocytes and the IgG level were increased, and the beta 2-microglobulin level showed the tendency of decrease after the administration of Deca-Durabolin. PMID:6367663

  16. Genetic immunization in the lung induces potent local and systemic immune responses.

    PubMed

    Song, Kaimei; Bolton, Diane L; Wei, Chih-Jen; Wilson, Robert L; Camp, Jeremy V; Bao, Saran; Mattapallil, Joseph J; Herzenberg, Leonore A; Herzenberg, Leonard A; Andrews, Charla A; Sadoff, Jerald C; Goudsmit, Jaap; Pau, Maria Grazia; Seder, Robert A; Kozlowski, Pamela A; Nabel, Gary J; Roederer, Mario; Rao, Srinivas S

    2010-12-21

    Successful vaccination against respiratory infections requires elicitation of high levels of potent and durable humoral and cellular responses in the lower airways. To accomplish this goal, we used a fine aerosol that targets the entire lung surface through normal respiration to deliver replication-incompetent recombinant adenoviral vectors expressing gene products from several infectious pathogens. We show that this regimen induced remarkably high and stable lung T-cell responses in nonhuman primates and that it also generated systemic and respiratory tract humoral responses of both IgA and IgG isotypes. Moreover, strong immunogenicity was achieved even in animals with preexisting antiadenoviral immunity, overcoming a critical hurdle to the use of these vectors in humans, who commonly are immune to adenoviruses. The immunogenicity profile elicited with this regimen, which is distinct from either intramuscular or intranasal delivery, has highly desirable properties for protection against respiratory pathogens. We show that it can be used repeatedly to generate mucosal humoral, CD4, and CD8 T-cell responses and as such may be applicable to other mucosally transmitted pathogens such as HIV. Indeed, in a lethal challenge model, we show that aerosolized recombinant adenoviral immunization completely protects ferrets against H5N1 highly pathogenic avian influenza virus. Thus, genetic immunization in the lung offers a powerful platform approach to generating protective immune responses against respiratory pathogens. PMID:21135247

  17. Modulation of Innate Immune Responses via Covalently Linked TLR Agonists

    PubMed Central

    2015-01-01

    We present the synthesis of novel adjuvants for vaccine development using multivalent scaffolds and bioconjugation chemistry to spatially manipulate Toll-like receptor (TLR) agonists. TLRs are primary receptors for activation of the innate immune system during vaccination. Vaccines that contain a combination of small and macromolecule TLR agonists elicit more directed immune responses and prolong responses against foreign pathogens. In addition, immune activation is enhanced upon stimulation of two distinct TLRs. Here, we synthesized combinations of TLR agonists as spatially defined tri- and di-agonists to understand how specific TLR agonist combinations contribute to the overall immune response. We covalently conjugated three TLR agonists (TLR4, 7, and 9) to a small molecule core to probe the spatial arrangement of the agonists. Treating immune cells with the linked agonists increased activation of the transcription factor NF-κB and enhanced and directed immune related cytokine production and gene expression beyond cells treated with an unconjugated mixture of the same three agonists. The use of TLR signaling inhibitors and knockout studies confirmed that the tri-agonist molecule activated multiple signaling pathways leading to the observed higher activity. To validate that the TLR4, 7, and 9 agonist combination would activate the immune response to a greater extent, we performed in vivo studies using a vaccinia vaccination model. Mice vaccinated with the linked TLR agonists showed an increase in antibody depth and breadth compared to mice vaccinated with the unconjugated mixture. These studies demonstrate how activation of multiple TLRs through chemically and spatially defined organization assists in guiding immune responses, providing the potential to use chemical tools to design and develop more effective vaccines. PMID:26640818

  18. Regulation of Immune Response by Autogenous Antibody against Receptor

    PubMed Central

    Kluskens, L.; Köhler, H.

    1974-01-01

    BALB/c mice repeatedly immunized with Pneumococcus R36A vaccine produce antibodies to phosphorylcholine having the TEPC-15 myeloma idiotype (murine IgA myeloma protein that binds phosphorylcholine). The plaque-forming cell response to phosphorylcholine shows a decrease with repeated immunizations. In contrast, spleen cells from multiply immunized mice responded better in vitro than spleen cells from nonimmunized mice. The serum of animals immunized four or five times agglutinates TEPC-15-coated sheep erythrocytes. Inhibition of hemagglutination shows that the agglutinating activity is directed against the TEPC-15 idiotype. Sera from these mice, when added to cultures of normal spleen cells, specifically suppress the response to phosphorylcholine. The suppressive activity in the serum can be removed by solid absorption with TEPC-15. Evidently, repeated immunization with antigen induces two kinds of antibody responses: one directed against antigen and the other directed against the antibody to the antigen. It is proposed that this “auto” antibody against receptor is involved in the regulation of the immune response. PMID:4140517

  19. Transgenerational effects enhance specific immune response in a wild passerine

    PubMed Central

    Soriguer, Ramon C.; Figuerola, Jordi

    2016-01-01

    Vertebrate mothers transfer diverse compounds to developing embryos that can affect their development and final phenotype (i.e., maternal effects). However, the way such effects modulate offspring phenotype, in particular their immunity, remains unclear. To test the impact of maternal effects on offspring development, we treated wild breeding house sparrows (Passer domesticus) in Sevilla, SE Spain with Newcastle disease virus (NDV) vaccine. Female parents were vaccinated when caring for first broods, eliciting a specific immune response to NDV. The immune response to the same vaccine, and to the PHA inflammatory test were measured in 11-day-old chicks from their following brood. Vaccinated chicks from vaccinated mothers developed a stronger specific response that was related to maternal NDV antibody concentration while rearing their chicks. The chicks’ carotenoid concentration and total antioxidant capacity in blood were negatively related to NDV antibody concentration, whereas no relation with PHA response was found. Specific NDV antibodies could not be detected in 11-day-old control chicks from vaccinated mothers, implying that maternally transmitted antibodies are not directly involved but may promote offspring specific immunity through a priming effect, while other immunity components remain unaffected. Maternally transmitted antibodies in the house sparrow are short-lived, depend on maternal circulation levels and enhance pre-fledging chick specific immunity when exposed to the same pathogens as the mothers. PMID:27069782

  20. Behavioural trait covaries with immune responsiveness in a wild passerine.

    PubMed

    Sild, Elin; Sepp, Tuul; Hõrak, Peeter

    2011-10-01

    Immune system is highly integrated with the nervous and endocrine systems, which is thought to result in covariation between behavioural syndromes and stress- and immune-associated diseases. Very little is known about the associations between behaviour and immune traits in wild animals. Here we describe such an association in passerine birds, the greenfinches (Carduelis chloris). When wild-caught greenfinches are brought into captivity, some individuals damage their tail feathers against cage walls due to excited behaviour, while others retain their feathers in intact condition. We show that damage to tail feathers was associated with flapping flight movements and the frequency of such flapping bouts was individually consistent over 57 days. Birds with intact tails, i.e., relatively 'calm' individuals mounted stronger antibody response to a novel Brucella abortus antigen and their circulating phagocytes were capable of producing stronger oxidative burst in response to stimulation with bacterial lipopolysaccharide in vitro. As the behavioural trait was assessed 13-25 days before measuring immune responsiveness, our results demonstrate that individuals' coping styles with captivity predicted how these individuals would respond to forthcoming immune challenges. This is a novel evidence about covariation between immune responsiveness and a behavioural trait in a wild-caught animal. PMID:21473910

  1. Innate immune responses to microbial agonist stimulations in heterophils and monocytes from young commercial turkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The innate immune system recognizes microbial pathogens and pathogen associated molecular patterns and incites inflammatory immune responses to control the infection. Here, we examined functional innate immune responses of turkey heterophils and monocytes to microbial agonist stimulations by measur...

  2. Balancing Immune Protection and Immune Pathology by CD8+ T-Cell Responses to Influenza Infection

    PubMed Central

    Duan, Susu; Thomas, Paul G.

    2016-01-01

    Influenza A virus (IAV) is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity contributes to the clearance of virus-infected cells, and CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, its cytotoxicity, and the effects of produced proinflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL antiviral immunity from those necessary to restrain CTL-mediated non-specific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity. PMID:26904022

  3. Balancing Immune Protection and Immune Pathology by CD8(+) T-Cell Responses to Influenza Infection.

    PubMed

    Duan, Susu; Thomas, Paul G

    2016-01-01

    Influenza A virus (IAV) is a significant human pathogen causing annual epidemics and periodic pandemics. CD8(+) cytotoxic T lymphocyte (CTL)-mediated immunity contributes to the clearance of virus-infected cells, and CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, its cytotoxicity, and the effects of produced proinflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL antiviral immunity from those necessary to restrain CTL-mediated non-specific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity. PMID:26904022

  4. The immune response against Candida spp. and Sporothrix schenckii.

    PubMed

    Martínez-Álvarez, José A; Pérez-García, Luis A; Flores-Carreón, Arturo; Mora-Montes, Héctor M

    2014-01-01

    Candida albicans is the main causative agent of systemic candidiasis, a condition with high mortality rates. The study of the interaction between C. albicans and immune system components has been thoroughly studied and nowadays there is a model for the anti-C. albicans immune response; however, little is known about the sensing of other pathogenic species of the Candida genus. Sporothrix schenckii is the causative agent of sporotrichosis, a subcutaneous mycosis, and thus far there is limited information about its interaction with the immune system. In this paper, we review the most recent information about the immune sensing of species from genus Candida and S. schenckii. Thoroughly searches in scientific journal databases were performed, looking for papers addressing either Candida- or Sporothrix-immune system interactions. There is a significant advance in the knowledge of non-C. albicans species of Candida and Sporothrix immune sensing; however, there are still relevant points to address, such as the specific contribution of pathogen-associated molecular patterns (PAMPs) for sensing by different immune cells and the immune receptors involved in such interactions. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). PMID:24252829

  5. Functional genomic analysis of the Drosophila immune response.

    PubMed

    Valanne, Susanna

    2014-01-01

    Drosophila melanogaster has been widely used as a model organism for over a century now, and also as an immunological research model for over 20 years. With the emergence of RNA interference (RNAi) in Drosophila as a robust tool to silence genes of interest, large-scale or genome-wide functional analysis has become a popular way of studying the Drosophila immune response in cell culture. Drosophila immunity is composed of cellular and humoral immunity mechanisms, and especially the systemic, humoral response pathways have been extensively dissected using the functional genomic approach. Although most components of the main immune pathways had already been found using traditional genetic screening techniques, important findings including pathway components, positive and negative regulators and modifiers have been made with RNAi screening. Additionally, RNAi screening has produced new information on host-pathogen interactions related to the pathogenesis of many microbial species. PMID:23707784

  6. Activation and Regulation of DNA-Driven Immune Responses

    PubMed Central

    2015-01-01

    SUMMARY The innate immune system provides early defense against infections and also plays a key role in monitoring alterations of homeostasis in the body. DNA is highly immunostimulatory, and recent advances in this field have led to the identification of the innate immune sensors responsible for the recognition of DNA as well as the downstream pathways that are activated. Moreover, information on how cells regulate DNA-driven immune responses to avoid excessive inflammation is now emerging. Finally, several reports have demonstrated how defects in DNA sensing, signaling, and regulation are associated with susceptibility to infections or inflammatory diseases in humans and model organisms. In this review, the current literature on DNA-stimulated innate immune activation is discussed, and important new questions facing this field are proposed. PMID:25926682

  7. [Bone marrow stromal damage mediated by immune response activity].

    PubMed

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis. PMID:18173180

  8. Pathogenesis of necrotizing enterocolitis: modeling the innate immune response.

    PubMed

    Tanner, Scott M; Berryhill, Taylor F; Ellenburg, James L; Jilling, Tamas; Cleveland, Dava S; Lorenz, Robin G; Martin, Colin A

    2015-01-01

    Necrotizing enterocolitis (NEC) is a major cause of morbidity and mortality in premature infants. The pathophysiology is likely secondary to innate immune responses to intestinal microbiota by the premature infant's intestinal tract, leading to inflammation and injury. This review provides an updated summary of the components of the innate immune system involved in NEC pathogenesis. In addition, we evaluate the animal models that have been used to study NEC with regard to the involvement of innate immune factors and histopathological changes as compared to those seen in infants with NEC. Finally, we discuss new approaches to studying NEC, including mathematical models of intestinal injury and the use of humanized mice. PMID:25447054

  9. Modulation of Immune Response Using Engineered Nanoparticle Surfaces.

    PubMed

    Moyano, Daniel F; Liu, Yuanchang; Peer, Dan; Rotello, Vincent M

    2016-01-01

    Nanoparticles (NPs) coated with a monolayer of ligands can be recognized by different components of the immune system, opening new doors for the modulation of immunological responses. By the use of different physical or chemical properties at the NP surface (such as charge, functional groups, and ligand density), NPs can be designed to have distinct cellular uptake, cytokine secretion, and immunogenicity, factors that influence the distribution and clearance of these particles. Understanding these immunological responses is critical for the development of new NP-based carriers for the delivery of therapeutic molecules, and as such several studies have been performed to understand the relationships between immune responses and NP surface functionality. In this review, we will discuss recent reports of these structure-activity relationships, and explore how these motifs can be controlled to elicit therapeutically useful immune responses. PMID:26618755

  10. SUMO-Enriched Proteome for Drosophila Innate Immune Response

    PubMed Central

    Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S.

    2015-01-01

    Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. PMID:26290570

  11. Harnessing DNA-induced immune responses for improving cancer vaccines

    PubMed Central

    Herrada, Andrés A.; Rojas-Colonelli, Nicole; González-Figueroa, Paula; Roco, Jonathan; Oyarce, César; Ligtenberg, Maarten A.; Lladser, Alvaro

    2012-01-01

    DNA vaccines have emerged as an attractive strategy to promote protective cellular and humoral immunity against the encoded antigen. DNA vaccines are easy to generate, inexpensive to produce and purify at large-scale, highly stable and safe. In addition, plasmids used for DNA vaccines act as powerful “danger signals” by stimulating several DNA-sensing innate immune receptors that promote the induction of protective adaptive immunity. The induction of tumor-specific immune responses represents a major challenge for DNA vaccines because most of tumor-associated antigens are normal non-mutated self-antigens. As a consequence, induction of potentially self-reactive T cell responses against such poorly immunogenic antigens is controlled by mechanisms of central and peripheral tolerance as well as tumor-induced immunosuppression. Although several DNA vaccines against cancer have reached clinical testing, disappointing results have been observed. Therefore, the development of new adjuvants that strongly stimulate the induction of antitumor T cell immunity and counteract immune-suppressive regulation is an attractive approach to enhance the potency of DNA vaccines and overcome tumor-associated tolerance. Understanding the DNA-sensing signaling pathways of innate immunity that mediate the induction of T cell responses elicited by DNA vaccines represents a unique opportunity to develop novel adjuvants that enhance vaccine potency. The advance of DNA adjuvants needs to be complemented with the development of potent delivery systems, in order to step toward successful clinical application. Here, we briefly discuss recent evidence showing how to harness DNA-induced immune response to improve the potency of cancer vaccines and counteract tumor-associated tolerance. PMID:23111166

  12. Innate Immune Response to Intramammary Mycoplasma bovis Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mastitis caused by Mycoplasma bovis is a growing concern for the dairy industry. M. bovis intramammary infection commonly results in an untreatable case of chronic mastitis. The innate immune system is responsible for initial recognition of, and immediate host responses to, infectious pathogens. ...

  13. Innate immune responses of temperamental and calm cattle after transportation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to investigate measures of cellular innate immune responses among calm and temperamental Brahman bulls in response to handling and transportation. Sixteen Brahman bulls (344 ± 37 days of age; 271.6 ± 45.5 kg BW) classified as either calm (n = 8) or temperamental (n = 8) were loaded...

  14. How Neutrophils Shape Adaptive Immune Responses

    PubMed Central

    Leliefeld, Pieter H. C.; Koenderman, Leo; Pillay, Janesh

    2015-01-01

    Neutrophils are classically considered as cells pivotal for the first line of defense against invading pathogens. In recent years, evidence has accumulated that they are also important in the orchestration of adaptive immunity. Neutrophils rapidly migrate in high numbers to sites of inflammation (e.g., infection, tissue damage, and cancer) and are subsequently able to migrate to draining lymph nodes (LNs). Both at the site of inflammation as well as in the LNs, neutrophils can engage with lymphocytes and antigen-presenting cells. This crosstalk occurs either directly via cell–cell contact or via mediators, such as proteases, cytokines, and radical oxygen species. In this review, we will discuss the current knowledge regarding locations and mechanisms of interaction between neutrophils and lymphocytes in the context of homeostasis and various pathological conditions. In addition, we will highlight the complexity of the microenvironment that is involved in the generation of suppressive or stimulatory neutrophil phenotypes. PMID:26441976

  15. Arginine and Citrulline and the Immune Response in Sepsis

    PubMed Central

    Wijnands, Karolina A.P.; Castermans, Tessy M.R.; Hommen, Merel P.J.; Meesters, Dennis M.; Poeze, Martijn

    2015-01-01

    Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target. PMID:25699985

  16. Antigen-specific immune responses to influenza vaccine in utero

    PubMed Central

    Rastogi, Deepa; Wang, Chaodong; Mao, Xia; Lendor, Cynthia; Rothman, Paul B.; Miller, Rachel L.

    2007-01-01

    Initial immune responses to allergens may occur before birth, thereby modulating the subsequent development of atopy. This paradigm remains controversial, however, due to the inability to identify antigen-specific T cells in cord blood. The advent of MHC tetramers has revolutionized the detection of antigen-specific T cells. Tetramer staining of cord blood after CMV infection has demonstrated that effective CD8+ antigen-specific immune responses can follow intrauterine viral infections. We hypothesized that sensitization to antigens occurs in utero in humans. We studied cord blood B and T cell immune responses following vaccination against influenza during pregnancy. Anti-Fluzone and anti-matrix protein IgM antibodies were detected in 38.5% (27 of 70) and 40.0% (28 of 70), respectively, of cord blood specimens. Using MHC tetramers, HA-specific CD4+ T cells were detected among 25.0% (3 of 12) and 42.9% (6 of 14) of cord blood specimens possessing DRB1*0101 and DRB1*0401 HLA types, respectively, and were detected even when the DRB1 HLA type was inherited from the father. Matrix protein–specific CD8+ T cells were detected among 10.0% (2 of 20) of HLA-A*0201+ newborns. These results suggest that B and T cell immune responses occur in the fetus following vaccination against influenza and have important implications for determining when immune responses to environmental exposures begin. PMID:17549258

  17. Modulation of immune responses in stress by Yoga

    PubMed Central

    Arora, Sarika; Bhattacharjee, Jayashree

    2008-01-01

    Stress is a constant factor in today's fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS) and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress. PMID:21829284

  18. Characterization of the immune response of domestic fowl following immunization with proteins extracted from Dermanyssus gallinae.

    PubMed

    Harrington, David; Din, Hatem Mohi El; Guy, Jonathan; Robinson, Karen; Sparagano, Olivier

    2009-03-23

    Dermanyssus gallinae is the most significant ectoparasite of European poultry egg laying production systems due to high costs of control and associated production losses as well as adverse effects on bird welfare. In this study, soluble proteins were extracted from unfed D. gallinae (DGE) using a urea-based detergent and ultra-filtration, passed through a 0.22 microm filter and blended aseptically with adjuvant. One group of laying hens was immunized with DGE and adjuvant (Montanide ISA 50 V) whilst another group (Control) received physiological saline and adjuvant. All birds were immunized on two occasions, 21 days apart. Antibody response to immunization was determined by ELISA and western blotting using immunoglobulins (Igs) extracted from egg yolk. DGE immunization of hens resulted in a significant (P<0.05) IgY response compared to controls, although there was no significant difference in IgM response between treatments. A number of proteins were identified by western blotting using IgY antibodies from DGE immunized birds, most prominently at 40 and 230kDa. Analysis of proteins from approximately corresponding bands on SDS-PAGE confirmed the identity of tropomyosin, whilst other proteins showed high sequence homology with myosin and actin from other arachnid and insect species. Immunization of hens with DGE resulted in a 50.6% increase in mite mortality (P<0.001) 17h after feeding when tested by an in vitro mite feeding model. Data in this study demonstrate that somatic antigens from D. gallinae can be used to stimulate a protective immune response in laying hens. Further work is needed to identify other proteins of interest that could confer higher protection against D. gallinae, as well as optimization of the vaccination and in vitro testing protocol. PMID:19091480

  19. Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies.

    PubMed

    Guillerey, Camille; Nakamura, Kyohei; Vuckovic, Slavica; Hill, Geoffrey R; Smyth, Mark J

    2016-04-01

    Multiple myeloma (MM) is a tumor of terminally differentiated B cells that arises in the bone marrow. Immune interactions appear as key determinants of MM progression. While myeloid cells foster myeloma-promoting inflammation, Natural Killer cells and T lymphocytes mediate protective anti-myeloma responses. The profound immune deregulation occurring in MM patients may be involved in the transition from a premalignant to a malignant stage of the disease. In the last decades, the advent of stem cell transplantation and new therapeutic agents including proteasome inhibitors and immunoregulatory drugs has dramatically improved patient outcomes, suggesting potentially key roles for innate and adaptive immunity in disease control. Nevertheless, MM remains largely incurable for the vast majority of patients. A better understanding of the complex interplay between myeloma cells and their immune environment should pave the way for designing better immunotherapies with the potential of very long term disease control. Here, we review the immunological microenvironment in myeloma. We discuss the role of naturally arising anti-myeloma immune responses and their potential corruption in MM patients. Finally, we detail the numerous promising immune-targeting strategies approved or in clinical trials for the treatment of MM. PMID:26801219

  20. LIGHT May Improve Immune Checkpoint Blockade Response.

    PubMed

    2016-06-01

    A new study suggests that insufficient T-cell infiltration may explain why a majority of patients do not respond to immunotherapy. Combining PD-L1 inhibitors with antibody-guided LIGHT, a protein that recruits tumor-infiltrating lymphocytes, increased antitumor response in mice, and may have the potential to improve patient response rates to immunotherapy. PMID:27080334

  1. Immunization with Immune Complexes Modulates the Fine Specificity of Antibody Responses to a Flavivirus Antigen

    PubMed Central

    Tsouchnikas, Georgios; Zlatkovic, Juergen; Jarmer, Johanna; Strauß, Judith; Vratskikh, Oksana; Kundi, Michael; Stiasny, Karin

    2015-01-01

    ABSTRACT The antibody response to proteins may be modulated by the presence of preexisting antigen-specific antibodies and the formation of immune complexes (ICs). Effects such as a general increase or decrease of the response as well as epitope-specific phenomena have been described. In this study, we investigated influences of IC immunization on the fine specificity of antibody responses in a structurally well-defined system, using the envelope (E) protein of tick-borne encephalitis (TBE) virus as an immunogen. TBE virus occurs in Europe and Asia and—together with the yellow fever, dengue, West Nile, and Japanese encephalitis viruses—represents one of the major human-pathogenic flaviviruses. Mice were immunized with a dimeric soluble form of E (sE) alone or in complex with monoclonal antibodies specific for each of the three domains of E, and the antibody response induced by these ICs was compared to that seen after immunization with sE alone. Immunoassays using recombinant domains and domain combinations of TBE virus sE as well as the distantly related West Nile virus sE allowed the dissection and quantification of antibody subsets present in postimmunization sera, thus generating fine-specificity patterns of the polyclonal responses. There were substantially different responses with two of the ICs, and the differences could be mechanistically related to (i) epitope shielding and (ii) antibody-mediated structural changes leading to dissociation of the sE dimer. The phenomena described may also be relevant for polyclonal responses upon secondary infections and/or booster immunizations and may affect antibody responses in an individual-specific way. IMPORTANCE Infections with flaviviruses such as yellow fever, dengue, Japanese encephalitis, West Nile, and tick-borne encephalitis (TBE) viruses pose substantial public health problems in different parts of the world. Antibodies to viral envelope protein E induced by natural infection or vaccination were shown to

  2. The Ionospheric Responses to the Lower-atmosphere Disturbances Associated with Typhoon

    NASA Astrophysics Data System (ADS)

    Xiao, Sai-Guan; Xiao, Zuo; Shi, Jian-Kui; Zhang, Dong-He; Hao, Yong-Qiang

    2016-04-01

    The coupling between ionosphere and lower atmosphere is one of the important subjects in the space physics. A large number studies have shown that there is a close relation between the ionosphere and lower-atmosphere disturbances which can be caused by severe weather activities. Typhoon is one of the important sources in the lower-atmosphere. By the use of the continuous HF Doppler shift observation data in time, a study of ionospheric response to typhoon has been carried out. The results of analyses showed that the significant wave-like disturbances (in general, medium scale acoustic-gravity waves (AGWs)) appeared firstly and always formed the medium-scale traveling ionospheric disturbances (TIDs) in the ionosphere; Then these TIDs showed quite clear periodicity and their periods varied with time and gradually grew longer; After sunset, the wave-like disturbances with large magnitudes often excited the mid-latitude Spread-F; And the sunrise-like phenomena often appear in non-sunrise time during the period the typhoon exists, and so on. This study has important scientific significance for the further studying of the coupling between ionosphere and the disturbances of lower-atmosphere.

  3. Productivity, mortality, and response to disturbance of nesting Swainson's hawks on the Hanford Site

    SciTech Connect

    Poole, L.D.; Marr, N.V.; McCorquodale, S.M.

    1988-03-01

    The objectives of this study were to characterize Swainson's hawk (Buteo swainson) use of the US Department of Energy (DOE) Hanford Site and to evaluate the potential for engineering and other human activities on the Hanford Site to negatively affect the nesting Swainson's hawk population. Activities associated with the Basalt Waste Isolation Project (BWIP) were used as the primary external stimuli in studying hawk responses to potential human disturbance. Parked and moving vehicles were the most common disturbance sources observed in Swainson's hawk territories. Hawks appeared to be sensitive to disturbance from pedestrians and slow-moving vehicles near nests. Novel stimuli were much more likely to evoke strong responses than were recurring events. Adult hawks reacted more frequently and vigorously than did juveniles. When disturbed, adult hawks usually flew toward the location of the disturbance; juvenile hawks usually flew away from disturbances. Human activity associated with BWIP may have had negative on one pair of nesting Swainson's hawks and may have precluded the use of an additional traditional nesting territory. Negative impacts to nesting Swainson's hawks from human activity could be minimized by confining activities to the non-nesting period or to distances greater than 2.2 km from nest sites. Tree groves and elevated perches, including utility poles, across the Hanford Site are probably critical to the success of nesting Swainson's hawks. Potential mitigation strategies associated with energy research and development activities on the Hanford Site could include provisions for maintenance and establishment of drought-tolerant trees and native vegetation. 22 refs., 5 figs., 3 tabs.

  4. Water Table and Soil Gas Emission Responses to Disturbance in Northern Forested Wetlands

    NASA Astrophysics Data System (ADS)

    Pypker, T. G.; Van Grinsven, M. J.; Bolton, N. W.; Shannon, J.; Davis, J.; Wagenbrenner, J. W.; Sebestyen, S. D.; Kolka, R. K.

    2014-12-01

    Exotic pest infestations are increasingly common throughout North American forests. In forested wetlands, disturbance events may alter nutrient, carbon, and hydrologic pathways. Recently, ash (Fraxinus spp.) forests in North Central and Eastern North America have been exposed to the exotic emerald ash borer (EAB) (Burprestidae: Agrilus planipennis), and the rapid and extensive expansion of EAB populations since 2001 may soon eliminate most existing ash stands. Limited research has focused on post-establishment ecosystem impacts of an EAB disturbance, and to our knowledge, there are no studies that have evaluated the coupled response of black ash (Fraxinus nigra) wetland water tables, soil temperatures, and soil gas emissions to an EAB infestation. We present preliminary results that detail those responses to a simulated EAB disturbance. Water table position, soil temperature, and soil gas emissions (CO2 and CH4) were monitored in nine black ash wetlands in the Upper Peninsula of Michigan for three years, including one year of pre-treatment and two years of post-treatment data-collection. An EAB disturbance was simulated by girdling (Girdle) or felling (Clearcut) all black ash trees with diameters of 2.5 cm or greater within the wetland, and each treatment was applied to three sites. The results indicate that wetland water tables were insensitive to treatment effects, soil temperatures were significantly higher in the Clearcut treatment, soil gas flux was significantly higher in the Clearcut treatment, and the rate of soil gas flux was strongly regulated by water table position and temperature. No significant treatment effects were detected in the Girdle treatment during the first post-treatment year. Because water tables were insensitive to treatment, we concluded that water tables did not independently generate a soil gas flux response despite their strong regulatory influence. Furthermore, we concluded that the response of soil temperature to disturbance was

  5. Temporal Trends in Stream N Concentrations and Responses to Disturbances in US Forested Basins

    NASA Astrophysics Data System (ADS)

    Argerich, A.; Johnson, S. L.; Sebestyen, S. D.; Rhoades, C.; Greathouse, E.; Jones, J.; Knoepp, J.; Adams, M. B.; Likens, G.; Campbell, J. L.; McDowell, W. H.; Ice, G. G.; Amatya, D. M.; Wohlgemuth, P. M.

    2011-12-01

    USFS Experimental Forests and Ranges have been collecting stream hydrologic and chemistry data in reference and disturbed forested basins across the country for several decades. These sites are located across a gradient of climatic conditions and are uniquely positioned to examine stream chemistry trends during the last decades and to study water quality responses to natural disturbances and forest harvest. To increase our understanding of stream chemistry trends at sites that are considered reference, sites that have not had anthropogenic impacts in the last 70 years other than atmospheric deposition, we synthesized stream N data collected over 12 to 43 years from 22 forested reference basins from seven USFS Experimental Forest Research sites . Results show high temporal and spatial variability in stream water N concentrations and trends. Some reference basins within a single Experimental Forest displayed temporal N concentration trends in opposite directions, suggesting that local factors (i.e., aspect of the basin, precipitation, vegetation, geology and soil type, and moisture) may be more relevant than regional factors. Additionally, we found trends in streamwater N concentrations changing direction over time. These findings highlight the importance of long-term stream water chemistry studies with continuous records encompassing wide range of climatic variability since controls of N exports from headwater streams may vary at both fine and long temporal and spatial scales. With a better understanding of trends in reference basins, we are beginning to examine stream chemistry responses to multiple types of disturbances including forest harvesting, insect outbreaks, fires, and hurricanes. We analyzed data from a total of 33 disturbance events on 8 Experimental Forests to quantify both the magnitude and duration of stream N responses. This analysis will increase our understanding of water chemistry responses to disturbance across biomes.

  6. Age-dependent immune responses and immune protection after avian coronavirus vaccination.

    PubMed

    van Ginkel, Frederik W; Padgett, Justin; Martinez-Romero, Gisela; Miller, Matthew S; Joiner, Kellye S; Gulley, Stephen L

    2015-05-28

    Infectious bronchitis virus (IBV) is an endemic disease of chickens and a major contributor to economic losses for the poultry industry despite vaccination. Recent observations indicated that chicks may have an immature immune system immediately after hatching when vaccinated for IBV. Therefore we hypothesized that early IBV vaccination will generate an immature, poorly protective IBV-specific immune response contributing to immune escape and persistence of IBV. To test this hypothesis the IBV-specific immune response and immune protection were measured in chicks vaccinated at different ages. This demonstrated a delayed production of IgG and IgA plasma antibodies in the 1, 7 and 14-day-old vaccination groups and also lower IgA antibody levels were observed in plasma of the 1-day-old group. Similar observations were made for antibodies in tears. In addition, IgG antibodies from the 1-day-old group had lower avidity indices than day 28 vaccinated birds. The delayed and/or lower antibody response combined with lower IgG avidity indices coincided with increased tracheal inflammation and depletion of tracheal epithelia cells and goblet cells upon IBV field strain challenge. The lack of vaccine-mediated protection was most pronounced in the 1-day-old vaccination group and to a lesser extent the 7-day-old group, while the 14-day-old and older chickens were protected. These data strongly support IBV vaccination after day 7 post hatch. PMID:25910920

  7. Probiotics, antibiotics and the immune responses to vaccines

    PubMed Central

    Praharaj, Ira; John, Sushil M.; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-01-01

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. PMID:25964456

  8. Immune responses of ducks infected with duck Tembusu virus

    PubMed Central

    Li, Ning; Wang, Yao; Li, Rong; Liu, Jiyuan; Zhang, Jinzhou; Cai, Yumei; Liu, Sidang; Chai, Tongjie; Wei, Liangmeng

    2015-01-01

    Duck Tembusu virus (DTMUV) can cause serious disease in ducks, characterized by reduced egg production. Although the virus has been isolated and detection methods developed, the host immune responses to DTMUV infection are unclear. Therefore, we systematically examined the expression of immune-related genes and the viral distribution in DTMUV-infected ducks, using quantitative real-time PCR. Our results show that DTMUV replicates quickly in many tissues early in infection, with the highest viral titers in the spleen 1 day after infection. Rig-1, Mda5, and Tlr3 are involved in the host immune response to DTMUV, and the expression of proinflammatory cytokines (Il-1β, –2, –6, Cxcl8) and antiviral proteins (Mx, Oas, etc.) are also upregulated early in infection. The expression of Il-6 increased most significantly in the tissues tested. The upregulation of Mhc-I was observed in the brain and spleen, but the expression of Mhc-II was upregulated in the brain and downregulated in the spleen. The expression of the interferons was also upregulated to different degrees in the spleen but that of the brain was various. Our study suggests that DTMUV replicates rapidly in various tissues and that the host immune responses are activated early in infection. However, the overexpression of cytokines may damage the host. These results extend our understanding of the immune responses of ducks to DTMUV infection, and provide insight into the pathogenesis of DTMUV attributable to host factors. PMID:26005441

  9. Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.

    PubMed

    Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C

    2016-05-01

    Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions. PMID:26926999

  10. Crosstalk between microbiota, pathogens and the innate immune responses.

    PubMed

    Günther, Claudia; Josenhans, Christine; Wehkamp, Jan

    2016-08-01

    Research in the last decade has convincingly demonstrated that the microbiota is crucial in order to prime and orchestrate innate and adaptive immune responses of their host and influence barrier function as well as multiple developmental and metabolic parameters of the host. Reciprocally, host reactions and immune responses instruct the composition of the microbiota. This review summarizes recent evidence from experimental and human studies which supports these arms of mutual relationship and crosstalk between host and resident microbiota, with a focus on innate immune responses in the gut, the role of cell death pathways and antimicrobial peptides. We also provide some recent examples on how dysbiosis and pathogens can act in concert to promote intestinal infection, inflammatory pathologies and cancer. The future perspectives of these combined research efforts include the discovery of protective species within the microbiota and specific traits and factors of microbes that weaken or enforce host intestinal homeostasis. PMID:26996809