Science.gov

Sample records for divergent human remodeling

  1. Common and Divergent Mechanisms in Developmental Neuronal Remodeling and Dying Back Neurodegeneration.

    PubMed

    Yaron, Avraham; Schuldiner, Oren

    2016-07-11

    Cell death is an inherent process that is required for the proper wiring of the nervous system. Studies over the last four decades have shown that, in a parallel developmental pathway, axons and dendrites are eliminated without the death of the neuron. This developmentally regulated 'axonal death' results in neuronal remodeling, which is an essential mechanism to sculpt neuronal networks in both vertebrates and invertebrates. Studies across various organisms have demonstrated that a conserved strategy in the formation of adult neuronal circuitry often involves generating too many connections, most of which are later eliminated with high temporal and spatial resolution. Can neuronal remodeling be regarded as developmentally and spatially regulated neurodegeneration? It has been previously speculated that injury-induced degeneration (Wallerian degeneration) shares some molecular features with 'dying back' neurodegenerative diseases. In this opinion piece, we examine the similarities and differences between the mechanisms regulating neuronal remodeling and those being perturbed in dying back neurodegenerative diseases. We focus primarily on amyotrophic lateral sclerosis and peripheral neuropathies and highlight possible shared pathways and mechanisms. While mechanistic data are only just beginning to emerge, and despite the inherent differences between disease-oriented and developmental processes, we believe that some of the similarities between these developmental and disease-initiated degeneration processes warrant closer collaborations and crosstalk between these different fields. PMID:27404258

  2. Arrhythmogenic and metabolic remodelling of failing human heart.

    PubMed

    Gloschat, C R; Koppel, A C; Aras, K K; Brennan, J A; Holzem, K M; Efimov, I R

    2016-07-15

    Heart failure (HF) is a major cause of morbidity and mortality worldwide. The global burden of HF continues to rise, with prevalence rates estimated at 1-2% and incidence approaching 5-10 per 1000 persons annually. The complex pathophysiology of HF impacts virtually all aspects of normal cardiac function - from structure and mechanics to metabolism and electrophysiology - leading to impaired mechanical contraction and sudden cardiac death. Pharmacotherapy and device therapy are the primary methods of treating HF, but neither is able to stop or reverse disease progression. Thus, there is an acute need to translate basic research into improved HF therapy. Animal model investigations are a critical component of HF research. However, the translation from cellular and animal models to the bedside is hampered by significant differences between species and among physiological scales. Our studies over the last 8 years show that hypotheses generated in animal models need to be validated in human in vitro models. Importantly, however, human heart investigations can establish translational platforms for safety and efficacy studies before embarking on costly and risky clinical trials. This review summarizes recent developments in human HF investigations of electrophysiology remodelling, metabolic remodelling, and β-adrenergic remodelling and discusses promising new technologies for HF research. PMID:27019074

  3. The human tri-peptide GHK and tissue remodeling.

    PubMed

    Pickart, Loren

    2008-01-01

    Tissue remodeling follows the initial phase of wound healing and stops inflammatory and scar-forming processes, then restores the normal tissue morphology. The human peptide Gly-(L-His)-(L-Lys) or GHK, has a copper 2+ (Cu(2+)) affinity similar to the copper transport site on albumin and forms GHK-Cu, a complex with Cu(2+). These two molecules activate a plethora of remodeling related processes: (1) chemoattraction of repair cells such as macrophages, mast cells, capillary cells; (2) anti-inflammatory actions (suppression of free radicals, thromboxane formation, release of oxidizing iron, transforming growth factor beta-1, tumor necrosis factor alpha and protein glycation while increasing superoxide dismutase, vessel vasodilation, blocking ultraviolet damage to skin keratinocytes and improving fibroblast recovery after X-ray treatments); (3) increases protein synthesis of collagen, elastin, metalloproteinases, anti-proteases, vascular endothelial growth factor, fibroblast growth factor 2, nerve growth factor, neutrotropins 3 and 4, and erythropoietin; (4) increases the proliferation of fibroblasts and keratinocytes; nerve outgrowth, angiogenesis, and hair follicle size. GHK-Cu stimulates wound healing in numerous models and in humans. Controlled studies on aged skin demonstrated that it tightens skin, improves elasticity and firmness, reduces fine lines, wrinkles, photodamage and hyperpigmentation. GHK-Cu also improves hair transplant success, protects hepatic tissue from tetrachloromethane poisoning, blocks stomach ulcer development, and heals intestinal ulcers and bone tissue. These results are beginning to define the complex biochemical processes that regulate tissue remodeling. PMID:18644225

  4. Age-dependent motor unit remodelling in human limb muscles.

    PubMed

    Piasecki, Mathew; Ireland, Alex; Jones, David A; McPhee, Jamie S

    2016-06-01

    Voluntary control of skeletal muscle enables humans to interact with and manipulate the environment. Lower muscle mass, weakness and poor coordination are common complaints in older age and reduce physical capabilities. Attention has focused on ways of maintaining muscle size and strength by exercise, diet or hormone replacement. Without appropriate neural innervation, however, muscle cannot function. Emerging evidence points to a neural basis of muscle loss. Motor unit number estimates indicate that by age around 71 years, healthy older people have around 40 % fewer motor units. The surviving low- and moderate-threshold motor units recruited for moderate intensity contractions are enlarged by around 50 % and show increased fibre density, presumably due to collateral reinnervation of denervated fibres. Motor unit potentials show increased complexity and the stability of neuromuscular junction transmissions is decreased. The available evidence is limited by a lack of longitudinal studies, relatively small sample sizes, a tendency to examine the small peripheral muscles and relatively few investigations into the consequences of motor unit remodelling for muscle size and control of movements in older age. Loss of motor neurons and remodelling of surviving motor units constitutes the major change in ageing muscles and probably contributes to muscle loss and functional impairments. The deterioration and remodelling of motor units likely imposes constraints on the way in which the central nervous system controls movements. PMID:26667009

  5. Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution

    PubMed Central

    Baiocchini, Andrea; Montaldo, Claudia; Conigliaro, Alice; Grimaldi, Alessio; Correani, Virginia; Mura, Francesco; Ciccosanti, Fabiola; Rotiroti, Nicolina; Brenna, Alessia; Montalbano, Marzia; D’Offizi, Gianpiero; Capobianchi, Maria Rosaria; Alessandro, Riccardo; Piacentini, Mauro; Schininà, Maria Eugenia; Maras, Bruno; Del Nonno, Franca; Tripodi, Marco; Mancone, Carmine

    2016-01-01

    Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis). Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies. PMID:26998606

  6. The Divergence of Neandertal and Modern Human Y Chromosomes.

    PubMed

    Mendez, Fernando L; Poznik, G David; Castellano, Sergi; Bustamante, Carlos D

    2016-04-01

    Sequencing the genomes of extinct hominids has reshaped our understanding of modern human origins. Here, we analyze ∼120 kb of exome-captured Y-chromosome DNA from a Neandertal individual from El Sidrón, Spain. We investigate its divergence from orthologous chimpanzee and modern human sequences and find strong support for a model that places the Neandertal lineage as an outgroup to modern human Y chromosomes-including A00, the highly divergent basal haplogroup. We estimate that the time to the most recent common ancestor (TMRCA) of Neandertal and modern human Y chromosomes is ∼588 thousand years ago (kya) (95% confidence interval [CI]: 447-806 kya). This is ∼2.1 (95% CI: 1.7-2.9) times longer than the TMRCA of A00 and other extant modern human Y-chromosome lineages. This estimate suggests that the Y-chromosome divergence mirrors the population divergence of Neandertals and modern human ancestors, and it refutes alternative scenarios of a relatively recent or super-archaic origin of Neandertal Y chromosomes. The fact that the Neandertal Y we describe has never been observed in modern humans suggests that the lineage is most likely extinct. We identify protein-coding differences between Neandertal and modern human Y chromosomes, including potentially damaging changes to PCDH11Y, TMSB4Y, USP9Y, and KDM5D. Three of these changes are missense mutations in genes that produce male-specific minor histocompatibility (H-Y) antigens. Antigens derived from KDM5D, for example, are thought to elicit a maternal immune response during gestation. It is possible that incompatibilities at one or more of these genes played a role in the reproductive isolation of the two groups. PMID:27058445

  7. Rates of genomic divergence in humans, chimpanzees and their lice

    PubMed Central

    Johnson, Kevin P.; Allen, Julie M.; Olds, Brett P.; Mugisha, Lawrence; Reed, David L.; Paige, Ken N.; Pittendrigh, Barry R.

    2014-01-01

    The rate of DNA mutation and divergence is highly variable across the tree of life. However, the reasons underlying this variation are not well understood. Comparing the rates of genetic changes between hosts and parasite lineages that diverged at the same time is one way to begin to understand differences in genetic mutation and substitution rates. Such studies have indicated that the rate of genetic divergence in parasites is often faster than that of their hosts when comparing single genes. However, the variation in this relative rate of molecular evolution across different genes in the genome is unknown. We compared the rate of DNA sequence divergence between humans, chimpanzees and their ectoparasitic lice for 1534 protein-coding genes across their genomes. The rate of DNA substitution in these orthologous genes was on average 14 times faster for lice than for humans and chimpanzees. In addition, these rates were positively correlated across genes. Because this correlation only occurred for substitutions that changed the amino acid, this pattern is probably produced by similar functional constraints across the same genes in humans, chimpanzees and their ectoparasites. PMID:24403325

  8. Divergent Mitochondrial Biogenesis Responses in Human Cardiomyopathy

    PubMed Central

    Ahuja, Preeti; Wanagat, Jonathan; Wang, Zhihua; Wang, Yibin; Liem, David A.; Ping, Peipei; Antoshechkin, Igor A.; Margulies, Kenneth B.; MacLellan, W. Robb

    2014-01-01

    Background Mitochondria are key players in the development and progression of heart failure (HF). Mitochondrial (mt) dysfunction leads to diminished energy production and increased cell death contributing to the progression of left ventricular (LV) failure. The fundamental mechanisms that underlie mt dysfunction in HF have not been fully elucidated. Methods and Results To characterize mt morphology, biogenesis and genomic integrity in human HF, we investigated LV tissue from non-failing (NF) hearts and end-stage ischemic (ICM) or dilated (DCM) cardiomyopathic hearts. Although mt dysfunction was present in both types of cardiomyopathy, mt were smaller and increased in number in DCM compared to ICM or NF hearts. Mt volume density and mtDNA copy number was increased by ~2-fold (P<0.001) in DCM hearts in comparison to ICM hearts. These changes were accompanied by an increase in the expression of mtDNA-encoded genes in DCM versus no change in ICM. mtDNA repair and antioxidant genes were reduced in failing hearts suggestive of a defective repair and protection system, which may account for the 4.1-fold increase in mtDNA deletion mutations in DCM (P<0.05 vs NF hearts, P<0.05 vs ICM). Conclusions In DCM, mt dysfunction is associated with mtDNA damage and deletions, which could be a consequence of mutating stress coupled with a PGC-1α-dependent stimulus for mt biogenesis. However, this maladaptive compensatory response contributes to additional oxidative damage. Thus, our findings support further investigations into novel mechanisms and therapeutic strategies for mt dysfunction in DCM. PMID:23589024

  9. Retinal Remodeling and Metabolic Alterations in Human AMD

    PubMed Central

    Jones, Bryan W.; Pfeiffer, Rebecca L.; Ferrell, William D.; Watt, Carl B.; Tucker, James; Marc, Robert E.

    2016-01-01

    Age-related macular degeneration (AMD) is a progressive retinal degeneration resulting in central visual field loss, ultimately causing debilitating blindness. AMD affects 18% of Americans from 65 to 74, 30% older than 74 years of age and is the leading cause of severe vision loss and blindness in Western populations. While many genetic and environmental risk factors are known for AMD, we currently know less about the mechanisms mediating disease progression. The pathways and mechanisms through which genetic and non-genetic risk factors modulate development of AMD pathogenesis remain largely unexplored. Moreover, current treatment for AMD is palliative and limited to wet/exudative forms. Retina is a complex, heterocellular tissue and most retinal cell classes are impacted or altered in AMD. Defining disease and stage-specific cytoarchitectural and metabolic responses in AMD is critical for highlighting targets for intervention. The goal of this article is to illustrate cell types impacted in AMD and demonstrate the implications of those changes, likely beginning in the retinal pigment epithelium (RPE), for remodeling of the the neural retina. Tracking heterocellular responses in disease progression is best achieved with computational molecular phenotyping (CMP), a tool that enables acquisition of a small molecule fingerprint for every cell in the retina. CMP uncovered critical cellular and molecular pathologies (remodeling and reprogramming) in progressive retinal degenerations such as retinitis pigmentosa (RP). We now applied these approaches to normal human and AMD tissues mapping progression of cellular and molecular changes in AMD retinas, including late-stage forms of the disease. PMID:27199657

  10. Transcriptional divergence and conservation of human and mouse erythropoiesis

    PubMed Central

    Pishesha, Novalia; Thiru, Prathapan; Shi, Jiahai; Eng, Jennifer C.; Sankaran, Vijay G.; Lodish, Harvey F.

    2014-01-01

    Mouse models have been used extensively for decades and have been instrumental in improving our understanding of mammalian erythropoiesis. Nonetheless, there are several examples of variation between human and mouse erythropoiesis. We performed a comparative global gene expression study using data from morphologically identical stage-matched sorted populations of human and mouse erythroid precursors from early to late erythroblasts. Induction and repression of major transcriptional regulators of erythropoiesis, as well as major erythroid-important proteins, are largely conserved between the species. In contrast, at a global level we identified a significant extent of divergence between the species, both at comparable stages and in the transitions between stages, especially for the 500 most highly expressed genes during development. This suggests that the response of multiple developmentally regulated genes to key erythroid transcriptional regulators represents an important modification that has occurred in the course of erythroid evolution. In developing a systematic framework to understand and study conservation and divergence between human and mouse erythropoiesis, we show how mouse models can fail to mimic specific human diseases and provide predictions for translating findings from mouse models to potential therapies for human disease. PMID:24591581

  11. Parallel Adaptive Divergence among Geographically Diverse Human Populations

    PubMed Central

    Tennessen, Jacob A.; Akey, Joshua M.

    2011-01-01

    Few genetic differences between human populations conform to the classic model of positive selection, in which a newly arisen mutation rapidly approaches fixation in one lineage, suggesting that adaptation more commonly occurs via moderate changes in standing variation at many loci. Detecting and characterizing this type of complex selection requires integrating individually ambiguous signatures across genomically and geographically extensive data. Here, we develop a novel approach to test the hypothesis that selection has favored modest divergence at particular loci multiple times in independent human populations. We find an excess of SNPs showing non-neutral parallel divergence, enriched for genic and nonsynonymous polymorphisms in genes encompassing diverse and often disease related functions. Repeated parallel evolution in the same direction suggests common selective pressures in disparate habitats. We test our method with extensive coalescent simulations and show that it is robust to a wide range of demographic events. Our results demonstrate phylogenetically orthogonal patterns of local adaptation caused by subtle shifts at many widespread polymorphisms that likely underlie substantial phenotypic diversity. PMID:21698142

  12. DIVERGENT TNF RECEPTOR-RELATED REMODELING RESPONSES IN HEART FAILURE: Role of NF-κB and Inflammatory Activation

    PubMed Central

    Hamid, Tariq; Gu, Yan; Ortines, Roger V.; Bhattacharya, Chhandashri; Wang, Guangwu; Xuan, Yu-Ting; Prabhu, Sumanth D.

    2009-01-01

    Background Although pre-clinical data suggested that tumor necrosis factor-α (TNF) neutralization in heart failure (HF) would be beneficial, clinical trials of TNF antagonists were paradoxically negative. We hypothesized that TNF induces opposing inflammatory and remodeling responses in HF that are TNF-receptor (TNFR) specific. Methods and Results HF was induced in wild-type (WT), TNFR1−/−, and TNFR2−/− mice via coronary ligation. Compared to WT HF, 4-week post-infarction survival was significantly improved in both TNFR1−/− and TNFR2−/− HF. Compared to sham, WT HF hearts exhibited significant remodeling with robust activation of nuclear factor(NF)-κB, p38 MAPK, and JNK2, and upregulation of TNF, interleukin(IL)-1β, IL-6, and IL-10. Compared to WT HF, TNFR1−/− HF exhibited: 1) improved remodeling, hypertrophy, and contractile function; 2) less apoptosis; and 3) diminished NF-κB, p38 MAPK, and JNK2 activation and cytokine expression. In contrast, TNFR2−/− HF had exaggerated remodeling and hypertrophy, increased border zone fibrosis, augmented NF-κB and p38 MAPK activation, higher IL-1β and IL-6 gene expression, greater activated macrophages, and greater apoptosis. Oxidative stress and diastolic function were improved in both TNFR1−/− and TNFR2−/− HF. In H9c2 cardiomyocytes, sustained NF-κB activation was pro-apoptotic, an effect dependent on TNFR1 signaling, whereas TNFR2 overexpression attenuated TNF-induced NF-κB activation. Conclusions TNFR1 and TNFR2 have disparate and opposing effects on remodeling, hypertrophy, NF-κB and inflammation, and apoptosis in HF: TNFR1 exacerbates, whereas TNFR2 ameliorates, these events. However, signaling through both receptors is required to induce diastolic dysfunction and oxidative stress. TNF receptor-specific effects in HF should be considered when developing therapeutic anti-TNF strategies. PMID:19255345

  13. Tumor-Associated Neutrophils Show Phenotypic and Functional Divergence in Human Lung Cancer.

    PubMed

    Saha, Shilpi; Biswas, Subhra K

    2016-07-11

    Studies in murine cancer models have demonstrated the phenotypic and functional divergence of neutrophils; however, their role in pro- or anti-tumor responses in human remains elusive. In this issue of Cancer Cell, Singhal et al. report the existence of specialized subsets of neutrophils in human lung cancer with diverging functions. PMID:27411583

  14. TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT

    EPA Science Inventory

    TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT. J Gallagher1, J Inmon1, S Schlaegle2, A Levine2, T Rogers3, J Scott1, F Green4, M Schenker5, K Pinkerton5 1NHEERL, US-EPA, RTP, NC, USA; 2RJ Lee Group Inc, Monroeville, Pa, USA; ...

  15. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics

    PubMed Central

    Kadoch, Cigall; Crabtree, Gerald R.

    2015-01-01

    Over the past 4 years, nearly 100 exome sequencing studies have revealed the high frequency of mutations in the genes encoding the subunits of ATP-dependent chromatin remodelers in human cancer. Most of these mutations are within the genes encoding subunits of the BAF (Brg/Brahma-associated factors) or mSWI/SNF complex, which is one of two dozen predicted ATP-dependent chromatin remodeling complexes in mammals. Considering BAF complexes as a single entity, the 15 subunits encoded by 29 genes are mutated in >20% of human cancer, across a broad range of tumor types. These observations demonstrate that there is little redundancy in the oncogenic function of BAF complexes with the other remodeling complexes, underscoring their unique roles. Several important conclusions emerge from these genomic data: specific subunits appear to be mutated in specific cancers, highlighting tissue-specific protective roles; mutations can function as tumor suppressors or oncogenes; mutations can be homozygous or, more commonly, heterozygous, implying their dosage-sensitive roles in an unknown yet fundamental process used to suppress the genesis of cancer. These new human genetic findings paired with biochemical studies are challenging old ideas on how chromatin remodeling complexes function, generating new hypotheses with respect to their normal and oncogenic mechanisms and highlighting potential avenues for therapeutic intervention in human cancer. PMID:26601204

  16. Characterization of human cervical remodeling throughout pregnancy using in vivo Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Brien, Christine M.; Vargis, Elizabeth; Slaughter, Chris; Rudin, Amy P.; Herington, Jennifer L.; Bennett, Kelly A.; Reese, Jeff; Mahadevan-Jansen, Anita

    2015-02-01

    Globally, fifteen million babies are born preterm each year, affecting 1 in 8 pregnancies in the US alone. Cervical remodeling includes a biochemical cascade of changes that ultimately result in the thinning and dilation of the cervix for passage of a fetus. This process is poorly understood and is the focus of this study. Our group is utilizing Raman spectroscopy to evaluate biochemical changes occurring in the human cervix throughout pregnancy. This technique has high molecular specificity and can be performed in vivo, with the potential to unveil new molecular dynamics essential for cervical remodeling.

  17. Relocalization of human chromatin remodeling cofactor TIP48 in mitosis

    SciTech Connect

    Sigala, Barbara; Edwards, Mina; Puri, Teena; Tsaneva, Irina R. . E-mail: tsaneva@biochem.ucl.ac.uk

    2005-11-01

    TIP48 is a highly conserved eukaryotic AAA{sup +} protein which is an essential cofactor for several complexes involved in chromatin acetylation and remodeling, transcriptional and developmental regulation and nucleolar organization and trafficking. We show that TIP48 abundance in HeLa cells did not change during the cell cycle, nor did its distribution in various biochemical fractions. However, we observed distinct changes in the subcellular localization of TIP48 during M phase using immunofluorescence microscopy. Our studies demonstrate that in interphase cells TIP48 was found mainly in the nucleus and exhibited a distinct localization in the nuclear periphery. As the cells entered mitosis, TIP48 was excluded from the condensing chromosomes but showed association with the mitotic apparatus. During anaphase, some TIP48 was detected in the centrosome colocalizing with tubulin but the strongest staining appeared in the mitotic equator associated with the midzone central spindle. Accumulation of TIP48 in the midzone and the midbody was observed in late telophase and cytokinesis. This redeployment of TIP48 during anaphase and cytokinesis was independent of microtubule assembly. The relocation of endogenous TIP48 to the midzone/midbody under physiological conditions suggests a novel and distinct function for TIP48 in mitosis and possible involvement in the exit of mitosis.

  18. Segmenting the human genome based on states of neutral genetic divergence.

    PubMed

    Kuruppumullage Don, Prabhani; Ananda, Guruprasad; Chiaromonte, Francesca; Makova, Kateryna D

    2013-09-01

    Many studies have demonstrated that divergence levels generated by different mutation types vary and covary across the human genome. To improve our still-incomplete understanding of the mechanistic basis of this phenomenon, we analyze several mutation types simultaneously, anchoring their variation to specific regions of the genome. Using hidden Markov models on insertion, deletion, nucleotide substitution, and microsatellite divergence estimates inferred from human-orangutan alignments of neutrally evolving genomic sequences, we segment the human genome into regions corresponding to different divergence states--each uniquely characterized by specific combinations of divergence levels. We then parsed the mutagenic contributions of various biochemical processes associating divergence states with a broad range of genomic landscape features. We find that high divergence states inhabit guanine- and cytosine (GC)-rich, highly recombining subtelomeric regions; low divergence states cover inner parts of autosomes; chromosome X forms its own state with lowest divergence; and a state of elevated microsatellite mutability is interspersed across the genome. These general trends are mirrored in human diversity data from the 1000 Genomes Project, and departures from them highlight the evolutionary history of primate chromosomes. We also find that genes and noncoding functional marks [annotations from the Encyclopedia of DNA Elements (ENCODE)] are concentrated in high divergence states. Our results provide a powerful tool for biomedical data analysis: segmentations can be used to screen personal genome variants--including those associated with cancer and other diseases--and to improve computational predictions of noncoding functional elements. PMID:23959903

  19. Parallel re-modeling of EF-1α function: divergent EF-1α genes co-occur with EFL genes in diverse distantly related eukaryotes

    PubMed Central

    2013-01-01

    Background Elongation factor-1α (EF-1α) and elongation factor-like (EFL) proteins are functionally homologous to one another, and are core components of the eukaryotic translation machinery. The patchy distribution of the two elongation factor types across global eukaryotic phylogeny is suggestive of a ‘differential loss’ hypothesis that assumes that EF-1α and EFL were present in the most recent common ancestor of eukaryotes followed by independent differential losses of one of the two factors in the descendant lineages. To date, however, just one diatom and one fungus have been found to have both EF-1α and EFL (dual-EF-containing species). Results In this study, we characterized 35 new EF-1α/EFL sequences from phylogenetically diverse eukaryotes. In so doing we identified 11 previously unreported dual-EF-containing species from diverse eukaryote groups including the Stramenopiles, Apusomonadida, Goniomonadida, and Fungi. Phylogenetic analyses suggested vertical inheritance of both genes in each of the dual-EF lineages. In the dual-EF-containing species we identified, the EF-1α genes appeared to be highly divergent in sequence and suppressed at the transcriptional level compared to the co-occurring EFL genes. Conclusions According to the known EF-1α/EFL distribution, the differential loss process should have occurred independently in diverse eukaryotic lineages, and more dual-EF-containing species remain unidentified. We predict that dual-EF-containing species retain the divergent EF-1α homologues only for a sub-set of the original functions. As the dual-EF-containing species are distantly related to each other, we propose that independent re-modelling of EF-1α function took place in multiple branches in the tree of eukaryotes. PMID:23800323

  20. Extracellular matrix remodeling by dynamic strain in a three-dimensional tissue-engineered human airway wall model.

    PubMed

    Choe, Melanie M; Sporn, Peter H S; Swartz, Melody A

    2006-09-01

    Airway wall remodeling is a hallmark of asthma, characterized by subepithelial thickening and extracellular matrix (ECM) remodeling. Mechanical stress due to hyperresponsive smooth muscle cells may contribute to this remodeling, but its relevance in a three-dimensional environment (where the ECM plays an important role in modulating stresses felt by cells) is unclear. To characterize the effects of dynamic compression in ECM remodeling in a physiologically relevant three-dimensional environment, a tissue-engineered human airway wall model with differentiated bronchial epithelial cells atop a collagen gel containing lung fibroblasts was used. Lateral compressive strain of 10 or 30% at 1 or 60 cycles per hour was applied using a novel straining device. ECM remodeling was assessed by immunohistochemistry and zymography. Dynamic strain, particularly at the lower magnitude, induced airway wall remodeling, as indicated by increased deposition of types III and IV collagen and increased secretion of matrix metalloproteinase-2 and -9. These changes paralleled increased myofibroblast differentiation and were fibroblast-dependent. Furthermore, the spatial pattern of type III collagen deposition correlated with that of myofibroblasts; both were concentrated near the epithelium and decreased diffusely away from the surface, indicating some epithelial control of the remodeling response. Thus, in a physiologically relevant three-dimensional model of the bronchial wall, dynamic compressive strain induced tissue remodeling that mimics many features of remodeling seen in asthma, in the absence of inflammation and dependent on epithelial-fibroblast signaling. PMID:16601241

  1. Fatty acid induced remodeling within the human liver fatty acid-binding protein.

    PubMed

    Sharma, Ashwani; Sharma, Amit

    2011-09-01

    We crystallized human liver fatty acid-binding protein (LFABP) in apo, holo, and intermediate states of palmitic acid engagement. Structural snapshots of fatty acid recognition, entry, and docking within LFABP support a heads-in mechanism for ligand entry. Apo-LFABP undergoes structural remodeling, where the first palmitate ingress creates the atomic environment for placement of the second palmitate. These new mechanistic insights will facilitate development of pharmacological agents against LFABP. PMID:21757748

  2. Joint remodelling and the evolution of the human hand.

    PubMed Central

    Lewis, O J

    1977-01-01

    A funtional morphological study has been made of the joints of the primate hand, particular emphasis being placed upon the carpometacarpal and metacarpophalangeal joints. The presumptive evolutionary history of these joints has been charted by reference to a comparative series of mammals. It has been demonstrated that the human joints have been quite strikingly modified in a number of ways, and that these evolutionary changes may be logically correlated with the refined functional attributes of the human hand. The morphological background thus established has been applied in a preliminary study of the hand bones of various fossil hominids. Images Fig. 7 Fig. 8 Figs. 15 and 16 Figs. 17 and 18 Figs. 19 and 20 Fig. 21 Fig. 22 Fig. 23 Figs. 24 and 25 Figs. 26 and 27 Fig. 28 Fig. 29 Fig. 30 Fig. 31 Fig. 32 Fig. 33 Fig. 34 Fig. 35 Fig. 36 Fig. 37 Fig. 38 Fig. 39 Fig. 40 Fig. 41 Fig. 42 Fig. 43 Fig. 44 Fig. 45 PMID:402345

  3. Mitochondrial dysfunction remodels one-carbon metabolism in human cells

    PubMed Central

    Bao, Xiaoyan Robert; Ong, Shao-En; Goldberger, Olga; Peng, Jun; Sharma, Rohit; Thompson, Dawn A; Vafai, Scott B; Cox, Andrew G; Marutani, Eizo; Ichinose, Fumito; Goessling, Wolfram; Regev, Aviv; Carr, Steven A; Clish, Clary B; Mootha, Vamsi K

    2016-01-01

    Mitochondrial dysfunction is associated with a spectrum of human disorders, ranging from rare, inborn errors of metabolism to common, age-associated diseases such as neurodegeneration. How these lesions give rise to diverse pathology is not well understood, partly because their proximal consequences have not been well-studied in mammalian cells. Here we provide two lines of evidence that mitochondrial respiratory chain dysfunction leads to alterations in one-carbon metabolism pathways. First, using hypothesis-generating metabolic, proteomic, and transcriptional profiling, followed by confirmatory experiments, we report that mitochondrial DNA depletion leads to an ATF4-mediated increase in serine biosynthesis and transsulfuration. Second, we show that lesioning the respiratory chain impairs mitochondrial production of formate from serine, and that in some cells, respiratory chain inhibition leads to growth defects upon serine withdrawal that are rescuable with purine or formate supplementation. Our work underscores the connection between the respiratory chain and one-carbon metabolism with implications for understanding mitochondrial pathogenesis. DOI: http://dx.doi.org/10.7554/eLife.10575.001 PMID:27307216

  4. Mitochondrial dysfunction remodels one-carbon metabolism in human cells.

    PubMed

    Bao, Xiaoyan Robert; Ong, Shao-En; Goldberger, Olga; Peng, Jun; Sharma, Rohit; Thompson, Dawn A; Vafai, Scott B; Cox, Andrew G; Marutani, Eizo; Ichinose, Fumito; Goessling, Wolfram; Regev, Aviv; Carr, Steven A; Clish, Clary B; Mootha, Vamsi K

    2016-01-01

    Mitochondrial dysfunction is associated with a spectrum of human disorders, ranging from rare, inborn errors of metabolism to common, age-associated diseases such as neurodegeneration. How these lesions give rise to diverse pathology is not well understood, partly because their proximal consequences have not been well-studied in mammalian cells. Here we provide two lines of evidence that mitochondrial respiratory chain dysfunction leads to alterations in one-carbon metabolism pathways. First, using hypothesis-generating metabolic, proteomic, and transcriptional profiling, followed by confirmatory experiments, we report that mitochondrial DNA depletion leads to an ATF4-mediated increase in serine biosynthesis and transsulfuration. Second, we show that lesioning the respiratory chain impairs mitochondrial production of formate from serine, and that in some cells, respiratory chain inhibition leads to growth defects upon serine withdrawal that are rescuable with purine or formate supplementation. Our work underscores the connection between the respiratory chain and one-carbon metabolism with implications for understanding mitochondrial pathogenesis. PMID:27307216

  5. Human Upf1 is a highly processive RNA helicase and translocase with RNP remodelling activities

    PubMed Central

    Fiorini, Francesca; Bagchi, Debjani; Le Hir, Hervé; Croquette, Vincent

    2015-01-01

    RNA helicases are implicated in most cellular RNA-dependent events. In eukaryotes however, only few have been functionally characterized. Upf1 is a RNA helicase essential for nonsense-mediated mRNA decay (NMD). Here, using magnetic tweezers and bulk assays, we observe that human Upf1 is able to translocate slowly over long single-stranded nucleic acids with a processivity >10 kb. Upf1 efficiently translocates through double-stranded structures and protein-bound sequences, demonstrating that Upf1 is an efficient ribonucleoprotein complex remodeler. Our observation of processive unwinding by an eukaryotic RNA helicase reveals that Upf1, once recruited onto NMD mRNA targets, can scan the entire transcript to irreversibly remodel the mRNP, facilitating its degradation by the NMD machinery. PMID:26138914

  6. Human Upf1 is a highly processive RNA helicase and translocase with RNP remodelling activities

    NASA Astrophysics Data System (ADS)

    Fiorini, Francesca; Bagchi, Debjani; Le Hir, Hervé; Croquette, Vincent

    2015-07-01

    RNA helicases are implicated in most cellular RNA-dependent events. In eukaryotes however, only few have been functionally characterized. Upf1 is a RNA helicase essential for nonsense-mediated mRNA decay (NMD). Here, using magnetic tweezers and bulk assays, we observe that human Upf1 is able to translocate slowly over long single-stranded nucleic acids with a processivity >10 kb. Upf1 efficiently translocates through double-stranded structures and protein-bound sequences, demonstrating that Upf1 is an efficient ribonucleoprotein complex remodeler. Our observation of processive unwinding by an eukaryotic RNA helicase reveals that Upf1, once recruited onto NMD mRNA targets, can scan the entire transcript to irreversibly remodel the mRNP, facilitating its degradation by the NMD machinery.

  7. Exceptional Evolutionary Divergence of Human Muscle and Brain Metabolomes Parallels Human Cognitive and Physical Uniqueness

    PubMed Central

    Bozek, Katarzyna; Wei, Yuning; Yan, Zheng; Liu, Xiling; Xiong, Jieyi; Sugimoto, Masahiro; Tomita, Masaru; Pääbo, Svante; Pieszek, Raik; Sherwood, Chet C.; Hof, Patrick R.; Ely, John J.; Steinhauser, Dirk; Willmitzer, Lothar; Bangsbo, Jens; Hansson, Ola; Call, Josep; Giavalisco, Patrick; Khaitovich, Philipp

    2014-01-01

    Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys. PMID:24866127

  8. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    PubMed Central

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  9. Deficiency of zebrafish fgf20a results in aberrant skull remodeling that mimics both human cranial disease and evolutionarily important fish skull morphologies

    PubMed Central

    Cooper, W. James; Wirgau, Rachel M.; Sweet, Elly M.; Albertson, R. Craig

    2013-01-01

    The processes that direct skull remodeling are of interest to both human-oriented studies of cranial dysplasia and evolutionary studies of skull divergence. There is increasing awareness that these two fields can be mutually informative when natural variation mimics pathology. Here we describe a zebrafish mutant line, devoid of blastema(dob), which does not have a functional fgf20a protein, and which also presents cranial defects similar to both adaptive and clinical variation. We used geometric morphometric methods to provide quantitative descriptions of the effects of the dob mutation on skull morphogenesis. In combination with whole-mount in situ hybridization labeling of normal fgf20a expression and assays for osteoblast and osteoclast activity, the results of these analyses indicate that cranial dysmorphologies in dob zebrafish are generated by aberrations in post-embryonic skull remodeling via decreased osteoblasotgenesis and increased osteoclastogenesis. Mutational effects include altered skull vault geometries and midfacial hypoplasia that are consistent with key diagnostic signs for multiple human craniofacial syndromes. These phenotypic shifts also mimic changes in the functional morphology of fish skulls that have arisen repeatedly in several highly successful radiations (e.g., damselfishes and East-African rift-lake cichlids). Our results offer the dob/fgf20a mutant as an experimentally tractable model with which to examine post-embryonic skull development as it relates to human disease and evolution. PMID:24261444

  10. Extracellular matrix remodelling in response to venous hypertension: proteomics of human varicose veins

    PubMed Central

    Barallobre-Barreiro, Javier; Oklu, Rahmi; Lynch, Marc; Fava, Marika; Baig, Ferheen; Yin, Xiaoke; Barwari, Temo; Potier, David N.; Albadawi, Hassan; Jahangiri, Marjan; Porter, Karen E.; Watkins, Michael T.; Misra, Sanjay; Stoughton, Julianne; Mayr, Manuel

    2016-01-01

    Aims Extracellular matrix remodelling has been implicated in a number of vascular conditions, including venous hypertension and varicose veins. However, to date, no systematic analysis of matrix remodelling in human veins has been performed. Methods and results To understand the consequences of venous hypertension, normal and varicose veins were evaluated using proteomics approaches targeting the extracellular matrix. Varicose saphenous veins removed during phlebectomy and normal saphenous veins obtained during coronary artery bypass surgery were collected for proteomics analysis. Extracellular matrix proteins were enriched from venous tissues. The proteomics analysis revealed the presence of >150 extracellular matrix proteins, of which 48 had not been previously detected in venous tissue. Extracellular matrix remodelling in varicose veins was characterized by a loss of aggrecan and several small leucine-rich proteoglycans and a compensatory increase in collagen I and laminins. Gene expression analysis of the same tissues suggested that the remodelling process associated with venous hypertension predominantly occurs at the protein rather than the transcript level. The loss of aggrecan in varicose veins was paralleled by a reduced expression of aggrecanases. Chymase and tryptase β1 were among the up-regulated proteases. The effect of these serine proteases on the venous extracellular matrix was further explored by incubating normal saphenous veins with recombinant enzymes. Proteomics analysis revealed extensive extracellular matrix degradation after digestion with tryptase β1. In comparison, chymase was less potent and degraded predominantly basement membrane-associated proteins. Conclusion The present proteomics study provides unprecedented insights into the expression and degradation of structural and regulatory components of the vascular extracellular matrix in varicosis. PMID:27068509

  11. Metabolic remodeling of the human red blood cell membrane measured by quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Park, YongKeun; Best, Catherine; Auth, Thorsten; Gov, Nir S.; Safran, Samuel; Popescu, Gabriel

    2011-02-01

    We have quantitatively and systemically measured the morphologies and dynamics of fluctuations in human RBC membranes using a full-field laser interferometry technique that accurately measures dynamic membrane fluctuations. We present conclusive evidence that the presence of adenosine 5'-triphosphate (ATP) facilitates nonequilibrium dynamic fluctuations in the RBC membrane and that these fluctuations are highly correlated with specific regions in the biconcave shape of RBCs. Spatial analysis reveals that these nonequilibrium membrane fluctuations are enhanced at the scale of the spectrin mesh size. Our results indicate the presence of dynamic remodeling in the RBC membrane cortex powered by ATP, which results in nonequilibrium membrane fluctuations.

  12. Monocytes increase human cardiac myofibroblast-mediated extracellular matrix remodeling through TGF-β1.

    PubMed

    Mewhort, Holly E M; Lipon, Brodie D; Svystonyuk, Daniyil A; Teng, Guoqi; Guzzardi, David G; Silva, Claudia; Yong, V Wee; Fedak, Paul W M

    2016-03-15

    Following myocardial infarction (MI), cardiac myofibroblasts remodel the extracellular matrix (ECM), preventing mechanical complications. However, prolonged myofibroblast activity leads to dysregulation of the ECM, maladaptive remodeling, fibrosis, and heart failure (HF). Chronic inflammation is believed to drive persistent myofibroblast activity; however, the mechanisms are unclear. We assessed the influence of peripheral blood monocytes on human cardiac myofibroblast activity in a three-dimensional (3D) ECM microenvironment. Human cardiac myofibroblasts isolated from surgical biopsies of the right atrium and left ventricle were seeded into 3D collagen matrices. Peripheral blood monocytes were isolated from healthy human donors and cocultured with myofibroblasts. Monocytes increased myofibroblast activity measured by collagen gel contraction (baseline: 57.6 ± 5.9% vs. coculture: 65.2 ± 7.1% contraction; P < 0.01) and increased local ECM remodeling quantified by confocal microscopy. Under coculture conditions that allow indirect cellular interaction via paracrine factors but prevent direct cell-cell contact, monocytes had minimal effects on myofibroblast activity (17.9 ± 11.1% vs. 6.4 ± 7.0% increase, respectively; P < 0.01). When cells were cultured under direct contact conditions, multiplex analysis of the coculture media revealed an increase in the paracrine factors TGF-β1 and matrix metalloproteinase 9 compared with baseline (122.9 ± 10.1 pg/ml and 3,496.0 ± 190.4 pg/ml, respectively, vs. 21.5 ± 16.3 pg/ml and 183.3 ± 43.9 pg/ml; P < 0.001). TGF-β blockade abolished the monocyte-induced increase in cardiac myofibroblast activity. These data suggest that direct cell-cell interaction between monocytes and cardiac myofibroblasts stimulates TGF-β-mediated myofibroblast activity and increases remodeling of local matrix. Peripheral blood monocyte interaction with human cardiac myofibroblasts stimulates myofibroblast activity through release of TGF-β1

  13. Correlating 3D morphology with molecular pathology: fibrotic remodelling in human lung biopsies.

    PubMed

    Kellner, Manuela; Wehling, Judith; Warnecke, Gregor; Heidrich, Marko; Izykowski, Nicole; Vogel-Claussen, Jens; Lorbeer, Raoul-Amadeus; Antonopoulos, Georgios; Janciauskiene, Sabina; Grothausmann, Roman; Knudsen, Lars; Ripken, Tammo; Meyer, Heiko; Kreipe, Hans; Ochs, Matthias; Jonigk, Danny; Kühnel, Mark Philipp

    2015-12-01

    Assessing alterations of the parenchymal architecture is essential in understanding fibrosing interstitial lung diseases. Here, we present a novel method to visualise fibrotic remodelling in human lungs and correlate morphological three-dimensional (3D) data with gene and protein expression in the very same sample. The key to our approach is a novel embedding resin that clears samples to full optical transparency and simultaneously allows 3D laser tomography and preparation of sections for histology, immunohistochemistry and RNA isolation. Correlating 3D laser tomography with molecular diagnostic techniques enables new insights into lung diseases. This approach has great potential to become an essential tool in pulmonary research. PMID:26108569

  14. Eribulin mesylate reduces tumor microenvironment abnormality by vascular remodeling in preclinical human breast cancer models.

    PubMed

    Funahashi, Yasuhiro; Okamoto, Kiyoshi; Adachi, Yusuke; Semba, Taro; Uesugi, Mai; Ozawa, Yoichi; Tohyama, Osamu; Uehara, Taisuke; Kimura, Takayuki; Watanabe, Hideki; Asano, Makoto; Kawano, Satoshi; Tizon, Xavier; McCracken, Paul J; Matsui, Junji; Aoshima, Ken; Nomoto, Kenichi; Oda, Yoshiya

    2014-10-01

    Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B and an inhibitor of microtubule dynamics. Some tubulin-binding drugs are known to have antivascular (antiangiogenesis or vascular-disrupting) activities that can target abnormal tumor vessels. Using dynamic contrast-enhanced MRI analyses, here we show that eribulin induces remodeling of tumor vasculature through a novel antivascular activity in MX-1 and MDA-MB-231 human breast cancer xenograft models. Vascular remodeling associated with improved perfusion was shown by Hoechst 33342 staining and by increased microvessel density together with decreased mean vascular areas and fewer branched vessels in tumor tissues, as determined by immunohistochemical staining for endothelial marker CD31. Quantitative RT-PCR analysis of normal host cells in the stroma of xenograft tumors showed that eribulin altered the expression of mouse (host) genes in angiogenesis signaling pathways controlling endothelial cell-pericyte interactions, and in the epithelial-mesenchymal transition pathway in the context of the tumor microenvironment. Eribulin also decreased hypoxia-associated protein expression of mouse (host) vascular endothelial growth factor by ELISA and human CA9 by immunohistochemical analysis. Prior treatment with eribulin enhanced the anti-tumor activity of capecitabine in the MDA-MB-231 xenograft model. These findings suggest that eribulin-induced remodeling of abnormal tumor vasculature leads to a more functional microenvironment that may reduce the aggressiveness of tumors due to elimination of inner tumor hypoxia. Because abnormal tumor microenvironments enhance both drug resistance and metastasis, the apparent ability of eribulin to reverse these aggressive characteristics may contribute to its clinical benefits. PMID:25060424

  15. Eribulin mesylate reduces tumor microenvironment abnormality by vascular remodeling in preclinical human breast cancer models

    PubMed Central

    Funahashi, Yasuhiro; Okamoto, Kiyoshi; Adachi, Yusuke; Semba, Taro; Uesugi, Mai; Ozawa, Yoichi; Tohyama, Osamu; Uehara, Taisuke; Kimura, Takayuki; Watanabe, Hideki; Asano, Makoto; Kawano, Satoshi; Tizon, Xavier; McCracken, Paul J; Matsui, Junji; Aoshima, Ken; Nomoto, Kenichi; Oda, Yoshiya

    2014-01-01

    Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B and an inhibitor of microtubule dynamics. Some tubulin-binding drugs are known to have antivascular (antiangiogenesis or vascular-disrupting) activities that can target abnormal tumor vessels. Using dynamic contrast-enhanced MRI analyses, here we show that eribulin induces remodeling of tumor vasculature through a novel antivascular activity in MX-1 and MDA-MB-231 human breast cancer xenograft models. Vascular remodeling associated with improved perfusion was shown by Hoechst 33342 staining and by increased microvessel density together with decreased mean vascular areas and fewer branched vessels in tumor tissues, as determined by immunohistochemical staining for endothelial marker CD31. Quantitative RT-PCR analysis of normal host cells in the stroma of xenograft tumors showed that eribulin altered the expression of mouse (host) genes in angiogenesis signaling pathways controlling endothelial cell–pericyte interactions, and in the epithelial–mesenchymal transition pathway in the context of the tumor microenvironment. Eribulin also decreased hypoxia-associated protein expression of mouse (host) vascular endothelial growth factor by ELISA and human CA9 by immunohistochemical analysis. Prior treatment with eribulin enhanced the anti-tumor activity of capecitabine in the MDA-MB-231 xenograft model. These findings suggest that eribulin-induced remodeling of abnormal tumor vasculature leads to a more functional microenvironment that may reduce the aggressiveness of tumors due to elimination of inner tumor hypoxia. Because abnormal tumor microenvironments enhance both drug resistance and metastasis, the apparent ability of eribulin to reverse these aggressive characteristics may contribute to its clinical benefits. PMID:25060424

  16. Divergent microsatellite evolution in the human and chimpanzee lineages.

    PubMed

    Gáspári, Zoltán; Ortutay, Csaba; Tóth, Gábor

    2007-05-29

    Comparison of the complete human genome sequence to one of its closest relatives, the chimpanzee genome, provides a unique opportunity for exploring recent evolutionary events affecting the microsatellites in these species. A simple assumption on microsatellite distribution is that the total length of perfect repeats is constant compared to that of imperfect ones regardless of the repeat sequence. In this paper, we show that this is valid for most of the chimpanzee genome but not for a number of human chromosomes. Our results suggest accelerated evolution of microsatellites in the human genome relative to the chimpanzee lineage. PMID:17498704

  17. 5-Hydroxymethylcytosine Remodeling Precedes Lineage Specification during Differentiation of Human CD4(+) T Cells.

    PubMed

    Nestor, Colm E; Lentini, Antonio; Hägg Nilsson, Cathrine; Gawel, Danuta R; Gustafsson, Mika; Mattson, Lina; Wang, Hui; Rundquist, Olof; Meehan, Richard R; Klocke, Bernward; Seifert, Martin; Hauck, Stefanie M; Laumen, Helmut; Zhang, Huan; Benson, Mikael

    2016-07-12

    5-methylcytosine (5mC) is converted to 5-hydroxymethylcytosine (5hmC) by the TET family of enzymes as part of a recently discovered active DNA de-methylation pathway. 5hmC plays important roles in regulation of gene expression and differentiation and has been implicated in T cell malignancies and autoimmunity. Here, we report early and widespread 5mC/5hmC remodeling during human CD4(+) T cell differentiation ex vivo at genes and cell-specific enhancers with known T cell function. We observe similar DNA de-methylation in CD4(+) memory T cells in vivo, indicating that early remodeling events persist long term in differentiated cells. Underscoring their important function, 5hmC loci were highly enriched for genetic variants associated with T cell diseases and T-cell-specific chromosomal interactions. Extensive functional validation of 22 risk variants revealed potentially pathogenic mechanisms in diabetes and multiple sclerosis. Our results support 5hmC-mediated DNA de-methylation as a key component of CD4(+) T cell biology in humans, with important implications for gene regulation and lineage commitment. PMID:27346350

  18. Transcriptome Remodeling Contributes to Epidemic Disease Caused by the Human Pathogen Streptococcus pyogenes

    PubMed Central

    Beres, Stephen B.; Kachroo, Priyanka; Nasser, Waleed; Olsen, Randall J.; Zhu, Luchang; Flores, Anthony R.; de la Riva, Ivan; Paez-Mayorga, Jesus; Jimenez, Francisco E.; Cantu, Concepcion; Vuopio, Jaana; Jalava, Jari; Kristinsson, Karl G.; Gottfredsson, Magnus; Corander, Jukka; Fittipaldi, Nahuel; Di Luca, Maria Chiara; Petrelli, Dezemona; Vitali, Luca A.; Raiford, Annessa; Jenkins, Leslie

    2016-01-01

    ABSTRACT For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. PMID:27247229

  19. Extracellular matrix remodeling and its contribution to protective adaptation following lengthening contractions in human muscle.

    PubMed

    Hyldahl, Robert D; Nelson, Brad; Xin, Ling; Welling, Tyson; Groscost, Logan; Hubal, Monica J; Chipkin, Stuart; Clarkson, Priscilla M; Parcell, Allen C

    2015-07-01

    This study determined the contribution of extracellular matrix (ECM) remodeling to the protective adaptation of human skeletal muscle known as the repeated-bout effect (RBE). Muscle biopsies were obtained 3 hours, 2 days, and 27 days following an initial bout (B1) of lengthening contractions (LCs) and 2 days following a repeated bout (B2) in 2 separate studies. Biopsies from the nonexercised legs served as controls. In the first study, global transcriptomic analysis indicated widespread changes in ECM structural, deadhesive, and signaling transcripts, 3 hours following LC. To determine if ECM remodeling is involved in the RBE, we conducted a second study by use of a repeated-bout paradigm. TNC immunoreactivity increased 10.8-fold following B1, was attenuated following B2, and positively correlated with LC-induced strength loss (r(2) = 0.45; P = 0.009). Expression of collagen I, III, and IV (COL1A1, COL3A1, COL4A1) transcripts was unchanged early but increased 5.7 ± 2.5-, 3.2 ± 0.9-, and 2.1 ± 0.4-fold (P < 0.05), respectively, 27 days post-B1 and were unaffected by B2. Likewise, TGF-β signaling demonstrated a delayed response following LC. Satellite cell content increased 80% (P < 0.05) 2 days post-B1 (P < 0.05), remained elevated 27 days post-B1, and was unaffected by B2. Collectively, the data suggest sequential ECM remodeling characterized by early deadhesion and delayed reconstructive activity that appear to contribute to the RBE. PMID:25808538

  20. Distribution of particulate matter and tissue remodeling in the human lung.

    PubMed Central

    Pinkerton, K E; Green, F H; Saiki, C; Vallyathan, V; Plopper, C G; Gopal, V; Hung, D; Bahne, E B; Lin, S S; Ménache, M G; Schenker, M B

    2000-01-01

    We examined the relationship between intrapulmonary particle distribution of carbonaceous and mineral dusts and remodeling of the airways along anatomically distinct airway paths in the lungs of Hispanic males from the central valley of California. Lung autopsy specimens from the Fresno County Coroner's Office were prepared by intratracheal instillation of 2% glutaraldehyde at 30 cm H(2)O pressure. Two distinct airway paths into the apico-posterior and apico-anterior portions of the left upper lung lobe were followed. Tissue samples for histologic analysis were generally taken from the intrapulmonary second, fourth, sixth, and ninth airway generations. Parenchymal tissues beyond the 12th airway generation of each airway path were also analyzed. There was little evidence of visible particle accumulation in the larger conducting airways (generations 2-6), except in bronchial-associated lymphoid tissues and within peribronchial connective tissue. In contrast, terminal and respiratory bronchioles arising from each pathway revealed varying degrees of wall thickening and remodeling. Walls with marked thickening contained moderate to heavy amounts of carbonaceous and mineral dusts. Wall thickening was associated with increases in collagen and interstitial inflammatory cells, including dust-laden macrophages. These changes were significantly greater in first-generation respiratory bronchioles compared to second- and third-generation respiratory bronchioles. These findings suggest that accumulation of carbonaceous and mineral dust in the lungs is significantly affected by lung anatomy with the greatest retention in centers of lung acini. Furthermore, there is significant remodeling of this transitional zone in humans exposed to ambient particulate matter. PMID:11102298

  1. Pro-arrhythmogenic effects of atrial fibrillation-induced electrical remodelling: insights from the three-dimensional virtual human atria.

    PubMed

    Colman, Michael A; Aslanidi, Oleg V; Kharche, Sanjay; Boyett, Mark R; Garratt, Clifford; Hancox, Jules C; Zhang, Henggui

    2013-09-01

    Chronic atrial fibrillation (AF) is associated with structural and electrical remodelling in the atria, which are associated with a high recurrence of AF. Through biophysically detailed computer modelling, this study investigated mechanisms by which AF-induced electrical remodelling promotes and perpetuates AF. A family of Courtemanche-Ramirez-Nattel variant models of human atrial cell action potentials (APs), taking into account of intrinsic atrial electrophysiological properties, was modified to incorporate various experimental data sets on AF-induced changes of major ionic channel currents (ICaL, IKur, Ito, IK1, IKs, INaCa) and on intracellular Ca(2+) handling. The single cell models for control and AF-remodelled conditions were incorporated into multicellular three-dimensional (3D) atrial tissue models. Effects of the AF-induced electrical remodelling were quantified as the changes of AP profile, AP duration (APD) and its dispersion across the atria, and the vulnerability of atrial tissue to the initiation of re-entry. The dynamic behaviour of re-entrant excitation waves in the 3D models was characterised. In our simulations, AF-induced electrical remodelling abbreviated atrial APD non-uniformly across the atria; this resulted in relatively short APDs co-existing with marked regional differences in the APD at junctions of the crista terminalis/pectinate muscle, pulmonary veins/left atrium. As a result, the measured tissue vulnerability to re-entry initiation at these tissue junctions was increased. The AF-induced electrical remodelling also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained re-entry. Under the AF-remodelled condition, re-entrant scroll waves in the 3D model degenerated into persistent and erratic wavelets, leading to fibrillation. In conclusion, realistic 3D atrial tissue models indicate that AF-induced electrical remodelling produces regionally heterogeneous and shortened APD; these respectively facilitate

  2. Inorganic fluoride. Divergent effects on human proximal tubular cell viability.

    PubMed Central

    Zager, R. A.; Iwata, M.

    1997-01-01

    Fluoride (F) is a widely distributed nephrotoxin with exposure potentially resulting from environmental pollution and from fluorinated anesthetic use (eg, isoflurane). This study sought to characterize some of the subcellular determinants of fluoride cytotoxicity and to determine whether subtoxic F exposure affects tubular cell vulnerability to superimposed ATP depletion and nephrotoxic attack. Human proximal tubular cells (HK-2) were cultured with differing amounts of NaF (0 to 20 mmol/L, overlapping with clinically relevant intrarenal/urinary levels after fluorinated anesthetic use). After completing 24-hour exposures, cell injury was determined (vital dye uptake). Fluoride effects on cell deacylation ([3]H-C20:4 release) and PLA2 activity were also assessed. To determine whether subtoxic F exposure alters tubular cell susceptibility to superimposed injury, cells were exposed to subtoxic NaF doses for 0 to 24 hours and then challenged with simulated ischemia (ATP depletion plus Ca2+ overload) or a clinically relevant nephrotoxic insult (myoglobin exposure). NaF induced dose-dependent cytotoxicity (up to approximately 90% vital dye uptake and increased [3H]C20:4 release). Extracellular Ca2+ chelation (EGTA) and PLA2 inhibitor therapy (aristolochic acid, dibucaine, or mepacrine) each conferred significant protective effects. When subtoxic NaF doses were applied, partial cytosolic PLA2 depletion rapidly developed (approximately 85% within 3 hours, determined on cell extracts). These partially PLA2-depleted cells were markedly resistant to ATP depletion/Ca2+ ionophore injury and to myoglobin-induced attack (approximately 50% decrease in cell death). We conclude that 1) F induces dose-dependent cytotoxicity in cultured human proximal tubular cells, 2) this occurs, in part, via Ca(2+)- and PLA2-dependent mechanism(s), 3) partial cytosolic PLA2 depletion subsequently results, and 4) subtoxic fluoride exposure can acutely increase cell resistance to further attack

  3. Gene Expression in Human Hippocampus from Cocaine Abusers Identifies Genes which Regulate Extracellular Matrix Remodeling

    PubMed Central

    Mash, Deborah C.; ffrench-Mullen, Jarlath; Adi, Nikhil; Qin, Yujing; Buck, Andrew; Pablo, John

    2007-01-01

    The chronic effects of cocaine abuse on brain structure and function are blamed for the inability of most addicts to remain abstinent. Part of the difficulty in preventing relapse is the persisting memory of the intense euphoria or cocaine “rush”. Most abused drugs and alcohol induce neuroplastic changes in brain pathways subserving emotion and cognition. Such changes may account for the consolidation and structural reconfiguration of synaptic connections with exposure to cocaine. Adaptive hippocampal plasticity could be related to specific patterns of gene expression with chronic cocaine abuse. Here, we compare gene expression profiles in the human hippocampus from cocaine addicts and age-matched drug-free control subjects. Cocaine abusers had 151 gene transcripts upregulated, while 91 gene transcripts were downregulated. Topping the list of cocaine-regulated transcripts was RECK in the human hippocampus (FC = 2.0; p<0.05). RECK is a membrane-anchored MMP inhibitor that is implicated in the coordinated regulation of extracellular matrix integrity and angiogenesis. In keeping with elevated RECK expression, active MMP9 protein levels were decreased in the hippocampus from cocaine abusers. Pathway analysis identified other genes regulated by cocaine that code for proteins involved in the remodeling of the cytomatrix and synaptic connections and the inhibition of blood vessel proliferation (PCDH8, LAMB1, ITGB6, CTGF and EphB4). The observed microarray phenotype in the human hippocampus identified RECK and other region-specific genes that may promote long-lasting structural changes with repeated cocaine abuse. Extracellular matrix remodeling in the hippocampus may be a persisting effect of chronic abuse that contributes to the compulsive and relapsing nature of cocaine addiction. PMID:18000554

  4. Divergent viral presentation among human tumors and adjacent normal tissues.

    PubMed

    Cao, Song; Wendl, Michael C; Wyczalkowski, Matthew A; Wylie, Kristine; Ye, Kai; Jayasinghe, Reyka; Xie, Mingchao; Wu, Song; Niu, Beifang; Grubb, Robert; Johnson, Kimberly J; Gay, Hiram; Chen, Ken; Rader, Janet S; Dipersio, John F; Chen, Feng; Ding, Li

    2016-01-01

    We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets. PMID:27339696

  5. Divergent viral presentation among human tumors and adjacent normal tissues

    PubMed Central

    Cao, Song; Wendl, Michael C.; Wyczalkowski, Matthew A.; Wylie, Kristine; Ye, Kai; Jayasinghe, Reyka; Xie, Mingchao; Wu, Song; Niu, Beifang; Grubb, Robert; Johnson, Kimberly J.; Gay, Hiram; Chen, Ken; Rader, Janet S.; Dipersio, John F.; Chen, Feng; Ding, Li

    2016-01-01

    We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets. PMID:27339696

  6. Oncogenic potential diverge among human papillomavirus type 16 natural variants

    SciTech Connect

    Sichero, Laura; Simao Sobrinho, Joao; Lina Villa, Luisa

    2012-10-10

    We compared E6/E7 protein properties of three different HPV-16 variants: AA, E-P and E-350G. Primary human foreskin keratinocytes (PHFK) were transduced with HPV-16 E6 and E7 and evaluated for proliferation and ability to grow in soft agar. E-P infected keratinocytes presented the lowest efficiency in colony formation. AA and E-350G keratinocytes attained higher capacity for in vitro transformation. We observed similar degradation of TP53 among HPV-16 variants. Furthermore, we accessed the expression profile in early (p5) and late passage (p30) transduced cells of 84 genes commonly involved in carcinogenesis. Most differences could be attributed to HPV-16 E6/E7 expression. In particular, we detected different expression of ITGA2 and CHEK2 in keratinocytes infected with AA and AA/E-350G late passage cells, respectively, and higher expression of MAP2K1 in E-350G transduced keratinocytes. Our results indicate differences among HPV-16 variants that could explain, at least in part, differences in oncogenic potential attributed to these variants.

  7. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection.

    PubMed

    Li, Yuan; Shah-Simpson, Sheena; Okrah, Kwame; Belew, A Trey; Choi, Jungmin; Caradonna, Kacey L; Padmanabhan, Prasad; Ndegwa, David M; Temanni, M Ramzi; Corrada Bravo, Héctor; El-Sayed, Najib M; Burleigh, Barbara A

    2016-04-01

    Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and host, our

  8. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection

    PubMed Central

    Li, Yuan; Shah-Simpson, Sheena; Okrah, Kwame; Belew, A. Trey; Choi, Jungmin; Caradonna, Kacey L.; Padmanabhan, Prasad; Ndegwa, David M.; Temanni, M. Ramzi; Corrada Bravo, Héctor; El-Sayed, Najib M.; Burleigh, Barbara A.

    2016-01-01

    Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and host, our

  9. IL-17A mediates inflammatory and tissue remodelling events in early human tendinopathy.

    PubMed

    Millar, Neal L; Akbar, Moeed; Campbell, Abigail L; Reilly, James H; Kerr, Shauna C; McLean, Michael; Frleta-Gilchrist, Marina; Fazzi, Umberto G; Leach, William J; Rooney, Brian P; Crowe, Lindsay A N; Murrell, George A C; McInnes, Iain B

    2016-01-01

    Increasingly, inflammatory mediators are considered crucial to the onset and perpetuation of tendinopathy. We sought evidence of interleukin 17A (IL-17A) expression in early human tendinopathy and thereafter, explored mechanisms whereby IL-17A mediated inflammation and tissue remodeling in human tenocytes. Torn supraspinatus tendon (established pathology) and matched intact subscapularis tendon (representing 'early pathology') along with control biopsies were collected from patients undergoing shoulder surgery. Markers of inflammation and IL-17A were quantified by RT-PCR and immunohistochemistry. Human tendon cells were derived from hamstring tendon obtained during ACL reconstruction. In vitro effects of IL-17A upon tenocytes were measured using RT-PCR, multiplex cytokine assays, apoptotic proteomic profiling, immunohistochemistry and annexin V FACS staining. Increased expression of IL-17A was detected in 'early tendinopathy' compared to both matched samples and non-matched control samples (p < 0.01) by RT-PCR and immunostaining. Double immunofluoresence staining revealed IL-17A expression in leukocyte subsets including mast cells, macrophages and T cells. IL-17A treated tenocytes exhibited increased production of proinflammatory cytokines (p < 0.001), altered matrix regulation (p < 0.01) with increased Collagen type III and increased expression of several apoptosis related factors. We propose IL-17A as an inflammatory mediator within the early tendinopathy processes thus providing novel therapeutic approaches in the management of tendon disorders. PMID:27263531

  10. IL-17A mediates inflammatory and tissue remodelling events in early human tendinopathy

    PubMed Central

    Millar, Neal L.; Akbar, Moeed; Campbell, Abigail L.; Reilly, James H.; Kerr, Shauna C.; McLean, Michael; Frleta-Gilchrist, Marina; Fazzi, Umberto G.; Leach, William J.; Rooney, Brian P.; Crowe, Lindsay A. N.; Murrell, George A. C.; McInnes, Iain B.

    2016-01-01

    Increasingly, inflammatory mediators are considered crucial to the onset and perpetuation of tendinopathy. We sought evidence of interleukin 17A (IL-17A) expression in early human tendinopathy and thereafter, explored mechanisms whereby IL-17A mediated inflammation and tissue remodeling in human tenocytes. Torn supraspinatus tendon (established pathology) and matched intact subscapularis tendon (representing ‘early pathology’) along with control biopsies were collected from patients undergoing shoulder surgery. Markers of inflammation and IL-17A were quantified by RT-PCR and immunohistochemistry. Human tendon cells were derived from hamstring tendon obtained during ACL reconstruction. In vitro effects of IL-17A upon tenocytes were measured using RT-PCR, multiplex cytokine assays, apoptotic proteomic profiling, immunohistochemistry and annexin V FACS staining. Increased expression of IL-17A was detected in ‘early tendinopathy’ compared to both matched samples and non-matched control samples (p < 0.01) by RT-PCR and immunostaining. Double immunofluoresence staining revealed IL-17A expression in leukocyte subsets including mast cells, macrophages and T cells. IL-17A treated tenocytes exhibited increased production of proinflammatory cytokines (p < 0.001), altered matrix regulation (p < 0.01) with increased Collagen type III and increased expression of several apoptosis related factors. We propose IL-17A as an inflammatory mediator within the early tendinopathy processes thus providing novel therapeutic approaches in the management of tendon disorders. PMID:27263531

  11. Chromatin remodelling and autocrine TNFα are required for optimal interleukin-6 expression in activated human neutrophils.

    PubMed

    Zimmermann, Maili; Aguilera, Francisco Bianchetto; Castellucci, Monica; Rossato, Marzia; Costa, Sara; Lunardi, Claudio; Ostuni, Renato; Girolomoni, Giampiero; Natoli, Gioacchino; Bazzoni, Flavia; Tamassia, Nicola; Cassatella, Marco A

    2015-01-01

    Controversy currently exists about the ability of human neutrophils to produce IL-6. Here, we show that the chromatin organization of the IL-6 genomic locus in human neutrophils is constitutively kept in an inactive configuration. However, we also show that upon exposure to stimuli that trigger chromatin remodelling at the IL-6 locus, such as ligands for TLR8 or, less efficiently, TLR4, highly purified neutrophils express and secrete IL-6. In TLR8-activated neutrophils, but not monocytes, IL-6 expression is preceded by the induction of a latent enhancer located 14 kb upstream of the IL-6 transcriptional start site. In addition, IL-6 induction is potentiated by endogenous TNFα, which prolongs the synthesis of the IκBζ co-activator and sustains C/EBPβ recruitment and histone acetylation at IL-6 regulatory regions. Altogether, these data clarify controversial literature on the ability of human neutrophils to generate IL-6 and uncover chromatin-dependent layers of regulation of IL-6 in these cells. PMID:25616107

  12. Human-caused habitat fragmentation can drive rapid divergence of male genitalia

    PubMed Central

    Heinen-Kay, Justa L; Noel, Holly G; Layman, Craig A; Langerhans, R Brian

    2014-01-01

    The aim of this study rests on three premises: (i) humans are altering ecosystems worldwide, (ii) environmental variation often influences the strength and nature of sexual selection, and (iii) sexual selection is largely responsible for rapid and divergent evolution of male genitalia. While each of these assertions has strong empirical support, no study has yet investigated their logical conclusion that human impacts on the environment might commonly drive rapid diversification of male genital morphology. We tested whether anthropogenic habitat fragmentation has resulted in rapid changes in the size, allometry, shape, and meristics of male genitalia in three native species of livebearing fishes (genus: Gambusia) inhabiting tidal creeks across six Bahamian islands. We found that genital shape and allometry consistently and repeatedly diverged in fragmented systems across all species and islands. Using a model selection framework, we identified three ecological consequences of fragmentation that apparently underlie observed morphological patterns: decreased predatory fish density, increased conspecific density, and reduced salinity. Our results demonstrate that human modifications to the environment can drive rapid and predictable divergence in male genitalia. Given the ubiquity of anthropogenic impacts on the environment, future research should evaluate the generality of our findings and potential consequences for reproductive isolation. PMID:25558285

  13. Revised timeline and distribution of the earliest diverged human maternal lineages in southern Africa.

    PubMed

    Chan, Eva K F; Hardie, Rae-Anne; Petersen, Desiree C; Beeson, Karen; Bornman, Riana M S; Smith, Andrew B; Hayes, Vanessa M

    2015-01-01

    The oldest extant human maternal lineages include mitochondrial haplogroups L0d and L0k found in the southern African click-speaking forager peoples broadly classified as Khoesan. Profiling these early mitochondrial lineages allows for better understanding of modern human evolution. In this study, we profile 77 new early-diverged complete mitochondrial genomes and sub-classify another 105 L0d/L0k individuals from southern Africa. We use this data to refine basal phylogenetic divergence, coalescence times and Khoesan prehistory. Our results confirm L0d as the earliest diverged lineage (∼172 kya, 95%CI: 149-199 kya), followed by L0k (∼159 kya, 95%CI: 136-183 kya) and a new lineage we name L0g (∼94 kya, 95%CI: 72-116 kya). We identify two new L0d1 subclades we name L0d1d and L0d1c4/L0d1e, and estimate L0d2 and L0d1 divergence at ∼93 kya (95%CI:76-112 kya). We concur the earliest emerging L0d1'2 sublineage L0d1b (∼49 kya, 95%CI:37-58 kya) is widely distributed across southern Africa. Concomitantly, we find the most recent sublineage L0d2a (∼17 kya, 95%CI:10-27 kya) to be equally common. While we agree that lineages L0d1c and L0k1a are restricted to contemporary inland Khoesan populations, our observed predominance of L0d2a and L0d1a in non-Khoesan populations suggests a once independent coastal Khoesan prehistory. The distribution of early-diverged human maternal lineages within contemporary southern Africans suggests a rich history of human existence prior to any archaeological evidence of migration into the region. For the first time, we provide a genetic-based evidence for significant modern human evolution in southern Africa at the time of the Last Glacial Maximum at between ∼21-17 kya, coinciding with the emergence of major lineages L0d1a, L0d2b, L0d2d and L0d2a. PMID:25807545

  14. Revised Timeline and Distribution of the Earliest Diverged Human Maternal Lineages in Southern Africa

    PubMed Central

    Chan, Eva K. F.; Hardie, Rae-Anne; Petersen, Desiree C.; Beeson, Karen; Bornman, Riana M. S.; Smith, Andrew B.; Hayes, Vanessa M.

    2015-01-01

    The oldest extant human maternal lineages include mitochondrial haplogroups L0d and L0k found in the southern African click-speaking forager peoples broadly classified as Khoesan. Profiling these early mitochondrial lineages allows for better understanding of modern human evolution. In this study, we profile 77 new early-diverged complete mitochondrial genomes and sub-classify another 105 L0d/L0k individuals from southern Africa. We use this data to refine basal phylogenetic divergence, coalescence times and Khoesan prehistory. Our results confirm L0d as the earliest diverged lineage (∼172 kya, 95%CI: 149–199 kya), followed by L0k (∼159 kya, 95%CI: 136–183 kya) and a new lineage we name L0g (∼94 kya, 95%CI: 72–116 kya). We identify two new L0d1 subclades we name L0d1d and L0d1c4/L0d1e, and estimate L0d2 and L0d1 divergence at ∼93 kya (95%CI:76–112 kya). We concur the earliest emerging L0d1’2 sublineage L0d1b (∼49 kya, 95%CI:37–58 kya) is widely distributed across southern Africa. Concomitantly, we find the most recent sublineage L0d2a (∼17 kya, 95%CI:10–27 kya) to be equally common. While we agree that lineages L0d1c and L0k1a are restricted to contemporary inland Khoesan populations, our observed predominance of L0d2a and L0d1a in non-Khoesan populations suggests a once independent coastal Khoesan prehistory. The distribution of early-diverged human maternal lineages within contemporary southern Africans suggests a rich history of human existence prior to any archaeological evidence of migration into the region. For the first time, we provide a genetic-based evidence for significant modern human evolution in southern Africa at the time of the Last Glacial Maximum at between ∼21–17 kya, coinciding with the emergence of major lineages L0d1a, L0d2b, L0d2d and L0d2a. PMID:25807545

  15. Early reversal cells in adult human bone remodeling: osteoblastic nature, catabolic functions and interactions with osteoclasts.

    PubMed

    Abdelgawad, Mohamed Essameldin; Delaisse, Jean-Marie; Hinge, Maja; Jensen, Pia Rosgaard; Alnaimi, Ragad Walid; Rolighed, Lars; Engelholm, Lars H; Marcussen, Niels; Andersen, Thomas Levin

    2016-06-01

    The mechanism coupling bone resorption and formation is a burning question that remains incompletely answered through the current investigations on osteoclasts and osteoblasts. An attractive hypothesis is that the reversal cells are likely mediators of this coupling. Their nature is a big matter of debate. The present study performed on human cancellous bone is the first one combining in situ hybridization and immunohistochemistry to demonstrate their osteoblastic nature. It shows that the Runx2 and CD56 immunoreactive reversal cells appear to take up TRAcP released by neighboring osteoclasts. Earlier preclinical studies indicate that reversal cells degrade the organic matrix left behind by the osteoclasts and that this degradation is crucial for the initiation of the subsequent bone formation. To our knowledge, this study is the first addressing these catabolic activities in adult human bone through electron microscopy and analysis of molecular markers. Periosteoclastic reversal cells show direct contacts with the osteoclasts and with the demineralized resorption debris. These early reversal cells show (1) ¾-collagen fragments typically generated by extracellular collagenases of the MMP family, (2) MMP-13 (collagenase-3) and (3) the endocytic collagen receptor uPARAP/Endo180. The prevalence of these markers was lower in the later reversal cells, which are located near the osteoid surfaces and morphologically resemble mature bone-forming osteoblasts. In conclusion, this study demonstrates that reversal cells colonizing bone surfaces right after resorption are osteoblast-lineage cells, and extends to adult human bone remodeling their role in rendering eroded surfaces osteogenic. PMID:26860863

  16. Particle radiation alters expression of matrix metalloproteases resulting in ECM remodeling in human lens cells.

    PubMed

    Chang, P Y; Bjornstad, K A; Rosen, C J; Lin, S; Blakely, E A

    2007-06-01

    Relatively low doses of space radiation have been correlated with an increased incidence and earlier appearance of cataracts in space travelers. The lens is a radiosensitive organ of the body with a very obvious late end point of radiation damage--cataract. However, many molecular changes occur in the lens soon after radiation exposure and long before the appearance of an opacification. The goal of our research is to elucidate early mechanisms associated with particle radiation-induced cataractogenesis, with the ultimate goal of developing countermeasures. Normal, cultured non-immortalized human lens cells were grown on matrix-coated plastic tissue culture vessels and irradiated with particle beams at Lawrence Berkeley National Lab (LBNL) or at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Lab. Samples were harvested at different times after radiation exposure. Using a focused genetic approach, total RNA and protein extracts from control and irradiated samples were processed and probed for the expression of genes associated with extracellular matrix (ECM) proteases. Matrix metalloproteinases (MMPs) have previously been studied in adult postmortem human lenses, in post-cataract intraocular lens (IOL) surgery capsular bags and with immortalized human lens cell cultures. Significant differences exist in the expression pattern with these various model systems. We have evidence for the cell stage-specific expression of MMP family of genes during lens fiber differentiation, and for radiation-induced alterations in the misregulation of MMP expression. Our data indicate that radiation exposure may lead to differences in the expression of radiation stress responses, which may impact selective ECM remodeling and cell differentiation. PMID:17256179

  17. Comparative microanatomy of the orbicularis oris muscle between chimpanzees and humans: evolutionary divergence of lip function

    PubMed Central

    Rogers, Carolyn R; Mooney, Mark P; Smith, Timothy D; Weinberg, Seth M; Waller, Bridget M; Parr, Lisa A; Docherty, Beth A; Bonar, Christopher J; Reinholt, Lauren E; Deleyiannis, Frederic W-B; Siegel, Michael I; Marazita, Mary L; Burrows, Anne M

    2009-01-01

    The orbicularis oris muscle plays a role in the production of primate facial expressions and vocalizations, nutrient intake, and in some non-human primates it is used as a prehensile, manipulative tool. As the chimpanzee (Pan troglodytes) is the closest living relative of humans, a comparison of the orbicularis oris muscle between these species may increase our understanding of the morphological specializations related to the differing functional demands of their lips and the factors responsible for their divergent evolution. To this end, this study compares the microanatomy of the mid-line upper fibers of the orbicularis oris muscle between chimpanzees and humans. A mid-line portion of the orbicularis oris muscle was harvested from the upper lips of three chimpanzee and five human cadavers. The sampled blocks included the area between the lateral borders of the nasal alar cartilages in both species. Each sample was processed for paraffin histology, sectioned and stained with a variety of protocols. Sections were examined for fiber direction and relative thickness of muscle layers. Ratios of cross-sectional connective tissue area vs. cross-sectional muscle tissue area, muscle fiber diameter and relative dermal thickness were calculated for each species. In both species, a clear pars marginalis layer was recognized, contrary to previous reports that only humans possess this layer. In chimpanzees, the relative fiber diameter and relative amount of muscle tissue (i.e. based on ratio of connective tissue area : muscle tissue area) were significantly (P < 0.05) greater than in humans. In contrast, measurements of relative dermal thickness showed that humans have a greater average dermal thickness of the upper lip than chimpanzees. Taken together, these results suggest that both human and chimpanzee orbicularis oris muscle upper fibers meet the specific functional demands associated with their divergent vocal and facial display repertoires, the development of human

  18. Single cell mass cytometry reveals remodeling of human T cell phenotypes by varicella zoster virus.

    PubMed

    Sen, Nandini; Mukherjee, Gourab; Arvin, Ann M

    2015-11-15

    The recent application of mass cytometry (CyTOF) to biology provides a 'systems' approach to monitor concurrent changes in multiple host cell factors at the single cell level. We used CyTOF to evaluate T cells infected with varicella zoster virus (VZV) infection, documenting virus-mediated phenotypic and functional changes caused by this T cell tropic human herpesvirus. Here we summarize our findings using two complementary panels of antibodies against surface and intracellular signaling proteins to elucidate the consequences of VZV-mediated perturbations on the surface and in signaling networks of infected T cells. CyTOF data was analyzed by several statistical, analytical and visualization tools including hierarchical clustering, orthogonal scaling, SPADE, viSNE, and SLIDE. Data from the mass cytometry studies demonstrated that VZV infection led to 'remodeling' of the surface architecture of T cells, promoting skin trafficking phenotypes and associated with concomitant activation of T-cell receptor and PI3-kinase pathways. This method offers a novel approach for understanding viral interactions with differentiated host cells important for pathogenesis. PMID:26213183

  19. Bacterial infection remodels the DNA methylation landscape of human dendritic cells

    PubMed Central

    Pacis, Alain; Tailleux, Ludovic; Morin, Alexander M.; Lambourne, John; MacIsaac, Julia L.; Yotova, Vania; Dumaine, Anne; Danckaert, Anne; Luca, Francesca; Grenier, Jean-Christophe; Hansen, Kasper D.; Gicquel, Brigitte; Yu, Miao; Pai, Athma; He, Chuan; Tung, Jenny; Pastinen, Tomi; Kobor, Michael S.; Pique-Regi, Roger; Gilad, Yoav; Barreiro, Luis B.

    2015-01-01

    DNA methylation is an epigenetic mark thought to be robust to environmental perturbations on a short time scale. Here, we challenge that view by demonstrating that the infection of human dendritic cells (DCs) with a live pathogenic bacteria is associated with rapid and active demethylation at thousands of loci, independent of cell division. We performed an integrated analysis of data on genome-wide DNA methylation, histone mark patterns, chromatin accessibility, and gene expression, before and after infection. We found that infection-induced demethylation rarely occurs at promoter regions and instead localizes to distal enhancer elements, including those that regulate the activation of key immune transcription factors. Active demethylation is associated with extensive epigenetic remodeling, including the gain of histone activation marks and increased chromatin accessibility, and is strongly predictive of changes in the expression levels of nearby genes. Collectively, our observations show that active, rapid changes in DNA methylation in enhancers play a previously unappreciated role in regulating the transcriptional response to infection, even in nonproliferating cells. PMID:26392366

  20. Tandem repeat variation in human and great ape populations and its impact on gene expression divergence.

    PubMed

    Bilgin Sonay, Tugce; Carvalho, Tiago; Robinson, Mark D; Greminger, Maja P; Krützen, Michael; Comas, David; Highnam, Gareth; Mittelman, David; Sharp, Andrew; Marques-Bonet, Tomàs; Wagner, Andreas

    2015-11-01

    Tandem repeats (TRs) are stretches of DNA that are highly variable in length and mutate rapidly. They are thus an important source of genetic variation. This variation is highly informative for population and conservation genetics. It has also been associated with several pathological conditions and with gene expression regulation. However, genome-wide surveys of TR variation in humans and closely related species have been scarce due to technical difficulties derived from short-read technology. Here we explored the genome-wide diversity of TRs in a panel of 83 human and nonhuman great ape genomes, in a total of six different species, and studied their impact on gene expression evolution. We found that population diversity patterns can be efficiently captured with short TRs (repeat unit length, 1-5 bp). We examined the potential evolutionary role of TRs in gene expression differences between humans and primates by using 30,275 larger TRs (repeat unit length, 2-50 bp). Genes that contained TRs in the promoters, in their 3' untranslated region, in introns, and in exons had higher expression divergence than genes without repeats in the regions. Polymorphic small repeats (1-5 bp) had also higher expression divergence compared with genes with fixed or no TRs in the gene promoters. Our findings highlight the potential contribution of TRs to human evolution through gene regulation. PMID:26290536

  1. Tandem repeat variation in human and great ape populations and its impact on gene expression divergence

    PubMed Central

    Bilgin Sonay, Tugce; Carvalho, Tiago; Robinson, Mark D.; Greminger, Maja P.; Krützen, Michael; Comas, David; Highnam, Gareth; Mittelman, David; Sharp, Andrew; Marques-Bonet, Tomàs; Wagner, Andreas

    2015-01-01

    Tandem repeats (TRs) are stretches of DNA that are highly variable in length and mutate rapidly. They are thus an important source of genetic variation. This variation is highly informative for population and conservation genetics. It has also been associated with several pathological conditions and with gene expression regulation. However, genome-wide surveys of TR variation in humans and closely related species have been scarce due to technical difficulties derived from short-read technology. Here we explored the genome-wide diversity of TRs in a panel of 83 human and nonhuman great ape genomes, in a total of six different species, and studied their impact on gene expression evolution. We found that population diversity patterns can be efficiently captured with short TRs (repeat unit length, 1–5 bp). We examined the potential evolutionary role of TRs in gene expression differences between humans and primates by using 30,275 larger TRs (repeat unit length, 2–50 bp). Genes that contained TRs in the promoters, in their 3′ untranslated region, in introns, and in exons had higher expression divergence than genes without repeats in the regions. Polymorphic small repeats (1–5 bp) had also higher expression divergence compared with genes with fixed or no TRs in the gene promoters. Our findings highlight the potential contribution of TRs to human evolution through gene regulation. PMID:26290536

  2. Global expression profiling reveals genetic programs underlying the developmental divergence between mouse and human embryogenesis

    PubMed Central

    2013-01-01

    Background Mouse has served as an excellent model for studying human development and diseases due to its similarity to human. Advances in transgenic and knockout studies in mouse have dramatically strengthened the use of this model and significantly improved our understanding of gene function during development in the past few decades. More recently, global gene expression analyses have revealed novel features in early embryogenesis up to gastrulation stages and have indeed provided molecular evidence supporting the conservation in early development in human and mouse. On the other hand, little information is known about the gene regulatory networks governing the subsequent organogenesis. Importantly, mouse and human development diverges during organogenesis. For instance, the mouse embryo is born around the end of organogenesis while in human the subsequent fetal period of ongoing growth and maturation of most organs spans more than 2/3 of human embryogenesis. While two recent studies reported the gene expression profiles during human organogenesis, no global gene expression analysis had been done for mouse organogenesis. Results Here we report a detailed analysis of the global gene expression profiles from egg to the end of organogenesis in mouse. Our studies have revealed distinct temporal regulation patterns for genes belonging to different functional (Gene Ontology or GO) categories that support their roles during organogenesis. More importantly, comparative analyses identify both conserved and divergent gene regulation programs in mouse and human organogenesis, with the latter likely responsible for the developmental divergence between the two species, and further suggest a novel developmental strategy during vertebrate evolution. Conclusions We have reported here the first genome-wide gene expression analysis of the entire mouse embryogenesis and compared the transcriptome atlas during mouse and human embryogenesis. Given our earlier observation that genes

  3. Changes in vascular extracellular matrix composition during decidual spiral arteriole remodeling in early human pregnancy.

    PubMed

    Smith, Samantha D; Choudhury, Ruhul H; Matos, Patricia; Horn, James A; Lye, Stephen J; Dunk, Caroline E; Aplin, John D; Jones, Rebecca L; Harris, Lynda K

    2016-05-01

    Uterine spiral arteriole (SA) remodeling in early pregnancy involves a coordinated series of events including decidual immune cell recruitment, vascular cell disruption and loss, and colonization by placental-derived extravillous trophoblast (EVT). During this process, decidual SA are converted from narrow, muscular vessels into dilated channels lacking vasomotor control. We hypothesized that this extensive alteration in SA architecture must require significant reorganization and/or breakdown of the vascular extracellular matrix (ECM). First trimester decidua basalis (30 specimens) was immunostained to identify spiral arterioles undergoing trophoblast-independent and -dependent phases of remodeling. Serial sections were then immunostained for a panel of ECM markers, to examine changes in vascular ECM during the remodeling process. The initial stages of SA remodeling were characterized by loss of laminin, elastin, fibrillin, collagen types III, IV and VI from the basement membrane, vascular media and/or adventitia, and surrounding decidual stromal cells. Loss of ECM correlated with disruption and disorganization of vascular smooth muscle cells, and the majority of changes occurred prior to extensive colonization of the vessel wall by EVT. The final stages of SA remodeling, characterized by the arrival of EVT, were associated with the increased mural deposition of fibronectin and fibrinoid. This study provides the first detailed analysis of the spatial and temporal loss of ECM from the walls of remodeling decidual SA in early pregnancy. PMID:26602431

  4. Effect of Cocaine on Pulmonary Vascular Remodeling and Hemodynamics in Human Immunodeficiency Virus-Transgenic Rats.

    PubMed

    Dalvi, Pranjali; Spikes, Leslie; Allen, Julie; Gupta, Vijayalaxmi G; Sharma, Himanshu; Gillcrist, Marion; Montes de Oca, Jamison; O'Brien-Ladner, Amy; Dhillon, Navneet K

    2016-08-01

    Human immunodeficiency virus (HIV)-related pulmonary arterial hypertension has been found to be more prevalent in intravenous drug users. Our earlier cell-culture findings reported down-regulation of bone morphogenetic protein receptors (BMPRs) in combination with enhanced proliferation of human pulmonary arterial smooth muscle cells (PASMCs) in the presence of HIV-Trans-activator of transcription (Tat) and cocaine compared with either treatment alone. Here, we report physiologic evidence of significant increases in mean pulmonary arterial pressure in HIV-transgenic (Tg) rats intraperitoneally administered 40 mg/kg body weight cocaine (HIV-cocaine group) once daily for 21 days when compared with HIV-Tg rats given saline (HIV group) or wild-type (WT) Fischer 334 rats treated with (WT-cocaine group) and without cocaine (WT group). In addition, right ventricle systolic pressure was also found to be significantly higher in the HIV-cocaine rats compared with the WT group. Significant down-regulation in protein expression of BMPR-2 and BMPR-1B was observed in total lung extract from HIV-cocaine rats compared with the other three groups. Furthermore, the PASMCs isolated from HIV-cocaine rats demonstrated a higher level of proliferation and lower levels of apoptosis compared with cells isolated from other rat groups. Interestingly, corroborating our earlier cell-culture findings, we observed higher expression of BMPR-2 and BMPR-1B messenger RNA and significantly lower levels of BMPR-2 and BMPR-1B protein in HIV-cocaine PASMCs compared with cells isolated from all other groups. In conclusion, our findings support an additive effect of cocaine and HIV on smooth muscle dysfunction, resulting in enhanced pulmonary vascular remodeling with associated elevation of mean pulmonary arterial pressure and right ventricle systolic pressure in HIV-Tg rats exposed to cocaine. PMID:26820592

  5. Widespread Divergence of the CEACAM/PSG Genes in Vertebrates and Humans Suggests Sensitivity to Selection

    PubMed Central

    Chang, Chia Lin; Semyonov, Jenia; Cheng, Po Jen; Huang, Shang Yu; Park, Jae Il; Tsai, Huai-Jen; Lin, Cheng-Yung; Grützner, Frank; Soong, Yung Kuei; Cai, James J.; Hsu, Sheau Yu Teddy

    2013-01-01

    In mammals, carcinoembryonic antigen cell adhesion molecules (CEACAMs) and pregnancy-specific glycoproteins (PSGs) play important roles in the regulation of pathogen transmission, tumorigenesis, insulin signaling turnover, and fetal–maternal interactions. However, how these genes evolved and to what extent they diverged in humans remain to be investigated specifically. Based on syntenic mapping of chordate genomes, we reveal that diverging homologs with a prototypic CEACAM architecture–including an extracellular domain with immunoglobulin variable and constant domain-like regions, and an intracellular domain containing ITAM motif–are present from cartilaginous fish to humans, but are absent in sea lamprey, cephalochordate or urochordate. Interestingly, the CEACAM/PSG gene inventory underwent radical divergence in various vertebrate lineages: from zero in avian species to dozens in therian mammals. In addition, analyses of genetic variations in human populations showed the presence of various types of copy number variations (CNVs) at the CEACAM/PSG locus. These copy number polymorphisms have 3–80% frequency in select populations, and encompass single to more than six PSG genes. Furthermore, we found that CEACAM/PSG genes contain a significantly higher density of nonsynonymous single nucleotide polymorphism (SNP) compared to the chromosome average, and many CEACAM/PSG SNPs exhibit high population differentiation. Taken together, our study suggested that CEACAM/PSG genes have had a more dynamic evolutionary history in vertebrates than previously thought. Given that CEACAM/PSGs play important roles in maternal–fetal interaction and pathogen recognition, these data have laid the groundwork for future analysis of adaptive CEACAM/PSG genotype-phenotypic relationships in normal and complicated pregnancies as well as other etiologies. PMID:23613906

  6. Inequality in Landownership, the Emergence of Human-Capital Promoting Institutions, and the Great Divergence

    PubMed Central

    GALOR, ODED; MOAV, OMER; VOLLRATH, DIETRICH

    2013-01-01

    This paper suggests that inequality in the distribution of landownership adversely affected the emergence of human-capital promoting institutions (e.g. public schooling), and thus the pace and the nature of the transition from an agricultural to an industrial economy, contributing to the emergence of the great divergence in income per capita across countries. The prediction of the theory regarding the adverse effect of the concentration of landownership on education expenditure is established empirically based on evidence from the beginning of the 20th century in the U.S. PMID:23946551

  7. Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution.

    PubMed

    Zeng, Jia; Konopka, Genevieve; Hunt, Brendan G; Preuss, Todd M; Geschwind, Dan; Yi, Soojin V

    2012-09-01

    DNA methylation is a pervasive epigenetic DNA modification that strongly affects chromatin regulation and gene expression. To date, it remains largely unknown how patterns of DNA methylation differ between closely related species and whether such differences contribute to species-specific phenotypes. To investigate these questions, we generated nucleotide-resolution whole-genome methylation maps of the prefrontal cortex of multiple humans and chimpanzees. Levels and patterns of DNA methylation vary across individuals within species according to the age and the sex of the individuals. We also found extensive species-level divergence in patterns of DNA methylation and that hundreds of genes exhibit significantly lower levels of promoter methylation in the human brain than in the chimpanzee brain. Furthermore, we investigated the functional consequences of methylation differences in humans and chimpanzees by integrating data on gene expression generated with next-generation sequencing methods, and we found a strong relationship between differential methylation and gene expression. Finally, we found that differentially methylated genes are strikingly enriched with loci associated with neurological disorders, psychological disorders, and cancers. Our results demonstrate that differential DNA methylation might be an important molecular mechanism driving gene-expression divergence between human and chimpanzee brains and might potentially contribute to the evolution of disease vulnerabilities. Thus, comparative studies of humans and chimpanzees stand to identify key epigenomic modifications underlying the evolution of human-specific traits. PMID:22922032

  8. Altered response of fibroblasts from human tympanosclerotic membrane to interacting mast cells: implication for tissue remodeling.

    PubMed

    Pawelczyk, Tadeusz; Sakowicz-Burkiewicz, Monika; Wesserling, Martyna; Grden, Marzena; Kuczkowski, Jerzy

    2014-12-01

    Several lines of evidence suggest that a tympanosclerotic (TMS) lesion often develops secondary to acute and chronic otitis media. Histological findings indicate that fibroblasts and inflammatory cells, including mast cells, play a key role in the tympanosclerotic plaque formation. However, details on the functional characteristics of tympanosclerotic fibroblasts (Fs(TMS)) are scanty. Therefore the aim of our study was to examine the activity of human fibroblasts from tympanosclerotic lesions and to evaluate the influence of stimulated by crosslinking of IgE receptor mast cells (HMC-1(FcɛRI)) on fibroblast functional behavior. We observed that fibroblasts from normal tympanic membrane (Fs(TM)) released less TNF-α, TGF-β1 and IL-6 compared to Fs(TMS). Fs(TMS) but not Fs(TM) upon interaction with HMC-1(FcɛRI) released increased quantities of TNF-α and TGF-β1. Exposing the fibroblast to HMC-1(FcɛRI) cells resulted in an increased synthesis of proteins including collagen. We noted that the COL2A1 transcript level increased ∼5- and ∼12-fold in Fs(TM) and Fs(TMS) co-cultured with HMC-1(FcɛRI), respectively. Both Fs(TM) and Fs(TMS) upon maintenance in the primary culture released significant quantities of matrix metalloproteinase 9 (MMP-9). However, Fs(TMS) released ∼5-fold more MMP-9 activity compared to the Fs(TM) cultures. The mast cell-induced release of TNF-α, TGF-β1 and MMP-9 sustained for a longer time in Fs(TMS) cultures compared to Fs(TM). Concluding, our data strongly indicate that increased fibroblast sensitivity to mast cell stimulation greatly contributes to the excessive fibrosis and pathological remodeling of the tympanic membrane. We postulate that the persistency of the Fs(TMS) activated state could be an important factor in the pathogenesis of tympanosclerosis. PMID:25310903

  9. Nanofibrous clinical-grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy.

    PubMed

    Joanne, Pierre; Kitsara, Maria; Boitard, Solène-Emmanuelle; Naemetalla, Hany; Vanneaux, Valérie; Pernot, Mathieu; Larghero, Jérôme; Forest, Patricia; Chen, Yong; Menasché, Philippe; Agbulut, Onnik

    2016-02-01

    Limited data are available on the effects of stem cells in non-ischemic dilated cardiomyopathy (DCM). Since the diffuse nature of the disease calls for a broad distribution of cells, this study investigated the scaffold-based delivery of human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) in a mouse model of DCM. Nanofibrous scaffolds were produced using a clinical grade atelocollagen which was electrospun and cross-linked under different conditions. As assessed by scanning electron microscopy and shearwave elastography, the optimum crosslinking conditions for hiPS-CM colonization proved to be a 10% concentration of citric acid crosslinking agent and 150 min of post-electrospinning baking. Acellular collagen scaffolds were first implanted in both healthy mice and those with induced DCM by a cardiac-specific invalidation of serum response factor (SRF). Seven and fourteen days after implantation, the safety of the scaffold was demonstrated by echocardiography and histological assessments. The subsequent step of implantation of the scaffolds seeded with hiPS-CM in DCM induced mice, using cell-free scaffolds as controls, revealed that after fourteen days heart function decreased in controls while it remained stable in the treated mice. This pattern was associated with an increased number of endothelial cells, in line with the greater vascularity of the scaffold. Moreover, a lesser degree of fibrosis consistent with the upregulation of several genes involved in extracellular matrix remodeling was observed. These results support the interest of the proposed hiPS-CM seeded electrospun scaffold for the stabilization of the DCM outcome with potential for its clinical use in the future. PMID:26708641

  10. CD24 tracks divergent pluripotent states in mouse and human cells

    PubMed Central

    Shakiba, Nika; White, Carl A.; Lipsitz, Yonatan Y.; Yachie-Kinoshita, Ayako; Tonge, Peter D; Hussein, Samer M. I.; Puri, Mira C.; Elbaz, Judith; Morrissey-Scoot, James; Li, Mira; Munoz, Javier; Benevento, Marco; Rogers, Ian M.; Hanna, Jacob H.; Heck, Albert J. R.; Wollscheid, Bernd; Nagy, Andras; Zandstra, Peter W

    2015-01-01

    Reprogramming is a dynamic process that can result in multiple pluripotent cell types emerging from divergent paths. Cell surface protein expression is a particularly desirable tool to categorize reprogramming and pluripotency as it enables robust quantification and enrichment of live cells. Here we use cell surface proteomics to interrogate mouse cell reprogramming dynamics and discover CD24 as a marker that tracks the emergence of reprogramming-responsive cells, while enabling the analysis and enrichment of transgene-dependent (F-class) and -independent (traditional) induced pluripotent stem cells (iPSCs) at later stages. Furthermore, CD24 can be used to delineate epiblast stem cells (EpiSCs) from embryonic stem cells (ESCs) in mouse pluripotent culture. Importantly, regulated CD24 expression is conserved in human pluripotent stem cells (PSCs), tracking the conversion of human ESCs to more naive-like PSC states. Thus, CD24 is a conserved marker for tracking divergent states in both reprogramming and standard pluripotent culture. PMID:26076835

  11. Complex Selection on Human Polyadenylation Signals Revealed by Polymorphism and Divergence Data.

    PubMed

    Kainov, Yaroslav A; Aushev, Vasily N; Naumenko, Sergey A; Tchevkina, Elena M; Bazykin, Georgii A

    2016-01-01

    Polyadenylation is a step of mRNA processing which is crucial for its expression and stability. The major polyadenylation signal (PAS) represents a nucleotide hexamer that adheres to the AATAAA consensus sequence. Over a half of human genes have multiple cleavage and polyadenylation sites, resulting in a great diversity of transcripts differing in function, stability, and translational activity. Here, we use available whole-genome human polymorphism data together with data on interspecies divergence to study the patterns of selection acting on PAS hexamers. Common variants of PAS hexamers are depleted of single nucleotide polymorphisms (SNPs), and SNPs within PAS hexamers have a reduced derived allele frequency (DAF) and increased conservation, indicating prevalent negative selection; at the same time, the SNPs that "improve" the PAS (i.e., those leading to higher cleavage efficiency) have increased DAF, compared to those that "impair" it. SNPs are rarer at PAS of "unique" polyadenylation sites (one site per gene); among alternative polyadenylation sites, at the distal PAS and at exonic PAS. Similar trends were observed in DAFs and divergence between species of placental mammals. Thus, selection permits PAS mutations mainly at redundant and/or weakly functional PAS. Nevertheless, a fraction of the SNPs at PAS hexamers likely affect gene functions; in particular, some of the observed SNPs are associated with disease. PMID:27324920

  12. Complex Selection on Human Polyadenylation Signals Revealed by Polymorphism and Divergence Data

    PubMed Central

    Kainov, Yaroslav A.; Aushev, Vasily N.; Naumenko, Sergey A.; Tchevkina, Elena M.; Bazykin, Georgii A.

    2016-01-01

    Polyadenylation is a step of mRNA processing which is crucial for its expression and stability. The major polyadenylation signal (PAS) represents a nucleotide hexamer that adheres to the AATAAA consensus sequence. Over a half of human genes have multiple cleavage and polyadenylation sites, resulting in a great diversity of transcripts differing in function, stability, and translational activity. Here, we use available whole-genome human polymorphism data together with data on interspecies divergence to study the patterns of selection acting on PAS hexamers. Common variants of PAS hexamers are depleted of single nucleotide polymorphisms (SNPs), and SNPs within PAS hexamers have a reduced derived allele frequency (DAF) and increased conservation, indicating prevalent negative selection; at the same time, the SNPs that “improve” the PAS (i.e., those leading to higher cleavage efficiency) have increased DAF, compared to those that “impair” it. SNPs are rarer at PAS of “unique” polyadenylation sites (one site per gene); among alternative polyadenylation sites, at the distal PAS and at exonic PAS. Similar trends were observed in DAFs and divergence between species of placental mammals. Thus, selection permits PAS mutations mainly at redundant and/or weakly functional PAS. Nevertheless, a fraction of the SNPs at PAS hexamers likely affect gene functions; in particular, some of the observed SNPs are associated with disease. PMID:27324920

  13. CD24 tracks divergent pluripotent states in mouse and human cells.

    PubMed

    Shakiba, Nika; White, Carl A; Lipsitz, Yonatan Y; Yachie-Kinoshita, Ayako; Tonge, Peter D; Hussein, Samer M I; Puri, Mira C; Elbaz, Judith; Morrissey-Scoot, James; Li, Mira; Munoz, Javier; Benevento, Marco; Rogers, Ian M; Hanna, Jacob H; Heck, Albert J R; Wollscheid, Bernd; Nagy, Andras; Zandstra, Peter W

    2015-01-01

    Reprogramming is a dynamic process that can result in multiple pluripotent cell types emerging from divergent paths. Cell surface protein expression is a particularly desirable tool to categorize reprogramming and pluripotency as it enables robust quantification and enrichment of live cells. Here we use cell surface proteomics to interrogate mouse cell reprogramming dynamics and discover CD24 as a marker that tracks the emergence of reprogramming-responsive cells, while enabling the analysis and enrichment of transgene-dependent (F-class) and -independent (traditional) induced pluripotent stem cells (iPSCs) at later stages. Furthermore, CD24 can be used to delineate epiblast stem cells (EpiSCs) from embryonic stem cells (ESCs) in mouse pluripotent culture. Importantly, regulated CD24 expression is conserved in human pluripotent stem cells (PSCs), tracking the conversion of human ESCs to more naive-like PSC states. Thus, CD24 is a conserved marker for tracking divergent states in both reprogramming and standard pluripotent culture. PMID:26076835

  14. Sequence divergence and chromosomal rearrangements during the evolution of human pseudoautosomal genes and their mouse homologs

    SciTech Connect

    Ellison, J.; Li, X.; Francke, U.

    1994-09-01

    The pseudoautosomal region (PAR) is an area of sequence identity between the X and Y chromosomes and is important for mediating X-Y pairing during male meiosis. Of the seven genes assigned to the human PAR, none of the mouse homologs have been isolated by a cross-hybridization strategy. Two of these homologs, Csfgmra and II3ra, have been isolated using a functional assay for the gene products. These genes are quite different in sequence from their human homologs, showing only 60-70% sequence similarity. The Csfgmra gene has been found to further differ from its human homolog in being isolated not on the sex chromosomes, but on a mouse autosome (chromosome 19). Using a mouse-hamster somatic cell hybrid mapping panel, we have mapped the II3ra gene to yet another mouse autosome, chromosome 14. Attempts to clone the mouse homolog of the ANT3 locus resulted in the isolation of two related genes, Ant1 and Ant2, but failed to yield the Ant3 gene. Southern blot analysis of the ANT/Ant genes showed the Ant1 and Ant2 sequences to be well-conserved among all of a dozen mammals tested. In contrast, the ANT3 gene only showed hybridization to non-rodent mammals, suggesting it is either greatly divergent or has been deleted in the rodent lineage. Similar experiments with other human pseudoautosomal probes likewise showed a lack of hybridization to rodent sequences. The results show a definite trend of extensive divergence of pseudoautosomal sequences in addition to chromosomal rearrangements involving X;autosome translocations and perhaps gene deletions. Such observations have interesting implications regarding the evolution of this important region of the sex chromosomes.

  15. Human relaxin gene expression delivered by bioreducible dendrimer polymer for post-infarct cardiac remodeling in rats.

    PubMed

    Lee, Young Sook; Choi, Joung-Woo; Oh, Jung-Eun; Yun, Chae-Ok; Kim, Sung Wan

    2016-08-01

    In consensus, myocardial infarction (MI) is defined as irreversible cell death secondary to prolonged ischemia in heart. The aim of our study was to evaluate the therapeutic potential of anti-fibrotic human Relaxin-expressing plasmid DNA with hypoxia response element (HRE) 12 copies (HR1) delivered by a dendrimer type PAM-ABP polymer G0 (HR1/G0) after MI on functional, hemodynamic, geometric, and cardiac extracellular matrix (ECM) remodeling in rats. HR1/G0 demonstrated significantly improved LV systolic function, hemodynamic parameters, and geometry on 1 wk and 4 wks after MI in rats, compared with I/R group. The resolution of regional wall motional abnormalities and the increased blood flow of infarct-related coronary artery supported functional improvements of HR1/G0. Furthermore, HR1/G0 polyplex showed favorable post-infarct cardiac ECM remodeling reflected on the favorable cardiac ECM compositions. Overall, this is the first study, which presented an advanced platform for the gene therapy that reverses adverse cardiac remodeling after MI with a HR1 gene delivered by a bioreducible dendrimer polymer in the cardiac ECM. PMID:27174688

  16. Deep genetic structure and ecological divergence in a widespread human commensal toad.

    PubMed

    Wogan, Guinevere O U; Stuart, Bryan L; Iskandar, Djoko T; McGuire, Jimmy A

    2016-01-01

    The Asian common toad (Duttaphrynus melanostictus) is a human commensal species that occupies a wide variety of habitats across tropical Southeast Asia. We test the hypothesis that genetic variation in D. melanostictus is weakly associated with geography owing to natural and human-mediated dispersal facilitated by its commensal nature. Phylogenetic and population genetic analyses of mitochondrial and nuclear DNA sequence variation, and predictive species distribution modelling, unexpectedly recovered three distinct evolutionary lineages that differ genetically and ecologically, corresponding to the Asian mainland, coastal Myanmar and the Sundaic islands. The persistence of these three divergent lineages, despite ample opportunities for recent human-mediated and geological dispersal, suggests that D. melanostictus actually consists of multiple species, each having narrower geographical ranges and ecological niches, and higher conservation value, than is currently recognized. These findings also have implications for the invasion potential of this human commensal elsewhere, such as in its recently introduced ranges on the islands of Borneo, Sulawesi, Seram and Madagascar. PMID:26763213

  17. Enhancer Turnover Is Associated with a Divergent Transcriptional Response to Glucocorticoid in Mouse and Human Macrophages.

    PubMed

    Jubb, Alasdair W; Young, Robert S; Hume, David A; Bickmore, Wendy A

    2016-01-15

    Phenotypic differences between individuals and species are controlled in part through differences in expression of a relatively conserved set of genes. Genes expressed in the immune system are subject to especially powerful selection. We have investigated the evolution of both gene expression and candidate enhancers in human and mouse macrophages exposed to glucocorticoid (GC), a regulator of innate immunity and an important therapeutic agent. Our analyses revealed a very limited overlap in the repertoire of genes responsive to GC in human and mouse macrophages. Peaks of inducible binding of the GC receptor (GR) detected by chromatin immunoprecipitation-Seq correlated with induction, but not repression, of target genes in both species, occurred at distal regulatory sites not promoters, and were strongly enriched for the consensus GR-binding motif. Turnover of GR binding between mice and humans was associated with gain and loss of the motif. There was no detectable signal of positive selection at species-specific GR binding sites, but clear evidence of purifying selection at the small number of conserved sites. We conclude that enhancer divergence underlies the difference in transcriptional activation after GC treatment between mouse and human macrophages. Only the shared inducible loci show evidence of selection, and therefore these loci may be important for the subset of responses to GC that is shared between species. PMID:26663721

  18. Human xylosyltransferases – mediators of arthrofibrosis? New pathomechanistic insights into arthrofibrotic remodeling after knee replacement therapy

    PubMed Central

    Faust, Isabel; Traut, Philipp; Nolting, Frank; Petschallies, Jan; Neumann, Elena; Kunisch, Elke; Kuhn, Joachim; Knabbe, Cornelius; Hendig, Doris

    2015-01-01

    Total knee replacement (TKR) is a common therapeutic option to restore joint functionality in chronic inflammatory joint diseases. Subsequent arthrofibrotic remodeling occurs in 10%, but the underlying pathomechanisms remain unclear. We evaluated the association of xylosyltransferases (XT), fibrotic mediators catalyzing glycosaminoglycan biosynthesis, leading to arthrofibrosis as well as the feasibility of using serum XT activity as a diagnostic marker. For this purpose, synovial fibroblasts (SF) were isolated from arthrofibrotic and control synovial biopsies. Basal α-smooth muscle actin expression revealed a high fibroblast-myofibroblast transition rate in arthrofibrotic fibroblasts. Fibrotic remodeling marked by enhanced XT activity, α-SMA protein expression as well as xylosyltransferase-I, collagen type III-alpha-1 and ACTA2 mRNA expression was stronger in arthrofibrotic than in control fibroblasts treated with transforming growth factor-β1 (TGF-β1). Otherwise, no differences between serum levels of XT-I activity or common fibrosis markers (galectin-3 and growth differentiation factor-15 levels (GDF-15)) were found between 95 patients with arthrofibrosis and 132 controls after TKR. In summary, XT-I was initially investigated as a key cellular mediator of arthrofibrosis and a target for therapeutic intervention. However, the blood-synovial-barrier makes arthrofibrotic molecular changes undetectable in serum. Future studies on monitoring or preventing arthrofibrotic remodeling should therefore rely on local instead of systemic parameters. PMID:26219087

  19. Strong Selective Sweeps on the X Chromosome in the Human-Chimpanzee Ancestor Explain Its Low Divergence.

    PubMed

    Dutheil, Julien Y; Munch, Kasper; Nam, Kiwoong; Mailund, Thomas; Schierup, Mikkel H

    2015-08-01

    The human and chimpanzee X chromosomes are less divergent than expected based on autosomal divergence. We study incomplete lineage sorting patterns between humans, chimpanzees and gorillas to show that this low divergence can be entirely explained by megabase-sized regions comprising one-third of the X chromosome, where polymorphism in the human-chimpanzee ancestral species was severely reduced. We show that background selection can explain at most 10% of this reduction of diversity in the ancestor. Instead, we show that several strong selective sweeps in the ancestral species can explain it. We also report evidence of population specific sweeps in extant humans that overlap the regions of low diversity in the ancestral species. These regions further correspond to chromosomal sections shown to be devoid of Neanderthal introgression into modern humans. This suggests that the same X-linked regions that undergo selective sweeps are among the first to form reproductive barriers between diverging species. We hypothesize that meiotic drive is the underlying mechanism causing these two observations. PMID:26274919

  20. Strong Selective Sweeps on the X Chromosome in the Human-Chimpanzee Ancestor Explain Its Low Divergence

    PubMed Central

    Dutheil, Julien Y.; Munch, Kasper; Nam, Kiwoong; Mailund, Thomas; Schierup, Mikkel H.

    2015-01-01

    The human and chimpanzee X chromosomes are less divergent than expected based on autosomal divergence. We study incomplete lineage sorting patterns between humans, chimpanzees and gorillas to show that this low divergence can be entirely explained by megabase-sized regions comprising one-third of the X chromosome, where polymorphism in the human-chimpanzee ancestral species was severely reduced. We show that background selection can explain at most 10% of this reduction of diversity in the ancestor. Instead, we show that several strong selective sweeps in the ancestral species can explain it. We also report evidence of population specific sweeps in extant humans that overlap the regions of low diversity in the ancestral species. These regions further correspond to chromosomal sections shown to be devoid of Neanderthal introgression into modern humans. This suggests that the same X-linked regions that undergo selective sweeps are among the first to form reproductive barriers between diverging species. We hypothesize that meiotic drive is the underlying mechanism causing these two observations. PMID:26274919

  1. Common and divergent psychobiological mechanisms underlying maternal behaviors in non-human and human mammals.

    PubMed

    Lonstein, Joseph S; Lévy, Frédéric; Fleming, Alison S

    2015-07-01

    Maternal interactions with young occupy most of the reproductive period for female mammals and are absolutely essential for offspring survival and development. The hormonal, sensory, reward-related, emotional, cognitive and neurobiological regulators of maternal caregiving behaviors have been well studied in numerous subprimate mammalian species, and some of the importance of this body of work is thought to be its relevance for understanding similar controls in humans. We here review many of the important biopsychological influences on maternal behaviors in the two best studied non-human animals, laboratory rats and sheep, and directly examine how the conceptual framework established by some of the major discoveries in these animal "models" do or do not hold for our understanding of human mothering. We also explore some of the limits for extrapolating from non-human animals to humans. We conclude that there are many similarities between non-human and human mothers in the biological and psychological factors influencing their early maternal behavior and that many of the differences are due to species-characteristic features related to the role of hormones, the relative importance of each sensory system, flexibility in what behaviors are exhibited, the presence or absence of language, and the complexity of cortical function influencing caregiving behaviors. PMID:26122301

  2. Common and divergent psychobiological mechanisms underlying maternal behaviors in non-human and human mammals

    PubMed Central

    Lonstein, Joseph S.; Lévy, Frédéric; Fleming, Alison S.

    2015-01-01

    Maternal interactions with young occupy most of the reproductive period for female mammals and are absolutely essential for offspring survival and development. The hormonal, sensory, reward-related, emotional, cognitive and neurobiological regulators of maternal caregiving behaviors have been well studied in numerous subprimate mammalian species, and some of the importance of this body of work is thought to be its relevance for understanding similar controls in humans. We here review many of the important biopsychological influences on maternal behaviors in the two best studied non-human animals, laboratory rats and sheep, and directly examine how the conceptual framework established by some of the major discoveries in these animal “models” do or do not hold for our understanding of human mothering. We also explore some of the limits for extrapolating from non-human animals to humans. We conclude that there are many similarities between non-human and human mothers in the biological and psychological factors influencing their early maternal behavior and that many of the differences are due to species-characteristic features related to the role of hormones, the relative importance of each sensory system, flexibility in what behaviors are exhibited, the presence or absence of language, and the complexity of cortical function influencing the behavior. PMID:26122301

  3. Divergences of Two Coupled Human and Natural Systems on the Mongolian Plateau

    NASA Astrophysics Data System (ADS)

    Chen, J.

    2014-12-01

    Central to the concept of coupled natural and human (CNH) systems is that humans and nature are organized in interacting sub-systems that make a cohesive whole at multiple spatial and temporal scales. Following an overview of the challenges in implementing the CNH concept at the regional level, we used widely available measures of states in the social, economic, and ecological systems, including gross domestic product, population size, net primary productivity, and livestock and their ratios, to examine the CNH dynamics on the Mongolian Plateau during 1981-2010. Our cross-border analysis of the coupled dynamics over the past three decades demonstrated striking contrasts between Inner Mongolia (IM) and Mongolia (MG), with policies playing shifting roles on the above measures. For prioritizing future research on the CNH concept, we propose the hypothesis that while the divergence of IM and MG for 1981-2010 was largely driven by market economic reforms, the importance of socioeconomic forces relative to climate changes will gradually decrease in IM while they remain important in MG.

  4. Sequence divergence of the red and green visual pigments in great apes and humans.

    PubMed Central

    Deeb, S S; Jorgensen, A L; Battisti, L; Iwasaki, L; Motulsky, A G

    1994-01-01

    We have determined the coding sequences of red and green visual pigment genes of the chimpanzee, gorilla, and orangutan. The deduced amino acid sequences of these pigments are highly homologous to the equivalent human pigments. None of the amino acid differences occurred at sites that were previously shown to influence pigment absorption characteristics. Therefore, we predict the spectra of red and green pigments of the apes to have wavelengths of maximum absorption that differ by < 2 nm from the equivalent human pigments and that color vision in these nonhuman primates will be very similar, if not identical, to that in humans. A total of 14 within-species polymorphisms (6 involving silent substitutions) were observed in the coding sequences of the red and green pigment genes of the great apes. Remarkably, the polymorphisms at 6 of these sites had been observed in human populations, suggesting that they predated the evolution of higher primates. Alleles at polymorphic sites were often shared between the red and green pigment genes. The average synonymous rate of divergence of red from green sequences was approximately 1/10th that estimated for other proteins of higher primates, indicating the involvement of gene conversion in generating these polymorphisms. The high degree of homology and juxtaposition of these two genes on the X chromosome has promoted unequal recombination and/or gene conversion that led to sequence homogenization. However, natural selection operated to maintain the degree of separation in peak absorbance between the red and green pigments that resulted in optimal chromatic discrimination. This represents a unique case of molecular coevolution between two homologous genes that functionally interact at the behavioral level. PMID:8041777

  5. IFPA Gabor Than Award lecture: Transformation of the spiral arteries in human pregnancy: key events in the remodelling timeline.

    PubMed

    Harris, L K

    2011-03-01

    During human pregnancy, the uterine spiral arteries are progressively remodelled to form dilated conduits lacking maternal vasomotor control. This phenomenon ensures that a constant supply of blood is delivered to the materno-fetal interface at an optimal velocity for nutrient exchange. Conversion of a tonic maternal arteriole composed of multiple layers of vascular smooth muscle, elastin and numerous other extracellular matrix components, into a highly dilated yet durable vessel, requires tight regulatory control and the coordinated actions of multiple cell types. Initial disruption of the vascular wall, characterised by foci of endothelial cell loss, and separation and misalignment of vascular smooth muscle cells (VSMC), is coincident with an influx of uterine natural killer (uNK) cells and macrophages. uNK cells are a source of angiogenic growth factors and matrix degrading proteases, thus they possess the capacity to initiate changes in VSMC phenotype and instigate extracellular matrix catabolism. However, complete vascular cell loss, mediated in part by apoptosis and dedifferentiation, is only achieved following colonisation of the arteries by extravillous trophoblast (EVT). EVT produce a variety of chemokines, cytokines and matrix degrading proteases, enabling them to influence the fate of other cells within the placental bed and complete the remodelling process. The complex interplay of cell-cell and cell-matrix interactions required for effective vascular transformation will be examined, with a particular focus on the role of (i) uNK cells and (ii) the enzyme matrix metalloproteinase-12 (MMP-12). Parallels with remodelling events occurring in other vascular beds will also be drawn. PMID:21167598

  6. Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats

    PubMed Central

    Fernandes, S; Naumova, AV; Zhu, WZ; Laflamme, MA; Gold, J; Murry, CE

    2010-01-01

    Background Previous studies indicated that, in an acute myocardial infarction model, human embryonic stem cell-derived cardiomyocytes (hESC-CM) injected with a pro-survival cocktail (PSC) can preserve contractile function. Because patients with established heart failure may also benefit from cell transplantation, we evaluated the physiological effects of hESC-CM transplanted into a chronic model of myocardial infarction. Methods and Results Intramyocardial injection of hESC-CM with PSC was performed in nude rats at 1 month following ischemia-reperfusion. The left ventricular function of hESC-CM injected rats was evaluated at 1, 2 and 3 months after the cell injection procedure and was compared to 3 control groups (rats injected with serum-free media, PSC-only, or non-cardiac human cells in PSC). Histology at 3 months revealed that human cardiomyocytes survive, develop increased sarcomere organization and are still proliferating. Despite successful engraftment, both echocardiography and MRI analyses showed no significant difference in left ventricular structure or function between these 4 groups at any time point of the study, suggesting that human cardiomyocytes do not affect cardiac remodeling in a rat model of chronic myocardial infarction. Conclusion When injected into a chronic infarct model, hESC-CM can engraft, survive and form grafts with striated cardiomyocytes at least as well as was previously observed in an acute myocardial infarction model. However, although hESC-CM transplantation can attenuate the progression of heart failure in an acute model, the same hESC-CM injection protocol is insufficient to restore heart function or to alter adverse remodeling of a chronic myocardial infarction model. PMID:20854826

  7. Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling.

    PubMed

    Chistiakov, Dmitry A; Sobenin, Igor A; Orekhov, Alexander N; Bobryshev, Yuri V

    2015-01-01

    A cluster of miR-221/222 is a key player in vascular biology through exhibiting its effects on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). These miRNAs contribute to vascular remodeling, an adaptive process involving phenotypic and behavioral changes in vascular cells in response to vascular injury. In proliferative vascular diseases such as atherosclerosis, pathological vascular remodeling plays a prominent role. The miR-221/222 cluster controls development and differentiation of ECs but inhibits their proangiogenic activation, proliferation, and migration. miR-221/222 are primarily implicated in maintaining endothelial integrity and supporting quiescent EC phenotype. Vascular expression of miR-221/222 is upregulated in initial atherogenic stages causing inhibition of angiogenic recruitment of ECs and increasing endothelial dysfunction and EC apoptosis. In contrast, these miRNAs stimulate VSMCs and switching from the VSMC "contractile" phenotype to the "synthetic" phenotype associated with induction of proliferation and motility. In atherosclerotic vessels, miR-221/222 drive neointima formation. Both miRNAs contribute to atherogenic calcification of VSMCs. In advanced plaques, chronic inflammation downregulates miR-221/222 expression in ECs that in turn could activate intralesion neoangiogenesis. In addition, both miRNAs could contribute to cardiovascular pathology through their effects on fat and glucose metabolism in nonvascular tissues such as adipose tissue, liver, and skeletal muscles. PMID:26221589

  8. Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling

    PubMed Central

    Chistiakov, Dmitry A.; Sobenin, Igor A.; Orekhov, Alexander N.; Bobryshev, Yuri V.

    2015-01-01

    A cluster of miR-221/222 is a key player in vascular biology through exhibiting its effects on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). These miRNAs contribute to vascular remodeling, an adaptive process involving phenotypic and behavioral changes in vascular cells in response to vascular injury. In proliferative vascular diseases such as atherosclerosis, pathological vascular remodeling plays a prominent role. The miR-221/222 cluster controls development and differentiation of ECs but inhibits their proangiogenic activation, proliferation, and migration. miR-221/222 are primarily implicated in maintaining endothelial integrity and supporting quiescent EC phenotype. Vascular expression of miR-221/222 is upregulated in initial atherogenic stages causing inhibition of angiogenic recruitment of ECs and increasing endothelial dysfunction and EC apoptosis. In contrast, these miRNAs stimulate VSMCs and switching from the VSMC “contractile” phenotype to the “synthetic” phenotype associated with induction of proliferation and motility. In atherosclerotic vessels, miR-221/222 drive neointima formation. Both miRNAs contribute to atherogenic calcification of VSMCs. In advanced plaques, chronic inflammation downregulates miR-221/222 expression in ECs that in turn could activate intralesion neoangiogenesis. In addition, both miRNAs could contribute to cardiovascular pathology through their effects on fat and glucose metabolism in nonvascular tissues such as adipose tissue, liver, and skeletal muscles. PMID:26221589

  9. Evolutionary Divergence of Gene and Protein Expression in the Brains of Humans and Chimpanzees

    PubMed Central

    Bauernfeind, Amy L.; Soderblom, Erik J.; Turner, Meredith E.; Moseley, M. Arthur; Ely, John J.; Hof, Patrick R.; Sherwood, Chet C.; Wray, Gregory A.; Babbitt, Courtney C.

    2015-01-01

    Although transcriptomic profiling has become the standard approach for exploring molecular differences in the primate brain, very little is known about how the expression levels of gene transcripts relate to downstream protein abundance. Moreover, it is unknown whether the relationship changes depending on the brain region or species under investigation. We performed high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses on two regions of the human and chimpanzee brain: The anterior cingulate cortex and caudate nucleus. In both brain regions, we found a lower correlation between mRNA and protein expression levels in humans and chimpanzees than has been reported for other tissues and cell types, suggesting that the brain may engage extensive tissue-specific regulation affecting protein abundance. In both species, only a few categories of biological function exhibited strong correlations between mRNA and protein expression levels. These categories included oxidative metabolism and protein synthesis and modification, indicating that the expression levels of mRNA transcripts supporting these biological functions are more predictive of protein expression compared with other functional categories. More generally, however, the two measures of molecular expression provided strikingly divergent perspectives into differential expression between human and chimpanzee brains: mRNA comparisons revealed significant differences in neuronal communication, ion transport, and regulatory processes, whereas protein comparisons indicated differences in perception and cognition, metabolic processes, and organization of the cytoskeleton. Our results highlight the importance of examining protein expression in evolutionary analyses and call for a more thorough understanding of tissue-specific protein expression levels. PMID:26163674

  10. Human Mesenchymal Stem Cell Delivery System Modulates Ischemic Cardiac Remodeling With an Increase of Coronary Artery Blood Flow.

    PubMed

    Lee, Young Sook; Joo, Wan Seok; Kim, Hyun Soo; Kim, Sung Wan

    2016-04-01

    Ways for extending the longevity of stem cells are imperative to attain diverse expected therapeutic effects. Here, we constructed a three-dimentional (3D) scaffold system for human mesenchymal stem cell (hMSC) delivery. Intramyocardial injections of porous PEI1.8k blended with poly(lactic-co-glycolic acid) (PLGA) (PLGA/PEI1.8k) (PPP) microparticles by physical electrostatic conjugation and structural entrapment of hMSCs demonstrated enhanced functional and geometric improvements on post-infarct cardiac remodeling in rats. In the hMSC-loaded PPP delivery, increases of coronary artery blood flow rate and in vivo engraftment rate as well as time-dependent functional, geometric, and pathologic findings reversing post-infarct cardiac remodeling account for improved left ventricular (LV) systolic function up to the level of sham thoracotomy group. This study expands our understanding by proving that increase of coronary artery blood flow augmented functional recovery of hMSC-loaded PPP delivery system after myocardial infarction (MI). PMID:26782638

  11. High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling.

    PubMed

    Santiago, Jon-Jon; McNaughton, Leslie J; Koleini, Navid; Ma, Xin; Bestvater, Brian; Nickel, Barbara E; Fandrich, Robert R; Wigle, Jeffrey T; Freed, Darren H; Arora, Rakesh C; Kardami, Elissavet

    2014-01-01

    Fibroblast growth factor 2 (FGF-2) is a multifunctional protein synthesized as high (Hi-) and low (Lo-) molecular weight isoforms. Studies using rodent models showed that Hi- and Lo-FGF-2 exert distinct biological activities: after myocardial infarction, rat Lo-FGF-2, but not Hi-FGF-2, promoted sustained cardioprotection and angiogenesis, while Hi-FGF-2, but not Lo-FGF-2, promoted myocardial hypertrophy and reduced contractile function. Because there is no information regarding Hi-FGF-2 in human myocardium, we undertook to investigate expression, regulation, secretion and potential tissue remodeling-associated activities of human cardiac (atrial) Hi-FGF-2. Human patient-derived atrial tissue extracts, as well as pericardial fluid, contained Hi-FGF-2 isoforms, comprising, respectively, 53%(±20 SD) and 68% (±25 SD) of total FGF-2, assessed by western blotting. Human atrial tissue-derived primary myofibroblasts (hMFs) expressed and secreted predominantly Hi-FGF-2, at about 80% of total. Angiotensin II (Ang II) up-regulated Hi-FGF-2 in hMFs, via activation of both type 1 and type 2 Ang II receptors; the ERK pathway; and matrix metalloprotease-2. Treatment of hMFs with neutralizing antibodies selective for human Hi-FGF-2 (neu-AbHi-FGF-2) reduced accumulation of proteins associated with fibroblast-to-myofibroblast conversion and fibrosis, including α-smooth muscle actin, extra-domain A fibronectin, and procollagen. Stimulation of hMFs with recombinant human Hi-FGF-2 was significantly more potent than Lo-FGF-2 in upregulating inflammation-associated proteins such as pro-interleukin-1β and plasminogen-activator-inhibitor-1. Culture media conditioned by hMFs promoted cardiomyocyte hypertrophy, an effect that was prevented by neu-AbHi-FGF-2 in vitro. In conclusion, we have documented that Hi-FGF-2 represents a substantial fraction of FGF-2 in human cardiac (atrial) tissue and in pericardial fluid, and have shown that human Hi-FGF-2, unlike Lo-FGF-2, promotes deleterious

  12. Auto-amplification of cortisol actions in human carotid atheroma is linked to arterial remodeling and stroke.

    PubMed

    Ayari, Hanène; Legedz, Liliana; Lantelme, Pierre; Feugier, Patrick; Randon, Jacques; Cerutti, Catherine; Lohez, Olivier; Scoazec, Jean-Yves; Li, Jacques Yuan; Gharbi-Chihi, Jouda; Bricca, Giampiero

    2014-02-01

    High cortisol and aldosterone levels increase cardiovascular risk, but the respective roles of each hormone within the arterial wall remain controversial. We tested the hypothesis that cortisol production within the arterial wall may contribute to atherosclerotic remodeling and act through illicit activation of the mineralocorticoid receptor (MR). Gene expression studies of the corticoid system components and marker genes of the atherosclerotic process in human carotid atheroma plaque and nearby macroscopically intact tissue (MIT) were considered together with clinical data and compared with pharmacological stimulations of human vascular smooth muscle cells (VSMCs) in contractile or lipid-storing phenotypes. The components of corticoid production and action were present and active within the human carotid wall and VSMCs. Atheroma plaque and lipid-storing VSMCs expressed 11β-hydroxysteroid deshydrogenase-1 (11β-HSD1) at two- to tenfold higher levels than MIT or contractile VSMCs. The 11β-HSD1 expression was stimulated by cortisol and cortisone, especially in lipid-storing VSMCs. MR mRNA level was lower in atheroma and lipid-storing VSMCs and downregulated via MR by fludrocortisone and cortisol. Cortisol upregulated collagen1 and MCP-1 mRNAs via the glucocorticoid receptor (GRα), in both VSMC phenotypes, whereas fludrocortisone stimulated the collagen1 expression only in lipid-storing VSMCs. The GRα mRNA level in MIT was higher in patients with previous stroke and correlated positively with the collagen1 mRNA but negatively with diastolic blood pressure. Local cortisol production by 11β-HSD1, and its action via high parietal GRα could be relevant from the first step of atherosclerotic remodeling and auto-amplify with transdifferentiation of VSMCs during atheroma progression. PMID:23025717

  13. For Application to Human Spaceflight and ISS Experiments: VESGEN Mapping of Microvascular Network Remodeling during Intestinal Inflammation.

    PubMed

    Parsons-Wingerter, Patricia; Reinecker, Hans-Christian

    2012-10-01

    Challenges to long-duration space exploration and colonization in microgravity and cosmic radiation environments by humans include poorly understood risks for gastrointestinal function and cancer. Nonetheless, constant remodeling of the intestinal microvasculature is critical for tissue viability, healthy wound healing, and successful prevention or recovery from vascular-mediated inflammatory or ischemic diseases such as cancer. Currently no automated image analysis programs provide quantitative assessments of the complex structure of the mucosal vascular system that are necessary for tracking disease development and tissue recovery. Increasing abnormalities to the microvascular network geometry were therefore mapped with VESsel GENeration Analysis (VESGEN) software from 3D tissue reconstructions of developing intestinal inflammation in a dextran sulfate sodium (DSS) mouse model. By several VESGEN parameters and a novel vascular network linking analysis, inflammation strongly disrupted the regular, lattice-like geometry that defines the normal microvascular network, correlating positively with the increased recruitment of dendritic cells during mucosal defense responses. PMID:25143705

  14. A Human Monoclonal Antibody with Neutralizing Activity against Highly Divergent Influenza Subtypes

    PubMed Central

    Solforosi, Laura; Moreno, Guisella J.; Gubareva, Larisa V.; Mishin, Vasiliy; Di Pietro, Andrea; Vicenzi, Elisa; Siccardi, Antonio G.; Clementi, Massimo; Burioni, Roberto

    2011-01-01

    The interest in broad-range anti-influenza A monoclonal antibodies (mAbs) has recently been strengthened by the identification of anti-hemagglutinin (HA) mAbs endowed with heterosubtypic neutralizing activity to be used in the design of “universal” prophylactic or therapeutic tools. However, the majority of the single mAbs described to date do not bind and neutralize viral isolates belonging to highly divergent subtypes clustering into the two different HA-based influenza phylogenetic groups: the group 1 including, among others, subtypes H1, H2, H5 and H9 and the group 2 including, among others, H3 subtype. Here, we describe a human mAb, named PN-SIA28, capable of binding and neutralizing all tested isolates belonging to phylogenetic group 1, including H1N1, H2N2, H5N1 and H9N2 subtypes and several isolates belonging to group 2, including H3N2 isolates from the first period of the 1968 pandemic. Therefore, PN-SIA28 is capable of neutralizing isolates belonging to subtypes responsible of all the reported pandemics, as well as other subtypes with pandemic potential. The region recognized by PN-SIA28 has been identified on the stem region of HA and includes residues highly conserved among the different influenza subtypes. A deep characterization of PN-SIA28 features may represent a useful help in the improvement of available anti-influenza therapeutic strategies and can provide new tools for the development of universal vaccinal strategies. PMID:22162996

  15. Uterine Spiral Artery Remodeling: The Role of Uterine Natural Killer Cells and Extravillous Trophoblasts in Normal and High-Risk Human Pregnancies.

    PubMed

    Tessier, Daniel R; Yockell-Lelièvre, Julien; Gruslin, Andrée

    2015-07-01

    The process of uterine spiral artery remodeling in the first trimester of human pregnancy is an essential part of establishing adequate blood perfusion of the placenta that will allow optimal nutrient/waste exchange to meet fetal demands during later development. Key regulators of spiral artery remodeling are the uterine natural killer cells and the invasive extravillous trophoblasts. The functions of these cells as well as regulation of their activation states and temporal regulation of their localization within the uterine tissue are beginning to be known. In this review, we discuss the roles of these two cell lineages in arterial remodeling events, their interaction/influence on one another and the outcomes of altered temporal, and spatial regulation of these cells in pregnancy complications. PMID:25472023

  16. Lipoprotein remodeling generates lipid-poor apolipoprotein A-I particles in human interstitial fluid

    PubMed Central

    Olszewski, Waldemar L.; Hattori, Hiroaki; Miller, Irina P.; Kujiraoka, Takeshi; Oka, Tomoichiro; Iwasaki, Tadao; Nanjee, M. Nazeem

    2013-01-01

    Although much is known about the remodeling of high density lipoproteins (HDLs) in blood, there is no information on that in interstitial fluid, where it might have a major impact on the transport of cholesterol from cells. We incubated plasma and afferent (prenodal) peripheral lymph from 10 healthy men at 37°C in vitro and followed the changes in HDL subclasses by nondenaturing two-dimensional crossed immunoelectrophoresis and size-exclusion chromatography. In plasma, there was always initially a net conversion of small pre-β-HDLs to cholesteryl ester (CE)-rich α-HDLs. By contrast, in lymph, there was only net production of pre-β-HDLs from α-HDLs. Endogenous cholesterol esterification rate, cholesteryl ester transfer protein (CETP) concentration, CE transfer activity, phospholipid transfer protein (PLTP) concentration, and phospholipid transfer activity in lymph averaged 5.0, 10.4, 8.2, 25.0, and 82.0% of those in plasma, respectively (all P < 0.02). Lymph PLTP concentration, but not phospholipid transfer activity, was positively correlated with that in plasma (r = +0.63, P = 0.05). Mean PLTP-specific activity was 3.5-fold greater in lymph, reflecting a greater proportion of the high-activity form of PLTP. These findings suggest that cholesterol esterification rate and PLTP specific activity are differentially regulated in the two matrices in accordance with the requirements of reverse cholesterol transport, generating lipid-poor pre-β-HDLs in the extracellular matrix for cholesterol uptake from neighboring cells and converting pre-β-HDLs to α-HDLs in plasma for the delivery of cell-derived CEs to the liver. PMID:23233540

  17. Unconventional Human T Cells Accumulate at the Site of Infection in Response to Microbial Ligands and Induce Local Tissue Remodeling

    PubMed Central

    Liuzzi, Anna Rita; Kift-Morgan, Ann; Lopez-Anton, Melisa; Friberg, Ida M.; Zhang, Jingjing; Brook, Amy C.; Roberts, Gareth W.; Donovan, Kieron L.; Colmont, Chantal S.; Toleman, Mark A.; Bowen, Timothy; Johnson, David W.; Topley, Nicholas; Moser, Bernhard; Fraser, Donald J.

    2016-01-01

    The antimicrobial responsiveness and function of unconventional human T cells are poorly understood, with only limited access to relevant specimens from sites of infection. Peritonitis is a common and serious complication in individuals with end-stage kidney disease receiving peritoneal dialysis. By analyzing local and systemic immune responses in peritoneal dialysis patients presenting with acute bacterial peritonitis and monitoring individuals before and during defined infectious episodes, our data show that Vγ9/Vδ2+ γδ T cells and mucosal-associated invariant T cells accumulate at the site of infection with organisms producing (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and vitamin B2, respectively. Such unconventional human T cells are major producers of IFN-γ and TNF-α in response to these ligands that are shared by many microbial pathogens and affect the cells lining the peritoneal cavity by triggering local inflammation and inducing tissue remodeling with consequences for peritoneal membrane integrity. Our data uncover a crucial role for Vγ9/Vδ2 T cells and mucosal-associated invariant T cells in bacterial infection and suggest that they represent a useful predictive marker for important clinical outcomes, which may inform future stratification and patient management. These findings are likely to be applicable to other acute infections where local activation of unconventional T cells contributes to the antimicrobial inflammatory response. PMID:27527598

  18. MiRNA-Mediated Regulation of the SWI/SNF Chromatin Remodeling Complex Controls Pluripotency and Endodermal Differentiation in Human ESCs.

    PubMed

    Wade, Staton L; Langer, Lee F; Ward, James M; Archer, Trevor K

    2015-10-01

    MicroRNAs and chromatin remodeling complexes represent powerful epigenetic mechanisms that regulate the pluripotent state. miR-302 is a strong inducer of pluripotency, which is characterized by a distinct chromatin architecture. This suggests that miR-302 regulates global chromatin structure; however, a direct relationship between miR-302 and chromatin remodelers has not been established. Here, we provide data to show that miR-302 regulates Brg1 chromatin remodeling complex composition in human embryonic stem cells (hESCs) through direct repression of the BAF53a and BAF170 subunits. With the subsequent overexpression of BAF170 in hESCs, we show that miR-302's inhibition of BAF170 protein levels can affect the expression of genes involved in cell proliferation. Furthermore, miR-302-mediated repression of BAF170 regulates pluripotency by positively influencing mesendodermal differentiation. Overexpression of BAF170 in hESCs led to biased differentiation toward the ectoderm lineage during EB formation and severely hindered directed definitive endoderm differentiation. Taken together, these data uncover a direct regulatory relationship between miR-302 and the Brg1 chromatin remodeling complex that controls gene expression and cell fate decisions in hESCs and suggests that similar mechanisms are at play during early human development. PMID:26119756

  19. An experimental investigation of velocity fields in divergent glottal models of the human vocal tract

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Plesniak, Michael W.

    2005-09-01

    In speech, sound production arises from fluid-structure interactions within the larynx as well as viscous flow phenomena that is most likely to occur during the divergent orientation of the vocal folds. Of particular interest are the flow mechanisms that influence the location of flow separation points on the vocal folds walls. Physiologically scaled pulsatile flow fields in 7.5 times real size static divergent glottal models were investigated. Three divergence angles were investigated using phase-averaged particle image velocimetry (PIV). The pulsatile glottal jet exhibited a bi-modal stability toward both glottal walls, although there was a significant amount of variance in the angle the jet deflected from the midline. The attachment of the Coanda effect to the glottal model walls occurred when the pulsatile velocity was a maximum, and the acceleration of the waveform was zero. The location of the separation and reattachment points of the flow from the glottal models was a function of the velocity waveform and divergence angle. Acoustic analogies show that a dipole sound source contribution arising from the fluid interaction (Coanda jet) with the vocal fold walls is expected. [Work funded by NIH Grant RO1 DC03577.

  20. Proliferative re-modeling of the spatial organization of human superficial chondrocytes distant to focal early osteoarthritis (OA)

    PubMed Central

    Rolauffs, Bernd; Williams, James M.; Aurich, Matthias; Grodzinsky, Alan J.; Kuettner, Klaus E.; Cole, Ada A.

    2010-01-01

    Objective Human superficial chondrocytes show distinct spatial organizations whereas they commonly aggregate near osteoarthritic (OA) fissures. It is not known whether remodeling or destruction of the spatial chondrocyte organization may occur distant to focal (early) OA lesions. Methods The intact cartilages (condyles, patellofemoral groove, proximal tibia) distant to focal OA lesions of human grade 2 joints were compared to location-matched non-degenerative (grade 0–1) cartilages. Chondrocyte nuclei were stained with propidium iodide and recorded by fluorescence-microscopy in a top-down view. Chondrocyte arrangements were tested for randomness or significant grouping via point pattern analyses (Clark and Evans Aggregation Index), and were correlated with OA grade and surface cell densities. Results In grade 2 cartilages, superficial chondrocytes were situated in horizontal patterns such as strings, cluster, pairs and singles comparable to non-degenerative cartilage. In the intact cartilages of grade 2 joints, the spatial organization included a novel pattern, consisting of chondrocytes that were aligned in two parallel lines building double strings. These double strings correlated with an increased number of chondrocytes per group (p<0.05), increased corresponding superficial zone cell density (p<0.001), and were observed in all grade 2 condyles (p<0.001), some grade 2 tibiae (p<0.05) but never in grade 0–1 cartilage (p<0.001). Conclusion The present study is the first to identify a distinct spatial re-organization of human superficial chondrocytes in response to distant early OA lesions and suggests that proliferation had occurred distant to focal early OA. This spatial re-organization may serve to recruit metabolically active units as attempt to repair focal damage. PMID:20112377

  1. Divergent evolution of part of the involucrin gene in the hominoids: Unique intragenic duplications in the gorilla and human

    SciTech Connect

    Teumer, J.; Green, H. )

    1989-02-01

    The gene for involucrin, an epidermal protein, has been remodeled in the higher primates. Most of the coding region of the human gene consists of a modern segment of repeats derived from a 10-codon sequence present in the ancestral segment of the gene. The modern segment can be divided into early, middle, and late regions. The authors report here the nucleotide sequence of three alleles of the gorilla involucrin gene. Each possesses a modern segment homologous to that of the human and consisting of 10-codon repeats. The early and middle regions are similar to the corresponding regions of the human allele and are nearly identical among the different gorilla alleles. The late region consists of recent duplications whose pattern is unique in each of the gorilla alleles and in the human allele. The early region is located in what is now the 3{prime} third of the modern segment, and the late, polymorphic region is located in what is now the 5{prime} third. Therefore, as the modern segment expanded during evolution, its 3{prime} end became stabilized, and continuing duplications became confined to its 5{prime} end. The expansion of the involucrin coding region, which began long before the separation of the gorilla and human, has continued in both species after their separation.

  2. Divergent signalling pathways regulate lipopolysaccharide-induced eRNA expression in human monocytic THP1 cells.

    PubMed

    Heward, James A; Roux, Benoit T; Lindsay, Mark A

    2015-01-30

    Recent studies have indicated that non-coding RNAs transcribed from enhancer regions are important regulators of enhancer function and gene expression. In this report, we have characterised the expression of six enhancer RNAs (eRNAs) induced in human monocytic THP1 cells following activation of the innate immune response by lipopolysaccharide (LPS). Specifically, we have demonstrated that LPS-induced expression of individual eRNAs is mediated through divergent intracellular signalling pathways that includes NF-κB and the mitogen activated protein kinases, extracellular regulated kinase-1/2 and p38. PMID:25554418

  3. Observation of Human Retinal Remodeling in Octogenarians with a Resveratrol Based Nutritional Supplement

    PubMed Central

    Richer, Stuart; Stiles, William; Ulanski, Lawrence; Carroll, Donn; Podella, Carla

    2013-01-01

    Purpose: Rare spontaneous remissions from age-related macular degeneration (AMD) suggest the human retina has large regenerative capacity, even in advanced age. We present examples of robust improvement of retinal structure and function using an OTC oral resveratrol (RV) based nutritional supplement called Longevinex® or L/RV (circa 2004, Resveratrol Partners, LLC, Las Vegas, NV, USA). RV, a polyphenolic phytoalexin caloric-restriction mimic, induces hormesis at low doses with widespread beneficial effects on systemic health. RV alone inhibits neovascularization in the murine retina. Thus far, published evidence includes L/RV mitigation of experimentally induced murine cardiovascular reperfusion injury, amelioration of human atherosclerosis serum biomarkers in a human Japanese randomized placebo controlled trial, modulation of micro RNA 20b and 539 that control hypoxia-inducing-factor (HIF-1) and vascular endothelial growth factor (VEGF) genes in the murine heart (RV inhibited micro RNA20b 189-fold, L/RV 1366-fold). Little is known about the effects of L/RV on human ocular pathology. Methods: Absent FDA IRB approval, but with permission from our Chief of Staff and medical center IRB, L/RV is reserved for AMD patients, on a case-by-case compassionate care basis. Patients include those who progress on AREDS II type supplements, refuse intra-vitreal anti-VEGF injections or fail to respond to Lucentis®, Avastin® or Eylea®. Patients are clinically followed traditionally as well as with multi-spectral retinal imaging, visual acuity, contrast sensitivity, cone glare recovery and macular visual fields. Three cases are presented. Results: Observed dramatic short-term anti-VEGF type effect including anatomic restoration of retinal structure with a suggestion of improvement in choroidal blood flow by near IR multispectral imaging. The visual function improvement mirrors the effect seen anatomically. The effect is bilateral with the added benefit of better RPE function

  4. Divergent neuroactive steroid responses to stress and ethanol in rat and mouse strains: Relevance for human studies

    PubMed Central

    Porcu, Patrizia; Morrow, A. Leslie

    2014-01-01

    Rationale Neuroactive steroids are endogenous or synthetic steroids that rapidly alter neuronal excitability via membrane receptors, primarily GABAA receptors. Neuroactive steroids regulate many physiological processes including hypothalamic-pituitary-adrenal (HPA) axis function, ovarian cycle, pregnancy, aging, and reward. Moreover, alterations in neuroactive steroid synthesis are implicated in several neuropsychiatric disorders. Objectives This review will summarize the pharmacological properties and physiological regulation of neuroactive steroids, with a particular focus on divergent neuroactive steroid responses to stress and ethanol in rats, mice and humans. Results GABAergic neuroactive steroids exert a homeostatic regulation of the HPA axis in rats and humans, whereby the increase in neuroactive steroid levels following acute stress counteracts HPA axis hyperactivity and restores homeostasis. In contrast, in C57BL/6J mice, acute stress decreases neurosteroidogenesis and neuroactive steroids exert paradoxical excitatory effects upon the HPA axis. Rats, mice and humans also differ in the neuroactive steroid responses to ethanol. Genetic variation in neurosteroidogenesis may explain the different neuroactive steroid responses to stress or ethanol. Conclusions Rats and mouse strains show divergent effects of stress and ethanol on neuroactive steroids in both plasma and brain. The study of genetic variation in the various processes that determine neuroactive steroids levels as well as their effects on cell signaling may underlie these differences and may play a relevant role for the potential therapeutic benefits of neuroactive steroids. PMID:24770626

  5. Cross-Talk Between Human Tenocytes and Bone Marrow Stromal Cells Potentiates Extracellular Matrix Remodeling In Vitro

    PubMed Central

    Ekwueme, Emmanuel C.; Shah, Jay V.; Mohiuddin, Mahir; Ghebes, Corina A.; Crispim, João F.; Saris, Daniël B.F.; Fernandes, Hugo A.M.; Freeman, Joseph W.

    2016-01-01

    Tendon and ligament (T/L) pathologies account for a significant portion of musculoskeletal injuries and disorders. Tissue engineering has emerged as a promising solution in the regeneration of both tissues. Specifically, the use of multipotent human mesenchymal stromal cells (hMSC) has shown great promise to serve as both a suitable cell source for tenogenic regeneration and a source of trophic factors to induce tenogenesis. Using four donor sets, we investigated the bidirectional paracrine tenogenic response between human hamstring tenocytes (hHT) and bone marrow-derived hMSC. Cell metabolic assays showed that only one hHT donor experienced sustained notable increases in cell metabolic activity during co-culture. Histological staining confirmed that co-culture induced elevated collagen protein levels in both cell types at varying time-points in two of four donor sets assessed. Gene expression analysis using qPCR showed the varied up-regulation of anabolic and catabolic markers involved in extracellular matrix maintenance for hMSC and hHT. Furthermore, analysis of hMSC/hHT co-culture secretome using a reporter cell line for TGF-β, a potent inducer of tenogenesis, revealed a trend of higher TGF-β bioactivity in hMSC secretome compared to hHT. Finally, hHT cytoskeletal immunostaining confirmed that both cell types released soluble factors capable of inducing favorable tenogenic morphology, comparable to control levels of soluble TGF-β1. These results suggest a potential for TGF-β-mediated signaling mechanism that is involved during the paracrine interplay between the two cell types that is reminiscent of T/L matrix remodeling/ turnover. These findings have significant implications in the clinical use of hMSC for common T/L pathologies. PMID:26308651

  6. The remodeling pattern of human mandibular alveolar bone during prenatal formation from 19 to 270mm CRL.

    PubMed

    Radlanski, Ralf J; Renz, Herbert; Tsengelsaikhan, Nyamdorj; Schuster, Felix; Zimmermann, Camilla A

    2016-05-01

    The underlying mechanisms of human bone morphogenesis leading to a topologically specific shape remain unknown, despite increasing knowledge of the basic molecular aspects of bone formation and its regulation. The formation of the alveolar bone, which houses the dental primordia, and later the dental roots, may serve as a model to approach general questions of bone formation. Twenty-five heads of human embryos and fetuses (Radlanski-Collection, Berlin) ranging from 19mm to 270mm (crown-rump-length) CRL were prepared as histological serial sections. For each stage, virtual 3D-reconstructions were made in order to study the morphogenesis of the mandibular molar primordia with their surrounding bone. Special focus was given to recording the bone-remodeling pattern, as diagnosed from the histological sections. In early stages (19-31mm CRL) developing bone was characterized by appositional only. At 41, in the canine region, mm CRL bony extensions were found forming on the bottom of the trough. Besides general apposition, regions with resting surfaces were also found. At a fetal size of 53mm CRL, septa have developed and led to a compartment for canine development. Furthermore, one shared compartment for the incisor primordia and another shared compartment for the molars also developed. Moreover, the inner surfaces of the dental crypts showed resorption of bone. From this stage on, a general pattern became established such that the compartmentalizing ridges and septa between all of the dental primordia and the brims of the crypts were noted, and were due to appositional growth of bone, while the crypts enlarged on their inner surfaces by resorption. By 160mm CRL, the dental primordia were larger, and all of the bony septa had become reduced in size. The primordia for the permanent teeth became visible at 225mm CRL and shared the crypts of their corresponding deciduous primordia. PMID:26921449

  7. Analysis of vitamin D metabolism gene expression in human bone: evidence for autocrine control of bone remodelling.

    PubMed

    Ormsby, Renee T; Findlay, David M; Kogawa, Masakazu; Anderson, Paul H; Morris, Howard A; Atkins, Gerald J

    2014-10-01

    The metabolism of 25-hydroxyvitamin D (25D) to active 1α,25-dihydroxyvitamin D (1,25D) by endogenous expression of 25D 1-α hydroxylase (CYP27B1) in bone cells appears to have functional effects in both osteoclasts and osteoblasts. To examine relationships between CYP27B1 expression in bone and its potential function in vivo, we examined the expression of vitamin D metabolism genes (CYP27B1, CYP24A1, VDR) in human trabecular bone samples and compared them by linear regression analysis with the expression of osteoclast (TRAP, CA2, CATK, NFATC1), osteoblast (TNAP, COL1A1, OCN, MEPE, BRIL), osteocyte (DMP1, SOST, PHEX, MEPE, FGF23)-related gene markers, genes associated with osteoblast/osteocyte control of osteoclastogenesis (RANKL, M-CSF, OPG, IL-8, TWEAK) and transcription factors (NFATC1, RUNX2, OSX, MSX2, HIF1A). This revealed multiple significant gene expression relationships between CYP27B1 and the transcription factors RUNX2, NFATC1, consistent with the coordinated expression of this gene by both osteoblast and osteoclast-lineage cells, and with MSX2 and the hypoxia-inducible transcription factor, HIF1A. CYP27B1 expression associated mainly with gene markers of bone resorption. VDR mRNA expression was also associated with resorption-related genes. Against expectations, CYP27B1 expression did not associate with bone expressed genes known to be 1,25D responsive, such as OCN, RANKL and DMP1. The major implication of these relationships in gene expression is that endogenous 1,25D synthesis and the response to 1,25D in human trabecular bone is linked with coordinated functions in both the osteoclastic and osteoblastic compartments towards the control of bone remodelling. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. PMID:24120913

  8. Gax regulates human vascular smooth muscle cell phenotypic modulation and vascular remodeling

    PubMed Central

    Zheng, Hui; Hu, Zhenlei; Zhai, Xinming; Wang, Yongyi; Liu, Jidong; Wang, Weijun; Xue, Song

    2016-01-01

    Abnormal phenotypic modulation of vascular smooth muscle cells (VSMCs) is a hallmark of cardiovascular diseases such as atherosclerosis, hypertension and restenosis after angioplasty. Transcription factors have emerged as critical regulators for VSMCs function, and recently we verified inhibiting transcription factor Gax was important for controlling VSMCs proliferation and migration. This study aimed to determine its role in phenotypic modulation of VSMCs. Western blot revealed that overexpression of Gax increased expression of VSMCs differentiation marker genes such as calponin and SM-MHC 11. Then, Gax overexpression potently suppressed proliferation and migration of VSMCs with or without platelet-derived growth factor-induced-BB (PDGF-BB) stimuli whereas Gax silencing inhibited these processes. Furthermore, cDNA array analysis indicated that Rap1A gene was the downstream target of Gax in human VSMCs. And overexpression of Gax significantly inhibited expression of Rap1A in VSMCs with or without PDGF-BB stimuli. Moreover, overexpression of Rap1A decreased expression of VSMCs differentiation marker genes and increased proliferation and migration of VSMCs with or without PDGF-BB stimuli. Finally, Gax overexpression significantly inhibited the neointimal formation in carotid artery injury of mouse models, specifically through maintaining VSMCs contractile phenotype by decreasing Rap1A expression. In conclusion, these results indicated that Gax was a regulator of human VSMCs phenotypic modulation by targeting Rap1A gene, which suggested that targeting Gax or its downstream targets in human VSMCs may provide an attractive approach for the prevention and treatment of cardiovascular diseases. PMID:27508012

  9. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling

    SciTech Connect

    Achar, Yathish Jagadheesh; Balogh, David; Neculai, Dante; Juhasz, Szilvia; Morocz, Monika; Gali, Himabindu; Dhe-Paganon, Sirano; Venclovas, Česlovas; Haracska, Lajos

    2015-09-08

    Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteins retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. We suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.

  10. Nuclear body formation and PML body remodeling by the human cytomegalovirus protein UL35

    SciTech Connect

    Salsman, Jayme; Wang Xueqi; Frappier, Lori

    2011-06-05

    The human cytomegalovirus (HCMV) UL35 gene encodes two proteins, UL35 and UL35a. Expression of UL35 in transfected cells results in the formation of UL35 nuclear bodies that associate with promyelocytic leukemia (PML) protein. PML forms the basis for PML nuclear bodies that are important for suppressing viral lytic gene expression. Given the important relationship between PML and viral infection, we have further investigated the association of UL35 with PML bodies. We demonstrate that UL35 bodies form independently of PML and subsequently recruit PML, Sp100 and Daxx. In contrast, UL35a did not form bodies; however, it could bind UL35 and inhibit the formation of UL35 bodies. The HCMV tegument protein pp71 promoted the formation of UL35 bodies and the cytoplasmic localization of UL35a. Similarly, UL35a shifted pp71 to the cytoplasm. These results indicate that the interplay between UL35, UL35a and pp71 affects their subcellular localization and likely their functions throughout infection.

  11. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling.

    PubMed

    Achar, Yathish Jagadheesh; Balogh, David; Neculai, Dante; Juhasz, Szilvia; Morocz, Monika; Gali, Himabindu; Dhe-Paganon, Sirano; Venclovas, Česlovas; Haracska, Lajos

    2015-12-01

    Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteins retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. In more general terms, we suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal. PMID:26350214

  12. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling

    DOE PAGESBeta

    Achar, Yathish Jagadheesh; Balogh, David; Neculai, Dante; Juhasz, Szilvia; Morocz, Monika; Gali, Himabindu; Dhe-Paganon, Sirano; Venclovas, Česlovas; Haracska, Lajos

    2015-09-08

    Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteinsmore » retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. We suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.« less

  13. NAD+-Metabolizing Ectoenzymes in Remodeling Tumor–Host Interactions: The Human Myeloma Model

    PubMed Central

    Horenstein, Alberto L.; Chillemi, Antonella; Quarona, Valeria; Zito, Andrea; Roato, Ilaria; Morandi, Fabio; Marimpietri, Danilo; Bolzoni, Marina; Toscani, Denise; Oldham, Robert J.; Cuccioloni, Massimiliano; Sasser, A. Kate; Pistoia, Vito; Giuliani, Nicola; Malavasi, Fabio

    2015-01-01

    Nicotinamide adenine dinucleotide (NAD+) is an essential co-enzyme reported to operate both intra- and extracellularly. In the extracellular space, NAD+ can elicit signals by binding purinergic P2 receptors or it can serve as the substrate for a chain of ectoenzymes. As a substrate, it is converted to adenosine (ADO) and then taken up by the cells, where it is transformed and reincorporated into the intracellular nucleotide pool. Nucleotide-nucleoside conversion is regulated by membrane-bound ectoenzymes. CD38, the main mammalian enzyme that hydrolyzes NAD+, belongs to the ectoenzymatic network generating intracellular Ca2+-active metabolites. Within this general framework, the extracellular conversion of NAD+ can vary significantly according to the tissue environment or pathological conditions. Accumulating evidence suggests that tumor cells exploit such a network for migrating and homing to protected areas and, even more importantly, for evading the immune response. We report on the experience of this lab to exploit human multiple myeloma (MM), a neoplastic expansion of plasma cells, as a model to investigate these issues. MM cells express high levels of surface CD38 and grow in an environment prevalently represented by closed niches hosted in the bone marrow (BM). An original approach of this study derives from the recent use of the clinical availability of therapeutic anti-CD38 monoclonal antibodies (mAbs) in perturbing tumor viability and enzymatic functions in conditions mimicking what happens in vivo. PMID:26393653

  14. Hypoxic remodelling of Ca{sup 2+} stores does not alter human cardiac myofibroblast invasion

    SciTech Connect

    Riches, K.; Hettiarachchi, N.T.; Porter, K.E.; Peers, C.

    2010-12-17

    Research highlights: {yields} Bradykinin promotes migration and proliferation of myofibroblasts. {yields} Such activity is Ca{sup 2+}-dependent and occurs under hypoxic conditions. {yields} Hypoxia increased myofibroblast Ca{sup 2+} stores but not influx evoked by bradykinin. {yields} Myofibroblast migration and proliferation was unaffected by hypoxia. -- Abstract: Cardiac fibroblasts are the most abundant cell type in the heart, and play a key role in the maintenance and repair of the myocardium following damage such as myocardial infarction by transforming into a cardiac myofibroblast (CMF) phenotype. Repair occurs through controlled proliferation and migration, which are Ca{sup 2+} dependent processes, and often requires the cells to operate within a hypoxic environment. Angiotensin converting enzyme (ACE) inhibitors reduce infarct size through the promotion of bradykinin (BK) stability. Although CMF express BK receptors, their activity under the reduced O{sub 2} conditions that occur following infarct are entirely unexplored. Using Fura-2 microfluorimetry on primary human CMF, we found that hypoxia significantly increased the mobilisation of Ca{sup 2+} from intracellular stores in response to BK whilst capacitative Ca{sup 2+} entry (CCE) remained unchanged. The enhanced store mobilisation was due to a striking increase in CMF intracellular Ca{sup 2+}-store content under hypoxic conditions. However, BK-induced CMF migration or proliferation was not affected following hypoxic exposure, suggesting that Ca{sup 2+} influx rather than mobilisation is of primary importance in CMF migration and proliferation.

  15. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling

    PubMed Central

    Achar, Yathish Jagadheesh; Balogh, David; Neculai, Dante; Juhasz, Szilvia; Morocz, Monika; Gali, Himabindu; Dhe-Paganon, Sirano; Venclovas, Česlovas; Haracska, Lajos

    2015-01-01

    Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteins retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. In more general terms, we suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal. PMID:26350214

  16. Belinostat, a potent HDACi, exerts antileukaemic effect in human acute promyelocytic leukaemia cells via chromatin remodelling

    PubMed Central

    Valiuliene, Giedre; Stirblyte, Ieva; Cicenaite, Dovile; Kaupinis, Algirdas; Valius, Mindaugas; Navakauskiene, Ruta

    2015-01-01

    Epigenetic changes play a significant role in leukaemia pathogenesis, therefore histone deacetylases (HDACis) are widely accepted as an attractive strategy for acute promyelocytic leukaemia (APL) treatment. Belinostat (Bel, PXD101), a hydroxamate-type HDACi, has proved to be a promising cure in clinical trials for solid tumours and haematological malignancies. However, insight into molecular effects of Bel on APL, is still lacking. In this study, we investigated the effect of Bel alone and in combination with differentiation inducer retinoic acid (RA) on human promyelocytic leukaemia NB4 and HL-60 cells. We found that treatment with Bel, depending on the dosage used, inhibits cell proliferation, whereas in combination with RA enhances and accelerates granulocytic leukaemia cell differentiation. We also evaluated the effect of used treatments with Bel and RA on certain epigenetic modifiers (HDAC1, HDAC2, PCAF) as well as cell cycle regulators (p27) gene expression and protein level modulation. We showed that Bel in combination with RA up-regulates basal histone H4 hyperacetylation level more strongly compared to Bel or RA alone. Furthermore, chromatin immunoprecipitation assay indicated that Bel induces the accumulation of hyperacetylated histone H4 at the p27 promoter region. Mass spectrometry analysis revealed that in control NB4 cells, hyperacetylated histone H4 is mainly found in association with proteins involved in DNA replication and transcription, whereas after Bel treatment it is found with proteins implicated in pro-apoptotic processes, in defence against oxidative stress and tumour suppression. Summarizing, our study provides some novel insights into the molecular mechanisms of HDACi Bel action on APL cells. PMID:25864732

  17. The interplay between DNA methylation and sequence divergence in recent human evolution.

    PubMed

    Hernando-Herraez, Irene; Heyn, Holger; Fernandez-Callejo, Marcos; Vidal, Enrique; Fernandez-Bellon, Hugo; Prado-Martinez, Javier; Sharp, Andrew J; Esteller, Manel; Marques-Bonet, Tomas

    2015-09-30

    Despite the increasing knowledge about DNA methylation, the understanding of human epigenome evolution is in its infancy. Using whole genome bisulfite sequencing we identified hundreds of differentially methylated regions (DMRs) in humans compared to non-human primates and estimated that ∼25% of these regions were detectable throughout several human tissues. Human DMRs were enriched for specific histone modifications and the majority were located distal to transcription start sites, highlighting the importance of regions outside the direct regulatory context. We also found a significant excess of endogenous retrovirus elements in human-specific hypomethylated.We reported for the first time a close interplay between inter-species genetic and epigenetic variation in regions of incomplete lineage sorting, transcription factor binding sites and human differentially hypermethylated regions. Specifically, we observed an excess of human-specific substitutions in transcription factor binding sites located within human DMRs, suggesting that alteration of regulatory motifs underlies some human-specific methylation patterns. We also found that the acquisition of DNA hypermethylation in the human lineage is frequently coupled with a rapid evolution at nucleotide level in the neighborhood of these CpG sites. Taken together, our results reveal new insights into the mechanistic basis of human-specific DNA methylation patterns and the interpretation of inter-species non-coding variation. PMID:26170231

  18. The interplay between DNA methylation and sequence divergence in recent human evolution

    PubMed Central

    Hernando-Herraez, Irene; Heyn, Holger; Fernandez-Callejo, Marcos; Vidal, Enrique; Fernandez-Bellon, Hugo; Prado-Martinez, Javier; Sharp, Andrew J.; Esteller, Manel; Marques-Bonet, Tomas

    2015-01-01

    Despite the increasing knowledge about DNA methylation, the understanding of human epigenome evolution is in its infancy. Using whole genome bisulfite sequencing we identified hundreds of differentially methylated regions (DMRs) in humans compared to non-human primates and estimated that ∼25% of these regions were detectable throughout several human tissues. Human DMRs were enriched for specific histone modifications and the majority were located distal to transcription start sites, highlighting the importance of regions outside the direct regulatory context. We also found a significant excess of endogenous retrovirus elements in human-specific hypomethylated. We reported for the first time a close interplay between inter-species genetic and epigenetic variation in regions of incomplete lineage sorting, transcription factor binding sites and human differentially hypermethylated regions. Specifically, we observed an excess of human-specific substitutions in transcription factor binding sites located within human DMRs, suggesting that alteration of regulatory motifs underlies some human-specific methylation patterns. We also found that the acquisition of DNA hypermethylation in the human lineage is frequently coupled with a rapid evolution at nucleotide level in the neighborhood of these CpG sites. Taken together, our results reveal new insights into the mechanistic basis of human-specific DNA methylation patterns and the interpretation of inter-species non-coding variation. PMID:26170231

  19. Global divergence of the human follicle mite Demodex folliculorum: Persistent associations between host ancestry and mite lineages

    PubMed Central

    Palopoli, Michael F.; Fergus, Daniel J.; Minot, Samuel; Pei, Dorothy T.; Simison, W. Brian; Fernandez-Silva, Iria; Thoemmes, Megan S.; Dunn, Robert R.; Trautwein, Michelle

    2015-01-01

    Microscopic mites of the genus Demodex live within the hair follicles of mammals and are ubiquitous symbionts of humans, but little molecular work has been done to understand their genetic diversity or transmission. Here we sampled mite DNA from 70 human hosts of diverse geographic ancestries and analyzed 241 sequences from the mitochondrial genome of the species Demodex folliculorum. Phylogenetic analyses recovered multiple deep lineages including a globally distributed lineage common among hosts of European ancestry and three lineages that primarily include hosts of Asian, African, and Latin American ancestry. To a great extent, the ancestral geography of hosts predicted the lineages of mites found on them; 27% of the total molecular variance segregated according to the regional ancestries of hosts. We found that D. folliculorum populations are stable on an individual over the course of years and that some Asian and African American hosts maintain specific mite lineages over the course of years or generations outside their geographic region of birth or ancestry. D. folliculorum haplotypes were much more likely to be shared within families and between spouses than between unrelated individuals, indicating that transmission requires close contact. Dating analyses indicated that D. folliculorum origins may predate modern humans. Overall, D. folliculorum evolution reflects ancient human population divergences, is consistent with an out-of-Africa dispersal hypothesis, and presents an excellent model system for further understanding the history of human movement. PMID:26668374

  20. Global divergence of the human follicle mite Demodex folliculorum: Persistent associations between host ancestry and mite lineages.

    PubMed

    Palopoli, Michael F; Fergus, Daniel J; Minot, Samuel; Pei, Dorothy T; Simison, W Brian; Fernandez-Silva, Iria; Thoemmes, Megan S; Dunn, Robert R; Trautwein, Michelle

    2015-12-29

    Microscopic mites of the genus Demodex live within the hair follicles of mammals and are ubiquitous symbionts of humans, but little molecular work has been done to understand their genetic diversity or transmission. Here we sampled mite DNA from 70 human hosts of diverse geographic ancestries and analyzed 241 sequences from the mitochondrial genome of the species Demodex folliculorum. Phylogenetic analyses recovered multiple deep lineages including a globally distributed lineage common among hosts of European ancestry and three lineages that primarily include hosts of Asian, African, and Latin American ancestry. To a great extent, the ancestral geography of hosts predicted the lineages of mites found on them; 27% of the total molecular variance segregated according to the regional ancestries of hosts. We found that D. folliculorum populations are stable on an individual over the course of years and that some Asian and African American hosts maintain specific mite lineages over the course of years or generations outside their geographic region of birth or ancestry. D. folliculorum haplotypes were much more likely to be shared within families and between spouses than between unrelated individuals, indicating that transmission requires close contact. Dating analyses indicated that D. folliculorum origins may predate modern humans. Overall, D. folliculorum evolution reflects ancient human population divergences, is consistent with an out-of-Africa dispersal hypothesis, and presents an excellent model system for further understanding the history of human movement. PMID:26668374

  1. Divergence of human and nonhuman primate lymphocyte responses to bacterial superantigens.

    PubMed

    Bavari, S; Hunt, R E; Ulrich, R G

    1995-09-01

    We compared T cell responses of human, rhesus monkey (Macaca mulatta), and chimpanzee (Pan troglodytes) to four bacterial superantigens. When lymphocytes were cultured in media supplemented with species-specific sera, chimpanzee T cells were stimulated by lower doses of staphylococcal enterotoxin (SE) A and toxic shock syndrome toxin 1 (TSST1) than were human T cells, while chimpanzee responses to SEB and SEC1 were nearly equivalent to the human response. Interestingly, rhesus lymphocytes responded to 10,000 times lower amounts of SEA, SEB, and SEC1 and to 100 times lower concentrations of TSST1 than human cells. The greater sensitivity of rhesus T cells to these toxins was not a result of differences in class II binding affinities and was only partly attributable to the presence of anti-SE and TSST1 antibodies in human serum. These results suggest that rhesus T lymphocytes are more sensitive toward these bacterial superantigens than human T cells. PMID:7554446

  2. A comparative analysis of liver transcriptome suggests divergent liver function among human, mouse and rat.

    PubMed

    Yu, Yao; Ping, Jie; Chen, Hui; Jiao, Longxian; Zheng, Siyuan; Han, Ze-Guang; Hao, Pei; Huang, Jian

    2010-11-01

    The human liver plays a vital role in meeting the body's metabolic needs and maintaining homeostasis. To address the molecular mechanisms of liver function, we integrated multiple gene expression datasets from microarray, MPSS, SAGE and EST platforms to generate a transcriptome atlas of the normal human liver. Our results show that 17396 genes are expressed in the human liver. 238 genes were identified as liver enrichment genes, involved in the functions of immune response and metabolic processes, from the MPSS and EST datasets. A comparative analysis of liver transcriptomes was performed in humans, mice and rats with microarray datasets shows that the expression profile of homologous genes remains significantly different between mouse/rat and human, suggesting a functional variance and regulation bias of genes expressed in the livers. The integrated liver transcriptome data should provide a valuable resource for the in-depth understanding of human liver biology and liver disease. PMID:20800674

  3. Measuring dynamic cell–material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels

    PubMed Central

    Schultz, Kelly M.; Kyburz, Kyle A.; Anseth, Kristi S.

    2015-01-01

    Biomaterials that mimic aspects of the extracellular matrix by presenting a 3D microenvironment that cells can locally degrade and remodel are finding increased applications as wound-healing matrices, tissue engineering scaffolds, and even substrates for stem cell expansion. In vivo, cells do not simply reside in a static microenvironment, but instead, they dynamically reengineer their surroundings. For example, cells secrete proteases that degrade extracellular components, attach to the matrix through adhesive sites, and can exert traction forces on the local matrix, causing its spatial reorganization. Although biomaterials scaffolds provide initially well-defined microenvironments for 3D culture of cells, less is known about the changes that occur over time, especially local matrix remodeling that can play an integral role in directing cell behavior. Here, we use microrheology as a quantitative tool to characterize dynamic cellular remodeling of peptide-functionalized poly(ethylene glycol) (PEG) hydrogels that degrade in response to cell-secreted matrix metalloproteinases (MMPs). This technique allows measurement of spatial changes in material properties during migration of encapsulated cells and has a sensitivity that identifies regions where cells simply adhere to the matrix, as well as the extent of local cell remodeling of the material through MMP-mediated degradation. Collectively, these microrheological measurements provide insight into microscopic, cellular manipulation of the pericellular region that gives rise to macroscopic tracks created in scaffolds by migrating cells. This quantitative and predictable information should benefit the design of improved biomaterial scaffolds for medically relevant applications. PMID:26150508

  4. Effects of Persistent Atrial Fibrillation-Induced Electrical Remodeling on Atrial Electro-Mechanics – Insights from a 3D Model of the Human Atria

    PubMed Central

    Adeniran, Ismail; MacIver, David H.; Garratt, Clifford J.; Ye, Jianqiao; Hancox, Jules C.; Zhang, Henggui

    2015-01-01

    Aims Atrial stunning, a loss of atrial mechanical contraction, can occur following a successful cardioversion. It is hypothesized that persistent atrial fibrillation-induced electrical remodeling (AFER) on atrial electrophysiology may be responsible for such impaired atrial mechanics. This simulation study aimed to investigate the effects of AFER on atrial electro-mechanics. Methods and Results A 3D electromechanical model of the human atria was developed to investigate the effects of AFER on atrial electro-mechanics. Simulations were carried out in 3 conditions for 4 states: (i) the control condition, representing the normal tissue (state 1) and the tissue 2–3 months after cardioversion (state 2) when the atrial tissue recovers its electrophysiological properties after completion of reverse electrophysiological remodelling; (ii) AFER-SR condition for AF-remodeled tissue with normal sinus rhythm (SR) (state 3); and (iii) AFER-AF condition for AF-remodeled tissue with re-entrant excitation waves (state 4). Our results indicate that at the cellular level, AFER (states 3 & 4) abbreviated action potentials and reduced the Ca2+ content in the sarcoplasmic reticulum, resulting in a reduced amplitude of the intracellular Ca2+ transient leading to decreased cell active force and cell shortening as compared to the control condition (states 1 & 2). Consequently at the whole organ level, atrial contraction in AFER-SR condition (state 3) was dramatically reduced. In the AFER-AF condition (state 4) atrial contraction was almost abolished. Conclusions This study provides novel insights into understanding atrial electro-mechanics illustrating that AFER impairs atrial contraction due to reduced intracellular Ca2+ transients. PMID:26606047

  5. Divergent Fates of the Medical Humanities in Psychiatry and Internal Medicine: Should Psychiatry Be Rehumanized?

    ERIC Educational Resources Information Center

    Rutherford, Bret R.; Hellerstein, David J.

    2008-01-01

    Objective: To determine the degree to which the medical humanities have been integrated into the fields of internal medicine and psychiatry, the authors assessed the presence of medical humanities articles in selected psychiatry and internal medicine journals from 1950 to 2000. Methods: The journals searched were the three highest-ranking…

  6. COMT Genetic Reduction Produces Sexually Divergent Effects on Cortical Anatomy and Working Memory in Mice and Humans.

    PubMed

    Sannino, Sara; Gozzi, Alessandro; Cerasa, Antonio; Piras, Fabrizio; Scheggia, Diego; Managò, Francesca; Damiano, Mario; Galbusera, Alberto; Erickson, Lucy C; De Pietri Tonelli, Davide; Bifone, Angelo; Tsaftaris, Sotirios A; Caltagirone, Carlo; Weinberger, Daniel R; Spalletta, Gianfranco; Papaleo, Francesco

    2015-09-01

    Genetic variations in catechol-O-methyltransferase (COMT) that modulate cortical dopamine have been associated with pleiotropic behavioral effects in humans and mice. Recent data suggest that some of these effects may vary among sexes. However, the specific brain substrates underlying COMT sexual dimorphisms remain unknown. Here, we report that genetically driven reduction in COMT enzyme activity increased cortical thickness in the prefrontal cortex (PFC) and postero-parieto-temporal cortex of male, but not female adult mice and humans. Dichotomous changes in PFC cytoarchitecture were also observed: reduced COMT increased a measure of neuronal density in males, while reducing it in female mice. Consistent with the neuroanatomical findings, COMT-dependent sex-specific morphological brain changes were paralleled by divergent effects on PFC-dependent working memory in both mice and humans. These findings emphasize a specific sex-gene interaction that can modulate brain morphological substrates with influence on behavioral outcomes in healthy subjects and, potentially, in neuropsychiatric populations. PMID:24658585

  7. Convergence and divergence of tumor-suppressor and proto-oncogenes in chimpanzee from human chromosome 17

    SciTech Connect

    Verma, R.S.; Ramesh, K.H.

    1994-09-01

    Due to the emergence of molecular technology, the phylogenetic evolution of the human genome via apes has become a saltatory even. In the present investigation, cosmid probes for P53, Charcot-Marie-Tooth [CMTIA], HER-2/NEU and myeloperoxidase [MPO] were used. Probes mapping to these genetic loci are well-defined on human chromosome 17 [HSA 17]. We localized these genes on chimpanzee [Pan troglodyte] chromosomes by FISH technique employing two different cell lines. Our results indicate that chimpanzee chromosome 19 [PTR 19] differs from HSA 17 by a pericentric inversion. The P53 gene assigned to HSA 17p13.1 is localized on PTR 19p15 and the MPO sequence of HSA 17q21.3-23 hybridized to PTR 19q23. Perplexing enough, HER-2/NEU assigned to HSA 17q11.2 localized to PTR 19p12. Obviously, there is convergence of P53 and MPO regions and distinctive divergence of HER-2/NEU and CMT1A regions of human and chimpanzee. This investigation has demonstrated the pronounced genetic shuffling which occurred during the origin of HSA 17. Molecular markers should serve as evolutionary punctuations in defining the precise sequence of genetic events that led to the evolution of other chromosomes whose genomic synteny, although similar, have surprisingly evolved through different mechanisms.

  8. LncRNA profiling of human lymphoid progenitors reveals transcriptional divergence of B and T lineages

    PubMed Central

    Casero, David; Sandoval, Salemiz; Seet, Christopher S.; Scholes, Jessica; Zhu, Yuhua; Ha, Vi Luan; Luong, Annie; Parekh, Chintan; Crooks, Gay M.

    2015-01-01

    To elucidate the transcriptional landscape that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitors spanning the earliest stages of B and T lymphoid specification. Over 3000 novel long non-coding RNA genes (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage-specific and more lineage-specific than protein coding patterns. Protein-coding genes co-expressed with neighboring lncRNA genes were enriched for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships between the earliest progenitors in the human bone marrow and thymus. PMID:26502406

  9. Exogenous Expression of Human Protamine 1 (hPrm1) Remodels Fibroblast Nuclei into Spermatid-like Structures

    PubMed Central

    Iuso, Domenico; Czernik, Marta; Toschi, Paola; Fidanza, Antonella; Zacchini, Federica; Feil, Robert; Curtet, Sandrine; Buchou, Thierry; Shiota, Hitoshi; Khochbin, Saadi; Ptak, Grazyna Ewa; Loi, Pasqualino

    2015-01-01

    Summary Protamines confer a compact structure to the genome of male gametes. Here, we find that somatic cells can be remodeled by transient expression of protamine 1 (Prm1). Ectopically expressed Prm1 forms scattered foci in the nuclei of fibroblasts, which coalescence into spermatid-like structures, concomitant with a loss of histones and a reprogramming barrier, H3 lysine 9 methylation. Protaminized nuclei injected into enucleated oocytes efficiently underwent protamine to maternal histone TH2B exchange and developed into normal blastocyst stage embryos in vitro. Altogether, our findings present a model to study male-specific chromatin remodeling, which can be exploited for the improvement of somatic cell nuclear transfer. PMID:26628361

  10. Admixture in Humans of Two Divergent Plasmodium knowlesi Populations Associated with Different Macaque Host Species

    PubMed Central

    Divis, Paul C. S.; Singh, Balbir; Anderios, Fread; Hisam, Shamilah; Matusop, Asmad; Kocken, Clemens H.; Assefa, Samuel A.; Duffy, Craig W.; Conway, David J.

    2015-01-01

    Human malaria parasite species were originally acquired from other primate hosts and subsequently became endemic, then spread throughout large parts of the world. A major zoonosis is now occurring with Plasmodium knowlesi from macaques in Southeast Asia, with a recent acceleration in numbers of reported cases particularly in Malaysia. To investigate the parasite population genetics, we developed sensitive and species-specific microsatellite genotyping protocols and applied these to analysis of samples from 10 sites covering a range of >1,600 km within which most cases have occurred. Genotypic analyses of 599 P. knowlesi infections (552 in humans and 47 in wild macaques) at 10 highly polymorphic loci provide radical new insights on the emergence. Parasites from sympatric long-tailed macaques (Macaca fascicularis) and pig-tailed macaques (M. nemestrina) were very highly differentiated (FST = 0.22, and K-means clustering confirmed two host-associated subpopulations). Approximately two thirds of human P. knowlesi infections were of the long-tailed macaque type (Cluster 1), and one third were of the pig-tailed-macaque type (Cluster 2), with relative proportions varying across the different sites. Among the samples from humans, there was significant indication of genetic isolation by geographical distance overall and within Cluster 1 alone. Across the different sites, the level of multi-locus linkage disequilibrium correlated with the degree of local admixture of the two different clusters. The widespread occurrence of both types of P. knowlesi in humans enhances the potential for parasite adaptation in this zoonotic system. PMID:26020959

  11. Mutation-Driven Divergence and Convergence Indicate Adaptive Evolution of the Intracellular Human-Restricted Pathogen, Bartonella bacilliformis

    PubMed Central

    Paul, Sandip; Minnick, Michael F.; Chattopadhyay, Sujay

    2016-01-01

    Among all species of Bartonella, human-restricted Bartonella bacilliformis is the most virulent but harbors one of the most reduced genomes. Carrión’s disease, the infection caused by B. bacilliformis, has been afflicting poor rural populations for centuries in the high-altitude valleys of the South American Andes, where the pathogen’s distribution is probably restricted by its sand fly vector’s range. Importantly, Carrión’s disease satisfies the criteria set by the World Health Organization for a disease amenable to elimination. However, to date, there are no genome-level studies to identify potential footprints of B. bacilliformis (patho)adaptation. Our comparative genomic approach demonstrates that the evolution of this intracellular pathogen is shaped predominantly via mutation. Analysis of strains having publicly-available genomes shows high mutational divergence of core genes leading to multiple sub-species. We infer that the sub-speciation event might have happened recently where a possible adaptive divergence was accelerated by intermediate emergence of a mutator phenotype. Also, within a sub-species the pathogen shows inter-clonal adaptive evolution evidenced by non-neutral accumulation of convergent amino acid mutations. A total of 67 non-recombinant core genes (over-representing functional categories like DNA repair, glucose metabolic process, ATP-binding and ligase) were identified as candidates evolving via adaptive mutational convergence. Such convergence, both at the level of genes and their encoded functions, indicates evolution of B. bacilliformis clones along common adaptive routes, while there was little diversity within a single clone. PMID:27167125

  12. Divergence of human [alpha]-chain constant region gene sequences: A novel recombinant [alpha]2 gene

    SciTech Connect

    Chintalacharuvu, K. R.; Morrison, S.L. ); Raines, M. )

    1994-06-01

    IgA is the major Ig synthesized in humans and provides the first line of defense at the mucosal surfaces. The constant region of IgA heavy chain is encoded by the [alpha] gene on chromosome 14. Previous studies have indicated the presence of two [alpha] genes, [alpha]1 and [alpha]2 existing in two allotypic forms, [alpha]2 m(1) and [alpha]2 m(2). Here the authors report the cloning and complete nucleotide sequence determination of a novel human [alpha] gene. Nucleotide sequence comparison with the published [alpha] sequences suggests that the gene arose as a consequence of recombination or gene conversion between the two [alpha]2 alleles. The authors have expressed the gene as a chimeric protein in myeloma cells indicating that it encodes a functional protein. The novel IgA resembles IgA2 m(2) in that disulfide bonds link H and L chains. This novel recombinant gene provides insights into the mechanisms of generation of different constant regions and suggests that within human populations, multiple alleles of [alpha] may be present providing IgAs of different structures.

  13. Rapid human-induced divergence of life-history strategies in Bahamian livebearing fishes (family Poeciliidae).

    PubMed

    Riesch, Rüdiger; Easter, Tara; Layman, Craig A; Langerhans, Randall Brian

    2015-11-01

    Human-induced rapid environmental change (HIREC) can have dramatic impacts on ecosystems, leading to rapid trait changes in some organisms and extinction in others. Such changes in traits signify that human actions can lead to cases of increased phenotypic diversity and consequently can strongly impact population-, community- and ecosystem-level dynamics. Here, we examine whether the ecological consequences of habitat fragmentation have led to changes in the life histories of three native species of mosquitofish (Gambusia spp.) inhabiting tidal creeks on six different Bahamian islands. We address two important questions: (i) How predictable and parallel are life-history changes in response to HIREC across islands and species, and (ii) what is the relative importance of shared (i.e. parallel) responses to fragmentation, differences between species or islands and species- or island-specific responses to fragmentation? Phenotypic differences between fragmentation regimes were as great or greater than differences between species or islands. While some adult life histories (lean weight and fat content) showed strong, shared responses to fragmentation, offspring-related life histories (embryo fat and fecundity) exhibited idiosyncratic, island-specific responses. While shared responses to fragmentation appeared largely driven by a reduction in piscivorous fish density, increased conspecific density and changes in salinity, we found some evidence that among-population variation in male reproductive investment and embryo fat content may have arisen via variation in conspecific density. Our results suggest that phenotypic responses to HIREC can be complex, with the predictability of response varying across traits. We therefore emphasize the need for more theoretical and empirical work to better understand the predictability of phenotypic responses to human-induced disturbances. PMID:26237432

  14. Remodeling and Shuttling

    PubMed Central

    Rodrigueza, Wendi V.; Williams, Kevin Jon; Rothblat, George H.; Phillips, Michael C.

    2016-01-01

    In normal physiology, cells are exposed to cholesterol acceptors of different sizes simultaneously. The current study examined the possible interactions between two different classes of acceptors, one large (large unilamellar phospholipid vesicles, LUVs) and one small (HDL or other small acceptors), added separately or in combination to Fu5AH rat hepatoma cells. During a 24-hour incubation, LUVs of palmitoyl-oleoyl phosphatidylcholine at 1 mg phospholipid (PL) per milliliter extracted ≈20% of cellular unesterified cholesterol (UC) label and mass in a slow, continuous fashion (half-time [t½] for UC efflux was ≈50 hours) and human HDL3 at 25 μg PL per milliliter extracted ≈15% cellular UC label with no change in cellular cholesterol mass (t½ of ≈8 hours). In contrast, the combination of LUVs and HDL3 extracted over 90% of UC label (t½ of ≈4 hours) and ≈50% of the UC mass, indicating synergy. To explain this synergy, specific particle interactions were examined, namely, remodeling, in which the two acceptors alter each other’s composition and thus the ability to mobilize cellular cholesterol, and shuttling, in which the small acceptor ferries cholesterol from cells to the large acceptor. To examine remodeling, LUVs and HDL were coincubated and reisolated before application to cells. This HDL became UC depleted, PL enriched, and lost a small amount of apolipoprotein A-I. Compared with equivalent numbers of control HDL particles, remodeled HDL caused faster efflux (t½ ≈4 hours) and exhibited a greater capacity to sequester cellular cholesterol over 24 hours (≈38% versus ≈15% for control HDL), consistent with their enrichment in PL. Remodeled LUVs still extracted ≈20% of cellular UC. Thus, remodeling accounted for some but not all of the synergy between LUVs and HDL. To examine shuttling, several approaches were used. First, reisolation of particles after an 8-hour exposure to cells revealed that HDL contained very little of the cellular UC

  15. A complementary role of intracortical inhibition in age-related tactile degradation and its remodelling in humans.

    PubMed

    Pleger, Burkhard; Wilimzig, Claudia; Nicolas, Volkmar; Kalisch, Tobias; Ragert, Patrick; Tegenthoff, Martin; Dinse, Hubert R

    2016-01-01

    Many attempts are currently underway to restore age-related degraded perception, however, the link between restored perception and remodeled brain function remains elusive. To understand remodeling of age-related cortical reorganization we combined functional magnetic resonance imaging (fMRI) with assessments of tactile acuity, perceptual learning, and computational modeling. We show that aging leads to tactile degradation parallel to enhanced activity in somatosensory cortex. Using a neural field model we reconciled the empirical age-effects by weakening of cortical lateral inhibition. Using perceptual learning, we were able to partially restore tactile acuity, which however was not accompanied by the expected attenuation of cortical activity, but by a further enhancement. The neural field model reproduced these learning effects solely through a weakening of the amplitude of inhibition. These findings suggest that the restoration of age-related degraded tactile acuity on the cortical level is not achieved by re-strengthening lateral inhibition but by further weakening intracortical inhibition. PMID:27302219

  16. Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation

    PubMed Central

    Styrczewska, Monika; Kostyn, Anna; Kulma, Anna; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Prescha, Anna; Czuj, Tadeusz; Szopa, Jan

    2015-01-01

    Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification. PMID:26347154

  17. A complementary role of intracortical inhibition in age-related tactile degradation and its remodelling in humans

    PubMed Central

    Pleger, Burkhard; Wilimzig, Claudia; Nicolas, Volkmar; Kalisch, Tobias; Ragert, Patrick; Tegenthoff, Martin; Dinse, Hubert R.

    2016-01-01

    Many attempts are currently underway to restore age-related degraded perception, however, the link between restored perception and remodeled brain function remains elusive. To understand remodeling of age-related cortical reorganization we combined functional magnetic resonance imaging (fMRI) with assessments of tactile acuity, perceptual learning, and computational modeling. We show that aging leads to tactile degradation parallel to enhanced activity in somatosensory cortex. Using a neural field model we reconciled the empirical age-effects by weakening of cortical lateral inhibition. Using perceptual learning, we were able to partially restore tactile acuity, which however was not accompanied by the expected attenuation of cortical activity, but by a further enhancement. The neural field model reproduced these learning effects solely through a weakening of the amplitude of inhibition. These findings suggest that the restoration of age-related degraded tactile acuity on the cortical level is not achieved by re-strengthening lateral inhibition but by further weakening intracortical inhibition. PMID:27302219

  18. Rapid remodeling of tight junctions during paracellular diapedesis in a human model of the blood-brain barrier.

    PubMed

    Winger, Ryan C; Koblinski, Jennifer E; Kanda, Takashi; Ransohoff, Richard M; Muller, William A

    2014-09-01

    Leukocyte transendothelial migration (TEM; diapedesis) is a critical event in immune surveillance and inflammation. Most TEM occurs at endothelial cell borders (paracellular). However, there is indirect evidence to suggest that, at the tight junctions of the blood-brain barrier (BBB), leukocytes migrate directly through the endothelial cell body (transcellular). Why leukocytes migrate through the endothelial cell body rather than the cell borders is unknown. To test the hypothesis that the tightness of endothelial cell junctions influences the pathway of diapedesis, we developed an in vitro model of the BBB that possessed 10-fold higher electrical resistance than standard culture conditions and strongly expressed the BBB tight junction proteins claudin-5 and claudin-3. We found that paracellular TEM was still the predominant pathway (≥98%) and TEM was dependent on PECAM-1 and CD99. We show that endothelial tight junctions expressing claudin-5 are dynamic and undergo rapid remodeling during TEM. Membrane from the endothelial lateral border recycling compartment is mobilized to the exact site of tight junction remodeling. This preserves the endothelial barrier by sealing the intercellular gaps with membrane and engaging the migrating leukocyte with unligated adhesion molecules (PECAM-1 and CD99) as it crosses the cell border. These findings provide new insights into leukocyte-endothelial interactions at the BBB and suggest that tight junctions are more dynamic than previously appreciated. PMID:25063869

  19. Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation.

    PubMed

    Styrczewska, Monika; Kostyn, Anna; Kulma, Anna; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Prescha, Anna; Czuj, Tadeusz; Szopa, Jan

    2015-01-01

    Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification. PMID:26347154

  20. Multiple modes of regulation of the human Ino80 SNF2 ATPase by subunits of the INO80 chromatin-remodeling complex

    PubMed Central

    Chen, Lu; Conaway, Ronald C.; Conaway, Joan W.

    2013-01-01

    SNF2 family ATPases are ATP-dependent motors that often function in multisubunit complexes to regulate chromatin structure. Although the central role of SNF2 ATPases in chromatin biology is well established, mechanisms by which their catalytic activities are regulated by additional subunits of chromatin-remodeling complexes are less well understood. Here we present evidence that the human Inositol auxotrophy 80 (Ino80) SNF2 ATPase is subject to regulation at multiple levels in the INO80 chromatin-remodeling complex. The zinc finger histidine triad domain-containing protein Ies2 (Ino Eighty Subunit 2) functions as a potent activator of the intrinsic catalytic activity of the Ino80 ATPase, whereas the YL-1 family Ies6 (Ino Eighty Subunit 6) and actin-related Arp5 proteins function together to promote binding of the Ino80 ATPase to nucleosomes. These findings support the idea that both substrate recognition and the intrinsic catalytic activities of SNF2 ATPases have evolved as important sites for their regulation. PMID:24297934

  1. The Structural Basis of Functional Improvement in Response to Human Umbilical Cord Blood Stem Cell Transplantation in Hearts with Post-Infarct LV Remodeling

    PubMed Central

    Chen, Yong; Ye, Lei; Zhong, Jia; Li, Xin; Yan, Chen; Chandler, Margaret P.; Calvin, Steve; Xiao, Feng; Negia, Mesfin; Low, Walter C.; Zhang, Jianyi; Yu, Xin

    2015-01-01

    Cellular therapy for myocardial repair has been one of the most intensely investigated interventional strategies for acute myocardium infarction. Although the therapeutic potential of stem cells has been demonstrated in various studies, the underlying mechanisms for such improvement are poorly understood. In the present study, we investigated the long-term effects of stem cell therapy on both myocardial fiber organization and regional contractile function using a rat model of post-infarct remodeling. Human non-hematopoietic umbilical cord blood stem cells (nh-UCBSCs) were administered via tail vein to rats 2 days after infarct surgery. Animals were maintained without immunosuppressive therapy. In vivo and ex vivo MR imaging was performed on infarct hearts ten months after cell transplantation. Compared to the age-matched rats exposed to the identical surgery, both global and regional cardiac function of the nh-UCBSC-treated hearts, such as ejection fraction, ventricular strain and torsion, were significantly improved. More importantly, the treated hearts exhibited preserved fiber orientation and water diffusivities that were similar to those in sham-operated control hearts. These data provide the first evidence that nh-UCBSC treatment may prevent/delay untoward structural remodeling in post-infarct hearts, which supports the improved LV function observed in vivo in the absence of immunosuppression, suggesting a beneficial paracrine effect that occurred with the cellular therapy. PMID:24332083

  2. Early structural remodeling and deuterium oxide-derived protein metabolic responses to eccentric and concentric loading in human skeletal muscle

    PubMed Central

    Franchi, Martino V; Wilkinson, Daniel J; Quinlan, Jonathan I; Mitchell, William K; Lund, Jonathan N; Williams, John P; Reeves, Neil D; Smith, Kenneth; Atherton, Philip J; Narici, Marco V

    2015-01-01

    We recently reported that the greatest distinguishing feature between eccentric (ECC) and concentric (CON) muscle loading lays in architectural adaptations: ECC favors increases in fascicle length (Lf), associated with distal vastus lateralis muscle (VL) hypertrophy, and CON increases in pennation angle (PA). Here, we explored the interactions between structural and morphological remodeling, assessed by ultrasound and dual x-ray absorptiometry (DXA), and long-term muscle protein synthesis (MPS), evaluated by deuterium oxide (D2O) tracing technique. Ten young males (23 ± 4 years) performed unilateral resistance exercise training (RET) three times/week for 4 weeks; thus, one-leg trained concentrically while the contralateral performed ECC exercise only at 80% of either CON or ECC one repetition maximum (1RM). Subjects consumed an initial bolus of D2O (150 mL), while a 25-mL dose was thereafter provided every 8 days. Muscle biopsies from VL midbelly (MID) and distal myotendinous junction (MTJ) were collected at 0 and 4-weeks. MPS was then quantified via GC–pyrolysis–IRMS over the 4-week training period. Expectedly, ECC and CON RET resulted in similar increases in VL muscle thickness (MT) (7.5% vs. 8.4%, respectively) and thigh lean mass (DXA) (2.3% vs. 3%, respectively), albeit through distinct remodeling: Lf increasing more after ECC (5%) versus CON (2%) and PA increasing after CON (7% vs. 3%). MPS did not differ between contractile modes or biopsy sites (MID-ECC: 1.42 vs. MID-CON: 1.4% day−1; MTJ-ECC: 1.38 vs. MTJ-CON: 1.39% day−1). Muscle thickness at MID site increased similarly following ECC and CON RET, reflecting a tendency for a contractile mode-independent correlation between MPS and MT (P = 0.07; R2 = 0.18). We conclude that, unlike MT, distinct structural remodeling responses to ECC or CON are not reflected in MPS; the molecular mechanisms of distinct protein deposition, and/or the role of protein breakdown in mediating these responses

  3. An exon-based comparative variant analysis pipeline to study the scale and role of frameshift and nonsense mutation in the human-chimpanzee divergence.

    PubMed

    Yu, GongXin

    2009-01-01

    Chimpanzees and humans are closely related but differ in many deadly human diseases and other characteristics in physiology, anatomy, and pathology. In spite of decades of extensive research, crucial questions about the molecular mechanisms behind the differences are yet to be understood. Here I report ExonVar, a novel computational pipeline for Exon-based human-chimpanzee comparative Variant analysis. The objective is to comparatively analyze mutations specifically those that caused the frameshift and nonsense mutations and to assess their scale and potential impacts on human-chimpanzee divergence. Genomewide analysis of human and chimpanzee exons with ExonVar identified a number of species-specific, exon-disrupting mutations in chimpanzees but much fewer in humans. Many were found on genes involved in important biological processes such as T cell lineage development, the pathogenesis of inflammatory diseases, and antigen induced cell death. A "less-is-more" model was previously established to illustrate the role of the gene inactivation and disruptions during human evolution. Here this analysis suggested a different model where the chimpanzee-specific exon-disrupting mutations may act as additional evolutionary force that drove the human-chimpanzee divergence. Finally, the analysis revealed a number of sequencing errors in the chimpanzee and human genome sequences and further illustrated that they could be corrected without resequencing. PMID:19859573

  4. REMODELING CHARACTERISTICS AND COLLAGEN DISTRIBUTION IN BIOLOGICAL SCAFFOLD MATERIALS EXPLANTED FROM HUMAN SUBJECTS AFTER ABDOMINAL SOFT TISSUE RECONSTRUCTION: AN ANALYSIS OF SCAFFOLD REMODELING CHARACTERISTICS BY PATIENT RISK FACTORS AND SURGICAL SITE CLASSIFICATIONS

    PubMed Central

    Cavallo, Jaime A.; Roma, Andres A.; Jasielec, Mateusz S.; Ousley, Jenny; Creamer, Jennifer; Pichert, Matthew D.; Baalman, Sara; Frisella, Margaret M.; Matthews, Brent D.; Deeken, Corey R.

    2014-01-01

    OBJECTIVE The study purpose was to evaluate the associations between patient characteristics or surgical site classifications and the histologic remodeling scores of biologic meshes biopsied from abdominal soft tissue repair sites in the first attempt to generate a multivariable risk prediction model of non-constructive remodeling. INTRODUCTION Host characteristics and surgical site assessments may predict remodeling degree for biologic meshes used to reinforce abdominal tissue repair sites. METHODS Biologic meshes were biopsied from the abdominal tissue repair sites of n=40 patients during an abdominal re-exploration, stained with hematoxylin and eosin, and evaluated according to a semi-quantitative scoring system for remodeling characteristics [cell types (CT), cell infiltration (CI), extracellular matrix (ECM) deposition, scaffold degradation (SD), fibrous encapsulation (FE), and neovascularization (NEO)] and a mean composite score (CR). Biopsies were stained with Sirius Red & Fast Green, and analyzed to determine the collagen I:III ratio. Based on univariate analyses between subject clinical characteristics or surgical site classification and the histologic remodeling scores, cohort variables were selected for multivariable regression models using a p-value ≤0.200. RESULTS The model selection process for CI score yielded 2 variables: age at mesh implantation and mesh classification (c-statistic=0.989). For CR score, the model selection process yielded 2 variables: age at mesh implantation and mesh classification (r2=0.449). CONCLUSION These preliminary results constitute the first steps in generating a risk prediction model that predicts the patients and clinical circumstances most likely to experience non-constructive remodeling of abdominal tissue repair sites with biologic mesh reinforcement. PMID:24374547

  5. Remodeling characteristics and collagen distribution in synthetic mesh materials explanted from human subjects after abdominal wall reconstruction: an analysis of remodeling characteristics by patient risk factors and surgical site classifications

    PubMed Central

    Cavallo, Jaime A.; Roma, Andres A.; Jasielec, Mateusz S.; Ousley, Jenny; Creamer, Jennifer; Pichert, Matthew D.; Baalman, Sara; Frisella, Margaret M.; Matthews, Brent D.

    2014-01-01

    Background The purpose of this study was to evaluate the associations between patient characteristics or surgical site classifications and the histologic remodeling scores of synthetic meshes biopsied from their abdominal wall repair sites in the first attempt to generate a multivariable risk prediction model of non-constructive remodeling. Methods Biopsies of the synthetic meshes were obtained from the abdominal wall repair sites of 51 patients during a subsequent abdominal re-exploration. Biopsies were stained with hematoxylin and eosin, and evaluated according to a semi-quantitative scoring system for remodeling characteristics (cell infiltration, cell types, extracellular matrix deposition, inflammation, fibrous encapsulation, and neovascularization) and a mean composite score (CR). Biopsies were also stained with Sirius Red and Fast Green, and analyzed to determine the collagen I:III ratio. Based on univariate analyses between subject clinical characteristics or surgical site classification and the histologic remodeling scores, cohort variables were selected for multivariable regression models using a threshold p value of ≤0.200. Results The model selection process for the extracellular matrix score yielded two variables: subject age at time of mesh implantation, and mesh classification (c-statistic = 0.842). For CR score, the model selection process yielded two variables: subject age at time of mesh implantation and mesh classification (r2 = 0.464). The model selection process for the collagen III area yielded a model with two variables: subject body mass index at time of mesh explantation and pack-year history (r2 = 0.244). Conclusion Host characteristics and surgical site assessments may predict degree of remodeling for synthetic meshes used to reinforce abdominal wall repair sites. These preliminary results constitute the first steps in generating a risk prediction model that predicts the patients and clinical circumstances for which non

  6. Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping.

    PubMed

    Vasiliou, V; Bairoch, A; Tipton, K F; Nebert, D W

    1999-08-01

    As currently being performed with an increasing number of superfamilies, a standardized gene nomenclature system is proposed here, based on divergent evolution, using multiple alignment analysis of all 86 eukaryotic aldehyde dehydrogenase (ALDH) amino-acid sequences known at this time. The ALDHs represent a superfamily of NAD(P)(+)-dependent enzymes having similar primary structures that oxidize a wide spectrum of endogenous and exogenous aliphatic and aromatic aldehydes. To date, a total of 54 animal, 15 plant, 14 yeast, and three fungal ALDH genes or cDNAs have been sequenced. These ALDHs can be divided into a total of 18 families (comprising 37 subfamilies), and all nonhuman ALDH genes are named here after the established human ALDH genes, when possible. An ALDH protein from one gene family is defined as having approximately < or = 40% amino-acid identity to that from another family. Two members of the same subfamily exhibit approximately > or = 60% amino-acid identity and are expected to be located at the same subchromosomal site. For naming each gene, it is proposed that the root symbol 'ALDH' denoting 'aldehyde dehydrogenase' be followed by an Arabic number representing the family and, when needed, a letter designating the subfamily and an Arabic number denoting the individual gene within the subfamily; all letters are capitalized in all mammals except mouse and fruit fly, e.g. 'human ALDH3A1 (mouse, Drosophila Aldh3a1).' It is suggested that the Human Gene Nomenclature Guidelines (http://++www.gene.ucl.ac.uk/nomenclature/guidelines.h tml) be used for all species other than mouse and Drosophila. Following these guidelines, the gene is italicized, whereas the corresponding cDNA, mRNA, protein or enzyme activity is written with upper-case letters and without italics, e.g. 'human, mouse or Drosophila ALDH3A1 cDNA, mRNA, or activity'. If an orthologous gene between species cannot be identified with certainty, sequential naming of these genes will be carried out

  7. Nicotinamide Adenine Dinucleotide Phosphate Oxidase-Mediated Redox Signaling and Vascular Remodeling by 16α-Hydroxyestrone in Human Pulmonary Artery Cells: Implications in Pulmonary Arterial Hypertension.

    PubMed

    Hood, Katie Y; Montezano, Augusto C; Harvey, Adam P; Nilsen, Margaret; MacLean, Margaret R; Touyz, Rhian M

    2016-09-01

    Estrogen and oxidative stress have been implicated in pulmonary arterial hypertension (PAH). Mechanisms linking these systems are elusive. We hypothesized that estrogen metabolite, 16α-hydroxyestrone (16αOHE1), stimulates nicotinamide adenine dinucleotide phosphate oxidase (Nox)-induced reactive oxygen species (ROS) generation and proliferative responses in human pulmonary artery smooth muscle cells (hPASMCs) and that in PAH aberrant growth signaling promotes vascular remodeling. The pathophysiological significance of estrogen-Nox-dependent processes was studied in female Nox1(-/-) and Nox4(-/-) mice with PAH. PASMCs from control subjects (control hPASMCs) and PAH patients (PAH-hPASMCs) were exposed to estrogen and 16αOHE1 in the presence/absence of inhibitors of Nox, cytochrome P450 1B1, and estrogen receptors. Estrogen, through estrogen receptor-α, increased Nox-derived ROS and redox-sensitive growth in hPASMCs, with greater effects in PAH-hPASMCs versus control hPASMCs. Estrogen effects were inhibited by cytochrome P450 1B1 blockade. 16αOHE1 stimulated transient ROS production in hPASMCs, with sustained responses in PAH-hPASMCs. Basal expression of Nox1/Nox4 was potentiated in PAH-hPASMCs. In hPASMCs, 16αOHE1 increased Nox1 expression, stimulated irreversible oxidation of protein tyrosine phosphatases, decreased nuclear factor erythroid-related factor 2 activity and expression of nuclear factor erythroid-related factor 2-regulated antioxidant genes, and promoted proliferation. This was further amplified in PAH-hPASMCs. Nox1(-/-) but not Nox4(-/-) mice were protected against PAH and vascular remodeling. Our findings demonstrate that in PAH-hPASMCs, 16αOHE1 stimulates redox-sensitive cell growth primarily through Nox1. Supporting this, in vivo studies exhibited protection against pulmonary hypertension and remodeling in Nox1(-/-) mice. This study provides new insights through Nox1/ROS and nuclear factor erythroid-related factor 2 whereby 16αOHE1 influences

  8. Nicotinamide Adenine Dinucleotide Phosphate Oxidase–Mediated Redox Signaling and Vascular Remodeling by 16α-Hydroxyestrone in Human Pulmonary Artery Cells

    PubMed Central

    Hood, Katie Y.; Montezano, Augusto C.; Harvey, Adam P.; Nilsen, Margaret; MacLean, Margaret R.

    2016-01-01

    Estrogen and oxidative stress have been implicated in pulmonary arterial hypertension (PAH). Mechanisms linking these systems are elusive. We hypothesized that estrogen metabolite, 16α-hydroxyestrone (16αOHE1), stimulates nicotinamide adenine dinucleotide phosphate oxidase (Nox)–induced reactive oxygen species (ROS) generation and proliferative responses in human pulmonary artery smooth muscle cells (hPASMCs) and that in PAH aberrant growth signaling promotes vascular remodeling. The pathophysiological significance of estrogen–Nox–dependent processes was studied in female Nox1−/− and Nox4−/− mice with PAH. PASMCs from control subjects (control hPASMCs) and PAH patients (PAH-hPASMCs) were exposed to estrogen and 16αOHE1 in the presence/absence of inhibitors of Nox, cytochrome P450 1B1, and estrogen receptors. Estrogen, through estrogen receptor-α, increased Nox-derived ROS and redox-sensitive growth in hPASMCs, with greater effects in PAH-hPASMCs versus control hPASMCs. Estrogen effects were inhibited by cytochrome P450 1B1 blockade. 16αOHE1 stimulated transient ROS production in hPASMCs, with sustained responses in PAH-hPASMCs. Basal expression of Nox1/Nox4 was potentiated in PAH-hPASMCs. In hPASMCs, 16αOHE1 increased Nox1 expression, stimulated irreversible oxidation of protein tyrosine phosphatases, decreased nuclear factor erythroid–related factor 2 activity and expression of nuclear factor erythroid–related factor 2–regulated antioxidant genes, and promoted proliferation. This was further amplified in PAH-hPASMCs. Nox1−/− but not Nox4−/− mice were protected against PAH and vascular remodeling. Our findings demonstrate that in PAH-hPASMCs, 16αOHE1 stimulates redox-sensitive cell growth primarily through Nox1. Supporting this, in vivo studies exhibited protection against pulmonary hypertension and remodeling in Nox1−/− mice. This study provides new insights through Nox1/ROS and nuclear factor erythroid–related factor 2

  9. Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells

    PubMed Central

    Shiraishi, Takumi; Verdone, James E.; Huang, Jessie; Kahlert, Ulf D.; Hernandez, James R.; Torga, Gonzalo; Zarif, Jelani C.; Epstein, Tamir; Gatenby, Robert; McCartney, Annemarie; Elisseeff, Jennifer H.; Mooney, Steven M.; An, Steven S.; Pienta, Kenneth J.

    2015-01-01

    The ability of a cancer cell to detach from the primary tumor and move to distant sites is fundamental to a lethal cancer phenotype. Metabolic transformations are associated with highly motile aggressive cellular phenotypes in tumor progression. Here, we report that cancer cell motility requires increased utilization of the glycolytic pathway. Mesenchymal cancer cells exhibited higher aerobic glycolysis compared to epithelial cancer cells while no significant change was observed in mitochondrial ATP production rate. Higher glycolysis was associated with increased rates of cytoskeletal remodeling, greater cell traction forces and faster cell migration, all of which were blocked by inhibition of glycolysis, but not by inhibition of mitochondrial ATP synthesis. Thus, our results demonstrate that cancer cell motility and cytoskeleton rearrangement is energetically dependent on aerobic glycolysis and not oxidative phosphorylation. Mitochondrial derived ATP is insufficient to compensate for inhibition of the glycolytic pathway with regard to cellular motility and CSK rearrangement, implying that localization of ATP derived from glycolytic enzymes near sites of active CSK rearrangement is more important for cell motility than total cellular ATP production rate. These results extend our understanding of cancer cell metabolism, potentially providing a target metabolic pathway associated with aggressive disease. PMID:25426557

  10. Mechanism of chromatin remodeling.

    PubMed

    Lorch, Yahli; Maier-Davis, Barbara; Kornberg, Roger D

    2010-02-23

    Results from biochemical and structural studies of the RSC chromatin-remodeling complex prompt a proposal for the remodeling mechanism: RSC binding to the nucleosome releases the DNA from the histone surface and initiates DNA translocation (through one or a small number of DNA base pairs); ATP binding completes translocation, and ATP hydrolysis resets the system. Binding energy thus plays a central role in the remodeling process. RSC may disrupt histone-DNA contacts by affecting histone octamer conformation and through extensive interaction with the DNA. Bulging of the DNA from the octamer surface is possible, and twisting is unavoidable, but neither is the basis of remodeling. PMID:20142505

  11. A Genetic Variant of Hepatitis B Virus Divergent from Known Human and Ape Genotypes Isolated from a Japanese Patient and Provisionally Assigned to New Genotype J▿ †

    PubMed Central

    Tatematsu, Kanako; Tanaka, Yasuhito; Kurbanov, Fuat; Sugauchi, Fuminaka; Mano, Shuhei; Maeshiro, Tatsuji; Nakayoshi, Tomokuni; Wakuta, Moriaki; Miyakawa, Yuzo; Mizokami, Masashi

    2009-01-01

    Hepatitis B virus (HBV) of a novel genotype (J) was recovered from an 88-year-old Japanese patient with hepatocellular carcinoma who had a history of residing in Borneo during the World War II. It was divergent from eight human (A to H) and four ape (chimpanzee, gorilla, gibbon, and orangutan) HBV genotypes, as well as from a recently proposed ninth human genotype I, by 9.9 to 16.5% of the entire genomic sequence and did not have evidence of recombination with any of the nine human genotypes and four nonhuman genotypes. Based on a comparison of the entire nucleotide sequence against 1,440 HBV isolates reported, HBV/J was nearest to the gibbon and orangutan genotypes (mean divergences of 10.9 and 10.7%, respectively). Based on a comparison of four open reading frames, HBV/J was closer to gibbon/orangutan genotypes than to human genotypes in the P and large S genes and closest to Australian aboriginal strains (HBV/C4) and orangutan-derived strains in the S gene, whereas it was closer to human than ape genotypes in the C gene. HBV/J shared a deletion of 33 nucleotides at the start of preS1 region with C4 and gibbon genotypes, had an S-gene sequence similar to that of C4, and expressed the ayw subtype. Efficient infection, replication, and antigen expression by HBV/J were experimentally established in two chimeric mice with the liver repopulated for human hepatocytes. The HBV DNA sequence recovered from infected mice was identical to that in the inoculum. Since HBV/J is positioned phylogenetically in between human and ape genotypes, it may help to trace the origin of HBV and merits further epidemiological surveys. PMID:19640977

  12. Epigenomic regulation of oncogenesis by chromatin remodeling.

    PubMed

    Kumar, R; Li, D-Q; Müller, S; Knapp, S

    2016-08-25

    Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy. PMID:26804164

  13. Molecular Basis of Histone Tail Recognition by Human TIP5 PHD Finger and Bromodomain of the Chromatin Remodeling Complex NoRC

    PubMed Central

    Tallant, Cynthia; Valentini, Erica; Fedorov, Oleg; Overvoorde, Lois; Ferguson, Fleur M.; Filippakopoulos, Panagis; Svergun, Dmitri I.; Knapp, Stefan; Ciulli, Alessio

    2015-01-01

    Summary Binding of the chromatin remodeling complex NoRC to RNA complementary to the rDNA promoter mediates transcriptional repression. TIP5, the largest subunit of NoRC, is involved in recruitment to rDNA by interactions with promoter-bound TTF-I, pRNA, and acetylation of H4K16. TIP5 domains that recognize posttranslational modifications on histones are essential for recruitment of NoRC to chromatin, but how these reader modules recognize site-specific histone tails has remained elusive. Here, we report crystal structures of PHD zinc finger and bromodomains from human TIP5 and BAZ2B in free form and bound to H3 and/or H4 histones. PHD finger functions as an independent structural module in recognizing unmodified H3 histone tails, and the bromodomain prefers H3 and H4 acetylation marks followed by a key basic residue, KacXXR. Further low-resolution analyses of PHD-bromodomain modules provide molecular insights into their trans histone tail recognition, required for nucleosome recruitment and transcriptional repression of the NoRC complex. PMID:25533489

  14. Spontaneous remodeling of HDL particles at acidic pH enhances their capacity to induce cholesterol efflux from human macrophage foam cells[S

    PubMed Central

    Nguyen, Su Duy; Öörni, Katariina; Lee-Rueckert, Miriam; Pihlajamaa, Tero; Metso, Jari; Jauhiainen, Matti; Kovanen, Petri T.

    2012-01-01

    HDL particles may enter atherosclerotic lesions having an acidic intimal fluid. Therefore, we investigated whether acidic pH would affect their structural and functional properties. For this purpose, HDL2 and HDL3 subfractions were incubated for various periods of time at different pH values ranging from 5.5 to 7.5, after which their protein and lipid compositions, size, structure, and cholesterol efflux capacity were analyzed. Incubation of either subfraction at acidic pH induced unfolding of apolipoproteins, which was followed by release of lipid-poor apoA-I and ensuing fusion of the HDL particles. The acidic pH-modified HDL particles exhibited an enhanced ability to promote cholesterol efflux from cholesterol-laden primary human macrophages. Importantly, treatment of the acidic pH-modified HDL with the mast cell-derived protease chymase completely depleted the newly generated lipid-poor apoA-I, and prevented the acidic pH-dependent increase in cholesterol efflux. The above-found pH-dependent structural and functional changes were stronger in HDL3 than in HDL2. Spontaneous acidic pH-induced remodeling of mature spherical HDL particles increases HDL-induced cholesterol efflux from macrophage foam cells, and therefore may have atheroprotective effects. PMID:22855736

  15. Molecular mechanism of the inhibition and remodeling of human islet amyloid polypeptide (hIAPP(1-37)) oligomer by resveratrol from molecular dynamics simulation.

    PubMed

    Wang, Qianqian; Ning, Lulu; Niu, Yuzhen; Liu, Huanxiang; Yao, Xiaojun

    2015-01-01

    Natural polyphenols are one of the most actively investigated categories of amyloid inhibitors, and resveratrol has recently been reported to inhibit and remodel the human islet amyloid polypeptide (hIAPP) oligomers and fibrils. However, the exact mechanism of its action is still unknown, especially for the full-length hIAPP1-37. To this end, we performed all-atom molecular dynamics simulations for hIAPP1-37 pentamer with and without resveratrol. The obtained results show that the binding of resveratrol is able to cause remarkable conformational changes of hIAPP1-37 pentamer, in terms of secondary structures, order degree, and morphology. By clustering analysis, two possible binding sites of resveratrol on the hIAPP1-37 pentamer were found, located at the grooves of the top and bottom surfaces of β-sheet layer, respectively. After the binding free energy calculation and residue energy decomposition, it can be concluded that the bottom site is the more possible one, and that the nonpolar interactions act as the driving force for the binding of hIAPP1-37 to resveratrol. In addition, Arg11 is the most important residue for the binding of resveratrol. The full understanding of inhibitory mechanism of resveratrol on the hIAPP1-37 oligomer, and the identification of its binding sites on this protein are helpful for the future design and discovery of new amyloid inhibitors. PMID:25494644

  16. Molecular basis of histone tail recognition by human TIP5 PHD finger and bromodomain of the chromatin remodeling complex NoRC.

    PubMed

    Tallant, Cynthia; Valentini, Erica; Fedorov, Oleg; Overvoorde, Lois; Ferguson, Fleur M; Filippakopoulos, Panagis; Svergun, Dmitri I; Knapp, Stefan; Ciulli, Alessio

    2015-01-01

    Binding of the chromatin remodeling complex NoRC to RNA complementary to the rDNA promoter mediates transcriptional repression. TIP5, the largest subunit of NoRC, is involved in recruitment to rDNA by interactions with promoter-bound TTF-I, pRNA, and acetylation of H4K16. TIP5 domains that recognize posttranslational modifications on histones are essential for recruitment of NoRC to chromatin, but how these reader modules recognize site-specific histone tails has remained elusive. Here, we report crystal structures of PHD zinc finger and bromodomains from human TIP5 and BAZ2B in free form and bound to H3 and/or H4 histones. PHD finger functions as an independent structural module in recognizing unmodified H3 histone tails, and the bromodomain prefers H3 and H4 acetylation marks followed by a key basic residue, KacXXR. Further low-resolution analyses of PHD-bromodomain modules provide molecular insights into their trans histone tail recognition, required for nucleosome recruitment and transcriptional repression of the NoRC complex. PMID:25533489

  17. Immunologic and inflammatory mechanisms that drive asthma progression to remodeling

    PubMed Central

    Broide, David H.

    2008-01-01

    Although histologic features of airway remodeling have been well characterized in asthma, the immunologic and inflammatory mechanisms that drive progression of asthma to remodeling are still incompletely understood. Conceptually, airway remodeling may be due to persistent inflammation and/or aberrant tissue repair mechanisms. It is likely that several immune and inflammatory cell types and mediators are involved in mediating airway remodeling. In addition, different features of airway remodeling are likely mediated by different inflammatory pathways. Several important candidate mediators of remodeling have been identified including TGF-β and Th2 cytokines (including IL-5 and IL-13), as well as VEGF, ADAM-33, and MMP-9. Mouse models of airway remodeling have provided important insight into potential mechanisms by which TGF-β activation of the Smad 2/3 signaling pathway may contribute to airway remodeling. Human studies have demonstrated that anti-IL-5 reduces levels of airway eosinophils expressing TGF-β, as well as levels of airway remodeling as assessed by bronchial biopsies. Further such studies confirming these observations, as well as alternate studies targeting additional individual cell types, cytokines, and mediators are needed in human subjects with asthma to determine the role of candidate mediators of inflammation on the development and progression of airway remodeling. PMID:18328887

  18. mTOR mediates human trophoblast invasion through regulation of matrix-remodeling enzymes and is associated with serine phosphorylation of STAT3

    SciTech Connect

    Busch, Susann; Renaud, Stephen J.; Schleussner, Ekkehard; Graham, Charles H.; Markert, Udo R.

    2009-06-10

    The intracellular signaling molecule mammalian target of rapamycin (mTOR) is essential for cell growth and proliferation. It is involved in mouse embryogenesis, murine trophoblast outgrowth and linked to tumor cell invasiveness. In order to assess the role of mTOR in human trophoblast invasion we analyzed the in vitro invasiveness of HTR-8/SVneo immortalized first-trimester trophoblast cells in conjunction with enzyme secretion upon mTOR inhibition and knockdown of mTOR protein expression. Additionally, we also tested the capability of mTOR to trigger signal transducer and activator of transcription (STAT)-3 by its phosphorylation status. Rapamycin inhibited mTOR kinase activity as demonstrated with a lower phosphorylation level of the mTOR substrate p70 S6 kinase (S6K). With the use of rapamycin and siRNA-mediated mTOR knockdown we could show that cell proliferation, invasion and secretion of matrix-metalloproteinases (MMP)-2 and -9, urokinase-like plasminogen activator (uPA) and its major physiological uPA inhibitor (PAI)-1 were inhibited. While tyrosine phosphorylation of STAT3 was unaffected by mTOR inhibition and knockdown, serine phosphorylation was diminished. We conclude that mTOR signaling is one major mechanism in a tightly regulated network of intracellular signal pathways including the JAK/STAT system to regulate invasion in human trophoblast cells by secretion of enzymes that remodel the extra-cellular matrix (ECM) such as MMP-2, -9, uPA and PAI-1. Dysregulation of mTOR may contribute to pregnancy-related pathologies caused through impaired trophoblast invasion.

  19. Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms

    PubMed Central

    2014-01-01

    Introduction Among the plethora of cells under investigation to restore a functional myocardium, mesenchymal stromal cells (MSCs) have been granted considerable interest. However, whereas the beneficial effects of bone marrow MSCs (BM-MSCs) in the context of the diseased heart are widely reported, data are still scarce on MSCs from the umbilical cord matrix (UCM-MSCs). Herein we report on the effect of UCM-MSC transplantation to the infarcted murine heart, seconded by the dissection of the molecular mechanisms at play. Methods Human umbilical cord tissue-derived MSCs (UCX®), obtained by using a proprietary technology developed by ECBio, were delivered via intramyocardial injection to C57BL/6 females subjected to permanent ligation of the left descending coronary artery. Moreover, medium produced by cultured UCX® preconditioned under normoxia (CM) or hypoxia (CMH) was collected for subsequent in vitro assays. Results Evaluation of the effects upon intramyocardial transplantation shows that UCX® preserved cardiac function and attenuated cardiac remodeling subsequent to myocardial infarction (MI). UCX® further led to increased capillary density and decreased apoptosis in the injured tissue. In vitro, UCX®-conditioned medium displayed (a) proangiogenic activity by promoting the formation of capillary-like structures by human umbilical vein endothelial cells (HUVECs), and (b) antiapoptotic activity in HL-1 cardiomyocytes subjected to hypoxia. Moreover, in adult murine cardiac Sca-1+ progenitor cells (CPCs), conditioned medium enhanced mitogenic activity while activating a gene program characteristic of cardiomyogenic differentiation. Conclusions UCX® preserve cardiac function after intramyocardial transplantation in a MI murine model. The cardioprotective effects of UCX® were attributed to paracrine mechanisms that appear to enhance angiogenesis, limit the extent of the apoptosis, augment proliferation, and activate a pool of resident CPCs. Overall, these results

  20. Prostaglandin E2 Exerts Multiple Regulatory Actions on Human Obese Adipose Tissue Remodeling, Inflammation, Adaptive Thermogenesis and Lipolysis

    PubMed Central

    García-Alonso, Verónica; Titos, Esther; Alcaraz-Quiles, Jose; Rius, Bibiana; Lopategi, Aritz; López-Vicario, Cristina; Jakobsson, Per-Johan; Delgado, Salvadora; Lozano, Juanjo; Clària, Joan

    2016-01-01

    Obesity induces white adipose tissue (WAT) dysfunction characterized by unremitting inflammation and fibrosis, impaired adaptive thermogenesis and increased lipolysis. Prostaglandins (PGs) are powerful lipid mediators that influence the homeostasis of several organs and tissues. The aim of the current study was to explore the regulatory actions of PGs in human omental WAT collected from obese patients undergoing laparoscopic bariatric surgery. In addition to adipocyte hypertrophy, obese WAT showed remarkable inflammation and total and pericellular fibrosis. In this tissue, a unique molecular signature characterized by altered expression of genes involved in inflammation, fibrosis and WAT browning was identified by microarray analysis. Targeted LC-MS/MS lipidomic analysis identified increased PGE2 levels in obese fat in the context of a remarkable COX-2 induction and in the absence of changes in the expression of terminal prostaglandin E synthases (i.e. mPGES-1, mPGES-2 and cPGES). IPA analysis established PGE2 as a common top regulator of the fibrogenic/inflammatory process present in this tissue. Exogenous addition of PGE2 significantly reduced the expression of fibrogenic genes in human WAT explants and significantly down-regulated Col1α1, Col1α2 and αSMA in differentiated 3T3 adipocytes exposed to TGF-β. In addition, PGE2 inhibited the expression of inflammatory genes (i.e. IL-6 and MCP-1) in WAT explants as well as in adipocytes challenged with LPS. PGE2 anti-inflammatory actions were confirmed by microarray analysis of human pre-adipocytes incubated with this prostanoid. Moreover, PGE2 induced expression of brown markers (UCP1 and PRDM16) in WAT and adipocytes, but not in pre-adipocytes, suggesting that PGE2 might induce the trans-differentiation of adipocytes towards beige/brite cells. Finally, PGE2 inhibited isoproterenol-induced adipocyte lipolysis. Taken together, these findings identify PGE2 as a regulator of the complex network of interactions

  1. Mitochondria, myocardial remodeling, and cardiovascular disease.

    PubMed

    Verdejo, Hugo E; del Campo, Andrea; Troncoso, Rodrigo; Gutierrez, Tomás; Toro, Barbra; Quiroga, Clara; Pedrozo, Zully; Munoz, Juan Pablo; Garcia, Lorena; Castro, Pablo F; Lavandero, Sergio

    2012-12-01

    The process of muscle remodeling lies at the core of most cardiovascular diseases. Cardiac adaptation to pressure or volume overload is associated with a complex molecular change in cardiomyocytes which leads to anatomic remodeling of the heart muscle. Although adaptive at its beginnings, the sustained cardiac hypertrophic remodeling almost unavoidably ends in progressive muscle dysfunction, heart failure and ultimately death. One of the features of cardiac remodeling is a progressive impairment in mitochondrial function. The heart has the highest oxygen uptake in the human body and accordingly it has a large number of mitochondria, which form a complex network under constant remodeling in order to sustain the high metabolic rate of cardiac cells and serve as Ca(2+) buffers acting together with the endoplasmic reticulum (ER). However, this high dependence on mitochondrial metabolism has its costs: when oxygen supply is threatened, high leak of electrons from the electron transport chain leads to oxidative stress and mitochondrial failure. These three aspects of mitochondrial function (Reactive oxygen species signaling, Ca(2+) handling and mitochondrial dynamics) are critical for normal muscle homeostasis. In this article, we will review the latest evidence linking mitochondrial morphology and function with the process of myocardial remodeling and cardiovascular disease. PMID:22972531

  2. HLA-G in human early pregnancy: control of uterine immune cell activation and likely vascular remodeling.

    PubMed

    Le Bouteiller, Philippe

    2015-01-01

    Despite a number of controversies, the functional importance of human leukocyte antigen G (HLA-G) in early human pregnancy is now sustained by a large amount of sound data. Membrane-bound and soluble HLA-G isoforms, either as β2-microglobulin-free or -associated as monomers or dimers, are expressed by different trophoblast subpopulations, the only fetal-derived cells that are directly in contact with maternal cells (maternal-fetal interfaces). Trophoblast HLA-G is the specific ligand of multiple cellular receptors present in maternal immune and non-immune cells, including CD8, leukocyte immunoglobulin-like receptor (LILR) B1, LILRB2, killer cell immunoglobulin-like receptor (KIR) 2DL4, and possibly CD160. Trophoblast HLA-G specific engagement of these cellular receptors triggers either inhibitory or activating signals in decidual CD8 + T cells, CD4 + T cells, natural killer (NK) cells, macrophages, dendritic cells, or endothelial cells. Such HLA-G-receptor specific interactions first contribute to limit potentially harmful maternal anti-paternal immune response by impairment of decidual NK cell cytotoxicity, inhibition of CD4 + and CD8 + T-cell and B-cell proliferation, and induction of apoptosis of activated CD8 + T cells. Second, these HLA-G specific interactions contribute to stimulate placental development through secretion of angiogenic factors by decidual NK cells and macrophages, and to provide a protective effect for the outcome of pregnancy by the secretion of interleukin (IL)-4 by decidual trophoblast antigen-specific CD4 + T cells. PMID:25163504

  3. Inhibition by a retinoic acid receptor γ agonist of extracellular matrix remodeling mediated by human Tenon fibroblasts

    PubMed Central

    Liu, Yang; Orita, Tomoko; Suzuki, Katsuyoshi; Teranishi, Shinichiro; Mori, Takuya; Sonoda, Koh-Hei

    2015-01-01

    Purpose Scar formation is most frequently responsible for the failure of glaucoma filtration surgery. Retinoic acids are vitamin A derivatives that play diverse roles in development, immunity, and tissue repair. The effects of the retinoic acid receptor (RAR) γ agonist R667 on the contractility of human Tenon fibroblasts (HTFs) cultured in a three-dimensional collagen gel as well as on intraocular pressure (IOP) in a rat model of glaucoma filtration surgery were investigated. Methods HTFs were cultured in a type I collagen gel, the contraction of which was evaluated by measurement of the gel diameter. The release of matrix metalloproteinases (MMPs) into culture supernatants was assessed with immunoblot analysis and gelatin zymography. Phosphorylation of focal adhesion kinase (FAK) was examined with immunoblot analysis, and production of fibronectin and type I collagen was measured with immunoassays. Results R667 inhibited transforming growth factor-β1 (TGF-β1)-induced collagen gel contraction mediated by HTFs in a concentration- and time-dependent manner, whereas an RARα agonist inhibited this process to a lesser extent and an RARβ agonist had no effect. TGF-β1-induced MMP-1 and MMP-3 release, FAK phosphorylation, and fibronectin and type I collagen production in HTFs were also attenuated by R667. Furthermore, R667 lowered IOP in rats after glaucoma filtration surgery. Conclusions R667 inhibited TGF-β1-induced contraction and extracellular matrix synthesis in HTFs. Such effects might have contributed to the lowering of IOP by R667 in a rat model of glaucoma filtration surgery. RARγ agonists might thus prove effective for inhibition of scar formation after such surgery. PMID:26788029

  4. Dynamin, a membrane remodelling GTPase

    PubMed Central

    Ferguson, Shawn M.; De Camilli, Pietro

    2012-01-01

    Dynamin, the founding member of a family of dynamin-like GTPases (DLPs) implicated in membrane remodelling, has a critical role in endocytic membrane fission events. The use of complementary approaches, including live cell imaging, cell free-studies, X-ray crystallography and genetic studies in mice has greatly advanced our understanding of the mechanisms by which dynamin acts, its essential roles in cell physiology and the specific function of different dynamin isoforms. In addition, several connections between dynamin and human disease have also emerged that highlight specific contributions of this GTPase to the physiology of different tissues. PMID:22233676

  5. Divergence of catalytic mechanism within a glycosidase family provides insight into evolution of carbohydrate metabolism by human gut flora.

    PubMed

    Gloster, Tracey M; Turkenburg, Johan P; Potts, Jennifer R; Henrissat, Bernard; Davies, Gideon J

    2008-10-20

    Enzymatic cleavage of the glycosidic bond yields products in which the anomeric configuration is either retained or inverted. Each mechanism reflects the dispositions of the enzyme functional groups; a facet of which is essentially conserved in 113 glycoside hydrolase (GH) families. We show that family GH97 has diverged significantly, as it contains both inverting and retaining alpha-glycosidases. This reflects evolution of the active center; a glutamate acts as a general base in inverting members, exemplified by Bacteroides thetaiotaomicron alpha-glucosidase BtGH97a, whereas an aspartate likely acts as a nucleophile in retaining members. The structure of BtGH97a and its complexes with inhibitors, coupled to kinetic analysis of active-site variants, reveals an unusual calcium ion dependence. 1H NMR analysis shows an inversion mechanism for BtGH97a, whereas another GH97 enzyme from B. thetaiotaomicron, BtGH97b, functions as a retaining alpha-galactosidase. PMID:18848471

  6. Lipoxin A4 and lipoxin B4 stimulate the release but not the oxygenation of arachidonic acid in human neutrophils: Dissociation between lipid remodeling and adhesion

    SciTech Connect

    Nigam, S.; Fiore, S.; Luscinskas, F.W.; Serhan, C.N. )

    1990-06-01

    The profiles of actions of lipoxin A4 (LXA4) and lipoxin B4 (LXB4), two lipoxygenase-derived eicosanoids, were examined with human neutrophils. At nanomolar concentrations, LXA4 and LXB4 each stimulated the release of (1-14C)arachidonic acid from esterified sources in neutrophils. Lipoxin-induced release of (1-14C)arachidonic acid was both dose- and time-dependent and was comparable to that induced by the chemotactic peptide f-met-leu-phe. Time-course studies revealed that lipoxin A4 and lipoxin B4 each induced a biphasic release of (1-14C)arachidonic acid, which was evident within seconds (5-15 sec) in its initial phase and minutes (greater than 30 sec) in the second phase. In contrast, the all-trans isomers of LXA4 and LXB4 did not provoke (1-14C)AA release. Lipoxin-induced release of arachidonic acid was inhibited by prior treatment of the cells with pertussis toxin but not by its beta-oligomers, suggesting the involvement of guaninine nucleotide-binding regulatory proteins in this event. Dual radiolabeling of neutrophil phospholipid classes with (1-14C)arachidonic acid and (3H)palmitic acid showed that phosphatidylcholine was a major source of lipoxin-induced release of (1-14C)arachidonic acid. They also demonstrated that lipoxins rapidly stimulate both formation of phosphatidic acid as well as phospholipid remodeling. Although both LXA4 and LXB4 (10(-8)-10(-6) M) stimulated the release of (1-14C)arachidonic acid, neither compound evoked its oxygenation by either the 5- or 15-lipoxygenase pathways (including the formation of LTB4, 20-COOH-LTB4, 5-HETE, or 15-HETE). LXA4 and LXB4 (10(-7) M) each stimulated the elevation of cytosolic Ca2+ as monitored with Fura 2-loaded cells, albeit to a lesser extent than equimolar concentrations of FMLP. Neither lipoxin altered the binding of (3H)LTB4 to its receptor on neutrophils.

  7. Rate-dependent force, intracellular calcium, and action potential voltage alternans are modulated by sarcomere length and heart failure induced-remodeling of thin filament regulation in human heart failure: A myocyte modeling study.

    PubMed

    Zile, Melanie A; Trayanova, Natalia A

    2016-01-01

    Microvolt T-wave alternans (MTWA) testing identifies heart failure patients at risk for lethal ventricular arrhythmias at near-resting heart rates (<110 beats per minute). Since pressure alternans occurs simultaneously with MTWA and has a higher signal to noise ratio, it may be a better predictor of arrhythmia, although the mechanism remains unknown. Therefore, we investigated the relationship between force alternans (FORCE-ALT), the cellular manifestation of pressure alternans, and action potential voltage alternans (APV-ALT), the cellular driver of MTWA. Our goal was to uncover the mechanisms linking APV-ALT and FORCE-ALT in failing human myocytes and to investigate how the link between those alternans was affected by pacing rate and by physiological conditions such as sarcomere length and heart failure induced-remodeling of mechanical parameters. To achieve this, a mechanically-based, strongly coupled human electromechanical myocyte model was constructed. Reducing the sarcoplasmic reticulum calcium uptake current (Iup) to 27% was incorporated to simulate abnormal calcium handling in human heart failure. Mechanical remodeling was incorporated to simulate altered thin filament activation and crossbridge (XB) cycling rates. A dynamical pacing protocol was used to investigate the development of intracellular calcium concentration ([Ca]i), voltage, and active force alternans at different pacing rates. FORCE-ALT only occurred in simulations incorporating reduced Iup, demonstrating that alternans in the intracellular calcium concentration (CA-ALT) induced FORCE-ALT. The magnitude of FORCE-ALT was found to be largest at clinically relevant pacing rates (<110 bpm), where APV-ALT was smallest. We found that the magnitudes of FORCE-ALT, CA-ALT and APV-ALT were altered by heart failure induced-remodeling of mechanical parameters and sarcomere length due to the presence of myofilament feedback. These findings provide important insight into the relationship between heart

  8. CaV1.2/CaV3.x channels mediate divergent vasomotor responses in human cerebral arteries.

    PubMed

    Harraz, Osama F; Visser, Frank; Brett, Suzanne E; Goldman, Daniel; Zechariah, Anil; Hashad, Ahmed M; Menon, Bijoy K; Watson, Tim; Starreveld, Yves; Welsh, Donald G

    2015-05-01

    The regulation of arterial tone is critical in the spatial and temporal control of cerebral blood flow. Voltage-gated Ca(2+) (CaV) channels are key regulators of excitation-contraction coupling in arterial smooth muscle, and thereby of arterial tone. Although L- and T-type CaV channels have been identified in rodent smooth muscle, little is known about the expression and function of specific CaV subtypes in human arteries. Here, we determined which CaV subtypes are present in human cerebral arteries and defined their roles in determining arterial tone. Quantitative polymerase chain reaction and Western blot analysis, respectively, identified mRNA and protein for L- and T-type channels in smooth muscle of cerebral arteries harvested from patients undergoing resection surgery. Analogous to rodents, CaV1.2 (L-type) and CaV3.2 (T-type) α1 subunits were expressed in human cerebral arterial smooth muscle; intriguingly, the CaV3.1 (T-type) subtype present in rodents was replaced with a different T-type isoform, CaV3.3, in humans. Using established pharmacological and electrophysiological tools, we separated and characterized the unique profiles of Ca(2+) channel subtypes. Pressurized vessel myography identified a key role for CaV1.2 and CaV3.3 channels in mediating cerebral arterial constriction, with the former and latter predominating at higher and lower intraluminal pressures, respectively. In contrast, CaV3.2 antagonized arterial tone through downstream regulation of the large-conductance Ca(2+)-activated K(+) channel. Computational analysis indicated that each Ca(2+) channel subtype will uniquely contribute to the dynamic regulation of cerebral blood flow. In conclusion, this study documents the expression of three distinct Ca(2+) channel subtypes in human cerebral arteries and further shows how they act together to orchestrate arterial tone. PMID:25918359

  9. Is domestication driven by reduced fear of humans? Boldness, metabolism and serotonin levels in divergently selected red junglefowl (Gallus gallus).

    PubMed

    Agnvall, Beatrix; Katajamaa, Rebecca; Altimiras, Jordi; Jensen, Per

    2015-09-01

    Domesticated animals tend to develop a coherent set of phenotypic traits. Tameness could be a central underlying factor driving this, and we therefore selected red junglefowl, ancestors of all domestic chickens, for high or low fear of humans during six generations. We measured basal metabolic rate (BMR), feed efficiency, boldness in a novel object (NO) test, corticosterone reactivity and basal serotonin levels (related to fearfulness) in birds from the fifth and sixth generation of the high- and low-fear lines, respectively (44-48 individuals). Corticosterone response to physical restraint did not differ between selection lines. However, BMR was higher in low-fear birds, as was feed efficiency. Low-fear males had higher plasma levels of serotonin and both low-fear males and females were bolder in an NO test. The results show that many aspects of the domesticated phenotype may have developed as correlated responses to reduced fear of humans, an essential trait for successful domestication. PMID:26382075

  10. Is domestication driven by reduced fear of humans? Boldness, metabolism and serotonin levels in divergently selected red junglefowl (Gallus gallus)

    PubMed Central

    Agnvall, Beatrix; Katajamaa, Rebecca; Altimiras, Jordi; Jensen, Per

    2015-01-01

    Domesticated animals tend to develop a coherent set of phenotypic traits. Tameness could be a central underlying factor driving this, and we therefore selected red junglefowl, ancestors of all domestic chickens, for high or low fear of humans during six generations. We measured basal metabolic rate (BMR), feed efficiency, boldness in a novel object (NO) test, corticosterone reactivity and basal serotonin levels (related to fearfulness) in birds from the fifth and sixth generation of the high- and low-fear lines, respectively (44–48 individuals). Corticosterone response to physical restraint did not differ between selection lines. However, BMR was higher in low-fear birds, as was feed efficiency. Low-fear males had higher plasma levels of serotonin and both low-fear males and females were bolder in an NO test. The results show that many aspects of the domesticated phenotype may have developed as correlated responses to reduced fear of humans, an essential trait for successful domestication. PMID:26382075

  11. Divergent selection on, but no genetic conflict over, female and male timing and rate of reproduction in a human population

    PubMed Central

    Bolund, Elisabeth; Bouwhuis, Sandra; Pettay, Jenni E.; Lummaa, Virpi

    2013-01-01

    The sexes often have different phenotypic optima for important life-history traits, and because of a largely shared genome this can lead to a conflict over trait expression. In mammals, the obligate costs of reproduction are higher for females, making reproductive timing and rate especially liable to conflict between the sexes. While studies from wild vertebrates support such sexual conflict, it remains unexplored in humans. We used a pedigreed human population from preindustrial Finland to estimate sexual conflict over age at first and last reproduction, reproductive lifespan and reproductive rate. We found that the phenotypic selection gradients differed between the sexes. We next established significant heritabilities in both sexes for all traits. All traits, except reproductive rate, showed strongly positive intersexual genetic correlations and were strongly genetically correlated with fitness in both sexes. Moreover, the genetic correlations with fitness were almost identical in men and women. For reproductive rate, the intersexual correlation and the correlation with fitness were weaker but again similar between the sexes. Thus, in this population, an apparent sexual conflict at the phenotypic level did not reflect an underlying genetic conflict over the studied reproductive traits. These findings emphasize the need for incorporating genetic perspectives into studies of human life-history evolution. PMID:24107531

  12. Allergenic Can f 1 and its human homologue Lcn-1 direct dendritic cells to induce divergent immune responses

    PubMed Central

    Posch, Beate; Irsara, Christian; Gamper, Fabian S; Herrmann, Martin; Bindreither, Daniel; Fuchs, Dietmar; Reider, Norbert; Redl, Bernhard; Heufler, Christine

    2015-01-01

    Why and when the immune system skews to Th2 mediated allergic immune responses is still poorly characterized. With two homologous lipocalins, the major respiratory dog allergen Can f 1 and the human endogenous, non-allergenic Lipocalin-1, we investigated their impact on human monocyte-derived dendritic cells (DC). The two lipocalins had differential effects on DC according to their allergenic potential. Compared to Lipocalin-1, Can f 1 persistently induced lower levels of the Th1 skewing maturation marker expression, tryptophan breakdown and interleukin (IL)-12 production in DC. As a consequence, T cells stimulated by DC treated with Can f 1 produced more of the Th2 signature cytokine IL-13 and lower levels of the Th1 signature cytokine interferon-γ than T cells stimulated by Lipocalin-1 treated DC. These data were partially verified by a second pair of homologous lipocalins, the cat allergen Fel d 4 and its putative human homologue major urinary protein. Our data indicate that the crosstalk of DC with lipocalins alone has the potential to direct the type of immune response to these particular antigens. A global gene expression analysis further supported these results and indicated significant differences in intracellular trafficking, sorting and antigen presentation pathways when comparing Can f 1 and Lipocalin-1 stimulated DC. With this study we contribute to a better understanding of the induction phase of a Th2 immune response. PMID:26218644

  13. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens

    PubMed Central

    Xu, Jun; Saunders, Charles W.; Hu, Ping; Grant, Raymond A.; Boekhout, Teun; Kuramae, Eiko E.; Kronstad, James W.; DeAngelis, Yvonne M.; Reeder, Nancy L.; Johnstone, Kevin R.; Leland, Meredith; Fieno, Angela M.; Begley, William M.; Sun, Yiping; Lacey, Martin P.; Chaudhary, Tanuja; Keough, Thomas; Chu, Lien; Sears, Russell; Yuan, Bo; Dawson, Thomas L.

    2007-01-01

    Fungi in the genus Malassezia are ubiquitous skin residents of humans and other warm-blooded animals. Malassezia are involved in disorders including dandruff and seborrheic dermatitis, which together affect >50% of humans. Despite the importance of Malassezia in common skin diseases, remarkably little is known at the molecular level. We describe the genome, secretory proteome, and expression of selected genes of Malassezia globosa. Further, we report a comparative survey of the genome and secretory proteome of Malassezia restricta, a close relative implicated in similar skin disorders. Adaptation to the skin environment and associated pathogenicity may be due to unique metabolic limitations and capabilities. For example, the lipid dependence of M. globosa can be explained by the apparent absence of a fatty acid synthase gene. The inability to synthesize fatty acids may be complemented by the presence of multiple secreted lipases to aid in harvesting host lipids. In addition, an abundance of genes encoding secreted hydrolases (e.g., lipases, phospholipases, aspartyl proteases, and acid sphingomyelinases) was found in the M. globosa genome. In contrast, the phylogenetically closely related plant pathogen Ustilago maydis encodes a different arsenal of extracellular hydrolases with more copies of glycosyl hydrolase genes. M. globosa shares a similar arsenal of extracellular hydrolases with the phylogenetically distant human pathogen, Candida albicans, which occupies a similar niche, indicating the importance of host-specific adaptation. The M. globosa genome sequence also revealed the presence of mating-type genes, providing an indication that Malassezia may be capable of sex. PMID:18000048

  14. Human fascia lata ECM scaffold augmented with immobilized hyaluronan: inflammatory response and remodeling in the canine body wall and shoulder implantation sites.

    PubMed

    Leigh, Diane R; Kim, Myung-Sun; Kovacevic, David; Baker, Andrew R; Tan, Carmela D; Calabro, Anthony; Derwin, Kathleen A

    2015-01-01

    We postulate that immobilization of tyramine-substituted hyaluronan (THA) into an extracellular matrix (ECM) scaffold may be a strategy to promote an anti-inflammatory response to the ECM. Further, we posit that the implantation site could influence the inflammatory response and remodeling of an ECM scaffold. Eight beagles underwent implantation of fascia ECM grafts, treated with either immobilized low molecular weight (57 kDa) THA or water only, in both the shoulder injury and body wall sites. Dogs were euthanized at 12 weeks and fascia grafts harvested en bloc for histology. Grafts implanted at the body wall had significantly higher inflammatory cell infiltrate and vascularity, and significantly lower retardance (collagen density), than grafts at the shoulder, suggestive of a more intense, persistent, and perhaps degradative inflammatory and remodeling response at the body wall than shoulder injury site in the canine model. However, the presence of immobilized low MW THA had no effect on the inflammation response or remodeling of fascia ECM compared to water-treated controls. Importantly, these results suggest that the inflammatory response and remodeling of biomaterial implants depends on the location of implantation and therefore our animal models need to be carefully chosen. Further, the potential anti-inflammatory advantages of hyaluronan (HA) in wound healing do not appear to be realized when presenting it to the host as non-degradable hydrogel even if its capacity for binding HA binding protein is maintained. Further study treating ECM with uncross-linked (free) HA or immobilized low MW THA as a means to deliver free HA or other biomolecules to a surgical repair site is warranted. PMID:25400204

  15. Immunoregulation of bone remodelling

    PubMed Central

    Singh, Ajai; Mehdi, Abbass A; Srivastava, Rajeshwer N; Verma, Nar Singh

    2012-01-01

    Remodeling, a continuous physiological process maintains the strength of the bones, which maintains a delicate balance between bone formation and resorption process. This review gives an insight to the complex interaction and correlation between the bone remodeling and the corresponding changes in host immunological environment and also summarises the most recent developments occuring in the understanding of this complex field. T cells, both directly and indirectly increase the expression of receptor activator of nuclear factor kB ligand (RANKL); a vital step in the activation of osteoclasts, thus positively regulates the osteoclastogenesis. Though various cytokines, chemikines, transcription factors and co-stimulatory molecules are shared by both skeletal and immune systems, but researches are being conducted to establish and analyse their role and / or control on this complex but vital process. The understanding of this part of research may open new horizons in the management of inflammatory and autoimmune diseases, resulting into bone loss and that of osteoporosis also. PMID:22837895

  16. Human Mesenchymal Stromal Cells from Different Sources Diverge in Their Expression of Cell Surface Proteins and Display Distinct Differentiation Patterns

    PubMed Central

    Elahi, Kourosch C.; Klein, Gerd; Avci-Adali, Meltem; Sievert, Karl D.; MacNeil, Sheila; Aicher, Wilhelm K.

    2016-01-01

    When germ-free cell cultures became a laboratory routine, hopes were high for using this novel technology for treatment of diseases or replacement of cells in patients suffering from injury, inflammation, or cancer or even refreshing cells in the elderly. Today, more than 50 years after the first successful bone marrow transplantation, clinical application of hematopoietic stem cells is a routine procedure, saving the lives of many every day. However, transplanting other than hematopoietic stem and progenitor cells is still limited to a few applications, and it mainly applies to mesenchymal stromal cells (MSCs) isolated from bone marrow. But research progressed and different trials explore the clinical potential of human MSCs isolated from bone marrow but also from other tissues including adipose tissue. Recently, MSCs isolated from bone marrow (bmMSCs) were shown to be a blend of distinct cells and MSCs isolated from different tissues show besides some common features also some significant differences. This includes the expression of distinct antigens on subsets of MSCs, which was utilized recently to define and separate functionally different subsets from bulk MSCs. We therefore briefly discuss differences found in subsets of human bmMSCs and in MSCs isolated from some other sources and touch upon how this could be utilized for cell-based therapies. PMID:26770208

  17. Geographic Divergence of Bovine and Human Shiga Toxin–Producing Escherichia coli O157:H7 Genotypes, New Zealand1

    PubMed Central

    Cookson, Adrian L.; Campbell, Donald M.; Duncan, Gail E.; Prattley, Deborah; Carter, Philip; Besser, Thomas E.; Shringi, Smriti; Hathaway, Steve; Marshall, Jonathan C.; French, Nigel P.

    2014-01-01

    Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a zoonotic pathogen of public health concern worldwide. To compare the local and large-scale geographic distributions of genotypes of STEC O157:H7 isolates obtained from various bovine and human sources during 2008–2011, we used pulsed-field gel electrophoresis and Shiga toxin–encoding bacteriophage insertion (SBI) typing. Using multivariate methods, we compared isolates from the North and South Islands of New Zealand with isolates from Australia and the United States. The STEC O157:H7 population structure differed substantially between the 2 islands and showed evidence of finer scale spatial structuring, which is consistent with highly localized transmission rather than disseminated foodborne outbreaks. The distribution of SBI types differed markedly among isolates from New Zealand, Australia, and the United States. Our findings also provide evidence for the historic introduction into New Zealand of a subset of globally circulating STEC O157:H7 strains that have continued to evolve and be transmitted locally between cattle and humans. PMID:25568924

  18. Divergent signaling pathways regulate IL-12 production induced by different species of Lactobacilli in human dendritic cells.

    PubMed

    Amar, Yacine; Rizzello, Valeria; Cavaliere, Riccardo; Campana, Stefania; De Pasquale, Claudia; Barberi, Chiara; Oliveri, Daniela; Pezzino, Gaetana; Costa, Gregorio; Meddah, Aicha Tirtouil; Ferlazzo, Guido; Bonaccorsi, Irene

    2015-07-01

    Recent studies have indicated that different strains of Lactobacilli differ in their ability to regulate IL-12 production by dendritic cells (DCs), as some strains are stronger inducer of IL-12 while other are not and can even inhibit IL-12 production stimulated by IL-12-inducer Lactobacilli. In this report we demonstrate that Lactobacillus reuteri 5289, as previously described for other strains of L. reuteri, can inhibit DC production of IL-12 induced by Lactobacilllus acidophilus NCFM. Remarkably, L. reuteri 5289 was able to inhibit IL-12 production induced not only by Lactobacilli, as so far reported, but also by bacteria of different genera, including pathogens. We investigated in human DCs the signal transduction pathways involved in the inhibition of IL-12 production induced by L. reuteri 5289, showing that this potential anti-inflammatory activity, which is also accompanied by an elevated IL-10 production, is associated to a prolonged phosphorilation of ERK1/2 MAP kinase pathway. Improved understanding of the immune regulatory mechanisms exerted by Lactobacilli is crucial for a more precise employment of these commensal bacteria as probiotics in human immune-mediated pathologies, such as allergies or inflammatory bowel diseases. PMID:25977118

  19. Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study

    PubMed Central

    Krogh-Madsen, Trine; Abbott, Geoffrey W.; Christini, David J.

    2012-01-01

    Atrial fibrillation, a common cardiac arrhythmia, often progresses unfavourably: in patients with long-term atrial fibrillation, fibrillatory episodes are typically of increased duration and frequency of occurrence relative to healthy controls. This is due to electrical, structural, and contractile remodeling processes. We investigated mechanisms of how electrical and structural remodeling contribute to perpetuation of simulated atrial fibrillation, using a mathematical model of the human atrial action potential incorporated into an anatomically realistic three-dimensional structural model of the human atria. Electrical and structural remodeling both shortened the atrial wavelength - electrical remodeling primarily through a decrease in action potential duration, while structural remodeling primarily slowed conduction. The decrease in wavelength correlates with an increase in the average duration of atrial fibrillation/flutter episodes. The dependence of reentry duration on wavelength was the same for electrical vs. structural remodeling. However, the dynamics during atrial reentry varied between electrical, structural, and combined electrical and structural remodeling in several ways, including: (i) with structural remodeling there were more occurrences of fragmented wavefronts and hence more filaments than during electrical remodeling; (ii) dominant waves anchored around different anatomical obstacles in electrical vs. structural remodeling; (iii) dominant waves were often not anchored in combined electrical and structural remodeling. We conclude that, in simulated atrial fibrillation, the wavelength dependence of reentry duration is similar for electrical and structural remodeling, despite major differences in overall dynamics, including maximal number of filaments, wave fragmentation, restitution properties, and whether dominant waves are anchored to anatomical obstacles or spiralling freely. PMID:22383869

  20. Calcium signalling remodelling and disease.

    PubMed

    Berridge, Michael J

    2012-04-01

    A wide range of Ca2+ signalling systems deliver the spatial and temporal Ca2+ signals necessary to control the specific functions of different cell types. Release of Ca2+ by InsP3 (inositol 1,4,5-trisphosphate) plays a central role in many of these signalling systems. Ongoing transcriptional processes maintain the integrity and stability of these cell-specific signalling systems. However, these homoeostatic systems are highly plastic and can undergo a process of phenotypic remodelling, resulting in the Ca2+ signals being set either too high or too low. Such subtle dysregulation of Ca2+ signals have been linked to some of the major diseases in humans such as cardiac disease, schizophrenia, bipolar disorder and Alzheimer's disease. PMID:22435804

  1. Caenorhabditis elegans AGXT-1 is a mitochondrial and temperature-adapted ortholog of peroxisomal human AGT1: New insights into between-species divergence in glyoxylate metabolism.

    PubMed

    Mesa-Torres, Noel; Calvo, Ana C; Oppici, Elisa; Titelbaum, Nicholas; Montioli, Riccardo; Miranda-Vizuete, Antonio; Cellini, Barbara; Salido, Eduardo; Pey, Angel L

    2016-09-01

    In humans, glyoxylate is an intermediary product of metabolism, whose concentration is finely balanced. Mutations in peroxisomal alanine:glyoxylate aminotransferase (hAGT1) cause primary hyperoxaluria type 1 (PH1), which results in glyoxylate accumulation that is converted to toxic oxalate. In contrast, glyoxylate is used by the nematode Caenorhabditis elegans through a glyoxylate cycle to by-pass the decarboxylation steps of the tricarboxylic acid cycle and thus contributing to energy production and gluconeogenesis from stored lipids. To investigate the differences in glyoxylate metabolism between humans and C. elegans and to determine whether the nematode might be a suitable model for PH1, we have characterized here the predicted nematode ortholog of hAGT1 (AGXT-1) and compared its molecular properties with those of the human enzyme. Both enzymes form active PLP-dependent dimers with high specificity towards alanine and glyoxylate, and display similar three-dimensional structures. Interestingly, AGXT-1 shows 5-fold higher activity towards the alanine/glyoxylate pair than hAGT1. Thermal and chemical stability of AGXT-1 is lower than that of hAGT1, suggesting temperature-adaptation of the nematode enzyme linked to the lower optimal growth temperature of C. elegans. Remarkably, in vivo experiments demonstrate the mitochondrial localization of AGXT-1 in contrast to the peroxisomal compartmentalization of hAGT1. Our results support the view that the different glyoxylate metabolism in the nematode is associated with the divergent molecular properties and subcellular localization of the alanine:glyoxylate aminotransferase activity. PMID:27179589

  2. Regional DNA methylation differences between humans and chimpanzees are associated with genetic changes, transcriptional divergence and disease genes.

    PubMed

    Fukuda, Kei; Ichiyanagi, Kenji; Yamada, Yoichi; Go, Yasuhiro; Udono, Toshifumi; Wada, Seitaro; Maeda, Toshiyuki; Soejima, Hidenobu; Saitou, Naruya; Ito, Takashi; Sasaki, Hiroyuki

    2013-07-01

    Changes in gene expression have been proposed to have an important role in the evolutionary changes in phenotypes. Interspecific changes in gene expression can result not only from genetic changes in regulatory regions but also from epigenetic changes in such regions. Here we report the identification of genomic regions showing differences in DNA methylation between humans and chimpanzees (termed S-DMRs for species-specific differentially methylated regions) on chromosomes 21 and 22. These regional methylation differences are frequently associated with genes, including those relevant to a disease, such as Alzheimer's disease, diabetes mellitus or cancer. Methylation differences are often correlated with changes in promoter activity or alternative splicing. Comparative studies including other great ape species provide evidence for the contribution of genetic changes to some of these S-DMRs. Genetic changes responsible for the S-DMRs include gain or loss of CTCF-binding site and changes in CpG density in microsatellite repeats. Our results suggest that DNA methylation changes, often caused by small sequence changes, contribute to transcriptional and phenotypic diversification in hominid evolution. PMID:23739127

  3. Different pH requirements are associated with divergent inhibitory effects of chloroquine on human and avian influenza A viruses

    PubMed Central

    Di Trani, Livia; Savarino, Andrea; Campitelli, Laura; Norelli, Sandro; Puzelli, Simona; D'Ostilio, Daniela; Vignolo, Edoardo; Donatelli, Isabella; Cassone, Antonio

    2007-01-01

    Chloroquine is a 4-aminoquinoline previously used in malaria therapy and now becoming an emerging investigational antiviral drug due to its broad spectrum of antiviral activities. To explore whether the low pH-dependency of influenza A viruses might affect the antiviral effects of chloroquine at clinically achievable concentrations, we tested the antiviral effects of this drug on selected human and avian viruses belonging to different subtypes and displaying different pH requirements. Results showed a correlation between the responses to chloroquine and NH4Cl, a lysosomotropic agent known to increase the pH of intracellular vesicles. Time-of-addition experiments showed that the inhibitory effect of chloroquine was maximal when the drug had been added at the time of infection and was lost after 2 h post-infection. This timing approximately corresponds to that of virus/cell fusion. Moreover, there was a clear correlation between the EC50 of chloroquine in vitro and the electrostatic potential of the HA subunit (HA2) mediating the virus/cell fusion process. Overall, the present study highlights the critical importance of a host cell factor such as intravesicular pH in determining the anti-influenza activity of chloroquine and other lysosomotropic agents. PMID:17477867

  4. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I

    PubMed Central

    Li, Kairong; Turner, Ashley N.; Chen, Min; Brosius, Stephanie N.; Schoeb, Trenton R.; Messiaen, Ludwine M.; Bedwell, David M.; Zinn, Kurt R.; Anastasaki, Corina; Gutmann, David H.; Korf, Bruce R.

    2016-01-01

    ABSTRACT Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681*) and a missense mutation (c.2542G>C; p.Gly848Arg). The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1Arg681* and missense NF1Gly848Arg mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1Gly848Arg mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1Arg681* mutation are not viable. Mice with one Nf1Arg681* allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf14F/Arg681*; DhhCre) display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1. PMID:27482814

  5. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I.

    PubMed

    Li, Kairong; Turner, Ashley N; Chen, Min; Brosius, Stephanie N; Schoeb, Trenton R; Messiaen, Ludwine M; Bedwell, David M; Zinn, Kurt R; Anastasaki, Corina; Gutmann, David H; Korf, Bruce R; Kesterson, Robert A

    2016-07-01

    Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681*) and a missense mutation (c.2542G>C; p.Gly848Arg). The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1(Arg681*) and missense NF1(Gly848Arg) mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1(Gly848Arg) mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1(Arg681*) mutation are not viable. Mice with one Nf1(Arg681*) allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf1(4F/Arg681*); DhhCre) display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1. PMID:27482814

  6. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells

    PubMed Central

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Dargham, Daria Bou; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P.; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B. Franklin; Gérard, Matthieu

    2015-01-01

    Summary ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers1–3 target specific nucleosomes to regulate transcription is unclear. Here, we present genome-wide remodeller-nucleosome interaction profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank MNase-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites (TSSs) are nevertheless chromatinized with non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and modifications (H3K4me3 and H3K27ac). RNA polymerase (pol) II therefore navigates hundreds of bp of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3′ end of the NFR. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers play either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs. PMID:26814966

  7. Quantum skew divergence

    SciTech Connect

    Audenaert, Koenraad M. R.

    2014-11-15

    In this paper, we study the quantum generalisation of the skew divergence, which is a dissimilarity measure between distributions introduced by Lee in the context of natural language processing. We provide an in-depth study of the quantum skew divergence, including its relation to other state distinguishability measures. Finally, we present a number of important applications: new continuity inequalities for the quantum Jensen-Shannon divergence and the Holevo information, and a new and short proof of Bravyi's Small Incremental Mixing conjecture.

  8. Remodeling with the sun

    SciTech Connect

    Bodzin, S.

    1997-05-01

    Remodeling is the perfect time to improve daylighting, direct gain heating and shading with passive solar techniques. It can also provide the best opportunity to add solar water heating or even photoboltaics to a home. This article describes addition of such energy efficient plans to a home in terms of what is needed and what the benefits are: adding windows, North glass, east and west glass, south glass, daylighting, the roof, shingles and roofing tiles, walls and floors, solar hot water, photovoltaics. Two side bars discuss the sunplace: a passive solar room and angles and overhangs.

  9. Matrix Remodeling in Pulmonary Fibrosis and Emphysema.

    PubMed

    Kulkarni, Tejaswini; O'Reilly, Philip; Antony, Veena B; Gaggar, Amit; Thannickal, Victor J

    2016-06-01

    Pulmonary fibrosis and emphysema are chronic lung diseases characterized by a progressive decline in lung function, resulting in significant morbidity and mortality. A hallmark of these diseases is recurrent or persistent alveolar epithelial injury, typically caused by common environmental exposures such as cigarette smoke. We propose that critical determinants of the outcome of the injury-repair processes that result in fibrosis versus emphysema are mesenchymal cell fate and associated extracellular matrix dynamics. In this review, we explore the concept that regulation of mesenchymal cells under the influence of soluble factors, in particular transforming growth factor-β1, and the extracellular matrix determine the divergent tissue remodeling responses seen in pulmonary fibrosis and emphysema. PMID:26741177

  10. Partial activation of gene activity and chromatin remodeling of the human 14q32.1 serpin gene cluster by HNF-1 alpha and HNF-4 in fibroblast microcell hybrids.

    PubMed

    Rollini, P; Xu, L; Fournier, R E

    1999-07-01

    The genes encoding alpha 1-antitrypsin (alpha 1AT, gene symbol P I) and corticosteroid-binding globulin (CBG) are part of a cluster of serine protease inhibitor (serpin) genes on human chromosome 14q32.1. Both genes are highly expressed in the liver and in cultured hepatoma cells, and the approximately 100-kb region around these genes contains an extensive array of expression-associated DNase I-hypersensitive sites (DHSs). Activation of human alpha 1AT and CBG transcription occurred when human chromosome 14 was transferred from nonexpressing cells to rat hepatoma cells. This activation event was accompanied by long-range chromatin reorganization of the entire region and the de novo formation of 17 expression-associated DHSs. Both gene activation and chromatin remodeling in hepatic cells required the liver-enriched transactivators hepatocyte nuclear factors-1 alpha and -4 (HNF-1 alpha and HNF-4). In this study, we tested whether ectopic expression of HNF-1 alpha and HNF-4 in nonexpressing cells could activate alpha 1AT and/or CBG transcription, and we monitored the chromatin structure of the locus in stably transfected fibroblasts. We report that both alpha 1AT and CBG mRNAs were expressed in fibroblast transfectants that stably expressed HNF-1 alpha and HNF-4, but expression was only approximately 1-10% of that observed in hepatic cells. Gene activation in these cells was accompanied by partial chromatin remodeling, as 6 of 17 expression-associated DHSs were formed. The potential implications of these results are discussed. PMID:11586788

  11. To Remodel or To Build?

    ERIC Educational Resources Information Center

    Rosenblum, Todd

    2009-01-01

    The question of remodeling an existing house to make it wheelchair accessible or building a new barrier-free house is a difficult decision. This article presents some initial questions and considerations followed by a list of pros and cons for remodeling an existing house vs. building a new house.

  12. Complete structural organization of the human {alpha}1(V) collagen gene (COL5A1): Divergence from the conserved organization of other characterized fibrillar collagen genes

    SciTech Connect

    Takahara, Kazuhiko; Hoffman, G.G.; Greenspan, D.S.

    1995-10-10

    Genes that encode the vertebrate fibrillar collagen types I-III have previously been shown to share a highly conserved intron/exon organization, thought to reflect common ancestry and evolutionary pressures at the protein level. We report here the complete intron/exon organization of COL5A1, the human gene that encodes the {alpha}1 chain of fibrillar collagen type V. The structure of COL5A1 is shown to be considerably diverged from the conserved structure of the genes for fibrillar collagen types I-III. COL5A1 has 66 exons, which is greater than the number of exons found in the genes for collagen types I-III. The increased number of exons is partly due to the increased size of the pro-{alpha}1(V) N-propeptide, relative to the sizes of the N-propeptides of the types I-III procollagen molecules. In addition, however, the increased number of exons is due to differences in the intron/exon organization of the triple-helix coding region of COL5A1 compared to the organization of the triple-helix coding regions of the genes for collagen types I-III. Of particular interest is the increase of 54 bp exons in this region of COL5A1, strongly supporting the proposal that the triple-helix coding regions of fibrillar collagen genes evolved from duplication of a 54 bp primordial genetic element. Moreover, comparison of the structure of COL5A1 to the highly conserved structure of the genes of collagen types I-III provides insights into the probable structure of the ancestral gene that gave rise to what appears to be two classes of vertebrate fibrillar collagen genes. 50 refs., 5 figs.

  13. Highly divergent molecular variants of human T-lymphotropic virus type I from isolated populations in Papua New Guinea and the Solomon Islands.

    PubMed Central

    Gessian, A; Yanagihara, R; Franchini, G; Garruto, R M; Jenkins, C L; Ajdukiewicz, A B; Gallo, R C; Gajdusek, D C

    1991-01-01

    To determine the molecular genetic relationship between Melanesian strains of human T-lymphotropic virus type I (HTLV-I) and cosmopolitan prototype HTLV-I, we amplified by PCR, then cloned, and sequenced a 522-base-pair region of the HTLV-I env gene in DNA extracted from uncultured (fresh) and cultured peripheral blood mononuclear cells obtained from six seropositive Melanesian Papua New Guineans and Solomon Islanders, including a Solomon Islander with HTLV-I myeloneuropathy. Unlike isolates of HTLV-I from Japan, the West Indies, the Americas, and Africa, which share greater than or equal to 97% sequence homology, the Melanesian strains of HTLV-I were only 91.8%-92.5% identical with a prototype Japanese HTLV-IATK-1. The nucleotide sequence of proviral DNA from the Solomon Islander with HTLV-I myeloneuropathy also diverged markedly from that of HTLV-I isolated from Japanese patients with HTLV-I-associated myelopathy and from Jamaican patients with tropical spastic paraparesis, suggesting that these variant viruses are capable of causing disease. The HTLV-I variants from Papua New Guineans, in turn, differed by nearly 4% from the Melanesian variants from Solomon Islanders, indicating the existence of another HTLV-I quasi-species. By contrast, HTLV-I strains from two residents of Bellona Island, a Polynesian Outlier within the Solomon Islands, were closely related to cosmopolitan prototype HTLV-I (greater than or equal to 97% sequence identity), suggesting recent introduction, possibly during this century. These findings are consistent with a proto-Melanesian HTLV-I strain of archaic presence, which evolved independently of contemporary cosmopolitan strains, and pose new questions about the origin and global dissemination of HTLV-I. Images PMID:1881912

  14. No-Regrets Remodeling, 2nd Edition

    SciTech Connect

    2013-12-01

    No-Regrets Remodeling, sponsored by Oak Ridge National Laboratory, is an informative publication that walks homeowners and/or remodelers through various home remodeling projects. In addition to remodeling information, the publication provides instruction on how to incorporate energy efficiency into the remodeling process. The goal of the publication is to improve homeowner satisfaction after completing a remodeling project and to provide the homeowner with a home that saves energy and is comfortable and healthy.

  15. Divergence in Dialogue

    PubMed Central

    Healey, Patrick G. T.; Purver, Matthew; Howes, Christine

    2014-01-01

    One of the best known claims about human communication is that people's behaviour and language use converge during conversation. It has been proposed that these patterns can be explained by automatic, cross-person priming. A key test case is structural priming: does exposure to one syntactic structure, in production or comprehension, make reuse of that structure (by the same or another speaker) more likely? It has been claimed that syntactic repetition caused by structural priming is ubiquitous in conversation. However, previous work has not tested for general syntactic repetition effects in ordinary conversation independently of lexical repetition. Here we analyse patterns of syntactic repetition in two large corpora of unscripted everyday conversations. Our results show that when lexical repetition is taken into account there is no general tendency for people to repeat their own syntactic constructions. More importantly, people repeat each other's syntactic constructions less than would be expected by chance; i.e., people systematically diverge from one another in their use of syntactic constructions. We conclude that in ordinary conversation the structural priming effects described in the literature are overwhelmed by the need to actively engage with our conversational partners and respond productively to what they say. PMID:24919186

  16. Chromatin Remodeling, DNA Damage Repair and Aging

    PubMed Central

    Liu, Baohua; Yip, Raymond KH; Zhou, Zhongjun

    2012-01-01

    Cells are constantly exposed to a variety of environmental and endogenous conditions causing DNA damage, which is detected and repaired by conserved DNA repair pathways to maintain genomic integrity. Chromatin remodeling is critical in this process, as the organization of eukaryotic DNA into compact chromatin presents a natural barrier to all DNA-related events. Studies on human premature aging syndromes together with normal aging have suggested that accumulated damages might lead to exhaustion of resources that are required for physiological functions and thus accelerate aging. In this manuscript, combining the present understandings and latest findings, we focus mainly on discussing the role of chromatin remodeling in the repair of DNA double-strand breaks (DSBs) and regulation of aging. PMID:23633913

  17. Fstl1 Promotes Asthmatic Airway Remodeling by Inducing Oncostatin M.

    PubMed

    Miller, Marina; Beppu, Andrew; Rosenthal, Peter; Pham, Alexa; Das, Sudipta; Karta, Maya; Song, Dae Jin; Vuong, Christine; Doherty, Taylor; Croft, Michael; Zuraw, Bruce; Zhang, Xu; Gao, Xiang; Aceves, Seema; Chouiali, Fazila; Hamid, Qutayba; Broide, David H

    2015-10-15

    Chronic asthma is associated with airway remodeling and decline in lung function. In this article, we show that follistatin-like 1 (Fstl1), a mediator not previously associated with asthma, is highly expressed by macrophages in the lungs of humans with severe asthma. Chronic allergen-challenged Lys-Cre(tg) /Fstl1(Δ/Δ) mice in whom Fstl1 is inactivated in macrophages/myeloid cells had significantly reduced airway remodeling and reduced levels of oncostatin M (OSM), a cytokine previously not known to be regulated by Fstl1. The importance of the Fstl1 induction of OSM to airway remodeling was demonstrated in murine studies in which administration of Fstl1 induced airway remodeling and increased OSM, whereas administration of an anti-OSM Ab blocked the effect of Fstl1 on inducing airway remodeling, eosinophilic airway inflammation, and airway hyperresponsiveness, all cardinal features of asthma. Overall, these studies demonstrate that the Fstl1/OSM pathway may be a novel pathway to inhibit airway remodeling in severe human asthma. PMID:26355153

  18. Primate molecular divergence dates.

    PubMed

    Steiper, Michael E; Young, Nathan M

    2006-11-01

    With genomic data, alignments can be assembled that greatly increase the number of informative sites for analysis of molecular divergence dates. Here, we present an estimate of the molecular divergence dates for all of the major primate groups. These date estimates are based on a Bayesian analysis of approximately 59.8 kbp of genomic data from 13 primates and 6 mammalian outgroups, using a range of paleontologically supported calibration estimates. Results support a Cretaceous last common ancestor of extant primates (approximately 77 mya), an Eocene divergence between platyrrhine and catarrhine primates (approximately 43 mya), an Oligocene origin of apes and Old World monkeys (approximately 31 mya), and an early Miocene (approximately 18 mya) divergence of Asian and African great apes. These dates are examined in the context of other molecular clock studies. PMID:16815047

  19. Redox regulation of vascular remodeling.

    PubMed

    Karimi Galougahi, Keyvan; Ashley, Euan A; Ali, Ziad A

    2016-01-01

    Vascular remodeling is a dynamic process of structural and functional changes in response to biochemical and biomechanical signals in a complex in vivo milieu. While inherently adaptive, dysregulation leads to maladaptive remodeling. Reactive oxygen species participate in homeostatic cell signaling in tightly regulated- and compartmentalized cellular circuits. It is well established that perturbations in oxidation-reduction (redox) homeostasis can lead to a state of oxidative-, and more recently, reductive stress. We provide an overview of the redox signaling in the vasculature and review the role of oxidative- and reductive stress in maladaptive vascular remodeling. Particular emphasis has been placed on essential processes that determine phenotype modulation, migration and fate of the main cell types in the vessel wall. Recent advances in systems biology and the translational opportunities they may provide to specifically target the redox pathways driving pathological vascular remodeling are discussed. PMID:26483132

  20. Plant cell remodeling by autophagy

    PubMed Central

    Kim, Jimi; Lee, Han Nim; Chung, Taijoon

    2014-01-01

    Plant seedlings are not photoautotrophs until they are equipped with photosynthetic machinery. Some plant cells are remodeled after being exposed to light, and a group of peroxisomal proteins are degraded during the remodeling. Autophagy was proposed as one of the mechanisms for the degradation of peroxisomal proteins. We recently showed that ATG7-dependent autophagy is partially responsible for the degradation of obsolete peroxisomal proteins during Arabidopsis seedling growth. PMID:24492493

  1. Role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders

    PubMed Central

    López, Alberto J.; Wood, Marcelo A.

    2015-01-01

    It is becoming increasingly important to understand how epigenetic mechanisms control gene expression during neurodevelopment. Two epigenetic mechanisms that have received considerable attention are DNA methylation and histone acetylation. Human exome sequencing and genome-wide association studies have linked several neurobiological disorders to genes whose products actively regulate DNA methylation and histone acetylation. More recently, a third major epigenetic mechanism, nucleosome remodeling, has been implicated in human developmental and intellectual disability (ID) disorders. Nucleosome remodeling is driven primarily through nucleosome remodeling complexes with specialized ATP-dependent enzymes. These enzymes directly interact with DNA or chromatin structure, as well as histone subunits, to restructure the shape and organization of nucleosome positioning to ultimately regulate gene expression. Of particular interest is the neuron-specific Brg1/hBrm Associated Factor (nBAF) complex. Mutations in nBAF subunit genes have so far been linked to Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NBS), schizophrenia, and Autism Spectrum Disorder (ASD). Together, these human developmental and ID disorders are powerful examples of the impact of epigenetic modulation on gene expression. This review focuses on the new and emerging role of nucleosome remodeling in neurodevelopmental and ID disorders and whether nucleosome remodeling affects gene expression required for cognition independently of its role in regulating gene expression required for development. PMID:25954173

  2. Role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders.

    PubMed

    López, Alberto J; Wood, Marcelo A

    2015-01-01

    It is becoming increasingly important to understand how epigenetic mechanisms control gene expression during neurodevelopment. Two epigenetic mechanisms that have received considerable attention are DNA methylation and histone acetylation. Human exome sequencing and genome-wide association studies have linked several neurobiological disorders to genes whose products actively regulate DNA methylation and histone acetylation. More recently, a third major epigenetic mechanism, nucleosome remodeling, has been implicated in human developmental and intellectual disability (ID) disorders. Nucleosome remodeling is driven primarily through nucleosome remodeling complexes with specialized ATP-dependent enzymes. These enzymes directly interact with DNA or chromatin structure, as well as histone subunits, to restructure the shape and organization of nucleosome positioning to ultimately regulate gene expression. Of particular interest is the neuron-specific Brg1/hBrm Associated Factor (nBAF) complex. Mutations in nBAF subunit genes have so far been linked to Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NBS), schizophrenia, and Autism Spectrum Disorder (ASD). Together, these human developmental and ID disorders are powerful examples of the impact of epigenetic modulation on gene expression. This review focuses on the new and emerging role of nucleosome remodeling in neurodevelopmental and ID disorders and whether nucleosome remodeling affects gene expression required for cognition independently of its role in regulating gene expression required for development. PMID:25954173

  3. Nucleosomes Shape DNA Polymorphism and Divergence

    PubMed Central

    Langley, Sasha A.; Karpen, Gary H.; Langley, Charles H.

    2014-01-01

    An estimated 80% of genomic DNA in eukaryotes is packaged as nucleosomes, which, together with the remaining interstitial linker regions, generate higher order chromatin structures [1]. Nucleosome sequences isolated from diverse organisms exhibit ∼10 bp periodic variations in AA, TT and GC dinucleotide frequencies. These sequence elements generate intrinsically curved DNA and help establish the histone-DNA interface. We investigated an important unanswered question concerning the interplay between chromatin organization and genome evolution: do the DNA sequence preferences inherent to the highly conserved histone core exert detectable natural selection on genomic divergence and polymorphism? To address this hypothesis, we isolated nucleosomal DNA sequences from Drosophila melanogaster embryos and examined the underlying genomic variation within and between species. We found that divergence along the D. melanogaster lineage is periodic across nucleosome regions with base changes following preferred nucleotides, providing new evidence for systematic evolutionary forces in the generation and maintenance of nucleosome-associated dinucleotide periodicities. Further, Single Nucleotide Polymorphism (SNP) frequency spectra show striking periodicities across nucleosomal regions, paralleling divergence patterns. Preferred alleles occur at higher frequencies in natural populations, consistent with a central role for natural selection. These patterns are stronger for nucleosomes in introns than in intergenic regions, suggesting selection is stronger in transcribed regions where nucleosomes undergo more displacement, remodeling and functional modification. In addition, we observe a large-scale (∼180 bp) periodic enrichment of AA/TT dinucleotides associated with nucleosome occupancy, while GC dinucleotide frequency peaks in linker regions. Divergence and polymorphism data also support a role for natural selection in the generation and maintenance of these super

  4. Remodeling of the Fetal Collecting Duct Epithelium

    PubMed Central

    Hiatt, Michael J.; Ivanova, Larissa; Toran, Nuria; Tarantal, Alice F.; Matsell, Douglas G.

    2010-01-01

    Congenital urinary tract obstruction induces changes to the renal collecting duct epithelium, including alteration and depletion of intercalated cells. To study the effects of obstruction on the ontogeny of intercalated cell development, we examined normal and obstructed human fetal and postnatal kidneys. In the normal human fetal kidney, intercalated cells originated in the medullary collecting duct at 8 weeks gestation and remained most abundant in the inner medulla throughout gestation. In the cortex, intercalated cells were rare at 18 and 26 weeks gestation and observed at low abundance at 36 weeks gestation. Although early intercalated cells exhibit an immature phenotype, Type A intercalated cells predominated in the inner and outer medullae at 26 and 36 weeks gestation with other intercalated cell subtypes observed rarely. Postnatally, the collecting duct epithelium underwent a remodeling whereby intercalated cells become abundant in the cortex yet absent from the inner medulla. In 18-week obstructed kidneys with mild to moderate injury, the intercalated cells became more abundant and differentiated than the equivalent age-matched normal kidney. In contrast, more severely injured ducts of the late obstructed kidney exhibited a significant reduction in intercalated cells. These studies characterize the normal ontogeny of human intercalated cell development and suggest that obstruction induces premature remodeling and differentiation of the fetal collecting duct epithelium. PMID:20035053

  5. Parallels and Divergences?

    ERIC Educational Resources Information Center

    Spray, Martin

    1985-01-01

    Discusses the varying philosophical viewpoints and program orientations associated with the conservation movement, assessing the implications of these divergences on the objectives and instructional methods of environmental education. Also identifies and explains the range of differences existing in environmental education programs. (ML)

  6. Converging or Diverging Lens?

    ERIC Educational Resources Information Center

    Branca, Mario

    2013-01-01

    Why does a lens magnify? Why does it shrink objects? Why does this happen? The activities that we propose here are useful in helping us to understand how lenses work, and they show that the same lens can have different magnification capabilities. A converging lens can also act as a diverging lens. (Contains 4 figures.)

  7. Measuring Divergent Abilities.

    ERIC Educational Resources Information Center

    Sefer, Jasmina

    The validity and reliability of the Yugoslavian (Beograd) version of the Hungarian adaptation of the Torrance Divergent Capacities Test (HAT-DAT) were tested, with a view toward improving the methodology of scoring the creative abilities test and determining standards for Yugoslavia. The test, based on the work of J. P. Guilford (1977), examines…

  8. Divergent RNA transcription

    PubMed Central

    Naughton, Catherine; Corless, Samuel; Gilbert, Nick

    2013-01-01

    New approaches using biotinylated-psoralen as a probe for investigating DNA structure have revealed new insights into the relationship between DNA supercoiling, transcription and chromatin compaction. We explore a hypothesis that divergent RNA transcription generates negative supercoiling at promoters facilitating initiation complex formation and subsequent promoter clearance. PMID:23863199

  9. Cardiac remodelling and RAS inhibition.

    PubMed

    Ferrario, Carlos M

    2016-06-01

    Risk factors such as hypertension and diabetes are known to augment the activity and tissue expression of angiotensin II (Ang II), the major effector peptide of the renin-angiotensin system (RAS). Overstimulation of the RAS has been implicated in a chain of events that contribute to the pathogenesis of cardiovascular (CV) disease, including the development of cardiac remodelling. This chain of events has been termed the CV continuum. The concept of CV disease existing as a continuum was first proposed in 1991 and it is believed that intervention at any point within the continuum can modify disease progression. Treatment with antihypertensive agents may result in regression of left ventricular hypertrophy, with different drug classes exhibiting different degrees of efficacy. The greatest decrease in left ventricular mass is observed following treatment with angiotensin converting enzyme inhibitors (ACE-Is), which inhibit Ang II formation. Although ACE-Is and angiotensin receptor blockers (ARBs) provide significant benefits in terms of CV events and stroke, mortality remains high. This is partly due to a failure to completely suppress the RAS, and, as our knowledge has increased, an escape phenomenon has been proposed whereby the human sequence of the 12 amino acid substrate angiotensin-(1-12) is converted to Ang II by the mast cell protease, chymase. Angiotensin-(1-12) is abundant in a wide range of organs and has been shown to increase blood pressure in animal models, an effect abolished by the presence of ACE-Is or ARBs. This review explores the CV continuum, in addition to examining the influence of the RAS. We also consider novel pathways within the RAS and how new therapeutic approaches that target this are required to further reduce Ang II formation, and so provide patients with additional benefits from a more complete blockade of the RAS. PMID:27105891

  10. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    NASA Astrophysics Data System (ADS)

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-07-01

    Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula's material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element's remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than actual

  11. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    SciTech Connect

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-07-01

    Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula’s material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element’s remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than

  12. Negative Regulation of p21Waf1/Cip1 by Human INO80 Chromatin Remodeling Complex Is Implicated in Cell Cycle Phase G2/M Arrest and Abnormal Chromosome Stability

    PubMed Central

    Cao, Lingling; Ding, Jian; Dong, Liguo; Zhao, Jiayao; Su, Jiaming; Wang, Lingyao; Sui, Yi; Zhao, Tong; Wang, Fei; Jin, Jingji; Cai, Yong

    2015-01-01

    We previously identified an ATP-dependent human Ino80 (INO80) chromatin remodeling complex which shares a set of core subunits with yeast Ino80 complex. Although research evidence has suggested that INO80 complex functions in gene transcription and genome stability, the precise mechanism remains unclear. Herein, based on gene expression profiles from the INO80 complex-knockdown in HeLa cells, we first demonstrate that INO80 complex negatively regulates the p21Waf1/Cip1 (p21) expression in a p53-mediated mechanism. In chromatin immunoprecipitation (ChIP) and a sequential ChIP (Re-ChIP) assays, we determined that the INO80 complex and p53 can bind to the same promoter region of p21 gene (-2.2kb and -1.0kb upstream of the p21 promoter region), and p53 is required for the recruitment of the INO80 complex to the p21 promoter. RNAi knockdown strategies of INO80 not only led to prolonged progression of cell cycle phase G2/M to G1, but it also resulted in abnormal chromosome stability. Interestingly, high expression of p21 was observed in most morphologically-changed cells, suggesting that negative regulation of p21 by INO80 complex might be implicated in maintaining the cell cycle process and chromosome stability. Together, our findings will provide a theoretical basis to further elucidate the cellular mechanisms of the INO80 complex. PMID:26340092

  13. Divergence Boundary Conditions for Vector Helmholtz Equations with Divergence Constraints

    NASA Technical Reports Server (NTRS)

    Kangro, Urve; Nicolaides, Roy

    1997-01-01

    The idea of replacing a divergence constraint by a divergence boundary condition is investigated. The connections between the formulations are considered in detail. It is shown that the most common methods of using divergence boundary conditions do not always work properly. Necessary and sufficient conditions for the equivalence of the formulations are given.

  14. Chromatin remodeling in cardiovascular development and physiology

    PubMed Central

    Han, Pei; Hang, Calvin T.; Yang, Jin; Chang, Ching-Pin

    2010-01-01

    Chromatin regulation provides an important means of controlling cardiac gene expression under different physiological and pathological conditions. Processes that direct the development of normal embryonic hearts and pathology of stressed adult hearts may share general mechanisms that govern cardiac gene expression by chromatin-regulating factors. These common mechanisms may provide a framework for us to investigate the interactions among diverse chromatin remodelers/modifiers and various transcription factors in the fine regulation of gene expression, essential for all aspects of cardiovascular biology. Aberrant cardiac gene expression, triggered by a variety of pathological insults, can cause heart diseases in both animals and humans. The severity of cardiomyopathy and heart failure correlates strongly with abnormal cardiac gene expression. Therefore, controlling cardiac gene expression presents a promising approach to the treatment of human cardiomyopathy. This review focuses on the roles of ATP-dependent chromatin-remodeling factors and chromatin-modifying enzymes in the control of gene expression during cardiovascular development and disease. PMID:21293009

  15. Biochemical Assays for Analyzing Activities of ATP-dependent Chromatin Remodeling Enzymes

    PubMed Central

    Chen, Lu; Ooi, Soon-Keat; Conaway, Joan W.; Conaway, Ronald C.

    2014-01-01

    Members of the SNF2 family of ATPases often function as components of multi-subunit chromatin remodeling complexes that regulate nucleosome dynamics and DNA accessibility by catalyzing ATP-dependent nucleosome remodeling. Biochemically dissecting the contributions of individual subunits of such complexes to the multi-step ATP-dependent chromatin remodeling reaction requires the use of assays that monitor the production of reaction products and measure the formation of reaction intermediates. This JOVE protocol describes assays that allow one to measure the biochemical activities of chromatin remodeling complexes or subcomplexes containing various combinations of subunits. Chromatin remodeling is measured using an ATP-dependent nucleosome sliding assay, which monitors the movement of a nucleosome on a DNA molecule using an electrophoretic mobility shift assay (EMSA)-based method. Nucleosome binding activity is measured by monitoring the formation of remodeling complex-bound mononucleosomes using a similar EMSA-based method, and DNA- or nucleosome-dependent ATPase activity is assayed using thin layer chromatography (TLC) to measure the rate of conversion of ATP to ADP and phosphate in the presence of either DNA or nucleosomes. Using these assays, one can examine the functions of subunits of a chromatin remodeling complex by comparing the activities of the complete complex to those lacking one or more subunits. The human INO80 chromatin remodeling complex is used as an example; however, the methods described here can be adapted to the study of other chromatin remodeling complexes. PMID:25407555

  16. Remodeling of the Methylation Landscape in Breast Cancer Metastasis

    PubMed Central

    Reyngold, Marsha; Turcan, Sevin; Giri, Dilip; Kannan, Kasthuri; Walsh, Logan A.; Viale, Agnes; Drobnjak, Marija; Vahdat, Linda T.; Lee, William; Chan, Timothy A.

    2014-01-01

    The development of breast cancer metastasis is accompanied by dynamic transcriptome changes and dramatic alterations in nuclear and chromatin structure. The basis of these changes is incompletely understood. The DNA methylome of primary breast cancers contribute to transcriptomic heterogeneity and different metastatic behavior. Therefore we sought to characterize methylome remodeling during regional metastasis. We profiled the DNA methylome and transcriptome of 44 matched primary breast tumors and regional metastases. Striking subtype-specific patterns of metastasis-associated methylome remodeling were observed, which reflected the molecular heterogeneity of breast cancers. These divergent changes occurred primarily in CpG island (CGI)-poor areas. Regions of methylome reorganization shared by the subtypes were also observed, and we were able to identify a metastasis-specific methylation signature that was present across the breast cancer subclasses. These alterations also occurred outside of CGIs and promoters, including sequences flanking CGIs and intergenic sequences. Integrated analysis of methylation and gene expression identified genes whose expression correlated with metastasis-specific methylation. Together, these findings significantly enhance our understanding of the epigenetic reorganization that occurs during regional breast cancer metastasis across the major breast cancer subtypes and reveal the nature of methylome remodeling during this process. PMID:25083786

  17. Iron chelation inhibits the development of pulmonary vascular remodeling.

    PubMed

    Wong, Chi-Ming; Preston, Ioana R; Hill, Nicholas S; Suzuki, Yuichiro J

    2012-11-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of pulmonary hypertension. Because iron is an important regulator of ROS biology, this study examined the effects of iron chelation on the development of pulmonary vascular remodeling. The administration of an iron chelator, deferoxamine, to rats prevented chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling. Various iron chelators inhibited the growth of cultured pulmonary artery smooth muscle cells. Protein carbonylation, an important iron-dependent biological event, was promoted in association with pulmonary vascular remodeling and cell growth. A proteomic approach identified that Rho GDP-dissociation inhibitor (a negative regulator of RhoA) is carbonylated. In human plasma, the protein carbonyl content was significantly higher in patients with idiopathic pulmonary arterial hypertension than in healthy controls. These results suggest that iron plays an important role in the ROS-dependent mechanism underlying the development of pulmonary hypertension. PMID:22974762

  18. Rho Kinases and Cardiac Remodeling.

    PubMed

    Shimizu, Toru; Liao, James K

    2016-06-24

    Hypertensive cardiac remodeling is characterized by left ventricular hypertrophy and interstitial fibrosis, which can lead to heart failure with preserved ejection fraction. The Rho-associated coiled-coil containing kinases (ROCKs) are members of the serine/threonine protein kinase family, which mediates the downstream effects of the small GTP-binding protein RhoA. There are 2 isoforms: ROCK1 and ROCK2. They have different functions in different types of cells and tissues. There is growing evidence that ROCKs contribute to the development of cardiovascular diseases, including cardiac fibrosis, hypertrophy, and subsequent heart failure. Recent experimental studies using ROCK inhibitors, such as fasudil, have shown the benefits of ROCK inhibition in cardiac remodeling. Mice lacking each ROCK isoform also exhibit reduced myocardial fibrosis in a variety of pathological models of cardiac remodeling. Indeed, clinical studies with fasudil have suggested that ROCKs could be potential novel therapeutic targets for cardiovascular diseases. In this review, we summarize the current understanding of the roles of ROCKs in the development of cardiac fibrosis and hypertrophy and discuss their therapeutic potential for deleterious cardiac remodeling. (Circ J 2016; 80: 1491-1498). PMID:27251065

  19. Direct Evidence for Microdomain-Specific Localization and Remodeling of Functional L-Type Calcium Channels in Rat and Human Atrial Myocytes

    PubMed Central

    Glukhov, Alexey V.; Balycheva, Marina; Sanchez-Alonso, Jose L.; Ilkan, Zeki; Alvarez-Laviada, Anita; Bhogal, Navneet; Diakonov, Ivan; Schobesberger, Sophie; Sikkel, Markus B.; Bhargava, Anamika; Faggian, Giuseppe; Punjabi, Prakash P.; Houser, Steven R.

    2015-01-01

    Background— Distinct subpopulations of L-type calcium channels (LTCCs) with different functional properties exist in cardiomyocytes. Disruption of cellular structure may affect LTCC in a microdomain-specific manner and contribute to the pathophysiology of cardiac diseases, especially in cells lacking organized transverse tubules (T-tubules) such as atrial myocytes (AMs). Methods and Results— Isolated rat and human AMs were characterized by scanning ion conductance, confocal, and electron microscopy. Half of AMs possessed T-tubules and structured topography, proportional to cell width. A bigger proportion of myocytes in the left atrium had organized T-tubules and topography than in the right atrium. Super-resolution scanning patch clamp showed that LTCCs distribute equally in T-tubules and crest areas of the sarcolemma, whereas, in ventricular myocytes, LTCCs primarily cluster in T-tubules. Rat, but not human, T-tubule LTCCs had open probability similar to crest LTCCs, but exhibited ≈40% greater current. Optical mapping of Ca2+ transients revealed that rat AMs presented ≈3-fold as many spontaneous Ca2+ release events as ventricular myocytes. Occurrence of crest LTCCs and spontaneous Ca2+ transients were eliminated by either a caveolae-targeted LTCC antagonist or disrupting caveolae with methyl-β-cyclodextrin, with an associated ≈30% whole-cell ICa,L reduction. Heart failure (16 weeks post–myocardial infarction) in rats resulted in a T-tubule degradation (by ≈40%) and significant elevation of spontaneous Ca2+ release events. Although heart failure did not affect LTCC occurrence, it led to ≈25% decrease in T-tubule LTCC amplitude. Conclusions— We provide the first direct evidence for the existence of 2 distinct subpopulations of functional LTCCs in rat and human AMs, with their biophysical properties modulated in heart failure in a microdomain-specific manner. PMID:26450916

  20. Next-generation sequencing of the Trichinella murrelli mitochondrial genome allows comprehensive comparison of its divergence from the principal agent of human trichinellosis, Trichinella spiralis.

    PubMed

    Webb, Kristen M; Rosenthal, Benjamin M

    2011-01-01

    The mitochondrial genome's non-recombinant mode of inheritance and relatively rapid rate of evolution has promoted its use as a marker for studying the biogeographic history and evolutionary interrelationships among many metazoan species. A modest portion of the mitochondrial genome has been defined for 12 species and genotypes of parasites in the genus Trichinella, but its adequacy in representing the mitochondrial genome as a whole remains unclear, as the complete coding sequence has been characterized only for Trichinella spiralis. Here, we sought to comprehensively describe the extent and nature of divergence between the mitochondrial genomes of T. spiralis (which poses the most appreciable zoonotic risk owing to its capacity to establish persistent infections in domestic pigs) and Trichinella murrelli (which is the most prevalent species in North American wildlife hosts, but which poses relatively little risk to the safety of pork). Next generation sequencing methodologies and scaffold and de novo assembly strategies were employed. The entire protein-coding region was sequenced (13,917 bp), along with a portion of the highly repetitive non-coding region (1524 bp) of the mitochondrial genome of T. murrelli with a combined average read depth of 250 reads. The accuracy of base calling, estimated from coding region sequence was found to exceed 99.3%. Genome content and gene order was not found to be significantly different from that of T. spiralis. An overall inter-species sequence divergence of 9.5% was estimated. Significant variation was identified when the amount of variation between species at each gene is compared to the average amount of variation between species across the coding region. Next generation sequencing is a highly effective means to obtain previously unknown mitochondrial genome sequence. Particular to parasites, the extremely deep coverage achieved through this method allows for the detection of sequence heterogeneity between the multiple

  1. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes.

    PubMed

    Mali, Prashant; Chou, Bin-Kuan; Yen, Jonathan; Ye, Zhaohui; Zou, Jizhong; Dowey, Sarah; Brodsky, Robert A; Ohm, Joyce E; Yu, Wayne; Baylin, Stephen B; Yusa, Kosuke; Bradley, Allan; Meyers, David J; Mukherjee, Chandrani; Cole, Philip A; Cheng, Linzhao

    2010-04-01

    We report here that butyrate, a naturally occurring fatty acid commonly used as a nutritional supplement and differentiation agent, greatly enhances the efficiency of induced pluripotent stem (iPS) cell derivation from human adult or fetal fibroblasts. After transient butyrate treatment, the iPS cell derivation efficiency is enhanced by 15- to 51-fold using either retroviral or piggyBac transposon vectors expressing 4 to 5 reprogramming genes. Butyrate stimulation is more remarkable (>100- to 200-fold) on reprogramming in the absence of either KLF4 or MYC transgene. Butyrate treatment did not negatively affect properties of iPS cell lines established by either 3 or 4 retroviral vectors or a single piggyBac DNA transposon vector. These characterized iPS cell lines, including those derived from an adult patient with sickle cell disease by either the piggyBac or retroviral vectors, show normal karyotypes and pluripotency. To gain insights into the underlying mechanisms of butyrate stimulation, we conducted genome-wide gene expression and promoter DNA methylation microarrays and other epigenetic analyses on established iPS cells and cells from intermediate stages of the reprogramming process. By days 6 to 12 during reprogramming, butyrate treatment enhanced histone H3 acetylation, promoter DNA demethylation, and the expression of endogenous pluripotency-associated genes, including DPPA2, whose overexpression partially substitutes for butyrate stimulation. Thus, butyrate as a cell permeable small molecule provides a simple tool to further investigate molecular mechanisms of cellular reprogramming. Moreover, butyrate stimulation provides an efficient method for reprogramming various human adult somatic cells, including cells from patients that are more refractory to reprogramming. PMID:20201064

  2. Evolutionary Divergence of Aggregatibacter actinomycetemcomitans.

    PubMed

    Kittichotirat, W; Bumgarner, R E; Chen, C

    2016-01-01

    Gram-negative facultative Aggregatibacter actinomycetemcomitans is an oral pathogen associated with periodontitis. The genetic heterogeneity among A. actinomycetemcomitans strains has been long recognized. This study provides a comprehensive genomic analysis of A. actinomycetemcomitans and the closely related nonpathogenic Aggregatibacter aphrophilus. Whole genome sequencing by Illumina MiSeq platform was performed for 31 A. actinomycetemcomitans and 2 A. aphrophilus strains. Sequence similarity analysis shows a total of 3,220 unique genes across the 2 species, where 1,550 are core genes present in all genomes and 1,670 are variable genes (accessory genes) missing in at least 1 genome. Phylogenetic analysis based on 397 concatenated core genes distinguished A. aphrophilus and A. actinomycetemcomitans. The latter was in turn divided into 5 clades: clade b (serotype b), clade c (serotype c), clade e/f (serotypes e and f), clade a/d (serotypes a and d), and clade e' (serotype e strains). Accessory genes accounted for 14.1% to 23.2% of the A. actinomycetemcomitans genomes, with a majority belonging to the category of poorly characterized by Cluster of Orthologous Groups classification. These accessory genes were often organized into genomic islands (n = 387) with base composition biases, suggesting their acquisitions via horizontal gene transfer. There was a greater degree of similarity in gene content and genomic islands among strains within clades than between clades. Strains of clade e' isolated from human were found to be missing the genomic island that carries genes encoding cytolethal distending toxins. Taken together, the results suggest a pattern of sequential divergence, starting from the separation of A. aphrophilus and A. actinomycetemcomitans through gain and loss of genes and ending with the divergence of the latter species into distinct clades and serotypes. With differing constellations of genes, the A. actinomycetemcomitans clades may have evolved

  3. Extracellular matrix-remodeling metalloproteinases and infection of the central nervous system with retrovirus human T-lymphotropic virus type I (HTLV-I).

    PubMed

    Giraudon, P; Buart, S; Bernard, A; Thomasset, N; Belin, M F

    1996-06-01

    Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) are involved in physiological processes and contribute to the phenotype of several pathological conditions associated with uncontrolled tissue degradation. In the central nervous system (CNS), MMPs are thought to play a role in cell migration and synaptic plasticity. We have investigated the expression, regulation and possible role of MMPs and TIMPs during infection of glial cells with human T-lymphotropic virus type I (HTLV-I), the causative agent of a progressive chronic myelopathy, TSP/HAM. The major alteration consists in a high increase in MMP-9 secretion and TIMP-2 mRNA expression. Cytokines TNF alpha and IL1 alpha, induced in glial cells during HTLV-I infection, promote the upregulation of MMP-9. In addition, cerebrospinal fluid from TSP/HAM patients contain high MMP-9 level. The exact role of dysregulated MMPs/TIMPs in the pathogenesis of TSP/HAM is not known; however, functions of these proteases in physiological processes should provide valuable clues. MMPs can affect the blood-brain barrier and the intercellular connectivity by degrading the extracellular matrix of endothelial and neural cells. They can be involved in autoimmunity by generating preformed specific peptides from myelin components. Finally, they can direct and prolong TNF activity in the CNS by converting its inactive precursor into active molecules. PMID:8844825

  4. Frontiers in growth and remodeling.

    PubMed

    Menzel, Andreas; Kuhl, Ellen

    2012-06-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  5. Frontiers in growth and remodeling

    PubMed Central

    Menzel, Andreas; Kuhl, Ellen

    2012-01-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  6. Advances in understanding cartilage remodeling

    PubMed Central

    Li, Yefu; Xu, Lin

    2015-01-01

    Cartilage remodeling is currently among the most popular topics in osteoarthritis research. Remodeling includes removal of the existing cartilage and replacement by neo-cartilage. As a loss of balance between removal and replacement of articular cartilage develops (particularly, the rate of removal surpasses the rate of replacement), joints will begin to degrade. In the last few years, significant progress in molecular understanding of the cartilage remodeling process has been made. In this brief review, we focus on the discussion of some current “controversial” observations in articular cartilage degeneration: (1) the biological effect of transforming growth factor-beta 1 on developing and mature articular cartilages, (2) the question of whether aggrecanase 1 (ADAMTS4) and aggrecanase 2 (ADAMTS5) are key enzymes in articular cartilage destruction, and (3) chondrocytes versus chondron in the development of osteoarthritis. It is hoped that continued discussion and investigation will follow to better clarify these topics. Clarification will be critical for those in search of novel therapeutic targets for the treatment of osteoarthritis. PMID:26380073

  7. Downregulation of β-Adrenoceptors in Isoproterenol-Induced Cardiac Remodeling through HuR

    PubMed Central

    Yin, Qian; Yang, Chengzhi; Wu, Jimin; Lu, Haiyan; Zheng, Xiaohui; Zhang, Youyi; Lv, Zhizhen; Zheng, Xiaopu; Li, Zijian

    2016-01-01

    β-adrenergic receptors (β-ARs) play an important role in cardiac remodeling, which is the key pathological process in various heart diseases and leads to heart failure. However, the regulation of β-AR expression in remodeling hearts is still unclear. This study aims to clarify the possible mechanisms underlying the regulation of β1- and β2-AR expression in cardiac remodeling. The rat model of cardiac remodeling was established by subcutaneous injection of isoproterenol(ISO) at the dose of 0.25 mg·kg−1·d−1 for 7days. We found that the expression of β1- and β2-ARs decreased in the remodeling heart. The mechanisms may include the inhibition of DNA transcription and the increase of mRNA degradation. cAMP-response element binding protein(CREB) is a well-known transcription factor of β-AR. However, the expression and activation of CREB was not changed in the remodeling heart. Further, human Antigen-R (HuR), a RNA binding protein, which binds to the 3'-untranslated region of the β-AR mRNA and promotes RNA degradation, was increased in the remodeling model. And in vitro, HuR deficiency reversed the reduction of β-AR mRNA induced by ISO. Therefore, the present findings indicate that HuR, but not CREB, is responsible for the reduction of β-AR expression in ISO induced cardiac remodeling. PMID:27035432

  8. Air pollution and adverse cardiac remodeling: clinical effects and basic mechanisms

    PubMed Central

    Liu, Yonggang; Goodson, Jamie M.; Zhang, Bo; Chin, Michael T.

    2015-01-01

    Exposure to air pollution has long been known to trigger cardiovascular events, primarily through activation of local and systemic inflammatory pathways that affect the vasculature. Detrimental effects of air pollution exposure on heart failure and cardiac remodeling have also been described in human populations. Recent studies in both human subjects and animal models have provided insights into the basic physiological, cellular and molecular mechanisms that play a role in adverse cardiac remodeling. This review will give a brief overview of the relationship between air pollution and cardiovascular disease, describe the clinical effects of air pollution exposure on cardiac remodeling, describe the basic mechanisms that affect remodeling as described in human and animal systems and will discuss future areas of investigation. PMID:26042051

  9. Dictyostelium possesses highly diverged presenilin/γ-secretase that regulates growth and cell-fate specification and can accurately process human APP: a system for functional studies of the presenilin/γ-secretase complex

    PubMed Central

    McMains, Vanessa C.; Myre, Michael; Kreppel, Lisa; Kimmel, Alan R.

    2010-01-01

    SUMMARY Presenilin (PS) is the catalytic moiety of the γ-secretase complex. PS and other γ-secretase components are well conserved among metazoa, but their presence and function in more-distant species are not resolved. Because inappropriate γ-secretase processing of amyloid precursor protein (APP) in humans is associated with familial Alzheimer’s disease, understanding essential elements within each γ-secretase component is crucial to functional studies. Diverged proteins have been identified in primitive plants but experiments have failed to demonstrate γ-secretase activity. We have identified highly diverged orthologs for each γ-secretase component in the ancient eukaryote Dictyostelium, which lacks equivalents of APP, Notch and other characterized PS/γ-secretase substrates. We show that wild-type (WT) Dictyostelium is capable of amyloidogenic processing of ectopically expressed human APP to generate amyloid-β peptides Aβ40 and Aβ42; strains deficient in γ-secretase cannot produce Aβ peptides but accumulate processed intermediates of APP that co-migrate with the C-terminal fragments α- and β-CTF of APP that are found in mammalian cells. We further demonstrate that Dictyostelium requires PS for phagocytosis and cell-fate specification in a cell-autonomous manner, and show that regulation of phagocytosis requires an active γ-secretase, a pathway suggested, but not proven, to occur in mammalian and Drosophila cells. Our results indicate that PS signaling is an ancient process that arose prior to metazoan radiation, perhaps independently of Notch. Dictyostelium might serve to identify novel PS/γ-secretase signaling targets and provide a unique system for high-throughput screening of small-molecule libraries to select new therapeutic targets for diseases associated with this pathway. PMID:20699477

  10. Dictyostelium possesses highly diverged presenilin/gamma-secretase that regulates growth and cell-fate specification and can accurately process human APP: a system for functional studies of the presenilin/gamma-secretase complex.

    PubMed

    McMains, Vanessa C; Myre, Michael; Kreppel, Lisa; Kimmel, Alan R

    2010-01-01

    Presenilin (PS) is the catalytic moiety of the gamma-secretase complex. PS and other gamma-secretase components are well conserved among metazoa, but their presence and function in more-distant species are not resolved. Because inappropriate gamma-secretase processing of amyloid precursor protein (APP) in humans is associated with familial Alzheimer's disease, understanding essential elements within each gamma-secretase component is crucial to functional studies. Diverged proteins have been identified in primitive plants but experiments have failed to demonstrate gamma-secretase activity. We have identified highly diverged orthologs for each gamma-secretase component in the ancient eukaryote Dictyostelium, which lacks equivalents of APP, Notch and other characterized PS/gamma-secretase substrates. We show that wild-type (WT) Dictyostelium is capable of amyloidogenic processing of ectopically expressed human APP to generate amyloid-beta peptides Abeta(40) and Abeta(42); strains deficient in gamma-secretase cannot produce Abeta peptides but accumulate processed intermediates of APP that co-migrate with the C-terminal fragments alpha- and beta-CTF of APP that are found in mammalian cells. We further demonstrate that Dictyostelium requires PS for phagocytosis and cell-fate specification in a cell-autonomous manner, and show that regulation of phagocytosis requires an active gamma-secretase, a pathway suggested, but not proven, to occur in mammalian and Drosophila cells. Our results indicate that PS signaling is an ancient process that arose prior to metazoan radiation, perhaps independently of Notch. Dictyostelium might serve to identify novel PS/gamma-secretase signaling targets and provide a unique system for high-throughput screening of small-molecule libraries to select new therapeutic targets for diseases associated with this pathway. PMID:20699477

  11. Pulsatile Fluid Shear in Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Frangos, John A.

    1997-01-01

    The objective of this investigation was to elucidate the sensitivity to transients in fluid shear stress in bone remodeling. Bone remodeling is clearly a function of the local mechanical environment which includes interstitial fluid flow. Traditionally, load-induced remodeling has been associated with low frequency (1-2 Hz) signals attributed to normal locomotion. McLeod and Rubin, however, demonstrated in vivo remodeling events associated with high frequency (15-30 Hz) loading. Likewise, other in vivo studies demonstrated that slowly applied strains did not trigger remodeling events. We therefore hypothesized that the mechanosensitive pathways which control bone maintenance and remodeling are differentially sensitive to varying rates of applied fluid shear stress.

  12. Differential remodeling of extracellular matrices by breast cancer initiating cells.

    PubMed

    Raja, Anju M; Xu, Shuoyu; Zhuo, Shuangmu; Tai, Dean C S; Sun, Wanxin; So, Peter T C; Welsch, Roy E; Chen, Chien-Shing; Yu, Hanry

    2015-10-01

    Cancer initiating cells (CICs) have been the focus of recent anti-cancer therapies, exhibiting strong invasion capability via potentially enhanced ability to remodel extracellular matrices (ECM). We have identified CICs in a human breast cancer cell line, MX-1, and developed a xenograft model in SCID mice. We investigated the CICs' matrix-remodeling effects using Second Harmonic Generation (SHG) microscopy to identify potential phenotypic signatures of the CIC-rich tumors. The isolated CICs exhibit higher proliferation, drug efflux and drug resistant properties in vitro; were more tumorigenic than non-CICs, resulting in more and larger tumors in the xenograft model. The CIC-rich tumors have less collagen in the tumor interior than in the CIC-poor tumors supporting the idea that the CICs can remodel the collagen more effectively. The collagen fibers were preferentially aligned perpendicular to the CIC-rich tumor boundary while parallel to the CIC-poor tumor boundary suggesting more invasive behavior of the CIC-rich tumors. These findings would provide potential translational values in quantifying and monitoring CIC-rich tumors in future anti-cancer therapies. CIC-rich tumors remodel the collagen matrix more than CIC-poor tumors. PMID:25597396

  13. Long non-coding RNA profiling of human lymphoid progenitor cells reveals transcriptional divergence of B cell and T cell lineages.

    PubMed

    Casero, David; Sandoval, Salemiz; Seet, Christopher S; Scholes, Jessica; Zhu, Yuhua; Ha, Vi Luan; Luong, Annie; Parekh, Chintan; Crooks, Gay M

    2015-12-01

    To elucidate the transcriptional 'landscape' that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitor cells spanning the earliest stages of B lymphoid and T lymphoid specification. Over 3,000 genes encoding previously unknown long non-coding RNAs (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage specific and were more lineage specific than those of protein-coding genes. Protein-coding genes co-expressed with neighboring lncRNA genes showed enrichment for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships among the earliest progenitor cells in the human bone marrow and thymus. PMID:26502406

  14. Parallel divergent adaptation along replicated altitudinal gradients in Alpine trout

    PubMed Central

    2012-01-01

    Background The European trout (Salmo trutta species complex) occurs across a very wide altitudinal range from lowland rivers to alpine streams. Historically, the major European river systems contained different, evolutionarily distinct trout lineages, and some of this genetic diversity has persisted in spite of extensive human-mediated translocations. We used AFLP-based genome scans to investigate the extent of potentially adaptive divergence among major drainages and along altitudinal gradients replicated in several rivers. Results The proportion of loci showing evidence of divergent selection was larger between drainages than along altitudinal transects within drainages. This suggests divergent selection is stronger between drainages, or adaptive divergence is constrained by gene flow among populations within drainages, although the latter could not be confirmed at a more local scale. Still, altitudinal divergence occurred and, at approximately 2% of the markers, parallel changes of the AFLP band frequencies with altitude were observed suggesting that altitude may well be an important source of divergent selection within rivers. Conclusions Our results indicate that adaptive genetic divergence is common both between major European river systems and along altitudinal gradients within drainages. Alpine trout appear to be a promising model system to investigate the relative roles of divergent selection and gene flow in promoting or preventing adaptation to climate gradients. PMID:23102191

  15. Cell-intrinsic mechanism involving Siglec-5 associated with divergent outcomes of HIV-1 infection in human and chimpanzee CD4 T cells.

    PubMed

    Soto, Paula C; Karris, Maile Y; Spina, Celsa A; Richman, Douglas D; Varki, Ajit

    2013-02-01

    Human and chimpanzee CD4+ T cells differ markedly in expression of the inhibitory receptor Siglec-5, which contributes towards differential responses to activating stimuli. While CD4+ T cells from both species are equally susceptible to HIV-1 infection, chimpanzee cells survive better, suggesting a cell-intrinsic difference. We hypothesized that Siglec-5 expression protects T cells from activation-induced and HIV-1-induced cell death. Transduction of human CEM T cells with Siglec-5 decreased cell responses to stimulation. Following HIV-1 infection, a higher percentage of Siglec-5-positive cells survived, suggesting relative resistance to virus-induced cell death. Consistent with this, we observed an increase in percentage of Siglec-5-positive cells surviving in mixed infected cultures. Siglec-5-transduced cells also showed decreased expression of apoptosis-related proteins following infection and reduced susceptibility to Fas-mediated cell death. Similar Siglec-5-dependent differences were seen when comparing infection outcomes in primary CD4+ T cells from humans and chimpanzees. A protective effect of Siglec-5 was further supported by observing greater proportions of circulating CD4+ T cells expressing Siglec-5 in acutely infected HIV-1 patients, compared to controls. Taken together, our results suggest that Siglec-5 expression protects T cells from HIV-1- and apoptosis-induced cell death and contributes to the different outcomes of HIV-1 infection in humans and chimpanzees. PMID:22945238

  16. Diversity and Divergence of Dinoflagellate Histone Proteins

    PubMed Central

    Marinov, Georgi K.; Lynch, Michael

    2015-01-01

    Histone proteins and the nucleosomal organization of chromatin are near-universal eukaroytic features, with the exception of dinoflagellates. Previous studies have suggested that histones do not play a major role in the packaging of dinoflagellate genomes, although several genomic and transcriptomic surveys have detected a full set of core histone genes. Here, transcriptomic and genomic sequence data from multiple dinoflagellate lineages are analyzed, and the diversity of histone proteins and their variants characterized, with particular focus on their potential post-translational modifications and the conservation of the histone code. In addition, the set of putative epigenetic mark readers and writers, chromatin remodelers and histone chaperones are examined. Dinoflagellates clearly express the most derived set of histones among all autonomous eukaryote nuclei, consistent with a combination of relaxation of sequence constraints imposed by the histone code and the presence of numerous specialized histone variants. The histone code itself appears to have diverged significantly in some of its components, yet others are conserved, implying conservation of the associated biochemical processes. Specifically, and with major implications for the function of histones in dinoflagellates, the results presented here strongly suggest that transcription through nucleosomal arrays happens in dinoflagellates. Finally, the plausible roles of histones in dinoflagellate nuclei are discussed. PMID:26646152

  17. PNPLA3 mediates hepatocyte triacylglycerol remodeling.

    PubMed

    Ruhanen, Hanna; Perttilä, Julia; Hölttä-Vuori, Maarit; Zhou, You; Yki-Järvinen, Hannele; Ikonen, Elina; Käkelä, Reijo; Olkkonen, Vesa M

    2014-04-01

    The I148M substitution in patatin-like phospholipase domain containing 3 (PNPLA3(I148M)) determines a genetic form of nonalcoholic fatty liver disease. To elucidate the mode of PNPLA3 action in human hepatocytes, we studied effects of WT PNPLA3 (PNPLA3(WT)) and PNPLA3(I148M) on HuH7 cell lipidome after [(13)C]glycerol labeling, cellular turnover of oleic acid labeled with 17 deuterium atoms ([D17]oleic acid) in triacylglycerols (TAGs), and subcellular distribution of the protein variants. PNPLA3(I148M) induced a net accumulation of unlabeled TAGs, but not newly synthesized total [(13)C]TAGs. Principal component analysis (PCA) revealed that both PNPLA3(WT) and PNPLA3(I148M) induced a relative enrichment of TAGs with saturated FAs or MUFAs, with concurrent enrichment of polyunsaturated phosphatidylcholines. PNPLA3(WT) associated in PCA with newly synthesized [(13)C]TAGs, particularly 52:1 and 50:1, while PNPLA3(I148M) associated with similar preexisting TAGs. PNPLA3(WT) overexpression resulted in increased [D17]oleic acid labeling of TAGs during 24 h, and after longer incubations their turnover was accelerated, effects not detected with PNPLA3(I148M). PNPLA3(I148M) localized more extensively to lipid droplets (LDs) than PNPLA3(WT), suggesting that the substitution alters distribution of PNPLA3 between LDs and endoplasmic reticulum/cytosol. This study reveals a function of PNPLA3 in FA-selective TAG remodeling, resulting in increased TAG saturation. A defect in TAG remodeling activity likely contributes to the TAG accumulation observed in cells expressing PNPLA3(I148M). PMID:24511104

  18. A single 13-kilobase divergent locus in the Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genome contains nine open reading frames that are homologous to or related to cellular proteins.

    PubMed Central

    Nicholas, J; Ruvolo, V; Zong, J; Ciufo, D; Guo, H G; Reitz, M S; Hayward, G S

    1997-01-01

    Two small fragments of a novel human gammaherpesvirus genome known as Kaposi's sarcoma (KS)-associated herpesvirus or human herpesvirus 8 (HHV-8) have been shown to be present in virtually all AIDS and non-AIDS KS lesions, as well as in body cavity-based lymphomas (BCBL) and in multicentric Castleman's disease. We have extended those studies by identifying and sequencing a third fragment of HHV-8 DNA encoding a viral thymidylate synthetase (TS) gene. Use of this viral TS fragment as a probe led to the identification and mapping of a cluster of overlapping phage lambda clones from a BCBL tumor DNA genomic library that spanned 48 kb on the left-hand side of the HHV-8 genome between the equivalents of open reading frame 6 (ORF6) and ORF31 of herpesvirus saimiri (HVS). DNA sequencing of a 17-kb segment encompassing a gammaherpesvirus divergent locus (DL-B) between ORF11 and ORF17 revealed the presence of nine viral ORFs with predicted gene products related to cellular proteins. These include the complete TS gene and a dihydrofolate reductase (DHFR) gene, four novel cytokine genes (encoding viral interleukin-6, viral MIP-1A, viral MIP-1B, and BCK) that have not previously been found to be encoded by a virus, and a bcl-2 homolog. This region in HHV-8 also contains the T1.1 abundant lytic cycle nuclear RNA gene and encompasses two genes (or exons) encoding proteins with C4HC3 zinc finger domains of the PHD/leukemia-associated protein subtype. The latter are related to the spliced immediate-early IE1 protein of the gamma-2 class herpesvirus bovine herpesvirus type 4 and a similar motif found in HVS ORF12. Although genes for TS and DHFR enzymes are also encoded by HVS (ORF70 and ORF2), both occur at different genomic loci than in HHV-8, and the HHV-8 DHFR protein is much farther diverged from human DHFR than is the HVS version, implying that they were probably acquired as host cell cDNAs by independent evolutionary events. Transcripts from the IE1-A, IE1-B, DHFR, and MIP-1B

  19. Human cytoplasmic isoleucyl-tRNA synthetase: selective divergence of the anticodon-binding domain and acquisition of a new structural unit.

    PubMed Central

    Shiba, K; Suzuki, N; Shigesada, K; Namba, Y; Schimmel, P; Noda, T

    1994-01-01

    We show here that the class I human cytoplasmic isoleucyl-tRNA synthetase is an exceptionally large polypeptide (1266 aa) which, unlike its homologues in lower eukaryotes and prokaryotes, has a third domain of two repeats of an approximately 90-aa sequence appended to its C-terminal end. While extracts of Escherichia coli do not aminoacrylate mammalian tRNA with isoleucine, expression of the cloned human gene in E. coli results in charging of the mammalian tRNA substrate. The appended third domain is dispensable for detection of this aminoacylation activity and may be needed for assembly of a multisynthetase complex in mammalian cells. Alignment of the sequences of the remaining two domains shared by isoleucyl-tRNA synthetases from E. coli to human reveals a much greater selective pressure on the domain needed for tRNA acceptor helix interactions and catalysis than on the domain needed for interactions with the anticodon. This result may have implications for the historical development of an operational RNA code for amino acids. Images PMID:8052601

  20. Osteocyte-Driven Bone Remodeling

    PubMed Central

    Bellido, Teresita

    2013-01-01

    Osteocytes, the most abundant cells in bone, have been long postulated to detect and respond to mechanical and hormonal stimuli and to coordinate the function of osteoblasts and osteoclasts. The discovery that the inhibitor of bone formation sclerostin is primarily expressed in osteocytes in bone and it is downregulated by anabolic stimuli provided a mechanism by which osteocytes influence the activity of osteoblasts. Advances of the last few years provided experimental evidence demonstrating that osteocytes also participate in the recruitment of osteoclasts and the initiation of bone remodeling. Apoptotic osteocytes trigger yet to be identified signals that attract osteoclast precursors to specific areas of bone, which in turn differentiate to mature, bone resorbing osteoclasts. Osteocytes are also the source of molecules that regulate generation and activity of osteoclasts, such as OPG and RANKL; and genetic manipulations of the mouse genome leading to loss or gain of function, or to altered expression of either molecule in osteocytes, markedly affect bone resorption. This review highlights these investigations and discusses how the novel concept of osteocyte-driven bone resorption and formation impacts our understanding of the mechanisms by which current therapies control bone remodeling. PMID:24002178

  1. HDL biogenesis, remodeling, and catabolism.

    PubMed

    Zannis, Vassilis I; Fotakis, Panagiotis; Koukos, Georgios; Kardassis, Dimitris; Ehnholm, Christian; Jauhiainen, Matti; Chroni, Angeliki

    2015-01-01

    In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research. PMID:25522986

  2. Intracranial pressure and skull remodeling

    PubMed Central

    McCulley, Timothy J.; Jordan Piluek, W.; Chang, Jessica

    2014-01-01

    In this article we review bony changes resulting from alterations in intracranial pressure (ICP) and the implications for ophthalmologists and the patients for whom we care. Before addressing ophthalmic implications, we will begin with a brief overview of bone remodeling. Bony changes seen with chronic intracranial hypotension and hypertension will be discussed. The primary objective of this review was to bring attention to bony changes seen with chronic intracranial hypotension. Intracranial hypotension skull remodeling can result in enophthalmos. In advanced disease enophthalmos develops to a degree that is truly disfiguring. The most common finding for which subjects are referred is ocular surface disease, related to loss of contact between the eyelids and the cornea. Other abnormalities seen include abnormal ocular motility and optic atrophy. Recognition of such changes is important to allow for diagnosis and treatment prior to advanced clinical deterioration. Routine radiographic assessment of bony changes may allow for the identification of patient with abnormal ICP prior to the development of clinically significant disease. PMID:25859141

  3. A Vaccine of L2 Epitope Repeats Fused with a Modified IgG1 Fc Induced Cross-Neutralizing Antibodies and Protective Immunity against Divergent Human Papillomavirus Types

    PubMed Central

    Zhang, Ting; Liu, Yanchun; Xie, Xixiu; Wang, Zhirong; Xu, Xuemei

    2014-01-01

    Current human papillomavirus (HPV) major capsid protein L1 virus-like particles (VLPs)-based vaccines in clinic induce strong HPV type-specific neutralizing antibody responses. To develop pan-HPV vaccines, here, we show that the fusion protein E3R4 consisting of three repeats of HPV16 L2 aa 17–36 epitope (E3) and a modified human IgG1 Fc scaffold (R4) induces cross-neutralizing antibodies and protective immunity against divergent HPV types. E3R4 was expressed as a secreted protein in baculovirus expression system and could be simply purified by one step Protein A affinity chromatography with the purity above 90%. Vaccination of E3R4 formulated with Freunds adjuvant not only induced cross-neutralizing antibodies against HPV pseudovirus types 16, 18, 45, 52, 58, 6, 11 and 5 in mice, but also protected mice against vaginal challenges with HPV pseudovirus types 16, 45, 52, 58, 11 and 5 for at least eleven months after the first immunization. Moreover, vaccination of E3R4 formulated with FDA approved adjuvant alum plus monophosphoryl lipid A also induced cross-neutralizing antibodies against HPV types 16, 18 and 6 in rabbits. Thus, our results demonstrate that delivery of L2 antigen as a modified Fc-fusion protein may facilitate pan-HPV vaccine development. PMID:24802101

  4. Induction of vascular remodeling in the lung by chronic house dust mite exposure.

    PubMed

    Rydell-Törmänen, Kristina; Johnson, Jill R; Fattouh, Ramzi; Jordana, Manel; Erjefält, Jonas S

    2008-07-01

    Structural changes to the lung are associated with chronic asthma. In addition to alterations to the airway wall, asthma is associated with vascular modifications, although this aspect of remodeling is poorly understood. We sought to evaluate the character and kinetics of vascular remodeling in response to chronic aeroallergen exposure. Because many ovalbumin-driven models used to investigate allergic airway disease do so in the absence of persistent airway inflammation, we used a protocol of chronic respiratory exposure to house dust mite extract (HDME), which has been shown to induce persistent airway inflammation consistent with that seen in humans with asthma. Mice were exposed to HDME intranasally for 7 or 20 consecutive weeks, and resolution of the inflammatory and remodeling response to allergen was investigated 4 weeks after the end of a 7-week exposure protocol. Measures of vascular remodeling, including total collagen deposition, procollagen I production, endothelial and smooth muscle cell proliferation, smooth muscle area, and presence of myofibroblasts, were investigated histologically in lung vessels of different sizes and locations. We observed an increase in total collagen content, which did not resolve upon cessation of allergen exposure. Other parameters were significantly increased after 7 and/or 20 weeks of allergen exposure but returned to baseline after allergen withdrawal. We conclude that respiratory HDME exposure induces airway remodeling and pulmonary vascular remodeling, and, in accordance with airway remodeling, some components of these structural changes may be irreversible. PMID:18314535

  5. An Analysis of the Residential Remodeling Occupation.

    ERIC Educational Resources Information Center

    Scruggs, Kenneth

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the residential remodeling occupation. The analysis only briefly covers the many areas of residential remodeling. The document opens with a brief introduction followed by a job description. The bulk of the…

  6. Bone remodeling and silicon deficiency in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alveolar bone undergoes continuous remodeling to meet physiologic and functional demands. The aim of the present work was to evaluate histologically and histomorphometrically the effect of silicon deficiency on bone modeling and remodeling in the periodontal cortical plate. Two groups of weaning mal...

  7. Chromatin Remodelers: From Function to Dysfunction

    PubMed Central

    Längst, Gernot; Manelyte, Laura

    2015-01-01

    Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development. PMID:26075616

  8. Multiscale Simulation of Protein Mediated Membrane Remodeling

    PubMed Central

    Ayton, Gary S.; Voth, Gregory A.

    2009-01-01

    Proteins interacting with membranes can result in substantial membrane deformations and curvatures. This effect is known in its broadest terms as membrane remodeling. This review article will survey current multiscale simulation methodologies that have been employed to examine protein-mediated membrane remodeling. PMID:19922811

  9. Infrared divergences in de Sitter space

    SciTech Connect

    Polarski, D. Service d'Astrophysique, CEN Saclay, 91191 Gif-sur-Yvette CEDEX, France)

    1991-03-15

    Infrared divergences in de Sitter space are considered. It is shown that symmetry breaking is unavoidable only when the infrared divergence is strong enough. The static vacuum has no symmetry breaking despite the presence of an infrared divergence.

  10. Nucleosome dynamics during chromatin remodeling in vivo

    PubMed Central

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    ABSTRACT Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation. PMID:26933790

  11. Lipid Acyl Chain Remodeling in Yeast

    PubMed Central

    Renne, Mike F.; Bao, Xue; De Smet, Cedric H.; de Kroon, Anton I. P. M.

    2015-01-01

    Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed. PMID:26819558

  12. Nucleosome dynamics during chromatin remodeling in vivo.

    PubMed

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation. PMID:26933790

  13. Thyroid Hormone and Vascular Remodeling.

    PubMed

    Ichiki, Toshihiro

    2016-01-01

    Both hyperthyroidism and hypothyroidism affect the cardiovascular system. Hypothyroidism is known to be associated with enhanced atherosclerosis and ischemic heart diseases. The accelerated atherosclerosis in the hypothyroid state has been traditionally ascribed to atherogenic lipid profile, diastolic hypertension, and impaired endothelial function. However, recent studies indicate that thyroid hormone has direct anti-atherosclerotic effects, such as production of nitric oxide and suppression of smooth muscle cell proliferation. These data suggest that thyroid hormone inhibits atherogenesis through direct effects on the vasculature as well as modification of risk factors for atherosclerosis. This review summarizes the basic and clinical studies on the role of thyroid hormone in vascular remodeling. The possible application of thyroid hormone mimetics to the therapy of hypercholesterolemia and atherosclerosis is also discussed. PMID:26558400

  14. Divergent effects of 17-{beta}-estradiol on human vascular smooth muscle and endothelial cell function diminishes TNF-{alpha}-induced neointima formation

    SciTech Connect

    Nintasen, Rungrat; Riches, Kirsten; Mughal, Romana S.; Viriyavejakul, Parnpen; Chaisri, Urai; Maneerat, Yaowapa; Turner, Neil A.; Porter, Karen E.

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} augments neointimal hyperplasia in human saphenous vein. Black-Right-Pointing-Pointer TNF-{alpha} induces detrimental effects on endothelial and smooth muscle cell function. Black-Right-Pointing-Pointer Estradiol exerts modulatory effects on TNF-induced vascular cell functions. Black-Right-Pointing-Pointer The modulatory effects of estradiol are discriminatory and cell-type specific. -- Abstract: Coronary heart disease (CHD) is a condition characterized by increased levels of proinflammatory cytokines, including tumor necrosis factor-{alpha} (TNF-{alpha}). TNF-{alpha} can induce vascular endothelial cell (EC) and smooth muscle cell (SMC) dysfunction, central events in development of neointimal lesions. The reduced incidence of CHD in young women is believed to be due to the protective effects of estradiol (E2). We therefore investigated the effects of TNF-{alpha} on human neointima formation and SMC/EC functions and any modulatory effects of E2. Saphenous vein (SV) segments were cultured in the presence of TNF-{alpha} (10 ng/ml), E2 (2.5 nM) or both in combination. Neointimal thickening was augmented by incubation with TNF-{alpha}, an effect that was abolished by co-culture with E2. TNF-{alpha} increased SV-SMC proliferation in a concentration-dependent manner that was optimal at 10 ng/ml (1.5-fold increase), and abolished by E2 at all concentrations studied (1-50 nM). Surprisingly, E2 itself at low concentrations (1 and 5 nM) stimulated SV-SMC proliferation to a level comparable to that of TNF-{alpha} alone. SV-EC migration was significantly impaired by TNF-{alpha} (42% of control), and co-culture with E2 partially restored the ability of SV-EC to migrate and repair the wound. In contrast, TNF-{alpha} increased SV-SMC migration by 1.7-fold, an effect that was completely reversed by co-incubation with E2. Finally, TNF-{alpha} potently induced ICAM-1 and VCAM-1 expression in both SV-EC and SV-SMC. However there

  15. Divergent/passive margin basins

    SciTech Connect

    Edwards, J.D. ); Santogrossi, P.A. )

    1989-01-01

    This book discusses the detailed geology of the four divergent margin basins and establishes a set of analog scenarios which can be used for future petroleum exploration. The divergent margin basins are the Campos basin of Brazil, the Gabon basin, the Niger delta, and the basins of the northwest shelf of Australia. These four petroleum basins present a wide range of stratigraphic sequences and structural styles that represent the diverse evolution of this large and important class of world petroleum basins.

  16. Binding of Plasmodium falciparum Merozoite Surface Proteins DBLMSP and DBLMSP2 to Human Immunoglobulin M Is Conserved among Broadly Diverged Sequence Variants.

    PubMed

    Crosnier, Cécile; Iqbal, Zamin; Knuepfer, Ellen; Maciuca, Sorina; Perrin, Abigail J; Kamuyu, Gathoni; Goulding, David; Bustamante, Leyla Y; Miles, Alistair; Moore, Shona C; Dougan, Gordon; Holder, Anthony A; Kwiatkowski, Dominic P; Rayner, Julian C; Pleass, Richard J; Wright, Gavin J

    2016-07-01

    Diversity at pathogen genetic loci can be driven by host adaptive immune selection pressure and may reveal proteins important for parasite biology. Population-based genome sequencing of Plasmodium falciparum, the parasite responsible for the most severe form of malaria, has highlighted two related polymorphic genes called dblmsp and dblmsp2, which encode Duffy binding-like (DBL) domain-containing proteins located on the merozoite surface but whose function remains unknown. Using recombinant proteins and transgenic parasites, we show that DBLMSP and DBLMSP2 directly and avidly bind human IgM via their DBL domains. We used whole genome sequence data from over 400 African and Asian P. falciparum isolates to show that dblmsp and dblmsp2 exhibit extreme protein polymorphism in their DBL domain, with multiple variants of two major allelic classes present in every population tested. Despite this variability, the IgM binding function was retained across diverse sequence representatives. Although this interaction did not seem to have an effect on the ability of the parasite to invade red blood cells, binding of DBLMSP and DBLMSP2 to IgM inhibited the overall immunoreactivity of these proteins to IgG from patients who had been exposed to the parasite. This suggests that IgM binding might mask these proteins from the host humoral immune system. PMID:27226583

  17. Binding of Plasmodium falciparum Merozoite Surface Proteins DBLMSP and DBLMSP2 to Human Immunoglobulin M Is Conserved among Broadly Diverged Sequence Variants*

    PubMed Central

    Crosnier, Cécile; Iqbal, Zamin; Knuepfer, Ellen; Maciuca, Sorina; Perrin, Abigail J.; Kamuyu, Gathoni; Goulding, David; Bustamante, Leyla Y.; Miles, Alistair; Moore, Shona C.; Dougan, Gordon; Holder, Anthony A.; Kwiatkowski, Dominic P.; Rayner, Julian C.; Pleass, Richard J.; Wright, Gavin J.

    2016-01-01

    Diversity at pathogen genetic loci can be driven by host adaptive immune selection pressure and may reveal proteins important for parasite biology. Population-based genome sequencing of Plasmodium falciparum, the parasite responsible for the most severe form of malaria, has highlighted two related polymorphic genes called dblmsp and dblmsp2, which encode Duffy binding-like (DBL) domain-containing proteins located on the merozoite surface but whose function remains unknown. Using recombinant proteins and transgenic parasites, we show that DBLMSP and DBLMSP2 directly and avidly bind human IgM via their DBL domains. We used whole genome sequence data from over 400 African and Asian P. falciparum isolates to show that dblmsp and dblmsp2 exhibit extreme protein polymorphism in their DBL domain, with multiple variants of two major allelic classes present in every population tested. Despite this variability, the IgM binding function was retained across diverse sequence representatives. Although this interaction did not seem to have an effect on the ability of the parasite to invade red blood cells, binding of DBLMSP and DBLMSP2 to IgM inhibited the overall immunoreactivity of these proteins to IgG from patients who had been exposed to the parasite. This suggests that IgM binding might mask these proteins from the host humoral immune system. PMID:27226583

  18. Synaptic remodeling of neuronal circuits in early retinal degeneration

    PubMed Central

    Soto, Florentina; Kerschensteiner, Daniel

    2015-01-01

    Photoreceptor degenerations are a major cause of blindness and among the most common forms of neurodegeneration in humans. Studies of mouse models revealed that synaptic dysfunction often precedes photoreceptor degeneration, and that abnormal synaptic input from photoreceptors to bipolar cells causes circuits in the inner retina to become hyperactive. Here, we provide a brief overview of frequently used mouse models of photoreceptor degenerations. We then discuss insights into circuit remodeling triggered by early synaptic dysfunction in the outer and hyperactivity in the inner retina. We discuss these insights in the context of other experimental manipulations of synaptic function and activity. Knowledge of the plasticity and early remodeling of retinal circuits will be critical for the design of successful vision rescue strategies. PMID:26500497

  19. Residues required for phosphorylation of translation initiation factor eIF2α under diverse stress conditions are divergent between yeast and human.

    PubMed

    Majumder, Mithu; Mitchell, Daniel; Merkulov, Sergei; Wu, Jing; Guan, Bo-Jhih; Snider, Martin D; Krokowski, Dawid; Yee, Vivien C; Hatzoglou, Maria

    2015-02-01

    PERK, PKR, HRI and GCN2 are the four mammalian kinases that phosphorylate the α subunit of the eukaryotic translation initiation factor 2 (eIF2α) on Ser51. This phosphorylation event is conserved among many species and attenuates protein synthesis in response to diverse stress conditions. In contrast, Saccharmyces cerevisiae expresses only the GCN2 kinase. It was demonstrated previously in S. cerevisiae that single point mutations in eIF2α's N-terminus severely impaired phosphorylation at Ser51. To assess whether similar recognition patterns are present in mammalian eIF2α, we expressed human eIF2α's with these mutations in mouse embryonic fibroblasts and assessed their phosphorylation under diverse stress conditions. Some of the mutations prevented the stress-induced phosphorylation of eIF2α by all mammalian kinases, thus defining amino acid residues in eIF2α (Gly 30, Leu 50, and Asp 83) that are required for substrate recognition. We also identified residues that were less critical or not required for recognition by the mammalian kinases (Ala 31, Met 44, Lys 79, and Tyr 81), even though they were essential for recognition of the yeast eIF2α by GCN2. We propose that mammalian eIF2α kinases evolved to maximize their interactions with the evolutionarily conserved Ser51 residue of eIF2α in response to diverse stress conditions, thus adding to the complex signaling pathways that mammalian cells have over simpler organisms. PMID:25541374

  20. Although divergent in residues of the peptide binding site, conserved chimpanzee Patr-AL and polymorphic human HLA-A*02 have overlapping peptide-binding repertoires.

    PubMed

    Gleimer, Michael; Wahl, Angela R; Hickman, Heather D; Abi-Rached, Laurent; Norman, Paul J; Guethlein, Lisbeth A; Hammond, John A; Draghi, Monia; Adams, Erin J; Juo, Sean; Jalili, Roxana; Gharizadeh, Baback; Ronaghi, Mostafa; Garcia, K Christopher; Hildebrand, William H; Parham, Peter

    2011-02-01

    Patr-AL is an expressed, non-polymorphic MHC class I gene carried by ∼50% of chimpanzee MHC haplotypes. Comparing Patr-AL(+) and Patr-AL(-) haplotypes showed Patr-AL defines a unique 125-kb genomic block flanked by blocks containing classical Patr-A and pseudogene Patr-H. Orthologous to Patr-AL are polymorphic orangutan Popy-A and the 5' part of human pseudogene HLA-Y, carried by ∼10% of HLA haplotypes. Thus, the AL gene alternatively evolved in these closely related species to become classical, nonclassical, and nonfunctional. Although differing by 30 aa substitutions in the peptide-binding α(1) and α(2) domains, Patr-AL and HLA-A*0201 bind overlapping repertoires of peptides; the overlap being comparable with that between the A*0201 and A*0207 subtypes differing by one substitution. Patr-AL thus has the A02 supertypic peptide-binding specificity. Patr-AL and HLA-A*0201 have similar three-dimensional structures, binding peptides in similar conformation. Although comparable in size and shape, the B and F specificity pockets of Patr-AL and HLA-A*0201 differ in both their constituent residues and contacts with peptide anchors. Uniquely shared by Patr-AL, HLA-A*0201, and other members of the A02 supertype are the absence of serine at position 9 in the B pocket and the presence of tyrosine at position 116 in the F pocket. Distinguishing Patr-AL from HLA-A*02 is an unusually electropositive upper face on the α(2) helix. Stimulating PBMCs from Patr-AL(-) chimpanzees with B cells expressing Patr-AL produced potent alloreactive CD8 T cells with specificity for Patr-AL and no cross-reactivity toward other MHC class I molecules, including HLA-A*02. In contrast, PBMCs from Patr-AL(+) chimpanzees are tolerant of Patr-AL. PMID:21209280

  1. Identification of Serpinb6b as a Species-specific Mouse Granzyme A Inhibitor Suggests Functional Divergence between Human and Mouse Granzyme A

    PubMed Central

    Kaiserman, Dion; Stewart, Sarah E.; Plasman, Kim; Gevaert, Kris; Van Damme, Petra; Bird, Phillip I.

    2014-01-01

    The granzyme family serine proteases are key effector molecules expressed by cytotoxic lymphocytes. The physiological role of granzyme (Gzm) A is controversial, with significant debate over its ability to induce death in target cells. Here, we investigate the natural inhibitors of GzmA. We employed substrate phage display and positional proteomics to compare substrate specificities of mouse (m) and human (h) GzmA at the peptide and proteome-wide levels and we used the resulting substrate specificity profiles to search for potential inhibitors from the intracellular serpin family. We identified Serpinb6b as a potent inhibitor of mGzmA. Serpinb6b interacts with mGzmA, but not hGzmA, with an association constant of 1.9 ± 0.8 × 105 m−1 s−1 and a stoichiometry of inhibition of 1.8. Mouse GzmA is over five times more cytotoxic than hGzmA when delivered into P815 target cells with streptolysin O, whereas transfection of target cells with a Serpinb6b cDNA increases the EC50 value of mGzmA 13-fold, without affecting hGzmA cytotoxicity. Unexpectedly, we also found that Serpinb6b employs an exosite to specifically inhibit dimeric but not monomeric mGzmA. The identification of an intracellular inhibitor specific for mGzmA only indicates that a lineage-specific increase in GzmA cytotoxic potential has driven cognate inhibitor evolution. PMID:24505135

  2. Residues required for phosphorylation of translation initiation factor eIF2α under diverse stress conditions are divergent between yeast and human

    PubMed Central

    Majumder, Mithu; Mitchell, Daniel; Merkulov, Sergei; Wu, Jing; Guan, Bo-Jhih; Snider, Martin D.; Krokowski, Dawid; Yee, Vivien C.; Hatzoglou, Maria

    2015-01-01

    PERK, PKR, HRI and GCN2 are the four mammalian kinases that phosphorylate the α subunit of the eukaryotic translation initiation factor 2 (eIF2α) on Ser51. This phosphorylation event is conserved among many species and attenuates protein synthesis in response to diverse stress conditions. In contrast, Saccharmyces cerevisiae expresses only the GCN2 kinase. It was demonstrated previously in S. cerevisiae that single point mutations in eIF2α’s N-terminus severely impaired phosphorylation at Ser51. To assess whether similar recognition patterns are present in mammalian eIF2α, we expressed human eIF2α’s with these mutations in mouse embryonic fibroblasts and assessed their phosphorylation under diverse stress conditions. Some of the mutations prevented the stress-induced phosphorylation of eIF2α by all mammalian kinases, thus defining amino acid residues in eIF2α (Gly 30, Leu 50, and Asp 83) that are required for substrate recognition. We also identified residues that were less critical or not required for recognition by the mammalian kinases (Ala 31, Met 44, Lys 79, and Tyr 81), even though they were essential for recognition of the yeast eIF2α by GCN2. We propose that mammalian eIF2α kinases evolved to maximize their interactions with the evolutionarily conserved Ser51 residue of eIF2α in response to diverse stress conditions, thus adding to the complex signaling pathways that mammalian cells have over simpler organisms. PMID:25541374

  3. LIGHT is a crucial mediator of airway remodeling.

    PubMed

    Hung, Jen-Yu; Chiang, Shyh-Ren; Tsai, Ming-Ju; Tsai, Ying-Ming; Chong, Inn-Wen; Shieh, Jiunn-Min; Hsu, Ya-Ling

    2015-05-01

    Chronic inflammatory airway diseases like asthma and chronic obstructive pulmonary disease are major health problems globally. Airway epithelial cells play important role in airway remodeling, which is a critical process in the pathogenesis of diseases. This study aimed to demonstrate that LIGHT, an inflammatory factor secreted by T cells after allergen exposure, is responsible for promoting airway remodeling. LIGHT increased primary human bronchial epithelial cells (HBECs) undergoing epithelial-mesenchymal transition (EMT) and expressing MMP-9. The induction of EMT was associated with increased NF-κB activation and p300/NF-κB association. The interaction of NF-κB with p300 facilitated NF-κB acetylation, which in turn, was bound to the promoter of ZEB1, resulting in E-cadherin downregulation. LIGHT also stimulated HBECs to produce numerous cytokines/chemokines that could worsen airway inflammation. Furthermore, LIGHT enhanced HBECs to secrete activin A, which increased bronchial smooth muscle cell (BSMC) migration. In contrast, depletion of activin A decreased such migration. The findings suggest a new molecular determinant of LIGHT-mediated pathogenic changes in HBECs and that the LIGHT-related vicious cycle involving HBECs and BSMCs may be a potential target for the treatment of chronic inflammation airway diseases with airway remodeling. PMID:25251281

  4. Lead Poisoning in Remodeling of Old Homes

    ERIC Educational Resources Information Center

    Barnes, Bart

    1973-01-01

    An article based on Dr. Muriel D. Wolf's study of elevated blood lead levels in children and adults present during the remodeling of old homes. Lead poisoning examples, symptoms, and precautions are given. (ST)

  5. Bone Remodeling Under Pathological Conditions.

    PubMed

    Xiao, Wenmei; Li, Shuai; Pacios, Sandra; Wang, Yu; Graves, Dana T

    2016-01-01

    Bone is masterfully programmed to repair itself through the coupling of bone formation following bone resorption, a process referred to as coupling. In inflammatory or other conditions, the balance between bone resorption and bone formation shifts so that a net bone loss results. This review focuses on four pathologic conditions in which remodeling leads to net loss of bone, postmenopausal osteoporosis, arthritis, periodontal disease, and disuse bone loss, which is similar to bone loss associated with microgravity. In most of these there is an acceleration of the resorptive process due to increased formation of bone metabolic units. This initially leads to a net bone loss since the time period of resorption is much faster than the time needed for bone formation that follows. In addition, each of these processes is characterized by an uncoupling that leads to net bone loss. Mechanisms responsible for increased rates of bone resorption, i.e. the formation of more bone metabolic units, involve enhanced expression of inflammatory cytokines and increased expression of RANKL. Moreover, the reasons for uncoupling are discussed which range from a decrease in expression of growth factors and bone morphogenetic proteins to increased expression of factors that inhibit Wnt signaling. PMID:26599114

  6. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  7. Divergence-based vector quantization.

    PubMed

    Villmann, Thomas; Haase, Sven

    2011-05-01

    Supervised and unsupervised vector quantization methods for classification and clustering traditionally use dissimilarities, frequently taken as Euclidean distances. In this article, we investigate the applicability of divergences instead, focusing on online learning. We deduce the mathematical fundamentals for its utilization in gradient-based online vector quantization algorithms. It bears on the generalized derivatives of the divergences known as Fréchet derivatives in functional analysis, which reduces in finite-dimensional problems to partial derivatives in a natural way. We demonstrate the application of this methodology for widely applied supervised and unsupervised online vector quantization schemes, including self-organizing maps, neural gas, and learning vector quantization. Additionally, principles for hyperparameter optimization and relevance learning for parameterized divergences in the case of supervised vector quantization are given to achieve improved classification accuracy. PMID:21299418

  8. Intracortical remodeling parameters are associated with measures of bone robustness

    PubMed Central

    Goldman, Haviva M.; Hampson, Naomi A.; Guth, J. Jared; Lin, David; Jepsen, Karl J.

    2014-01-01

    Prior work identified a novel association between bone robustness and porosity, which may be part of a broader interaction whereby the skeletal system compensates for the natural variation in robustness (bone width relative to length) by modulating tissue-level mechanical properties to increase stiffness of slender bones and to reduce mass of robust bones. To further understand this association, we tested the hypothesis that the relationship between robustness and porosity is mediated through intracortical, BMU-based (basic multicellular unit) remodeling. We quantified cortical porosity, mineralization, and histomorphometry at two sites (38 and 66% of the length) in human cadaveric tibiae. We found significant correlations between robustness and several histomorphometric variables (e.g., % secondary tissue [R2 = 0.68, p < 0.004], total osteon area [R2=0.42, p<0.04]) at the 66% site. Although these associations were weaker at the 38% site, significant correlations between histological variables were identified between the two sites indicating that both respond to the same global effects and demonstrate a similar character at the whole bone level. Thus, robust bones tended to have larger and more numerous osteons with less infilling, resulting in bigger pores and more secondary bone area. These results suggest that local regulation of BMU-based remodeling may be further modulated by a global signal associated with robustness, such that remodeling is suppressed in slender bones but not in robust bones. Elucidating this mechanism further is crucial for better understanding the complex adaptive nature of the skeleton, and how inter-individual variation in remodeling differentially impacts skeletal aging and an individuals’ potential response to prophylactic treatments. PMID:24962664

  9. Remodeling kitchens: A smorgasbord of energy savings

    SciTech Connect

    Sullivan, B.

    1995-09-01

    The kitchen is often the busiest room in the house and is most likely to remodeled repeatedly over the life of a house. The kitchen also represents a concentration of household energy use. Remodeling a kitchen can mean introducing a host of new energy-saving features or making major energy blunders. This article discusses ways to utilized the best features: layout and design; appliances; lighting; windows and skylights; ventilation; insulation and air sealing; water; household recycling; green building materials.

  10. Effect of material damping on bone remodelling.

    PubMed

    Misra, J C; Samanta, S

    1987-01-01

    This paper considers the effect of internal material damping on the stresses, strains, and surface and internal remodelling behaviour in a section of axisymmetrical bone with a force-fitted axially oriented medullary pin. The bone response to several loading situations is modelled using visco-elastic equations. An approximate method is developed to analyse the proposed mathematical model. By considering a numerical example, the effect of material damping on the remodelling stresses is quantified. PMID:3584150

  11. Chromatin remodeling by nucleosome disassembly in vitro.

    PubMed

    Lorch, Yahli; Maier-Davis, Barbara; Kornberg, Roger D

    2006-02-28

    The RSC chromatin-remodeling complex completely disassembles a nucleosome in the presence of the histone chaperone Nap1 and ATP. Disassembly occurs in a stepwise manner, with the removal of H2A/H2B dimers, followed by the rest of the histones and the release of naked DNA. RSC and related chromatin-remodeling complexes may be responsible for the removal of promoter nucleosomes during transcriptional activation in vivo. PMID:16492771

  12. Biomechanics of vascular mechanosensation and remodeling

    PubMed Central

    Baeyens, Nicolas; Schwartz, Martin A.

    2016-01-01

    Flowing blood exerts a frictional force, fluid shear stress (FSS), on the endothelial cells that line the blood and lymphatic vessels. The magnitude, pulsatility, and directional characteristics of FSS are constantly sensed by the endothelium. Sustained increases or decreases in FSS induce vessel remodeling to maintain proper perfusion of tissue. In this review, we discuss these mechanisms and their relevance to physiology and disease, and propose a model for how information from different mechanosensors might be integrated to govern remodeling. PMID:26715421

  13. TGF-beta, eosinophils and IL-13 in allergic airway remodeling: a critical appraisal with therapeutic considerations.

    PubMed

    Fattouh, Ramzi; Jordana, Manel

    2008-12-01

    Airway remodeling is a characteristic feature of allergic asthma that is now thought to contribute to airway dysfunction and, ultimately, to clinical symptoms. A prevalent hypothesis holds that eosinophil-derived transforming growth factor-beta (TGF-beta) is a predominant underlying mechanism driving the development of remodeling and thus, represent promising targets for therapeutic intervention. This notion is supported by in vivo evidence from loss of function experiments conducted in animal models employing the surrogate allergen ovalbumin (OVA), and by indirect evidence from studies in human asthmatics. However, it is important to note that various studies in OVA systems have reported disconnects between eosinophils, TGF-beta and allergic remodeling. Moreover, recent investigations in a mouse model induced by respiratory exposure to a house dust mite extract have shown that remodeling can develop independently of TGF-beta. These findings challenge the above hypothesis and suggest that the mechanisms governing remodeling may be context specific. In addition to TGF-beta and eosinophils, several other factors have been implicated in the development of airway remodeling. Among these, interleukin (IL)-13 may be of particular importance given its role in type-2 immunity and in the tissue repair/fibrotic response. This review will appraise the evidence pertaining to the roles of TGF-beta, eosinophils and IL-13 in allergic remodeling, and will suggest that identifying robust targets for therapeutic intervention might benefit from a reconsideration of our approach to understanding remodeling. PMID:19075788

  14. Bounds on Nonsymmetric Divergence Measure in terms of Other Symmetric and Nonsymmetric Divergence Measures

    PubMed Central

    Jain, K. C.; Chhabra, Praphull

    2014-01-01

    Vajda (1972) studied a generalized divergence measure of Csiszar's class, so called “Chi-m divergence measure.” Variational distance and Chi-square divergence are the special cases of this generalized divergence measure at m = 1 and m = 2, respectively. In this work, nonparametric nonsymmetric measure of divergence, a particular part of Vajda generalized divergence at m = 4, is taken and characterized. Its bounds are studied in terms of some well-known symmetric and nonsymmetric divergence measures of Csiszar's class by using well-known information inequalities. Comparison of this divergence with others is done. Numerical illustrations (verification) regarding bounds of this divergence are presented as well.

  15. The Emerging Roles of ATP-Dependent Chromatin Remodeling Enzymes in Nucleotide Excision Repair

    PubMed Central

    Czaja, Wioletta; Mao, Peng; Smerdon, Michael J.

    2012-01-01

    DNA repair in eukaryotic cells takes place in the context of chromatin, where DNA, including damaged DNA, is tightly packed into nucleosomes and higher order chromatin structures. Chromatin intrinsically restricts accessibility of DNA repair proteins to the damaged DNA and impacts upon the overall rate of DNA repair. Chromatin is highly responsive to DNA damage and undergoes specific remodeling to facilitate DNA repair. How damaged DNA is accessed, repaired and restored to the original chromatin state, and how chromatin remodeling coordinates these processes in vivo, remains largely unknown. ATP-dependent chromatin remodelers (ACRs) are the master regulators of chromatin structure and dynamics. Conserved from yeast to humans, ACRs utilize the energy of ATP to reorganize packing of chromatin and control DNA accessibility by sliding, ejecting or restructuring nucleosomes. Several studies have demonstrated that ATP-dependent remodeling activity of ACRs plays important roles in coordination of spatio-temporal steps of different DNA repair pathways in chromatin. This review focuses on the role of ACRs in regulation of various aspects of nucleotide excision repair (NER) in the context of chromatin. We discuss current understanding of ATP-dependent chromatin remodeling by various subfamilies of remodelers and regulation of the NER pathway in vivo. PMID:23109894

  16. Trabecular bone remodelling simulated by a stochastic exchange of discrete bone packets from the surface.

    PubMed

    Hartmann, M A; Dunlop, J W C; Bréchet, Y J M; Fratzl, P; Weinkamer, R

    2011-08-01

    Human bone is constantly renewed through life via the process of bone remodelling, in which individual packets of bone are removed by osteoclasts and replaced by osteoblasts. Remodelling is mechanically controlled, where osteocytes embedded within the bone matrix are thought to act as mechanical sensors. In this computational work, a stochastic model for bone remodelling is used in which the renewal of bone material occurs by exchange of discrete bone packets. We tested different hypotheses of how the mechanical stimulus for bone remodelling is integrated by osteocytes and sent to actor cells on the bone's surface. A collective (summed) signal from multiple osteocytes as opposed to an individual (maximal) signal from a single osteocyte was found to lead to lower inner porosity and surface roughness of the simulated bone structure. This observation can be interpreted in that collective osteocyte signalling provides an effective surface tension to the remodelling process. Furthermore, the material heterogeneity due to remodelling was studied on a network of trabeculae. As the model is discrete, the age of individual bone packets can be monitored with time. The simulation results were compared with experimental data coming from quantitative back scattered electron imaging by transforming the information about the age of the bone packet into a mineral content. Discrepancies with experiments indicate that osteoclasts preferentially resorb low mineralized, i.e. young, bone at the bone's surface. PMID:21616469

  17. Dynamics of the Ethanolamine Glycerophospholipid Remodeling Network

    PubMed Central

    Hermansson, Martin; Somerharju, Pentti; Chuang, Jeffrey

    2012-01-01

    Acyl chain remodeling in lipids is a critical biochemical process that plays a central role in disease. However, remodeling remains poorly understood, despite massive increases in lipidomic data. In this work, we determine the dynamic network of ethanolamine glycerophospholipid (PE) remodeling, using data from pulse-chase experiments and a novel bioinformatic network inference approach. The model uses a set of ordinary differential equations based on the assumptions that (1) sn1 and sn2 acyl positions are independently remodeled; (2) remodeling reaction rates are constant over time; and (3) acyl donor concentrations are constant. We use a novel fast and accurate two-step algorithm to automatically infer model parameters and their values. This is the first such method applicable to dynamic phospholipid lipidomic data. Our inference procedure closely fits experimental measurements and shows strong cross-validation across six independent experiments with distinct deuterium-labeled PE precursors, demonstrating the validity of our assumptions. In constrast, fits of randomized data or fits using random model parameters are worse. A key outcome is that we are able to robustly distinguish deacylation and reacylation kinetics of individual acyl chain types at the sn1 and sn2 positions, explaining the established prevalence of saturated and unsaturated chains in the respective positions. The present study thus demonstrates that dynamic acyl chain remodeling processes can be reliably determined from dynamic lipidomic data. PMID:23251394

  18. Possible divergences in Tsallis' thermostatistics

    NASA Astrophysics Data System (ADS)

    Plastino, A.; Rocca, M. C.

    2013-12-01

    Lutsko and Boon have shown via elegant theoretical reasoning (EPL, 95 (2011) 20006), that Tsallis' thermostatistics is affected by divergence problems. We explicitly verify such fact in trying to compute the nonextensive q-partition function for the harmonic oscillator in more than two dimensions. One can see that it indeed diverges. The appeal to the so-called q-Laplace transform, where the q-exponential function plays the role of the ordinary exponential, is seen to overcome the serious problem envisaged by Lutsko and Boon.

  19. Systematic variations in divergence angle.

    PubMed

    Okabe, Takuya

    2012-11-21

    Practical methods for quantitative analysis of radial and angular coordinates of leafy organs of vascular plants are presented and applied to published phyllotactic patterns of various real systems from young leaves on a shoot tip to florets on a flower head. The constancy of divergence angle is borne out with accuracy of less than a degree. It is shown that apparent fluctuations in divergence angle are in large part systematic variations caused by the invalid assumption of a fixed center and/or by secondary deformations, while random fluctuations are of minor importance. PMID:22906592

  20. Divergent Thinking and Interview Ratings

    ERIC Educational Resources Information Center

    Batey, Mark; Rawles, Richard; Furnham, Adrian

    2009-01-01

    This study examined divergent thinking (DT) test scores of applicants taking part in a selection procedure for an undergraduate psychology degree (N = 370). Interviewers made six specific (creative intelligence, motivation, work habits, emotional stability, sociability, and social responsibility) and one overall recommendation rating on each…

  1. Equivalence theorem and infrared divergences

    SciTech Connect

    Torma, T.

    1996-08-01

    We look at the equivalence theorem as a statement about the absence of polynomial infrared divergences when {ital m}{sub {ital W}}{r_arrow}0. We prove their absence in a truncated toy model and conjecture that, if they exist at all, they are due to couplings between light particles. {copyright} {ital 1996 The American Physical Society.}

  2. Quantitative Characterization of Mineralized Silk Film Remodeling during Long-Term Osteoblast-Osteoclast Co-Culture

    PubMed Central

    Hayden, Rebecca S.; Quinn, Kyle P.; Alonzo, Carlo A.; Georgakoudi, Irene; Kaplan, David L.

    2014-01-01

    The goal of this study was to explore quantitative assessments of mineralized silk protein biomaterial films by co-cultures of human mesenchymal stem cell-derived osteoblasts and human acute monocytic leukemia cell line-derived osteoclasts during long-term culture (8 to 32 weeks). The remodeled films were quantitatively assessed using three different techniques during this extended cultivation to provide more comprehensive insight into the impact of co-cultures on surface remodeling. Scanning electron microscopy (SEM) with three dimensional surface reconstructions was used to quantitatively determine various surface morphological features and measures of roughness indicative of remodeling by the cells. Additionally, reconstructed surfaces were converted to depth images for Fourier analysis to quantify the potential fractal organization of biomineralization. The long-term remodeled films were also imaged using confocal reflectance microscopy and micro-computed tomography (micro-CT) to further quantify morphological changes. Films remodeled in co-culture demonstrated increased roughness parameters, fractal organization, and volume compared to films remodeled by osteoblasts alone. The combination of these techniques to quantify remodeling of mineralized protein films shows promise for quantifying processes related to mineralized surfaces. PMID:24484674

  3. Remodelling of cellular excitation (reaction) and intercellular coupling (diffusion) by chronic atrial fibrillation represented by a reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Zhang, Henggui; Garratt, Clifford J.; Kharche, Sanjay; Holden, Arun V.

    2009-06-01

    Human atrial tissue is an excitable system, in which myocytes are excitable elements, and cell-to-cell electrotonic interactions are via diffusive interactions of cell membrane potentials. We developed a family of excitable system models for human atrium at cellular, tissue and anatomical levels for both normal and chronic atrial fibrillation (AF) conditions. The effects of AF-induced remodelling of cell membrane ionic channels (reaction kinetics) and intercellular gap junctional coupling (diffusion) on atrial excitability, conduction of excitation waves and dynamics of re-entrant excitation waves are quantified. Both ionic channel and gap junctional coupling remodelling have rate dependent effects on atrial propagation. Membrane channel conductance remodelling allows the propagation of activity at higher rates than those sustained in normal tissue or in tissue with gap junctional remodelling alone. Membrane channel conductance remodelling is essential for the propagation of activity at rates higher than 300/min as seen in AF. Spatially heterogeneous gap junction coupling remodelling increased the risk of conduction block, an essential factor for the genesis of re-entry. In 2D and 3D anatomical models, the dynamical behaviours of re-entrant excitation waves are also altered by membrane channel modelling. This study provides insights to understand the pro-arrhythmic effects of AF-induced reaction and diffusion remodelling in atrial tissue.

  4. Slug Is Increased in Vascular Remodeling and Induces a Smooth Muscle Cell Proliferative Phenotype

    PubMed Central

    Coll-Bonfill, Núria; Peinado, Victor I.; Pisano, María V.; Párrizas, Marcelina; Blanco, Isabel; Evers, Maurits; Engelmann, Julia C.; García-Lucio, Jessica; Tura-Ceide, Olga; Meister, Gunter

    2016-01-01

    Objective Previous studies have confirmed Slug as a key player in regulating phenotypic changes in several cell models, however, its role in smooth muscle cells (SMC) has never been assessed. The purpose of this study was to evaluate the expression of Slug during the phenotypic switch of SMC in vitro and throughout the development of vascular remodeling. Methods and Results Slug expression was decreased during both cell-to-cell contact and TGFβ1 induced SMC differentiation. Tumor necrosis factor-α (TNFα), a known inductor of a proliferative/dedifferentiated SMC phenotype, induces the expression of Slug in SMC. Slug knockdown blocked TNFα-induced SMC phenotypic change and significantly reduced both SMC proliferation and migration, while its overexpression blocked the TGFβ1-induced SMC differentiation and induced proliferation and migration. Genome-wide transcriptomic analysis showed that in SMC, Slug knockdown induced changes mainly in genes related to proliferation and migration, indicating that Slug controls these processes in SMC. Notably, Slug expression was significantly up-regulated in lungs of mice using a model of pulmonary hypertension-related vascular remodeling. Highly remodeled human pulmonary arteries also showed an increase of Slug expression compared to less remodeled arteries. Conclusions Slug emerges as a key transcription factor driving SMC towards a proliferative phenotype. The increased Slug expression observed in vivo in highly remodeled arteries of mice and human suggests a role of Slug in the pathogenesis of pulmonary vascular diseases. PMID:27441378

  5. Obesity and carotid artery remodeling

    PubMed Central

    Kozakova, M; Palombo, C; Morizzo, C; Højlund, K; Hatunic, M; Balkau, B; Nilsson, P M; Ferrannini, E

    2015-01-01

    Background/Objective: The present study tested the hypothesis that obesity-related changes in carotid intima-media thickness (IMT) might represent not only preclinical atherosclerosis but an adaptive remodeling meant to preserve circumferential wall stress (CWS) in altered hemodynamic conditions characterized by body size-dependent increase in stroke volume (SV) and blood pressure (BP). Subjects/Methods: Common carotid artery (CCA) luminal diameter (LD), IMT and CWS were measured in three different populations in order to study: (A) cross-sectional associations between SV, BP, anthropometric parameters and CCA LD (266 healthy subjects with wide range of body weight (24–159 kg)); (B) longitudinal associations between CCA LD and 3-year IMT progression rate (ΔIMT; 571 healthy non-obese subjects without increased cardiovascular (CV) risk); (C) the impact of obesity on CCA geometry and CWS (88 obese subjects without CV complications and 88 non-obese subjects matched for gender and age). Results: CCA LD was independently associated with SV that was determined by body size. In the longitudinal study, baseline LD was an independent determinant of ΔIMT, and ΔIMT of subjects in the highest LD quartile was significantly higher (28±3 μm) as compared with those in the lower quartiles (8±3, 16±4 and 16±3 μm, P=0.001, P<0.05 and P=0.01, respectively). In addition, CCA CWS decreased during the observational period in the highest LD quartile (from 54.2±8.6 to 51.6±7.4 kPa, P<0.0001). As compared with gender- and age-matched lean individuals, obese subjects had highly increased CCA LD and BP (P<0.0001 for both), but only slightly higher CWS (P=0.05) due to a significant increase in IMT (P=0.005 after adjustment for confounders). Conclusions: Our findings suggest that in obese subjects, the CCA wall thickens to compensate the luminal enlargement caused by body size-induced increase in SV, and therefore, to normalize the wall stress. CCA diameter in obesity could

  6. A fly's view of neuronal remodeling.

    PubMed

    Yaniv, Shiri P; Schuldiner, Oren

    2016-09-01

    Developmental neuronal remodeling is a crucial step in sculpting the final and mature brain connectivity in both vertebrates and invertebrates. Remodeling includes degenerative events, such as neurite pruning, that may be followed by regeneration to form novel connections during normal development. Drosophila provides an excellent model to study both steps of remodeling since its nervous system undergoes massive and stereotypic remodeling during metamorphosis. Although pruning has been widely studied, our knowledge of the molecular and cellular mechanisms is far from complete. Our understanding of the processes underlying regrowth is even more fragmentary. In this review, we discuss recent progress by focusing on three groups of neurons that undergo stereotypic pruning and regrowth during metamorphosis, the mushroom body γ neurons, the dendritic arborization neurons and the crustacean cardioactive peptide peptidergic neurons. By comparing and contrasting the mechanisms involved in remodeling of these three neuronal types, we highlight the common themes and differences as well as raise key questions for future investigation in the field. WIREs Dev Biol 2016, 5:618-635. doi: 10.1002/wdev.241 For further resources related to this article, please visit the WIREs website. PMID:27351747

  7. The role of midkine in skeletal remodelling

    PubMed Central

    Liedert, A; Schinke, T; Ignatius, A; Amling, M

    2014-01-01

    Bone tissue is subjected to continuous remodelling, replacing old or damaged bone throughout life. In bone remodelling, the coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts ensure the maintenance of bone mass and strength. In early life, the balance of these cellular activities is tightly regulated by various factors, including systemic hormones, the mechanical environment and locally released growth factors. Age-related changes in the activity of these factors in bone remodelling can result in diseases with low bone mass, such as osteoporosis. Osteoporosis is a systemic and age-related skeletal disease characterized by low bone mass and structural degeneration of bone tissue, predisposing the patient to an increased fracture risk. The growth factor midkine (Mdk) plays a key role in bone remodelling and it is expressed during bone formation and fracture repair. Using a mouse deficient in Mdk, our group have identified this protein as a negative regulator of bone formation and mechanically induced bone remodelling. Thus, specific Mdk antagonists might represent a therapeutic option for diseases characterized by low bone mass, such as osteoporosis. Linked Articles This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4 PMID:24102259

  8. Bubble Divergences from Twisted Cohomology

    NASA Astrophysics Data System (ADS)

    Bonzom, Valentin; Smerlak, Matteo

    2012-06-01

    We consider a class of lattice topological field theories, among which are the weak-coupling limit of 2d Yang-Mills theory and 3d Riemannian quantum gravity, whose dynamical variables are flat discrete connections with compact structure group on a cell 2-complex. In these models, it is known that the path integral measure is ill-defined because of a phenomenon known as `bubble divergences'. In this paper, we extend recent results of the authors to the cases where these divergences cannot be understood in terms of cellular cohomology. We introduce in its place the relevant twisted cohomology, and use it to compute the divergence degree of the partition function. We also relate its dominant part to the Reidemeister torsion of the complex, thereby generalizing previous results of Barrett and Naish-Guzman. The main limitation to our approach is the presence of singularities in the representation variety of the fundamental group of the complex; we illustrate this issue in the well-known case of two-dimensional manifolds.

  9. Divergence of Mammalian Higher Order Chromatin Structure Is Associated with Developmental Loci

    PubMed Central

    Chambers, Emily V.; Bickmore, Wendy A.; Semple, Colin A.

    2013-01-01

    Several recent studies have examined different aspects of mammalian higher order chromatin structure – replication timing, lamina association and Hi-C inter-locus interactions — and have suggested that most of these features of genome organisation are conserved over evolution. However, the extent of evolutionary divergence in higher order structure has not been rigorously measured across the mammalian genome, and until now little has been known about the characteristics of any divergent loci present. Here, we generate a dataset combining multiple measurements of chromatin structure and organisation over many embryonic cell types for both human and mouse that, for the first time, allows a comprehensive assessment of the extent of structural divergence between mammalian genomes. Comparison of orthologous regions confirms that all measurable facets of higher order structure are conserved between human and mouse, across the vast majority of the detectably orthologous genome. This broad similarity is observed in spite of many loci possessing cell type specific structures. However, we also identify hundreds of regions (from 100 Kb to 2.7 Mb in size) showing consistent evidence of divergence between these species, constituting at least 10% of the orthologous mammalian genome and encompassing many hundreds of human and mouse genes. These regions show unusual shifts in human GC content, are unevenly distributed across both genomes, and are enriched in human subtelomeric regions. Divergent regions are also relatively enriched for genes showing divergent expression patterns between human and mouse ES cells, implying these regions cause divergent regulation. Particular divergent loci are strikingly enriched in genes implicated in vertebrate development, suggesting important roles for structural divergence in the evolution of mammalian developmental programmes. These data suggest that, though relatively rare in the mammalian genome, divergence in higher order chromatin

  10. Impaired remodeling phase of fracture repair in the absence of matrix metalloproteinase-2

    PubMed Central

    Lieu, Shirley; Hansen, Erik; Dedini, Russell; Behonick, Danielle; Werb, Zena; Miclau, Theodore; Marcucio, Ralph; Colnot, Céline

    2011-01-01

    SUMMARY The matrix metalloproteinase (MMP) family of extracellular proteases performs crucial roles in development and repair of the skeleton owing to their ability to remodel the extracellular matrix (ECM) and release bioactive molecules. Most MMP-null skeletal phenotypes that have been previously described are mild, thus permitting the assessment of their functions during bone repair in the adult. In humans and mice, MMP2 deficiency causes a musculoskeletal phenotype. In this study, we assessed the role of MMP2 during mouse fracture repair and compared it with the roles of MMP9 and MMP13. Mmp2 was expressed at low levels in the normal skeleton and was broadly expressed in the fracture callus. Treatment of wild-type mice with a general MMP inhibitor, GM6001, caused delayed cartilage remodeling and bone formation during fracture repair, which resembles the defect observed in Mmp9–/– mice. Unlike Mmp9- and Mmp13-null mutations, which affect both cartilage and bone in the callus, the Mmp2-null mutation delayed bone remodeling but not cartilage remodeling. This remodeling defect occurred without changes in either osteoclast recruitment or vascular invasion of the fracture callus compared with wild type. However, we did not detect changes in expression of Mmp9, Mmp13 or Mt1-Mmp (Mmp14) in the calluses of Mmp2-null mice compared with wild type by in situ hybridization, but we observed decreased expression of Timp2 in the calluses of Mmp2-, Mmp9- and Mmp13-null mice. In keeping with the skeletal phenotype of Mmp2-null mice, MMP2 plays a role in the remodeling of new bone within the fracture callus and impacts later stages of bone repair compared with MMP9 and MMP13. Taken together, our results indicate that MMPs play unique and distinct roles in regulating skeletal tissue deposition and remodeling during fracture repair. PMID:21135056

  11. Toward the Molecular Mechanism(s) by which EGCG Treatment Remodels Mature Amyloid Fibrils

    PubMed Central

    Palhano, Fernando L.; Lee, Jiyong; Grimster, Neil P.; Kelly, Jeffery W.

    2013-01-01

    Protein misfolding and/or aggregation has been implicated in several human diseases, such as Alzheimer’s and Parkinson’s diseases and familial amyloid polyneuropathy. These maladies are referred to as amyloid diseases, because they are named after the cross-β-sheet amyloid fibril aggregates or deposits common to these diseases. Epigallocatechin-3-gallate (EGCG), the principal polyphenol present in green tea, has been shown to be effective at preventing aggregation and is able to remodel amyloid fibrils comprising different amyloidogenic proteins, although the mechanistic underpinnings are unclear. Herein, we work towards an understanding of the molecular mechanism(s) by which EGCG remodels mature amyloid fibrils made up of Aβ1–40, IAPP8–24, or Sup35NM7–16. We show that EGCG amyloid remodeling activity in vitro is dependent on auto-oxidation of the EGCG. Oxidized and unoxidized EGCG binds to amyloid fibrils, preventing the binding of thioflavin T. This engagement of the hydrophobic binding sites in Aβ1–40, IAPP8–24, or Sup35NM7–16 amyloid fibrils seems to be sufficient to explain the majority of the amyloid remodeling observed by EGCG treatment, although how EGCG oxidation drives remodeling remains unclear. Oxidized EGCG molecules react with free amines within the amyloid fibril through the formation of Schiff bases, cross-linking the fibrils, which may prevent dissociation and toxicity, but these aberrant post-translational modifications do not appear to be the major driving force for amyloid remodeling by EGCG treatment. These insights into the molecular mechanism of action of EGCG provide boundary conditions for exploring amyloid remodeling in more detail. PMID:23611538

  12. Scar remodeling after strabismus surgery.

    PubMed Central

    Ludwig, I H

    1999-01-01

    limitation of versions, less separation of the tendons from sclera, and thicker appearance of the scar segments. The use of nonabsorbable sutures in the repair procedure reduced the recurrence rate. Histologic examination of the clinical stretched scar specimens showed dense connective tissue that was less well organized compared with normal tendon. In the tissue culture studies, cells cultured from the stretched scar specimens grew rapidly and were irregularly shaped. A high-molecular-weight protein was identified in the culture medium. By contrast, cells cultured from normal tendon (controls) grew more slowly and regularly, stopped growing at 4 days, and produced less total protein than cultured stretched scar specimens. In the animal model studies, the collagenase-treated sites showed elongated scars with increased collagen between the muscle and the sclera, as well as increased collagen creep rates, compared with the saline-treated controls. The use of nonabsorbable sutures in collagenase-treated animal model surgery sites was associated with shorter, thicker scars compared with similar sites sutured with absorbable sutures. CONCLUSIONS: A lengthened or stretched, remodeled scar between an operated muscle tendon and sclera is a common occurrence and is a factor contributing to the variability of outcome after strabismus repair, even years later. This abnormality may be revealed by careful exploration of previously operated muscles. Definitive repair requires firm reattachment of tendon to sclera with nonabsorbable suture support. Images FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 19 FIGURE 20 FIGURE 21 FIGURE 22 FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 26 FIGURE 27 FIGURE 28 FIGURE 29 FIGURE 30 FIGURE 31 FIGURE 32 FIGURE 33 FIGURE 34 FIGURE 35 FIGURE 36 FIGURE 37 FIGURE 38 FIGURE 39 FIGURE 40 FIGURE 41 FIGURE 42 FIGURE 43 FIGURE 44 FIGURE 45 FIGURE 46 FIGURE 52

  13. Antenatal Hypoxia and Pulmonary Vascular Function and Remodeling

    PubMed Central

    Papamatheakis, Demosthenes G.; Blood, Arlin B.; Kim, Joon H.; Wilson, Sean M.

    2015-01-01

    This review provides evidence that antenatal hypoxia, which represents a significant and worldwide problem, causes prenatal programming of the lung. A general overview of lung development is provided along with some background regarding transcriptional and signaling systems of the lung. The review illustrates that antenatal hypoxic stress can induce a continuum of responses depending on the species examined. Fetuses and newborns of certain species and specific human populations are well acclimated to antenatal hypoxia. However, antenatal hypoxia causes pulmonary vascular disease in fetuses and newborns of most mammalian species and humans. Disease can range from mild pulmonary hypertension, to severe vascular remodeling and dangerous elevations in pressure. The timing, length, and magnitude of the intrauterine hypoxic stress are important to disease development, however there is also a genetic-environmental relationship that is not yet completely understood. Determining the origins of pulmonary vascular remodeling and pulmonary hypertension and their associated effects is a challenging task, but is necessary in order to develop targeted therapies for pulmonary hypertension in the newborn due to antenatal hypoxia that can both treat the symptoms and curtail or reverse disease progression. PMID:24063380

  14. Strategies for Energy Efficient Remodeling: SEER 2003 Case Study Report

    SciTech Connect

    2004-11-01

    The goal of the Strategies for Energy Efficiency in Remodeling (SEER) project is to provide information, based on research and case studies, to remodelers and consumers about opportunities to increase home energy performance.

  15. Divergent transcriptional activities determine limb identity

    PubMed Central

    Ouimette, Jean-François; Jolin, Marisol Lavertu; L'honoré, Aurore; Gifuni, Anthony; Drouin, Jacques

    2010-01-01

    Limbs develop using a common genetic programme despite widely differing morphologies. This programme is modulated by limb-restricted regulators such as hindlimb (HL) transcription factors Pitx1 and Tbx4 and the forelimb (FL) Tbx5. Both Tbx factors have been implicated in limb patterning and growth, but their relative activities and underlying mechanisms remain unclear. In this paper, we show that Tbx4 and Tbx5 harbour conserved and divergent transcriptional regulatory domains that account for their roles in limb development. In particular, both factors share an activator domain and the ability to stimulate limb growth. However, we find that Tbx4 is the primary effector of HL identity for both skeletal and muscle development; this activity relies on a repressor domain that is inactivated by a human TBX4 small-patella syndrome mutation. We propose that limb identity is largely achieved by default in FL, whereas a specific repressor activity unique to Tbx4 determines HL identity. PMID:20975709

  16. Computational biomechanics of bone's responses to dental prostheses - osseointegration, remodeling and resorption

    NASA Astrophysics Data System (ADS)

    Li, Wei; Rungsiyakull, Chaiy; Field, Clarice; Lin, Daniel; Zhang, Leo; Li, Qing; Swain, Michael

    2010-06-01

    Clinical and experimental studies showed that human bone has the ability to remodel itself to better adapt to its biomechanical environment by changing both its material properties and geometry. As a consequence of the rapid development and extensive applications of major dental restorations such as implantation and fixed partial denture (FPD), the effect of bone remodeling on the success of a dental restorative surgery is becoming critical for prosthetic design and pre-surgical assessment. This paper aims to provide a computational biomechanics framework to address dental bone's responses as a result of dental restoration. It explored three important issues of resorption, apposition and osseointegration in terms of remodeling simulation. The published remodeling data in long bones were regulated to drive the computational remodeling prediction for the dental bones by correlating the results to clinical data. It is anticipated that the study will provide a more predictive model of dental bone response and help develop a new design methodology for patient-specific dental prosthetic restoration.

  17. A bone remodelling model including the effect of damage on the steering of BMUs.

    PubMed

    Martínez-Reina, J; Reina, I; Domínguez, J; García-Aznar, J M

    2014-04-01

    Bone remodelling in cortical bone is performed by the so-called basic multicellular units (BMUs), which produce osteons after completing the remodelling sequence. Burger et al. (2003) hypothesized that BMUs follow the direction of the prevalent local stress in the bone. More recently, Martin (2007) has shown that BMUs must be somehow guided by microstructural damage as well. The interaction of both variables, strain and damage, in the guidance of BMUs has been incorporated into a bone remodelling model for cortical bone. This model accounts for variations in porosity, anisotropy and damage level. The bone remodelling model has been applied to a finite element model of the diaphysis of a human femur. The trajectories of the BMUs have been analysed throughout the diaphysis and compared with the orientation of osteons measured experimentally. Some interesting observations, like the typical fan arrangement of osteons near the periosteum, can be explained with the proposed remodelling model. Moreover, the efficiency of BMUs in damage repairing has been shown to be greater if BMUs are guided by damage. PMID:24445006

  18. Electron Transport Chain Remodeling by GSK3 during Oogenesis Connects Nutrient State to Reproduction.

    PubMed

    Sieber, Matthew H; Thomsen, Michael B; Spradling, Allan C

    2016-01-28

    Reproduction is heavily influenced by nutrition and metabolic state. Many common reproductive disorders in humans are associated with diabetes and metabolic syndrome. We characterized the metabolic mechanisms that support oogenesis and found that mitochondria in mature Drosophila oocytes enter a low-activity state of respiratory quiescence by remodeling the electron transport chain (ETC). This shift in mitochondrial function leads to extensive glycogen accumulation late in oogenesis and is required for the developmental competence of the oocyte. Decreased insulin signaling initiates ETC remodeling and mitochondrial respiratory quiescence through glycogen synthase kinase 3 (GSK3). Intriguingly, we observed similar ETC remodeling and glycogen uptake in maturing Xenopus oocytes, suggesting that these processes are evolutionarily conserved aspects of oocyte development. Our studies reveal an important link between metabolism and oocyte maturation. PMID:26824655

  19. Subdural hygroma after craniosynostosis remodeling surgery.

    PubMed

    Ganesh, Praveen; Nagarjuna, Muralidhara; Shetty, Samarth; Salins, Paul C

    2015-01-01

    Craniosynostosis is defined as the premature fusion of the cranial sutures and can cause functional impairment or cosmetic deformity. Surgical techniques for the correction of craniosynostosis have changed overtime, as so have the intraoperative and postoperative complications. Extensive surgeries involving fronto-orbital unit repositioning and cranial vault remodeling are associated with various complications. Intraoperative and postoperative hemorrhage, venous infarct, air embolism, hydrocephalus, cerebrospinal fluid leak, as well as meningitis are a few complications associated with cranial vault remodeling surgery. Postoperative complications can increase the morbidity and mortality associated with these procedures. Identification of the complications and their timely management should be a part of every craniofacial reconstruction team's training program.In this article, we report a case of subdural hygroma in an infant after cranial vault remodeling procedure. Subdural hygroma is a known complication following head injuries and represents 5% to 20% of posttraumatic intracranial mass lesions. However, subdural hygroma developing after a cranial procedure is rare and has not been reported in the literature. Identification of the complication, close monitoring of the change in subdural fluid volume, and tapping of the fluid through the craniotomy site if indicated form the mainstay of management of subdural hygroma that develops after cranial vault remodeling surgery. PMID:25469899

  20. Interleukin-20 promotes airway remodeling in asthma.

    PubMed

    Gong, Wenbin; Wang, Xin; Zhang, Yuguo; Hao, Junqing; Xing, Chunyan; Chu, Qi; Wang, Guicheng; Zhao, Jiping; Wang, Junfei; Dong, Qian; Liu, Tian; Zhang, Yuanyuan; Dong, Liang

    2014-12-01

    Previous studies have demonstrated that interleukin-20 (IL-20) is a pro-inflammatory cytokine, and it has been implicated in psoriasis, lupus nephritis, rheumatoid arthritis, atherosclerosis, and ulcerative colitis. Little is known about the effects of IL-20 in airway remodeling in asthma. The aim of our study was to demonstrate the function of IL-20 in airway remodeling in asthma. To identify the expression of IL-20 and its receptor, IL-20R1/IL-20R2, in the airway epithelium in bronchial tissues, bronchial biopsy specimens were collected from patients and mice with asthma and healthy subjects and stained with specific antibodies. To characterize the effects of IL-20 in asthmatic airway remodeling, we silenced and stimulated IL-20 in cell lines isolated from mice by shRNA and recombinant protein approaches, respectively, and detected the expression of α-SMA and FN-1 by Western blot analysis. First, overexpression of IL-20 and its receptor, IL-20R1/IL-20R2, was detected in the airway epithelium collected from patients and mice with asthma. Second, IL-20 increased the expression of fibronectin-1 and α-SMA, and silencing of IL-20 in mouse lung epithelial (MLE)-12 cells decreased the expression of fibronectin-1 and α-SMA. IL-20 may be a critical cytokine in airway remodeling in asthma. This study indicates that targeting IL-20 and/or its receptors may be a new therapeutic strategy for asthma. PMID:25028099

  1. Chromatin-modifying and -remodeling complexes.

    PubMed

    Kornberg, R D; Lorch, Y

    1999-04-01

    Nucleosomes have long been known to inhibit DNA transactions on chromosomes and a remarkable abundance of multiprotein complexes that either enhance or relieve this inhibition have been described. Most is known about chromatin-remodeling complexes that perturb nucleosome structure. PMID:10322131

  2. Challenging Modernization: Remodelling the Education Workforce

    ERIC Educational Resources Information Center

    Butt, Graham; Gunter, Helen

    2005-01-01

    This special edition enables an in-depth look at the process of modernization of education in England, in relation to other international developments. In particular we focus on the reform of teachers? work by examining the antecedence of the current policy of remodelling through three articles based on the Evaluation of the Department for…

  3. Re-Modelling as De-Professionalisation

    ERIC Educational Resources Information Center

    Thompson, Meryl

    2006-01-01

    The article sets out the consequences of the British Government's remodelling agenda and its emphasis on less demarcation, for the professional status of teachers in England. It describes how the National Agreement on Raising Standards and Tackling Workload, reached between five of the six trade unions for teachers and headteachers paves the way…

  4. Arterial Remodeling Associates with CKD Progression

    PubMed Central

    Collin, Cédric; Karras, Alexandre; Laurent, Stéphane; Bozec, Erwan; Jacquot, Christian; Stengel, Bénédicte; Houillier, Pascal; Froissart, Marc; Boutouyrie, Pierre

    2011-01-01

    In CKD, large arteries remodel and become increasingly stiff. The greater pulsatile pressure reaching the glomerulus as a result of increased aortic stiffness could induce renal damage, suggesting that the stiffening and remodeling of large arteries could affect the progression of CKD. We measured carotid-femoral pulse wave velocity, aortic pressure and carotid remodeling and stiffness parameters in 180 patients with CKD (mean measured GFR, 32 ml/min per 1.73 m2) and followed them prospectively for a mean of 3.1 years. During follow-up, carotid stiffness significantly increased (+0.28 ± 0.05 m/s; P < 0.0001) but aortic stiffness did not. Carotid intima-media thickness decreased significantly during follow-up and the internal diameter of the carotid increased, producing increased circumferential wall stress (+2.08 ± 0.43 kPa/yr; P < 0.0001). In a linear mixed model, circumferential wall stress significantly associated with faster GFR decline after adjustment for risk factors of cardiovascular disease and progression of CKD. In a multivariable Cox model, carotid circumferential wall stress and pulse pressure independently associated with higher risk for ESRD. None of the arterial stiffness parameters associated with progression of CKD. In conclusion, maladaptive remodeling of the carotid artery and increased pulse pressure independently associate with faster decline of renal function and progression to ESRD. PMID:21493771

  5. Revealing remodeler function: Varied and unique

    NASA Astrophysics Data System (ADS)

    Eastlund, Allen

    Chromatin remodelers perform a necessary and required function for the successful expression of our genetic code. By modifying, shifting, or ejecting nucleosomes from the chromatin structure they allow access to the underlying DNA to the rest of the cell's machinery. This research has focused on two major remodeler motors from major families of chromatin remodelers: the trimeric motor domain of RSC and the motor domain of the ISWI family, ISWI. Using primarily stopped-flow spectrofluorometry, I have categorized the time-dependent motions of these motor domains along their preferred substrate, double-stranded DNA. Combined with collected ATP utilization data, I present the subsequent analysis and associated conclusions that stem from the underlying assumptions and models. Interestingly, there is little in common between the investigated proteins aside from their favored medium. While RSC exhibits modest translocation characteristics and highly effective motion with the ability for large molecular forces, ISWI is not only structurally different but highly inefficient in its motion leading to difficulties in determining its specific translocation mechanics. While chromatin remodeling is a ubiquitous facet of eukaryotic life, there remains much to be understood about their general mechanisms.

  6. Ultraviolet divergences and supersymmetric theories

    SciTech Connect

    Sagnotti, A.

    1984-09-01

    This article is closely related to the one by Ferrara in these same Proceedings. It deals with what is perhaps the most fascinating property of supersymmetric theories, their improved ultraviolet behavior. My aim here is to present a survey of the state of the art as of August, 1984, and a somewhat more detailed discussion of the breakdown of the superspace power-counting beyond N = 2 superfields. A method is also described for simplifying divergence calculations that uses the locality of subtracted Feynman integrals. 74 references.

  7. Altered thermogenesis and impaired bone remodeling in Misty mice.

    PubMed

    Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E; Bornstein, Sheila A; Le, Phuong; Kawai, Masanobu; Lotinun, Sutada; Horowitz, Mark C; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J

    2013-09-01

    Fat mass may be modulated by the number of brown-like adipocytes in white adipose tissue (WAT) in humans and rodents. Bone remodeling is dependent on systemic energy metabolism and, with age, bone remodeling becomes uncoupled and brown adipose tissue (BAT) function declines. To test the interaction between BAT and bone, we employed Misty (m/m) mice, which were reported be deficient in BAT. We found that Misty mice have accelerated age-related trabecular bone loss and impaired brown fat function (including reduced temperature, lower expression of Pgc1a, and less sympathetic innervation compared to wild-type (+/ +)). Despite reduced BAT function, Misty mice had normal core body temperature, suggesting heat is produced from other sources. Indeed, upon acute cold exposure (4°C for 6 hours), inguinal WAT from Misty mice compensated for BAT dysfunction by increasing expression of Acadl, Pgc1a, Dio2, and other thermogenic genes. Interestingly, acute cold exposure also decreased Runx2 and increased Rankl expression in Misty bone, but only Runx2 was decreased in wild-type. Browning of WAT is under the control of the sympathetic nervous system (SNS) and, if present at room temperature, could impact bone metabolism. To test whether SNS activity could be responsible for accelerated trabecular bone loss, we treated wild-type and Misty mice with the β-blocker, propranolol. As predicted, propranolol slowed trabecular bone volume/total volume (BV/TV) loss in the distal femur of Misty mice without affecting wild-type. Finally, the Misty mutation (a truncation of DOCK7) also has a significant cell-autonomous role. We found DOCK7 expression in whole bone and osteoblasts. Primary osteoblast differentiation from Misty calvaria was impaired, demonstrating a novel role for DOCK7 in bone remodeling. Despite the multifaceted effects of the Misty mutation, we have shown that impaired brown fat function leads to altered SNS activity and bone loss, and for the first time that cold

  8. Divergent clonal selection dominates medulloblastoma at recurrence.

    PubMed

    Morrissy, A Sorana; Garzia, Livia; Shih, David J H; Zuyderduyn, Scott; Huang, Xi; Skowron, Patryk; Remke, Marc; Cavalli, Florence M G; Ramaswamy, Vijay; Lindsay, Patricia E; Jelveh, Salomeh; Donovan, Laura K; Wang, Xin; Luu, Betty; Zayne, Kory; Li, Yisu; Mayoh, Chelsea; Thiessen, Nina; Mercier, Eloi; Mungall, Karen L; Ma, Yusanne; Tse, Kane; Zeng, Thomas; Shumansky, Karey; Roth, Andrew J L; Shah, Sohrab; Farooq, Hamza; Kijima, Noriyuki; Holgado, Borja L; Lee, John J Y; Matan-Lithwick, Stuart; Liu, Jessica; Mack, Stephen C; Manno, Alex; Michealraj, K A; Nor, Carolina; Peacock, John; Qin, Lei; Reimand, Juri; Rolider, Adi; Thompson, Yuan Y; Wu, Xiaochong; Pugh, Trevor; Ally, Adrian; Bilenky, Mikhail; Butterfield, Yaron S N; Carlsen, Rebecca; Cheng, Young; Chuah, Eric; Corbett, Richard D; Dhalla, Noreen; He, An; Lee, Darlene; Li, Haiyan I; Long, William; Mayo, Michael; Plettner, Patrick; Qian, Jenny Q; Schein, Jacqueline E; Tam, Angela; Wong, Tina; Birol, Inanc; Zhao, Yongjun; Faria, Claudia C; Pimentel, José; Nunes, Sofia; Shalaby, Tarek; Grotzer, Michael; Pollack, Ian F; Hamilton, Ronald L; Li, Xiao-Nan; Bendel, Anne E; Fults, Daniel W; Walter, Andrew W; Kumabe, Toshihiro; Tominaga, Teiji; Collins, V Peter; Cho, Yoon-Jae; Hoffman, Caitlin; Lyden, David; Wisoff, Jeffrey H; Garvin, James H; Stearns, Duncan S; Massimi, Luca; Schüller, Ulrich; Sterba, Jaroslav; Zitterbart, Karel; Puget, Stephanie; Ayrault, Olivier; Dunn, Sandra E; Tirapelli, Daniela P C; Carlotti, Carlos G; Wheeler, Helen; Hallahan, Andrew R; Ingram, Wendy; MacDonald, Tobey J; Olson, Jeffrey J; Van Meir, Erwin G; Lee, Ji-Yeoun; Wang, Kyu-Chang; Kim, Seung-Ki; Cho, Byung-Kyu; Pietsch, Torsten; Fleischhack, Gudrun; Tippelt, Stephan; Ra, Young Shin; Bailey, Simon; Lindsey, Janet C; Clifford, Steven C; Eberhart, Charles G; Cooper, Michael K; Packer, Roger J; Massimino, Maura; Garre, Maria Luisa; Bartels, Ute; Tabori, Uri; Hawkins, Cynthia E; Dirks, Peter; Bouffet, Eric; Rutka, James T; Wechsler-Reya, Robert J; Weiss, William A; Collier, Lara S; Dupuy, Adam J; Korshunov, Andrey; Jones, David T W; Kool, Marcel; Northcott, Paul A; Pfister, Stefan M; Largaespada, David A; Mungall, Andrew J; Moore, Richard A; Jabado, Nada; Bader, Gary D; Jones, Steven J M; Malkin, David; Marra, Marco A; Taylor, Michael D

    2016-01-21

    The development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon-driven, functional genomic mouse model of medulloblastoma with 'humanized' in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated, image-guided radiotherapy). Genetic events in recurrent murine medulloblastoma exhibit a very poor overlap with those in matched murine diagnostic samples (<5%). Whole-genome sequencing of 33 pairs of human diagnostic and post-therapy medulloblastomas demonstrated substantial genetic divergence of the dominant clone after therapy (<12% diagnostic events were retained at recurrence). In both mice and humans, the dominant clone at recurrence arose through clonal selection of a pre-existing minor clone present at diagnosis. Targeted therapy is unlikely to be effective in the absence of the target, therefore our results offer a simple, proximal, and remediable explanation for the failure of prior clinical trials of targeted therapy. PMID:26760213

  9. Electrophysiological Remodeling in Heart Failure

    PubMed Central

    Wang, Yanggan; Hill, Joseph A.

    2010-01-01

    Heart failure affects nearly 6 million Americans, with a half-million new cases emerging each year. Whereas up to 50% of heart failure patients die of arrhythmia, the diverse mechanisms underlying heart failure-associated arrhythmia are poorly understood. As a consequence, effectiveness of antiarrhythmic pharmacotherapy remains elusive. Here, we review recent advances in our understanding of heart failure-associated molecular events impacting the electrical function of the myocardium. We approach this from an anatomical standpoint, summarizing recent insights gleaned from pre-clinical models and discussing their relevance to human heart failure. PMID:20096285

  10. Defective Membrane Remodeling in Neuromuscular Diseases: Insights from Animal Models

    PubMed Central

    Muller, Jean; Laporte, Jocelyn

    2012-01-01

    Proteins involved in membrane remodeling play an essential role in a plethora of cell functions including endocytosis and intracellular transport. Defects in several of them lead to human diseases. Myotubularins, amphiphysins, and dynamins are all proteins implicated in membrane trafficking and/or remodeling. Mutations in myotubularin, amphiphysin 2 (BIN1), and dynamin 2 lead to different forms of centronuclear myopathy, while mutations in myotubularin-related proteins cause Charcot-Marie-Tooth neuropathies. In addition to centronuclear myopathy, dynamin 2 is also mutated in a dominant form of Charcot-Marie-Tooth neuropathy. While several proteins from these different families are implicated in similar diseases, mutations in close homologues or in the same protein in the case of dynamin 2 lead to diseases affecting different tissues. This suggests (1) a common molecular pathway underlying these different neuromuscular diseases, and (2) tissue-specific regulation of these proteins. This review discusses the pathophysiology of the related neuromuscular diseases on the basis of animal models developed for proteins of the myotubularin, amphiphysin, and dynamin families. A better understanding of the common mechanisms between these neuromuscular disorders will lead to more specific health care and therapeutic approaches. PMID:22496665

  11. Remodeling of tissue-engineered bone structures in vivo.

    PubMed

    Hofmann, Sandra; Hilbe, Monika; Fajardo, Robert J; Hagenmüller, Henri; Nuss, Katja; Arras, Margarete; Müller, Ralph; von Rechenberg, Brigitte; Kaplan, David L; Merkle, Hans P; Meinel, Lorenz

    2013-09-01

    Implant design for bone regeneration is expected to be optimized when implant structures resemble the anatomical situation of the defect site. We tested the validity of this hypothesis by exploring the feasibility of generating different in vitro engineered bone-like structures originating from porous silk fibroin scaffolds decorated with RGD sequences (SF-RGD), seeded with human mesenchymal stem cells (hMSC). Scaffolds with small (106-212 μm), medium (212-300 μm), and large pore diameter ranges (300-425 μm) were seeded with hMSC and subsequently differentiated in vitro into bone-like tissue resembling initial scaffold geometries and featuring bone-like structures. Eight weeks after implantation into calvarial defects in mice, the in vitro engineered bone-like tissues had remodeled into bone featuring different proportions of woven/lamellar bone bridging the defects. Regardless of pore diameter, all implants integrated well, vascularization was advanced, and bone marrow ingrowth had started. Ultimately, in this defect model, the geometry of the in vitro generated tissue-engineered bone structure, trabecular- or plate-like, had no significant impact on the healing of the defect, owing to an efficient remodeling of its structure after implantation. PMID:23958323

  12. Remodeling of tissue-engineered bone structures in vivo

    PubMed Central

    Hofmann, Sandra; Hilbe, Monika; Fajardo, Robert J.; Hagenmüller, Henri; Nuss, Katja; Arras, Margarete; Müller, Ralph; von Rechenberg, Brigitte; Kaplan, David L.; Merkle, Hans P.; Meinel, Lorenz

    2013-01-01

    Implant design for bone regeneration is expected to be optimized when implant structures resemble the anatomical situation of the defect site. We tested the validity of this hypothesis by exploring the feasibility of generating different in vitro engineered bone-like structures originating from porous silk fibroin scaffolds decorated with RGD sequences (SF-RGD), seeded with human mesenchymal stem cells (hMSC). Scaffolds with small (106 – 212 μm), medium (212 – 300 μm) and large pore diameter ranges (300 – 425 μm) were seeded with hMSC and subsequently differentiated in vitro into bone-like tissue resembling initial scaffold geometries and featuring bone-like structures. Eight weeks after implantation into calvarial defects in mice, the in vitro engineered bone-like tissues had remodeled into bone featuring different proportions of woven/lamellar bone bridging the defects. Regardless of pore diameter all implants integrated well, vascularization was advanced and, bone marrow ingrowth had started. Ultimately, in this defect model, the geometry of the in vitro generated tissue-engineered bone structure, trabecular- or plate-like, had no significant impact on the healing of the defect, owing to an efficient remodeling of its structure after implantation. PMID:23958323

  13. Facilitation of base excision repair by chromatin remodeling.

    PubMed

    Hinz, John M; Czaja, Wioletta

    2015-12-01

    Base Excision Repair (BER) is a conserved, intracellular DNA repair system that recognizes and removes chemically modified bases to insure genomic integrity and prevent mutagenesis. Aberrant BER has been tightly linked with a broad spectrum of human pathologies, such as several types of cancer, neurological degeneration, developmental abnormalities, immune dysfunction and aging. In the cell, BER must recognize and remove DNA lesions from the tightly condensed, protein-coated chromatin. Because chromatin is necessarily refractory to DNA metabolic processes, like transcription and replication, the compaction of the genomic material is also inhibitory to the repair systems necessary for its upkeep. Multiple ATP-dependent chromatin remodelling (ACR) complexes play essential roles in modulating the protein-DNA interactions within chromatin, regulating transcription and promoting activities of some DNA repair systems, including double-strand break repair and nucleotide excision repair. However, it remains unclear how BER operates in the context of chromatin, and if the chromatin remodelling processes that govern transcription and replication also actively regulate the efficiency of BER. In this review we highlight the emerging role of ACR in regulation of BER. PMID:26422134

  14. Role of reactive oxygen species in myocardial remodeling.

    PubMed

    Zhang, Min; Shah, Ajay M

    2007-03-01

    Adverse cardiac remodeling is a fundamental process in the progression to chronic heart failure. Although the mechanisms underlying cardiac remodeling are multi-factorial, a significant body of evidence points to the crucial roles of increased reactive oxygen species. This article reviews recent advances in delineating the different sources of production for reactive oxygen species (namely mitochondria, xanthine oxidase, uncoupled nitric oxide synthases, and NADPH oxidases) that may be involved in cardiac remodeling and the aspects of the remodeling process that they affect. These data could suggest new ways of targeting redox pathways for the prevention and treatment of adverse cardiac remodeling. PMID:17386182

  15. Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure.

    PubMed

    Saini-Chohan, Harjot K; Holmes, Michael G; Chicco, Adam J; Taylor, William A; Moore, Russell L; McCune, Sylvia A; Hickson-Bick, Diane L; Hatch, Grant M; Sparagna, Genevieve C

    2009-08-01

    Cardiolipin (CL) is responsible for modulation of activities of various enzymes involved in oxidative phosphorylation. Although energy production decreases in heart failure (HF), regulation of cardiolipin during HF development is unknown. Enzymes involved in cardiac cardiolipin synthesis and remodeling were studied in spontaneously hypertensive HF (SHHF) rats, explanted hearts from human HF patients, and nonfailing Sprague Dawley (SD) rats. The biosynthetic enzymes cytidinediphosphatediacylglycerol synthetase (CDS), phosphatidylglycerolphosphate synthase (PGPS) and cardiolipin synthase (CLS) were investigated. Mitochondrial CDS activity and CDS-1 mRNA increased in HF whereas CDS-2 mRNA in SHHF and humans, not in SD rats, decreased. PGPS activity, but not mRNA, increased in SHHF. CLS activity and mRNA decreased in SHHF, but mRNA was not significantly altered in humans. Cardiolipin remodeling enzymes, monolysocardiolipin acyltransferase (MLCL AT) and tafazzin, showed variable changes during HF. MLCL AT activity increased in SHHF. Tafazzin mRNA decreased in SHHF and human HF, but not in SD rats. The gene expression of acyl-CoA: lysocardiolipin acyltransferase-1, an endoplasmic reticulum MLCL AT, remained unaltered in SHHF rats. The results provide mechanisms whereby both cardiolipin biosynthesis and remodeling are altered during HF. Increases in CDS-1, PGPS, and MLCL AT suggest compensatory mechanisms during the development of HF. Human and SD data imply that similar trends may occur in human HF, but not during nonpathological aging, consistent with previous cardiolipin studies. PMID:19001357

  16. Determining the Effect of Natural Selection on Linked Neutral Divergence across Species

    PubMed Central

    Phung, Tanya N.; Lohmueller, Kirk E.

    2016-01-01

    A major goal in evolutionary biology is to understand how natural selection has shaped patterns of genetic variation across genomes. Studies in a variety of species have shown that neutral genetic diversity (intra-species differences) has been reduced at sites linked to those under direct selection. However, the effect of linked selection on neutral sequence divergence (inter-species differences) remains ambiguous. While empirical studies have reported correlations between divergence and recombination, which is interpreted as evidence for natural selection reducing linked neutral divergence, theory argues otherwise, especially for species that have diverged long ago. Here we address these outstanding issues by examining whether natural selection can affect divergence between both closely and distantly related species. We show that neutral divergence between closely related species (e.g. human-primate) is negatively correlated with functional content and positively correlated with human recombination rate. We also find that neutral divergence between distantly related species (e.g. human-rodent) is negatively correlated with functional content and positively correlated with estimates of background selection from primates. These patterns persist after accounting for the confounding factors of hypermutable CpG sites, GC content, and biased gene conversion. Coalescent models indicate that even when the contribution of ancestral polymorphism to divergence is small, background selection in the ancestral population can still explain a large proportion of the variance in divergence across the genome, generating the observed correlations. Our findings reveal that, contrary to previous intuition, natural selection can indirectly affect linked neutral divergence between both closely and distantly related species. Though we cannot formally exclude the possibility that the direct effects of purifying selection drive some of these patterns, such a scenario would be possible only

  17. Determining the Effect of Natural Selection on Linked Neutral Divergence across Species.

    PubMed

    Phung, Tanya N; Huber, Christian D; Lohmueller, Kirk E

    2016-08-01

    A major goal in evolutionary biology is to understand how natural selection has shaped patterns of genetic variation across genomes. Studies in a variety of species have shown that neutral genetic diversity (intra-species differences) has been reduced at sites linked to those under direct selection. However, the effect of linked selection on neutral sequence divergence (inter-species differences) remains ambiguous. While empirical studies have reported correlations between divergence and recombination, which is interpreted as evidence for natural selection reducing linked neutral divergence, theory argues otherwise, especially for species that have diverged long ago. Here we address these outstanding issues by examining whether natural selection can affect divergence between both closely and distantly related species. We show that neutral divergence between closely related species (e.g. human-primate) is negatively correlated with functional content and positively correlated with human recombination rate. We also find that neutral divergence between distantly related species (e.g. human-rodent) is negatively correlated with functional content and positively correlated with estimates of background selection from primates. These patterns persist after accounting for the confounding factors of hypermutable CpG sites, GC content, and biased gene conversion. Coalescent models indicate that even when the contribution of ancestral polymorphism to divergence is small, background selection in the ancestral population can still explain a large proportion of the variance in divergence across the genome, generating the observed correlations. Our findings reveal that, contrary to previous intuition, natural selection can indirectly affect linked neutral divergence between both closely and distantly related species. Though we cannot formally exclude the possibility that the direct effects of purifying selection drive some of these patterns, such a scenario would be possible only

  18. Oxido-reductive regulation of vascular remodeling by receptor tyrosine kinase ROS1

    PubMed Central

    Ali, Ziad A.; de Jesus Perez, Vinicio; Yuan, Ke; Orcholski, Mark; Pan, Stephen; Qi, Wei; Chopra, Gaurav; Adams, Christopher; Kojima, Yoko; Leeper, Nicholas J.; Qu, Xiumei; Zaleta-Rivera, Kathia; Kato, Kimihiko; Yamada, Yoshiji; Oguri, Mitsutoshi; Kuchinsky, Allan; Hazen, Stanley L.; Jukema, J. Wouter; Ganesh, Santhi K.; Nabel, Elizabeth G.; Channon, Keith; Leon, Martin B.; Charest, Alain; Quertermous, Thomas; Ashley, Euan A.

    2014-01-01

    Angioplasty and stenting is the primary treatment for flow-limiting atherosclerosis; however, this strategy is limited by pathological vascular remodeling. Using a systems approach, we identified a role for the network hub gene glutathione peroxidase-1 (GPX1) in pathological remodeling following human blood vessel stenting. Constitutive deletion of Gpx1 in atherosclerotic mice recapitulated this phenotype of increased vascular smooth muscle cell (VSMC) proliferation and plaque formation. In an independent patient cohort, gene variant pair analysis identified an interaction of GPX1 with the orphan protooncogene receptor tyrosine kinase ROS1. A meta-analysis of the only genome-wide association studies of human neointima-induced in-stent stenosis confirmed the association of the ROS1 variant with pathological remodeling. Decreased GPX1 expression in atherosclerotic mice led to reductive stress via a time-dependent increase in glutathione, corresponding to phosphorylation of the ROS1 kinase activation site Y2274. Loss of GPX1 function was associated with both oxidative and reductive stress, the latter driving ROS1 activity via s-glutathiolation of critical residues of the ROS1 tyrosine phosphatase SHP-2. ROS1 inhibition with crizotinib and deglutathiolation of SHP-2 abolished GPX1-mediated increases in VSMC proliferation while leaving endothelialization intact. Our results indicate that GPX1-dependent alterations in oxido-reductive stress promote ROS1 activation and mediate vascular remodeling. PMID:25401476

  19. The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodelling.

    PubMed

    Bottazzi, Barbara; Inforzato, Antonio; Messa, Massimo; Barbagallo, Marialuisa; Magrini, Elena; Garlanda, Cecilia; Mantovani, Alberto

    2016-06-01

    Pentraxins are a superfamily of fluid phase pattern recognition molecules conserved in evolution and characterized by a cyclic multimeric structure. C-reactive protein (CRP) and serum amyloid P component (SAP) constitute the short pentraxin arm of the superfamily. CRP and SAP are produced in the liver in response to IL-6 and are acute phase reactants in humans and mice respectively. In addition SAP has been shown to affect tissue remodelling and fibrosis by stabilizing all types of amyloid fibrils and by regulating monocyte to fibrocyte differentiation. Pentraxin 3 (PTX3) is the prototype of the long pentraxin arm. Gene targeted mice and genetic and epigenetic studies in humans suggest that PTX3 plays essential non-redundant roles in innate immunity and inflammation as well as in tissue remodelling. Recent studies have revealed the role of PTX3 as extrinsic oncosuppressor, able to tune cancer-related inflammation. In addition, at acidic pH PTX3 can interact with provisional matrix components promoting inflammatory matrix remodelling. Thus acidification during tissue repair sets PTX3 in a tissue remodelling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. PMID:26921689

  20. Allergen-induced airway remodeling is impaired in galectin-3 deficient mice1

    PubMed Central

    Ge, Xiao Na; Bahaie, Nooshin S.; Kang, Bit Na; Hosseinkhani, Reza M.; Ha, Sung Gil; Frenzel, Elizabeth M.; Liu, Fu-Tong; Rao, Savita P.; Sriramarao, P.

    2010-01-01

    The role played by the β-galactoside-binding lectin galectin-3 (Gal-3) in airway remodeling, a characteristic feature of asthma that leads to airway dysfunction and poor clinical outcome in humans, was investigated in a murine model of chronic allergic airway inflammation. Wild-type (WT) and Gal-3 knock-out (KO) mice were subjected to repetitive allergen challenge with ovalbumin (OVA) up to 12 weeks and bronchoalveolar lavage fluid (BALF) and lung tissue collected after the last challenge were evaluated for cellular features associated with airway remodeling. Compared to WT mice, chronic OVA challenge in Gal-3 KO mice resulted in diminished remodeling of the airways with significantly reduced mucus secretion, sub-epithelial fibrosis, smooth muscle thickness, and peribronchial angiogenesis. The higher degree of airway remodeling in WT mice was associated with higher Gal-3 expression in the BALF as well as lung tissue. Cell counts in BALF and lung immunohistology demonstrated that eosinophil infiltration in OVA-challenged Gal-3 KO mice was significantly reduced compared to WT mice. Evaluation of cellular mediators associated with eosinophil recruitment and airway remodeling revealed that levels of eotaxin-1, IL-5, IL-13, FIZZ1 and TGF-β were substantially lower in Gal-3 KO mice. Finally, leukocytes from Gal-3 KO mice demonstrated decreased trafficking (rolling) on vascular endothelial adhesion molecules compared to WT cells. Overall, these studies demonstrate that Gal-3 is an important lectin that promotes airway remodeling via airway recruitment of inflammatory cells, specifically eosinophils, and the development of a Th2 phenotype as well as increased expression of eosinophil-specific chemokines, pro-fibrogenic and angiogenic mediators. PMID:20543100

  1. Remodeling of Calcium Entry Pathways in Cancer.

    PubMed

    Villalobos, Carlos; Sobradillo, Diego; Hernández-Morales, Miriam; Núñez, Lucía

    2016-01-01

    Ca(2+) entry pathways play important roles in control of many cellular functions, including long-term proliferation, migration and cell death. In recent years, it is becoming increasingly clear that, in some types of tumors, remodeling of Ca(2+) entry pathways could contribute to cancer hallmarks such as excessive proliferation, cell migration and invasion as well as resistance to cell death or survival. In this chapter we briefly review findings related to remodeling of Ca(2+) entry pathways in cancer with emphasis on the mechanisms that contribute to increased store-operated Ca(2+) entry (SOCE) and store-operated currents (SOCs) in colorectal cancer cells. Finally, since SOCE appears critically involved in colon tumorogenesis, the inhibition of SOCE by aspirin and other NSAIDs and its possible contribution to colon cancer chemoprevention is reviewed. PMID:27161240

  2. DISSIPATIVE DIVERGENCE OF RESONANT ORBITS

    SciTech Connect

    Batygin, Konstantin; Morbidelli, Alessandro

    2013-01-01

    A considerable fraction of multi-planet systems discovered by the observational surveys of extrasolar planets reside in mild proximity to first-order mean-motion resonances. However, the relative remoteness of such systems from nominal resonant period ratios (e.g., 2:1, 3:2, and 4:3) has been interpreted as evidence for lack of resonant interactions. Here, we show that a slow divergence away from exact commensurability is a natural outcome of dissipative evolution and demonstrate that libration of critical angles can be maintained tens of percent away from nominal resonance. We construct an analytical theory for the long-term dynamical evolution of dissipated resonant planetary pairs and confirm our calculations numerically. Collectively, our results suggest that a significant fraction of the near-commensurate extrasolar planets are in fact resonant and have undergone significant dissipative evolution.

  3. Divergence of optical vortex beams.

    PubMed

    Reddy, Salla Gangi; Permangatt, Chithrabhanu; Prabhakar, Shashi; Anwar, Ali; Banerji, J; Singh, R P

    2015-08-01

    We show, both theoretically and experimentally, that the propagation of optical vortices in free space can be analyzed by using the width [w(z)] of the host Gaussian beam and the inner and outer radii of the vortex beam at the source plane (z=0) as defined in [Opt. Lett.39, 4364 (2014)10.1364/OL.39.004364OPLEDP0146-9592]. We also studied the divergence of vortex beams, considered as the rate of change of inner or outer radius with the propagation distance (z), and found that it varies with the order in the same way as that of the inner and outer radii at z=0. These results may be useful in designing optical fibers for orbital angular momentum modes that play a crucial role in quantum communication. PMID:26368081

  4. Guises and disguises of quadratic divergences

    SciTech Connect

    Cherchiglia, A.L.; Vieira, A.R.; Hiller, Brigitte; Baêta Scarpelli, A.P.; Sampaio, Marcos

    2014-12-15

    In this contribution, we present a new perspective on the control of quadratic divergences in quantum field theory, in general, and in the Higgs naturalness problem, in particular. Our discussion is essentially based on an approach where UV divergences are parameterized, after being reduced to basic divergent integrals (BDI) in one internal momentum, as functions of a cutoff and a renormalization group scale λ. We illustrate our proposal with well-known examples, such as the gluon vacuum self energy of QCD and the Higgs decay in two photons within this approach. We also discuss frameworks in effective low-energy QCD models, where quadratic divergences are indeed fundamental.

  5. REACTIVE OXYGEN SPECIES IN PULMONARY VASCULAR REMODELING

    PubMed Central

    Aggarwal, Saurabh; Gross, Christine M.; Sharma, Shruti; Fineman, Jeffrey R.; Black, Stephen M.

    2014-01-01

    The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell (SMC) hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the anti-oxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting co-factor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension. PMID:23897679

  6. Perspectives on biological growth and remodeling

    PubMed Central

    Ambrosi, D.; Ateshian, G. A.; Arruda, E. M.; Cowin, S. C.; Dumais, J.; Goriely, A.; Holzapfel, G. A.; Humphrey, J. D.; Kemkemer, R.; Kuhl, E.; Olberding, J. E.; Taber, L. A.; Garikipati, K.

    2011-01-01

    The continuum mechanical treatment of biological growth and remodeling has attracted considerable attention over the past fifteen years. Many aspects of these problems are now well-understood, yet there remain areas in need of significant development from the standpoint of experiments, theory, and computation. In this perspective paper we review the state of the field and highlight open questions, challenges, and avenues for further development. PMID:21532929

  7. Divergent evolution of protein conformational dynamics in dihydrofolate reductase.

    PubMed

    Bhabha, Gira; Ekiert, Damian C; Jennewein, Madeleine; Zmasek, Christian M; Tuttle, Lisa M; Kroon, Gerard; Dyson, H Jane; Godzik, Adam; Wilson, Ian A; Wright, Peter E

    2013-11-01

    Molecular evolution is driven by mutations, which may affect the fitness of an organism and are then subject to natural selection or genetic drift. Analysis of primary protein sequences and tertiary structures has yielded valuable insights into the evolution of protein function, but little is known about the evolution of functional mechanisms, protein dynamics and conformational plasticity essential for activity. We characterized the atomic-level motions across divergent members of the dihydrofolate reductase (DHFR) family. Despite structural similarity, Escherichia coli and human DHFRs use different dynamic mechanisms to perform the same function, and human DHFR cannot complement DHFR-deficient E. coli cells. Identification of the primary-sequence determinants of flexibility in DHFRs from several species allowed us to propose a likely scenario for the evolution of functionally important DHFR dynamics following a pattern of divergent evolution that is tuned by cellular environment. PMID:24077226

  8. Divergent evolution of protein conformational dynamics in dihydrofolate reductase

    PubMed Central

    Bhabha, Gira; Ekiert, Damian C.; Jennewein, Madeleine; Zmasek, Christian M.; Tuttle, Lisa M.; Kroon, Gerard; Dyson, H. Jane; Godzik, Adam; Wilson, Ian A.; Wright, Peter E.

    2013-01-01

    Molecular evolution is driven by mutations, which may affect the fitness of an organism and are then subject to natural selection or genetic drift. Analysis of primary protein sequences and tertiary structures has yielded valuable insights into the evolution of protein function, but little is known about evolution of functional mechanisms, protein dynamics and conformational plasticity essential for activity. We characterized the atomic-level motions across divergent members of the dihydrofolate reductase (DHFR) family. Despite structural similarity, E. coli and human DHFRs use different dynamic mechanisms to perform the same function, and human DHFR cannot complement DHFR-deficient E. coli cells. Identification of the primary sequence determinants of flexibility in DHFRs from several species allowed us to propose a likely scenario for the evolution of functionally important DHFR dynamics, following a pattern of divergent evolution that is tuned by the cellular environment. PMID:24077226

  9. Link between vitamin D and airway remodeling

    PubMed Central

    Berraies, Anissa; Hamzaoui, Kamel; Hamzaoui, Agnes

    2014-01-01

    In the last decade, many epidemiologic studies have investigated the link between vitamin D deficiency and asthma. Most studies have shown that vitamin D deficiency increases the risk of asthma and allergies. Low levels of vitamin D have been associated with asthma severity and loss of control, together with recurrent exacerbations. Remodeling is an early event in asthma described as a consequence of production of mediators and growth factors by inflammatory and resident bronchial cells. Consequently, lung function is altered, with a decrease in forced expiratory volume in one second and exacerbated airway hyperresponsiveness. Subepithelial fibrosis and airway smooth muscle cell hypertrophy are typical features of structural changes in the airways. In animal models, vitamin D deficiency enhances inflammation and bronchial anomalies. In severe asthma of childhood, major remodeling is observed in patients with low vitamin D levels. Conversely, the antifibrotic and antiproliferative effects of vitamin D in smooth muscle cells have been described in several experiments. In this review, we briefly summarize the current knowledge regarding the relationship between vitamin D and asthma, and focus on its effect on airway remodeling and its potential therapeutic impact for asthma. PMID:24729717

  10. Tissue Remodelling following Resection of Porcine Liver

    PubMed Central

    Nygård, Ingvild Engdal; Mortensen, Kim Erlend; Hedegaard, Jakob; Conley, Lene Nagstrup; Bendixen, Christian; Sveinbjørnsson, Baldur; Revhaug, Arthur

    2015-01-01

    Aim. To study genes regulating the extracellular matrix (ECM) and investigate the tissue remodelling following liver resection in porcine. Methods. Four pigs with 60% partial hepatectomy- (PHx-) induced liver regeneration were studied over six weeks. Four pigs underwent sham surgery and another four pigs were used as controls of the normal liver growth. Liver biopsies were taken upon laparotomy, after three and six weeks. Gene expression profiles were obtained using porcine-specific oligonucleotide microarrays. Immunohistochemical staining was performed and a proliferative index was assessed. Results. More differentially expressed genes were associated with the regulation of ECM in the resection group compared to the sham and control groups. Secreted protein acidic and rich in cysteine (SPARC) and collagen 1, alpha 2 (COL1A2) were both upregulated in the early phase of liver regeneration, validated by immunopositive cells during the remodelling phase of liver regeneration. A broadened connective tissue was demonstrated by Masson's Trichrome staining, and an immunohistochemical staining against pan-Cytokeratin (pan-CK) demonstrated a distinct pattern of migrating cells, followed by proliferating cell nuclear antigen (PCNA) positive nuclei. Conclusions. The present study demonstrates both a distinct pattern of PCNA positive nuclei and a deposition of ECM proteins in the remodelling phase of liver regeneration. PMID:26240819

  11. Stepwise nucleosome translocation by RSC remodeling complexes.

    PubMed

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-01-01

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1-2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome. PMID:26895087

  12. Stepwise nucleosome translocation by RSC remodeling complexes

    PubMed Central

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-01-01

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1–2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome. DOI: http://dx.doi.org/10.7554/eLife.10051.001 PMID:26895087

  13. Divergent clonal selection dominates medulloblastoma at recurrence

    PubMed Central

    Morrissy, A. Sorana; Garzia, Livia; Shih, David J. H.; Zuyderduyn, Scott; Huang, Xi; Skowron, Patryk; Remke, Marc; Cavalli, Florence M. G.; Ramaswamy, Vijay; Lindsay, Patricia E.; Jelveh, Salomeh; Donovan, Laura K.; Wang, Xin; Luu, Betty; Zayne, Kory; Li, Yisu; Mayoh, Chelsea; Thiessen, Nina; Mercier, Eloi; Mungall, Karen L.; Ma, Yusanne; Tse, Kane; Zeng, Thomas; Shumansky, Karey; Roth, Andrew J. L.; Shah, Sohrab; Farooq, Hamza; Kijima, Noriyuki; Holgado, Borja L.; Lee, John J. Y.; Matan-Lithwick, Stuart; Liu, Jessica; Mack, Stephen C.; Manno, Alex; Michealraj, K. A.; Nor, Carolina; Peacock, John; Qin, Lei; Reimand, Juri; Rolider, Adi; Thompson, Yuan Y.; Wu, Xiaochong; Pugh, Trevor; Ally, Adrian; Bilenky, Mikhail; Butterfield, Yaron S. N.; Carlsen, Rebecca; Cheng, Young; Chuah, Eric; Corbett, Richard D.; Dhalla, Noreen; He, An; Lee, Darlene; Li, Haiyan I.; Long, William; Mayo, Michael; Plettner, Patrick; Qian, Jenny Q.; Schein, Jacqueline E.; Tam, Angela; Wong, Tina; Birol, Inanc; Zhao, Yongjun; Faria, Claudia C.; Pimentel, José; Nunes, Sofia; Shalaby, Tarek; Grotzer, Michael; Pollack, Ian F.; Hamilton, Ronald L.; Li, Xiao-Nan; Bendel, Anne E.; Fults, Daniel W.; Walter, Andrew W.; Kumabe, Toshihiro; Tominaga, Teiji; Collins, V. Peter; Cho, Yoon-Jae; Hoffman, Caitlin; Lyden, David; Wisoff, Jeffrey H.; Garvin, James H.; Stearns, Duncan S.; Massimi, Luca; Schüller, Ulrich; Sterba, Jaroslav; Zitterbart, Karel; Puget, Stephanie; Ayrault, Olivier; Dunn, Sandra E.; Tirapelli, Daniela P. C.; Carlotti, Carlos G.; Wheeler, Helen; Hallahan, Andrew R.; Ingram, Wendy; MacDonald, Tobey J.; Olson, Jeffrey J.; Van Meir, Erwin G.; Lee, Ji-Yeoun; Wang, Kyu-Chang; Kim, Seung-Ki; Cho, Byung-Kyu; Pietsch, Torsten; Fleischhack, Gudrun; Tippelt, Stephan; Ra, Young Shin; Bailey, Simon; Lindsey, Janet C.; Clifford, Steven C.; Eberhart, Charles G.; Cooper, Michael K.; Packer, Roger J.; Massimino, Maura; Garre, Maria Luisa; Bartels, Ute; Tabori, Uri; Hawkins, Cynthia E.; Dirks, Peter; Bouffet, Eric; Rutka, James T.; Wechsler-Reya, Robert J.; Weiss, William A.; Collier, Lara S.; Dupuy, Adam J.; Korshunov, Andrey; Jones, David T. W.; Kool, Marcel; Northcott, Paul A.; Pfister, Stefan M.; Largaespada, David A.; Mungall, Andrew J.; Moore, Richard A.; Jabado, Nada; Bader, Gary D.; Jones, Steven J. M.; Malkin, David; Marra, Marco A.; Taylor, Michael D.

    2016-01-01

    The development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon–driven, functional genomic mouse model of medulloblastoma with ‘humanized’ in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated, image-guided radiotherapy). Genetic events in recurrent murine medulloblastoma exhibit a very poor overlap with those in matched murine diagnostic samples (<5%). Whole-genome sequencing of 33 pairs of human diagnostic and post-therapy medulloblastomas demonstrated substantial genetic divergence of the dominant clone after therapy (<12% diagnostic events were retained at recurrence). In both mice and humans, the dominant clone at recurrence arose through clonal selection of a pre-existing minor clone present at diagnosis. Targeted therapy is unlikely to be effective in the absence of the target, therefore our results offer a simple, proximal, and remediable explanation for the failure of prior clinical trials of targeted therapy. PMID:26760213

  14. MicroRNA and vascular remodelling in acute vascular injury and pulmonary vascular remodelling

    PubMed Central

    McDonald, Robert A.; Hata, Akiko; MacLean, Margaret R.; Morrell, Nicholas W.; Baker, Andrew H.

    2012-01-01

    Vascular remodelling is an integral pathological process central to a number of cardiovascular diseases. The complex interplay between distinct cell populations in the vessel wall following vascular injury leads to inflammation, cellular dysfunction, pro-growth signals in the smooth muscle cell (SMC) compartment, and the acquisition of a synthetic phenotype. Although the signals for vascular remodelling are diverse in different pathological contexts, SMC proliferation and migration are consistently observed. It is therefore critical to elucidate key mechanisms central to these processes. MicroRNAs (miRNAs) are small non-coding sequences of RNA that have the capacity to regulate many genes, pathways, and complex biological networks within cells, acting either alone or in concert with one another. In diseases such as cancer and cardiac disease, the role of miRNA in disease pathogenesis has been documented in detail. In contrast, despite a great deal of interest in miRNA, relatively few studies have directly assessed the role of miRNA in vascular remodelling. The potential for modulation of miRNA to achieve therapeutic benefits in this setting is attractive. Here, we focus on the role of miRNA in vascular inflammation and remodelling associated with acute vascular injury (vein graft disease, angioplasty restenosis, and in-stent restenosis) as well as in vascular remodelling associated with the development of pulmonary arterial hypertension. PMID:22065733

  15. Differential regulation of two types of monogalactosyldiacylglycerol synthase in membrane lipid remodeling under phosphate-limited conditions in sesame plants

    PubMed Central

    Shimojima, Mie; Watanabe, Takahide; Madoka, Yuka; Koizumi, Ryota; Yamamoto, Masayuki P.; Masuda, Kyojiro; Yamada, Kyoji; Masuda, Shinji; Ohta, Hiroyuki

    2013-01-01

    Phosphate (Pi) limitation causes drastic lipid remodeling in plant membranes. Glycolipids substitute for the phospholipids that are degraded, thereby supplying Pi needed for essential biological processes. Two major types of remodeling of membrane lipids occur in higher plants: whereas one involves an increase in the concentration of sulfoquinovosyldiacylglycerol in plastids to compensate for a decreased concentration of phosphatidylglycerol, the other involves digalactosyldiacylglycerol (DGDG) synthesis in plastids and the export of DGDG to extraplastidial membranes to compensate for reduced abundances of phospholipids. Lipid remodeling depends on an adequate supply of monogalactosyldiacylglycerol (MGDG), which is a substrate that supports the elevated rate of DGDG synthesis that is induced by low Pi availability. Regulation of MGDG synthesis has been analyzed most extensively using the model plant Arabidopsis thaliana, although orthologous genes that encode putative MGDG synthases exist in photosynthetic organisms from bacteria to higher plants. We recently hypothesized that two types of MGDG synthase diverged after the appearance of seed plants. This divergence might have both enabled plants to adapt to a wide range of Pi availability in soils and contributed to the diversity of seed plants. In the work presented here, we found that membrane lipid remodeling also takes place in sesame, which is one of the most common traditional crops grown in Asia. We identified two types of MGDG synthase from sesame (encoded by SeMGD1 and SeMGD2) and analyzed their enzymatic properties. Our results show that both genes correspond to the Arabidopsis type-A and -B isoforms of MGDG synthase. Notably, whereas Pi limitation up-regulates only the gene encoding the type-B isoform of Arabidopsis, low Pi availability up-regulates the expression of both SeMGD1 and SeMGD2. We discuss the significance of the different responses to low Pi availability in sesame and Arabidopsis. PMID

  16. Signaling effectors underlying pathologic growth and remodeling of the heart

    PubMed Central

    van Berlo, Jop H.; Maillet, Marjorie; Molkentin, Jeffery D.

    2013-01-01

    Cardiovascular disease is the number one cause of mortality in the Western world. The heart responds to many cardiopathological conditions with hypertrophic growth by enlarging individual myocytes to augment cardiac pump function and decrease ventricular wall tension. Initially, such cardiac hypertrophic growth is often compensatory, but as time progresses these changes become maladaptive. Cardiac hypertrophy is the strongest predictor for the development of heart failure, arrhythmia, and sudden death. Here we discuss therapeutic avenues emerging from molecular and genetic studies of cardiovascular disease in animal models. The majority of these are based on intracellular signaling pathways considered central to pathologic cardiac remodeling and hypertrophy, which then leads to heart failure. We focus our discussion on selected therapeutic targets that have more recently emerged and have a tangible translational potential given the available pharmacologic agents that could be readily evaluated in human clinical trials. PMID:23281408

  17. Arterial remodeling of basilar atherosclerosis in isolated pontine infarction.

    PubMed

    Feng, Chao; Hua, Ting; Xu, Yu; Liu, Xue-Yuan; Huang, Jing

    2015-04-01

    Isolated pontine infarctions are usually classified as paramedian pontine infarction (PPI) and lacunar pontine infarction (LPI). Although they have different shapes and locations, some recent studies proved that they might both be associated with basilar artery atherosclerosis in pathogenesis. This study aimed to explore the difference of basilar artery remodeling between two subtypes of pontine infarctions. Patients with PPI or LPI were scanned by High-resolution MRI (HR-MRI). The MR images of patients with basilar artery atherosclerosis were further analyzed to measure the vessel, lumen and wall areas at different segments of basilar arteries. Stenosis rate and remodeling index were calculated according to which arterial remodeling was divided into positive, intermediate and negative remodeling. Vascular risk factors and remodeling-related features were compared between PPI and LPI, and also between patients with and without positive remodeling. 34 patients with PPI and 21 patients with LPI had basilar artery atherosclerosis identified by HR-MRI. Positive remodeling was dominant in LPI group while in PPI group, three subtypes of remodeling were equal. Patients with positive remodeling had higher levels of low-density lipoprotein and homocysteine. Positive remodeling of basilar artery might reflect the low stability of basilar atherosclerotic plaques, which was more closely associated with LPI than PPI. PMID:25367406

  18. Whole genome investigation of a divergent clade of the pathogen Streptococcus suis

    PubMed Central

    Baig, Abiyad; Weinert, Lucy A.; Peters, Sarah E.; Howell, Kate J.; Chaudhuri, Roy R.; Wang, Jinhong; Holden, Matthew T. G.; Parkhill, Julian; Langford, Paul R.; Rycroft, Andrew N.; Wren, Brendan W.; Tucker, Alexander W.; Maskell, Duncan J.

    2015-01-01

    Streptococcus suis is a major porcine and zoonotic pathogen responsible for significant economic losses in the pig industry and an increasing number of human cases. Multiple isolates of S. suis show marked genomic diversity. Here, we report the analysis of whole genome sequences of nine pig isolates that caused disease typical of S. suis and had phenotypic characteristics of S. suis, but their genomes were divergent from those of many other S. suis isolates. Comparison of protein sequences predicted from divergent genomes with those from normal S. suis reduced the size of core genome from 793 to only 397 genes. Divergence was clear if phylogenetic analysis was performed on reduced core genes and MLST alleles. Phylogenies based on certain other genes (16S rRNA, sodA, recN, and cpn60) did not show divergence for all isolates, suggesting recombination between some divergent isolates with normal S. suis for these genes. Indeed, there is evidence of recent recombination between the divergent and normal S. suis genomes for 249 of 397 core genes. In addition, phylogenetic analysis based on the 16S rRNA gene and 132 genes that were conserved between the divergent isolates and representatives of the broader Streptococcus genus showed that divergent isolates were more closely related to S. suis. Six out of nine divergent isolates possessed a S. suis-like capsule region with variation in capsular gene sequences but the remaining three did not have a discrete capsule locus. The majority (40/70), of virulence-associated genes in normal S. suis were present in the divergent genomes. Overall, the divergent isolates extend the current diversity of S. suis species but the phenotypic similarities and the large amount of gene exchange with normal S. suis gives insufficient evidence to assign these isolates to a new species or subspecies. Further, sampling and whole genome analysis of more isolates is warranted to understand the diversity of the species. PMID:26583006

  19. Divergent immune responses to house dust mite lead to distinct structural-functional phenotypes.

    PubMed

    Johnson, Jill R; Swirski, Filip K; Gajewska, Beata U; Wiley, Ryan E; Fattouh, Ramzi; Pacitto, Stephanie R; Wong, Jonathan K; Stämpfli, Martin R; Jordana, Manel

    2007-09-01

    Asthma is a chronic airway inflammatory disease that encompasses three cardinal processes: T helper (Th) cell type 2 (Th2)-polarized inflammation, bronchial hyperreactivity, and airway wall remodeling. However, the link between the immune-inflammatory phenotype and the structural-functional phenotype remains to be fully defined. The objective of these studies was to evaluate the relationship between the immunologic nature of chronic airway inflammation and the development of abnormal airway structure and function in a mouse model of chronic asthma. Using IL-4-competent and IL-4-deficient mice, we created divergent immune-inflammatory responses to chronic aeroallergen challenge. Immune-inflammatory, structural, and physiological parameters of chronic allergic airway disease were evaluated in both strains of mice. Although both strains developed airway inflammation, the profiles of the immune-inflammatory responses were markedly different: IL-4-competent mice elicited a Th2-polarized response and IL-4-deficient mice developed a Th1-polarized response. Importantly, this chronic Th1-polarized immune response was not associated with airway remodeling or bronchial hyperresponsiveness. Transient reconstitution of IL-4 in IL-4-deficient mice via an airway gene transfer approach led to partial Th2 repolarization and increased bronchial hyperresponsiveness, along with full reconstitution of airway remodeling. These data show that distinct structural-functional phenotypes associated with chronic airway inflammation are strictly dependent on the nature of the immune-inflammatory response. PMID:17586699

  20. Power divergences in overlapping Wilson lines

    NASA Astrophysics Data System (ADS)

    Berwein, Matthias

    2016-01-01

    We discuss the divergence structure of Wilson line operators with partially overlapping segments on the basis of the cyclic Wilson loop as an explicit example. The generalized exponentiation theorem is used to show the exponentiation and factorization of power divergences for certain linear combinations of associated loop functions.

  1. An Evaluation of the Divergent Physics Laboratory

    ERIC Educational Resources Information Center

    Lerch, Robert D.

    1973-01-01

    The study was conducted to evaluate divergent physics laboratories in accomplishing objectives of Commission on College Physics. A questionnaire was used to collect data from students. Analysis revealed students in divergent laboratories had more opportunity to choose or design their own experiments and develop a model for data interpretation. (PS)

  2. Divergent Thinking and Age-Related Changes

    ERIC Educational Resources Information Center

    Palmiero, Massimiliano; Di Giacomo, Dina; Passafiume, Domenico

    2014-01-01

    Aging can affect cognition in different ways. The extent to which aging affects divergent thinking is unclear. In this study, younger and older adults were compared at the performance on the Torrance Test of Creative Thinking in visual and verbal form. Results showed that older adults can think divergently as younger participants, although they…

  3. Means for counteracting charged particle beam divergence

    DOEpatents

    Hooper, Jr., Edwin B.

    1978-01-01

    To counteract charge particle beam divergence, magnetic field-generating means are positioned along the edges of a charged particle beam to be controlled, such as to deflect and redirect particles tending to diverge from a desired beam direction. By selective arrangement of the magnetic field-generating means, the entire beam may be deflected and guided into different directions.

  4. Measurements of Divergent and Complex Thinking.

    ERIC Educational Resources Information Center

    Kagan, Dona M.

    1988-01-01

    The degree to which tests of divergent production may be confounded by verbal ability and loquacity; and relationships among divergent thinking, social competency, and the syntactic complexity of prose written by 61 fifth and sixth graders were assessed. Complex thinkers may appreciate the value of simplicity in facilitating communication. (TJH)

  5. Inferring species divergence times using pairwise sequential Markovian coalescent modelling and low-coverage genomic data.

    PubMed

    Cahill, James A; Soares, André E R; Green, Richard E; Shapiro, Beth

    2016-07-19

    Understanding when species diverged aids in identifying the drivers of speciation, but the end of gene flow between populations can be difficult to ascertain from genetic data. We explore the use of pairwise sequential Markovian coalescent (PSMC) modelling to infer the timing of divergence between species and populations. PSMC plots generated using artificial hybrid genomes show rapid increases in effective population size at the time when the two parent lineages diverge, and this approach has been used previously to infer divergence between human lineages. We show that, even without high coverage or phased input data, PSMC can detect the end of significant gene flow between populations by comparing the PSMC output from artificial hybrids to the output of simulations with known demographic histories. We then apply PSMC to detect divergence times among lineages within two real datasets: great apes and bears within the genus Ursus Our results confirm most previously proposed divergence times for these lineages, and suggest that gene flow between recently diverged lineages may have been common among bears and great apes, including up to one million years of continued gene flow between chimpanzees and bonobos after the formation of the Congo River.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. PMID:27325835

  6. Morphological remodeling of C. elegans neurons during aging is modified by compromised protein homeostasis

    PubMed Central

    Vayndorf, Elena M; Scerbak, Courtney; Hunter, Skyler; Neuswanger, Jason R; Toth, Marton; Parker, J Alex; Neri, Christian; Driscoll, Monica; Taylor, Barbara E

    2016-01-01

    Understanding cellular outcomes, such as neuronal remodeling, that are common to both healthy and diseased aging brains is essential to the development of successful brain aging strategies. Here, we used Caenorhabdits elegans to investigate how the expression of proteotoxic triggers, such as polyglutamine (polyQ)-expanded huntingtin and silencing of proteostasis regulators, such as the ubiquitin–proteasome system (UPS) and protein clearance components, may impact the morphological remodeling of individual neurons as animals age. We examined the effects of disrupted proteostasis on the integrity of neuronal cytoarchitecture by imaging a transgenic C. elegans strain in which touch receptor neurons express the first 57 amino acids of the human huntingtin (Htt) gene with expanded polyQs (128Q) and by using neuron-targeted RNA interference in adult wild-type neurons to knockdown genes encoding proteins involved in proteostasis. We found that proteostatic challenges conferred by polyQ-expanded Htt and knockdown of specific genes involved in protein homeostasis can lead to morphological changes that are restricted to specific domains of specific neurons. The age-associated branching of PLM neurons is suppressed by N-ter polyQ-expanded Htt expression, whereas ALM neurons with polyQ-expanded Htt accumulate extended outgrowths and other soma abnormalities. Furthermore, knockdown of genes important for ubiquitin-mediated degradation, lysosomal function, and autophagy modulated these age-related morphological changes in otherwise normal neurons. Our results show that the expression of misfolded proteins in neurodegenerative disease such as Huntington’s disease modifies the morphological remodeling that is normally associated with neuronal aging. Our results also show that morphological remodeling of healthy neurons during aging can be regulated by the UPS and other proteostasis pathways. Collectively, our data highlight a model in which morphological remodeling during

  7. MHD simple waves and the divergence wave

    SciTech Connect

    Webb, G. M.; Pogorelov, N. V.; Zank, G. P.

    2010-03-25

    In this paper we investigate magnetohydrodynamic (MHD) simple divergence waves in MHD, for models in which nablacentre dotBnot =0. These models are related to the eight wave Riemann solvers in numerical MHD, in which the eighth wave is the divergence wave associated with nablacentre dotBnot =0. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function phi. We consider the form of the MHD equations used by both Powell et al. and Janhunen. It is shown that the Janhunen version of the equations possesses fully nonlinear, exact simple wave solutions for the divergence wave, but no physically meaningful simple divergence wave solution exists for the Powell et al. system. We suggest that the 1D simple, divergence wave solution for the Janhunen system, may be useful for the testing and validation of numerical MHD codes.

  8. Hyperbolic Divergence Cleaning for the MHD Equations

    NASA Astrophysics Data System (ADS)

    Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M.

    2002-01-01

    In simulations of magnetohydrodynamic (MHD) processes the violation of the divergence constraint causes severe stability problems. In this paper we develop and test a new approach to the stabilization of numerical schemes. Our technique can be easily implemented in any existing code since there is no need to modify the solver for the MHD equations. It is based on a modified system in which the divergence constraint is coupled with the conservation laws by introducing a generalized Lagrange multiplier. We suggest a formulation in which the divergence errors are transported to the domain boundaries with the maximal admissible speed and are damped at the same time. This corrected system is hyperbolic and the density, momentum, magnetic induction, and total energy density are still conserved. In comparison to results obtained without correction or with the standard “divergence source terms,” our approach seems to yield more robust schemes with significantly smaller divergence errors.

  9. Vorticity and divergence in the solar photosphere

    NASA Technical Reports Server (NTRS)

    Wang, YI; Noyes, Robert W.; Tarbell, Theodore D.; Title, Alan M.

    1995-01-01

    We have studied an outstanding sequence of continuum images of the solar granulation from Pic du Midi Observatory. We have calculated the horizontal vector flow field using a correlation tracking algorithm, and from this determined three scalar field: the vertical component of the curl; the horizontal divergence; and the horizontal flow speed. The divergence field has substantially longer coherence time and more power than does the curl field. Statistically, curl is better correlated with regions of negative divergence - that is, the vertical vorticity is higher in downflow regions, suggesting excess vorticity in intergranular lanes. The average value of the divergence is largest (i.e., outflow is largest) where the horizontal speed is large; we associate these regions with exploding granules. A numerical simulation of general convection also shows similar statistical differences between curl and divergence. Some individual small bright points in the granulation pattern show large local vorticities.

  10. Divergent and Convergent Evolution of Fungal Pathogenicity

    PubMed Central

    Shang, Yanfang; Xiao, Guohua; Zheng, Peng; Cen, Kai; Zhan, Shuai; Wang, Chengshu

    2016-01-01

    Fungal pathogens of plants and animals have multifarious effects; they cause devastating damages to agricultures, lead to life-threatening diseases in humans, or induce beneficial effects by reducing insect pest populations. Many virulence factors have been determined in different fungal pathogens; however, the molecular determinants contributing to fungal host selection and adaptation are largely unknown. In this study, we sequenced the genomes of seven ascomycete insect pathogens and performed the genome-wide analyses of 33 species of filamentous ascomycete pathogenic fungi that infect insects (12 species), plants (12), and humans (9). Our results revealed that the genomes of plant pathogens encode more proteins and protein families than the insect and human pathogens. Unexpectedly, more common orthologous protein groups are shared between the insect and plant pathogens than between the two animal group pathogens. We also found that the pathogenicity of host-adapted fungi evolved multiple times, and that both divergent and convergent evolutions occurred during pathogen–host cospeciation thus resulting in protein families with similar features in each fungal group. However, the role of phylogenetic relatedness on the evolution of protein families and therefore pathotype formation could not be ruled out due to the effect of common ancestry. The evolutionary correlation analyses led to the identification of different protein families that correlated with alternate pathotypes. Particularly, the effector-like proteins identified in plant and animal pathogens were strongly linked to fungal host adaptation, suggesting the existence of similar gene-for-gene relationships in fungus–animal interactions that has not been established before. These results well advance our understanding of the evolution of fungal pathogenicity and the factors that contribute to fungal pathotype formation. PMID:27071652

  11. Divergent and Convergent Evolution of Fungal Pathogenicity.

    PubMed

    Shang, Yanfang; Xiao, Guohua; Zheng, Peng; Cen, Kai; Zhan, Shuai; Wang, Chengshu

    2016-01-01

    Fungal pathogens of plants and animals have multifarious effects; they cause devastating damages to agricultures, lead to life-threatening diseases in humans, or induce beneficial effects by reducing insect pest populations. Many virulence factors have been determined in different fungal pathogens; however, the molecular determinants contributing to fungal host selection and adaptation are largely unknown. In this study, we sequenced the genomes of seven ascomycete insect pathogens and performed the genome-wide analyses of 33 species of filamentous ascomycete pathogenic fungi that infect insects (12 species), plants (12), and humans (9). Our results revealed that the genomes of plant pathogens encode more proteins and protein families than the insect and human pathogens. Unexpectedly, more common orthologous protein groups are shared between the insect and plant pathogens than between the two animal group pathogens. We also found that the pathogenicity of host-adapted fungi evolved multiple times, and that both divergent and convergent evolutions occurred during pathogen-host cospeciation thus resulting in protein families with similar features in each fungal group. However, the role of phylogenetic relatedness on the evolution of protein families and therefore pathotype formation could not be ruled out due to the effect of common ancestry. The evolutionary correlation analyses led to the identification of different protein families that correlated with alternate pathotypes. Particularly, the effector-like proteins identified in plant and animal pathogens were strongly linked to fungal host adaptation, suggesting the existence of similar gene-for-gene relationships in fungus-animal interactions that has not been established before. These results well advance our understanding of the evolution of fungal pathogenicity and the factors that contribute to fungal pathotype formation. PMID:27071652

  12. A dynamic zone defines interneuron remodeling in the adult neocortex

    PubMed Central

    Lee, Wei-Chung Allen; Chen, Jerry L.; Huang, Hayden; Leslie, Jennifer H.; Amitai, Yael; So, Peter T.; Nedivi, Elly

    2008-01-01

    The contribution of structural remodeling to long-term adult brain plasticity is unclear. Here, we investigate features of GABAergic interneuron dendrite dynamics and extract clues regarding its potential role in cortical function and circuit plasticity. We show that remodeling interneurons are contained within a “dynamic zone” corresponding to a superficial strip of layers 2/3, and remodeling dendrites respect the lower border of this zone. Remodeling occurs primarily at the periphery of dendritic fields with addition and retraction of new branch tips. We further show that dendrite remodeling is not intrinsic to a specific interneuron class. These data suggest that interneuron remodeling is not a feature predetermined by genetic lineage, but rather, it is imposed by cortical laminar circuitry. Our findings are consistent with dynamic GABAergic modulation of feedforward and recurrent connections in response to top-down feedback and suggest a structural component to functional plasticity of supragranular neocortical laminae. PMID:19066223

  13. Role of Corin in Trophoblast Invasion and Uterine Spiral Artery Remodeling in Pregnancy

    PubMed Central

    Cui, Yujie; Wang, Wei; Dong, Ningzheng; Lou, Jinglei; Srinivasan, Dinesh Kumar; Cheng, Weiwei; Huang, Xiaoyi; Liu, Meng; Fang, Chaodong; Peng, Jianhao; Chen, Shenghan; Wu, Shannon; Liu, Zhenzhen; Dong, Liang; Zhou, Yiqing; Wu, Qingyu

    2012-01-01

    Summary In pregnancy, trophoblast invasion and uterine spiral artery remodeling are important for lowering maternal vascular resistance and increasing uteroplacental blood flow. Impaired spiral artery remodeling has long been implicated in preeclampsia, a major complication of pregnancy, but the underlying mechanisms remain unclear1, 2. Corin is a cardiac protease that activates atrial natriuretic peptide (ANP), a cardiac hormone important in regulating blood pressure3. Unexpectedly, corin expression was detected in the pregnant uterus4. Here we identify a novel function of corin and ANP in promoting trophoblast invasion and spiral artery remodeling. We show that pregnant corin- or ANP-deficient mice developed high blood pressure and proteinuria, characteristics of preeclampsia. In these mice, trophoblast invasion and uterine spiral artery remodeling were markedly impaired. Consistently, we find that ANP potently stimulated human trophoblasts in invading Matrigels. In patients with preeclampsia, uterine corin mRNA and protein levels were significantly lower than that in normal pregnancies. Moreover, we have identified corin gene mutations in preeclamptic patients, which decreased corin activity in processing pro-ANP. These results indicate that corin and ANP are essential for physiological changes at the maternal-fetal interface, suggesting that defects in corin and ANP function may contribute to preeclampsia. PMID:22437503

  14. Pathogenic arterial remodeling: the good and bad of microRNAs.

    PubMed

    Wei, Yuanyuan; Schober, Andreas; Weber, Christian

    2013-04-15

    A number of cardiovascular diseases, such as restenosis, aneurysm, and atherosclerosis, lead to vascular remodeling associated with complex adaptive reactions of different cell populations. These reactions include growth of smooth muscle cells, proliferation of endothelial cells, and the inflammatory response of macrophages. MicroRNAs (miRNAs), a class of short RNAs, play key roles in various biological processes and in the development of human disease by post-transcriptional regulation of gene expression. Here, we review the molecular mechanisms of a subset of miRNAs involved in vascular remodeling, including miR-143/145, miR-221/222, miR-126, miR-21, and miR-155. Some of these miRNAs, such as miR-143/145 and miR-126, have been shown to be protective during vascular remodeling, whereas others, such as miR-21, may promote the cellular response that leads to neointima formation. The increasing knowledge regarding the roles of miRNAs in vascular remodeling opens novel avenues for the treatment of various cardiovascular diseases. However, more in vivo studies on the functional roles of these miRNAs are required in the future. PMID:23396454

  15. Compartment-specific remodeling of splenic micro-architecture during experimental visceral leishmaniasis.

    PubMed

    Yurdakul, Pinar; Dalton, Jane; Beattie, Lynette; Brown, Najmeeyah; Erguven, Sibel; Maroof, Asher; Kaye, Paul M

    2011-07-01

    Progressive splenomegaly is a hallmark of visceral leishmaniasis in humans, canids, and rodents. In experimental murine visceral leishmaniasis, splenomegaly is accompanied by pronounced changes in microarchitecture, including expansion of the red pulp vascular system, neovascularization of the white pulp, and remodeling of the stromal cell populations that define the B-cell and T-cell compartments. Here, we show that Ly6C/G(+) (Gr-1(+)) cells, including neutrophils and inflammatory monocytes, accumulate in the splenic red pulp during infection. Cell depletion using monoclonal antibody against either Ly6C/G(+) (Gr-1; RB6) or Ly6G(+) (1A8) cells increased parasite burden. In contrast, depletion of Ly6C/G(+) cells, but not Ly6G(+) cells, halted the progressive remodeling of Meca-32(+) and CD31(+) red pulp vasculature. Strikingly, neither treatment affected white pulp neovascularization or the remodeling of the fibroblastic reticular cell and follicular dendritic cell networks. These findings demonstrate a previously unrecognized compartment-dependent selectivity to the process of splenic vascular remodeling during experimental murine visceral leishmaniasis, attributable to Ly6C(+) inflammatory monocytes. PMID:21703391

  16. Stem cell mechanisms during left ventricular remodeling post-myocardial infarction: Repair and regeneration

    PubMed Central

    Zamilpa, Rogelio; Navarro, Mary M; Flores, Iris; Griffey, Sy

    2014-01-01

    Post-myocardial infarction (MI), the left ventricle (LV) undergoes a series of events collectively referred to as remodeling. As a result, damaged myocardium is replaced with fibrotic tissue consequently leading to contractile dysfunction and ultimately heart failure. LV remodeling post-MI includes inflammatory, fibrotic, and neovascularization responses that involve regulated cell recruitment and function. Stem cells (SCs) have been transplanted post-MI for treatment of LV remodeling and shown to improve LV function by reduction in scar tissue formation in humans and animal models of MI. The promising results obtained from the application of SCs post-MI have sparked a massive effort to identify the optimal SC for regeneration of cardiomyocytes and the paradigm for clinical applications. Although SC transplantations are generally associated with new tissue formation, SCs also secrete cytokines, chemokines and growth factors that robustly regulate cell behavior in a paracrine fashion during the remodeling process. In this review, the different types of SCs used for cardiomyogenesis, markers of differentiation, paracrine factor secretion, and strategies for cell recruitment and delivery are addressed. PMID:25068021

  17. In Brief: Picturing the complex world of chromatin remodelling families.

    PubMed

    Witkowski, Leora; Foulkes, William D

    2015-12-01

    Over the past decade, chromatin remodelling emerged as one of the most important causes of both abnormal development and cancer. Although much has been written about one or another of the complexes, no recent concise summary of the chromatin remodelling families as a whole is available. In this short review, we introduce the family members, briefly summarize their role in developmental abnormalities and neoplasia, and outline the different ways in which these families remodel chromatin. PMID:26174723

  18. Control of bone remodelling by applied dynamic loads

    NASA Technical Reports Server (NTRS)

    Lanyon, L. E.; Rubin, C. T.

    1984-01-01

    The data showing the relationship between bone mass and peak strain magnitude prepared and submitted for publication. The data from experiments relating remodelling activity with static or dynamic loads were prepared and submitted for publication. Development of programs to relate the location of remodelling activity with he natural and artificial dynamic strain distributions continued. Experiments on the effect of different strain rates on the remodelling response continued.

  19. Pregnancy-induced remodeling of heart valves.

    PubMed

    Pierlot, Caitlin M; Moeller, Andrew D; Lee, J Michael; Wells, Sarah M

    2015-11-01

    Recent studies have demonstrated remodeling of aortic and mitral valves leaflets under the volume loading and cardiac expansion of pregnancy. Those valves' leaflets enlarge with altered collagen fiber architecture, content, and cross-linking and biphasic changes (decreases, then increases) in extensibility during gestation. This study extends our analyses to right-sided valves, with additional compositional measurements for all valves. Valve leaflets were harvested from nonpregnant heifers and pregnant cows. Leaflet structure was characterized by leaflet dimensions, and ECM composition was determined using standard biochemical assays. Histological studies assessed changes in cellular and ECM components. Leaflet mechanical properties were assessed using equibiaxial mechanical testing. Collagen thermal stability and cross-linking were assessed using denaturation and hydrothermal isometric tension tests. Pulmonary and tricuspid leaflet areas increased during pregnancy by 35 and 55%, respectively. Leaflet thickness increased by 20% only in the pulmonary valve and largely in the fibrosa (30% thickening). Collagen crimp length was reduced in both the tricuspid (61%) and pulmonary (42%) valves, with loss of crimped area in the pulmonary valve. Thermomechanics showed decreased collagen thermal stability with surprisingly maintained cross-link maturity. The pulmonary leaflet exhibited the biphasic change in extensibility seen in left side valves, whereas the tricuspid leaflet mechanics remained largely unchanged throughout pregnancy. The tricuspid valve exhibits a remodeling response during pregnancy that is significantly diminished from the other three valves. All valves of the heart remodel in pregnancy in a manner distinct from cardiac pathology, with much similarity valve to valve, but with interesting valve-specific responses in the aortic and tricuspid valves. PMID:26371175

  20. The divergent autoencoder (DIVA) model of category learning.

    PubMed

    Kutrz, Kenneth J

    2007-08-01

    A novel theoretical approach to human category learning is proposed in which categories are represented as coordinated statistical models of the properties of the members. Key elements of the account are learning to recode inputs as task-constrained principle components and evaluating category membership in terms of model fit-that is, the fidelity of the reconstruction after recoding and decoding the stimulus. The approach is implemented as a computational model called DIVA (for DIVergent Autoencoder), an artificial neural network that uses reconstructive learning to solve N-way classification tasks. DIVA shows good qualitative fits to benchmark human learning data and provides a compelling theoretical alternative to established models. PMID:17972718

  1. Growth and Remodeling in Blood Vessels Studied In Vivo With Fractal Analysis

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.

    2003-01-01

    Every cell in the human body must reside in close proximity to a blood vessel (within approximately 200 mm) because blood vessels provide the oxygen, metabolite, and fluid exchanges required for cellular existence. The growth and remodeling of blood vessels are required to support the normal physiology of embryonic development, reproductive biology, wound healing and adaptive remodeling to exercise, as well as abnormal tissue change in diseases such as cancer, diabetes, and coronary heart disease. Cardiovascular and hemodynamic (blood flow dynamics) alterations experienced by astronauts during long-term spaceflight, including orthostatic intolerance, fluid shifts in the body, and reduced numbers of red (erythrocyte) and white (immune) blood cells, are identified as risk factors of very high priority in the NASA task force report on risk reduction for human spaceflight, the "Critical Path Roadmap."

  2. Bacterial genome remodeling through bacteriophage recombination.

    PubMed

    Menouni, Rachid; Hutinet, Geoffrey; Petit, Marie-Agnès; Ansaldi, Mireille

    2015-01-01

    Bacteriophages co-exist and co-evolve with their hosts in natural environments. Virulent phages lyse infected cells through lytic cycles, whereas temperate phages often remain dormant and can undergo lysogenic or lytic cycles. In their lysogenic state, prophages are actually part of the host genome and replicate passively in rhythm with host division. However, prophages are far from being passive residents: they can modify or bring new properties to their host. In this review, we focus on two important phage-encoded recombination mechanisms, i.e. site-specific recombination and homologous recombination, and how they remodel bacterial genomes. PMID:25790500

  3. Switched-memory B cells remodel B cell receptors within secondary germinal centers

    PubMed Central

    Okitsu, Shinji L.; McHeyzer-Williams, Michael G.

    2015-01-01

    Effective vaccines induce high-affinity memory B cells and durable antibody responses through accelerated mechanisms of natural selection. Secondary changes in antibody repertoires after vaccine boosts suggest progressive B cell receptor (BCR) re-diversification, but underlying mechanisms remain unresolved. Here integrated specificity and function of individual memory B cell progeny reveal ongoing evolution of polyclonal antibody specificities through germinal center (GC) specific transcriptional activity. At the clonal and sub-clonal levels, single cell expression of Cd83 and Pol□ segregates the secondary GC transcriptional program into 4 stages that regulate divergent mechanisms of memory BCR evolution. These studies demonstrate that vaccine boosts re-activate a cyclic program of GC function in switched-memory B cells to remodel existing antibody specificities and enhance durable immune protection. PMID:25642821

  4. Conceptual issues in Bayesian divergence time estimation.

    PubMed

    Rannala, Bruce

    2016-07-19

    Bayesian inference of species divergence times is an unusual statistical problem, because the divergence time parameters are not identifiable unless both fossil calibrations and sequence data are available. Commonly used marginal priors on divergence times derived from fossil calibrations may conflict with node order on the phylogenetic tree causing a change in the prior on divergence times for a particular topology. Care should be taken to avoid confusing this effect with changes due to informative sequence data. This effect is illustrated with examples. A topology-consistent prior that preserves the marginal priors is defined and examples are constructed. Conflicts between fossil calibrations and relative branch lengths (based on sequence data) can cause estimates of divergence times that are grossly incorrect, yet have a narrow posterior distribution. An example of this effect is given; it is recommended that overly narrow posterior distributions of divergence times should be carefully scrutinized.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. PMID:27325831

  5. Genetic divergence of common bean cultivars.

    PubMed

    Veloso, J S; Silva, W; Pinheiro, L R; Dos Santos, J B; Fonseca, N S; Euzebio, M P

    2015-01-01

    The aim of this study was to evaluate genetic divergence in the 'Carioca' (beige with brown stripes) common bean cultivar used by different institutions and in 16 other common bean cultivars used in the Rede Cooperativa de Pesquisa de Feijão (Cooperative Network of Common Bean Research), by using simple sequence repeats associated with agronomic traits that are highly distributed in the common bean genome. We evaluated 22 polymorphic loci using bulks containing DNA from 30 plants. There was genetic divergence among the Carioca cultivar provided by the institutions. Nevertheless, there was lower divergence among them than among the other cultivars. The cultivar used by Instituto Agronômico do Paraná was the most divergent in relation to the Carioca samples. The least divergence was observed among the samples used by Universidade Federal de Lavras and by Embrapa Arroz e Feijão. Of all the cultivars, 'CNFP 10104' and 'BRSMG Realce' showed the greatest dissimilarity. The cultivars were separated in two groups of greatest similarity using the Structure software. Genetic variation among cultivars was greater than the variation within or between the groups formed. This fact, together with the high estimate of heterozygosity observed and the genetic divergence of the samples of the Carioca cultivar in relation to the original provided by Instituto Agronômico de Campinas, indicates a mixture of cultivars. The high divergence among cultivars provides potential for the utilization of this genetic variability in plant breeding. PMID:26400359

  6. Experimental Divergences in the Visual Cognition of Birds and Mammals

    PubMed Central

    Qadri, Muhammad A. J.; Cook, Robert G.

    2015-01-01

    The comparative analysis of visual cognition across classes of animals yields important information regarding underlying cognitive and neural mechanisms involved with this foundational aspect of behavior. Birds, and pigeons specifically, have been an important source and model for this comparison, especially in relation to mammals. During these investigations, an extensive number of experiments have found divergent results in how pigeons and humans process visual information. Four areas of these divergences are collected, reviewed, and analyzed. We examine the potential contribution and limitations of experimental, spatial, and attentional factors in the interpretation of these findings and their implications for mechanisms of visual cognition in birds and mammals. Recommendations are made to help advance these comparisons in service of understanding the general principles by which different classes and species generate representations of the visual world. PMID:26207154

  7. The estimation of genetic divergence

    NASA Technical Reports Server (NTRS)

    Holmquist, R.; Conroy, T.

    1981-01-01

    Consideration is given to the criticism of Nei and Tateno (1978) of the REH (random evolutionary hits) theory of genetic divergence in nucleic acids and proteins, and to their proposed alternative estimator of total fixed mutations designated X2. It is argued that the assumption of nonuniform amino acid or nucleotide substitution will necessarily increase REH estimates relative to those made for a model where each locus has an equal likelihood of fixing mutations, thus the resulting value will not be an overestimation. The relative values of X2 and measures calculated on the basis of the PAM and REH theories for the number of nucleotide substitutions necessary to explain a given number of observed amino acid differences between two homologous proteins are compared, and the smaller values of X2 are attributed to (1) a mathematical model based on the incorrect assumption that an entire structural gene is free to fix mutations and (2) the assumptions of different numbers of variable codons for the X2 and REH calculations. Results of a repeat of the computer simulations of Nei and Tateno are presented which, in contrast to the original results, confirm the REH theory. It is pointed out that while a negative correlation is observed between estimations of the fixation intensity per varion and the number of varions for a given pair of sequences, the correlation between the two fixation intensities and varion numbers of two different pairs of sequences need not be negative. Finally, REH theory is used to resolve a paradox concerning the high rate of covarion turnover and the nature of general function sites as permanent covarions.

  8. Thymoquinone inhibits inflammation, neoangiogenesis and vascular remodeling in asthma mice.

    PubMed

    Su, Xinming; Ren, Yuan; Yu, Na; Kong, Lingfei; Kang, Jian

    2016-09-01

    Asthma is a chronic obstructive disease which is characterized by recurring airway inflammation, reversible airway obstruction, airway hyper responsiveness and vascular remodeling. Thymoquinone (TQ), an active ingredient isolated from Nigella sativa, was reported to exhibit anti-inflammation and anti-proliferation of in various cancer cells as well as epithelial cells. The aim of this study was to evaluate the effect of TQ on the inflammation, neoangiogenesis and vascular remodeling induced by Ovalbumin (OVA) in asthma mice in vivo and the anti-angiogenesis effects of TQ in VEGF-induced human umbilical vein endothelial cells (HUVECs) in vitro. Our results revealed that TQ inhibited the production of inflammatory factors interleukin-4/-5 (IL-4/-5) by enzyme-linked immunesorbent assay (ELISA). Immunohistochemistry analysis showed that the increase of platelet endothelial cell adhesion molecule-1, which is also known as CD31 and α-smooth muscle actinalpha (α-SMA) expression in asthma mice challenged by OVA was suppressed by TQ. Moreover, TQ suppressed the activation of VEGFR2-PI3K-Akt pathway and up-regulated the expression of Slit glycoprotein-2 (Slit-2) both in vivo and in vitro with the inhibition of tube information in HUVEC cells. Meanwhile immunofluorescence analysis showed that Slit-2 and Roundabout-4 (Robo-4) were co-expressing after TQ treatment in OVA-challenged asthma mice. Our study demonstrates that TQ attenuated the inflammatory reaction by antagonizing IL-4/-5 while the anti-neoangiogenesis effect of TQ is mediated by inhibition of vascular endothelial growth factor (VEGF) expression through VEGFR2/PI3K/Akt signaling pathway, which supports a potential role for TQ in ameliorating asthma. PMID:27240137

  9. BMP-2 Is Involved in Scleral Remodeling in Myopia Development

    PubMed Central

    Li, Honghui; Cui, Dongmei; Zhao, Feng; Huo, Lijun; Hu, Jianmin; Zeng, Junwen

    2015-01-01

    The development of myopia is associated with scleral remodeling, but it is unclear which factors regulate this process. This study investigated bone morphogenetic protein-2 (BMP-2) expression in the sclera of guinea pigs with lens-induced myopia (LIM) and after recovery from myopia and evaluated the effect of BMP-2 on extracellular matrix (ECM) synthesis in human scleral fibroblasts (HSFs) cultured in vitro. Lens-induced myopia was brought about in two groups of guinea pigs (the lens-induced myopia and myopia recovery groups) by placing -4.00 D lenses on the right eye for three weeks. The left eye served as a contralateral control. In the recovery group, the lenses were removed after one week. The refractive power and axial length of the eyes were measured, and the BMP-2 expression levels in the sclera were measured. After three weeks, the lens-induced eyes acquired relative myopia in both groups of guinea pigs. Immunostaining of the eyeballs revealed significantly decreased BMP-2 expression in the posterior sclera of the myopic eyes compared to the contralateral eyes. One week after lens removal, BMP-2 expression recovered, and no differences were observed between the experimental and contralateral eyes in the recovery group. HSFs were cultured with BMP-2 or transforming growth factor-β1 (TGF-β1). Type I and type III collagen synthesis was significantly up-regulated following BMP-2 treatment in culture after one and two weeks, but the ratio of type III to type I collagen mRNA was not increased. Biosynthesis of glycosaminoglycan (GAG) and aggrecan was increased in HSFs treated with BMP-2. Some chondrogenesis-associated genes expression increased in HSFs treated with BMP-2. From this study, we concluded that BMP-2 is involved in scleral remodeling in the development and recovery of lens-induced myopia. PMID:25965995

  10. [Histamine in regulation of bone remodeling processes].

    PubMed

    Wiercigroch, Marek; Folwarczna, Joanna

    2013-01-01

    Bone remodeling is under autocrine, paracrine, endocrine and central nervous system control. One of the potential endogenous factors affecting bone remodeling is histamine, an endogenous amine which acts as a mediator of allergic reactions and neuromediator, and induces production of gastric acid. Histamine H₁ receptor antagonists are widely used in the treatment of allergic conditions, H₂ receptor antagonists in peptic ulcer disease, and betahistine (an H₃ receptor antagonist and H₁ receptor agonist) is used in the treatment of Ménière's disease. Excess histamine release in mastocytosis and allergic diseases may lead to development of osteoporosis. Clinical and population-based studies on the effects of histamine receptor antagonists on the skeletal system have not delivered unequivocal results. Expression of mRNA of histamine receptors has been discovered in bone cells (osteoblasts and osteoclasts). Histamine synthesis has been demonstrated in osteoclast precursors. Histamine increases bone resorption both by direct effects on osteoclast precursors and osteoclasts, and indirectly, by increasing the expression of RANKL in osteoblasts. In in vivo studies, H₁ and H₂ receptor antagonists exerted protective effects on the bone tissue, although not in all experimental models. In the present article, in vitro and in vivo studies conducted so far, concerning the effects of histamine and drugs modifying its activity on the skeletal system, have been reviewed. PMID:24018454

  11. Densitometric evaluation of periprosthetic bone remodeling

    PubMed Central

    Parchi, Paolo Domenico; Cervi, Valentina; Piolanti, Nicola; Ciapini, Gianluca; Andreani, Lorenzo; Castellini, Iacopo; Poggetti, Andrea; Lisanti, Michele

    2014-01-01

    Summary The application of Dual-energy X-ray absorptiometry (DEXA) in orthopaedic surgery gradually has been extended from the study of osteoporosis to different areas of interest like the study of the relation between bone and prosthetic implants. Aim of this review is to analyze changes that occur in periprosthetic bone after the implantation of a total hip arthroplasty (THA) or a total knee arthroplasty (TKA). In THA the pattern of adaptive bone remodeling with different cementless femoral stems varies and it appears to be strictly related to the design and more specifically to where the femoral stem is fixed on bone. Short stems with metaphyseal fixation allow the maintenance of a more physiologic load transfer to the proximal femur decreasing the entity of bone loss. Femoral bone loss after TKA seems to be related to the stress shielding induced by the implants while tibial bone remodeling seems to be related to postoperative changes in knee alignment (varus/valgus) and consequently in tibial load transfer. After both THA and TKA stress shielding seems to be an inevitable phenomenon that occurs mainly in the first year after surgery. PMID:25568658

  12. PARP inhibition and postinfarction myocardial remodeling.

    PubMed

    Halmosi, Robert; Deres, Laszlo; Gal, Roland; Eros, Krisztian; Sumegi, Balazs; Toth, Kalman

    2016-08-01

    Coronary artery disease accounts for the greatest proportion of cardiovascular diseases therefore it is the major cause of death worldwide. Its therapeutic importance is indicated by still high mortality of myocardial infarction, which is one of the most severe forms of CVDs. Moreover, the risk of developing heart failure is very high among survivors. Heart failure is accompanied by high morbidity and mortality rate, therefore this topic is in the focus of researchers' interest. After a myocardial infarct, at first ventricular hypertrophy develops as a compensatory mechanism to decrease wall stress but finally leads to left ventricular dilation. This phenomenon is termed as myocardial remodeling. The main characteristics of underlying mechanisms involve cardiomyocyte growth, vessel changes and increased collagen production, in all of which several mechanical stress induced neurohumoral agents, oxidative stress and signal transduction pathways are involved. The long term activation of these processes ultimately leads to left ventricular dilation and heart failure with decreased systolic function. Oxidative stress causes DNA breaks producing the activation of nuclear poly(ADP-ribose) polymerase-1 (PARP-1) enzyme that leads to energy depletion and unfavorable modulation of different kinase cascades (Akt-1/GSK-3β, MAPKs, various PKC isoforms) and thus it promotes the development of heart failure. Therefore inhibition of PARP enzyme could offer a promising new therapeutical approach to prevent the onset of heart failure among postinfarction patients. The purpose of this review is to give a comprehensive summary about the most significant experimental results and mechanisms in postinfarction remodeling. PMID:27392900

  13. Abnormal bone remodelling in inflammatory arthritis

    PubMed Central

    Bogoch, Earl R.; Moran, Erica

    1998-01-01

    Osteopenia is responsible for substantial comorbidity in patients suffering from rheumatoid arthritis and is an important factor in the surgical management of joint disease. In animal models of bone loss stimulated by inflammatory arthritis, increased bone remodelling and altered microstructure of bone have been documented. The subchondral bone plate near the joint surface is narrow and perforated by vascular inflammatory invasion, and in the shaft the thin cortices are weakened by giant resorption defects. Biomechanical tests and a mathematical model of bone strength suggest that cortical defects, much larger than those found in normal osteonal remodelling, are principally responsible for the experimentally observed loss of strength. Similarly, these defects may explain the increased femoral fracture risk in rheumatoid arthritis. The osteoclast, the cell resorbing bone, is demonstrated in increased number and activity in rheumatoid arthritis and in animal models. Bisphosphonates, drugs that inhibit osteoclast function, have been shown experimentally to reduce both focal and generalized osteopenia and to prevent loss of bone strength. Bisphosphonates also protect articular cartilage from damage characteristic of inflammatory arthritis. The mechanism of chondroprotection may be prevention of subchondral bone resorption by the osteoclast and also an altered distribution of bone marrow cells. Thus, bisphosphonates, currently in clinical use for other bone metabolic diseases, appear to have potential as prophylaxis and treatment for osteopenia and joint damage in inflammatory arthritis. PMID:9711159

  14. Hard tissue remodeling using biofabricated coralline biomaterials.

    PubMed

    Vago, Razi; Plotquin, Daniel; Bunin, Alex; Sinelnikov, Igor; Atar, Dan; Itzhak, David

    2002-01-01

    Biotechnical and biomedical approaches were combined in an attempt to identify potential uses of biofabricated marine carbonate materials in biomedical applications, particularly as biomatrices for remodeling bone and cartilage tissue. After grafting, it is desirable for bone ingrowth to proceed as quickly as possible because the strength of the implanted region depends on a good mechanical bond forming between the implant and surrounding regions in the body. Ingrowth can take place as a result of growth of tissue and cells into the implanted porous material, or it may be promoted by transplanting cells seeded onto such a material. The rate at which ingrowth occurs is dependent on many factors, including pore size and the interconnectivity of the implanted structure. In vivo graftings into osteochondral defects demonstrated that our biofabricated porous material is highly biocompatible with cartilage and bone tissue. The biofabricated matrix was well incorporated into the biphasic osteochondral area. Resorption was followed by bone and cartilage formation, and after 4 months, the biomaterial had been replaced by new tissue. Ossification was induced and enhanced without introduction of additional factors. We believe that this is the first time that such biofabricated materials have been used for biomedical purposes. In face of the obvious environmental disadvantages of harvesting from limited natural resources, we propose the use of bioengineered coralline and other materials such as those cultured by our group under field and laboratory conditions as a possible biomatrix for hard tissue remodeling. PMID:11741712

  15. Atrial remodeling, fibrosis, and atrial fibrillation.

    PubMed

    Jalife, José; Kaur, Kuljeet

    2015-08-01

    The fundamental mechanisms governing the perpetuation of atrial fibrillation (AF), the most common arrhythmia seen in clinical practice, are poorly understood, which explains in part why AF prevention and treatment remain suboptimal. Although some clinical parameters have been identified as predicting a transition from paroxysmal to persistent AF in some patients, the molecular, electrophysiological, and inflammation changes leading to such a progression have not been described in detail. Oxidative stress, atrial dilatation, calcium overload, inflammation, microRNAs, and myofibroblast activation are all thought to be involved in AF-induced atrial remodeling. However, it is unknown to what extent and at which time points such alterations influence the remodeling process that perpetuates AF. Here we postulate a working model that might open new pathways for future investigation into mechanisms of AF perpetuation. We start from the premise that the progression to AF perpetuation is the result of interplay among manifold signaling pathways with differing kinetics. Some such pathways have relatively fast kinetics (e.g., oxidative stress-mediated shortening of refractory period); others likely depend on molecular processes with slower kinetics (e.g., transcriptional changes in myocyte ion channel protein expression mediated through inflammation and fibroblast activation). We stress the need to fully understand the relationships among such pathways should one hope to identify novel, truly effective targets for AF therapy and prevention. PMID:25661032

  16. Peri/Epicellular Protein Disulfide Isomerase Sustains Vascular Lumen Caliber Through an Anticonstrictive Remodeling Effect.

    PubMed

    Tanaka, Leonardo Y; Araújo, Haniel A; Hironaka, Gustavo K; Araujo, Thaís L S; Takimura, Celso K; Rodriguez, Andres I; Casagrande, Annelise S; Gutierrez, Paulo S; Lemos-Neto, Pedro Alves; Laurindo, Francisco R M

    2016-03-01

    Whole-vessel remodeling critically determines lumen caliber in vascular (patho)physiology, and it is reportedly redox-dependent. We hypothesized that the cell-surface pool of the endoplasmic reticulum redox chaperone protein disulfide isomerase-A1 (peri/epicellular=pecPDI), which is known to support thrombosis, also regulates disease-associated vascular architecture. In human coronary atheromas, PDI expression inversely correlated with constrictive remodeling and plaque stability. In a rabbit iliac artery overdistension model, there was unusually high PDI upregulation (≈25-fold versus basal, 14 days postinjury), involving both intracellular and pecPDI. PecPDI neutralization with distinct anti-PDI antibodies did not enhance endoplasmic reticulum stress or apoptosis. In vivo pecPDI neutralization with PDI antibody-containing perivascular gel from days 12 to 14 post injury promoted 25% decrease in the maximally dilated arteriographic vascular caliber. There was corresponding whole-vessel circumference loss using optical coherence tomography without change in neointima, which indicates constrictive remodeling. This was accompanied by decreased hydrogen peroxide generation. Constrictive remodeling was corroborated by marked changes in collagen organization, that is, switching from circumferential to radial fiber orientation and to a more rigid fiber type. The cytoskeleton architecture was also disrupted; there was a loss of stress fiber coherent organization and a switch from thin to medium thickness actin fibers, all leading to impaired viscoelastic ductility. Total and PDI-associated expressions of β1-integrin, and levels of reduced cell-surface β1-integrin, were diminished after PDI antibody treatment, implicating β1-integrin as a likely pecPDI target during vessel repair. Indeed, focal adhesion kinase phosphorylation, a downstream β1-integrin effector, was decreased by PDI antibody. Thus, the upregulated pecPDI pool tunes matrix/cytoskeleton reshaping to

  17. The potential role of lysosome-associated membrane protein 3 (LAMP3) on cardiac remodelling

    PubMed Central

    Jiang, Ding-Sheng; Yi, Xin; Huo, Bo; Liu, Xin-Xin; Li, Rui; Zhu, Xue-Hai; Wei, Xiang

    2016-01-01

    Lysosome-associated membrane protein 3 (LAMP3) was first identified as a cell surface marker of mature dendritic cells and specifically expressed in lung tissues. Recently studies demonstrated that LAMP3 plays a critical role in several cancers, and regulated by hypoxia. However, whether LAMP3 expressed in the heart and cardiomyocytes and changed its expression level in the hearts with cardiac remodelling was largely unknown. In this study, we first cultured H9C2 (a clonal muscle cell line from rat heart) and stimulated with 1 μM angiotensin II (Ang II), or 100 μM isoproterenol (ISO), or 100 μM phenylephrine (PE) for indicated times. We found that LAMP3 expression level was significantly increased after these stimulation. Next, the pressure overload-induced cardiac remodelling mouse model was performed in the wild type C57BL/6J mice. After 4 and 8 weeks of transverse aortic constriction (TAC), obvious cardiac remodelling was observed in the wild type mice compared with sham group. Importantly, LAMP3 expression level was gradually elevated from 2 weeks to 8 weeks after TAC surgery. Furthermore, in human dilated cardiomyopathy (DCM) hearts, severe cardiac remodelling was observed, as evidenced by remarkably increased cardiomyocytes cross sectional area and collagen deposition. Notably, the mRNA and protein level of LAMP3 were significantly increased in the DCM hearts compared with donor hearts. Immunohistochemistry assay showed that LAMP3 was expression in the cardiomyocytes and responsible for its increased expression in the hearts. Our data indicated that LAMP3 might have a potential role in the process of cardiac remodelling. PMID:27069538

  18. Endobronchial Ultrasound Reliably Quantifies Airway Smooth Muscle Remodeling in an Equine Asthma Model.

    PubMed

    Bullone, Michela; Beauchamp, Guy; Godbout, Mireille; Martin, James G; Lavoie, Jean-Pierre

    2015-01-01

    Endobronchial ultrasonography (EBUS) revealed differences in the thickness of the layer representing subepithelial tissues (L2) between human asthmatics and controls, but whether this measurement correlates with airway smooth muscle (ASM) remodeling in asthma is unknown. In this study, we sought to determine the ability of EBUS to predict histological ASM remodeling in normal and equine asthmatic airways. We studied 109 isolated bronchi from the lungs of 13 horses. They underwent EBUS examination using a 30 MHz radial probe before being processed for histology. ASM remodeling parameters were evaluated in EBUS images (L2 thickness, L2 area, L2 area/internal perimeter [Pi] and L2 area/Pi2) and histological cuts (ASM area/Pi2), and compared. EBUS was then performed ex vivo on the lungs of 4 horses with heaves, an asthma-like condition of horses, and 7 controls to determine whether central bronchial remodeling could be detected with this technique. An optimized approach was developed based on data variability within airways, subjects, and groups, and then validated in 7 horses (3 controls, 4 with heaves) that underwent EBUS in vivo. L2 area was significantly associated to ASM area in isolated lungs (p<0.0001), in the absence of significant bias related to the airway size. Bronchial size significantly affected EBUS ASM-related parameters, except for L2 area/Pi2. L2 area/Pi2 was increased in the airways of asthmatic horses compared to controls, both ex vivo and in vivo (p<0.05). Bronchial histology confirmed our findings (AASM/Pi2 was increased in asthmatic horses compared to controls, p<0.05). In both horses with heaves and controls, L2 was composed of ASM for the outer 75% of its thickness and by ECM for the remaining inner 25%. In conclusion, EBUS reliably allows assessment of asthma-associated ASM remodeling of central airways in a non-invasive way. PMID:26348727

  19. Endobronchial Ultrasound Reliably Quantifies Airway Smooth Muscle Remodeling in an Equine Asthma Model

    PubMed Central

    Bullone, Michela; Beauchamp, Guy; Godbout, Mireille; Martin, James G.; Lavoie, Jean-Pierre

    2015-01-01

    Endobronchial ultrasonography (EBUS) revealed differences in the thickness of the layer representing subepithelial tissues (L2) between human asthmatics and controls, but whether this measurement correlates with airway smooth muscle (ASM) remodeling in asthma is unknown. In this study, we sought to determine the ability of EBUS to predict histological ASM remodeling in normal and equine asthmatic airways. We studied 109 isolated bronchi from the lungs of 13 horses. They underwent EBUS examination using a 30 MHz radial probe before being processed for histology. ASM remodeling parameters were evaluated in EBUS images (L2 thickness, L2 area, L2 area/internal perimeter [Pi] and L2 area/Pi2) and histological cuts (ASM area/Pi2), and compared. EBUS was then performed ex vivo on the lungs of 4 horses with heaves, an asthma-like condition of horses, and 7 controls to determine whether central bronchial remodeling could be detected with this technique. An optimized approach was developed based on data variability within airways, subjects, and groups, and then validated in 7 horses (3 controls, 4 with heaves) that underwent EBUS in vivo. L2 area was significantly associated to ASM area in isolated lungs (p<0.0001), in the absence of significant bias related to the airway size. Bronchial size significantly affected EBUS ASM-related parameters, except for L2 area/Pi2. L2 area/Pi2 was increased in the airways of asthmatic horses compared to controls, both ex vivo and in vivo (p<0.05). Bronchial histology confirmed our findings (AASM/Pi2 was increased in asthmatic horses compared to controls, p<0.05). In both horses with heaves and controls, L2 was composed of ASM for the outer 75% of its thickness and by ECM for the remaining inner 25%. In conclusion, EBUS reliably allows assessment of asthma-associated ASM remodeling of central airways in a non-invasive way. PMID:26348727

  20. Calibration age and quartet divergence date estimation.

    PubMed

    Brochu, Christopher A

    2004-06-01

    The date of a single divergence point--between living alligators and crocodiles--was estimated with quartet dating using calibrations of widely divergent ages. For five mitochondrial sequence datasets, there is a clear relationship between calibration age and quartet estimate--quartets based on two relatively recent calibrations support younger divergence estimates than do quartets based on two older calibrations. Some of the estimates supported by young quartets are impossibly young and exclude the first appearance of the group in the fossil record as too old. The older estimates--those based on two relatively old calibrations--may be overestimates, and those based on one old and one recent calibration support divergence estimates very close to fossil data. This suggests that quartet dating methods may be most effective when calibrations are applied from different parts of a clade's history. PMID:15266985

  1. Hypoxia remodels the composition of the constituent ceramide species of HexCer and Hex2Cer with phytosphingosine and hydroxy fatty acids in human colon cancer LS174T cells.

    PubMed

    Tanaka, Kouji; Tamiya-Koizumi, Keiko; Yamada, Masaki; Murate, Takashi; Kannagi, Reiji; Kyogashima, Mamoru

    2015-11-01

    Oxygen-requiring enzymes, such as Δ4-desaturase (dihydroceramide desaturase), sphingolipid Δ4-desaturase/C-4-hydroxylase, and fatty acid 2-hydroxylase are involved in ceramide synthesis. We prepared free ceramides, sphingomyelins and glycosphingolipids (GSLs) from cancer cells cultivated under conditions of normoxia and hypoxia, and analyzed these compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Human colon cancer LS174T cells were employed because these cells highly express hydroxyl fatty acids and phytosphingosine (t18:0) which are expected to be greatly influenced by changes in oxygen levels. As expected, the populations of dihydro-species of free ceramide and sphingomyelin with C16:0 non-hydroxy fatty acid were elevated, and the populations of HexCers and Hex2Cers, composed of C16:0 or C16:0 hydroxy fatty acid (C16:0h), and sphingosine (d18:1) or t18:0, were decreased under hypoxia. However, appreciable populations of HexCer and Hex2Cer species of C24:0 or C24:0h and t18:0 remained. These results suggest that the individual species of GSLs with fatty acids possessing different alkyl chain lengths, either non-hydroxy fatty acids or hydroxyl fatty acids, may be metabolized individually. PMID:26194060

  2. Divergences and involution-dependent constants

    SciTech Connect

    Nagao, G.

    1989-01-01

    The authors show the cancellation of the dilation divergence in the 1-loop open bosonic string vacuum and N-tachyon scattering amplitude depends upon a set of involution-dependent constants. Such a set of constants exists at each loop level and thus provides a means with which to study the connection between the cancellation of divergences and anomalies for the gauge group SO(2/sup D/2/).

  3. Prediction of denosumab effects on bone remodeling: A combined pharmacokinetics and finite element modeling.

    PubMed

    Hambli, Ridha; Boughattas, Mohamed Hafedh; Daniel, Jean-Luc; Kourta, Azeddine

    2016-07-01

    Denosumab is a fully human monoclonal antibody that inhibits receptor activator of nuclearfactor-kappa B ligand (RANKL). This key mediator of osteoclast activities has been shown to inhibit osteoclast differentiation and hence, to increase bone mineral density (BMD) in treated patients. In the current study, we develop a computer model to simulate the effects of denosumab treatments (dose and duration) on the proximal femur bone remodeling process quantified by the variation in proximal femur BMD. The simulation model is based on a coupled pharmacokinetics model of denosumab with a pharmacodynamics model consisting of a mechanobiological finite element remodeling model which describes the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed which controls the level of bone cell autocrine and paracrine factors. The cellular behavior is based on Komarova et al.׳s (2003) dynamic law which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cell dynamics rather than by adaptive elasticity approaches. The proposed finite element model was implemented in the finite element code Abaqus (UMAT routine). In order to perform a preliminary validation, in vivo human proximal femurs were selected and scanned at two different time intervals (at baseline and at a 36-month interval). Then, a 3D FE model was generated and the denosumab-remodeling algorithm was applied to the scans at t0 simulating daily walking activities for a duration of 36 months. The predicted results (density variation) were compared to existing published ones performed on a human cohort (FREEDOM

  4. Connecting Mechanics and Bone Cell Activities in the Bone Remodeling Process: An Integrated Finite Element Modeling

    PubMed Central

    Hambli, Ridha

    2014-01-01

    Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain–damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.’s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone

  5. National Remodelling Team: Evaluation Study (Year 2). Final Report

    ERIC Educational Resources Information Center

    Easton, Claire; Wilson, Rebekah; Sharp, Caroline

    2005-01-01

    This report sets out to provide the National Remodelling Team (NRT) with comprehensive details on stakeholders' views about the second year of the remodelling programme. This report is divided into nine chapters: (1) Introduction; (2) outlines the aims of the evaluation and the methodology used; (3) describes the findings from the survey of local…

  6. Chromatin-remodeling and the initiation of transcription.

    PubMed

    Lorch, Yahli; Kornberg, Roger D

    2015-11-01

    The nucleosome serves as a general gene repressor by the occlusion of regulatory and promoter DNA sequences. Repression is relieved by the SWI/SNF-RSC family of chromatin-remodeling complexes. Research reviewed here has revealed the essential features of the remodeling process. PMID:26537406

  7. Structure of the large ribosomal subunit from human mitochondria

    PubMed Central

    Bai, Xiao-chen; Sugimoto, Yoichiro; Edwards, Patricia C.; Murshudov, Garib; Scheres, Sjors H. W.; Ramakrishnan, V.

    2014-01-01

    Human mitochondrial ribosomes are highly divergent from all other known ribosomes and are specialized to exclusively translate membrane proteins. They are linked with hereditary mitochondrial diseases, and are often the unintended targets of various clinically useful antibiotics. Using single-particle electron cryo-microscopy we have determined the structure of its large subunit to 3.4 angstrom resolution, revealing 48 proteins, 21 of which are specific to mitochondria. The structure unveils an adaptation of the exit tunnel for hydrophobic nascent peptides, extensive remodeling of the central protuberance including recruitment of mitochondrial tRNAVal to play an integral structural role, and changes in the tRNA binding sites related to the unusual characteristics of mitochondrial tRNAs. PMID:25278503

  8. Genetic Divergence in Mandible Form in Relation to Molecular Divergence in Inbred Mouse Strains

    PubMed Central

    Atchley, W. R.; Newman, S.; Cowley, D. E.

    1988-01-01

    Genetic divergence in the form of the mandible is examined in ten inbred strains of mice. Several univariate and multivariate genetic distance estimates are given for the morphological data and these estimates are compared to measures of genealogical and molecular divergence. Highly significant divergence occurs among the ten strains in all 11 mandible traits considered individually and simultaneously. Genealogical relationship among strains is highly correlated with genetic divergence in single locus molecular traits. However, the concordance between genealogical relationship and multivariate genetic divergence in morphology is much more complex. Whether there is a significant correlation between morphological divergence and genealogy depends upon the method of analysis and the particular genetic distance statistic being employed. PMID:3220250

  9. Internal Performance of Several Divergent-Shroud Ejector Nozzles with High Divergence Angles

    NASA Technical Reports Server (NTRS)

    Trout, Arthur M.; Papell, S. Stephen; Povolny, John H.

    1957-01-01

    Nine divergent-shroud ejector configurations were investigated to determine the effect of shroud divergence angle on ejector internal performance. Unheated dry air was used for both the primary and secondary flows. The decrease in the design-point thrust coefficient with increasing flow divergence angle (angle measured from primary exit to shroud exit) followed very closely a simple relation involving the cosine of the angle. This indicates that design-point thrust performance for divergent-shroud ejectors can be predicted with reasonable accuracy within the range investigated. The decrease in design-point thrust coefficient due to increasing the flow divergence engle from 120deg to 30deg (half-singles) was approximately 6 percent. Ejector air-handling characteristics and the primary-nozzle flow coefficient were not significantly affected by change in shroud divergence angle.

  10. Genetic divergence disclosing a rapid prehistorical dispersion of Native Americans in Central and South America.

    PubMed

    He, Yungang; Wang, Wei R; Li, Ran; Wang, Sijia; Jin, Li

    2012-01-01

    An accurate estimate of the divergence time between Native Americans is important for understanding the initial entry and early dispersion of human beings in the New World. Current methods for estimating the genetic divergence time of populations could seriously depart from a linear relationship with the true divergence for multiple populations of a different population size and significant population expansion. Here, to address this problem, we propose a novel measure to estimate the genetic divergence time of populations. Computer simulation revealed that the new measure maintained an excellent linear correlation with the population divergence time in complicated multi-population scenarios with population expansion. Utilizing the new measure and microsatellite data of 21 Native American populations, we investigated the genetic divergences of the Native American populations. The results indicated that genetic divergences between North American populations are greater than that between Central and South American populations. None of the divergences, however, were large enough to constitute convincing evidence supporting the two-wave or multi-wave migration model for the initial entry of human beings into America. The genetic affinity of the Native American populations was further explored using Neighbor-Net and the genetic divergences suggested that these populations could be categorized into four genetic groups living in four different ecologic zones. The divergence of the population groups suggests that the early dispersion of human beings in America was a multi-step procedure. Further, the divergences suggest the rapid dispersion of Native Americans in Central and South Americas after a long standstill period in North America. PMID:22970308

  11. Genetic Divergence Disclosing a Rapid Prehistorical Dispersion of Native Americans in Central and South America

    PubMed Central

    He, Yungang; Wang, Wei R.; Li, Ran; Wang, Sijia; Jin, Li

    2012-01-01

    An accurate estimate of the divergence time between Native Americans is important for understanding the initial entry and early dispersion of human beings in the New World. Current methods for estimating the genetic divergence time of populations could seriously depart from a linear relationship with the true divergence for multiple populations of a different population size and significant population expansion. Here, to address this problem, we propose a novel measure to estimate the genetic divergence time of populations. Computer simulation revealed that the new measure maintained an excellent linear correlation with the population divergence time in complicated multi-population scenarios with population expansion. Utilizing the new measure and microsatellite data of 21 Native American populations, we investigated the genetic divergences of the Native American populations. The results indicated that genetic divergences between North American populations are greater than that between Central and South American populations. None of the divergences, however, were large enough to constitute convincing evidence supporting the two-wave or multi-wave migration model for the initial entry of human beings into America. The genetic affinity of the Native American populations was further explored using Neighbor-Net and the genetic divergences suggested that these populations could be categorized into four genetic groups living in four different ecologic zones. The divergence of the population groups suggests that the early dispersion of human beings in America was a multi-step procedure. Further, the divergences suggest the rapid dispersion of Native Americans in Central and South Americas after a long standstill period in North America. PMID:22970308

  12. Macrophage plasticity and polarization in tissue repair and remodelling.

    PubMed

    Mantovani, Alberto; Biswas, Subhra K; Galdiero, Maria Rosaria; Sica, Antonio; Locati, Massimo

    2013-01-01

    Mononuclear phagocyte plasticity includes the expression of functions related to the resolution of inflammation, tissue repair and remodelling, particularly when these cells are set in an M2 or an M2-like activation mode. Macrophages are credited with an essential role in remodelling during ontogenesis. In extraembryonic life, under homeostatic conditions, the macrophage trophic and remodelling functions are recapitulated in tissues such as bone, mammary gland, decidua and placenta. In pathology, macrophages are key components of tissue repair and remodelling that occur during wound healing, allergy, parasite infection and cancer. Interaction with cells bearing stem or progenitor cell properties is likely an important component of the role of macrophages in repair and remodelling. These properties of cells of the monocyte-macrophage lineage may represent a tool and a target for therapeutic exploitation. PMID:23096265

  13. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors

    PubMed Central

    Wiechens, Nicola; Gkikopoulos, Triantaffyllos; Schofield, Pieta; Rocha, Sonia; Owen-Hughes, Tom

    2016-01-01

    Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase’s most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements. PMID:27019336

  14. Inflammatory remodeling of the HDL proteome impairs cholesterol efflux capacity.

    PubMed

    Vaisar, Tomáš; Tang, Chongren; Babenko, Ilona; Hutchins, Patrick; Wimberger, Jake; Suffredini, Anthony F; Heinecke, Jay W

    2015-08-01

    Recent studies demonstrate that HDL's ability to promote cholesterol efflux from macrophages associates strongly with cardioprotection in humans independently of HDL-cholesterol (HDL-C) and apoA-I, HDL's major protein. However, the mechanisms that impair cholesterol efflux capacity during vascular disease are unclear. Inflammation, a well-established risk factor for cardiovascular disease, has been shown to impair HDL's cholesterol efflux capacity. We therefore tested the hypothesis that HDL's impaired efflux capacity is mediated by specific changes of its protein cargo. Humans with acute inflammation induced by low-level endotoxin had unchanged HDL-C levels, but their HDL-C efflux capacity was significantly impaired. Proteomic analyses demonstrated that HDL's cholesterol efflux capacity correlated inversely with HDL content of serum amyloid A (SAA)1 and SAA2. In mice, acute inflammation caused a marked impairment of HDL-C efflux capacity that correlated with a large increase in HDL SAA. In striking contrast, the efflux capacity of mouse inflammatory HDL was preserved with genetic ablation of SAA1 and SAA2. Our observations indicate that the inflammatory impairment of HDL-C efflux capacity is due in part to SAA-mediated remodeling of HDL's protein cargo. PMID:25995210

  15. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  16. Osteocytes: The master cells in bone remodelling.

    PubMed

    Prideaux, Matthew; Findlay, David M; Atkins, Gerald J

    2016-06-01

    Bone remodelling is an essential process for shaping and maintaining bone mass in the mature skeleton. During our lifetime bone is constantly being removed by osteoclasts and new bone is formed by osteoblasts. The activities of osteoclasts and osteoblasts must be regulated under a strict balance to ensure that bone homeostasis is maintained. Osteocytes, which form an extensive, multi-functional syncytium throughout the bone, are increasingly considered to be the cells that maintain this balance. Current research is elucidating key signalling pathways by which the osteocyte exerts control over the other cell types in bone and over its own activities, and potential ways in which these pathways may be exploited therapeutically. PMID:26927500

  17. Bone Remodeling and Energy Metabolism: New Perspectives

    PubMed Central

    de Paula, Francisco J. A.; Rosen, Clifford J.

    2013-01-01

    Bone mineral, adipose tissue and energy metabolism are interconnected by a complex and multilevel series of networks. Calcium and phosphorus are utilized for insulin secretion and synthesis of high energy compounds. Adipose tissue store lipids and cholecalciferol, which, in turn, can influence calcium balance and energy expenditure. Hormones long-thought to solely modulate energy and mineral homeostasis may influence adipocytic function. Osteoblasts are a target of insulin action in bone. Moreover, endocrine mediators, such as osteocalcin, are synthesized in the skeleton but regulate carbohydrate disposal and insulin secretion. Finally, osteoblasts and adipocytes originate from the same mesenchymal progenitor. The mutual crosstalk between osteoblasts and adipocytes within the bone marrow microenvironment plays a crucial role in bone remodeling. In the present review we provide an overview of the reciprocal control between bone and energy metabolism and its clinical implications. PMID:26273493

  18. The network and the remodeling theories of aging: historical background and new perspectives.

    PubMed

    Franceschi, C; Valensin, S; Bonafè, M; Paolisso, G; Yashin, A I; Monti, D; De Benedictis, G

    2000-09-01

    Two general theories, i.e. "the network theory of aging" (1989) and "the remodeling theory of aging" (1995), as well as their implications, new developments, and perspectives are reviewed and discussed. Particular attention has been paid to illustrate: (i) how the network theory of aging fits with recent data on aging and longevity in unicellular organisms (yeast), multicellular organisms (worms), and mammals (mice and humans); (ii) the evolutionary and experimental basis of the remodeling theory of aging (immunological, genetic, and metabolic data in healthy centenarians, and studies on the evolution of the immune response, stress and inflammation) and its recent development (the concepts of "immunological space" and "inflamm-aging"); (iii) the profound relationship between these two theories and the data which suggest that aging and longevity are related, in a complex way, to the capability to cope with a variety of stressors. PMID:11053678

  19. ACF chromatin remodeling complex mediates stress–induced depressive–like behavior

    PubMed Central

    Sun, HaoSheng; Damez–Werno, Diane M.; Scobie, Kimberly N.; Shao, Ning–Yi; Dias, Caroline; Rabkin, Jacqui; Koo, Ja Wook; Korb, Erica; Bagot, Rosemary C.; Ahn, Francisca H.; Cahill, Michael E.; Labonté, Benoit; Mouzon, Ezekiell; Heller, Elizabeth A.; Cates, Hannah; Golden, Sam A; Gleason, Kelly; Russo, Scott J; Andrews, Simon; Neve, Rachael; Kennedy, Pamela J.; Maze, Ian; Dietz, David M.; Allis, C. David; Turecki, Gustavo; Varga–Weisz, Patrick; Tamminga, Carol; Shen, Li; Nestler, Eric J.

    2015-01-01

    Improved treatment for major depressive disorder (MDD) remains elusive due to limited understanding of its underlying biological mechanisms. Stress–induced maladaptive transcriptional regulation within limbic neural circuits likely contributes to the development of MDD, possibly through epigenetic factors that regulate chromatin structure. We establish that persistent upregulation of the ACF ATP–dependent chromatin remodeling complex, occurring in the nucleus accumbens of stress–susceptible mice and depressed humans, is necessary for stress–induced depressive–like behaviors. Altered ACF binding after chronic stress is correlated with altered nucleosome positioning, particularly around the transcription start sites of affected genes. These alterations in ACF binding and nucleosome positioning are associated with repressed expression of genes implicated in susceptibility to stress. Together, we identify the ACF chromatin remodeling complex as a critical component in the development of susceptibility to depression and in regulating stress–related behaviors. PMID:26390241

  20. Increased Diels-Alderase activity through backbone remodeling guided by Foldit players.

    PubMed

    Eiben, Christopher B; Siegel, Justin B; Bale, Jacob B; Cooper, Seth; Khatib, Firas; Shen, Betty W; Players, Foldit; Stoddard, Barry L; Popovic, Zoran; Baker, David

    2012-02-01

    Computational enzyme design holds promise for the production of renewable fuels, drugs and chemicals. De novo enzyme design has generated catalysts for several reactions, but with lower catalytic efficiencies than naturally occurring enzymes. Here we report the use of game-driven crowdsourcing to enhance the activity of a computationally designed enzyme through the functional remodeling of its structure. Players of the online game Foldit were challenged to remodel the backbone of a computationally designed bimolecular Diels-Alderase to enable additional interactions with substrates. Several iterations of design and characterization generated a 24-residue helix-turn-helix motif, including a 13-residue insertion, that increased enzyme activity >18-fold. X-ray crystallography showed that the large insertion adopts a helix-turn-helix structure positioned as in the Foldit model. These results demonstrate that human creativity can extend beyond the macroscopic challenges encountered in everyday life to molecular-scale design problems. PMID:22267011

  1. The Redox State of Transglutaminase 2 Controls Arterial Remodeling

    PubMed Central

    van den Akker, Jeroen; VanBavel, Ed; van Geel, Remon; Matlung, Hanke L.; Guvenc Tuna, Bilge; Janssen, George M. C.; van Veelen, Peter A.; Boelens, Wilbert C.; De Mey, Jo G. R.; Bakker, Erik N. T. P.

    2011-01-01

    While inward remodeling of small arteries in response to low blood flow, hypertension, and chronic vasoconstriction depends on type 2 transglutaminase (TG2), the mechanisms of action have remained unresolved. We studied the regulation of TG2 activity, its (sub) cellular localization, substrates, and its specific mode of action during small artery inward remodeling. We found that inward remodeling of isolated mouse mesenteric arteries by exogenous TG2 required the presence of a reducing agent. The effect of TG2 depended on its cross-linking activity, as indicated by the lack of effect of mutant TG2. The cell-permeable reducing agent DTT, but not the cell-impermeable reducing agent TCEP, induced translocation of endogenous TG2 and high membrane-bound transglutaminase activity. This coincided with inward remodeling, characterized by a stiffening of the artery. The remodeling could be inhibited by a TG2 inhibitor and by the nitric oxide donor, SNAP. Using a pull-down assay and mass spectrometry, 21 proteins were identified as TG2 cross-linking substrates, including fibronectin, collagen and nidogen. Inward remodeling induced by low blood flow was associated with the upregulation of several anti-oxidant proteins, notably glutathione-S-transferase, and selenoprotein P. In conclusion, these results show that a reduced state induces smooth muscle membrane-bound TG2 activity. Inward remodeling results from the cross-linking of vicinal matrix proteins, causing a stiffening of the arterial wall. PMID:21901120

  2. Ion divergence in magnetically insulated diodes

    SciTech Connect

    Slutz, S.A.; Lemke, R.W.; Pointon, T.D.; Desjarlais, M.P.; Johnson, D.J.; Mehlhorn, T.A.; Filuk, A.; Bailey, J.

    1995-12-01

    Magnetically insulated ion diodes are being developed to drive inertial confinement fusion. Ion beam microdivergence must be reduced to achieve the very high beam intensities required to achieve this goal. Three-dimensional particle-in-cell simulations indicate that instability induced fluctuations can produce significant ion divergence during acceleration. These simulations exhibit a fast growing mode early in time, which has been identified as the diocotron instability. The divergence generated by this mode is modest due to the relatively high frequency (>1GHz). Later, a low-frequency low-phase-velocity instability develops. This instability couples effectively to the ions, since the frequency is approximately the reciprocal of the ion transit time, and can generate unacceptably large ion divergences (>30 mrad). Linear stability theory reveals that this mode requires perturbations parallel to the applied magnetic field and is related to the modified two stream instability. Measurements of ion density fluctuations and energy-momentum correlations have confirmed that instabilities develop in ion diodes and contribute to the ion divergence. In addition, spectroscopic measurements indicate that the ions have a significant transverse temperature very close to the emission surface. Passive lithium fluoride (LiF) anodes have larger transverse beam temperatures than laser irradiated active sources. Calculations of source divergence expected from the roughness of LiF surfaces and the possible removal of this layer is presented.

  3. The multifactorial nature of microRNAs in vascular remodelling.

    PubMed

    Welten, S M J; Goossens, E A C; Quax, P H A; Nossent, A Y

    2016-05-01

    Vascular remodelling is a multifactorial process that involves both adaptive and maladaptive changes of the vessel wall through, among others, cell proliferation and migration, but also apoptosis and necrosis of the various cell types in the vessel wall. Vascular remodelling can be beneficial, e.g. during neovascularization after ischaemia, as well as pathological, e.g. during atherosclerosis and aneurysm formation. In recent years, it has become clear that microRNAs are able to target many genes that are involved in vascular remodelling processes and either can promote or inhibit structural changes of the vessel wall. Since many different processes of vascular remodelling are regulated by similar mechanisms and factors, both positive and negative vascular remodelling can be affected by the same microRNAs. A large number of microRNAs has been linked to various aspects of vascular remodelling and indeed, several of these microRNAs regulate multiple vascular remodelling processes, including both the adaptive processes angiogenesis and arteriogenesis as well as maladaptive processes of atherosclerosis, restenosis and aneurysm formation. Here, we discuss the multifactorial role of microRNAs and microRNA clusters that were reported to play a role in multiple forms of vascular remodelling and are clearly linked to cardiovascular disease (CVD). The microRNAs reviewed are miR-126, miR-155 and the microRNA gene clusters 17-92, 23/24/27, 143/145 and 14q32. Understanding the contribution of these microRNAs to the entire spectrum of vascular remodelling processes is important, especially as these microRNAs may have great potential as therapeutic targets for treatment of various CVDs. PMID:26912672

  4. Intratracheal Bleomycin Causes Airway Remodeling and Airflow Obstruction in Mice

    PubMed Central

    Polosukhin, Vasiliy V.; Degryse, Amber L.; Newcomb, Dawn C.; Jones, Brittany R.; Ware, Lorraine B.; Lee, Jae Woo; Loyd, James E.; Blackwell, Timothy S.; Lawson, William E.

    2014-01-01

    Introduction In addition to parenchymal fibrosis, fibrotic remodeling of the distal airways has been reported in interstitial lung diseases. Mechanisms of airway wall remodeling, which occurs in a variety of chronic lung diseases, are not well defined and current animal models are limited. Methods We quantified airway remodeling in lung sections from subjects with idiopathic pulmonary fibrosis (IPF) and controls. To investigate intratracheal bleomycin as a potential animal model for fibrotic airway remodeling, we evaluated lungs from C57BL/6 mice after bleomycin treatment by histologic scoring for fibrosis and peribronchial inflammation, morphometric evaluation of subepithelial connective tissue volume density, TUNEL assay, and immunohistochemistry for transforming growth factor β1 (TGFβ1), TGFβ2, and the fibroblast marker S100A4. Lung mechanics were determined at 3 weeks post-bleomycin. Results IPF lungs had small airway remodeling with increased bronchial wall thickness compared to controls. Similarly, bleomycin treated mice developed dose-dependent airway wall inflammation and fibrosis and greater airflow resistance after high dose bleomycin. Increased TUNEL+ bronchial epithelial cells and peribronchial inflammation were noted by 1 week, and expression of TGFβ1 and TGFβ2 and accumulation of S100A4+ fibroblasts correlated with airway remodeling in a bleomycin dose-dependent fashion. Conclusions IPF is characterized by small airway remodeling in addition to parenchymal fibrosis, a pattern also seen with intratracheal bleomycin. Bronchial remodeling from intratracheal bleomycin follows a cascade of events including epithelial cell injury, airway inflammation, pro-fibrotic cytokine expression, fibroblast accumulation, and peribronchial fibrosis. Thus, this model can be utilized to investigate mechanisms of airway remodeling. PMID:22394287

  5. Remodeling of Endogenous Mammary Epithelium by Breast Cancer Stem Cells

    PubMed Central

    Parashurama, Natesh; Lobo, Neethan A.; Ito, Ken; Mosley, Adriane R.; Habte, Frezghi G.; Zabala, Maider; Smith, Bryan R.; Lam, Jessica; Weissman, Irving L.; Clarke, Michael F.; Gambhir, Sanjiv S.

    2014-01-01

    Poorly regulated tissue remodeling results in increased breast cancer risk, yet how breast cancer stem cells (CSC) participate in remodeling is unknown. We performed in vivo imaging of changes in fluorescent, endogenous duct architecture as a metric for remodeling. First, we quantitatively imaged physiologic remodeling of primary branches of the developing and regenerating mammary tree. To assess CSC-specific remodeling events, we isolated CSC from MMTV-Wnt1 (mouse mammary tumor virus long-term repeat enhancer driving Wnt1 oncogene) breast tumors, a well studied model in which tissue remodeling affects tumorigenesis. We confirm that CSC drive tumorigenesis, suggesting a link between CSC and remodeling. We find that normal, regenerating, and developing gland maintain a specific branching pattern. In contrast, transplantation of CSC results in changes in the branching patterns of endogenous ducts while non-CSC do not. Specifically, in the presence of CSC, we identified an increased number of branches, branch points, ducts which have greater than 40 branches (5/33 for CSC and 0/39 for non-CSC), and histological evidence of increased branching. Moreover, we demonstrate that only CSC implants invade into surrounding stroma with structures similar to developing mammary ducts (nine for CSC and one for non-CSC). Overall, we demonstrate a novel approach for imaging physiologic and pathological remodeling. Furthermore, we identify unique, CSC-specific, remodeling events. Our data suggest that CSC interact with the microenvironment differently than non-CSC, and that this could eventually be a therapeutic approach for targeting CSC. PMID:22899386

  6. Remodeling of endogenous mammary epithelium by breast cancer stem cells.

    PubMed

    Parashurama, Natesh; Lobo, Neethan A; Ito, Ken; Mosley, Adriane R; Habte, Frezghi G; Zabala, Maider; Smith, Bryan R; Lam, Jessica; Weissman, Irving L; Clarke, Michael F; Gambhir, Sanjiv S

    2012-10-01

    Poorly regulated tissue remodeling results in increased breast cancer risk, yet how breast cancer stem cells (CSC) participate in remodeling is unknown. We performed in vivo imaging of changes in fluorescent, endogenous duct architecture as a metric for remodeling. First, we quantitatively imaged physiologic remodeling of primary branches of the developing and regenerating mammary tree. To assess CSC-specific remodeling events, we isolated CSC from MMTV-Wnt1 (mouse mammary tumor virus long-term repeat enhancer driving Wnt1 oncogene) breast tumors, a well studied model in which tissue remodeling affects tumorigenesis. We confirm that CSC drive tumorigenesis, suggesting a link between CSC and remodeling. We find that normal, regenerating, and developing gland maintain a specific branching pattern. In contrast, transplantation of CSC results in changes in the branching patterns of endogenous ducts while non-CSC do not. Specifically, in the presence of CSC, we identified an increased number of branches, branch points, ducts which have greater than 40 branches (5/33 for CSC and 0/39 for non-CSC), and histological evidence of increased branching. Moreover, we demonstrate that only CSC implants invade into surrounding stroma with structures similar to developing mammary ducts (nine for CSC and one for non-CSC). Overall, we demonstrate a novel approach for imaging physiologic and pathological remodeling. Furthermore, we identify unique, CSC-specific, remodeling events. Our data suggest that CSC interact with the microenvironment differently than non-CSC, and that this could eventually be a therapeutic approach for targeting CSC. PMID:22899386

  7. Lymphoid Tissue Mesenchymal Stromal Cells in Development and Tissue Remodeling

    PubMed Central

    2016-01-01

    Secondary lymphoid organs (SLOs) are sites that facilitate cell-cell interactions required for generating adaptive immune responses. Nonhematopoietic mesenchymal stromal cells have been shown to play a critical role in SLO function, organization, and tissue homeostasis. The stromal microenvironment undergoes profound remodeling to support immune responses. However, chronic inflammatory conditions can promote uncontrolled stromal cell activation and aberrant tissue remodeling including fibrosis, thus leading to tissue damage. Despite recent advancements, the origin and role of mesenchymal stromal cells involved in SLO development and remodeling remain unclear. PMID:27190524

  8. Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment

    PubMed Central

    Azevedo, Paula S.; Polegato, Bertha F.; Minicucci, Marcos F.; Paiva, Sergio A. R.; Zornoff, Leonardo A. M.

    2016-01-01

    Cardiac remodeling is defined as a group of molecular, cellular and interstitial changes that manifest clinically as changes in size, mass, geometry and function of the heart after injury. The process results in poor prognosis because of its association with ventricular dysfunction and malignant arrhythmias. Here, we discuss the concepts and clinical implications of cardiac remodeling, and the pathophysiological role of different factors, including cell death, energy metabolism, oxidative stress, inflammation, collagen, contractile proteins, calcium transport, geometry and neurohormonal activation. Finally, the article describes the pharmacological treatment of cardiac remodeling, which can be divided into three different stages of strategies: consolidated, promising and potential strategies. PMID:26647721

  9. Lymphoid Tissue Mesenchymal Stromal Cells in Development and Tissue Remodeling.

    PubMed

    Genovese, Luca; Brendolan, Andrea

    2016-01-01

    Secondary lymphoid organs (SLOs) are sites that facilitate cell-cell interactions required for generating adaptive immune responses. Nonhematopoietic mesenchymal stromal cells have been shown to play a critical role in SLO function, organization, and tissue homeostasis. The stromal microenvironment undergoes profound remodeling to support immune responses. However, chronic inflammatory conditions can promote uncontrolled stromal cell activation and aberrant tissue remodeling including fibrosis, thus leading to tissue damage. Despite recent advancements, the origin and role of mesenchymal stromal cells involved in SLO development and remodeling remain unclear. PMID:27190524

  10. Quantitation of maxillary remodeling. 1. A description of osseous changes relative to superimposition on metallic implants.

    PubMed

    Baumrind, S; Korn, E L; Ben-Bassat, Y; West, E E

    1987-01-01

    Lateral skull radiographs for a set of 31 human subjects were examined using computer-aided methods in an attempt to quantify modal trends of maxillary remodeling during the mixed dentition and adolescent growth periods. Cumulative changes in position of anterior nasal spine (ANS), posterior nasal spine (PNS), and Point A are reported at annual intervals relative to superimposition on previously placed maxillary metallic implants. This in vivo longitudinal study confirms at a high level of confidence earlier findings by Enlow, Björk, Melsen, and others to the effect that the superior surface of the maxilla remodels downward during the period of growth and development being investigated. However, the inter-individual variability is relatively large, the mean magnitudes of change are relatively small, and the rate of change appears to diminish by 13.5 years. For the 19 subjects for whom data were available for the time interval from 8.5 to 15.5 years, mean downward remodeling at PNS was 2.50 mm with a standard deviation of 2.23 mm. At ANS, corresponding mean value was 1.56 mm with a standard deviation of 2.92 mm. Mean rotation of the ANS-PNS line relative to the implant line was 1.1 degree in the "forward" direction. However, this rotational change was particularly variable with a standard deviation of 4.6 degrees and a range of 11.3 degrees "forward" to 6.7 degrees "backward." The study provides strong evidence that the palate elongates anteroposteriorly mainly by the backward remodeling of structures located posterior to the region in which the implants were placed. There is also evidence that supports the idea of modal resorptive remodeling at ANS and PNS, but here the data are somewhat more equivocal. It appears likely, but not certain, that there are real differences in the modal patterns of remodeling between treated and untreated subjects. Because of problems associated with overfragmentation of the sample, sex differences were not investigated. PMID:3467578

  11. Vibhakti Divergence between Sanskrit and Hindi

    NASA Astrophysics Data System (ADS)

    Shukla, Preeti; Shukl, Devanand; Kulkarni, Amba

    Translation divergence at various levels between languages arises due to the different conventions followed by different languages for coding the information of grammatical relations. Though Sanskrit and Hindi belong to the same Indo-Aryan family and structurally as well as lexically Hindi inherits a lot from Sanskrit, yet divergences are observed at the level of function words such as vibhaktis. Pāṇini in his Aṣṭādhyāyī has assigned a default vibhakti to kārakas alongwith many scopes for exceptions. He handles these exceptions either by imposing a new kāraka role or by assigning a special vibhakti. However, these methods are not acceptable in Hindi in toto. Based on the nature of deviation, we propose seven cases of divergences in this paper.

  12. Divergence detectors for multitarget tracking algorithms

    NASA Astrophysics Data System (ADS)

    Mahler, Ronald

    2013-05-01

    Single-target tracking filters will typically diverge when their internal measurement or motion models deviate too much from the actual models. Niu, Varshney, Alford, Bubalo, Jones, and Scalzo have proposed a metric-- the normalized innovation squared (NIS)--that recursively estimates the degree of nonlinearity in a single-target tracking problem by detecting filter divergence. This paper establishes the following: (1) NIS can be extended to generalized NIS (GNIS), which addresses more general nonlinearities; (2) NIS and GNIS are actually anomaly detectors, rather than filter-divergence detectors; (3) NIS can be heuristically generalized to a multitarget NIS (MNIS) metric; (4) GNIS also can be rigorously extended to multitarget problems via the multitarget GNIS (MGNIS); (5) explicit, computationally tractable formulas for MGNIS can be derived for use with CPHD and PHD filters; and thus (6) these formulas can be employed as anomaly detectors for use with these filters.

  13. Procedure for simulating divergent-light halos

    NASA Astrophysics Data System (ADS)

    Gislén, Lars

    2003-11-01

    Divergent-light halos are halos produced by light from nearby light sources, like street lamps being scattered by small crystals of ice floating in the air. The use of ``brute-force'' Monte Carlo methods to simulate such halos is extremely inefficient, as most scattered rays will not hit the eye of the observer. I present a new procedure for Monte Carlo simulations of divergent-light halos. This procedure uses rotational symmetries to make a selected sampling of events that greatly improves the computational efficiency of the algorithm. We can typically generate a simulated halo display in minutes using a personal computer, several orders of magnitude more rapid than a simple brute-force method. The algorithm can also optionally generate three-dimensional pictures of divergent-light halo displays.

  14. Diverging Fluctuations of the Lyapunov Exponents

    NASA Astrophysics Data System (ADS)

    Pazó, Diego; López, Juan M.; Politi, Antonio

    2016-07-01

    We show that in generic one-dimensional Hamiltonian lattices the diffusion coefficient of the maximum Lyapunov exponent diverges in the thermodynamic limit. We trace this back to the long-range correlations associated with the evolution of the hydrodynamic modes. In the case of normal heat transport, the divergence is even stronger, leading to the breakdown of the usual single-function Family-Vicsek scaling ansatz. A similar scenario is expected to arise in the evolution of rough interfaces in the presence of suitably correlated background noise.

  15. SWI/SNF chromatin remodeling complexes and cancer.

    PubMed

    Biegel, Jaclyn A; Busse, Tracy M; Weissman, Bernard E

    2014-09-01

    The identification of mutations and deletions in the SMARCB1 locus in chromosome band 22q11.2 in pediatric rhabdoid tumors provided the first evidence for the involvement of the SWI/SNF chromatin remodeling complex in cancer. Over the last 15 years, alterations in more than 20 members of the complex have been reported in a variety of human tumors. These include germline mutations and copy number alterations in SMARCB1, SMARCA4, SMARCE1, and PBRM1 that predispose carriers to both benign and malignant neoplasms. Somatic mutations, structural abnormalities, or epigenetic modifications that lead to reduced or aberrant expression of complex members have now been reported in more than 20% of malignancies, including both solid tumors and hematologic disorders in both children and adults. In this review, we will highlight the role of SMARCB1 in cancer as a paradigm for other tumors with alterations in SWI/SNF complex members and demonstrate the broad spectrum of mutations observed in complex members in different tumor types. PMID:25169151

  16. SWI/SNF Chromatin Remodeling Complexes and Cancer

    PubMed Central

    Biegel, Jaclyn A; Busse, Tracy M.; Weissman, Bernard E.

    2015-01-01

    The identification of mutations and deletions in the SMARCB1 locus in chromosome band 22q11.2 in pediatric rhabdoid tumors provided the first evidence for the involvement of the SWI/SNF chromatin remodeling complex in cancer. Over the last 15 years, alterations in more than 20 members of the complex have been reported in a variety of human tumors. These include germline mutations and copy number alterations in SMARCB1, SMARCA4, SMARCE1, and PBRM1 that predispose carriers to both benign and malignant neoplasms. Somatic mutations, structural abnormalities, or epigenetic modifications that lead to reduced or aberrant expression of complex members have now been reported in more than twenty percent of malignancies, including both solid tumors and hematologic disorders in both children and adults. In this review, we will highlight the role of SMARCB1 in cancer as a paradigm for other tumors with alterations in SWI/SNF complex members and demonstrate the broad spectrum of mutations observed in complex members in different tumor types. PMID:25169151

  17. A mechanostatistical approach to cortical bone remodelling: an equine model.

    PubMed

    Wang, X; Thomas, C D L; Clement, J G; Das, R; Davies, H; Fernandez, J W

    2016-02-01

    In this study, the development of a mechanostatistical model of three-dimensional cortical bone remodelling informed with in vivo equine data is presented. The equine model was chosen as it is highly translational to the human condition due to similar Haversian systems, availability of in vivo bone strain and biomarker data, and furthermore, equine models are recommended by the US Federal Drugs Administration for comparative joint research. The model was derived from micro-computed tomography imaged specimens taken from the equine third metacarpal bone, and the Frost-based 'mechanostat' was informed from both in vivo strain gauges and biomarkers to estimate bone growth rates. The model also described the well-known 'cutting cone' phenomena where Haversian canals tunnel and replace bone. In order to make this model useful in practice, a partial least squares regression (PLSR) surrogate model was derived based on training data from finite element simulations with different loads. The PLSR model was able to predict microstructure and homogenised Young's modulus with errors less than 2.2% and 0.6%, respectively. PMID:25862068

  18. Mechanical factors direct mouse aortic remodelling during early maturation.

    PubMed

    Le, Victoria P; Cheng, Jeffrey K; Kim, Jungsil; Staiculescu, Marius C; Ficker, Shawn W; Sheth, Saahil C; Bhayani, Siddharth A; Mecham, Robert P; Yanagisawa, Hiromi; Wagenseil, Jessica E

    2015-03-01

    Numerous diseases have been linked to genetic mutations that lead to reduced amounts or disorganization of arterial elastic fibres. Previous work has shown that mice with reduced amounts of elastin (Eln+/-) are able to live a normal lifespan through cardiovascular adaptations, including changes in haemodynamic stresses, arterial geometry and arterial wall mechanics. It is not known if the timeline and presence of these adaptations are consistent in other mouse models of elastic fibre disease, such as those caused by the absence of fibulin-5 expression (Fbln5-/-). Adult Fbln5-/- mice have disorganized elastic fibres, decreased arterial compliance and high blood pressure. We examined mechanical behaviour of the aorta in Fbln5-/- mice through early maturation when the elastic fibres are being assembled. We found that the physiologic circumferential stretch, stress and modulus of Fbln5-/- aorta are maintained near wild-type levels. Constitutive modelling suggests that elastin contributions to the total stress are decreased, whereas collagen contributions are increased. Understanding how collagen fibre structure and mechanics compensate for defective elastic fibres to meet the mechanical requirements of the maturing aorta may help to better understand arterial remodelling in human elastinopathies. PMID:25652465

  19. Roles of Fas and Fas ligand during mammary gland remodeling

    PubMed Central

    Song, Joon; Sapi, Eva; Brown, Wendi; Nilsen, Jon; Tartaro, Karrie; Kacinski, Barry M.; Craft, Joseph; Naftolin, Frederick; Mor, Gil

    2000-01-01

    Mammary involution is associated with degeneration of the alveolar structure and programmed cell death of mammary epithelial cells. In this study, we evaluated the expression of Fas and Fas ligand (FasL) in the mammary gland tissue and their possible role in the induction of apoptosis of mammary cells. FasL-positive cells were observed in normal mammary epithelium from pregnant and lactating mice, but not in nonpregnant/virgin mouse mammary tissue. Fas expression was observed in epithelial and stromal cells in nonpregnant mice but was absent during pregnancy. At day 1 after weaning, high levels of both Fas and FasL proteins and caspase 3 were observed and coincided with the appearance of apoptotic cells in ducts and glands. During the same period, no apoptotic cells were found in the Fas-deficient (MRL/lpr) and FasL-deficient (C3H/gld) mice. Increase in Fas and FasL protein was demonstrated in human (MCF10A) and mouse (HC-11) mammary epithelial cells after incubation in hormone-deprived media, before apoptosis was detected. These results suggest that the Fas-FasL interaction plays an important role in the normal remodeling of mammary tissue. Furthermore, this autocrine induction of apoptosis may prevent accumulation of cells with mutations and subsequent neoplastic development. Failure of the Fas/FasL signal could contribute to tumor development. PMID:11086022

  20. Cell Death and Tissue Remodeling in Planarian Regeneration

    PubMed Central

    Pellettieri, Jason; Fitzgerald, Patrick; Watanabe, Shigeki; Mancuso, Joel; Green, Douglas R.; Alvarado, Alejandro Sánchez

    2010-01-01

    Many long-lived organisms, including humans, can regenerate some adult tissues lost to physical injury or disease. Much of the previous research on mechanisms of regeneration has focused on adult stem cells, which give rise to new tissue necessary for the replacement of missing body parts. Here we report that apoptosis of differentiated cells complements stem cell division during regeneration in the planarian Schmidtea mediterranea. Specifically, we developed a whole-mount TUNEL assay that allowed us to document two dramatic increases in the rate of apoptosis following amputation – an intial localized response near the wound site and a subsequent systemic response that varies in magnitude depending on the type of fragment examined. The latter cell death response can be induced in uninjured organs, occurs in the absence of planarian stem cells, and can also be triggered by prolonged starvation. Taken together, our results implicate apoptosis in the restoration of proper anatomical scale and proportion through remodeling of existing tissues. We also report results from initial mechanistic studies of apoptosis in planarians, which revealed that a S. mediterranea homolog of the antiapoptotic gene BCL2 is required for cell survival in adult animals. We propose that apoptosis is a central mechanism working in concert with stem cell division to restore anatomical form and function during metazoan regeneration. PMID:19766622

  1. Extensive Translatome Remodeling during ER Stress Response in Mammalian Cells

    PubMed Central

    Ventoso, Iván; Kochetov, Alex; Montaner, David; Dopazo, Joaquín; Santoyo, Javier

    2012-01-01

    In this work we have described the translatome of two mammalian cell lines, NIH3T3 and Jurkat, by scoring the relative polysome association of ∼10,000 mRNA under normal and ER stress conditions. We have found that translation efficiencies of mRNA correlated poorly with transcript abundance, although a general tendency was observed so that the highest translation efficiencies were found in abundant mRNA. Despite the differences found between mouse (NIH3T3) and human (Jurkat) cells, both cell types share a common translatome composed by ∼800–900 mRNA that encode proteins involved in basic cellular functions. Upon stress, an extensive remodeling in translatomes was observed so that translation of ∼50% of mRNA was inhibited in both cell types, this effect being more dramatic for those mRNA that accounted for most of the cell translation. Interestingly, we found two subsets comprising 1000–1500 mRNA whose translation resisted or was induced by stress. Translation arrest resistant class includes many mRNA encoding aminoacyl tRNA synthetases, ATPases and enzymes involved in DNA replication and stress response such as BiP. This class of mRNA is characterized by high translation rates in both control and stress conditions. Translation inducible class includes mRNA whose translation was relieved after stress, showing a high enrichment in early response transcription factors of bZIP and zinc finger C2H2 classes. Unlike yeast, a general coordination between changes in translation and transcription upon stress (potentiation) was not observed in mammalian cells. Among the different features of mRNA analyzed, we found a relevant association of translation efficiency with the presence of upstream ATG in the 5′UTR and with the length of coding sequence of mRNA, and a looser association with other parameters such as the length and the G+C content of 5′UTR. A model for translatome remodeling during the acute phase of stress response in mammalian cells is proposed. PMID

  2. Appropriate density of PCL nano-fiber sheath promoted muscular remodeling of PGS/PCL grafts in arterial circulation.

    PubMed

    Yang, Xin; Wei, Jianhua; Lei, Delin; Liu, Yanpu; Wu, Wei

    2016-05-01

    Cell-free approach represents a philosophical shift from the prevailing focus on cells in vascular tissue engineering. Porous elastomeric grafts made of poly(glycerol sebacate) (PGS) enforced with polycaprolactone (PCL) nano-fibers degrade rapidly and yield neoarteries nearly free of foreign materials in rat abdominal aorta. However, considering the larger variation of blood pressure and slower host remodeling in human body than in rat, it is important to investigate the in vivo performance of PGS-PCL graft with enhanced mechanical properties, so that optimized arterial grafts could be developed for clinical translation. We acquired increasingly compacted sheath by prolonging the electrospinning period of PCL appropriately, which significantly enforced whole grafts. The rational design of sheath density significantly decreased the risk of dilation, rupture as well as enabling the long-term muscular remodeling. Since 3-12 months after implantation, the PGS grafts with rationally strengthened sheath were remodeled into neoarteries resembled native arteries in the following aspects: high patency rate and even vessel wall thickness; a confluent endothelium and contractile smooth muscle layers; expression of elastin, collagen and glycosaminoglycan; tough and compliant mechanical properties. Although loose sheath may result in rupture of vessel wall, adequate porosity was proved to be essential for sheath structure and directly determined muscular remodeling through M2 macrophage involved constructive remodeling. Therefore, this study confirmed that adequate density of PCL sheath in PGS grafts could initiate stable and high-quality muscular remodeling, which contributes to long-term success in arterial circulation before clinical translation. PMID:26943048

  3. Phenotypic and genetic divergence within a single whitefish form - detecting the potential for future divergence.

    PubMed

    Hirsch, Philipp Emanuel; Eckmann, Reiner; Oppelt, Claus; Behrmann-Godel, Jasminca

    2013-12-01

    Human-induced nutrient input can change the selection regime and lead to the loss of biodiversity. For example, eutrophication caused speciation reversal in polymorphic whitefish populations through a flattening of littoral-pelagic selection gradients. We investigated the current state of phenotypic and genetic diversity in whitefish (Coregonus macrophthalmus) in a newly restored lake whose nutrient load has returned to pre-eutrophication levels and found that whitefish spawning at different depths varied phenotypically and genetically: individuals spawning at shallower depth had fewer gill rakers, faster growth, and a morphology adapted to benthic feeding, and they showed higher degrees of diet specialization than deeper spawning individuals. Microsatellite analyses complemented the phenotype analyses by demonstrating reproductive isolation along different spawning depths. Our results indicate that whitefish still retain or currently regain phenotypic and genetic diversity, which was lost during eutrophication. Hence, the population documented here has a potential for future divergence because natural selection can target phenotypes specialized along re-established littoral-pelagic selection gradients. The biodiversity, however, will have better chances to return if managers acknowledge the evolutionary potential within the local whitefish and adapt fishing and stocking measures. PMID:24478795

  4. Tooth wear and dentoalveolar remodeling are key factors of morphological variation in the Dmanisi mandibles

    PubMed Central

    Margvelashvili, Ann; Zollikofer, Christoph P. E.; Lordkipanidze, David; Peltomäki, Timo; Ponce de León, Marcia S.

    2013-01-01

    The Plio-Pleistocene hominin sample from Dmanisi (Georgia), dated to 1.77 million years ago, is unique in offering detailed insights into patterns of morphological variation within a paleodeme of early Homo. Cranial and dentoalveolar morphologies exhibit a high degree of diversity, but the causes of variation are still relatively unexplored. Here we show that wear-related dentoalveolar remodeling is one of the principal mechanisms causing mandibular shape variation in fossil Homo and in modern human hunter–gatherer populations. We identify a consistent pattern of mandibular morphological alteration, suggesting that dental wear and compensatory remodeling mechanisms remained fairly constant throughout the evolution of the genus Homo. With increasing occlusal and interproximal tooth wear, the teeth continue to erupt, the posterior dentition tends to drift in a mesial direction, and the front teeth become more upright. The resulting changes in dentognathic size and shape are substantial and need to be taken into account in comparative taxonomic analyses of isolated hominin mandibles. Our data further show that excessive tooth wear eventually leads to a breakdown of the normal remodeling mechanisms, resulting in dentognathic pathologies, tooth loss, and loss of masticatory function. Complete breakdown of dentognathic homeostasis, however, is unlikely to have limited the life span of early Homo because this effect was likely mediated by the preparation of soft foods. PMID:24101504

  5. The Roles of SNF2/SWI2 Nucleosome Remodeling Enzymes in Blood Cell Differentiation and Leukemia

    PubMed Central

    Prasad, Punit; Lennartsson, Andreas; Ekwall, Karl

    2015-01-01

    Here, we review the role of sucrose nonfermenting (SNF2) family enzymes in blood cell development. The SNF2 family comprises helicase-like ATPases, originally discovered in yeast, that can remodel chromatin by changing chromatin structure and composition. The human genome encodes 30 different SNF2 enzymes. SNF2 family enzymes are often part of multisubunit chromatin remodeling complexes (CRCs), which consist of noncatalytic/auxiliary subunit along with the ATPase subunit. However, blood cells express a limited set of SNF2 ATPases that are necessary to maintain the pool of hematopoietic stem cells (HSCs) and drive normal blood cell development and differentiation. The composition of CRCs can be altered by the association of specific auxiliary subunits. Several auxiliary CRC subunits have specific functions in hematopoiesis. Aberrant expressions of SNF2 ATPases and/or auxiliary CRC subunit(s) are often observed in hematological malignancies. Using large-scale data from the International Cancer Genome Consortium (ICGC) we observed frequent mutations in genes encoding SNF2 helicase-like enzymes and auxiliary CRC subunits in leukemia. Hence, orderly function of SNF2 family enzymes is crucial for the execution of normal blood cell developmental program, and defects in chromatin remodeling caused by mutations or aberrant expression of these proteins may contribute to leukemogenesis. PMID:25789315

  6. Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice

    PubMed Central

    Morikawa, Yuka; Zhang, Min; Heallen, Todd; Leach, John; Tao, Ge; Xiao, Yang; Bai, Yan; Li, Wei; Willerson, James T.; Martin, James F.

    2015-01-01

    The mammalian heart regenerates poorly, and damage commonly leads to heart failure. Hippo signaling is an evolutionarily conserved kinase cascade that regulates organ size during development and prevents adult mammalian cardiomyocyte regeneration by inhibiting the transcriptional coactivator Yap, which also responds to mechanical signaling in cultured cells to promote cell proliferation. To identify Yap target genes that are activated during cardiomyocyte renewal and regeneration, we performed Yap chromatin immunoprecipitation sequencing (ChIP-Seq) and mRNA expression profiling in Hippo signaling-deficient mouse hearts. We found that Yap directly regulated genes encoding cell cycle progression proteins, as well as genes encoding proteins that promote F-actin polymerization and that link the actin cytoskeleton to the extracellular matrix. Included in the latter group were components of the dystrophin glycoprotein complex (DGC), a large molecular complex that, when defective, results in muscular dystrophy in humans. Cardiomyocytes near scar tissue of injured Hippo signaling-deficient mouse hearts showed cellular protrusions suggestive of cytoskeletal remodeling. The hearts of mdx mutant mice, which lack functional dystrophin and are a model for muscular dystrophy, showed impaired regeneration and cytoskeleton remodeling, but normal cardiomyocyte proliferation after injury. Our data showed that, in addition to genes encoding cell cycle progression proteins, Yap regulated genes that enhance cytoskeletal remodeling Thus, blocking the Hippo pathway input to Yap may tip the balance so that Yap responds to the mechanical changes associated with heart injury to promote repair. PMID:25943351

  7. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation

    SciTech Connect

    Persson, Jenna; Ekwall, Karl

    2010-05-01

    Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that can arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.

  8. Comparative genomics for mycobacterial peptidoglycan remodelling enzymes reveals extensive genetic multiplicity

    PubMed Central

    2014-01-01

    Background Mycobacteria comprise diverse species including non-pathogenic, environmental organisms, animal disease agents and human pathogens, notably Mycobacterium tuberculosis. Considering that the mycobacterial cell wall constitutes a significant barrier to drug penetration, the aim of this study was to conduct a comparative genomics analysis of the repertoire of enzymes involved in peptidoglycan (PG) remodelling to determine the potential of exploiting this area of bacterial metabolism for the discovery of new drug targets. Results We conducted an in silico analysis of 19 mycobacterial species/clinical strains for the presence of genes encoding resuscitation promoting factors (Rpfs), penicillin binding proteins, endopeptidases, L,D-transpeptidases and N-acetylmuramoyl-L-alanine amidases. Our analysis reveals extensive genetic multiplicity, allowing for classification of mycobacterial species into three main categories, primarily based on their rpf gene complement. These include the M. tuberculosis Complex (MTBC), other pathogenic mycobacteria and environmental species. The complement of these genes within the MTBC and other mycobacterial pathogens is highly conserved. In contrast, environmental strains display significant genetic expansion in most of these gene families. Mycobacterium leprae retains more than one functional gene from each enzyme family, underscoring the importance of genetic multiplicity for PG remodelling. Notably, the highest degree of conservation is observed for N-acetylmuramoyl-L-alanine amidases suggesting that these enzymes are essential for growth and survival. Conclusion PG remodelling enzymes in a range of mycobacterial species are associated with extensive genetic multiplicity, suggesting functional diversification within these families of enzymes to allow organisms to adapt. PMID:24661741

  9. IKKβ Is Essential for Adipocyte Survival and Adaptive Adipose Remodeling in Obesity.

    PubMed

    Park, Se-Hyung; Liu, Zun; Sui, Yipeng; Helsley, Robert N; Zhu, Beibei; Powell, David K; Kern, Philip A; Zhou, Changcheng

    2016-06-01

    IκB kinase β (IKKβ), a central coordinator of inflammatory responses through activation of nuclear factor-κB (NF-κB), has been implicated as a critical molecular link between inflammation and metabolic disorders; however, the role of adipocyte IKKβ in obesity and related metabolic disorders remains elusive. Here we report an essential role of IKKβ in the regulation of adipose remodeling and adipocyte survival in diet-induced obesity. Targeted deletion of IKKβ in adipocytes does not affect body weight, food intake, and energy expenditure but results in an exaggerated diabetic phenotype when challenged with a high-fat diet (HFD). IKKβ-deficient mice have multiple histopathologies in visceral adipose tissue, including increased adipocyte death, amplified macrophage infiltration, and defective adaptive adipose remodeling. Deficiency of IKKβ also leads to increased adipose lipolysis, elevated plasma free fatty acid (FFA) levels, and impaired insulin signaling. Mechanistic studies demonstrated that IKKβ is a key adipocyte survival factor and that IKKβ protects murine and human adipocytes from HFD- or FFA-elicited cell death through NF-κB-dependent upregulation of antiapoptotic proteins and NF-κB-independent inactivation of proapoptotic BAD protein. Our findings establish IKKβ as critical for adipocyte survival and adaptive adipose remodeling in obesity. PMID:26993069

  10. [Molecular targets and novel pharmacological options to prevent myocardial hypertrophic remodeling].

    PubMed

    Coppini, Raffaele; Ferrantini, Cecilia; Poggesi, Corrado; Mugelli, Alessandro; Olivotto, Iacopo

    2016-03-01

    Myocardial hypertrophic remodeling is a pathophysiological feature of several cardiac conditions and is the hallmark of hypertrophic cardiomyopathy (HCM), the most common monogenic inherited disease of the heart. In recent years, preclinical and clinical studies investigated the underlying molecular mechanisms and intracellular signaling pathways involved in pathologic cardiomyocyte hypertrophy and highlighted a number of possible molecular targets of therapy aimed at preventing its development. Early prevention of myocardial hypertrophic remodeling is particularly sought after in HCM, as current therapeutic strategies are unable to remove the primary cause of disease, i.e. the disease-causing gene mutation. Studies on transgenic animal models or human myocardial samples from patients with HCM identified intracellular calcium overload as a central mechanism driving pathological hypertrophy. In this review, we analyze recent preclinical and clinical studies on animal models and patients with HCM aimed at preventing or modifying hypertrophic myocardial remodeling. Mounting evidence shows that prevention of pathological hypertrophy is a feasible strategy in HCM and will enter the clinical practice in the near future. Considering the close mechanistic similarities between HCM and secondary hypertrophy, these studies are also relevant for the common forms of cardiac hypertrophy, such as hypertensive or valvular heart disease. PMID:27029877

  11. Cell-Envelope Remodeling as a Determinant of Phenotypic Antibacterial Tolerance in Mycobacterium tuberculosis

    PubMed Central

    2016-01-01

    The mechanisms that lead to phenotypic antibacterial tolerance in bacteria remain poorly understood. We investigate whether changes in NaCl concentration toward physiologically higher values affect antibacterial efficacy against Mycobacterium tuberculosis (Mtb), the causal agent of human tuberculosis. Indeed, multiclass phenotypic antibacterial tolerance is observed during Mtb growth in physiologic saline. This includes changes in sensitivity to ethionamide, ethambutol, d-cycloserine, several aminoglycosides, and quinolones. By employing organism-wide metabolomic and lipidomic approaches combined with phenotypic tests, we identified a time-dependent biphasic adaptive response after exposure of Mtb to physiological levels of NaCl. A first rapid, extensive, and reversible phase was associated with changes in core and amino acid metabolism. In a second phase, Mtb responded with a substantial remodelling of plasma membrane and outer lipid membrane composition. We demonstrate that phenotypic tolerance at physiological concentrations of NaCl is the result of changes in plasma and outer membrane lipid remodeling and not changes in core metabolism. Altogether, these results indicate that physiologic saline-induced antibacterial tolerance is kinetically coupled to cell envelope changes and demonstrate that metabolic changes and growth arrest are not the cause of phenotypic tolerance observed in Mtb exposed to physiologic concentrations of NaCl. Importantly, this work uncovers a role for bacterial cell envelope remodeling in antibacterial tolerance, alongside well-documented allterations in respiration, metabolism, and growth rate. PMID:27231718

  12. Rapid Remodeling of Invadosomes by Gi-coupled Receptors: DISSECTING THE ROLE OF Rho GTPases.

    PubMed

    Kedziora, Katarzyna M; Leyton-Puig, Daniela; Argenzio, Elisabetta; Boumeester, Anja J; van Butselaar, Bram; Yin, Taofei; Wu, Yi I; van Leeuwen, Frank N; Innocenti, Metello; Jalink, Kees; Moolenaar, Wouter H

    2016-02-26

    Invadosomes are actin-rich membrane protrusions that degrade the extracellular matrix to drive tumor cell invasion. Key players in invadosome formation are c-Src and Rho family GTPases. Invadosomes can reassemble into circular rosette-like superstructures, but the underlying signaling mechanisms remain obscure. Here we show that Src-induced invadosomes in human melanoma cells (A375M and MDA-MB-435) undergo rapid remodeling into dynamic extracellular matrix-degrading rosettes by distinct G protein-coupled receptor agonists, notably lysophosphatidic acid (LPA; acting through the LPA1 receptor) and endothelin. Agonist-induced rosette formation is blocked by pertussis toxin, dependent on PI3K activity and accompanied by localized production of phosphatidylinositol 3,4,5-trisphosphate, whereas MAPK and Ca(2+) signaling are dispensable. Using FRET-based biosensors, we show that LPA and endothelin transiently activate Cdc42 through Gi, concurrent with a biphasic decrease in Rac activity and differential effects on RhoA. Cdc42 activity is essential for rosette formation, whereas G12/13-mediated RhoA-ROCK signaling suppresses the remodeling process. Our results reveal a Gi-mediated Cdc42 signaling axis by which G protein-coupled receptors trigger invadosome remodeling, the degree of which is dictated by the Cdc42-RhoA activity balance. PMID:26740622

  13. Protein-bound uremic toxins induce tissue remodeling by targeting the EGF receptor.

    PubMed

    Sun, Chiao-Yin; Young, Guang-Huar; Hsieh, Yu-Ting; Chen, Yau-Hung; Wu, Mai-Szu; Wu, Vin-Cent; Lee, Jia-Hung; Lee, Chin-Chan

    2015-02-01

    Indoxyl sulfate and p-cresol sulfate have been suggested to induce kidney tissue remodeling. This study aimed to clarify the molecular mechanisms underlying this tissue remodeling using cultured human proximal renal tubular cells and half-nephrectomized mice treated with indoxyl sulfate or p-cresol sulfate as study models. Molecular docking results suggested that indoxyl sulfate and p-cresol sulfate dock on a putative interdomain pocket of the extracellular EGF receptor. In vitro spectrophotometric analysis revealed that the presence of a synthetic EGF receptor peptide significantly decreased the spectrophotometric absorption of indoxyl sulfate and p-cresol sulfate. In cultured cells, indoxyl sulfate and p-cresol sulfate activated the EGF receptor and downstream signaling by enhancing receptor dimerization, and increased expression of matrix metalloproteinases 2 and 9 in an EGF receptor-dependent manner. Treatment of mice with indoxyl sulfate or p-cresol sulfate significantly activated the renal EGF receptor and increased the tubulointerstitial expression of matrix metalloproteinases 2 and 9. In conclusion, indoxyl sulfate and p-cresol sulfate may induce kidney tissue remodeling through direct binding and activation of the renal EGF receptor. PMID:25012179

  14. Nerve Growth Factor Regulates Neurolymphatic Remodeling during Corneal Inflammation and Resolution

    PubMed Central

    Fink, Darci M.; Connor, Alicia L.; Kelley, Philip M.; Steele, Maria M.; Hollingsworth, Michael A.; Tempero, Richard M.

    2014-01-01

    The cellular and physiologic mechanisms that regulate the resolution of inflammation remain poorly defined despite their widespread importance in improving inflammatory disease outcomes. We studied the resolution of two cardinal signs of inflammation–pain and swelling–by investigating molecular mechanisms that regulate neural and lymphatic vessel remodeling during the resolution of corneal inflammation. A mouse model of corneal inflammation and wound recovery was developed to study this process in vivo. Administration of nerve growth factor (NGF) increased pain sensation and inhibited neural remodeling and lymphatic vessel regression processes during wound recovery. A complementary in vivo approach, the corneal micropocket assay, revealed that NGF-laden pellets stimulated lymphangiogenesis and increased protein levels of VEGF-C. Adult human dermal lymphatic endothelial cells did not express canonical NGF receptors TrkA and p75NTR or activate downstream MAPK- or Akt-pathway effectors in the presence of NGF, although NGF treatment increased their migratory and tubulogenesis capacities in vitro. Blockade of the VEGF-R2/R3 signaling pathway ablated NGF-mediated lymphangiogenesis in vivo. These findings suggest a hierarchical relationship with NGF functioning upstream of the VEGF family members, particularly VEGF-C, to stimulate lymphangiogenesis. Taken together, these studies show that NGF stimulates lymphangiogenesis and that NGF may act as a pathogenic factor that negatively regulates the normal neural and lymphatic vascular remodeling events that accompany wound recovery. PMID:25383879

  15. Divergent Evolution of CHD3 Proteins Resulted in MOM1 Refining Epigenetic Control in Vascular Plants

    PubMed Central

    Čaikovski, Marian; Yokthongwattana, Chotika; Habu, Yoshiki; Nishimura, Taisuke; Mathieu, Olivier; Paszkowski, Jerzy

    2008-01-01

    Arabidopsis MOM1 is required for the heritable maintenance of transcriptional gene silencing (TGS). Unlike many other silencing factors, depletion of MOM1 evokes transcription at selected loci without major changes in DNA methylation or histone modification. These loci retain unusual, bivalent chromatin properties, intermediate to both euchromatin and heterochromatin. The structure of MOM1 previously suggested an integral nuclear membrane protein with chromatin-remodeling and actin-binding activities. Unexpected results presented here challenge these presumed MOM1 activities and demonstrate that less than 13% of MOM1 sequence is necessary and sufficient for TGS maintenance. This active sequence encompasses a novel Conserved MOM1 Motif 2 (CMM2). The high conservation suggests that CMM2 has been the subject of strong evolutionary pressure. The replacement of Arabidopsis CMM2 by a poplar motif reveals its functional conservation. Interspecies comparison suggests that MOM1 proteins emerged at the origin of vascular plants through neo-functionalization of the ubiquitous eukaryotic CHD3 chromatin remodeling factors. Interestingly, despite the divergent evolution of CHD3 and MOM1, we observed functional cooperation in epigenetic control involving unrelated protein motifs and thus probably diverse mechanisms. PMID:18725928

  16. Postinfarct Left Ventricular Remodelling: A Prevailing Cause of Heart Failure

    PubMed Central

    Galli, Alessio; Lombardi, Federico

    2016-01-01

    Heart failure is a chronic disease with high morbidity and mortality, which represents a growing challenge in medicine. A major risk factor for heart failure with reduced ejection fraction is a history of myocardial infarction. The expansion of a large infarct scar and subsequent regional ventricular dilatation can cause postinfarct remodelling, leading to significant enlargement of the left ventricular chamber. It has a negative prognostic value, because it precedes the clinical manifestations of heart failure. The characteristics of the infarcted myocardium predicting postinfarct remodelling can be studied with cardiac magnetic resonance and experimental imaging modalities such as diffusion tensor imaging can identify the changes in the architecture of myocardial fibers. This review discusses all the aspects related to postinfarct left ventricular remodelling: definition, pathogenesis, diagnosis, consequences, and available therapies, together with experimental interventions that show promising results against postinfarct remodelling and heart failure. PMID:26989555

  17. 65. (Credit JTL) Filter room looking WSW across remodelled New ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. (Credit JTL) Filter room looking WSW across remodelled New York horizontal pressure filters (in foreground). - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  18. Molecular Imaging of Angiogenesis and Vascular Remodeling in Cardiovascular Pathology

    PubMed Central

    Golestani, Reza; Jung, Jae-Joon; Sadeghi, Mehran M.

    2016-01-01

    Angiogenesis and vascular remodeling are involved in a wide array of cardiovascular diseases, from myocardial ischemia and peripheral arterial disease, to atherosclerosis and aortic aneurysm. Molecular imaging techniques to detect and quantify key molecular and cellular players in angiogenesis and vascular remodeling (e.g., vascular endothelial growth factor and its receptors, αvβ3 integrin, and matrix metalloproteinases) can advance vascular biology research and serve as clinical tools for early diagnosis, risk stratification, and selection of patients who would benefit most from therapeutic interventions. To target these key mediators, a number of molecular imaging techniques have been developed and evaluated in animal models of angiogenesis and vascular remodeling. This review of the state of the art molecular imaging of angiogenesis and vascular (and valvular) remodeling, will focus mostly on nuclear imaging techniques (positron emission tomography and single photon emission tomography) that offer high potential for clinical translation. PMID:27275836

  19. Emerging mechanisms of mRNP remodeling regulation

    PubMed Central

    Chen, Chyi-Ying A.

    2015-01-01

    The assembly and remodeling of the components of messenger ribonucleoprotein particles (mRNPs) are important in determining the fate of an mRNA. A combination of biochemical and cell biology research, recently complemented by genome-wide high-throughput approaches, has led to significant progress on understanding the formation, dynamics and function of mRNPs. These studies also advanced the challenging process of identifying the evolving constituents of individual mRNPs at various stages during an mRNA’s lifetime. While research on mRNP remodeling in general has been gaining momentum, there has been relatively little attention paid to the regulatory aspect of mRNP remodeling. Here, we discuss the results of some new studies and potential mechanisms for regulation of mRNP remodeling. PMID:24923990

  20. Remodeled second floor with stairs and stacks. This was formerly ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Remodeled second floor with stairs and stacks. This was formerly the upper part of the original two story reading room. View to southwest. - San Bernardino Valley College, Library, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  1. Restricting Fermentative Potential by Proteome Remodeling

    PubMed Central

    Clair, Gérémy; Armengaud, Jean; Duport, Catherine

    2012-01-01

    Pathogenesis hinges on successful colonization of the gastrointestinal (GI) tract by pathogenic facultative anaerobes. The GI tract is a carbohydrate-limited environment with varying oxygen availability and oxidoreduction potential (ORP). How pathogenic bacteria are able to adapt and grow in these varying conditions remains a key fundamental question. Here, we designed a system biology-inspired approach to pinpoint the key regulators allowing Bacillus cereus to survive and grow efficiently under low ORP anoxic conditions mimicking those encountered in the intestinal lumen. We assessed the proteome components using high throughput nanoLC-MS/MS techniques, reconstituted the main metabolic circuits, constructed ΔohrA and ΔohrR mutants, and analyzed the impacts of ohrA and ohrR disruptions by a novel round of shotgun proteomics. Our study revealed that OhrR and OhrA are crucial to the successful adaptation of B. cereus to the GI tract environment. Specifically, we showed that B. cereus restricts its fermentative growth under low ORP anaerobiosis and sustains efficient aerobic respiratory metabolism, motility, and stress response via OhrRA-dependent proteome remodeling. Finally, our results introduced a new adaptive strategy where facultative anaerobes prefer to restrict their fermentative potential for a long term benefit. PMID:22232490

  2. Chromatin remodeling effects on enhancer activity.

    PubMed

    García-González, Estela; Escamilla-Del-Arenal, Martín; Arzate-Mejía, Rodrigo; Recillas-Targa, Félix

    2016-08-01

    During organism development, a diversity of cell types emerges with disparate, yet stable profiles of gene expression with distinctive cellular functions. In addition to gene promoters, the genome contains enhancer regulatory sequences, which are implicated in cellular specialization by facilitating cell-type and tissue-specific gene expression. Enhancers are DNA binding elements characterized by highly sophisticated and various mechanisms of action allowing for the specific interaction of general and tissue-specific transcription factors (TFs). However, eukaryotic organisms package their genetic material into chromatin, generating a physical barrier for TFs to interact with their cognate sequences. The ability of TFs to bind DNA regulatory elements is also modulated by changes in the chromatin structure, including histone modifications, histone variants, ATP-dependent chromatin remodeling, and the methylation status of DNA. Furthermore, it has recently been revealed that enhancer sequences are also transcribed into a set of enhancer RNAs with regulatory potential. These interdependent processes act in the context of a complex network of chromatin interactions, which together contributes to a renewed vision of how gene activation is coordinated in a cell-type-dependent manner. In this review, we describe the interplay between genetic and epigenetic aspects associated with enhancers and discuss their possible roles on enhancer function. PMID:27026300

  3. 25-Hydroxycholesterol promotes fibroblast-mediated tissue remodeling through NF-κB dependent pathway

    SciTech Connect

    Ichikawa, Tomohiro; Sugiura, Hisatoshi; Koarai, Akira; Kikuchi, Takashi; Hiramatsu, Masataka; Kawabata, Hiroki; Akamatsu, Keiichiro; Hirano, Tsunahiko; Nakanishi, Masanori; Matsunaga, Kazuto; Minakata, Yoshiaki; Ichinose, Masakazu

    2013-05-01

    Abnormal structural alterations termed remodeling, including fibrosis and alveolar wall destruction, are important features of the pathophysiology of chronic airway diseases such as chronic obstructive pulmonary disease (COPD) and asthma. 25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase (CH25H) in macrophages and is reported to be involved in the formation of arteriosclerosis. We previously demonstrated that the expression of CH25H and production of 25HC were increased in the lungs of COPD. However, the role of 25-HC in lung tissue remodeling is unknown. In this study, we investigated the effect of 25-HC on fibroblast-mediated tissue remodeling using human fetal lung fibroblasts (HFL-1) in vitro. 25-HC significantly augmented α-smooth muscle actin (SMA) (P<0.001) and collagen I (P<0.001) expression in HFL-1. 25-HC also significantly enhanced the release and activation of matrix metallaoproteinase (MMP)-2 (P<0.001) and MMP-9 (P<0.001) without any significant effect on the production of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. 25-HC stimulated transforming growth factor (TGF)-β{sub 1} production (P<0.01) and a neutralizing anti-TGF-β antibody restored these 25-HC-augmented pro-fibrotic responses. 25-HC significantly promoted the translocation of nuclear factor (NF)-κB p65 into the nuclei (P<0.01), but not phospholylated-c-jun, a complex of activator protein-1. Pharmacological inhibition of NF-κB restored the 25-HC-augmented pro-fibrotic responses and TGF-β{sub 1} release. These results suggest that 25-HC could contribute to fibroblast-mediated lung tissue remodeling by promoting myofibroblast differentiation and the excessive release of extracellular matrix protein and MMPs via an NF-κB-TGF-β dependent pathway.

  4. Rod photoreceptors protect from cone degeneration-induced retinal remodeling and restore visual responses in zebrafish

    PubMed Central

    Saade, Carole J.; Alvarez-Delfin, Karen; Fadool, James M.

    2013-01-01

    Humans are largely dependent upon cone-mediated vision. However, death or dysfunction of rods, the predominant photoreceptor subtype, results in secondary loss of cones, remodeling of retinal circuitry and blindness. The changes in circuitry may contribute to the vision deficit and undermine attempts at restoring sight. We exploit zebrafish larvae as a genetic model to specifically characterize changes associated with photoreceptor degenerations in a cone-dominated retina. Photoreceptors form synapses with two types of second order neurons, bipolar cells and horizontal cells. Using cell-specific reporter gene expression and immunolabeling for postsynaptic glutamate receptors, significant remodeling is observed following cone degeneration in the pde6cw59 larval retina but not rod degeneration in the Xops:mCFPq13 line. In adults, rods and cones are present in approximately equal numbers, and in pde6cw59 mutants glutamate receptor expression and synaptic structures in the outer plexiform layer are preserved, and visual responses are gained in these once-blind fish. We propose that the abundance of rods in the adult protects the retina from cone degeneration-induced remodeling. We test this hypothesis by genetically manipulating the number of rods in larvae. We show that an increased number and uniform distribution of rods in lor/tbx2bp22bbtl or six7 morpholino-injected larvae protect from pde6cw59-induced secondary changes. The observations that remodeling is a common consequence of photoreceptor death across species, and that in zebrafish a small number of surviving photoreceptors afford protection from degeneration-induced changes provides a model for systematic analysis of factors that slow or even prevent the secondary deteriorations associated with neural degenerative disease. PMID:23365220

  5. Metabolic reprogramming and inflammation act in concert to control vascular remodeling in hypoxic pulmonary hypertension.

    PubMed

    Stenmark, Kurt R; Tuder, Rubin M; El Kasmi, Karim C

    2015-11-15

    Pulmonary hypertension (PH) is a complex, multifactorial syndrome that remains poorly understood despite decades of research. PH is characterized by profound pulmonary artery (PA) remodeling that includes significant fibro-proliferative and inflammatory changes of the PA adventitia. In line with the emerging concept that PH shares key features with cancer, recent work centers on the idea that PH results from a multistep process driven by reprogramming of gene-expression patterns that govern changes in cell metabolism, inflammation, and proliferation. Data demonstrate that in addition to PA endothelial cells and smooth muscle cells, adventitial fibroblasts from animals with experimental hypoxic PH and from humans with PH (hereafter, termed PH-Fibs) exhibit proinflammatory activation, increased proliferation, and apoptosis resistance, all in the context of metabolic reprogramming to aerobic glycolysis. PH-Fibs can also recruit, retain, and activate naïve macrophages (Mϕ) toward a proinflammatory/proremodeling phenotype through secretion of chemokines, cytokines, and glycolytic metabolites, among which IL-6 and lactate play key roles. Furthermore, these fibroblast-activated Mϕ (hereafter, termed FAMϕ) exhibit aerobic glycolysis together with high expression of arginase 1, Vegfa, and I1lb, all of which require hypoxia-inducible factor 1α and STAT3 signaling. Strikingly, in situ, the adventitial Mϕ phenotype in the remodeled PA closely resembles the Mϕ phenotype induced by fibroblasts in vitro (FAMϕ), suggesting that FAMϕ crosstalk involving metabolic and inflammatory signals is a critical, pathogenetic component of vascular remodeling. This review discusses metabolic and inflammatory changes in fibroblasts and Mϕ in PH with the goal of raising ideas about new interventions to abrogate remodeling in hypoxic forms of PH. PMID:25930027

  6. Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment.

    PubMed

    Zhang, Li-Fan

    2013-12-01

    Evidence from recent ground and spaceflight studies with animals and humans supports the notion that microgravity-induced vascular remodeling contributes to postflight orthostatic intolerance. In the vascular beds of lower body, such as in splanchnic and lower limb circulation, resistance vessels would undergo hypotrophy and decrement in myogenic tone and vasoreactivity. Thus, despite the concurrent sympathetic activation, the increase in peripheral vascular resistance would still be compromised while astronauts were re-exposed to Earth's 1-G gravity, since ~75 % of the total vascular conductance lies below the heart. On the contrary, cerebral arteries would undergo hypertrophy and vasoreactivity enhancement due to adaptation to cerebral hypertension, which protects the down-stream microcirculation in the brain during spaceflight. However, the enhanced vasoreactivity of cerebral vessels might also aggravate postflight orthostatic intolerance, particularly after long-duration spaceflight. Animal studies have indicated that the underlying mechanisms may involve ion-channel remodeling in vascular smooth muscle cells and vascular NO-NOS and local renin-angiotensin system (L-RAS). Furthermore, vascular remodeling and associated ion-channel and L-RAS changes can be prevented by a countermeasure of daily short-duration restoring to normal standing posture. These findings substantiate in general the hypothesis that redistribution of transmural pressure along the arterial vasculature due to the removal of gravity might be the primary factor that initiates vascular remodeling in microgravity, and daily short-duration restoring its normal distribution by intermittent artificial gravity (IAG) can effectively prevent the vascular adaptation and hence postflight cardiovascular deconditioning. IAG might also be beneficial in maintaining vascular health during future long-duration space flight. PMID:23525669

  7. Remodeling of the bone material containing microcracks: A theoretical analysis

    NASA Astrophysics Data System (ADS)

    Ramtani, S.; Zidi, M.

    1999-12-01

    The question is, what happens when the bone loses its ability for load-driven adaptation, when damage is no longer repaired as it seems to be the case for bone loss associated with age, medication or disease? In this study, we tempt to show how damage can influence the remodeling process. A thermodynamic theoretical framework is therefore provided as a basis for a consistent formulation of bone remodeling involving a chemical reaction and mass transfer between two constituents in presence of microcracks.

  8. Modifying Curriculum through Divergent Learning Across Disciplines.

    ERIC Educational Resources Information Center

    Bradley, K. Sue; Bradley, Jack

    This paper demonstrates a variety of activities designed to enrich the learning environment for all children through the use of divergent thinking activities. The first activity involves structural indexing, whereby students brainstorm words found in a reading selection and construct sentences using a bingo formation, with the concentration on…

  9. Genomic divergence during speciation: causes and consequences

    PubMed Central

    Nosil, Patrik; Feder, Jeffrey L.

    2012-01-01

    Speciation is a fundamental process responsible for the diversity of life. Progress has been made in detecting individual ‘speciation genes’ that cause reproductive isolation. In contrast, until recently, less attention has been given to genome-wide patterns of divergence during speciation. Thus, major questions remain concerning how individual speciation genes are arrayed within the genome, and how this affects speciation. This theme issue is dedicated to exploring this genomic perspective of speciation. Given recent sequencing and computational advances that now allow genomic analyses in most organisms, the goal is to help move the field towards a more integrative approach. This issue draws upon empirical studies in plants and animals, and theoretical work, to review and further document patterns of genomic divergence. In turn, these studies begin to disentangle the role that different processes, such as natural selection, gene flow and recombination rate, play in generating observed patterns. These factors are considered in the context of how genomes diverge as speciation unfolds, from beginning to end. The collective results point to how experimental work is now required, in conjunction with theory and sequencing studies, to move the field from descriptive studies of patterns of divergence towards a predictive framework that tackles the causes and consequences of genome-wide patterns. PMID:22201163

  10. Geographically multifarious phenotypic divergence during speciation

    PubMed Central

    Gompert, Zachariah; Lucas, Lauren K; Nice, Chris C; Fordyce, James A; Alex Buerkle, C; Forister, Matthew L

    2013-01-01

    Speciation is an important evolutionary process that occurs when barriers to gene flow evolve between previously panmictic populations. Although individual barriers to gene flow have been studied extensively, we know relatively little regarding the number of barriers that isolate species or whether these barriers are polymorphic within species. Herein, we use a series of field and lab experiments to quantify phenotypic divergence and identify possible barriers to gene flow between the butterfly species Lycaeides idas and Lycaeides melissa. We found evidence that L. idas and L. melissa have diverged along multiple phenotypic axes. Specifically, we identified major phenotypic differences in female oviposition preference and diapause initiation, and more moderate divergence in mate preference. Multiple phenotypic differences might operate as barriers to gene flow, as shown by correlations between genetic distance and phenotypic divergence and patterns of phenotypic variation in admixed Lycaeides populations. Although some of these traits differed primarily between species (e.g., diapause initiation), several traits also varied among conspecific populations (e.g., male mate preference and oviposition preference). PMID:23532669

  11. Controversial Issues Confronting Special Education: Divergent Perspectives.

    ERIC Educational Resources Information Center

    Stainback, William; Stainback, Susan

    This book of 24 papers presents divergent views on 12 issues in special education: organizational strategies, classroom service delivery approaches, maximizing the talents and gifts of students, classification and labeling, assessment, instructional strategies, classroom management, collaboration/consultation, research practices, higher education,…

  12. Mitochondrial Replacement Techniques: Divergence in Global Policy.

    PubMed

    Schandera, Johanna; Mackey, Tim K

    2016-07-01

    In 2015, the UK became the first country permitting the clinical application of mitochondrial replacement techniques (MRT). Here, we explore how MRT have led to diverging international policy. In response, we recommend focused regulatory efforts coupled with United Nations (UN) leadership to build international consensus on the future of MRT. PMID:27206380

  13. Scholarly Groups' Choices Yield Diverging Fortunes

    ERIC Educational Resources Information Center

    Berrett, Dan

    2012-01-01

    Scholarly groups have long served as hubs of academic life and the embodiments of their disciplines, but they face uncertain and divergent futures. Some disciplinary associations are struggling to remain relevant and financially viable as demographic and technological changes threaten their traditional sources of revenue. The core of their…

  14. The role of the epithelium in airway remodeling in asthma.

    PubMed

    Davies, Donna E

    2009-12-01

    The bronchial epithelium is the barrier to the external environment and plays a vital role in protection of the internal milieu of the lung. It functions within the epithelial-mesenchymal trophic unit to control the local microenvironment and help maintain tissue homeostasis. However, in asthma, chronic perturbation of these homeostatic mechanisms leads to alterations in the structure of the airways, termed remodeling. Damage to the epithelium is now recognized to play a key role in driving airway remodeling. We have postulated that epithelial susceptibility to environmental stress and injury together with impaired repair responses results in generation of signals that act on the underlying mesenchyme to propagate and amplify inflammatory and remodeling responses in the submucosa. Many types of challenges to the epithelium, including pathogens, allergens, environmental pollutants, cigarette smoke, and even mechanical forces, can elicit production of mediators by the epithelium, which can be translated into remodeling responses by the mesenchyme. Several important mediators of remodeling have been identified, most notably transforming growth factor-beta, which is released from damaged/repairing epithelium or in response to inflammatory mediators, such as IL-13. The cross talk between the epithelium and the underlying mesenchyme to drive remodeling responses is considered in the context of subepithelial fibrosis and potential pathogenetic mechanisms linked to the asthma susceptibility gene, a disintegrin and metalloprotease (ADAM)33. PMID:20008875

  15. Clinical Implications and Pathogenesis of Esophageal Remodeling in Eosinophilic Esophagitis

    PubMed Central

    Hirano, Ikuo; Aceves, Seema S.

    2014-01-01

    In eosinophilic esophagitis (EoE), remodeling changes are manifest histologically in both the epithelium as well as in the subepithelium where lamina propria (LP) fibrosis, expansion of the muscularis propria and increased vascularity occur. The major clinical symptoms and complications of EoE are largely consequences of esophageal remodeling. Important mediators of the process include IL-5, IL-13, TGFβ1, mast cells, fibroblasts and eosinophils. Methods to detect remodeling effects include upper endoscopy, histopathology, barium esophagram, endoscopic ultrasonography, esophageal manometry, and functional luminal imaging. These modalities provide evidence of organ dysfunction that include focal and diffuse esophageal strictures, expansion of the mucosa and subepithelium, esophageal motor abnormalities and reduced esophageal distensibility. Complications of food impaction and perforations of the esophageal wall have been associated with reduction in esophageal caliber and increased esophageal mural stiffness. The therapeutic benefits of topical corticosteroids and elimination diet therapy in resolving mucosal eosinophilic inflammation of the esophagus are evident. Available therapies, however, have demonstrated variable ability to reverse existing remodeling changes of the esophagus. Systemic therapies that include novel, targeted biologic agents have the potential of addressing subepithelial remodeling. Esophageal dilation remains a useful, adjunctive therapeutic maneuver in symptomatic adults with esophageal stricture. As novel treatments emerge, it is essential that therapeutic endpoints account for the fundamental contributions of esophageal remodeling to overall disease activity. PMID:24813517

  16. Chromatin remodeling by curcumin alters endogenous aryl hydrocarbon receptor signaling.

    PubMed

    Mohammadi-Bardbori, Afshin; Akbarizadeh, Amin Reza; Delju, Fatemeh; Rannug, Agneta

    2016-05-25

    The aim of this study was to gain more information about the mechanisms that regulate expression of the aryl hydrocarbon receptor (AHR) target gene CYP1A1. Human hepatoma cells (HepG2 and Huh7) and human immortalized keratinocytes (HaCaT) were treated with different concentrations of the dietary polyphenolic compound curcumin (CUR) alone or in combination with the natural AHR agonist 6-formylindolo[3,2-b]carbazole (FICZ). In an earlier study, we described that CUR can activate the AHR indirectly by inhibiting metabolic clearance of FICZ. Here, we measured cell viability, activation of AHR signaling, oxidative stress and histone modifying activities in response to CUR at concentrations ranging from 0.1 to 50 μM. We observed apparent non-linear responses on cell viability and activation of AHR signaling. The CYP1A1 expression and the CYP1A1 enzyme activity in the presence of CUR reflected the histone acetylation efficiency observed in nuclear extracts. At the lowest concentration, CUR significantly decreased histone deacetylase activity and increased the FICZ-induced CYP1A1 activity. In contrast, at the highest concentration, CUR increased the formation of reactive oxygen species, significantly inhibited histone acetylation, and temporally decreased FICZ-induced CYP1A1 activity. The results suggest that CUR can both increase and decrease the accessibility of DNA and thereby influence transcriptional responses to the ligand-activated AHR. This suggestion was supported by the fact that chromatin remodeling treatments with trichostatin A, p300, or 5-aza-dC increased CYP1A1 transcription. We conclude that the AHR-dependent transcriptional efficiency is modified by factors that influence the cellular redox status and the chromatin structure. PMID:27041069

  17. Genomic divergence in a ring species complex.

    PubMed

    Alcaide, Miguel; Scordato, Elizabeth S C; Price, Trevor D; Irwin, Darren E

    2014-07-01

    Ring species provide particularly clear demonstrations of how one species can gradually evolve into two, but are rare in nature. In the greenish warbler (Phylloscopus trochiloides) species complex, a ring of populations wraps around Tibet. Two reproductively isolated forms co-exist in central Siberia, with a gradient of genetic and phenotypic characteristics through the southern chain of populations connecting them. Previous genetic evidence has proven inconclusive, however, regarding whether species divergence took place in the face of continuous gene flow and whether hybridization between the terminal forms of the ring ever occurred. Here we use genome-wide analyses to show that, although spatial patterns of genetic variation are currently mostly as expected of a ring species, historical breaks in gene flow have existed at more than one location around the ring, and the two Siberian forms have occasionally interbred. Substantial periods of geographical isolation occurred not only in the north but also in the western Himalayas, where there is now an extensive hybrid zone between genetically divergent forms. Limited asymmetric introgression has occurred directly between the Siberian forms, although it has not caused a blending of those forms, suggesting selection against introgressed genes in the novel genetic background. Levels of reproductive isolation and genetic introgression are consistent with levels of phenotypic divergence around the ring, with phenotypic similarity and extensive interbreeding across the southwestern contact zone and strong phenotypic divergence and nearly complete reproductive isolation across the northern contact zone. These results cast doubt on the hypothesis that the greenish warbler should be viewed as a rare example of speciation by distance, but demonstrate that the greenish warbler displays a continuum from slightly divergent neighbouring populations to almost fully reproductively isolated species. PMID:24870239

  18. The orphan nuclear receptor Nur77 inhibits low shear stress-induced carotid artery remodeling in mice

    PubMed Central

    YU, YING; CAI, ZHAOHUA; CUI, MINGLI; NIE, PENG; SUN, ZHE; SUN, SHIQUN; CHU, SHICHUN; WANG, XIAOLEI; HU, LIUHUA; YI, JING; SHEN, LINGHONG; HE, BEN

    2015-01-01

    Shear stress, particularly low and oscillatory shear stress, plays a critical pathophysiological role in vascular remodeling-related cardiovascular diseases. Growing evidence suggests that the orphan nuclear receptor Nur77 [also known as TR3 or nuclear receptor subfamily 4, group A, member 1 (NR4A1)] is expressed in diseased human vascular tissue and plays an important role in vascular physiology and pathology. In the present study, we used a mouse model of flow-dependent remodeling by partial ligation of the left common carotid artery (LCCA) to define the exact role of Nur77 in vascular remodeling induced by low shear stress. Following vascular remodeling, Nur77 was highly expressed in neointimal vascular smooth muscle cells (VSMCs) in the ligated carotid arteries. The reactive oxygen species (ROS) levels were elevated in the remodeled arteries in vivo and in primary rat VSMCs in vitro following stimulation with platelet-derived growth factor (PDGF). Further in vitro experiments revealed that Nur77 expression was rapidly increased in the VSMCs following stimulation with PDGF and H2O2, whereas treatment with N-acetyl cysteine (NAC, a ROS scavenger) reversed the increase in the protein level of Nur77 induced by H2O2. Moreover, Nur77 overexpression markedly inhibited the proliferation and migration of VSMCs, induced by PDGF. Finally, to determine the in vivo role of Nur77 in low shear stress-induced vascular remodeling, wild-type (WT) and Nur77-deficient mice were subjected to partial ligation of the LCCA. Four weeks following surgery, in the LCCAs of the Nur77-deficient mice, a significant increase in the intima-media area and carotid intima-media thickness was noted, as well as more severe elastin disruption and collagen deposition compared to the WT mice. Immunofluorescence staining revealed an increase in VSMC proliferation [determined by the expression of proliferating cell nuclear antigen (PCNA)] and matrix metalloproteinase 9 (MMP-9) production in the Nur77

  19. Obstruction-induced pulmonary vascular remodeling.

    PubMed

    Chow, Ming-Jay; Zou, Yu; He, Huamei; McGowan, Francis X; Zurakowski, David; Zhang, Yanhang

    2011-11-01

    Pulmonary obstruction occurs in many common forms of congenital heart disease. In this study, pulmonary artery (PA) banding is used as a model for pulmonary stenosis. Significant remodeling of the vascular bed occurs as a result of a prolonged narrowing of the PAs, and here we quantify the biophysical and molecular changes proximal and distal to the obstruction. Main and branch PAs are harvested from banded and sham rabbits and their mechanical properties are assessed using a biaxial tensile tester. Measurements defined as initial and stiff slopes are taken, assuming a linear region at the start and end of the J-shaped stress-strain curves, along with a transitional knee point. Collagen, elastin assays, Movat's pentachrome staining, and Doppler protocols are used to quantify biochemical, structural, and physiological differences. The banded main PAs have significantly greater initial slopes while banded branch PAs have lower initial slopes; however, this change in mechanical behavior cannot be explained by the assay results as the elastin content in both main and branch PAs is not significantly different. The stiff slopes of the banded main PAs are higher, which is attributed to the significantly greater amounts of insoluble collagen. Shifting of the knee points reveals a decreased toe region in the main PAs but an opposite trend in the branch PAs. The histology results show a loss of integrity of the media, increase in ground substance, and dispersion of collagen in the banded tissue samples. This indicates other structural changes could have led to the mechanical differences in banded and normal tissue. PMID:22168741

  20. PTH signaling mediates perilacunar remodeling during exercise.

    PubMed

    Gardinier, Joseph D; Al-Omaishi, Salam; Morris, Michael D; Kohn, David H

    2016-01-01

    Mechanical loading and release of endogenous parathyroid hormone (PTH) during exercise facilitate the adaptation of bone. However, it remains unclear how exercise and PTH influence the composition of bone and how exercise and PTH-mediated compositional changes influence the mechanical properties of bone. Thus, the primary purpose of this study was to establish compositional changes within osteocytes' perilacunar region of cortical bone following exercise, and evaluate the influence of endogenous PTH signaling on this perilacunar adaptation. Raman spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) were used to evaluate tissue composition surrounding individual lacuna within the tibia of 19week old male mice exposed to treadmill running for 3weeks. As a result of exercise, tissue within the perilacunar region (within 0-5μm of the lacuna wall) had a lower mineral-to-matrix ratio (MMR) compared to sedentary controls. In addition, exercise also increased the carbonate-to-phosphate ratio (CPR) across both perilacunar and non-perilacunar regions (5-10μm and 10-15μm from the lacuna walls). Tibial post-yield work had a significant negative correlation with perilacunar MMR. Inhibition of PTH activity with PTH(7-34) demonstrated that perilacunar remodeling during exercise was dependent on the cellular response to endogenous PTH. The osteocytes' response to endogenous PTH during exercise was characterized by a significant reduction in SOST expression and significant increase in FGF-23 expression. The potential reduction in phosphate levels due to FGF-23 expression may explain the increase in carbonate substitution. Overall, this is the first study to demonstrate that adaptation in tissue composition is localized around individual osteocytes, may contribute to the changes in whole bone mechanics during exercise, and that PTH signaling during exercise contributes to these adaptations. PMID:26924474

  1. Remodeling of alveolar septa after murine pneumonectomy.

    PubMed

    Ysasi, Alexandra B; Wagner, Willi L; Bennett, Robert D; Ackermann, Maximilian; Valenzuela, Cristian D; Belle, Janeil; Tsuda, Akira; Konerding, Moritz A; Mentzer, Steven J

    2015-06-15

    In most mammals, removing one lung (pneumonectomy) results in the compensatory growth of the remaining lung. In mice, stereological observations have demonstrated an increase in the number of mature alveoli; however, anatomic evidence of the early phases of alveolar growth has remained elusive. To identify changes in the lung microstructure associated with neoalveolarization, we used tissue histology, electron microscopy, and synchrotron imaging to examine the configuration of the alveolar duct after murine pneumonectomy. Systematic histological examination of the cardiac lobe demonstrated no change in the relative frequency of dihedral angle components (Ends, Bends, and Junctions) (P > 0.05), but a significant decrease in the length of a subset of septal ends ("E"). Septal retraction, observed in 20-30% of the alveolar ducts, was maximal on day 3 after pneumonectomy (P < 0.01) and returned to baseline levels within 3 wk. Consistent with septal retraction, the postpneumonectomy alveolar duct diameter ratio (Dout:Din) was significantly lower 3 days after pneumonectomy compared to all controls except for the detergent-treated lung (P < 0.001). To identify clumped capillaries predicted by septal retraction, vascular casting, analyzed by both scanning electron microscopy and synchrotron imaging, demonstrated matted capillaries that were most prominent 3 days after pneumonectomy. Numerical simulations suggested that septal retraction could reflect increased surface tension within the alveolar duct, resulting in a new equilibrium at a higher total energy and lower surface area. The spatial and temporal association of these microstructural changes with postpneumonectomy lung growth suggests that these changes represent an early phase of alveolar duct remodeling. PMID:26078396

  2. Mechanisms of Cardiovascular Remodeling in Hyperhomocysteinemia

    PubMed Central

    Steed, Mesia M.

    2011-01-01

    Abstract In hypertension, an increase in arterial wall thickness and loss of elasticity over time result in an increase in pulse wave velocity, a direct measure of arterial stiffness. This change is reflected in gradual fragmentation and loss of elastin fibers and accumulation of stiffer collagen fibers in the media that occurs independently of atherosclerosis. Similar results are seen with an elevated level of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), which increases vascular thickness, elastin fragmentation, and arterial blood pressure. Studies from our laboratory have demonstrated a decrease in elasticity and an increase in pulse wave velocity in HHcy cystathionine β synthase heterozygote knockout (CBS−/+) mice. Nitric oxide (NO) is a potential regulator of matrix metalloproteinase (MMP) activity in MMP-NO-TIMP (tissue inhibitor of metalloproteinase) inhibitory tertiary complex. We have demonstrated the contribustion of the NO synthase (NOS) isoforms, endothelial NOS and inducible NOS, in the activation of latent MMP. The differential production of NO contributes to oxidative stress and increased oxidative/nitrative activation of MMP resulting in vascular remodeling in response to HHcy. The contribution of the NOS isoforms, endothelial and inducible in the collagen/elastin switch, has been demonstrated. We have showed that an increase in inducible NOS activity is a key contributor to HHcy-mediated collagen/elastin switch and resulting decline in aortic compliance. In addition, increased levels of Hcy compete and suppress the γ-amino butyric acid-receptor, N-methyl-d-aspartame-receptor, and peroxisome proliferator-activated receptor. The HHcy causes oxidative stress by generating nitrotyrosine, activating the latent MMPs and decreasing the endothelial NO concentration. The HHcy causes elastinolysis and decrease elastic complicance of the vessel wall. The treatment with γ-amino butyric acid-receptor agonist (muscimol), N

  3. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling.

    PubMed

    Rock, Jason R; Randell, Scott H; Hogan, Brigid L M

    2010-01-01

    The small airways of the human lung undergo pathological changes in pulmonary disorders, such as chronic obstructive pulmonary disease (COPD), asthma, bronchiolitis obliterans and cystic fibrosis. These clinical problems impose huge personal and societal healthcare burdens. The changes, termed 'pathological airway remodeling', affect the epithelium, the underlying mesenchyme and the reciprocal trophic interactions that occur between these tissues. Most of the normal human airway is lined by a pseudostratified epithelium of ciliated cells, secretory cells and 6-30% basal cells, the proportion of which varies along the proximal-distal axis. Epithelial abnormalities range from hypoplasia (failure to differentiate) to basal- and goblet-cell hyperplasia, squamous- and goblet-cell metaplasia, dysplasia and malignant transformation. Mesenchymal alterations include thickening of the basal lamina, smooth muscle hyperplasia, fibrosis and inflammatory cell accumulation. Paradoxically, given the prevalence and importance of airway remodeling in lung disease, its etiology is poorly understood. This is due, in part, to a lack of basic knowledge of the mechanisms that regulate the differentiation, maintenance and repair of the airway epithelium. Specifically, little is known about the proliferation and differentiation of basal cells, a multipotent stem cell population of the pseudostratified airway epithelium. This Perspective summarizes what we know, and what we need to know, about airway basal cells to evaluate their contributions to normal and abnormal airway remodeling. We contend that exploiting well-described model systems using both human airway epithelial cells and the pseudostratified epithelium of the genetically tractable mouse trachea will enable crucial discoveries regarding the pathogenesis of airway disease. PMID:20699479

  4. Symbolic interactionism and critical perspective: divergent or synergistic?

    PubMed

    Burbank, Patricia M; Martins, Diane C

    2010-01-01

    Throughout their history, symbolic interactionism and critical perspective have been viewed as divergent theoretical perspectives with different philosophical underpinnings. A review of their historical and philosophical origins reveals both points of divergence and areas of convergence. Their underlying philosophies of science and views of human freedom are different as is their level of focus with symbolic interactionism having a micro perspective and critical perspective using a macro perspective. This micro/macro difference is reflected in the divergence of their major concepts, goals and basic tenets. While their underlying philosophies are different, however, they are not necessarily contradictory and areas of convergence may include the concepts of reference groups and looking glass self within symbolic interactionism and ideological hegemony within critical perspective. By using a pragmatic approach and combining symbolic interactionism and critical perspectives, both micro and macro levels come into focus and strategies for change across individual and societal levels can be developed and applied. Application of both symbolic interactionism and critical perspective to nursing research and scholarship offers exciting new opportunities for theory development and research methodologies. In nursing education, these two perspectives can give students added insight into patients' and families' problems at the micro level while, at the same time, giving them a lens to see and tools to apply to problems at the macro level in health care. In nursing practice, a combined symbolic interactionism/critical perspective approach assists nurses to give high-quality care at the individual level while also working at the macro level to address the manufacturers of illness. New research questions emerge from this combination of perspectives with new possibilities for theory development, a transformation in nursing education, and the potential for new practice strategies that

  5. Nested Levels of Adaptive Divergence: The Genetic Basis of Craniofacial Divergence and Ecological Sexual Dimorphism

    PubMed Central

    Parsons, Kevin J.; Wang, Jason; Anderson, Graeme; Albertson, R. Craig

    2015-01-01

    Exemplary systems for adaptive divergence are often characterized by their large degrees of phenotypic variation. This variation represents the outcome of generations of diversifying selection. However, adaptive radiations can also contain a hierarchy of differentiation nested within them where species display only subtle phenotypic differences that still have substantial effects on ecology, function, and ultimately fitness. Sexual dimorphisms are also common in species displaying adaptive divergence and can be the result of differential selection between sexes that produce ecological differences between sexes. Understanding the genetic basis of subtle variation (between certain species or sexes) is therefore important for understanding the process of adaptive divergence. Using cichlids from the dramatic adaptive radiation of Lake Malawi, we focus on understanding the genetic basis of two aspects of relatively subtle phenotypic variation. This included a morphometric comparison of the patterns of craniofacial divergence between two ecologically similar species in relation to the larger adaptive radiation of Malawi, and male–female morphological divergence between their F2 hybrids. We then genetically map craniofacial traits within the context of sex and locate several regions of the genome that contribute to variation in craniofacial shape that is relevant to sexual dimorphism within species and subtle divergence between closely related species, and possibly to craniofacial divergence in the Malawi radiation as a whole. To enhance our search for candidate genes we take advantage of population genomic data and a genetic map that is anchored to the cichlid genome to determine which genes within our QTL regions are associated with SNPs that are alternatively fixed between species. This study provides a holistic understanding of the genetic underpinnings of adaptive divergence in craniofacial shape. PMID:26038365

  6. Involvement of Toll-like receptor 2 and epidermal growth factor receptor signaling in epithelial expression of airway remodeling factors.

    PubMed

    Homma, Tetsuya; Kato, Atsushi; Sakashita, Masafumi; Norton, James E; Suh, Lydia A; Carter, Roderick G; Schleimer, Robert P

    2015-04-01

    Staphylococcus aureus (SA) colonization and infection is common, and may promote allergic or inflammatory airway diseases, such as asthma, cystic fibrosis, and chronic rhinosinusitis by interacting with airway epithelial cells. Airway epithelial cells not only comprise a physical barrier, but also play key roles in immune, inflammatory, repair, and remodeling responses upon encounters with pathogens. To elucidate the impact of SA on epithelial-mediated remodeling of allergic airways, we tested the hypothesis that SA can enhance the remodeling process. Normal human bronchial epithelial (NHBE) cells were stimulated with heat-killed SA (HKSA) or transforming growth factor (TGF) α. Cell extracts were collected to measure mRNA (real-time RT-PCR) and signaling molecules (Western blot); supernatants were collected to measure protein (ELISA) after 24 hours of stimulation. Epidermal growth factor receptor (EGFR) signaling inhibition experiments were performed using a specific EGFR kinase inhibitor (AG1478) and TGF-α was blocked with an anti-TGF-α antibody. HKSA induced both mRNA and protein for TGF-α and matrix metalloproteinase (MMP) 1 from NHBE cells by a Toll-like receptor 2-dependent mechanism. Recombinant human TGF-α also induced mRNA and protein for MMP-1 from NHBE cells; anti-TGF-α antibody inhibited HKSA-induced MMP-1, suggesting that endogenous TGF-α mediates the MMP-1 induction by HKSA. HKSA-induced MMP-1 expression was suppressed when a specific EGFR kinase inhibitor was added, suggesting that EGFR signaling was mediating the HKSA-induced MMP-1 release. Exposure or colonization by SA in the airway may enhance the remodeling of tissue through a TGF-α-dependent induction of MMP-1 expression, and may thereby promote remodeling in airway diseases in which SA is implicated, such as asthma and chronic rhinosinusitis. PMID:25180535

  7. Involvement of Toll-Like Receptor 2 and Epidermal Growth Factor Receptor Signaling in Epithelial Expression of Airway Remodeling Factors

    PubMed Central

    Kato, Atsushi; Sakashita, Masafumi; Norton, James E.; Suh, Lydia A.; Carter, Roderick G.; Schleimer, Robert P.

    2015-01-01

    Staphylococcus aureus (SA) colonization and infection is common, and may promote allergic or inflammatory airway diseases, such as asthma, cystic fibrosis, and chronic rhinosinusitis by interacting with airway epithelial cells. Airway epithelial cells not only comprise a physical barrier, but also play key roles in immune, inflammatory, repair, and remodeling responses upon encounters with pathogens. To elucidate the impact of SA on epithelial-mediated remodeling of allergic airways, we tested the hypothesis that SA can enhance the remodeling process. Normal human bronchial epithelial (NHBE) cells were stimulated with heat-killed SA (HKSA) or transforming growth factor (TGF) α. Cell extracts were collected to measure mRNA (real-time RT-PCR) and signaling molecules (Western blot); supernatants were collected to measure protein (ELISA) after 24 hours of stimulation. Epidermal growth factor receptor (EGFR) signaling inhibition experiments were performed using a specific EGFR kinase inhibitor (AG1478) and TGF-α was blocked with an anti–TGF-α antibody. HKSA induced both mRNA and protein for TGF-α and matrix metalloproteinase (MMP) 1 from NHBE cells by a Toll-like receptor 2–dependent mechanism. Recombinant human TGF-α also induced mRNA and protein for MMP-1 from NHBE cells; anti–TGF-α antibody inhibited HKSA-induced MMP-1, suggesting that endogenous TGF-α mediates the MMP-1 induction by HKSA. HKSA-induced MMP-1 expression was suppressed when a specific EGFR kinase inhibitor was added, suggesting that EGFR signaling was mediating the HKSA-induced MMP-1 release. Exposure or colonization by SA in the airway may enhance the remodeling of tissue through a TGF-α–dependent induction of MMP-1 expression, and may thereby promote remodeling in airway diseases in which SA is implicated, such as asthma and chronic rhinosinusitis. PMID:25180535

  8. Physiological responses to divergent selection for phytate phosphorus bioavailability in a randombred chicken population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An investigation was conducted to study insulin-like growth factor (IGF) I, IGFII, insulin, glucagon, recombinant human leptin, triidothyronine (T3) and thyroxine (T4) levels in a randombred chicken population divergently selected for phosphorus bioavailability (PBA). There were also differences in ...

  9. Temporal Regulation of Lipin Activity Diverged to Account for Differences in Mitotic Programs

    PubMed Central

    Makarova, Maria; Gu, Ying; Chen, Jun-Song; Beckley, Janel Renée; Gould, Kathleen Louise; Oliferenko, Snezhana

    2016-01-01

    Summary Eukaryotes remodel the nucleus during mitosis using a variety of mechanisms that differ in the timing and the extent of nuclear envelope (NE) breakdown. Here, we probe the principles enabling this functional diversity by exploiting the natural divergence in NE management strategies between the related fission yeasts Schizosaccharomyces pombe and Schizosaccharomyces japonicus [1, 2, 3]. We show that inactivation of Ned1, the phosphatidic acid phosphatase of the lipin family, by CDK phosphorylation is both necessary and sufficient to promote NE expansion required for “closed” mitosis in S. pombe. In contrast, Ned1 is not regulated during division in S. japonicus, thus limiting membrane availability and necessitating NE breakage. Interspecies gene swaps result in phenotypically normal divisions with the S. japonicus lipin acquiring an S. pombe-like mitotic phosphorylation pattern. Our results provide experimental evidence for the mitotic regulation of phosphatidic acid flux and suggest that the regulatory networks governing lipin activity diverged in evolution to give rise to strikingly dissimilar mitotic programs. PMID:26774782

  10. Redundancy of IL-1 Isoform Signaling and Its Implications for Arterial Remodeling

    PubMed Central

    Beltrami-Moreira, Marina; Vromman, Amélie; Sukhova, Galina K.; Folco, Eduardo J.; Libby, Peter

    2016-01-01

    Aims Mice deficient in IL-1 receptor 1 (hence unresponsive to both IL-1 isoforms α and β) have impaired expansive arterial remodeling due to diminished expression of matrix-degrading enzymes, especially MMP-3. Emergence of IL-1 as a target in cardiovascular disease prompted the investigation of the redundancy of IL-1α and IL-1β in the induction of MMP-3 and other matrix-remodeling enzymes in human cells. Methods and Results Human primary vascular smooth muscle cells (VSMCs) and carotid endarterectomy specimens were stimulated with equimolar concentrations of IL-1α or IL-1β and analyzed protease expression by immunoblot and ELISA. Either IL-1α or IL-1β increased the expression of pro-MMP-3 in VSMCs, facilitated VSMC migration through Matrigel, and induced MMP-3 production in specimens from atheromatous plaques. VSMCs also secreted MMP-1 and Cathepsin S (CatS) upon stimulation with IL-1α or IL-1β. IL-1 isoforms similarly increased MMP-1 and MMP-9 expression in carotid endarterectomy specimens. We examined the expression of MMP-3 and IL-1 isoforms by immunostaining of carotid atheromata, calculated the % positive areas, and tested associations by linear regression. MMP-3 colocalized with IL-1 isoforms in atheromata. MMP-3+ area in plaques positively associated with IL-1α+ (R2 = 0.61, P<0.001) and with IL-1β + areas (R2 = 0.68, P<0.001). MMP-3+ area within atheroma also associated with CD68+ area, but not with α-smooth muscle actin area. Conclusions Either IL-1α or IL-1β can induce the expression of enzymes implicated in remodeling of the arterial extracellular matrix, and facilitate human VSMC migration in vitro. Human atheromata contain both IL-1 isoforms in association with immunoreactive MMP-3. This redundancy of IL-1 isoforms suggests that selective blocking of one IL-1 isoform should not impair expansive arterial remodeling, a finding with important clinical implications for therapeutic targeting of IL-1 in atherosclerosis. PMID:27032103

  11. [PHF10 isoforms are phosphorylated in the PBAF mammalian chromatin remodeling complex].

    PubMed

    Brechalov, A V; Valieva, M E; Georgieva, S G; Soshnikova, N V

    2016-01-01

    Chromatin remodeling complex PBAF(SWI/SNF) alters the structure of chromatin and controls gene expression. PHF10 is a specific subunit of PBAF complex and is expressed as four isoforms in mammalian cells. We demonstrated that all isoforms are expressed in various human cell types of different histological origins. All four isoforms are extensively phosphorylated and their phosphorylation level is depended on the cell type. Phosphorylation of PHF10 isoforms occurs while they are incorporated as a subunit of the PBAF complex, and therefore phosphorylation of PHF10 isoforms may play an essential role in regulation of PBAF complex's function and mechanism of action. PMID:27239853

  12. The role of microRNAs in arterial remodelling.

    PubMed

    Nazari-Jahantigh, M; Wei, Y; Schober, A

    2012-04-01

    Adaptive alterations of the vessel wall architecture, called vascular remodelling, can be found in arterial hypertension, during the formation of aneurysms, in restenosis after vascular interventions, and in atherosclerosis. MicroRNAs (miR) critically affect the main cellular players in arterial remodelling and may either promote or inhibit the structural changes in the vessel wall. They regulate the phenotype of smooth muscle cells (SMCs) and control the inflammatory response in endothelial cells and macrophages. In SMCs, different sets of miRs induce either a synthetic or contractile phenotype, respectively. The conversion into a synthetic SMC phenotype is a crucial event in arterial remodelling. Therefore, reprogramming of the SMC phenotype by miR targeting can modulate the remodelling process. Furthermore, the effects of stimuli that induce remodelling, such as shear stress, angiotensin II, oxidised low-density lipoprotein, or apoptosis, on endothelial cells are mediated by miRs. The endothelial cell-specific miR-126, for example, is transferred in microvesicles from apoptotic endothelial cells and plays a protective role in atherogenesis. The inflammatory response of the innate immune system, especially through macrophages, promotes arterial remodelling. miR-155 induces the expression of inflammatory cytokines, whereas miR-146a and miR-147 are involved in the resolution phase of inflammation. However, in vivo data on the role of miRs in vascular remodelling are still scarce, which are required to test the therapeutic potential of the available, highly effective miR inhibitors. PMID:22371089

  13. Klotho and phosphate are modulators of pathologic uremic cardiac remodeling.

    PubMed

    Hu, Ming Chang; Shi, Mingjun; Cho, Han Jun; Adams-Huet, Beverley; Paek, Jean; Hill, Kathy; Shelton, John; Amaral, Ansel P; Faul, Christian; Taniguchi, Masatomo; Wolf, Myles; Brand, Markus; Takahashi, Masaya; Kuro-O, Makoto; Hill, Joseph A; Moe, Orson W

    2015-06-01

    Cardiac dysfunction in CKD is characterized by aberrant cardiac remodeling with hypertrophy and fibrosis. CKD is a state of severe systemic Klotho deficiency, and restoration of Klotho attenuates vascular calcification associated with CKD. We examined the role of Klotho in cardiac remodeling in models of Klotho deficiency-genetic Klotho hypomorphism, high dietary phosphate intake, aging, and CKD. Klotho-deficient mice exhibited cardiac dysfunction and hypertrophy before 12 weeks of age followed by fibrosis. In wild-type mice, the induction of CKD led to severe cardiovascular changes not observed in control mice. Notably, non-CKD mice fed a high-phosphate diet had lower Klotho levels and greatly accelerated cardiac remodeling associated with normal aging compared with those on a normal diet. Chronic elevation of circulating Klotho because of global overexpression alleviated the cardiac remodeling induced by either high-phosphate diet or CKD. Regardless of the cause of Klotho deficiency, the extent of cardiac hypertrophy and fibrosis correlated tightly with plasma phosphate concentration and inversely with plasma Klotho concentration, even when adjusted for all other covariables. High-fibroblast growth factor-23 concentration positively correlated with cardiac remodeling in a Klotho-deficient state but not a Klotho-replete state. In vitro, Klotho inhibited TGF-β1-, angiotensin II-, or high phosphate-induced fibrosis and abolished TGF-β1- or angiotensin II-induced hypertrophy of cardiomyocytes. In conclusion, Klotho deficiency is a novel intermediate mediator of pathologic cardiac remodeling, and fibroblast growth factor-23 may contribute to cardiac remodeling in concert with Klotho deficiency in CKD, phosphotoxicity, and aging. PMID:25326585

  14. Receptor Activator of Nuclear Factor κB Ligand and Osteoprotegerin Regulation of Bone Remodeling in Health and Disease

    PubMed Central

    Kearns, Ann E.; Khosla, Sundeep; Kostenuik, Paul J.

    2008-01-01

    Osteoclasts and osteoblasts dictate skeletal mass, structure, and strength via their respective roles in resorbing and forming bone. Bone remodeling is a spatially coordinated lifelong process whereby old bone is removed by osteoclasts and replaced by bone-forming osteoblasts. The refilling of resorption cavities is incomplete in many pathological states, which leads to a net loss of bone mass with each remodeling cycle. Postmenopausal osteoporosis and other conditions are associated with an increased rate of bone remodeling, which leads to accelerated bone loss and increased risk of fracture. Bone resorption is dependent on a cytokine known as RANKL (receptor activator of nuclear factor κB ligand), a TNF family member that is essential for osteoclast formation, activity, and survival in normal and pathological states of bone remodeling. The catabolic effects of RANKL are prevented by osteoprotegerin (OPG), a TNF receptor family member that binds RANKL and thereby prevents activation of its single cognate receptor called RANK. Osteoclast activity is likely to depend, at least in part, on the relative balance of RANKL and OPG. Studies in numerous animal models of bone disease show that RANKL inhibition leads to marked suppression of bone resorption and increases in cortical and cancellous bone volume, density, and strength. RANKL inhibitors also prevent focal bone loss that occurs in animal models of rheumatoid arthritis and bone metastasis. Clinical trials are exploring the effects of denosumab, a fully human anti-RANKL antibody, on bone loss in patients with osteoporosis, bone metastasis, myeloma, and rheumatoid arthritis. PMID:18057140

  15. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro

    PubMed Central

    Cross, Valerie L.; Zheng, Ying; Choi, Nak Won; Verbridge, Scott S.; Sutermaster, Bryan A.; Bonassar, Lawrence J.; Fischbach, Claudia; Stroock, Abraham D.

    2010-01-01

    Type I collagen is a favorable substrate for cell adhesion and growth and is remodelable by many tissue cells; these characteristics make it an attractive material for the study of dynamic cellular processes. Low mass fraction (1.0–3.0 mg/ml), hydrated collagen matrices used for three-dimensional cell culture permit cellular movement and remodeling, but their microstructure and mechanics fail to mimic characteristics of many extracellular matrices in vivo and limit the definition of fine-scale geometrical features (< 1 mm) within scaffolds. In this study, we worked with hydrated type I collagen at mass fractions between 3.0 and 20 mg/ml to define the range of densities over which the matrices support both microfabrication and cellular remodeling. We present pore and fiber dimensions based on confocal microscopy and longitudinal modulus and hydraulic permeability based on confined compression. We demonstrate faithful reproduction of simple pores of 50 µm-diameter over the entire range and formation of functional microfluidic networks for mass fractions greater than 10.0 mg/ml. We present quantitative characterization of the rate and extent of cellular remodelability using human umbilical vein endothelial cells. Finally, we present a co-culture with tumor cells and discuss the implications of integrating microfluidic control within scaffolds as a tool to study spatial and temporal signaling during tumor angiogenesis and vascularization of tissue-engineered constructs. PMID:20727585

  16. Regulator of G protein signalling 14 attenuates cardiac remodelling through the MEK-ERK1/2 signalling pathway.

    PubMed

    Li, Ying; Tang, Xiao-Hong; Li, Xiao-Hui; Dai, Hai-Jiang; Miao, Ru-Jia; Cai, Jing-Jing; Huang, Zhi-Jun; Chen, Alex F; Xing, Xiao-Wei; Lu, Yao; Yuan, Hong

    2016-07-01

    In the past 10 years, several publications have highlighted the role of the regulator of G protein signalling (RGS) family in multiple diseases, including cardiovascular diseases. As one of the multifunctional family members, RGS14 is involved in various biological processes, such as synaptic plasticity, cell division, and phagocytosis. However, the role of RGS14 in cardiovascular diseases remains unclear. In the present study, we used a genetic approach to examine the role of RGS14 in pathological cardiac remodelling in vivo and in vitro. We observed that RGS14 was down-regulated in human failing hearts, murine hypertrophic hearts, and isolated hypertrophic cardiomyocytes. Moreover, the extent of aortic banding-induced cardiac hypertrophy and fibrosis was exacerbated in RGS14 knockout mice, whereas RGS14 transgenic mice exhibited a significantly alleviated response to pressure overload. Furthermore, research of the underlying mechanism revealed that the RGS14-dependent rescue of cardiac remodelling was attributed to the abrogation of mitogen-activated protein kinase (MEK)-extracellular signal-regulated protein kinase (ERK) 1/2 signalling. The results showed that constitutive activation of MEK1 nullified the cardiac protection in RGS14 transgenic mice, and inhibition of MEK-ERK1/2 by U0126 reversed RGS14 deletion-related hypertrophic aggravation. These results demonstrated that RGS14 attenuated the development of cardiac remodelling through MEK-ERK1/2 signalling. RGS14 exhibited great potential as a target for the treatment of pathological cardiac remodelling. PMID:27298141

  17. Although Divergent in Residues of the Peptide-Binding Site, Conserved Chimpanzee Patr-AL and Polymorphic Human HLA-A*02 have Overlapping Peptide-Binding Repertoires 1

    PubMed Central

    Gleimer, Michael; Wahl, Angela R.; Hickman, Heather D.; Abi-Rached, Laurent; Norman, Paul J.; Guethlein, Lisbeth A.; Hammond, John A.; Draghi, Monia; Adams, Erin J.; Juo, Sean; Jalili, Roxana; Gharizadeh, Baback; Ronaghi, Mostafa; Garcia, K. Christopher; Hildebrand, William H.; Parham, Peter

    2011-01-01

    Patr-AL is an expressed, non-polymorphic MHC class I gene carried by ∼50% of chimpanzee MHC haplotypes. Comparing Patr-AL+ and Patr-AL- haplotypes showed Patr-AL defines a unique 125kb genomic block flanked by blocks containing classical Patr-A and pseudogene Patr-H. Orthologous to Patr-AL are polymorphic orangutan Popy-A and the 5′ part of human pseudogene HLA-Y, carried by ∼10% of HLA haplotypes. Thus the AL gene alternatively evolved in these closely related species to become classical, non-classical and non-functional. Although differing by 30 amino acid substitutions in the peptide-binding α1 and α2 domains, Patr-AL and HLA-A*0201 bind overlapping repertoires of peptides; the overlap being comparable to that between the A*0201 and A*0207 subtypes differing by one substitution. Patr-AL thus has the A02 supertypic peptide-binding specificity. Patr-AL and HLA-A*0201 have similar three-dimensional structures, binding peptides in similar conformation. Although comparable in size and shape, the B and F specificity pockets of Patr-AL and HLA-A*0201 differ in both their constituent residues and contacts with peptide anchors. Uniquely shared by Patr-AL, HLA-A*0201, and other members of the A02 supertype are the absence of serine at position 9 in the B pocket and the presence of tyrosine at position 116 in the F pocket. Distinguishing Patr-AL from HLA-A*02 is an unusually electropositive upper face on the α2 helix. Stimulating PBMC from Patr-AL- chimpanzees with B cells expressing Patr-AL, produced potent alloreactive CD8 T cells with specificity for Patr-AL and no crossreactivity toward other MHC class I, including HLA-A*02. PBMC from Patr-AL+ chimpanzees are tolerant of Patr-AL. PMID:21209280