Science.gov

Sample records for divertor pump cryogenic

  1. Electric field divertor plasma pump

    DOEpatents

    Schaffer, M.J.

    1994-10-04

    An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.

  2. Electric field divertor plasma pump

    DOEpatents

    Schaffer, Michael J.

    1994-01-01

    An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.

  3. A compact cryogenic pump

    NASA Astrophysics Data System (ADS)

    Li, Gang; Caldwell, Shane; Clark, Jason A.; Gulick, Sidney; Hecht, Adam; Lascar, Daniel D.; Levand, Tony; Morgan, Graeme; Orford, Rodney; Savard, Guy; Sharma, Kumar S.; Van Schelt, Jonathon

    2016-04-01

    A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2-10 L/min, into a head of 0.5-3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50-100 days without maintenance.

  4. A Magnetically Coupled Cryogenic Pump

    NASA Technical Reports Server (NTRS)

    Hatfield, Walter; Jumper, Kevin

    2011-01-01

    Historically, cryogenic pumps used for propellant loading at Kennedy Space Center (KSC) and other NASA Centers have a bellows mechanical seal and oil bath ball bearings, both of which can be problematic and require high maintenance. Because of the extremely low temperatures, the mechanical seals are made of special materials and design, have wearing surfaces, are subject to improper installation, and commonly are a potential leak path. The ball bearings are non-precision bearings [ABEC-1 (Annular Bearing Engineering Council)] and are lubricated using LOX compatible oil. This oil is compatible with the propellant to prevent explosions, but does not have good lubricating properties. Due to the poor lubricity, it has been a goal of the KSC cryogenics community for the last 15 years to develop a magnetically coupled pump, which would eliminate these two potential issues. A number of projects have been attempted, but none of the pumps was a success. An off-the-shelf magnetically coupled pump (typically used with corrosive fluids) was procured that has been used for hypergolic service at KSC. The KSC Cryogenics Test Lab (CTL) operated the pump in cryogenic LN2 as received to determine a baseline for modifications required. The pump bushing, bearings, and thrust rings failed, and the pump would not flow liquid (this is a typical failure mode that was experienced in the previous attempts). Using the knowledge gained over the years designing and building cryogenic pumps, the CTL determined alternative materials that would be suitable for use under the pump design conditions. The CTL procured alternative materials for the bearings (bronze, aluminum bronze, and glass filled PTFE) and machined new bearing bushings, sleeves, and thrust rings. The designed clearances among the bushings, sleeves, thrust rings, case, and case cover were altered once again using experience gained from previous cryogenic pump rebuilds and designs. The alternative material parts were assembled into

  5. Test of a cryogenic helium pump

    SciTech Connect

    Lue, J.W.; Miller, J.R.; Walstrom, P.L.; Herz, W.

    1981-01-01

    The design of a cryogenic helium pump for circulating liquid helium in a magnet and the design of a test loop for measuring the pump performance in terms of mass flow vs pump head at various pump speeds are described. A commercial cryogenic helium pump was tested successfully. Despite flaws in the demountable connections, the piston pump itself has performed satisfactorily. A helium pump of this type is suitable for the use of flowing supercritical helium through Internally Cooled Superconductor (ICS) magnets. It has pumped supercritical helium up to 7.5 atm with a pump head up to 2.8 atm. The maximum mass flow rate obtained was about 16 g/s. Performance of the pump was degraded at lower pumping speeds. (LCL)

  6. Test of a cryogenic helium pump

    NASA Astrophysics Data System (ADS)

    Lue, J. W.; Miller, J. R.; Walstrom, P. L.; Herz, W.

    1981-02-01

    The design of a cryogenic helium pump for circulating liquid helium in a magnet and the design of a test loop for measuring the pump performance in terms of mass flow vs pump head at various pump speeds are described. A commercial cryogenic helium pump was tested successfully. Despite flaws in the demountable connections, the piston pump itself has performed satisfactorily. A helium pump of this type is suitable for the use of flowing supercritical helium through internally cooled superconductor magnets. It has pumped supercritical helium up to 7.5 atm with a pump head up to 2.8 atm. The maximum mass flow rate obtained was about 16 g/s. Performance of the pump was degraded at lower pumping speeds.

  7. Using Composite Materials in a Cryogenic Pump

    NASA Technical Reports Server (NTRS)

    Batton, William D.; Dillard, James E.; Rottmund, Matthew E.; Tupper, Michael L.; Mallick, Kaushik; Francis, William H.

    2008-01-01

    Several modifications have been made to the design and operation of an extended-shaft cryogenic pump to increase the efficiency of pumping. In general, the efficiency of pumping a cryogenic fluid is limited by thermal losses which is itself caused by pump inefficiency and leakage of heat through the pump structure. A typical cryogenic pump includes a drive shaft and two main concentric static components (an outer pressure containment tube and an intermediate static support tube) made from stainless steel. The modifications made include replacement of the stainless-steel drive shaft and the concentric static stainless-steel components with components made of a glass/epoxy composite. The leakage of heat is thus reduced because the thermal conductivity of the composite is an order of magnitude below that of stainless steel. Taking advantage of the margin afforded by the decrease in thermal conductivity, the drive shaft could be shortened to increase its effective stiffness, thereby increasing the rotordynamic critical speeds, thereby further making it possible to operate the pump at a higher speed to increase pumping efficiency. During the modification effort, an analysis revealed that substitution of the shorter glass/epoxy shaft for the longer stainless-steel shaft was not, by itself, sufficient to satisfy the rotordynamic requirements at the desired increased speed. Hence, it became necessary to increase the stiffness of the composite shaft. This stiffening was accomplished by means of a carbon-fiber-composite overwrap along most of the length of the shaft. Concomitantly with the modifications described thus far, it was necessary to provide for joining the composite-material components with metallic components required by different aspects of the pump design. An adhesive material formulated specially to bond the composite and metal components was chosen as a means to satisfy these requirements.

  8. Miniature thermo-electric cooled cryogenic pump

    DOEpatents

    Keville, Robert F.

    1997-01-01

    A miniature thermo-electric cooled cryogenic pump for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a .DELTA.T=100.degree. C. characteristic. The pump operates under vacuum pressures of 5.times.10.sup.-4 Torr to ultra high vacuum (UHV) conditions in the range of 1.times.10.sup.-7 to 3.times.10.sup.-9 Torr and will typically remove partial pressure, 2.times.10.sup.-7 Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5.degree., and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof.

  9. Miniature thermo-electric cooled cryogenic pump

    DOEpatents

    Keville, R.F.

    1997-11-18

    A miniature thermo-electric cooled cryogenic pump is described for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a {Delta}T=100 C characteristic. The pump operates under vacuum pressures of 5{times}10{sup {minus}4} Torr to ultra high vacuum (UHV) conditions in the range of 1{times}10{sup {minus}7} to 3{times}10{sup {minus}9} Torr and will typically remove partial pressure, 2{times}10{sup {minus}7} Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5{degree}, and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof. 2 figs.

  10. Elimination of Thermal Acoustic Oscillations in Cryogenic Pumps

    NASA Astrophysics Data System (ADS)

    Miller, T. J.; Gu, Y.

    2006-04-01

    Thermal acoustic oscillations (TAOs) were recently observed and eliminated in two vacuum-housing cryogenic pumps. This paper documents the results of research performed to identify the critical parameters that affect thermal acoustic oscillations in a vacuum-housing cryogenic pump. Techniques for simplifying this complex oscillation system were developed so that an existing mathematical model for a straight tube with uniform radius could be applied. Based on the simplified model, criteria were defined. These criteria provide design guidelines to prevent thermal acoustic oscillations from occurring inside vacuum-housing cryogenic pumps.

  11. Transmission of electrons inside the cryogenic pumps of ITER injector

    NASA Astrophysics Data System (ADS)

    Veltri, P.; Sartori, E.

    2016-02-01

    Large cryogenic pumps are installed in the vessel of large neutral beam injectors (NBIs) used to heat the plasma in nuclear fusion experiments. The operation of such pumps can be compromised by the presence of stray secondary electrons that are generated along the beam path. In this paper, we present a numerical model to analyze the propagation of the electrons inside the pump. The aim of the study is to quantify the power load on the active pump elements, via evaluation of the transmission probabilities across the domain of the pump. These are obtained starting from large datasets of particle trajectories, obtained by numerical means. The transmission probability of the electrons across the domain is calculated for the NBI of the ITER and for its prototype Megavolt ITer Injector and Concept Advancement (MITICA) and the results are discussed.

  12. Transmission of electrons inside the cryogenic pumps of ITER injector.

    PubMed

    Veltri, P; Sartori, E

    2016-02-01

    Large cryogenic pumps are installed in the vessel of large neutral beam injectors (NBIs) used to heat the plasma in nuclear fusion experiments. The operation of such pumps can be compromised by the presence of stray secondary electrons that are generated along the beam path. In this paper, we present a numerical model to analyze the propagation of the electrons inside the pump. The aim of the study is to quantify the power load on the active pump elements, via evaluation of the transmission probabilities across the domain of the pump. These are obtained starting from large datasets of particle trajectories, obtained by numerical means. The transmission probability of the electrons across the domain is calculated for the NBI of the ITER and for its prototype Megavolt ITer Injector and Concept Advancement (MITICA) and the results are discussed. PMID:26932041

  13. Comprehensive Testing of a Neon Cryogenic Capillary Pumped Loop

    NASA Technical Reports Server (NTRS)

    Kobel, Mark C.; Ku, Jentung; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This paper describes a comprehensive test program of a cryogenic capillary pumped loop (CCPL) using neon as the working fluid in the temperature range between 30 K and 40 K. The test article was originally designed to be used with nitrogen in the 70 K to 100 K temperature range, and was refurbished for testing with neon. Tests performed included start up from a supercritical state, power cycle, sink temperature cycle, heat transport limit, low power limit, reservoir set point change and long duration operation. The neon CCPL has demonstrated excellent performance under various conditions.

  14. The DIII-D Radiative Divertor Project: Status and plans

    SciTech Connect

    Smith, J.P.; Baxi, C.B.; Bozek, A.S.

    1996-10-01

    New divertor hardware is being designed and fabricated for the Radiative Divertor modification of the DIII-D tokamak. The installation of the hardware has been separated into two phases, the first phase starting in October of 1996 and the second and final phase, in 1998. The phased approach enables the continuation of the divertor characterization research in the lower divertor while providing pumping for density control in high triangularity, single- or double-null advanced tokamak discharges. When completed, the Radiative Divertor Project hardware will provide pumping at all four strike points of a double-null, high triangularity discharge and provide baffling of the neutral particles from transport back to the core plasma. By puffing neutral gas into the divertor region, a reduction in the heat flux on the target plates will be be demonstrated without a large rise in core density. This reduction in heat flux is accomplished by dispersing the power with radiation in the divertor region. Experiments and modeling have formed the basis for the new design. The capability of the DIII-D cryogenic system is being upgraded as part of this project. The increased capability of the cryogenic system will allow delivery of liquid helium and nitrogen to three new cryopumps. Physics studies on the effects of slot width and length can be accomplished easily with the design of the Radiative Divertor. The slot width can be varied by installing graphite tiles of different geometry. The change in slot length, the distance from the X-point to the target plate, requires relocating the structure vertically and can be completed in about 6-8 weeks. Radiative Divertor diagnostics are being designed to provide comprehensive measurements for diagnosing the divertor. Required diagnostic modifications will be minimal for Phase 1, but extensive for Phase 2 installation. These Phase 2 diagnostics will be required to fully diagnose the high triangularity discharges in the divertor slots.

  15. The cryogenic diffusion pump; An advanced design for fusion reactor primary pumping and fuel processing

    SciTech Connect

    Hemmerich, J.L. )

    1992-03-01

    This paper reports on a re-evaluation of the characteristics of the intermediate flow regime with simultaneous thermal accommodation has shown the full potential of the Cryogenic Diffusion Pump for Fusion Reactor applications. A device with a characteristic diameter of 1m will have a pumping speed of 150m{sup 3}s{sup {minus}1} for Deuterium at an inlet pressure of 2 {times} 10{sup 2}Pa (Reactor Burn phased) and 400m{sup 3} s{sup {minus}1} at an inlet pressure of 0.1 Pa (Reactor Dwell phase). Simultaneously, it separates impurities, Hydrogen isotopes and Helium and compresses the Helium. The Helium compression ratio (already proven to be {ge}25 for 3% Helium in D{sub 2}) can be further enhanced by additional D{sub 2} or He driven Diffusion Pump and Ejector stages. The latter feature will also simplify pumping requirements for the Helium Glow Discharge scenario: recirculation of Helium at 0.1 Pa (driven by D{sub 2} or He Ejector) and simultaneous removal of DT and impurities by cryocondensation requires no mechanical pump at all or only small turbomolecular-drag pump combinations of He jet drive. The design offers superior tritium compatibility: all metal, fully bakeable, it avoids use of absorbers and argon for helium pumping, thereby reducing overall tritium inventory both in the pump itself and by replacing major fuel clean-up facilities. The advantages of using the Cryogenic Diffusion Pump in a Fusion Reactor Vacuum System are discussed in detail.

  16. Modeling Results For the ITER Cryogenic Fore Pump. Final Report

    SciTech Connect

    Pfotenhauer, John M.; Zhang, Dongsheng

    2014-03-31

    A numerical model characterizing the operation of a cryogenic fore-pump (CFP) for ITER has been developed at the University of Wisconsin – Madison during the period from March 15, 2011 through June 30, 2014. The purpose of the ITER-CFP is to separate hydrogen isotopes from helium gas, both making up the exhaust components from the ITER reactor. The model explicitly determines the amount of hydrogen that is captured by the supercritical-helium-cooled pump as a function of the inlet temperature of the supercritical helium, its flow rate, and the inlet conditions of the hydrogen gas flow. Furthermore the model computes the location and amount of hydrogen captured in the pump as a function of time. Throughout the model’s development, and as a calibration check for its results, it has been extensively compared with the measurements of a CFP prototype tested at Oak Ridge National Lab. The results of the model demonstrate that the quantity of captured hydrogen is very sensitive to the inlet temperature of the helium coolant on the outside of the cryopump. Furthermore, the model can be utilized to refine those tests, and suggests methods that could be incorporated in the testing to enhance the usefulness of the measured data.

  17. Modeling results for the ITER cryogenic fore pump

    SciTech Connect

    Zhang, D. S.; Miller, F. K.; Pfotenhauer, J. M.

    2014-01-29

    The cryogenic fore pump (CFP) is designed for ITER to collect and compress hydrogen isotopes during the regeneration process of torus cryopumps. Different from common cryopumps, the ITER-CFP works in the viscous flow regime. As a result, both adsorption boundary conditions and transport phenomena contribute unique features to the pump performance. In this report, the physical mechanisms of cryopumping are studied, especially the diffusion-adsorption process and these are coupled with standard equations of species, momentum and energy balance, as well as the equation of state. Numerical models are developed, which include highly coupled non-linear conservation equations of species, momentum and energy and equation of state. Thermal and kinetic properties are treated as functions of temperature, pressure, and composition. To solve such a set of equations, a novel numerical technique, identified as the Group-Member numerical technique is proposed. It is presented here a 1D numerical model. The results include comparison with the experimental data of pure hydrogen flow and a prediction for hydrogen flow with trace helium. An advanced 2D model and detailed explanation of the Group-Member technique are to be presented in following papers.

  18. The development of a cryogenic over-pressure pump

    NASA Astrophysics Data System (ADS)

    Alvarez, M.; Cease, H.; Flaugher, B.; Flores, R.; Garcia, J.; Lathrop, A.; Ruiz, F.

    2014-01-01

    A cryogenic over-pressure pump (OPP) was tested in the prototype telescope liquid nitrogen (LN2) cooling system for the Dark Energy Survey (DES) Project. This OPP consists of a process cylinder (PC), gas generator, and solenoid operated valves (SOVs). It is a positive displacement pump that provided intermittent liquid nitrogen (LN2) flow to an array of charge couple devices (CCDs) for the prototype Dark Energy Camera (DECam). In theory, a heater submerged in liquid would generate the drive gas in a closed loop cooling system. The drive gas would be injected into the PC to displace that liquid volume. However, due to limitations of the prototype closed loop nitrogen system (CCD cooling system) for DECam, a quasiclosed-loop nitrogen system was created. During the test of the OPP, the CCD array was cooled to its designed set point temperature of 173K. It was maintained at that temperature via electrical heaters. The performance of the OPP was captured in pressure, temperature, and flow rate in the CCD LN2 cooling system at Fermi National Accelerator Laboratory (FNAL).

  19. The development of a cryogenic over-pressure pump

    SciTech Connect

    Alvarez, M.; Cease, H.; Flaugher, B.; Flores, R.; Lathrop, A.; Garcia, J.; Ruiz, F.

    2014-01-29

    A cryogenic over-pressure pump (OPP) was tested in the prototype telescope liquid nitrogen (LN2) cooling system for the Dark Energy Survey (DES) Project. This OPP consists of a process cylinder (PC), gas generator, and solenoid operated valves (SOVs). It is a positive displacement pump that provided intermittent liquid nitrogen (LN2) flow to an array of charge couple devices (CCDs) for the prototype Dark Energy Camera (DECam). In theory, a heater submerged in liquid would generate the drive gas in a closed loop cooling system. The drive gas would be injected into the PC to displace that liquid volume. However, due to limitations of the prototype closed loop nitrogen system (CCD cooling system) for DECam, a quasiclosed-loop nitrogen system was created. During the test of the OPP, the CCD array was cooled to its designed set point temperature of 173K. It was maintained at that temperature via electrical heaters. The performance of the OPP was captured in pressure, temperature, and flow rate in the CCD LN2 cooling system at Fermi National Accelerator Laboratory (FNAL)

  20. The design and fabrication of a toroidally continuous cryocondensation pump for the D3-D advanced divertor

    NASA Astrophysics Data System (ADS)

    Smith, J. P.; Baxi, C. B.; Reis, E.; Schaffer, M. J.; Schaubel, K. M.; Menon, M. M.

    1991-11-01

    A cryocondensation pump will be installed in the baffle chamber of the DIII-D tokamak in the spring of 1992. The design is complete and fabrication of this pump is in progress. The purpose of the pump is to study plasma density control by pumping the divertor. The pump is toroidally continuous, approximately 10 m long, in the lower outer corner of the vacuum vessel interior. It consists of a 1 m(exp 2) liquid helium cooled surface surrounded by a liquid nitrogen cooled shield to limit the heat load on the helium cooled surface. The stainless steel liquid nitrogen shell has a copper coating on it to enhance thermal conductivity, but the coating is broken to keep the toroidal electrical resistance high. The liquid nitrogen cooled surface is surrounded by a radiation/particle shield to prevent energetic particles from impacting and releasing condensed water molecules. The whole pump is supported off the water cooled vacuum vessel wall. Key design considerations were: how to accommodate the temperature differences between the various components, developing low heat leak paths for the various supports, and maintaining electrical insulation in a low pressure environment in the presence of induced voltage spikes. A single point ground for the system was used to limit disruption induced currents and the resulting electro-mechanical forces on the pump. A testing program was used to develop coating techniques to enhance heat transfer and emissivity of the various surfaces. Fabrication tests were done to determine the best method of attaching the liquid nitrogen flow tubes to their shield surfaces. A prototype sector of the pump was built to verify fabrication and assembly techniques.

  1. Leak testing of cryogenically pumped large-volume high-vacuum systems

    NASA Astrophysics Data System (ADS)

    Sherlock, Charles N.

    1988-01-01

    The problems that may occur in the cryogenically pumped large-volume high-vacuum chambers (LVHVCs), used for the environmental testing of aerospace components and systems, are examined. Consideration is given to the designs of the LVHVCs and the cryogenic pumps. In the procedure of leak testing with tracer gas, the success of testing depends on attaining the required test sensitivity with speed, economy, and reliability. The steps required to speed up the leak location phase of the leak testing procedure and to thoroughly clean every penetration (i.e., fitting or nozzle) of the system are discussed.

  2. SOLPS analysis of the MAST-U divertor with the effect of heating power and pumping on the access to detachment in the Super-x configuration

    NASA Astrophysics Data System (ADS)

    Havlíčková, E.; Harrison, J.; Lipschultz, B.; Fishpool, G.; Kirk, A.; Thornton, A.; Wischmeier, M.; Elmore, S.; Allan, S.

    2015-11-01

    SOLPS simulations of MAST-U have been carried out to identify in more detail the physics and operational properties of novel divertor configurations such as Super-x divertor (SXD), in particular the physics of detachment. A well diagnosed L-mode discharge from MAST has been utilised to determine L-mode transport coefficients representative for MAST-U L-mode plasmas. Simulations show that under the same core plasma conditions, the MAST-U SXD is strongly detached whilst the conventional divertor (CD) is not (1 eV versus 20 eV at the divertor plate). The detachment and higher power losses (1.6×) in the SXD versus the attached CD lead to a factor of 25 reduction in the target power load and are attributed to changes in radial location of the target. An attached regime can be established for the SXD in L-mode for higher pumping speed and/or heating power. In contrast, the simulation predicts that the MAST-U CD requires 3×  higher density or 4×  reduced power than the SXD to detach. Comparing two versions of the SXD, each with a different amount of poloidal expansion in the region near the divertor plate, we find that the effect of additional poloidal flux expansion of the SXD on an already detached plasma is small for a change in flux expansion in volume by a factor of 2–3 (target temperature 0.7 eV versus 1.1 eV). The poloidal flux expansion re-arranges the radiation pattern with only a small increase in divertor power losses (1.06×) compared to changing from the CD to SXD topology. By artifically increasing the leakage from the divertor chamber, we confirmed that the tight closure of the divertor region leads to strong increases in neutral density with concomitant power losses.

  3. A small centrifugal pump for circulating cryogenic helium

    SciTech Connect

    Swift, W.; Sixsmith, H.

    1982-01-01

    A small centrifugal pump is described which has been developed to circulate supercritical helium through a test loop for superconducting magnets. The pump has a fully enclosed warm and which contains the adjustable speed brushless DC drive motor and self-acting bearings operating in helium gas. The drive and bearing system is designed to minimize contaimination to the circulating supercritical helium in the test loop. The performance data which have been obtained show that the pump operates very close to its design specifications. Additional tests are planned to provide a more complete range of performance data for the pump. Subsequent record discussion concerned the pump shaft and the efficiency of the heat leak to the heat station. Efficiency of at least 65% is attainable with this pump, including all heat leak.

  4. Experimental and CFD analyses of a thermal radiation shield dimple plate for cryogenic pump application

    NASA Astrophysics Data System (ADS)

    Scannapiego, M.; Day, C.

    2015-12-01

    Large customized cryogenic pumps are used in fusion reactors to evacuate the plasma exhaust from the torus. Cryopumps usually consist of an active pumping surface area cooled below 5 K and shielded from direct outer thermal radiation by plates cooled at 80K. In nuclear fusion applications, cryopumps are exposed to excessively high heat fluxes during pumping operation, and follow-up regeneration cycles with rapid warm-up and cool-down phases. Therefore, high cryogenic operational mass flows are required and thus pressure drop and heat transfer characteristics become key issues for the design of the pump cryogenic circuits. Actively cooled dimple plates are a preferred design solution for the thermal radiation shield. A test plate with a rhomb pattern of dimples has been manufactured and tested in terms of pressure drop with a dedicated test facility using water. In the present work, computational fluid dynamics (CFD) models of the test dimple plate have been performed, and computed pressure drops have been compared to experimental results. Despite the complexity of the geometry, a good agreement with the experimental results was found. Then, the validated CFD approach has been further extended to relevant operation conditions, using gaseous helium at cryogenic temperature as working fluid. The resulting pressure drop and heat transfer characteristics are finally presented.

  5. Design and Testing of a Cryogenic Capillary Pumped Loop Flight Experiment

    NASA Technical Reports Server (NTRS)

    Bugby, David C.; Kroliczek, Edward J.; Ku, Jentung; Swanson, Ted; Tomlinson, B. J.; Davis, Thomas M.; Baumann, Jane; Cullimore, Brent

    1998-01-01

    This paper details the flight configuration and pre-flight performance test results of the fifth generation cryogenic capillary pumped loop (CCPL-5). This device will fly on STS-95 in October 1998 as part of the CRYOTSU Flight Experiment. This flight represents the first in-space demonstration of a CCPL, a miniaturized two-phase fluid circulator for thermally linking cryogenic cooling sources to remote cryogenic components. CCPL-5 utilizes N2 as the working fluid and has a practical operating range of 75-110 K. Test results indicate that CCPL-5, which weighs about 200 grams, can transport over 10 W of cooling a distance of 0.25 m (or more) with less than a 5 K temperature drop.

  6. TIMO-2-A cryogenic test bed for the ITER cryosorption pumps

    NASA Astrophysics Data System (ADS)

    Haas, Horst; Day, Christian; Herzog, Friedhelm

    2012-06-01

    The Karlsruhe Institute of Technology (KIT) has been carrying out research and development in the field of vacuum cryopumps for nuclear fusion devices over the last decade. Together with the development activities also experience in the operation of the needed cryogenic systems necessary for such type of large scale cryopumps was collected. Due to the specific requirements of a large fusion device, such as ITER, the cryogenic distribution is based on gaseous helium at the needed temperature levels rather than liquid nitrogen or liquid helium. KIT has set up a large scale research facility, called TIMO-2, fully equipped with supercritical helium supply at large flow rates to be able to perform cryogenic tests of components under ITER-relevant conditions. During first test campaigns at TIMO-2 with a large scale model cryopump the ITER cryosorption vacuum pumping concept was successfully validated. After major refurbishments and upgrades, the TIMO-2 facility is now ready for the acceptance tests of the ITER torus cryopump. This paper describes the modified test facility TIMO-2 with particular attention to the available cryogenic supply at different temperature levels. The new 100 K helium supply facility will be described in detail.

  7. Fiber laser pumped high energy cryogenically cooled Ho:YLF laser

    NASA Astrophysics Data System (ADS)

    Lippert, Espen; Fonnum, Helge; Stenersen, Knut

    2012-09-01

    In this paper we report on a high energy, low repetition rate 2-micron-laser, with high conversion efficiency in terms of output energy per pump power. The laser consists of a Ho3+-doped LiYF4 (YLF) crystal cooled to cryogenic temperatures in an unstable resonator, pumped by a thulium fiber laser. The cooling to 77 K makes Ho:YLF a quasi four level laser system, which greatly enhances the extraction efficiency. We achieved 356 mJ in Q-switched operation at 1 Hz PRF when pumping the laser with 58 W for 36 ms. The high beam quality from the fiber laser and the use of an unstable resonator with a graded reflectivity mirror (GRM) resulted in a high quality laser beam with a M2-value of 1.3.

  8. Design and Testing of a Cryogenic Capillary Pumped Loop Flight Experiment

    NASA Technical Reports Server (NTRS)

    Bugby, David C.; Kroliczek, Edward J.; Ku, Jentung; Swanson, Ted; Tomlinson, B. J.; Davis, Thomas M.; Baumann, Jane; Cullimore, Brent

    1998-01-01

    This paper details the flight configuration and pre-flight performance test results of the fifth generation cryogenic capillary pumped loop (CCPL-5). This device will fly on STS-95 in October 1998 as part of the CRYOTSU Flight Experiment. This flight represents the first in-space demonstration of a CCPL; a miniaturized two-phase fluid circulator for thermally linking cryogenic components. CCPL-5 utilizes N2 as the working fluid and has a practical operating range of 75-110 K. Test results indicate that CCPL-5, which weighs about 200 grams, can transport over 10 W of cooling a distance of 0.25 m (or more) with less than a 5 K temperature drop.

  9. High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier.

    PubMed

    Banerjee, Saumyabrata; Ertel, Klaus; Mason, Paul D; Phillips, P Jonathan; Siebold, Mathias; Loeser, Markus; Hernandez-Gomez, Cristina; Collier, John L

    2012-06-15

    We report on the first demonstration of a diode-pumped, gas cooled, cryogenic multislab Yb:YAG amplifier. The performance was characterized over a temperature range from 88 to 175 K. A maximum small-signal single-pass longitudinal gain of 11.0 was measured at 88 K. When amplifying nanosecond pulses, recorded output energies were 10.1 J at 1 Hz in a four-pass extraction geometry and 6.4 J at 10 Hz in a three-pass setup, corresponding to optical to optical conversion efficiencies of 21% and 16%, respectively. To our knowledge, this represents the highest pulse energy so far obtained from a cryo-cooled Yb-laser and the highest efficiency from a multijoule diode pumped solid-state laser system. PMID:22739846

  10. Cryogenic Subsystem to Provide for Nominal Operation and Fast Regeneration of the ITER Primary Cryo-sorption Vacuum Pumps

    SciTech Connect

    Kalinine, V.; Haange, R.; Shatil, N.; Millet, F.; Guillemet, L.; Wykes, M.; Day, C.; Mack, A.

    2004-06-23

    The ITER cryogenic system includes provision for cooling the eight cryo-sorption pumps that maintain vacuum conditions within the tokamak plasma vacuum vessel. The eight pumps are operated such that at any given instant four pumps pump the plasma vessel and four pumps are undergoing four sequential stages of regeneration, each having a duration of 150 s. The regeneration includes a cold helium exhaust stage, warm-up from 4.5 K to 80-100 K, desorption and pump-out of released gases and cool-down from 80-100 K to 4.5 K. Thus after every 150 s of operation one of the four pumps is taken off-line for regeneration and another just-regenerated pump is restored to the set of four pumps that provide the nominal pumping.This paper presents the current design status of the cryogenic subsystems for cooling and heating the cryopumps during pumping and fast regeneration and details of the fluid-dynamic numerical analysis of the cryopumps (Vincenta code) used to study the transient behaviour of helium flow in the cryo-sorption panels during regeneration.

  11. Cryogenic Subsystem to Provide for Nominal Operation and Fast Regeneration of the ITER Primary Cryo-sorption Vacuum Pumps

    NASA Astrophysics Data System (ADS)

    Kalinine, V.; Haange, R.; Shatil, N.; Millet, F.; Guillemet, L.; Wykes, M.; Day, C.; Mack, A.

    2004-06-01

    The ITER cryogenic system includes provision for cooling the eight cryo-sorption pumps that maintain vacuum conditions within the tokamak plasma vacuum vessel. The eight pumps are operated such that at any given instant four pumps pump the plasma vessel and four pumps are undergoing four sequential stages of regeneration, each having a duration of 150 s. The regeneration includes a cold helium exhaust stage, warm-up from 4.5 K to 80-100 K, desorption and pump-out of released gases and cool-down from 80-100 K to 4.5 K. Thus after every 150 s of operation one of the four pumps is taken off-line for regeneration and another just-regenerated pump is restored to the set of four pumps that provide the nominal pumping. This paper presents the current design status of the cryogenic subsystems for cooling and heating the cryopumps during pumping and fast regeneration and details of the fluid-dynamic numerical analysis of the cryopumps (Vincenta code) used to study the transient behaviour of helium flow in the cryo-sorption panels during regeneration.

  12. Efficient laser performance of a cryogenic Yb:YAG laser pumped by fiber coupled 940 and 969 nm laser diodes

    NASA Astrophysics Data System (ADS)

    Jambunathan, V.; Miura, T.; Těsnohlídková, L.; Lucianetti, A.; Mocek, T.

    2015-01-01

    Laser performance of Yb:YAG at different cryogenic temperatures pumped by a fiber coupled diode laser emitting at 940 and 969 nm were presented. The pump laser diode bandwidth, absorption bandwidth as well as absorption of the laser material at cryogenic temperatures play a vital role on laser performance. The laser threshold decreases and the output power and slope efficiency increase when cooled to cryogenic temperatures.

  13. Divertor detachment

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, Sergei

    2015-11-01

    The heat exhaust is one of the main conceptual issues of magnetic fusion reactor. In a standard operational regime the large heat flux onto divertor target reaches unacceptable level in any foreseeable reactor design. However, about two decades ago so-called ``detached divertor'' regimes were found. They are characterized by reduced power and plasma flux on divertor targets and look as a promising solution for heat exhaust in future reactors. In particular, it is envisioned that ITER will operate in a partly detached divertor regime. However, even though divertor detachment was studied extensively for two decades, still there are some issues requiring a new look. Among them is the compatibility of detached divertor regime with a good core confinement. For example, ELMy H-mode exhibits a very good core confinement, but large ELMs can ``burn through'' detached divertor and release large amounts of energy on the targets. In addition, detached divertor regimes can be subject to thermal instabilities resulting in the MARFE formation, which, potentially, can cause disruption of the discharge. Finally, often inner and outer divertors detach at different plasma conditions, which can lead to core confinement degradation. Here we discuss basic physics of divertor detachment including different mechanisms of power and momentum loss (ionization, impurity and hydrogen radiation loss, ion-neutral collisions, recombination, and their synergistic effects) and evaluate the roles of different plasma processes in the reduction of the plasma flux; detachment stability; and an impact of ELMs on detachment. We also evaluate an impact of different magnetic and divertor geometries on detachment onset, stability, in- out- asymmetry, and tolerance to the ELMs. Supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-DE-FG02-04ER54739 at UCSD.

  14. Plasma Fueling, Pumping, and Tritium Handling Considerations for FIRE

    SciTech Connect

    Fisher, P.W.; Foster, C.A.; Gentile, C.A.; Gouge, M.J.; Nelson, B.E.

    1999-11-13

    Tritium pellet injection will be utilized on the Fusion Ignition Research Experiment (FIRE) for efficient tritium fueling and to optimize the density profile for high fusion power. Conventional pneumatic pellet injectors, coupled with a guidetube system to launch pellets into the plasma from the high, field side, low field side, and vertically, will be provided for fueling along with gas puffing for plasma edge density control. About 0.1 g of tritium must be injected during each 10-s pulse. The tritium and deuterium will be exhausted into the divertor. The double null divertor will have 16 cryogenic pumps located near the divertor chamber to provide the required high pumping speed of 200 torr-L/s.

  15. Snowflake divertor configuration studies for NSTX-Upgrade

    SciTech Connect

    Soukhanovskii, V A

    2011-11-12

    Snowflake divertor experiments in NSTX provide basis for PMI development toward NSTX-Upgrade. Snowflake configuration formation was followed by radiative detachment. Significant reduction of steady-state divertor heat flux observed in snowflake divertor. Impulsive heat loads due to Type I ELMs are partially mitigated in snowflake divertor. Magnetic control of snowflake divertor configuration is being developed. Plasma material interface development is critical for NSTX-U success. Four divertor coils should enable flexibility in boundary shaping and control in NSTX-U. Snowflake divertor experiments in NSTX provide good basis for PMI development in NSTX-Upgrade. FY 2009-2010 snowflake divertor experiments in NSTX: (1) Helped understand control of magnetic properties; (2) Core H-mode confinement unchanged; (3) Core and edge carbon concentration reduced; and (4) Divertor heat flux significantly reduced - (a) Steady-state reduction due to geometry and radiative detachment, (b) Encouraging results for transient heat flux handling, (c) Combined with impurity-seeded radiative divertor. Outlook for snowflake divertor in NSTX-Upgrade: (1) 2D fluid modeling of snowflake divertor properties scaling - (a) Edge and divertor transport, radiation, detachment threshold, (b) Compatibility with cryo-pump and lithium conditioning; (2) Magnetic control development; and (3) PFC development - PFC alignment and PFC material choice.

  16. Optimization and testing of the Beck Engineering free-piston cryogenic pump for LNG systems on heavy vehicles. Final technical report

    SciTech Connect

    Beck, Douglas S.

    2003-01-10

    Task 7 was completed by reaching Milestone 7: Test free piston cryogenic pump (FPCP) in Integrated LNG System. Task 4: Alternative Pump Design was also completed. The type of performance of the prototype LNG system is consistent with requirements of fuel systems for heavy vehicles; however, the maximum flow capacity of the prototype LNG system is significantly less than the total flow requirement. The flow capacity of the prototype LNG system is determined by a cavitation limit for the FPCP.

  17. 250 W average power, 100 kHz repetition rate cryogenic Yb:YAG amplifier for OPCPA pumping.

    PubMed

    Zapata, L E; Reichert, F; Hemmer, M; Kärtner, F X

    2016-02-01

    A cryogenically cooled, bulk Yb:YAG, four-pass amplifier delivering up to 250 W average power at 100 kHz repetition rate is reported. The 2.5 mJ amplified optical pulses show a sub-20 ps duration before temporal compression and a spectrum supporting a transform-limited duration of 3.6 ps. The power instabilities were measured to be <0.5% rms over 30 min at full power, and the spatial intensity profile showed a flat-top distribution and near diffraction-limited beam quality. This compact amplifier is an ideal source for pumping either near-IR or mid-IR optical parametric chirped pulse amplifiers. PMID:26907405

  18. Cavitation in liquid cryogens. 4: Combined correlations for venturi, hydrofoil, ogives, and pumps

    NASA Technical Reports Server (NTRS)

    Hord, J.

    1974-01-01

    The results of a series of experimental and analytical cavitation studies are presented. Cross-correlation is performed of the developed cavity data for a venturi, a hydrofoil and three scaled ogives. The new correlating parameter, MTWO, improves data correlation for these stationary bodies and for pumping equipment. Existing techniques for predicting the cavitating performance of pumping machinery were extended to include variations in flow coefficient, cavitation parameter, and equipment geometry. The new predictive formulations hold promise as a design tool and universal method for correlating pumping machinery performance. Application of these predictive formulas requires prescribed cavitation test data or an independent method of estimating the cavitation parameter for each pump. The latter would permit prediction of performance without testing; potential methods for evaluating the cavitation parameter prior to testing are suggested.

  19. Small, high-speed bearing technology for cryogenic turbo-pumps

    NASA Technical Reports Server (NTRS)

    Winn, L. W.; Eusepi, M. W.; Smalley, A. J.

    1974-01-01

    The design of 20-mm bore ball bearings is described for cryogenic turbo-machinery applications, operating up to speeds of 120,000 rpm. A special section is included on the design of hybrid bearings. Each hybrid bearing is composed of a ball bearing in series with a conventional pressurized fluid-film journal bearing. Full details are presented on the design of a test vehicle which possesses the capability of testing the above named bearings within the given speed range under externally applied radial and axial loads.

  20. Solid tungsten Divertor-III for ASDEX Upgrade and contributions to ITER

    NASA Astrophysics Data System (ADS)

    Herrmann, A.; Greuner, H.; Jaksic, N.; Balden, M.; Kallenbach, A.; Krieger, K.; de Marné, P.; Rohde, V.; Scarabosio, A.; Schall, G.; the ASDEX Upgrade Team

    2015-06-01

    ASDEX Upgrade became a full tungsten experiment in 2007 by coating its graphite plasma facing components with tungsten. In 2013 a redesigned solid tungsten divertor, Div-III, was installed and came into operation in 2014. The redesign of the outer divertor geometry provided the opportunity to increase the pumping efficiency in the lower divertor by increasing the gap between divertor and vessel. In parallel, a by-pass was installed into the cryo-pump in the divertor region allowing adapting of the pumping speed to the required edge density. Safe divertor operation and heat removal becomes more and more significant for future fusion devices. This requires developing ‘tools’ for divertor heat load control and to optimize the divertor design. The new divertor manipulator, DIM-II, allows retracting a relevant part of the outer divertor into a target exchange box without venting ASDEX Upgrade. Different front-ends can be installed and exposed to the plasma. At present, front-ends for probe exposition, gas puffing, electrical probes and actively cooled prototype targets are under construction. The installation of solid tungsten, the control of the pumping speed and the flexibility for testing divertor modifications on a weekly base is a unique feature of ASDEX Upgrade and offers together with the extended set of diagnostics the possibility to investigate dedicated questions for a future divertor design.

  1. Divertor parameters and divertor operation in ASDEX

    NASA Astrophysics Data System (ADS)

    Fussmann, G.; Ditte, U.; Eckstein, W.; Grave, T.; Keilhacker, M.; McCormick, K.; Murmann, H.; Röhr, H.; Elshaer, M.; Steuer, K.-H.; Szymanski, Z.; Wagner, F.; Becker, G.; Bernhardi, K.; Eberhagen, A.; Gehre, O.; Gernhardt, J.; Gierke, G. V.; Glock, E.; Gruber, O.; Haas, G.; Hesse, M.; Janeschitz, G.; Karger, F.; Kissel, S.; Klüber, O.; Kornherr, M.; Lisitano, G.; Mayer, H. M.; Meisel, D.; Müller, E. R.; Poschenrieder, W.; Ryter, F.; Rapp, H.; Schneider, F.; Siller, G.; Smeulders, P.; Söldner, F.; Speth, E.; Stäbler, A.; Vollmer, O.

    1984-12-01

    Recent measurements of plasma boundary and divertor scrape-off parameters for ohmically and neutral injection heated plasmas are presented. For these data the power flow onto the divertor plates and the sputtering rates at the plates are calculated and compared with separate measurements. The impurity behaviour in front of the plates is also discussed.

  2. Modeling detachment physics in the NSTX snowflake divertor

    NASA Astrophysics Data System (ADS)

    Meier, E. T.; Soukhanovskii, V. A.; Bell, R. E.; Diallo, A.; Kaita, R.; LeBlanc, B. P.; McLean, A. G.; Podestà, M.; Rognlien, T. D.; Scotti, F.

    2015-08-01

    The snowflake divertor is a proposed technique for coping with the tokamak power exhaust problem in next-step experiments and eventually reactors, where extreme power fluxes to material surfaces represent a leading technological and physics challenge. In lithium-conditioned National Spherical Torus Experiment (NSTX) discharges, application of the snowflake divertor typically induced partial outer divertor detachment and severalfold heat flux reduction. UEDGE is used to analyze and compare conventional and snowflake divertor configurations in NSTX. Matching experimental upstream profiles and divertor measurements in the snowflake requires target recycling of 0.97 vs. 0.91 in the conventional case, implying partial saturation of the lithium-based pumping mechanism. Density scans are performed to analyze the mechanisms that facilitate detachment in the snowflake, revealing that increased divertor volume provides most of the parallel heat flux reduction. Also, neutral gas power loss is magnified by the increased wetted area in the snowflake, and plays a key role in generating volumetric recombination.

  3. Generation of 6.05J nanosecond pulses at a 1Hz repetition rate from a cryogenic cooled diode-pumped Yb:YAG MOPA system

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaojin; Wang, Jianlei; Yang, Zhongguo; Liu, Jin; Li, Lei; Shi, Xiangchun; Huang, Wenfa; Wang, Jiangfeng; Chen, Weibiao

    2015-02-01

    Diode-pumped solid state laser system based on cryogenic Yb:YAG active-mirror scheme are presented with recent energy output. With improved optical design, 6.05J/1Hz pulse energy is achieved and a conceptual design with 30J output energy is theoretical simulated. The doubling efficiency of YCa4O (BO3)(YCOB) crystal is also discussed in this paper.

  4. Channel electron multiplier operated on a sounding rocket without a cryogenic vacuum pump from 120 to 80 km altitude

    NASA Astrophysics Data System (ADS)

    Dickson, Shannon; Gausa, Michael; Robertson, Scott; Sternovsky, Zoltan

    2013-04-01

    We demonstrate that a channel electron multiplier (CEM) can be operated on a sounding rocket in the pulse-counting mode from 120 km to 80 km altitude without the cryogenic evacuation used in the past. Evacuation of the CEM is provided only by aerodynamic flow around the rocket. This demonstration is motivated by the need for additional flights of mass spectrometers to clarify the fate of metallic compounds and ions ablated from micrometeorites and their possible role in the nucleation of noctilucent clouds. The CEMs were flown as guest instruments on two sounding rockets to the mesosphere. Modeling of the aerodynamic flow around the payload with Direct Simulation Monte-Carlo (DSMC) code showed that the pressure is reduced below ambient in the void behind (relative to the direction of motion) an aft-facing surface. An enclosure containing the CEM was placed forward of an aft-facing deck and a valve was opened during flight to expose the CEM to the aerodynamically evacuated region behind it. The CEM operated successfully from apogee down to ∼80 km. A Pirani gauge confirmed pressures reduced to as low as 20% of ambient with the extent of reduction dependent upon altitude and velocity. Additional DSMC simulations indicate that there are alternate payload designs with improved aerodynamic pumping for forward mounted instruments such as mass spectrometers.

  5. Channel electron multiplier operated on a sounding rocket without a cryogenic vacuum pump from 120 - 75 km altitude

    NASA Astrophysics Data System (ADS)

    Dickson, S.; Gausa, M. A.; Robertson, S. H.; Sternovsky, Z.

    2012-12-01

    We demonstrate that a channel electron multiplier (CEM) can be operated on a sounding rocket in the pulse-counting mode from 120 km to 75 km altitude without the cryogenic evacuation used in the past. Evacuation of the CEM is provided only by aerodynamic flow around the rocket. This demonstration is motivated by the need for additional flights of mass spectrometers to clarify the fate of metallic compounds and ions ablated from micrometeorites and their possible role in the nucleation of noctilucent clouds. The CEMs were flown as guest instruments on the two sounding rockets of the CHAMPS (CHarge And mass of Meteoritic smoke ParticleS) rocket campaign which were launched into the mesosphere in October 2011 from Andøya Rocket Range, Norway. Modeling of the aerodynamic flow around the payload with Direct Simulation Monte-Carlo (DSMC) code showed that the pressure is reduced below ambient in the void beneath an aft-facing surface. An enclosure containing the CEM was placed above an aft-facing deck and a valve was opened on the downleg to expose the CEM to the aerodynamically evacuated region below. The CEM operated successfully from apogee down to ~75 km. A Pirani gauge confirmed pressures reduced to as low as 20% of ambient with the extent of reduction dependent upon altitude and velocity. Additional DSMC simulations indicate that there are alternate payload designs with improved aerodynamic pumping for forward mounted instruments such as mass spectrometers.

  6. Cryogenic Ho:CaF2 laser pumped by Tm:fiber laser

    NASA Astrophysics Data System (ADS)

    Jelínek, Michal; Kubeček, Václav; Ma, Weiwei; Zhao, Beibei; Jiang, Dapeng; Su, Liangbi

    2016-06-01

    The laser operation in the pulsed as well as continuous-wave regime of a modified-Bridgeman-grown 0.5 at.% Ho:CaF2 crystal at 83 K pumped by a Tm:fiber laser is reported. The maximum output power was 2.37 W at 2060 nm or 1.3 W at 2110 and 2130 nm. Continuous tuning range over 90 nm from 2030 to 2120 nm was achieved using a birefringent filter. The Ho:CaF2 fundamental spectroscopic properties as absorption and fluorescence spectra at 83 and 293 K are also presented.

  7. The lithium vapor box divertor

    NASA Astrophysics Data System (ADS)

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-02-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m-2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.

  8. Divertor efficiency in ASDEX

    NASA Astrophysics Data System (ADS)

    Engelhardt, W.; Becker, G.; Behringer, K.; Campbell, D.; Eberhagen, A.; Fussmann, G.; Gehre, O.; Gierke, G. V.; Glock, E.; Haas, G.; Huang, M.; Karger, F.; Keilhacker, M.; KlÜber, O.; Kornherr, M.; Lisitano, G.; Mayer, H.-M.; Meisel, D.; Müller, E. R.; Murmann, H.; Niedermeyer, H.; Poschenrieder, W.; Rapp, H.; Schneider, F.; Siller, G.; Steuer, K.-H.; Venus, G.; Vernickel, H.; Wagner, F.

    1982-12-01

    The divertor efficiency in ASDEX is discussed for ohmically heated plasmas. The parameters of the boundary layer both in the torus midplane and the divertor chamber have been measured. The results are reasonably well understood in terms of parallel and perpendicular transport. A high pressure of neutral hydrogen builds up in the divertor chamber and Franck-Condon particles recycle back through the divertor throat. Due to dissociation processes the boundary plasma is effectively cooled before it reaches the neutralizer plates. The shielding property of the boundary layer against impurity influx is comparable to that of a limiter plasma. The transport of iron is numerically simulated for an iron influx produced by sputtering of charge exchange neutrals at the wall. The results are consistent with the measured iron concentration. First results from a comparison of the poloidal divertor with toroidally closed limiters (stainless steel, carbon) are given. Diverted discharges are considerably cleaner and easier to create.

  9. Models for poloidal divertors

    SciTech Connect

    Post, D.E.; Heifetz, D.; Petravic, M.

    1982-07-01

    Recent progress in models for poloidal divertors has both helped to explain current divertor experiments and contributed significantly to design efforts for future large tokamak (INTOR, etc.) divertor systems. These models range in sophistication from zero-dimensional treatments and dimensional analysis to two-dimensional models for plasma and neutral particle transport which include a wide variety of atomic and molecular processes as well as detailed treatments of the plasma-wall interaction. This paper presents a brief review of some of these models, describing the physics and approximations involved in each model. We discuss the wide variety of physics necessary for a comprehensive description of poloidal divertors. To illustrate the progress in models for poloidal divertors, we discuss some of our recent work as typical examples of the kinds of calculations being done.

  10. Performance of the INTOR poloidal divertor

    SciTech Connect

    Post, D.E.; Petravic, M.; Schmidt, J.A.; Heifetz, D.

    1981-10-01

    The next generation of large tokamak experiments is expected to have large particle and heat outfluxes (approx. 10/sup 23/ particles/sec and 80 MW). These outfluxes must be controlled to provide adequate pumping of the helium ash and to minimize the sputtering erosion of the vacuum vessel walls, limiters, and neutralizer plates. A poloidal divertor design to solve these problems for INTOR has been done using a two-dimensional code which models the plasma as a fluid and solves equations for the flow of particles, momentum and energy, and calculates the neutral gas transport with Monte-Carlo techniques. These calculations show that there is a regime of operation where the density in the divertor is high and the temperature is low, thus easing the heat load and erosion problems. The neutral pressure at the plate is high, resulting in high gas throughputs, with modest pumping speeds.

  11. Spectroscopy of divertor plasmas

    SciTech Connect

    Isler, R.C.

    1995-12-31

    The requirements for divertor spectroscopy are treated with respect to instrumentation and observations on present machines. Emphasis is placed on quantitative measurements.of impurity concentrations from the interpretation of spectral line intensities. The possible influence of non-Maxwellian electron distributions on spectral line excitation in the divertor is discussed. Finally the use of spectroscopy for determining plasma temperature, density, and flows is examined.

  12. Divertor design for the Tokamak Physics Experiment

    SciTech Connect

    Hill, D.N.; Braams, B.; Brooks, J.N.

    1994-05-01

    In this paper we discuss the present divertor design for the planned TPX tokamak, which will explore the physics and technology of steady-state (1000s pulses) heat and particle removal in high confinement (2--4{times} L-mode), high beta ({beta}{sub N} {ge} 3) divertor plasmas sustained by non-inductive current drive. The TPX device will operate in the double-null divertor configuration, with actively cooled graphite targets forming a deep (0.5 m) slot at the outer strike point. The peak heat flux on, the highly tilted (74{degrees} from normal) re-entrant (to recycle ions back toward the separatrix) will be in the range of 4--6 MW/m{sup 2} with 18 MW of neutral beams and RF heating power. The combination of active pumping and gas puffing (deuterium plus impurities), along with higher heating power (45 MW maximum) will allow testing of radiative divertor concepts at ITER-like power densities.

  13. Cryogenic Hybrid Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  14. Status of National Spherical Torus Experiment Liquid Lithium Divertor

    NASA Astrophysics Data System (ADS)

    Kugel, H. W.; Viola, M.; Ellis, R.; Bell, M.; Gerhardt, S.; Kaita, R.; Kallman, J.; Majeski, R.; Mansfield, D.; Roquemore, A. L.; Schneider, H.; Timberlake, J.; Zakharov, L.; Nygren, R. E.; Allain, J. P.; Maingi, R.; Soukhanovskii, V.

    2009-11-01

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is the 2009 installation of a Liquid Lithium Divertor (LLD). The 20 cm wide LLD located on the lower outer divertor, consists of four, 80 degree sections; each section is separated by a row of graphite diagnostic tiles. The temperature controlled LLD structure consists of a 0.01cm layer of vacuum flame-sprayed, 50 percent porous molybdenum, on top of 0.02 cm, 316-SS brazed to a 1.9 cm Cu base. The physics design of the LLD encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  15. The snowflake divertor

    DOE PAGESBeta

    Ryutov, D. D.; Soukhanovskii, V. A.

    2015-11-17

    The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. One of the most interesting effects of the snowflake geometry is the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation tomore » the existing theoretical models is described. Divertor concepts utilizing the properties of a snowflake configuration are briefly discussed.« less

  16. The snowflake divertor

    SciTech Connect

    Ryutov, D. D.; Soukhanovskii, V. A.

    2015-11-17

    The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. One of the most interesting effects of the snowflake geometry is the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation to the existing theoretical models is described. Divertor concepts utilizing the properties of a snowflake configuration are briefly discussed.

  17. A superconducting linear motor drive for a positive displacement bellows pump for use in the g-2 cryogenics system

    SciTech Connect

    Green, M.A.

    1994-10-01

    Forced two-phase cooling of indirectly cooled magnets requires circulation of liquid helium through the magnet cooling channel. A bellows helium pump is one possible way of providing helium flow to a magnet cooling system. Since the bellows type of helium pump is immersed in liquid helium, a superconducting linear motor drive appears to be an attractive option. This report describes a linear motor drive that employs oriented permanent magnet materials such as samarium-cobalt as the stator magnet system and a superconducting loud speaker voice coil type of drive as the armature of the linear motor. This report examines drive motor requirements for a helium pump.

  18. Electron beam facility for divertor target experiments

    SciTech Connect

    Anisimov, A.; Gagen-Torn, V.; Giniyatulin, R.N.

    1994-12-31

    To test different concepts of divertor targets and bumpers an electron beam facility was assembled in Efremov Institute. It consists of a vacuum chamber (3m{sup 3}), vacuum pump, electron beam gun, manipulator to place and remove the samples, water loop and liquid metal loop. The following diagnostics of mock-ups is stipulated: (1) temperature distribution on the mock-up working surface (scanning pyrometer and infra-red imager); (2) temperature distribution over mocked-up thickness in 3 typical cross-sections (thermo-couples); (3) cracking dynamics during thermal cycling (acoustic-emission method), (4) defects in the mock-up before and after tests (ultra-sonic diagnostics, electron and optical microscopes). Carbon-based and beryllium mock-ups are made for experimental feasibility study of water and liquid-metal-cooled divertor/bumper concepts.

  19. Structural design of the DIII-D radiative divertor

    SciTech Connect

    Reis, E.E.; Smith, J.P.; Baxi, C.B.; Bozek, A.S.; Chin, E.; Hollerbach, M.A.; Laughon, G.J.; Sevier, D.L.

    1996-10-01

    The divertor of the DIII-D tokamak is being modified to operate as a slot type, dissipative divertor. This modification, called the Radiative Divertor Program (RDP) is being carried out in two phases. The design and analysis is complete and hardware is being fabricated for the first phase. This first phase consists of an upper divertor baffle and cryopump to provide some density control for high triangularity, single or double null discharges. Installation of the first phase is scheduled to start in October, 1996. The second phase provides pumping at all four divertor strike points of double null high triangularity discharges and baffling of the neutral particles from transport back to the core plasma. Studies of the effects of varying the slot length and width of the divertor can be easily accomplished with the design of RDP hardware. Static and dynamic analyses of the baffle structures, new cryopumps, and feedlines were performed during the preliminary and final design phases. Disruption loads and differential thermal displacements must be accommodated in the design of these components. With the full RDP hardware installed, the plasma current in DIII-D will be a maximum of 3.0 MA. Plasma disruptions induce toroidal currents in the cryopump, producing complex dynamic loads. Simultaneously, the vacuum vessel vibrations impose a sinusoidal base excitation to the supports for the cryopump. Static and dynamic analyses of the cryopump demonstrate that the stresses due to disruption and thermal loadings satisfy the stress and deflection criteria.

  20. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  1. Optimal thermal-hydraulic performance for helium-cooled divertors

    SciTech Connect

    Izenson, M.G.; Martin, J.L.

    1996-07-01

    Normal flow heat exchanger (NFHX) technology offers the potential for cooling divertor panels with reduced pressure drops (<0.5% {Delta}p/p), reduced pumping power (<0.75% pumping/thermal power), and smaller duct sizes than conventional helium heat exchangers. Furthermore, the NFHX can easily be fabricated in the large sizes required for divertors in large tokamaks. Recent experimental and computational results from a program to develop NFHX technology for divertor coolings using porous metal heat transfer media are described. We have tested the thermal and flow characteristics of porous metals and identified the optimal heat transfer material for the divertor heat exchanger. Methods have been developed to create highly conductive thermal bonds between the porous material and a solid substrate. Computational fluid dynamics calculations of flow and heat transfer in the porous metal layer have shown the capability of high thermal effectiveness. An 18-kW NFHX, designed to meet specifications for the international Thermonuclear Experimental Reactor divertor, has been fabricated and tested for thermal and flow performance. Preliminary results confirm design and fabrication methods. 11 refs., 12 figs., 1 tab.

  2. Performance characteristics of the DIII-D advanced divertor cryopump

    SciTech Connect

    Menon, M.M.; Maingi, R.; Wade, M.R.; Baxi, C.B.; Campbell, G.L.; Holtrop, K.L.; Hyatt, A.W.; Laughon, G.J.; Makariou, C.C.; Mahdavi, M.A.; Reis, E.E.; Schaffer, M.J.; Schaubel, K.M.; Scoville, J.T.; Smith, J.P.; Stambaugh, R.D.

    1993-10-01

    A cryocondensation pump, cooled by forced flow of two-phase helium, has been installed for particle exhaust from the divertor region of the DIII-D tokamak. The Inconel pumping surface is of coaxial geometry, 25.4 mm in outer diameter and 11.65 m in length. Because of the tokamak environment, the pump is designed to perform under relatively high pulsed heat loads (300 Wm{sup {minus}2}). Results of measurements made on the pumping characteristics for D{sub 2}, H{sub 2}, and Ar are discussed.

  3. Divertor plasma detachment

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.; Kukushkin, A. S.; Pshenov, A. A.

    2016-05-01

    Regime with the plasma detached from the divertor targets (detached divertor regime) is a natural continuation of the high recycling conditions to higher density and stronger impurity radiation loss. Both the theoretical considerations and experimental data show clearly that the increase of the impurity radiation loss and volumetric plasma recombination causes the rollover of the plasma flux to the target when the density increases, which is the manifestation of detachment. Plasma-neutral friction (neutral viscosity effects), although important for the sustainment of high density/pressure plasma upstream and providing the conditions for efficient recombination and power loss, is not directly involved in the reduction of the plasma flux to the targets. The stability of detachment is also discussed.

  4. The snowflake divertor

    SciTech Connect

    Ryutov, D. D.; Soukhanovskii, V. A.

    2015-11-15

    The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. Among potential beneficial effects of this geometry are: increased volume of a low poloidal field around the null, increased connection length, and the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation to the existing theoretical models is described.

  5. Features and Initial Results of the DIII-D Advanced Tokamak Radiative Divertor

    SciTech Connect

    R.C. O'Neill; A.S. Bozek; M.E. Friend; C.B. Baxi; E.E. Reis; M.A. Mahdavi; D.G. Nilson; S.L. Allen; W.P. West

    1999-11-01

    The Radiative Divertor Program of DIII-D is in its final phase with the installation of the cryopump and baffle structure (Phase 1B Divertor) in the upper inner radius of the DIII-D vacuum vessel at the end of this calendar year. This divertor, in conjunction with the Advanced Divertor and the Phase 1A Divertor, located in the lower and upper outer radius of the DIII-D vacuum vessel respectively, provides pumping for density control of the plasma while minimizing the effects on the core confinement. Each divertor consists of a cryobelium cooling ring and a shielded protective structure. The cryo/helium-cooled pumps of all three diverters exhaust helium from the plasma. The protective shielded structure or baffle structure, in the case of the diverters located at the top of the vacuum vessel, provides baffling of neutral charged particles and minimize the flow of impurities back into the core of the plasma. The baffles, which consist of water-cooled panels that allow for the attachment of tiles of various sizes and shapes, house gas puff systems. The intent of the puffing systems is to inject gas in and around the divertor to minimize the heat flux on specific areas on the divertor and its components. The reduction of the heat flux on the divertor minimizes the impurities that are generated from excess heat on divertor components, specifically tiles. Experiments involving the gas puff systems and the divertor structures have shown the heat flux can be spread over a large area of the divertor, reducing the peak heat flux in specific areas. The three diverters also incorporate a variety of diagnostic tools such as halo current monitors, magnetic probes and thermocouples to monitor certain plasma characteristics as well as determine the effectiveness of the cryopumps and baffle configurations. The diverters were designed to optimize pumping performance and to withstand the electromagnetic loads from both halo currents and toroidal induced currents. Incorporated also

  6. Turbopumps for cryogenic upper stage engines. [fabrication and evaluation of turbine pumps for liquid hydrogen and liquid oxygen

    NASA Technical Reports Server (NTRS)

    Zachary, A. T.; Csomor, A.; Tignac, L. L.

    1973-01-01

    Small, high-performance LO2 and LH2 turbopump assembly configurations were selected, detail designs were prepared and two of each unit were fabricated with each unit consisting of pump, turbine gas generator, and appropriate controls. Following fabrication, development testing was conducted on each type to demonstrate performance, durability, transient characteristics, and heat transfer under simulated altitude conditions. Following successful completion of development effort, the two LO2 turbopump units and one LH2 turbopump unit were acceptance tested as specified. Inspection of the units following development testing revealed no deleterious effects of testing. The test results of LO2 turbopump assembly testing correlated well with predicted performance while the LH2 turbopump test results, though generally consistent with predicted values, did show lower than anticipated developed head at the design point and in the high flow range of operation.

  7. Asymmetric divertor biasing in MAST

    NASA Astrophysics Data System (ADS)

    Helander, P.; Cohen, R.; Counsell, G. C.; Ryutov, D. D.

    2002-11-01

    Experiments are being carried out on the Mega-Ampere Spherical Tokamak (MAST) where the divertor tiles are electrically biased in a toroidally alternating way. The aim is to induce convective cells in the divertor plasma, broaden the SOL and reduce the divertor heat load. This paper describes the underlying theory and experimental results. Criteria are presented for achieving strong broadening and exciting shear-flow turbulence in the SOL, and properties of the expected turbulence are derived. It is also shown that magnetic shear near the X-point is likely to confine the potential perturbations to the divertor region, leaving the part of the SOL that is in direct contact with the core plasma intact. Preliminary comparison of the theory with MAST data is encouraging: the distortion of the heat deposition pattern, its broadening, and the incremental heat load are qualitatively in agreement; quantitative comparisons are underway.

  8. Advances in cryogenic engineering. Volume 33 - Proceedings of the Cryogenic Engineering Conference, Saint Charles, IL, June 14-18, 1987

    NASA Technical Reports Server (NTRS)

    Fast, R. W. (Editor)

    1988-01-01

    Papers are presented on superconductivity applications including magnets, electronics, rectifiers, magnet stability, coil protection, and cryogenic techniques. Also considered are insulation, heat transfer to liquid helium and nitrogen, heat and mass transfer in He II, superfluid pumps, and refrigeration for superconducting systems. Other topics include cold compressors, refrigeration and liquefaction, magnetic refrigeration, and refrigeration for space applications. Papers are also presented on cryogenic applications, commercial cryogenic plants, the properties of cryogenic fluids, and cryogenic instrumentation and data acquisition.

  9. Pump for Saturated Liquids

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1986-01-01

    Boiling liquids pumped by device based on proven components. Expanding saturated liquid in nozzle and diverting its phases along separate paths in liquid/vapor separator raises pressure of liquid. Liquid cooled in process. Pump makes it unnecessary to pressurize cryogenic liquids in order to pump them. Problems of introducing noncondensable pressurizing gas avoided.

  10. Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution

    SciTech Connect

    Henn, T.; Kiessling, T. Ossau, W.; Molenkamp, L. W.; Biermann, K.; Santos, P. V.

    2013-12-15

    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast “white light” supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

  11. Design of a diagnostic residual gas analyzer for the ITER divertor

    SciTech Connect

    Klepper, C Christopher; Biewer, T. M.; Graves, Van B; Andrew, P.; Marcus, Chris; Shimada, M.; Hughes, S.; Boussier, B.; Johnson, D. W.; Gardner, W. L.; Hillis, D. L.; Vayakis, G.; Vayakis, G.; Walsh, M.

    2015-01-01

    One of the ITER diagnostics having reached an advanced design stage is a diagnostic RGA for the divertor, i.e. residual gas analysis system for the ITER divertor, which is intended to sample the divertor pumping duct region during the plasma pulse and to have a response time compatible with plasma particle and impurity lifetimes in the divertor region. Main emphasis is placed on helium (He) concentration in the ducts, as well as the relative concentration between the hydrogen isotopes (H2, D2, T2). Measurement of the concentration of radiative gases, such as neon (Ne) and nitrogen (N2), is also intended. Numerical modeling of the gas flow from the sampled region to the cluster of analysis sensors, through a long (~8m long, ~110mm diameter) sampling pipe terminating in a pressure reducing orifice, confirm that the desired response time (~1s for He or D2) is achieved with the present design.

  12. Cryogenic exciter

    SciTech Connect

    Bray, James William; Garces, Luis Jose

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  13. Actively convected liquid metal divertor

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  14. Impurity Transport in a Simulated Gas Target Divertor

    NASA Astrophysics Data System (ADS)

    Blush, L. M.; Luckhardt, S.; Seraydarian, R.; Whyte, D.; Conn, R. W.; Schmitz, L.

    1997-11-01

    Previous simulated gas target divertor experiments in the PISCES-A linear plasma device (n <= 3 × 10^19 m-3, kTe <= 20 eV) indicated enhanced impurity retention near the target in comparison to a high recycling divertor regime. A 1 1\\over2-D fluid modeling code suggested that impurities are impeded from transporting away from the target by friction with the neutral and ionized hydrogen. In recent experiments with a PISCES-A ``slot-type'' divertor configuration, we have implemented a spectroscopic detection system to measure the axial density profiles of several impurity charge states. Moreover, we envision adding two extended cylindrical baffles spanning a pumped vacuum section to achieve strong differential pumping. This arrangement will isolate the plasma source from the gas target region and allow us to seed the background hydrogen plasma with higher impurities concentrations and investigate a regime dominated by impurity radiation. In preliminary design experiments, PISCES-A was successfully operated with an electrically isolated, copper baffle (d=5 cm, l=33.5 cm) mounted to reduce the vacuum conductance between the source and target regions. This work supported by US-DoE contract DE-FG03-95ER-54301.

  15. UEDGE Simulation of Triple-X Divertors

    NASA Astrophysics Data System (ADS)

    Wiley, J.; Kotschenreuther, M.; Valanju, P.; Pekker, M.; Rognlien, T.

    2006-04-01

    Novel magnetic divertors with additional X-points downstream from the main plasma X-point have been proposed to overcome reactor heat flux limitations. These divertor designs may allow a fully detached state at the divertor plate - without the poor confinement and disruptive tendencies by avoiding x-point MARFEs found in conventional divertor magnetic geometries. These new configurations are examined using UEDGE for existing machines that are considering experimental implementation of these divertors: PEGASUS, MAST, and EAST(China's new long-pulse, superconducting tokamak) as well as proposed reactor designs.

  16. Divertor plasma conditions and neutral dynamics in horizontal and vertical divertor configurations in JET-ILW low confinement mode plasmas

    NASA Astrophysics Data System (ADS)

    Groth, M.; Brezinsek, S.; Belo, P.; Brix, M.; Calabro, G.; Chankin, A.; Clever, M.; Coenen, J. W.; Corrigan, G.; Drewelow, P.; Guillemaut, C.; Harting, D.; Huber, A.; Jachmich, S.; Järvinen, A.; Kruezi, U.; Lawson, K. D.; Lehnen, M.; Maggi, C. F.; Marchetto, C.; Marsen, S.; Maviglia, F.; Meigs, A. G.; Moulton, D.; Silva, C.; Stamp, M. F.; Wiesen, S.

    2015-08-01

    Measurements of the plasma conditions at the low field side target plate in JET ITER-like wall ohmic and low confinement mode plasmas show minor differences in divertor plasma configurations with horizontally and vertically inclined targets. Both the reduction of the electron temperature in the vicinity of the strike points and the rollover of the ion current to the plates follow the same functional dependence on the density at the low field side midplane. Configurations with vertically inclined target plates, however, produce twice as high sub-divertor pressures for the same upstream density. Simulations with the EDGE2D-EIRENE code package predict significantly lower plasma temperatures at the low field side target in vertical than in horizontal target configurations. Including cross-field drifts and imposing a pumping by-pass leak at the low-field side plate can still not recover the experimental observations.

  17. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  18. Ames Research Center cryogenics program

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1987-01-01

    Viewgraphs describe the Ames Research Center's cryogenics program. Diagrams are given of a fluid management system, a centrifugal pump, a flow meter, a liquid helium test facility, an extra-vehicular activity coupler concept, a dewar support with passive orbital disconnect, a pulse tube refrigerator, a dilution refrigerator, and an adiabatic demagnetization cooler.

  19. Compatibility of the Radiating Divertor with High Performance Plasmas in DIII-D

    SciTech Connect

    Petrie, T W; Wade, M R; Brooks, N H; Fenstermacher, M E; Groth, M; Hyatt, A W; Isler, R C; Lasnier, C J; Leonard, A W; Mahdavi, M A; Porter, G D; Schaffer, M J; Watkins, J G; West, W P

    2006-05-18

    A radiating divertor approach was successfully applied to high performance 'hybrid' plasmas [M.R. Wade, et al., Proc. 20th IAEA Fusion Energy Conf., Vilamoura, (2004)]. Our technique included: (1) injecting argon near the outer divertor target, (2) enhancing the plasma flow into the inner and outer divertors by a combination of particle pumping and deuterium gas puffing upstream of the divertor targets, and (3) isolating the inner divertor from the outer by a structure in the private flux region. Good hybrid conditions were maintained, as the peak heat flux at the outer divertor target was reduced by a factor of 2.5; the peak heat flux at the inner target decreased by 20%. This difference was caused by a higher concentration of argon at the outer target than at the inner target. Argon accumulation in the main plasma was modest (n{sub AR}/n{sub e} {le}0.004 on axis), although the argon profile was more peaked than the electron profile.

  20. Recent Progress in the NSTX/NSTX-U Lithium Program and Prospects for Reactor-Relevant Liquid-Lithium Based Divertor Development

    SciTech Connect

    M. Ono, et al.

    2012-10-27

    Developing a reactor compatible divertor has been identified as a particularly challenging technology problem for magnetic confinement fusion. While tungsten has been identified as the most attractive solid divertor material, the NSTX/NSTX-U lithium (Li) program is investigating the viability of liquid lithium (LL) as a potential reactor compatible divertor plasma facing component (PFC) . In the near term, operation in NSTX-U is projected to provide reactor-like divertor heat loads < 40 MW/m^2 for 5 s. During the most recent NSTX campaign, ~ 0.85 kg of Li was evaporated onto the NSTX PFCs where a ~50% reduction in heat load on the Liquid Lithium Divertor (LLD) was observed, attributable to enhanced divertor bolometric radiation. This reduced divertor heat flux through radiation observed in the NSTX LLD experiment is consistent with the results from other lithium experiments and calculations. These results motivate an LL-based closed radiative divertor concept proposed here for NSTX-U and fusion reactors. With an LL coating, the Li is evaporated from the divertor strike point surface due to the intense heat. The evaporated Li is readily ionized by the plasma due to its low ionization energies, and the ionized Li ions can radiate strongly, resulting in a significant reduction in the divertor heat flux. Due to the rapid plasma transport in divertor plasma, the radiation values can be significantly enhanced up to ~ 11 MJ/cc of LL. This radiative process has the desired function of spreading the focused divertor heat load to the entire divertor chamber facilitating the divertor heat removal. The LL divertor surface can also provide a "sacrificial" surface to protect the substrate solid material from transient high heat flux such as the ones caused by the ELMs. The closed radiative LLD concept has the advantages of providing some degree of partition in terms of plasma disruption forces on the LL, Li particle divertor retention, and strong divertor pumping action from the

  1. Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake

    SciTech Connect

    Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh

    2013-10-15

    Advanced divertors are magnetic geometries where a second X-point is added in the divertor region to address the serious challenges of burning plasma power exhaust. Invoking physical arguments, numerical work, and detailed model magnetic field analysis, we investigate the magnetic field structure of advanced divertors in the physically relevant region for power exhaust—the scrape-off layer. A primary result of our analysis is the emergence of a physical “metric,” the Divertor Index DI, which quantifies the flux expansion increase as one goes from the main X-point to the strike point. It clearly separates three geometries with distinct consequences for divertor physics—the Standard Divertor (DI = 1), and two advanced geometries—the X-Divertor (XD, DI > 1) and the Snowflake (DI < 1). The XD, therefore, cannot be classified as one variant of the Snowflake. By this measure, recent National Spherical Torus Experiment and DIIID experiments are X-Divertors, not Snowflakes.

  2. Kinetic Modeling of Divertor Plasma

    NASA Astrophysics Data System (ADS)

    Ishiguro, Seiji; Hasegawa, Hiroki; Pianpanit, Theerasarn

    2015-11-01

    Particle-in-Cell (PIC) simulation with the Monte Carlo collisions and the cumulative scattering angle coulomb collision can present kinetic dynamics of divertor plasmas. We are developing two types of PIC codes. The first one is the three dimensional bounded PIC code where three dimensional kinetic dynamics of blob is studied and current flow structures related to sheath formation are unveiled. The second one is the one spatial three velocity space dimensional (1D3V) PIC code with the Monte Carlo collisions where formation of detach plasma is studied. First target of our research is to construct self-consistent full kinetic simulation modeling of the linear divertor simulation experiments. This work is performed with the support and under the auspices of NIFS Collaboration Research program (NIFS15KNSS059, NIFS14KNXN279, and NIFS13KNSS038) and the Research Cooperation Program on Hierarchy and Holism in Natural Science at NINS.

  3. Design and operation of a novel divertor cryopumping system in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Labombard, B.; Beck, B.; Bosco, J.; Childs, R.; Gwinn, D.; Irby, J.; Leccacorvi, R.; Marazita, S.; Mucic, N.; Pierson, S.; Rokhman, Y.; Titus, P.; Vieira, R.; Zaks, J.; Zhukovsky, A.

    2007-11-01

    C-Mod's recently installed upper-divertor cryopump is unique among the world's tokamaks, employing an array of gas-pumping slots that penetrate the upper divertor target. This geometry enables the use of a single toroidal loop of liquid helium, operating in an efficient heat transfer regime with low or no helium flow. A system pumping speed of 9,600 l/sec for D2 gas has been achieved, matching that of a full-scale prototype system. Neutral pressures in the pumping slots during upper-null plasmas (USN) are found to meet or exceed pressures in the lower divertor's private flux region during lower-null (LSN) -- evidence that the pumping-slot geometry is performing as intended. Very high steady-state pumping throughputs (exceeding ˜140 torr-l/s) have been demonstrated in USN. Reliable and efficient operation of the pump has been established, synchronized with the C-Mod shot cycle and consuming 60 to 90 liters of liquid helium during a full day of operation.

  4. Crossed-field divertor for a plasma device

    DOEpatents

    Kerst, Donald W.; Strait, Edward J.

    1981-01-01

    A divertor for removal of unwanted materials from the interior of a magnetic plasma confinement device includes the division of the wall of the device into segments insulated from each other in order to apply an electric field having a component perpendicular to the confining magnetic field. The resulting crossed-field drift causes electrically charged particles to be removed from the outer part of the confinement chamber to a pumping chamber. This method moves the particles quickly past the saddle point in the poloidal magnetic field where they would otherwise tend to stall, and provides external control over the rate of removal by controlling the magnitude of the electric field.

  5. Cryogenic Propellant Scavenging

    NASA Technical Reports Server (NTRS)

    Louie, B.; Kemp, N. J.; Daney, D. E.

    1985-01-01

    A detailed description of a computer model that has been developed for assessing the feasibility of low g cryogen propellant scavenging from the space shuttle External Tank (ET) is given. Either pump-assisted or pressure-induced propellant transfer may be selected. The program will accept a wide range of input variables, including the fuel to be transferred (LOX or LH2), heat leaks, tank temperatures, and piping and equipment specifications. The model has been parametrically analyzed to determine initial design specification for the system.

  6. Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Hosoyama, Kenji

    2002-02-01

    In this lecture we discuss the principle of method of cooling to a very low temperature, i.e. cryogenic. The "gas molecular model" will be introduced to explain the mechanism cooling by the expansion engine and the Joule-Thomson expansion valve. These two expansion processes are normally used in helium refrigeration systems to cool the process gas to cryogenic temperature. The reverse Carnot cycle will be discussed in detail as an ideal refrigeration cycle. First the fundamental process of liquefaction and refrigeration cycles will be discussed, and then the practical helium refrigeration system. The process flow of the system and the key components; -compressor, expander, and heat exchanger- will be discussed. As an example of an actual refrigeration system, we will use the cryogenic system for the KEKB superconducting RF cavity. We will also discuss the liquid helium distribution system, which is very important, especially for the cryogenic systems used in accelerator applications. 1 Principles of Cooling and Fundamental Cooling Cycle 2 Expansion engine, Joule-Thomson expansion, kinetic molecular theory, and enthalpy 3 Liquefaction Systems 4 Refrigeration Systems 5 Practical helium liquefier/refrigeration system 6 Cryogenic System for TRISTAN Superconducting RF Cavity

  7. Recent progress in the NSTX/NSTX-U lithium programme and prospects for reactor-relevant liquid-lithium based divertor development

    NASA Astrophysics Data System (ADS)

    Ono, M.; Jaworski, M. A.; Kaita, R.; Kugel, H. W.; Ahn, J.-W.; Allain, J. P.; Bell, M. G.; Bell, R. E.; Clayton, D. J.; Canik, J. M.; Ding, S.; Gerhardt, S.; Gray, T. K.; Guttenfelder, W.; Hirooka, Y.; Kallman, J.; Kaye, S.; Kumar, D.; LeBlanc, B. P.; Maingi, R.; Mansfield, D. K.; McLean, A.; Menard, J.; Mueller, D.; Nygren, R.; Paul, S.; Podesta, M.; Raman, R.; Ren, Y.; Sabbagh, S.; Scotti, F.; Skinner, C. H.; Soukhanovskii, V.; Surla, V.; Taylor, C. N.; Timberlake, J.; Zakharov, L. E.; the NSTX Research Team

    2013-11-01

    Developing a reactor-compatible divertor has been identified as a particularly challenging technology problem for magnetic confinement fusion. Application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and other plasma performance benefits. During the 2010 NSTX campaign, application of a relatively modest amount of Li (300 mg prior to the discharge) resulted in a ˜50% reduction in heat load on the liquid lithium divertor (LLD) attributable to enhanced divertor bolometric radiation. These promising Li results in NSTX and related modelling calculations motivated the radiative LLD concept proposed here. Li is evaporated from the liquid lithium (LL) coated divertor strike-point surface due to the intense heat flux. The evaporated Li is readily ionized by the plasma due to its low ionization energy, and the poor Li particle confinement near the divertor plate enables ionized Li ions to radiate strongly, resulting in a significant reduction in the divertor heat flux. This radiative process has the desired effect of spreading the localized divertor heat load to the rest of the divertor chamber wall surfaces, facilitating the divertor heat removal. The LL coating of divertor surfaces can also provide a ‘sacrificial’ protective layer to protect the substrate solid material from transient high heat flux such as the ones caused by the edge localized modes. By operating at lower temperature than the first wall, the LL covered large divertor chamber wall surfaces can serve as an effective particle pump for the entire reactor chamber, as impurities generally migrate towards lower temperature LL divertor surfaces. To maintain the LL purity, a closed LL loop system with a modest circulating capacity (e.g., ˜1 l s-1 for ˜1% level ‘impurities’) is envisioned for a steady-state 1 GW-electric class fusion power plant.

  8. RHIC cryogenics

    NASA Astrophysics Data System (ADS)

    Iarocci, M. A.; Brown, D.; Sondericker, J.; Wu, K. C.; Benson, J.; Farah, Y.; Lac, C.; Morgillo, A.; Nicoletti, A.; Quimby, E.; Rank, J.; Rehak, M.; Werner, A.

    2003-03-01

    An integrated helium cryogenic system was designed with the specific performance goal of cooling and refrigerating the cryogenic magnets to below their nominal operating temperature. These magnets make up the steering and focusing elements for the Relativistic Heavy Ion Collider (RHIC). In addition to meeting the accelerator demands, reliability, flexibility, safety, and ease of operation were key considerations during the design phase of the project. The refrigerator, with a capacity of 25 kW at about 4 K, was originally designed to match the load for the Colliding Beam Accelerator Project. The existing refrigerator, along with its complimentary warm compressor system was reconfigured slightly to meet the cooling process cycle design for RHIC. The original VAX based process control system was also adapted for RHIC, and later expanded upon to integrate a new programmable logic controller based ring resident control system, hence forming a common system to monitor and control all cryogenic components.

  9. Effect of Divertor Shaping on Divertor Plasma Behavior on DIII-D

    NASA Astrophysics Data System (ADS)

    Petrie, T. W.; Leonard, A. W.; Luce, T. C.; Mahdavi, M. A.; Holcomb, C. T.; Fenstermacher, M. E.; Hill, D. N.; Lasnier, C. J.; Watkins, J. G.; Moyer, R. A.; Stangeby, P. C.

    2012-10-01

    Recent experiments examined the dependence of divertor density (nTAR), temperature (TTAR), and heat flux at the outer divertor separatrix target on changes in the divertor separatrix geometry. The responses of nTAR and TTAR to changes in the parallel connection length in the scrape-off layer (SOL) (L||) are consistent with the predictions of the Two Point Model (TPM). However, nTAR and TTAR display a more complex response to changes in the radial location of the outer divertor strike point (RTAR) than expected based on the TPM. SOLPS transport analysis indicates that small differences in divertor geometry can change neutral trapping sufficient to explain differences between experiment and TPM predictions. The response of the core and divertor plasmas to changes in L|| and RTAR, under both radiating and non-radiating divertor conditions, will be shown.

  10. Self-pumping inpurity control systems for INTOR

    SciTech Connect

    Brooks, J.N.; Mattas, R.F.; Smith, D.L.; Hassanein, A.M.

    1987-01-01

    Two self-pumping systems have been examined for use as the INTOR impurity control system. The systems work by trapping helium in freshly deposited metal surface layers on or near the divertor plate. A slot divertor concept using vanadium or other trapping material appears to be both feasible and mechanically simple, and offers significant advantages in cost, reduced complexity, and helium pumping efficiency for the INTOR design.

  11. Moving Divertor Plates in a Tokamak

    SciTech Connect

    S.J. Zweben, H. Zhang

    2009-02-12

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.

  12. Cryogenic shutter

    NASA Astrophysics Data System (ADS)

    Barney, Richard D.; Magner, Thomas J.

    1992-07-01

    A magnetically operated shutter mechanism is provided that will function in cryogenic or cryogenic zero gravity environments to selectively block radiation such as light from passing through a window to a target object such as a mirror or detector located inside a cryogenic container such as a dewar. The mechanism includes a shutter paddle blade that is moved by an electromagnetically actuated torquing device between an open position where the target object is exposed to ambient radiation or light and a closed position where the shutter paddle blade shields the ambient radiation or light from the target object. The purpose of the shuttering device is to prevent the mirror or other target object from being directly exposed to radiation passing through the window located on the side wall of the dewar, thereby decreasing or eliminating any temperature gradient that would occur within the target object due to exposure to the radiation. A special nylon bearing system is utilized to prevent the device from binding during operation and the paddle blade is also thermally connected to a reservoir containing cryogen to further reduce the internal temperature.

  13. Rapidly Moving Divertor Plates In A Tokamak

    SciTech Connect

    S. Zweben

    2011-05-16

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ~10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  14. CRYOGENIC MAGNETS

    DOEpatents

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  15. Noncavitating Pump For Liquid Helium

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael; Swift, Walter; Sixsmith, Herbert

    1996-01-01

    Immersion pump features high efficiency in cryogenic service. Simple and reliable centrifugal pump transfers liquid helium with mass-transfer efficiency of 99 percent. Liquid helium drawn into pump by helical inducer, which pressurizes helium slightly to prevent cavitation when liquid enters impeller. Impeller then pressurizes liquid. Purpose of pump to transfer liquid helium from supply to receiver vessel, or to provide liquid helium flow for testing and experimentation.

  16. Dust divertor for a tokamak fusion reactor

    SciTech Connect

    Tang, X Z; Delzanno, G L

    2009-01-01

    Micron-size tungsten particulates find equilibrium position in the magnetized plasma sheath in the normal direction of the divertor surface, but are convected poloidally and toroidally by the sonic-ion-flow drag parallel to the divertor surface. The natural circulation of dust particles in the magnetized plasma sheath can be used to set up a flowing dust shield that absorbs and exhausts most of the tokamak heat flux to the divertor. The size of the particulates and the choice of materials offer substantial room for optimization.

  17. Cryogenic Technology Development For The MEG Liquid Xenon Calorimeter

    SciTech Connect

    Haruyama, Tomiyoshi

    2008-02-21

    Cryogenic key technologies have been developed for the muon rare decay experiment (MEG) at the Paul Scherrer Institute, Switzerland. These technologies are the high power pulse tube cryocooler for precise temperature and pressure control of liquid xenon in the calorimeter, a purification system with a cryogenic liquid pump and a cryogenic dewar with 1000 L storage capacity. The paper describes the general concepts and the first test results of each technology. All the results imply a promising performance for the coming MEG experiment.

  18. Advances in cryogenic engineering. Vols. 37A & 37B - Proceedings of the 1991 Cryogenic Engineering Conference, Univ. of Alabama, Huntsville, June 11-14, 1991

    NASA Technical Reports Server (NTRS)

    Fast, Ronald W. (Editor)

    1991-01-01

    The present volume on advances in cryogenic engineering discusses heat and mass transfer in helium, heat transfer in cryogenic fluids, thermoacoustic oscillations, and insulation. Attention is given to applications of superconductivity with reference to magnetic stability and coil protection, cryogenic techniques, and refrigeration for electronics and superconducting systems. Topics addressed include compressors, expanders, and pumps for liquid helium, magnetic refrigerators, pulse tube refrigerators, and cryocoolers. Also examined are properties of cryogenic fluids, cryogenic applications in transportion and space science and technology, and cryogenic instrumentation.

  19. Cryogenic seal concept for static and dynamic conditions

    NASA Technical Reports Server (NTRS)

    De Gaetano, E. A.

    1968-01-01

    Seal rings reduce cryogenic pump seal leakage under static and dynamic conditions. The rings are fitted into annular diaphragms, which are affected by cryogenic pressure and temperature, to move against a mating ring, to increase seal-bearing loads under static conditions.

  20. Stochasticity about a poloidal divertor separatrix

    SciTech Connect

    Skinner, D.A.; Osborne, T.H.; Prager, S.C.; Park, W.

    1986-10-01

    The stochasticization of the magnetic separatrix due to the presence of a helical perturbation in a poloidal divertor tokamak is illustrated by a numerical computation which traces magnetic field lines.

  1. Stochasticity about a poloidal divertor separatrix

    SciTech Connect

    Skinner, D.A.; Osborne, T.H.; Prager, S.C.; Park, W.

    1987-04-01

    The stochasticization of the magnetic separatrix caused by the presence of a helical perturbation in a poloidal divertor tokamak is illustrated by a numerical computation that traces magnetic field lines.

  2. High flux expansion divertor studies in NSTX

    SciTech Connect

    Soukhanovskii, V A; Maingi, R; Bell, R E; Gates, D A; Kaita, R; Kugel, H W; LeBlanc, B P; Maqueda, R; Menard, J E; Mueller, D; Paul, S F; Raman, R; Roquemore, A L

    2009-06-29

    Projections for high-performance H-mode scenarios in spherical torus (ST)-based devices assume low electron collisionality for increased efficiency of the neutral beam current drive. At lower collisionality (lower density), the mitigation techniques based on induced divertor volumetric power and momentum losses may not be capable of reducing heat and material erosion to acceptable levels in a compact ST divertor. Divertor geometry can also be used to reduce high peak heat and particle fluxes by flaring a scrape-off layer (SOL) flux tube at the divertor plate, and by optimizing the angle at which the flux tube intersects the divertor plate, or reduce heat flow to the divertor by increasing the length of the flux tube. The recently proposed advanced divertor concepts [1, 2] take advantage of these geometry effects. In a high triangularity ST plasma configuration, the magnetic flux expansion at the divertor strike point (SP) is inherently high, leading to a reduction of heat and particle fluxes and a facilitated access to the outer SP detachment, as has been demonstrated recently in NSTX [3]. The natural synergy of the highly-shaped high-performance ST plasmas with beneficial divertor properties motivated a further systematic study of the high flux expansion divertor. The National Spherical Torus Experiment (NSTX) is a mid-sized device with the aspect ratio A = 1.3-1.5 [4]. In NSTX, the graphite tile divertor has an open horizontal plate geometry. The divertor magnetic configuration geometry was systematically changed in an experiment by either (1) changing the distance between the lower divertor X-point and the divertor plate (X-point height h{sub X}), or by (2) keeping the X-point height constant and increasing the outer SP radius. An initial analysis of the former experiment is presented below. Since in the divertor the poloidal field B{sub {theta}} strength is proportional to h{sub X}, the X-point height variation changed the divertor plasma wetted area due to

  3. Fabrication and installation of the DIII-D radiative divertor structures

    SciTech Connect

    Hollerbach, M.A.; Smith, J.P.

    1997-11-01

    Phase 1A of the Radiative Divertor Program (RDP) is now installed in the DIII-D tokamak located at General Atomics. This hardware was added to enhance both the Divertor and Advanced Tokamak research elements of the DIII-D program. This installation consists of a divertor baffle enveloping a cryocondensation pump at the upper outer divertor target of DIII-D. The divertor baffle consists of two toroidally continuous Inconel 625 water-cooled rings and a toroidal array of discontinuous radiatively-cooled plates. The water-cooled rings are each comprised of four quadrants, mechanically formed, chem.-milled, and resistance and TIG welded Inconel 625 panels. The supports attaching the panels to the vessel wall are designed to accommodate the differential thermal expansion between the rings and vessel during bake and to react the electromagnetic loads induced during disruptions. They are made from either Inconel 625 or Inconel 718 depending on the stress levels predicted in Finite Element Analysis. Gas seals are designed to limit the leakage from the baffle chamber back to the core plasma to 2,500 {ell}/s and incorporate plasma sprayed alumina to minimize currents flowing through them. The bulk of the water-cooled ring fabrication was performed by a vendor, however, the final machining of penetrations in the conical ring for diagnostic access was performed in-house using a unique machining configuration. This configuration, and the machining of the diagnostic cutouts is described. Graphite tiles were machined from ATJ graphite to form a smooth plasma-facing surface. The installation of all divertor components required only four weeks.

  4. Particle exhaust schemes in the DIII-D advanced divertor configuration

    SciTech Connect

    Menon, M.M.; Mioduszewski, P.K.

    1989-01-01

    For density control in long-pulse operation, the open divertor on the DIII-D tokamak will be equipped with a baffled chamber and a pumping system. The throat of the baffle chamber is sized to provide optimal pumping for the typical plasma equilibrium configuration. Severe limitations on the toroidal conductance of this baffle chamber require the use of in-vessel pumping to achieve the desired particle exhaust of about 25 Torr{center dot}l/s. Two separate pumping schemes are considered: an array of titanium getter modules based on the design developed by the Tore Supra team and a cryocondensation pump. The merits and demerits of each scheme are analyzed, and the design considerations introduced by the tokamak environment are brought out. 3 refs., 5 figs.

  5. The effects of an open and closed divertor on particle exhaust during edge-localized mode suppression by resonant magnetic perturbations in DIII-D

    SciTech Connect

    Unterberg, E. A.; Schmitz, O.; Evans, T.E.; Maingi, Rajesh; Brooks, N. H.; Fenstermacher, M. E.; Mordijck, S.; Moyer, R.A.; Orlov, D. M.

    2010-01-01

    This paper compares the effects of divertor geometry on particle exhaust characteristics during the suppression of ELM using resonant magnetic perturbations (RMPs) on DIII-D. The subject is timely, particularly for ITER, because the combination of techniques to control or mitigate ELMs and control particle exhaust can provide confidence in the ability of an external pumping system to fully remove the particle exhaust. The differences between an open and closed divertor magnetic topology show a strong coupling of the perturbed strikepoint to the pumping manifold in closed divertor configurations, which can increase the particle exhaust by a factor of four. There is also an observed dependence on q(95) in this configuration, which is a common feature of RMP ELM suppression. Neutral density in both the active and non-active divertors is seen to increase during the RMP in the ISS configuration, and edge plasma conditions (i.e. n(e,sep) and midplane profile of D(alpha)) are seen to increase in the closed divertor configuration. Finally, the pumping exhaust is also shown to have a strong dependence on local measurements of the recycling flux. These observations, when taken as a whole, point to a substantial change in the plasma edge conditions, i.e. near the LCFS, throughout the poloidal cross-section of the vacuum vessel. This is coincident with the application of the RMP affecting the pumping capability of the system.

  6. CRYOGENIC DEWAR

    DOEpatents

    Chamberlain, W.H.; Maseck, H.E.

    1964-01-28

    This patent relates to a dewar for storing cryogenic gase and is of the type having aii inner flask surrounded by a vacuum jacket and having a vent spout through which evaporating gas escapes. Heretofore substantial gas loss has resulted from the radiation of heat towards the flask from the warmer outer elements of the dewar. In this invention, the mask is surrounded by a thermally conducting shield which is disposed in the vacuum space between the flask and the outer elements of the dewar. The shield contacts only the vent spout, which is cooled by the evaporating gas, and thus is maintained at a temperature very close to that of the flask itself. Accordingly, heat radiated toward the flask is intercepted and conducted to the evaporating gas rather than being re-radiated towards the hask. In a liquid helium dewar of typical configniration the mention reduces the boil-off rate by approximately one-half.(AEC)

  7. Divertor heat loads in RMP ELM controlled H-mode plasmas on DIII-D*

    SciTech Connect

    Jakubowski, M; Lasnier, C; Schmitz, O; Evans, T; Fenstermacher, M; Groth, M; Watkins, J; Eich, T; Moyer, R; Wolf, R; Baylor, L; Boedo, J; Burrell, K; Frerichs, H; deGrassie, J; Gohil, P; Joseph, I; Lehnen, M; Leonard, A; Petty, C; Pinsker, R; Reiter, D; Rhodes, T; Samm, U; Snyder, P; Stoschus, H; Osborne, T; Unterberg, B; West, W

    2008-10-13

    In this paper the manipulation of power deposition on divertor targets at DIII-D by application of resonant magnetic perturbations (RMPs) is analyzed. It has been found that heat transport shows a different reaction to the applied RMP depending on the plasma pedestal collisionality. At pedestal electron collisionality above 0.5 the heat flux during the ELM suppressed phase is of the same order as the inter-ELM in the non-RMP phase. Below this collisionality value we observe a slight increase of the total power flux to the divertor. This can be caused by much more negative potential at the divertor surface due to hot electrons reaching the divertor surface from the pedestal area and/or so called pump out effect. In the second part we discuss modification of ELM behavior due to the RMP. It is shown, that the width of the deposition pattern in ELMy H-mode depends linearly on the ELM deposited energy, whereas in the RMP phase of the discharge those patterns seem to be controlled by the externally induced magnetic perturbation. D{sub 2} pellets injected into the plasma bulk during ELM-free RMP H-mode lead in some cases to a short term small transients, which have very similar properties to ELMs in the initial RMP-on phase.

  8. A helical hydrogen-MARFE-like phenomenon in the divertor of the Wendelstein 7-AS stellarator

    NASA Astrophysics Data System (ADS)

    Wenzel, U.; König, R.; Pedersen, T. Sunn; the W7-AS Team

    2015-01-01

    In the island divertor of the W7-AS stellarator a high-density zone (HDZ) near the divertor plates was discovered some years ago (Ramasubramanian et al 2004 Nucl. Fusion 44 992-8) with electron densities up to 7 × 1020 m-3. We shed further light on this phenomenon by determining the poloidal and radial location of this zone and discussing potential implications of these findings. The HDZ is in the vicinity of, but clearly separated from the nearest X-point line. The carbon emission is clearly spatially separated, residing near or at the X-point lines. The HDZ shows many similarities with the hydrogen or wall MARFE in Textor-94 (Samm et al 1999 J. Nucl. Mater. 266-269 666). The structure is associated with a strongly increased neutral pressure, thus enabling efficient pumping. This offers the possibility for a very efficient exhaust regime in a stellarator with island divertor such as W7-X, simultaneously with significantly reduced convective heat loads onto the divertor itself. The spatial separation of the HDZ and the carbon radiation region may imply that such a state can be reached even in a non-carbon machine, and might therefore be DEMO-relevant.

  9. Poloidal divertor experiment with applied E vector x B vector/B/sup 2/ drift

    SciTech Connect

    Strait, E J

    1980-05-01

    It has been proposed that the E vector x B vector/B/sup 2/ drift arising from an externally applied electric field could be used in a tokamak or other toroidal device to remove plasma and impurities from the region near the wall and to reduce the amount of plasma striking the wall, either assisting or replacing a conventional magnetic field divertor. A poloidal magnetic divertor (without pumping chamber) was added to the Wisconsin Levitated Toroidal Octupole, and the octupole was operated with a tokamak-like magnetic field configuration (q = 0.7). A radial electric field was applied in the scrape-off zone, causing an E vector x B vector/B/sup 2/ drift with a large poloidal component. This reduced plasma flux reaching the wall of the toroid by up to a factor of 5 beyond the effect of the magnetic divertor, for divertor configurations with both high and low magnetic mirror ratios, in good agreement with a simple theoretical model. Plasma density and density scale length were also reduced in the scrape-off zone, in qualitative agreement with the model. This was not accompanied by any new instabilities in the scrape-off zone, nor by any appreciable degradation of confinement of the central plasma.

  10. A "Snowflake" Divertor and its Properties

    SciTech Connect

    Ryutov, D

    2007-06-21

    Handling the power and particle exhaust in fusion reactors based on tokamaks is a challenging problem [1,2]. To bring the energy flux to the divertor plates to an acceptable level (< 10 MW/m2), it is desirable to significantly increase poloidal flux expansion in the divertor area. Some recent ideas include that of a so-called X divertor [3] and a 'snowflake' divertor [4]. We use an acronym SF to designate the latter. In this paper we concentrate on the SF divertor. The general idea behind this configuration is that, by a proper selection of divertor (poloidal field) coils, one can make the null point of the second, not of the first order as in the standard divertor. The separatrix in the vicinity of the X point then acquires a characteristic hexapole structure (Fig. 1), reminiscent of a snowflake, whence the name. The fact that the field has a second-order null, leads to a significant increase of the flux expansion. It was noted in Ref. [4] that the SF configuration is topologically unstable: if the current in the divertor coils is somewhat higher than the one that provides the SF configuration, it becomes a single-null X-point configuration. Conversely, if the coil current becomes somewhat lower, there appear two separate X-points. To solve this problem, one can operate the divertor at the current by roughly 5% higher than the value needed to create the second-order null. Then, configuration becomes robust enough and the shape of the separatrix does not change significantly if the coil current varies by 2-3%. At the same time, the flux expansion still remained by a factor of {approx}3 larger compared to a 'canonical' divertor. Following Ref. [4], we call this configuration a 'SF-plus' configuration. Specific examples in Ref. [4] were given for simple magnetic geometries The aim of this paper is to demonstrate that the SF concept will also work for a strongly shaped plasma. The other set of issues considered in the present paper relates to the possible presence of

  11. Impurity-induced divertor plasma oscillations

    NASA Astrophysics Data System (ADS)

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-01

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  12. Impurity-induced divertor plasma oscillations

    DOE PAGESBeta

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-07

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ionmore » transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. As a result, the implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.« less

  13. Electromagnetic dampers for cryogenic applications

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Dirusso, Eliseo

    1988-01-01

    Cryogenic turbomachinery of the type used to pump high-pressure liquid hydrogen at -423 F and liquid oxygen at -297 F to the main engines of the Space Shuttle are subjected to lateral rotor vibrations from unbalance forces and transient loads. Conventional dampers which utilize viscous fluids such as lubricating oil cannot be used in turbopumps because the bearing components are filled with either liquid hydrogen or liquid oxygen, which have viscosity comparable to air and, therefore, are not effective in viscous dampers. Electromagentic dampers are currently being explored as a means of providing damping in cryogenic turbopumps because their damping effectiveness increases as temperature decreases and because they are compatible with the liquid hydrogen or liquid oxygen in the turbopumps.

  14. Impact of divertor geometry on radiative divertor performance in JET H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Jaervinen, A. E.; Brezinsek, S.; Giroud, C.; Groth, M.; Guillemaut, C.; Belo, P.; Brix, M.; Corrigan, G.; Drewelow, P.; Harting, D.; Huber, A.; Lawson, K. D.; Lipschultz, B.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Moulton, D.; Stamp, M. F.; Wiesen, S.; Contributors, JET

    2016-04-01

    Radiative divertor operation in JET high confinement mode plasmas with the ITER-like wall has been experimentally investigated and simulated with EDGE2D-EIRENE in horizontal and vertical low field side (LFS) divertor configurations. The simulations show that the LFS divertor heat fluxes are reduced with N2-injection in similar fashion in both configurations, qualitatively consistent with experimental observations. The simulations show no substantial difference between the two configurations in the reduction of the peak LFS heat flux as a function of divertor radiation, nitrogen concentration, or pedestal Zeff. Consistently, experiments show similar divertor radiation and nitrogen injection levels for similar LFS peak heat flux reduction in both configurations. Nevertheless, the LFS strike point is predicted to detach at 20% lower separatrix density in the vertical than in the horizontal configuration. However, since the peak LFS heat flux in partial detachment in the vertical configurations is shifted towards the far scrape-off layer (SOL), the simulations predict no benefit in the reduction of LFS peak heat flux for a given upstream density in the vertical configuration relative to a horizontal one. A factor of 2 reduction of deuterium ionization source inside the separatrix is observed in the simulations when changing to the vertical configuration. The simulations capture the experimentally observed particle and heat flux reduction at the LFS divertor plate in both configurations, when adjusting the impurity injection rate to reproduce the measured divertor radiation. However, the divertor D α -emissions are underestimated by a factor of 2-5, indicating a short-fall in radiation by the fuel species. In the vertical configuration, detachment is experimentally measured and predicted to start next to the strike point, extending towards the far SOL with increasing degree of detachment. In contrast, in the horizontal configuration, the entire divertor particle flux

  15. Designing divertor targets for uniform power load

    NASA Astrophysics Data System (ADS)

    Dekeyser, W.; Reiter, D.; Baelmans, M.

    2015-08-01

    Divertor design for next step fusion reactors heavily relies on 2D edge plasma modeling with codes as e.g. B2-EIRENE. While these codes are typically used in a design-by-analysis approach, in previous work we have shown that divertor design can alternatively be posed as a mathematical optimization problem, and solved very efficiently using adjoint methods adapted from computational aerodynamics. This approach has been applied successfully to divertor target shape design for more uniform power load. In this paper, the concept is further extended to include all contributions to the target power load, with particular focus on radiation. In a simplified test problem, we show the potential benefits of fully including the radiation load in the design cycle as compared to only assessing this load in a post-processing step.

  16. Liquid metal cooled divertor for ARIES

    SciTech Connect

    Muraviev, E.

    1995-01-01

    A liquid metal, Ga-cooled divertor design was completed for the double null ARIES-II divertor design. The design analysis indicated a surface heat flux removal capability of up to 15 MW/m{sup 2}, and its relative easy maintenance. Design issues of configuration, thermal hydraulics, thermal stresses, liquid metal loop and safety effects were evaluated. For coolant flow control, it was found that it is necessary to use some part of the blanket cooling ducts for the draining of liquid metal from the top divertor. In order to minimize the inventory of Ga, it was recommended that the liquid metal loop equipment should be located as close to the torus as possible. More detailed analysis of transient conditions especially under accident conditions was identified as an issue that will need to be addressed.

  17. Characteristics of divertor detachment for ITER conditions

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. S.; Pacher, H. D.; Pitts, R. A.

    2015-08-01

    The relative role of particle balance vs. momentum balance in the phenomenon of divertor plasma detachment in tokamaks is re-assessed. Ion removal from the plasma flow by volumetric recombination and/or cross-field transport is identified as the key element in the formation of the rollover of the ion saturation current on the targets, whereas "momentum removal" (friction) is responsible for maintaining high plasma pressure upstream. The deterioration of neutral particle confinement in the divertor as particle throughput increases is the primary cause of the solution collapse typically seen when deep detachment is modelled for present day experiments.

  18. Cryogenic cooling for high power laser amplifiers

    NASA Astrophysics Data System (ADS)

    Perin, J. P.; Millet, F.; Divoky, M.; Rus, B.

    2013-11-01

    Using DPSSL (Diode Pumped Solid State Lasers) as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz). The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K-170 K with a heat flux of 1 MW*m-2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  19. Utilization of vanadium alloys in the DIII-D Radiative Divertor Program

    SciTech Connect

    Smith, J.P.; Johnson, W.R.; Stambaugh, R.D.; Trester, P.W.; Smith, D.; Bloom, E.

    1995-10-01

    Vanadium alloys are attractive candidate structural materials for fusion power plants because of their potential for minimum environmental impact due to low neutron activation and rapid activation decay. They also possess favorable material properties for operation in a fusion environment. General Atomics (GA), in conjunction with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL), has developed a plan for the utilization of vanadium alloys as part of the Radiative Divertor (RD) upgrade for the DIII-D tokamak. The plan will be carried out in conjunction with General Atomics and the Materials Program of the US Department of Energy (DOE). This application of a vanadium alloy will provide a meaningful step in the development of advanced materials for fusion power devices by: (1) developing necessary materials processing technology for the fabrication of large vanadium alloy components, and (2) demonstrating the in-service behavior of a vanadium alloy (V-4Cr-4Ti) in a tokamak environment. The program consists of three phases: first, small vanadium alloy coupon samples will be exposed in DIII-D at positions in the vessel floor and within the pumping plenum region of the existing divertor structure; second, a small vanadium alloy component will be installed in the existing divertor, and third, during the forthcoming Radiative Divertor modification, scheduled for completion in mid-1997, the upper section of the new double-null, slotted divertor will be fabricated from vanadium alloy product forms. This program also includes research and development (R and D) efforts to support fabrication development and to resolve key issues related to environmental effects.

  20. Energy Efficient Cryogenics

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  1. Refrigeration for Cryogenic Sensors

    NASA Technical Reports Server (NTRS)

    Gasser, M. G. (Editor)

    1983-01-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests; split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  2. Cryogenic immersion microscope

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  3. The tungsten divertor experiment at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Neu, R.; Asmussen, K.; Krieger, K.; Thoma, A.; Bosch, H.-S.; Deschka, S.; Dux, R.; Engelhardt, W.; García-Rosales, C.; Gruber, O.; Herrmann, A.; Kallenbach, A.; Kaufmann, M.; Mertens, V.; Ryter, F.; Rohde, V.; Roth, J.; Sokoll, M.; Stäbler, A.; Suttrop, W.; Weinlich, M.; Zohm, H.; Alexander, M.; Becker, G.; Behler, K.; Behringer, K.; Behrisch, R.; Bergmann, A.; Bessenrodt-Weberpals, M.; Brambilla, M.; Brinkschulte, H.; Büchl, K.; Carlson, A.; Chodura, R.; Coster, D.; Cupido, L.; de Blank, H. J.; de Peña Hempel, S.; Drube, R.; Fahrbach, H.-U.; Feist, J.-H.; Feneberg, W.; Fiedler, S.; Franzen, P.; Fuchs, J. C.; Fußmann, G.; Gafert, J.; Gehre, O.; Gernhardt, J.; Haas, G.; Herppich, G.; Herrmann, W.; Hirsch, S.; Hoek, M.; Hoenen, F.; Hofmeister, F.; Hohenöcker, H.; Jacobi, D.; Junker, W.; Kardaun, O.; Kass, T.; Kollotzek, H.; Köppendörfer, W.; Kurzan, B.; Lackner, K.; Lang, P. T.; Lang, R. S.; Laux, M.; Lengyel, L. L.; Leuterer, F.; Manso, M. E.; Maraschek, M.; Mast, K.-F.; McCarthy, P.; Meisel, D.; Merkel, R.; Müller, H. W.; Münich, M.; Murmann, H.; Napiontek, B.; Neu, G.; Neuhauser, J.; Niethammer, M.; Noterdaeme, J.-M.; Pasch, E.; Pautasso, G.; Peeters, A. G.; Pereverzev, G.; Pitcher, C. S.; Poschenrieder, W.; Raupp, G.; Reinmüller, K.; Riedl, R.; Röhr, H.; Salzmann, H.; Sandmann, W.; Schilling, H.-B.; Schlögl, D.; Schneider, H.; Schneider, R.; Schneider, W.; Schramm, G.; Schweinzer, J.; Scott, B. D.; Seidel, U.; Serra, F.; Speth, E.; Silva, A.; Steuer, K.-H.; Stober, J.; Streibl, B.; Treutterer, W.; Troppmann, M.; Tsois, N.; Ulrich, M.; Varela, P.; Verbeek, H.; Verplancke, Ph; Vollmer, O.; Wedler, H.; Wenzel, U.; Wesner, F.; Wolf, R.; Wunderlich, R.; Zasche, D.; Zehetbauer, T.; Zehrfeld, H.-P.

    1996-12-01

    Tungsten-coated tiles, manufactured by plasma spray on graphite, were mounted in the divertor of the ASDEX Upgrade tokamak and cover almost 90% of the surface facing the plasma in the strike zone. Over 600 plasma discharges have been performed to date, around 300 of which were auxiliary heated with heating powers up to 10 MW. The production of tungsten in the divertor was monitored by a W I line at 400.8 nm. In the plasma centre an array of spectral lines at 5 nm emitted by ionization states around W XXX was measured. From the intensity of these lines the W content was derived. Under normal discharge conditions W-concentrations around 0741-3335/38/12A/013/img12 or even lower were found. The influence on the main plasma parameters was found to be negligible. The maximum concentrations observed decrease with increasing heating power. In several low power discharges accumulation of tungsten occurred and the temperature profile was flattened. The concentrations of the intrinsic impurities carbon and oxygen were comparable to the discharges with the graphite divertor. Furthermore, the density and the 0741-3335/38/12A/013/img13 limits remained unchanged and no negative influence on the energy confinement or on the H-mode threshold was found. Discharges with neon radiative cooling showed the same behaviour as in the graphite divertor case.

  4. Heat Load on Divertors in NCSX

    NASA Astrophysics Data System (ADS)

    Kaiser, T. B.; Hill, D. N.; Maingi, R.; Monticello, D.; Zarnstorff, M.; Grossman, A.

    2006-10-01

    We have continued our study[1-3] of the effect of divertors in NCSX, using magnetic field data generated by both the PIES and VMEC/MFBE equilibrium codes. Results for comparable equilibria from the two codes agree to within statistical uncertainty. We follow field lines from a surface just outside and conformal with the LCMS until they strike a divertor plate or the first wall, or exceed 1000m in length, with effects of particle scattering mimicked by field-line diffusion. Current candidate divertor designs efficiently collect field lines, allowing fewer than 0.1% to reach the wall. The sensitivity of localized power deposition, assumed to be proportional to the density of field- line strike-points, to adjustments in the divertor configuration is under investigation.1. T.B. Kaiser, et al, Bull. Am. Phys. Soc., 48, paper RP1-20, 2003.2. T.B. Kaiser, et al, Bull. Am. Phys. Soc., 49, paper PP1-73, 2004.3. R. Maingi, et al, EPS Conf. Rome, Italy, paper P5.116, 2006.

  5. Divertor target for magnetic containment device

    DOEpatents

    Luzzi, Jr., Theodore E.

    1982-01-01

    In a plasma containment device of a type having superconducting field coils for magnetically shaping the plasma into approximately the form of a torus, an improved divertor target for removing impurities from a "scrape off" region of the plasma comprises an array of water cooled swirl tubes onto which the scrape off flux is impinged. Impurities reflected from the divertor target are removed from the target region by a conventional vacuum getter system. The swirl tubes are oriented and spaced apart within the divertor region relative to the incident angle of the scrape off flux to cause only one side of each tube to be exposed to the flux to increase the burnout rating of the target. The divertor target plane is oriented relative to the plane of the path of the scrape off flux such that the maximum heat flux onto a swirl tube is less than the tube design flux. The containment device is used to contain the plasma of a tokamak fusion reactor and is applicable to other long pulse plasma containment systems.

  6. An X-point ergodic divertor

    SciTech Connect

    Chu, M.S.; Jensen, T.H.; La Haye, R.J.; Taylor, T.S.; Evans, T.E.

    1991-10-01

    A new ergodic divertor is proposed. It utilizes a system of external (n = 3) coils arranged to generate overlapping magnetic islands in the edge region of a diverted tokamak and connect the randomized field lines to the external (cold) divertor plate. The novel feature in the configuration is the placement of the external coils close to the X-point. A realistic design of the external coil set is studied by using the field line tracing method for a low aspect ratio (A {approx equal} 3) tokamak. Two types of effects are observed. First, by placing the coils close to the X-point, where the poloidal magnetic field is weak and the rational surfaces are closely packed only a moderate amount of current in the external coils is needed to ergodize the edge region. This ergodized edge enhances the edge transport in the X-point region and leads to the potential of edge profile control and the avoidance of edge localized modes (ELMs). Furthermore, the trajectories of the field lines close to the X-point are modified by the external coil set, causing the hit points on the external divertor plates to be randomized and spread out in the major radius direction. A time-dependent modulation of the currents in the external (n = 3) coils can potentially spread the heat flux more uniformly on the divertor plate avoiding high concentration of the heat flux. 10 refs., 9 figs.

  7. Divertor Coil Design and Implementation on Pegasus

    NASA Astrophysics Data System (ADS)

    Shriwise, P. C.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Kujak-Ford, B. A.; Lewicki, B. T.; Winz, G. R.

    2012-10-01

    An upgraded divertor coil system is being commissioned on the Pegasus Toroidal Experiment in conjunction with power system upgrades in order to achieve higher β plasmas, reduce impurities, and possibly achieve H-mode operation. Design points for the divertor coil locations and estimates of their necessary current ratings were found using predictive equilibrium modeling based upon a 300 kA target plasma. This modeling represented existing Pegasus coil locations and current drive limits. The resultant design calls for 125 kA-turns from the divertor system to support the creation of a double null magnetic topology in plasmas with Ip<=300 kA. Initial experiments using this system will employ 900 V IGBT power supply modules to provide IDIV<=4 kA. The resulting 20 kA-turn capability of the existing divertor coil will be augmented by a new coil providing additional A-turns in series. Induced vessel wall current modeling indicates the time response of a 28 turn augmentation coil remains fast compared to the poloidal field penetration rate through the vessel. First results operating the augmented system are shown.

  8. Recent results from tokamak divertor plasma measurements

    SciTech Connect

    Allen, S.L.

    1996-05-01

    New diagnostics have been developed to address key divertor physics questions, including: target plate heat flux reduction by radiation, basic edge transport issues, and plasma wall interactions (PWI) such as erosion. A system of diagnostics measures the target plate heat flux (imaging IR thermography) and particle flux (probes, pressure and Penning gauges, and visible emission arrays). Recently, T{sub e},n{sub e}, and P{sub e} (electron pressure) have been measured in 2-D with divertor Thomson Scattering. During radiative divertor operation T{sub e} is less than 2 eV, indicating that new atomic processes are important. Langmuir probes measure higher T{sub e} in some cases. In addition, the measured P{sub e} near the separatrix at the target plate is lower than the midplane pressure, implying radial momentum transport. Bolometer arrays, inverted with reconstruction algorithms, provide the 2-D core and divertor radiation profiles. Spectroscopic measurements identify the radiating species and provide information on impurity transport; both absolute chordal measurements and tomographic reconstructions of images are used. Either intrinsic carbon or an inert species (e.g., injected Ne) are usually observed, and absolute particle inventories are obtained. Computer codes are both benchmarked with the experimental data and provide important consistency checks. Several techniques are used to measure fundamental plasma transport and fluctuations, including probes and reflectometry. PWI issues are studied with in-situ coupons and insertable samples (DiMES). Representative divertor results from DIII-D with references to results on other tokamaks will be presented.

  9. Design and analysis of the cryopump for the D3-D advanced divertor

    NASA Astrophysics Data System (ADS)

    Reis, E.; Almajan, I.; Baxi, C. B.; Schaffer, M. J.; Sevier, D. L.; Smith, J. P.; Menon, M. M.

    1992-09-01

    A cryocondensation pump for the DIII-D advanced divertor program is to be installed in the vacuum vessel in the fall of 1992. The purpose of the cryopump is to remove gas from the divertor, reduce recycling to the plasma, and to provide reduced density plasmas for experimental study. The pump is designed for a pumping speed of 50,000 l/s at 0.4 mtorr. The major pump components are toroidally continuous to minimize inductive voltages, thereby greatly reducing the risk of any electrical breakdown during disruptions. The cryopump consists of a 25 mm Inconel tube, 10 m long, cooled by liquid helium. It is surrounded by liquid nitrogen-cooled shields and a segmented ambient temperature radiation/particle shield. The outer nitrogen shield has a toroidally discontinuous copper coating to enhance thermal conductivity while maintaining a high toroidal electrical resistance to minimize electromagnetic loads during disruptions. The pump is cooled by 10 g/s of liquid helium at an inlet pressure of 115 kPa and temperature of 4.35 K. The pump is subjected to a steady-state heat load of less than 10 W due to conduction and radiation heat transfer. The helium tube will be subjected to Joule heating of less than 182J due to induced current and a particle load of less than 20 W during plasma operation. Thermal analysis and tests show that the helium tube can absorb a transient heat load of up to 100 W for 10 s and still pump deuterium at 6.3 K.

  10. The Lithium Vapor Box Divertor

    NASA Astrophysics Data System (ADS)

    Goldston, Robert; Hakim, Ammar; Hammett, Gregory; Jaworski, Michael; Myers, Rachel; Schwartz, Jacob

    2015-11-01

    Projections of scrape-off layer width to a demonstration power plant suggest an immense parallel heat flux, of order 12 GW/m2, which will necessitate nearly fully detached operation. Building on earlier work by Nagayama et al. and by Ono et al., we propose to use a series of differentially pumped boxes filled with lithium vapor to isolate the buffering vapor from the main plasma chamber, allowing stable detachment. This powerful differential pumping is only available for condensable vapors, not conventional gases. We demonstrate the properties of such a system through conservation laws for vapor mass and enthalpy, and then include plasma entrainment and ultimately an estimate of radiated power. We find that full detachment should be achievable with little leakage of lithium to the main plasma chamber. We also present progress towards solving the Navier-Stokes equation numerically for the chain of vapor boxes, including self-consistent wall boundary conditions and fully-developed shocks, as well as concepts for an initial experimental demonstration-of-concept. This work supported by DOE Contract No. DE-AC02-09CH11466.

  11. Cryogenic wind tunnels. III

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    Specific problems pertaining to cryogenic wind tunnels, including LN(2) injection, GN(2) exhaust, thermal insulation, and automatic control are discussed. Thermal and other physical properties of materials employed in these tunnels, properties of cryogenic fluids, storage and transfer of liquid nitrogen, strength and toughness of metals and nonmetals at low temperatures, and material procurement and qualify control are considered. Safety concerns with cryogenic tunnels are covered, and models for cryogenic wind tunnels are presented, along with descriptions of major cryogenic wind-tunnel facilities the United States, Europe, and Japan. Problems common to wind tunnels, such as low Reynolds number, wall and support interference, and flow unsteadiness are outlined.

  12. Cryogenic hydrogen-induced air liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  13. High specific surface area aerogel cryoadsorber for vacuum pumping applications

    DOEpatents

    Hill, Randal M.; Fought, Eric R.; Biltoft, Peter J.

    2000-01-01

    A cryogenic pumping system is provided, comprising a vacuum environment, an aerogel sorbent formed from a carbon aerogel disposed within the vacuum environment, and cooling means for cooling the aerogel sorbent sufficiently to adsorb molecules from the vacuum environment onto the aerogel sorbent. Embodiments of the invention include a liquid refrigerant cryosorption pump, a compressed helium cryogenic pump, a cryopanel and a Meissner coil, each of which uses carbon aerogel as a sorbent material.

  14. High Specific Surface area Aerogel Cryoadsorber for Vacuum Pumping Applications

    SciTech Connect

    Hill, Randal M.; Fought, Eric R.; Biltoft, Peter J.

    1998-12-22

    A cryogenic pumping system is provided, comprising a vacuum environment, an aerogel sorbent formed from a carbon aerogel disposed within the vacuum environment, and cooling means for cooling the aerogel sorbent sufficiently to adsorb molecules from the vacuum environment onto the aerogel sorbent. Embodiments of the invention include a liquid refrigerant cryosorption pump, a compressed helium cryogenic pump, a cryopanel and a Meissner coil, each of which uses carbon aerogel as a sorbent material.

  15. Evacuation time of cryogenic pipes for superconducting power transmission

    NASA Astrophysics Data System (ADS)

    Watanabe, Hirofumi; Sun, Jian; Yamamoto, Norimasa; Hamabe, Makoto; Kawahara, Toshio; Yamaguchi, Satarou

    2013-11-01

    The vacuum insulation has been used for the thermal insulation of cryogenic pipes for the superconducting power transmission to reduce the heat leak from the environment at the room temperature to the low temperature parts. Since the cryogenic pipes, in particular, those for long distance power transmission, are considered to be thin long pipes, it might take a long time for evacuation. To estimate the evacuation time of the long cryogenic pipes, model calculations have been performed. According to the calculations, it is found that there is an optimum condition between the pumping speed, the diameter of the outer pipe and the length of the cryogenic pipe for efficient evacuation. It is also found that, if the outgassing is suppressed enough, the evacuation can be possible within 1 week even for the long cryogenic pipe with the length of 10 km. The reduction of outgassing is particularly important for the efficient evacuation.

  16. Pumped limiter development on ISX

    SciTech Connect

    Mioduszewski, P.K.; Edmonds, P.H.; Sheffield, J.

    1981-01-01

    Pumped limiter configurations are being suggested for FED and INTOR for helium ash exhaust and fuel particle control. The goal of the pump limiter studies in ISX is the selection of the most promising concept and its evaluation in the ISX-C device under the following conditions: (1) quasi steady state operation (less than or equal to 30s), (2) high edge power densities, and (3) particle control by means of mechanical devices. We are considering various options, including particle scraper and ballistic particle collection concepts as well as the current FED design. In ISX-B we will test a full-size pump limiter and directly compare the heat removal and particle control capabilities with a bundle divertor. In ISX-C the steady state operation characteristics of pump limiters will be explored.

  17. NSTX Plasma Response to Lithium Coated Divertor

    SciTech Connect

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  18. Flute mode fluctuations in the divertor mirror cell

    SciTech Connect

    Katanuma, I.; Yagi, K.; Nakashima, Y.; Ichimura, M.; Imai, T.

    2010-03-15

    The computer code by reduced magnetohydrodynamic equations were made which can simulate the flute interchange modes (similar to the Rayleigh-Taylor instability) and the instability associated with the presence of nonuniform plasma flows (similar to the Kelvin-Helmholtz instability). This code is applied to a model divertor and the GAMMA10 [M. Inutake et al., Phys. Rev. Lett. 55, 939 (1985)] with divertor in order to investigate the flute modes in these divertor cells. The linear growth rate of the flute instability determined by the nonlocal linear analysis agrees with that in the linear phase of the simulations. There is a stable nonlinear steady state in both divertor cells, but the nonlinear steady state is different between the model divertor and the GAMMA10 with divertor.

  19. Physics Design Requirements for the National Spherical Torus Experiment Liquid Lithium Divertor

    SciTech Connect

    Kugel, W.; Bell, M.; Berzak,L.; Brooks, A.; Ellis, R.; Gerhardt, S.; Harjes, H.; Kaita, R.; Kallman, J.; Maingi, R.; Majeski, R.; Mansfield, D.; Menard, J.; Nygren,R. E.; Soukhanovskii, V.; Stotler, D.; Wakeland, P.; Zakharov L. E.

    2008-09-26

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on PFC's to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is installation of a liquid lithium divertor (LLD) to achieve density control for inductionless current drive capability (e.g., about a 15-25% ne decrease from present highest non-inductionless fraction discharges which often evolve toward the density limit, ne/nGW~1), to enable ne scan capability (x2) in the H-mode, to test the ability to operate at significantly lower density for future ST-CTF reactor designs (e.g., ne/nGW = 0.25), and eventually to investigate high heat-flux power handling (10 MW/m2) with longpulse discharges (>1.5s). The first step (LLD-1) physics design encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  20. High heat flux Langmuir probe array for the DIII-D divertor platesa)

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Taussig, D.; Boivin, R. L.; Mahdavi, M. A.; Nygren, R. E.

    2008-10-01

    Two modular arrays of Langmuir probes designed to handle a heat flux of up to 25 MW/m2 for 10 s exposures have been installed in the lower divertor target plates of the DIII-D tokamak. The 20 pyrolytic graphite probe tips have more than three times higher thermal conductivity and 16 times larger mass than the original DIII-D isotropic graphite probes. The probe tips have a fixed 12.5° surface angle to distribute the heat flux more uniformly than the previous 6 mm diameter domed collectors and a symmetric "rooftop" design to allow operation with reversed toroidal magnetic field. A large spring-loaded contact area improves heat conduction from each probe tip through a ceramic insulator into a cooled graphite divertor floor tile. The probe tips, brazed to molybdenum foil to ensure good electrical contact, are mounted in a ceramic tray for electrical isolation and reliable cable connections. The new probes are located 1.5 cm radially apart in a staggered arrangement near the entrance to the lower divertor pumping baffle and are linearly spaced 3 cm apart on the shelf above the in-vessel cryopump. Typical target plate profiles of Jsat, Te, and Vf with 4 mm spatial resolution are shown.

  1. Options for Cryogenic Load Cooling with Forced Flow Helium Circulation

    SciTech Connect

    Peter Knudsen, Venkatarao Ganni, Roberto Than

    2012-06-01

    Cryogenic pumps designed to circulate super-critical helium are commonly deemed necessary in many super-conducting magnet and other cooling applications. Acknowledging that these pumps are often located at the coldest temperature levels, their use introduces risks associated with the reliability of additional rotating machinery and an additional load on the refrigeration system. However, as it has been successfully demonstrated, this objective can be accomplished without using these pumps by the refrigeration system, resulting in lower system input power and improved reliability to the overall cryogenic system operations. In this paper we examine some trade-offs between using these pumps vs. using the refrigeration system directly with examples of processes that have used these concepts successfully and eliminated using such pumps

  2. Options for cryogenic load cooling with forced flow helium circulation

    NASA Astrophysics Data System (ADS)

    Knudsen, Peter; Ganni, Venkatarao; Than, Roberto

    2012-06-01

    Cryogenic pumps designed to circulate super-critical helium are commonly deemed necessary in many super-conducting magnet and other cooling applications. Acknowledging that these pumps are often located at the coldest temperature levels, their use introduces risks associated with the reliability of additional rotating machinery and an additional load on the refrigeration system. However, as it has been successfully demonstrated, this objective can be accomplished without using these pumps by the refrigeration system, resulting in lower system input power and improved reliability to the overall cryogenic system operations. In this paper we examine some trade-offs between using these pumps vs. using the refrigeration system directly with examples of processes that have used these concepts successfully and eliminated using such pumps

  3. Cryogenic system component development for fusion experimental reactor at JAERI

    SciTech Connect

    Kato, T.; Kamiya, S.; Tada, E.; Hiyama, T.; Kawano, K.; Shimamoto, S.

    1986-11-01

    A supercritical helium (SHE) circulation pump, a jet pump, and a cold compressor were designed and manufactured as the first step of cryogenic component development for a large-scale cryogenic system which is required for the Fusion Experimental Reactor (FER). The SHE circulation pump achieved 320-g/s flow rate with an 0.88-MPa pressure head at 4.6 K, making it the biggest cold pump in the world. The jet pump's mass flow ratio was about 1.0 with an 0.07-MPa pressure head at about 10 K. The cold compressor was successfully operated with an inlet vapor pressure of 0.053 MPa (3.7 K), and outlet pressure of 0.12 MPa, and a mass flow rate of 60 g/s. The designs and test results are described in this paper.

  4. JET divertor coils, manufacture, assembly and testing

    NASA Astrophysics Data System (ADS)

    Dolgetta, N.; Bertolini, E.; D'Urzo, C.; Last, J. R.; Laurenti, A.; Presle, P.; Sannazzaro, G.; Tait, J.; Tesini, A.

    1994-07-01

    Four coils have been built and installed in the JET vacuum vessel to produce divertor plasmas. The coils are copper with glass epoxy insulation and are enclosed in vacuum tight Inconel cases. At the coil contractor's factory, the coil parts were manufactured and process techniques qualified. In the JET vacuum vessel the conductor bars were brazed to form the coils, which were inserted in the casings and impregnated and cured with epoxy resin.

  5. Divertor and scoop limiter experiments on PDX

    SciTech Connect

    McGuire, K.; Beiersdorfer, P.; Bell, M.; Bol, K.; Boyd, D.; Buchenauer, D.; Budny, R.; Cavallo, A.; Couture, P.; Crowley, T.

    1985-01-01

    Routine operation in the enhanced energy confinement (or H-mode) regime during neutral beam injection was achieved by modifying the PDX divertor hardware to inhibit the influx of neutral gas from the divertor region to the main plasma chamber. A particle scoop limiter has been studied as a mechanical means of controlling particles at the plasma edge, and neutral beam heated discharges with this limiter show similar confinement times (normalized to tau/sub E//I/sub p/) to average H-mode plasmas. Two new instabilities are observed near the plasma edge in PDX during H-mode operation. The first, a quasicoherent fluctuation, occurred in bursts at well-defined frequencies (..delta omega../..omega.. less than or equal to 0.1) in the range 50 to 180 kHz, and had no obvious effects on confinement. The second instability, the edge relaxation phenomena (ERP), did cause deterioration in the global confinement time. The ERP's are characterized by sharp spikes in the divertor plasma density, H/sub ..cap alpha../ emission, and on the x-ray signals they appear as sawtoothlike relaxations at the plasma edge with an inversion radius near the separatrix. Attempts to obtain high ..beta../sub T/ in the H-mode discharges were hampered by a deterioration in the H-mode confinement and major disruptions which limited the achievable ..beta../sub T/. A study of the stability of both the limiter L-mode and divertor H-mode discharges close to the theoretical ..beta.. boundary, showed that the major disruptions observed there are sometimes caused by a fast growing m/n = 1/1 mode with no observable external precursor oscillations.

  6. Front-end system for Yb : YAG cryogenic disk laser

    NASA Astrophysics Data System (ADS)

    Perevezentsev, E. A.; Mukhin, I. B.; Kuznetsov, I. I.; Vadimova, O. L.; Palashov, O. V.

    2015-05-01

    A new front-end system for a cryogenic Yb : YAG laser is designed. The system consists of a femtosecond source, a stretcher and a regenerative amplifier with an output energy of 25 μJ at a pulse repetition rate of 49 kHz, a pulse duration of ~2 ns and a bandwidth of ~1.5 nm. After increasing the pump power of the regenerative amplifier, it is expected to achieve a pulse energy of ~1 mJ at the input to cryogenic amplification stages, which will allow one to obtain laser pulses with a duration of several picoseconds at the output of the cryogenic laser after compression.

  7. THERMAL HYDRAULIC ANALYSIS OF FIRE DIVERTOR

    SciTech Connect

    C.B. bAXI; M.A. ULRICKSON; D.E. DRIMEYER; P. HEITZENROEDER

    2000-10-01

    The Fusion Ignition Research Experiment (FIRE) is being designed as a next step in the US magnetic fusion program. The FIRE tokamak has a major radius of 2 m, a minor radius of 0.525 m, and liquid nitrogen cooled copper coils. The aim is to produce a pulse length of 20 s with a plasma current of 6.6 MA and with alpha dominated heating. The outer divertor and baffle of FIRE are water cooled. The worst thermal condition for the outer divertor and baffle is the baseline D-T operating mode (10 T, 6.6 MA, 20 s) with a plasma exhaust power of 67 MW and a peak heat flux of 20 MW/m{sup 2}. A swirl tape (ST) heat transfer enhancement method is used in the outer divertor cooling channels to increase the heat transfer coefficient and the critical heat flux (CHF). The plasma-facing surface consists of tungsten brush. The finite element (FE) analysis shows that for an inlet water temperature of 30 C, inlet pressure of 1.5 MPa and a flow velocity of 10 m/s, the incident critical heat flux is greater than 30 MW/m{sup 2}. The peak copper temperature is 490 C, peak tungsten temperature is 1560 C, and the pressure drop is less than 0.5 MPa. All these results fulfill the design requirements.

  8. Constrained ripple optimization of Tokamak bundle divertors

    SciTech Connect

    Hively, L.M.; Rome, J.A.; Lynch, V.E.; Lyon, J.F.; Fowler, R.H.; Peng, Y-K.M.; Dory, R.A.

    1983-02-01

    Magnetic field ripple from a tokamak bundle divertor is localized to a small toroidal sector and must be treated differently from the usual (distributed) toroidal field (TF) coil ripple. Generally, in a tokamak with an unoptimized divertor design, all of the banana-trapped fast ions are quickly lost due to banana drift diffusion or to trapping between the 1/R variation in absolute value vector B ..xi.. B and local field maxima due to the divertor. A computer code has been written to optimize automatically on-axis ripple subject to these constraints, while varying up to nine design parameters. Optimum configurations have low on-axis ripple (<0.2%) so that, now, most banana-trapped fast ions are confined. Only those ions with banana tips near the outside region (absolute value theta < or equal to 45/sup 0/) are lost. However, because finite-sized TF coils have not been used in this study, the flux bundle is not expanded.

  9. ADX - Advanced Divertor and RF Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl

    2015-11-01

    The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.

  10. Device applications of cryogenic optical refrigeration

    NASA Astrophysics Data System (ADS)

    Melgaard, Seth D.; Seletskiy, Denis V.; Epstein, Richard I.; Alden, Jay V.; Sheik-Bahae, Mansoor

    2014-02-01

    With the coldest solid-state temperatures (ΔT <185K from 300K) achievable by optical refrigeration, it is now timely to apply this technology to cryogenic devices. Along with thermal management and pump absorption, this work addresses the most key engineering challenge of transferring cooling power to the payload while efficiently rejecting optical waste-heat fluorescence. We discuss our optimized design of such a thermal link, which shows excellent performance in optical rejection and thermal properties.

  11. A cryogenic test facility

    NASA Astrophysics Data System (ADS)

    Veenendaal, Ian

    The next generation, space-borne instruments for far infrared spectroscopy will utilize large diameter, cryogenically cooled telescopes in order to achieve unprecedented sensitivities. Low background, ground-based cryogenic facilities are required for the cryogenic testing of materials, components and subsystems. The Test Facility Cryostat (TFC) at the University of Lethbridge is a large volume, closed cycle, 4K cryogenic facility, developed for this purpose. This thesis discusses the design and performance of the facility and associated external instrumentation. An apparatus for measuring the thermal properties of materials is presented, and measurements of the thermal expansion and conductivity of carbon fibre reinforced polymers (CFRPs) at cryogenic temperatures are reported. Finally, I discuss the progress towards the design and fabrication of a demonstrator cryogenic, far infrared Fourier transform spectrometer.

  12. Divertor Heat Flux Mitigation in the National Spherical Torus Experiment

    SciTech Connect

    Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

    2008-08-04

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  13. Divertor bypass in the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Pitcher, C. S.; LaBombard, B.; Danforth, R.; Pina, W.; Silveira, M.; Parkin, B.

    2001-01-01

    The Alcator C-Mod divertor bypass has for the first time allowed in situ variations to the mechanical baffle design in a tokamak. The design utilizes small coils which interact with the ambient magnetic field inside the vessel to provide the torque required to control small flaps of a Venetian blind geometry. Plasma physics experiments with the bypass have revealed the importance of the divertor baffling to maintain high divertor gas pressures. These experiments have also indicated that the divertor baffling has only a limited effect on the main chamber pressure in C-Mod.

  14. Divertor heat flux mitigation in the National Spherical Torus Experiment

    SciTech Connect

    Soukhanovskii, V. A.; Maingi, R.; Gates, D.A.; Menard, J.E.; Bush, C.E.

    2009-01-01

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono , Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m(-2) to 0.5-2 MW m(-2) in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  15. Fundamentals of Cryogenics

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley; Tomsik, Thomas; Moder, Jeff

    2014-01-01

    Analysis of the extreme conditions that are encountered in cryogenic systems requires the most effort out of analysts and engineers. Due to the costs and complexity associated with the extremely cold temperatures involved, testing is sometimes minimized and extra analysis is often relied upon. This short course is designed as an introduction to cryogenic engineering and analysis, and it is intended to introduce the basic concepts related to cryogenic analysis and testing as well as help the analyst understand the impacts of various requests on a test facility. Discussion will revolve around operational functions often found in cryogenic systems, hardware for both tests and facilities, and what design or modelling tools are available for performing the analysis. Emphasis will be placed on what scenarios to use what hardware or the analysis tools to get the desired results. The class will provide a review of first principles, engineering practices, and those relations directly applicable to this subject including such topics as cryogenic fluids, thermodynamics and heat transfer, material properties at low temperature, insulation, cryogenic equipment, instrumentation, refrigeration, testing of cryogenic systems, cryogenics safety and typical thermal and fluid analysis used by the engineer. The class will provide references for further learning on various topics in cryogenics for those who want to dive deeper into the subject or have encountered specific problems.

  16. A cryogenic slab CO laser

    SciTech Connect

    Ionin, Andrei A; Kozlov, A Yu; Seleznev, L V; Sinitsyn, D V

    2009-03-31

    A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 {yields} V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 {mu}m. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of {approx}12 W was obtained for this laser operating on fundamental bands and its efficiency achieved {approx}14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at {approx} 100 laser lines in the spectral region from 5.0 to 6.5 {mu}m with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 {yields} V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 {mu}m. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than {+-}10 %) was stable for more than an hour. (lasers)

  17. Cryogenic storage devices

    SciTech Connect

    Pelloux-gervais, P.

    1982-02-09

    The present invention relates to a device for the cryogenic storing of products. In a tank, canisters are suspended via rods, and these rods rest on the rim of the tank via retaining heads. The invention is applicable to the cryogenic storage of seeds, semen, vegetable substances, etc.

  18. Sealing Mechanical Cryogenic Coolers

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1985-01-01

    Metal bellows used to seal Vuilleumier and Stirling-cycle cryogenic coolers, replacing sliding seals that failed after only 3,000 hours of service. Metal bellows, incorporated in displacer design provide nonrubbing dynamic seal. Lifetime of cryogenic cooler no longer limited by loss of sealing material and by deterioration of regenerators due to clogging by seal debris.

  19. Cryogenic Information Center

    NASA Technical Reports Server (NTRS)

    Mohling, Robert A.; Marquardt, Eric D.; Fusilier, Fred C.; Fesmire, James E.

    2003-01-01

    The Cryogenic Information Center (CIC) is a not-for-profit corporation dedicated to preserving and distributing cryogenic information to government, industry, and academia. The heart of the CIC is a uniform source of cryogenic data including analyses, design, materials and processes, and test information traceable back to the Cryogenic Data Center of the former National Bureau of Standards. The electronic database is a national treasure containing over 146,000 specific bibliographic citations of cryogenic literature and thermophysical property data dating back to 1829. A new technical/bibliographic inquiry service can perform searches and technical analyses. The Cryogenic Material Properties (CMP) Program consists of computer codes using empirical equations to determine thermophysical material properties with emphasis on the 4-300K range. CMP's objective is to develop a user-friendly standard material property database using the best available data so government and industry can conduct more accurate analyses. The CIC serves to benefit researchers, engineers, and technologists in cryogenics and cryogenic engineering, whether they are new or experienced in the field.

  20. MOSFET's for Cryogenic Amplifiers

    NASA Technical Reports Server (NTRS)

    Dehaye, R.; Ventrice, C. A.

    1987-01-01

    Study seeks ways to build transistors that function effectively at liquid-helium temperatures. Report discusses physics of metaloxide/semiconductor field-effect transistors (MOSFET's) and performances of these devices at cryogenic temperatures. MOSFET's useful in highly sensitive cryogenic preamplifiers for infrared astronomy.

  1. The cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1976-01-01

    Based on theoretical studies and experience with a low speed cryogenic tunnel and with a 1/3-meter transonic cryogenic tunnel, the cryogenic wind tunnel concept was shown to offer many advantages with respect to the attainment of full scale Reynolds number at reasonable levels of dynamic pressure in a ground based facility. The unique modes of operation available in a pressurized cryogenic tunnel make possible for the first time the separation of Mach number, Reynolds number, and aeroelastic effects. By reducing the drive-power requirements to a level where a conventional fan drive system may be used, the cryogenic concept makes possible a tunnel with high productivity and run times sufficiently long to allow for all types of tests at reduced capital costs and, for equal amounts of testing, reduced total energy consumption in comparison with other tunnel concepts.

  2. Challenges for Cryogenics at Iter

    NASA Astrophysics Data System (ADS)

    Serio, L.

    2010-04-01

    Nuclear fusion of light nuclei is a promising option to provide clean, safe and cost competitive energy in the future. The ITER experimental reactor being designed by seven partners representing more than half of the world population will be assembled at Cadarache, South of France in the next decade. It is a thermonuclear fusion Tokamak that requires high magnetic fields to confine and stabilize the plasma. Cryogenic technology is extensively employed to achieve low-temperature conditions for the magnet and vacuum pumping systems. Efficient and reliable continuous operation shall be achieved despite unprecedented dynamic heat loads due to magnetic field variations and neutron production from the fusion reaction. Constraints and requirements of the largest superconducting Tokamak machine have been analyzed. Safety and technical risks have been initially assessed and proposals to mitigate the consequences analyzed. Industrial standards and components are being investigated to anticipate the requirements of reliable and efficient large scale energy production. After describing the basic features of ITER and its cryogenic system, we shall present the key design requirements, improvements, optimizations and challenges.

  3. Divertor for use in fusion reactors

    DOEpatents

    Christensen, Uffe R.

    1979-01-01

    A poloidal divertor for a toroidal plasma column ring having a set of poloidal coils co-axial with the plasma ring for providing a space for a thick shielding blanket close to the plasma along the entire length of the plasma ring cross section and all the way around the axis of rotation of the plasma ring. The poloidal coils of this invention also provide a stagnation point on the inside of the toroidal plasma column ring, gently curving field lines for vertical stability, an initial plasma current, and the shaping of the field lines of a separatrix up and around the shielding blanket.

  4. Comparison of ELM heat loads in snowflake and standard divertors

    SciTech Connect

    Rognlien, T D; Cohen, R H; Ryutov, D D; Umansky, M V

    2012-05-08

    An analysis is given of the impact of the tokamak divertor magnetic structure on the temporal and spatial divertor heat flux from edge localized modes (ELMs). Two configurations are studied: the standard divertor where the poloidal magnetic field (B{sub p}) varies linearly with distance (r) from the magnetic null and the snowflake where B{sub p} varies quadratrically with r. Both one and two-dimensional models are used to analyze the effect of the longer magnetic field length between the midplane and the divertor plate for the snowflake that causes a temporal dilation of the ELM divertor heat flux. A second effect discussed is the appearance of a broad region near the null point where the poloidal plasma beta can substantially exceed unity, especially for the snowflake configuration during the ELM; such a condition is likely to drive additional radial ELM transport.

  5. Super-X divertors and high power density fusion devices

    SciTech Connect

    Valanju, P. M.; Kotschenreuther, M.; Mahajan, S. M.; Canik, J.

    2009-05-15

    The Super-X Divertor (SXD), a robust axisymmetric redesign of the divertor magnetic geometry that can allow a fivefold increase in the core power density of toroidal fusion devices, is presented. With small changes in poloidal coils and currents for standard divertors, the SXD allows the largest divertor plate radius inside toroidal field coils. This increases the plasma-wetted area by 2-3 times over all flux-expansion-only methods (e.g., plate near main X point, plate tilting, X divertor, and snowflake), decreases parallel heat flux and hence plasma temperature at plate, and increases connection length by 2-5 times. Examples of high-power-density fusion devices enabled by SXD are discussed; the most promising near-term device is a 100 MW modular compact fusion neutron source 'battery' small enough to fit inside a conventional fission blanket.

  6. RELAP5 MODEL OF THE DIVERTOR PRIMARY HEAT TRANSFER SYSTEM

    SciTech Connect

    Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H

    2010-08-01

    This report describes the RELAP5 model that has been developed for the divertor primary heat transfer system (PHTS). The model is intended to be used to examine the transient performance of the divertor PHTS and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the model and examine general divertor PHTS transient behavior. The model can be used as a starting point for developing transient modeling capability, including control system modeling, safety evaluations, etc., and is not intended to represent the final divertor PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, present pressurizer controls may not be sufficient to keep system pressures within their desired range. Additional divertor PHTS and control system design efforts may be required to ensure system pressure fluctuation during normal operation remains within specified limits.

  7. OEDGE Modeling of Divertor Fueling at DIII-D

    NASA Astrophysics Data System (ADS)

    Bray, B. D.; Leonard, A. W.; Elder, J. D.; Stangeby, P. C.

    2015-11-01

    Onion-skin-modeling (OSM) is used to assess the affect of divertor closure on pedestal fueling sources. The OSM includes information from a wide range of diagnostic measurements at DIII-D to constrain the model background plasma for better simulation of neutrals and impurity ions and spectroscopy to compare to the results of the simulation. DIII-D has open lower divertor and closed upper divertor configurations which can be run with similar discharges. Progress toward modeling the pedestal fueling in low density plasmas for these cases will be presented as well as initial comparisons of recent lower single null discharges with the outer leg on the divertor shelf (fully open) and divertor floor (partially open). Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344.

  8. Advances in cryogenic engineering. Vols. 35A & 35B - Proceedings of the 1989 Cryogenic Engineering Conference, University of California, Los Angeles, July 24-28, 1989

    NASA Technical Reports Server (NTRS)

    Fast, R. W. (Editor)

    1990-01-01

    The book presents a review of literature on superfluid helium, together with papers under the topics on heat and mass transfer in He II; applications of He II for cooling superconducting devices in space; heat transfer to liquid helium and liquid nitrogen; multilayer insulation; applications of superconductivity, including topics on magnets and other devices, magnet stability and coil protection, and cryogenic techniques; and refrigeration for electronics. Other topics discussed include refrigeration of superconducting systems; the expanders, cold compressors, and pumps for liquid helium; dilution refrigerators; magnetic refrigerators; pulse tube refrigerators; cryocoolers for space applications; properties of cryogenic fluids; cryogenic instrumentation; hyperconducting devices (cryogenic magnets); cryogenic applications in space science and technology and in transportation; and miscellaneous cryogenic techniques and applications.

  9. Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Wang, Rabi

    2006-01-01

    Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. The original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. In the present cryogenic Pound circuits, the active microwave devices are implemented by use of state-of-the-art commercially available tunnel diodes that exhibit low flicker noise (required for high frequency stability) and function well at low temperatures and at frequencies up to several tens of gigahertz. While tunnel diodes are inherently operable as amplitude detectors and amplitude modulators, they cannot, by themselves, induce significant phase modulation. Therefore, each of the present cryogenic Pound circuits includes passive circuitry that transforms the AM into the required PM. Each circuit also contains an AM detector that is used to sample the microwave signal at the input terminal of the high-Q resonator for the purpose of verifying the desired AM null at this point. Finally, each circuit contains a Pound signal detector that puts out a signal, at the modulation frequency, having an amplitude proportional to the frequency error in the input signal. High frequency stability is obtained by processing this output signal into feedback to a voltage-controlled oscillator to continuously correct the frequency error in the input signal.

  10. Cryogenic activities at ESTEC

    NASA Astrophysics Data System (ADS)

    Jewell, C. I.

    1989-05-01

    Although the main present cryogenic activity in ESTEC revolves around the preparation of ISO for launch in 1993, many other activities such as Meteosat second generation, FIRST, GRASP, QUASAT, and X-ray detection using bolometers all require some form of cooling to 80 K or less. ESTEC, in an effort to overcome the major constraint of lifetime when using the solution of cryogens is currently involved in the study and development of two mechanical coolers for work in the temperature ranges of 80 and 4 K are based on a Stirling cycle. This paper gives an overview of ESTEC cryogenic interests with an emphasis on the above mechanical coolers.

  11. FRIB Cryogenic Plant Status

    SciTech Connect

    Dixon, Kelly D.; Ganni, Venkatarao; Knudsen, Peter N.; Casagranda, Fabio

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  12. A super-cusp divertor configuration for tokamaks

    DOE PAGESBeta

    Ryutov, D. D.

    2015-08-26

    Our study demonstrates a remarkable flexibility of advanced divertor configurations created with the remote poloidal field coils. The emphasis here is on the configurations with three poloidal field nulls in the divertor area. We are seeking the structures where all three nulls lie on the same separatrix, thereby creating two zones of a very strong flux expansion, as envisaged in the concept of Takase’s cusp divertor. It turns out that the set of remote coils can produce a cusp divertor, with additional advantages of: (i) a large stand-off distance between the divertor and the coils and (ii) a thorough controlmore » that these coils exert over the fine features of the configuration. In reference to these additional favourable properties acquired by the cusp divertor, the resulting configuration could be called ‘a super-cusp’. General geometrical features of the three-null configurations produced by remote coils are described. Furthermore, issues on the way to practical applications include the need for a more sophisticated control system and possible constraints related to excessively high currents in the divertor coils.« less

  13. A super-cusp divertor configuration for tokamaks

    SciTech Connect

    Ryutov, D. D.

    2015-08-26

    Our study demonstrates a remarkable flexibility of advanced divertor configurations created with the remote poloidal field coils. The emphasis here is on the configurations with three poloidal field nulls in the divertor area. We are seeking the structures where all three nulls lie on the same separatrix, thereby creating two zones of a very strong flux expansion, as envisaged in the concept of Takase’s cusp divertor. It turns out that the set of remote coils can produce a cusp divertor, with additional advantages of: (i) a large stand-off distance between the divertor and the coils and (ii) a thorough control that these coils exert over the fine features of the configuration. In reference to these additional favourable properties acquired by the cusp divertor, the resulting configuration could be called ‘a super-cusp’. General geometrical features of the three-null configurations produced by remote coils are described. Furthermore, issues on the way to practical applications include the need for a more sophisticated control system and possible constraints related to excessively high currents in the divertor coils.

  14. SOLPS Modeling of Slot Divertor Configuration on DIII-D

    NASA Astrophysics Data System (ADS)

    Sang, C. F.; Stangeby, P. C.; Guo, H. Y.; Lao, L. L.

    2015-11-01

    A major thrust of the DIII-D boundary/PMI initiative is to develop an advanced divertor configuration for next-step devices, such as FNSF and DEMO. We are adopting an integrated approach by optimizing both divertor structure and magnetic shape. Initial SOLPS modeling was carried out to optimize divertor structure shape to enhance divertor power dissipation, focusing on slot configurations. In particular, four different slot divertor structures, i.e., orthogonal-target slot, slanted-target slot, very narrow slot and v-shaped slot have been analyzed and comparisons made with an open divertor structure. It is found that the slot helps to trap recycling neutrals and impurities thus increasing radiative power dissipation in the divertor, reducing the electron temperature Te and the perpendicular heat flux q⊥ at the target plate. As expected, a narrower slot leads to lower Te and q⊥ than a less narrow one. The v-shaped slot appears to be especially effective at redirecting and concentrating recycling neutrals and impurities near the separatrix, thus promoting detachment at a lower upstream density than the other configurations. Work supported by US DOE under DE-FC02-04ER54698.

  15. Current and Potential Distribution in a Divertor with Torioidally-Asymmetric Biasing of the Divertor Plate

    SciTech Connect

    Cohen, R H; Ryutov, D D; Counsell, G F; Helander, P

    2006-06-06

    Toroidally-asymmetric biasing of the divertor plate may increase convective cross-field transport in SOL and thereby reduce the divertor heat load. Experiments performed with the MAST spherical tokamak generally agree with a simple theory of non-axisymmetric biasing. However, some of the experimental results have not yet received a theoretical explanation. In particular, existing theory seems to overestimate the asymmetry between the positive and the negative biasing. Also lacking a theoretical explanation is experimentally observed increase of the average floating potential in the main SOL in the presence of biasing. In this paper we attempt to solve these problems by accounting for the closing of the currents (driven by the biasing) in a strong-shear region near the X-point. We come up with the picture which, at least qualitatively, agrees with these experimental results.

  16. Liquid cryogenic lubricant

    NASA Technical Reports Server (NTRS)

    Dietrich, M. W.; Townsend, D. P.; Zaretsky, E. V.

    1970-01-01

    Fluorinated polyethers are suitable lubricants for rolling-element bearings in cryogenic systems. Lubrication effectiveness is comparable to that of super-refined mineral oil lubricants operating at room temperature.

  17. Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.; Wikstrom, J. P.

    1999-01-01

    The results of a comparative study of cryogenic insulation systems performed are presented. The key aspects of thermal insulation relative to cryogenic system design, testing, manufacturing, and maintenance are discussed. An overview of insulation development from an energy conservation perspective is given. Conventional insulation materials for cryogenic applications provide three levels of thermal conductivity. Actual thermal performance of standard multilayer insulation (MLI) is several times less than laboratory performance and often 10 times worse than ideal performance. The cost-effectiveness of the insulation system depends on thermal performance; flexibility and durability; ease of use in handling, installation, and maintenance; and overall cost including operations, maintenance, and life cycle. Results of comprehensive testing of both conventional and novel materials such as aerogel composites using cryostat boil-off methods are given. The development of efficient, robust cryogenic insulation systems that operate at a soft vacuum level is the primary focus of this paper.

  18. CRYOGENICS IN BEPCII UPGRADE.

    SciTech Connect

    JIA,L.; WANG,L.; LI,S.

    2002-07-22

    THIS PAPER PRESENTS A CRYOGENIC DESIGN FOR UPGRADING THE BEIJING ELECTRON POSITRON COLLIDER AT THE INSTITUTE OF HIGH ENERGY PHYSICS IN BEIJING. THE UPGRADE INVOLVES 3 NEW SUPERCONDUCTING FACILITIES, THE INTERACTION REGION QUADRUPOLE MAGNETS, THE DETECTOR SOLENOID MAGNETS AND THE SRF CAVITIES. FOR COOLING OF THESE DEVICES, A NEW CRYPLANT WITH A TOTAL CAPACITY OF 1.0KW AT 4.5K IS TO BE BUILT AT IHEP. AN INTEGRATED CRYOGENIC DESIGN TO FIT THE BEPCII CRYOGENIC LOADS WITH HIGH EFFICIENCY IS CARRIEDOUT USING COMPUTATIONAL PROCESS ANALYSIS SOFTWARE WITH THE EMPHASES ON ECONOMICS AND SAFETY IN BOTH CONSTRUCTION AND OPERATION OF THE PLANT. THIS PAPER DESCRIBES THE CRYOGENIC CHARACTERISTICS OF EACH SUPERCONDUCTING DEVICE, THEIR COOLING SCHEMES AND THE OVERALL CRYOPLANT.

  19. Cryogenic Feedthrough Test Rig

    NASA Technical Reports Server (NTRS)

    Skaff, Antony

    2009-01-01

    The cryogenic feedthrough test rig (CFTR) allows testing of instrumentation feedthroughs at liquid oxygen and liquid hydrogen temperature and pressure extremes (dangerous process fluid) without actually exposing the feedthrough to a combustible or explosive process fluid. In addition, the helium used (inert gas), with cryogenic heat exchangers, exposes the feedthrough to that environment that allows definitive leak rates of feedthrough by typical industry-standard helium mass spectrometers.

  20. Modeling impurities and tilted plates in the ITER divertor

    SciTech Connect

    Rensink, M.E.; Rognlien, T.D.

    1996-07-29

    The UEDGE 2-D edge transport code is used to model the effect of impurities and tilted divertor plates for the ITER SOL/divertor region. The impurities are modeled as individual charge states using either the FMOMBAL 21-moment description or parallel force balance. Both helium and neon impurities are used together with a majority hydrogenic species. A fluid description of the neutrals is used that includes parallel inertia and neutral-neutral collisions. Effects of geometry are analyzed by using the nonorthogonal mesh capability of UEDGE to obtain solutions with the divertor plate tilted at various angles.

  1. Optics design of the divertor infrared television of KSTAR.

    PubMed

    Oh, S; Lee, K; Lee, H H; Wi, H M; Kim, Y S; Kang, C S

    2014-11-01

    The divertor Infrared television (IR TV) system for monitoring the temperature of a divertor and localized hot spots will be installed on the upper port of the N-port in the Korea Superconducting Tokamak Advanced Research (KSTAR). The cassette of KSTAR makes a periscope inevitable for the divertor IR TV. In this article, 4 design concepts for the periscope were examined, and the design based on Keplerian was shown to have better stabilities in alignment and the vibration. The final optics design based on an f-theta lens, Keplerian, and telecentric lens was derived. PMID:25430316

  2. Cryogenic helium 2 systems for space applications

    NASA Technical Reports Server (NTRS)

    Urban, E.; Katz, L.; Hendricks, J.; Karr, G.

    1978-01-01

    Two cryogenic systems are described which will provide cooling for experiments to be flown on Spacelab 2 in the early 1980's. The first system cools a scanning infrared telescope by the transfer of cold helium gas from a separate superfluid helium storage dewar. The flexible design permits the helium storage dewar and transfer assembly to be designed independent of the infrared experiment. Where possible, modified commerical apparatus is used. The second cryogenic system utilizes a specially designed superfluid dewar in which a superfluid helium experiment chamber is immersed. Each dewar system employs a porous plug as a phase separator to hold the liquid helium within the dewar and provide cold gas to a vent line. To maintain the low vapor pressure of the superfluid, each system requires nearly continuous prelaunch vacuum pump service, and each will vent to space during the Spacelab 2 flight.

  3. Design concepts for the ASTROMAG cryogenic system

    NASA Technical Reports Server (NTRS)

    Green, M. A.; Castles, S.

    1987-01-01

    Described is a proposed cryogenic system used to cool the superconducting magnet for the Space Station based ASTROMAG Particle Astrophysics Facility. This 2-meter diameter superconducting magnet will be cooled using stored helium II. The paper presents a liquid helium storage concept which would permit cryogenic lifetimes of up to 3 years between refills. It is proposed that the superconducting coil be cooled using superfluid helium pumped by the thermomechanical effect. It is also proposed that the storage tank be resupplied with helium in orbit. A method for charging and discharging the magnet with minimum helium loss using split gas-cooled leads is discussed. A proposal to use a Stirling cycle cryocooler to extend the storage life of the cryostat will also be presented.

  4. A review of ELMs in divertor tokamaks

    SciTech Connect

    Hill, D.N.

    1996-05-23

    This paper reviews what is known about edge localized modes (ELMs), with an emphasis on their effect on the scrape-off layer and divertor plasmas. ELM effects have been measured in the ASDEX-U, C-Mod, COMPASS-D, DIII-D, JET, JFT-2M,JT-60U, and TCV tokamaks and are reported here. At least three types of ELMs have been identified and their salient features determined. Type-1 giant ELMs can cause the sudden loss of up to 10-15% of the plasma stored energy but their amplitude ({Delta}W/W) does not increase with increasing power. Type- 3 ELMs are observed near the H-mode power threshold and produce small energy dumps (1-3% of the stored energy). All ELMs increase the scrape- off layer plasma and produce particle fluxes on the divertor targets which are as much as ten times larger that the quiescent phase between ELMs. The divertor heat pulse is largest on the inner target, unlike that of L-Mode or quiescent H-mode; some tokamaks report radial structure in the heat flux profile which is suggestive of islands or helical structures. The power scaling of Type-1 ELM amplitude and frequency have been measured in several tokamaks and has recently been applied to predictions of the ELM Size in ITER. Concern over the expected ELM amplitude has led to a number of experiments aimed at demonstrating active control of ELMs. Impurity gas injection with feedback control on the radiation loss in ASDEX-U suggests that a promising mode of operation (the CDH-mode) with a very small type-3 ELMs can be maintained with heating power sell above the H-mode threshold, where giant type-1 ELMs can be maintained with heating power well above the H-mode threshold, where Giant type-1 ELMs are normally observed. While ELMs have many potential negative effects, the beneficial effect of ELMs in providing density control and limiting the core plasma impurity content in high confinement H- mode discharges should not be overlooked.

  5. Potential collector surface materials for divertors

    NASA Astrophysics Data System (ADS)

    Prebble, H. E.; Forty, C. B. A.; Butterworth, G. J.

    1992-09-01

    Twelve refractory materials have been investigated to assess their suitability for use as collector target materials for divertors. The steady state limiting heat flux to avoid melting of the collector material has been calculated as a function of thickness using a simple one-dimensional thermal-hydraulics model. Similarly, the limiting heat flux to avoid melting following a plasma disruption has been calculated as a function of collector surface temperature just prior to the disruption event. Finally, the resistance of each collector material to thermal shock was estimated. The calculations indicate diamond, graphite and tungsten as favourable materials, BN, AlN, TiN, V 2C and beryllium as unsuitable and BeO, SiC, TiC and TIB 2 as exhibiting combinations of favourable and unfavourable properties.

  6. Space Cryogenics Workshop, 10th, Cleveland, OH, June 18-20, 1991, Proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The present workshop on cryogenics discusses the anomalous on-orbit behavior of the Cosmic Background Explorer Dewar, the SHOOT orbital operations, cooling options for Astromag, and space IR telescope facility mission and cryogenic design. Attention is given to the design of a spaceworthy adiabatic demagnetization refrigerator, the evaluation of metal hydride compressors for applications in Joule-Thomson cryocoolers, diaphragm Stirling cryocooler developments, and a computer simulation model for Stirling refrigerators. Topics addressed include low-gravity thermal stratification of liquid helium on SHOOT, a screening program to select a resin for gravity probe-B composites, a simplified generic cryostat thermal model for predicting cryogen mass and lifetime, and the effect of gas mass flux on cryogenic liquid jet breakup. Also discussed are damping criteria for thermal acoustic oscillations in slush and liquid hydrogen systems, an STS-based cryogenic fluid management experiment, and the design and testing of a cryogenic mixer pump.

  7. Cryogenic systems for the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Mason, Peter V.

    1988-01-01

    There are five technologies which may have application for Large Deployable Reflector (LDR), one passive and four active. In order of maturity, they are passive stored cryogen systems, and mechanical, sorption, magnetic, and pulse-tube refrigerators. In addition, deep space radiators will be required to reject the heat of the active systems, and may be useful as auxiliary coolers for the stored cryogen systems. Hybrid combinations of these technologies may well be more efficient than any one alone, and extensive system studies will be required to determine the best trade-offs. Stored cryogen systems were flown on a number of missions. The systems are capable of meeting the temperature requirements of LDR. The size and weight of stored cryogen systems are proportional to heat load and, as a result, are applicable only if the low-temperature heat load can be kept small. Systems using chemisorption and physical adsorption for compressors and pumps have received considerable attention in the past few years. Systems based on adiabatic demagnetization of paramagnetic salts were used for refrigeration for many years. Pulse-tube refrigerators were recently proposed which show relatively high efficiency for temperatures in the 60 to 80 K range. The instrument heat loads and operating temperatures are critical to the selection and design of the cryogenic system. Every effort should be made to minimize heat loads, raise operating temperatures, and to define these precisely. No one technology is now ready for application to LDR. Substantial development efforts are underway in all of the technologies and should be monitored and advocated. Magnetic and pulse-tube refrigerators have high potential.

  8. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  9. Divertor IR thermography on Alcator C-Mod.

    PubMed

    Terry, J L; LaBombard, B; Brunner, D; Payne, J; Wurden, G A

    2010-10-01

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings. PMID:21034041

  10. Divertor IR thermography on Alcator C-Mod

    SciTech Connect

    Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.

    2010-10-15

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6 deg. toroidal sector has been given a 2 deg. toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  11. Divertor IR thermography on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.

    2010-10-01

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  12. Compatibility of detached divertor operation with robust edge pedestal performance

    NASA Astrophysics Data System (ADS)

    Leonard, A. W.; Makowski, M. A.; McLean, A. G.; Osborne, T. H.; Snyder, P. B.

    2015-08-01

    The compatibility of detached radiative divertor operation with a robust H-mode pedestal is examined in DIII-D. A density scan produced low temperature plasmas at the divertor target, Te ⩽ 2 eV, with high radiation leading to a factor of ⩾4 drop in peak divertor heat flux. The cold radiative plasma was confined to the divertor and did not extend across the separatrix in X-point region. A robust H-mode pedestal was maintained with a small degradation in pedestal pressure at the highest densities. The response of the pedestal pressure to increasing density is reproduced by the EPED pedestal model. However, agreement of the EPED model with experiment at high density requires an assumption of reduced diamagnetic stabilization of edge Peeling-Ballooning modes.

  13. Local Effects of Biased Electrodes in the Divertor of NSTX

    SciTech Connect

    Zweben, S.; Campanell, M. D.; Lyons, B. C.; Maqueda, R. J.; Raitses, Y.; Roquemore, A. L.; Scotti, F.

    2012-05-07

    The goal of this paper is to characterize the effects of small non-axisymmetric divertor plate electrodes on the local scrape-off layer plasma. Four small rectangular electrodes were installed into the outer divertor plates of NSTX. When the electrodes were located near the outer divertor strike point and biased positively, there was an increase in the nearby probe currents and probe potentials and an increase in the LiI light emission at the large major radius end of these electrodes. When an electrode located farther outward from the outer divertor strike point was biased positively, there was sometimes a significant decrease in the LiI light emission at the small major radius end of this electrode, but there were no clear effects on the nearby probes. No non-local effects were observed with the biasing of these electrodes.

  14. Cryogenic Infrastructure for Fermilab's Ilc Vertical Cavity Test Facility

    NASA Astrophysics Data System (ADS)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.

    2008-03-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R&D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  15. CRYOGENIC INFRASTRUCTURE FOR FERMILAB'S ILC VERTICAL CAVITY TEST FACILITY

    SciTech Connect

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.

    2008-03-16

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R and D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  16. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    SciTech Connect

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; /Fermilab

    2006-06-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R&D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  17. Turbulent Simulations of Divertor Detachment Based On BOUT + + Framework

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xueqiao; Xia, Tianyang; Ye, Minyou

    2015-11-01

    China Fusion Engineering Testing Reactor is under conceptual design, acting as a bridge between ITER and DEMO. The detached divertor operation offers great promise for a reduction of heat flux onto divertor target plates for acceptable erosion. Therefore, a density scan is performed via an increase of D2 gas puffing rates in the range of 0 . 0 ~ 5 . 0 ×1023s-1 by using the B2-Eirene/SOLPS 5.0 code package to study the heat flux control and impurity screening property. As the density increases, it shows a gradually change of the divertor operation status, from low-recycling regime to high-recycling regime and finally to detachment. Significant radiation loss inside the confined plasma in the divertor region during detachment leads to strong parallel density and temperature gradients. Based on the SOLPS simulations, BOUT + + simulations will be presented to investigate the stability and turbulent transport under divertor plasma detachment, particularly the strong parallel gradient driven instabilities and enhanced plasma turbulence to spread heat flux over larger surface areas. The correlation between outer mid-plane and divertor turbulence and the related transport will be analyzed. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675075.

  18. Development of a radiative divertor for DIII-D

    SciTech Connect

    Allen, S.L.; Brooks, N.H.; Campbell, R.B.

    1994-07-01

    We have used experiments and modeling to develop a new radiative divertor configuration for DIII-D. Gas puffing experiments with the existing open divertor have shown the creation of a localized ({approximately}10 cm diameter) radiation zone which results in substantial reduction (3--10) in the divertor heat flux while {delta}{sub E} remains {approximately}2 times ITER-89P scaling. However, ne increases with D{sub 2} puffing, and Z{sub eff} increases with neon puffing. Divertor structures are required to minimize the effects on the core plasma. The UEDGE fluid code, benchmarked with DIII-D data, and the DEGAS neutrals transport code are used to estimate the effectiveness of divertor configurations; slots reduce the core ionization more than baffles. The overall divertor shape is set by confinement studies which indicate that high triangularity ({delta} {approximately}0.8) is important for high {tau}{sub E} VH-modes. Results from engineering feasibility studies, including diagnostic access, will be presented.

  19. TPC magnet cryogenic system

    SciTech Connect

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system.

  20. Process of making cryogenically cooled high thermal performance crystal optics

    SciTech Connect

    Kuzay, T.M.

    1990-06-29

    A method for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N{sub 2} is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation.

  1. Process of making cryogenically cooled high thermal performance crystal optics

    DOEpatents

    Kuzay, T.M.

    1992-06-23

    A method is disclosed for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N[sub 2] is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation. 7 figs.

  2. Process of making cryogenically cooled high thermal performance crystal optics

    DOEpatents

    Kuzay, Tuncer M.

    1992-01-01

    A method for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N.sub.2 is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation.

  3. Cryogenic process simulation

    SciTech Connect

    Panek, J.; Johnson, S.

    1994-01-01

    Combining accurate fluid property databases with a commercial equation-solving software package running on a desktop computer allows simulation of cryogenic processes without extensive computer programming. Computer simulation can be a powerful tool for process development or optimization. Most engineering simulations to date have required extensive programming skills in languages such as Fortran, Pascal, etc. Authors of simulation code have also usually been responsible for choosing and writing the particular solution algorithm. This paper describes a method of simulating cryogenic processes with a commercial software package on a desktop personal computer that does not require these traditional programming tasks. Applications include modeling of cryogenic refrigerators, heat exchangers, vapor-cooled power leads, vapor pressure thermometers, and various other engineering problems.

  4. Cryogenic wind tunnels. II

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    The application of the cryogenic concept to various types of tunnels including Ludwieg tube tunnel, Evans clean tunnel, blowdown, induced-flow, and continuous-flow fan-driven tunnels is discussed. Benefits related to construction and operating costs are covered, along with benefits related to new testing capabilities. It is noted that cooling the test gas to very low temperatures increases Reynolds number by more than a factor of seven. From the energy standpoint, ambient-temperature fan-driven closed-return tunnels are considered to be the most efficient type of tunnel, while a large reduction in the required tunnel stagnation pressure can be achieved through cryogenic operation. Operating envelopes for three modes of operation for a cryogenic transonic pressure tunnel with a 2.5 by 2.5 test section are outlined. A computer program for calculating flow parameters and power requirements for wind tunnels with operating temperatures from saturation to above ambient is highlighted.

  5. Ball Aerospace Actuator Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Kingsbury, Lana; Lightsey, Paul; Quigley, Phil; Rutkowski, Joel; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The ambient testing characterizing step size and repeatability for the Ball Aerospace Cryogenic Nano-Positioner actuators for the AMSD (Advanced Mirror System Demonstrator) program has been completed and are presented. Current cryogenic testing is underway. Earlier cryogenic test results for a pre-cursor engineering model are presented.

  6. Cryogenic Model Materials

    NASA Technical Reports Server (NTRS)

    Kimmel, W. M.; Kuhn, N. S.; Berry, R. F.; Newman, J. A.

    2001-01-01

    An overview and status of current activities seeking alternatives to 200 grade 18Ni Steel CVM alloy for cryogenic wind tunnel models is presented. Specific improvements in material selection have been researched including availability, strength, fracture toughness and potential for use in transonic wind tunnel testing. Potential benefits from utilizing damage tolerant life-prediction methods, recently developed fatigue crack growth codes and upgraded NDE methods are also investigated. Two candidate alloys are identified and accepted for cryogenic/transonic wind tunnel models and hardware.

  7. Unique Cryogenic Welded Structures

    NASA Astrophysics Data System (ADS)

    Yushchenko, K. A.; Monko, G. G.

    2004-06-01

    For the last few decades, the E. O. Paton Electric Welding Institute has been active in the field of cryogenic materials science. Integrated research on development of new grades of steels and alloys for cryogenic engineering was carried out in collaboration with the leading institutions of Russia, Ukraine, and Georgia. Commercially applied welding technologies and consumables were developed. They include large, spherical tanks for storage of liquefied gases (from oxygen to helium) under high pressures; space simulators with a capacity of 10 000 m3 and more; and load-carrying elements of superconducting fusion magnetic systems for the TOKAMAK, MGD, and ITER series.

  8. Unique Cryogenic Welded Structures

    SciTech Connect

    Yushchenko, K.A.; Monko, G.G.

    2004-06-28

    For the last few decades, the E. O. Paton Electric Welding Institute has been active in the field of cryogenic materials science. Integrated research on development of new grades of steels and alloys for cryogenic engineering was carried out in collaboration with the leading institutions of Russia, Ukraine, and Georgia. Commercially applied welding technologies and consumables were developed. They include large, spherical tanks for storage of liquefied gases (from oxygen to helium) under high pressures; space simulators with a capacity of 10 000 m3 and more; and load-carrying elements of superconducting fusion magnetic systems for the TOKAMAK, MGD, and ITER series.

  9. Cryogenic Propellant Densification Study

    NASA Technical Reports Server (NTRS)

    Ewart, R. O.; Dergance, R. H.

    1978-01-01

    Ground and vehicle system requirements are evaluated for the use of densified cryogenic propellants in advanced space transportation systems. Propellants studied were slush and triple point liquid hydrogen, triple point liquid oxygen, and slush and triple point liquid methane. Areas of study included propellant production, storage, transfer, vehicle loading and system requirements definition. A savings of approximately 8.2 x 100,000 Kg can be achieved in single stage to orbit gross liftoff weight for a payload of 29,484 Kg by utilizing densified cryogens in place of normal boiling point propellants.

  10. Spectroscopic Measurement System for ITER Divertor Plasma: Impurity Influx Monitor (divertor)

    SciTech Connect

    Sugie, Tatsuo; Ogawa, Hiroaki; Kusama, Yoshinori; Kasai, Satoshi

    2008-03-12

    The detailed design of the Impurity Influx Monitor (divertor) has been carried out to provide the measurement capability in the harsh environment such as higher irradiation levels of neutron, gamma-ray and particles than in present devices. The in-situ calibration system using a micro retro-reflector array has been developed to monitor the sensitivity change of the optical system due to the environmental effects. The optical alignment system for the Monitor has been developed by using a dedicated optics for alignment in the collection optics for measurement.

  11. Comment on "Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake" [Phys. Plasmas 20, 102507 (2013)

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Soukhanovskii, V. A.; Umansky, M. V.

    2014-05-01

    In the recently published paper "Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake" [Phys. Plasmas 20, 102507 (2013)], the authors raise interesting and important issues concerning divertor physics and design. However, the paper contains significant errors: (a) The conceptual framework used in it for the evaluation of divertor "quality" is reduced to the assessment of the magnetic field structure in the outer Scrape-Off Layer. This framework is incorrect because processes affecting the pedestal, the private flux region and all of the divertor legs (four, in the case of a snowflake) are an inseparable part of divertor operation. (b) The concept of the divertor index focuses on only one feature of the magnetic field structure and can be quite misleading when applied to divertor design. (c) The suggestion to rename the divertor configurations experimentally realized on NSTX (National Spherical Torus Experiment) and DIII-D (Doublet III-D) from snowflakes to X-divertors is not justified: it is not based on comparison of these configurations with the prototypical X-divertor, and it ignores the fact that the NSTX and DIII-D poloidal magnetic field geometries fit very well into the snowflake "two-null" prescription.

  12. Comment on “Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake” [Phys. Plasmas 20, 102507 (2013)

    SciTech Connect

    Ryutov, D. D. Cohen, R. H.; Rognlien, T. D.; Soukhanovskii, V. A.; Umansky, M. V.

    2014-05-15

    In the recently published paper “Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake” [Phys. Plasmas 20, 102507 (2013)], the authors raise interesting and important issues concerning divertor physics and design. However, the paper contains significant errors: (a) The conceptual framework used in it for the evaluation of divertor “quality” is reduced to the assessment of the magnetic field structure in the outer Scrape-Off Layer. This framework is incorrect because processes affecting the pedestal, the private flux region and all of the divertor legs (four, in the case of a snowflake) are an inseparable part of divertor operation. (b) The concept of the divertor index focuses on only one feature of the magnetic field structure and can be quite misleading when applied to divertor design. (c) The suggestion to rename the divertor configurations experimentally realized on NSTX (National Spherical Torus Experiment) and DIII-D (Doublet III-D) from snowflakes to X-divertors is not justified: it is not based on comparison of these configurations with the prototypical X-divertor, and it ignores the fact that the NSTX and DIII-D poloidal magnetic field geometries fit very well into the snowflake “two-null” prescription.

  13. Cryogenic testing of the TPC superconducting solenoid

    NASA Astrophysics Data System (ADS)

    Green, M. A.; Smits, R. G.; Taylor, J. D.; Vanslyke, V.; Barrera, F.; Petersen, H.; Rago, C. E.; Rinta, R. I.; Talaska, D.; Watt, R. D.

    1983-06-01

    This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin.

  14. Low-thrust chemical propulsion system pump technology

    NASA Technical Reports Server (NTRS)

    Sabiers, R. L.; Siebenhaar, A.

    1981-01-01

    Candidate pump and driver systems for low thrust cargo orbit transfer vehicle engines which deliver large space structures to geosynchronous equatorial orbit and beyond are evaluated. The pumps operate to 68 atmospheres (1000 psi) discharge pressure and flowrates suited to cryogenic engines using either LOX/methane or LOX/hydrogen propellants in thrust ranges from 445 to 8900 N (100 to 2000 lb F). Analysis of the various pumps and drivers indicate that the low specific speed requirement will make high fluid efficiencies difficult to achieve. As such, multiple stages are required. In addition, all pumps require inducer stages. The most attractive main pumps are the multistage centrifugal pumps.

  15. Design, R&D and commissioning of EAST tungsten divertor

    NASA Astrophysics Data System (ADS)

    Yao, D. M.; Luo, G. N.; Zhou, Z. B.; Cao, L.; Li, Q.; Wang, W. J.; Li, L.; Qin, S. G.; Shi, Y. L.; Liu, G. H.; Li, J. G.

    2016-02-01

    After commissioning in 2005, the EAST superconducting tokamak had been operated with its water cooled divertors for eight campaigns up to 2012, employing graphite as plasma facing material. With increase in heating power over 20 MW in recent years, the heat flux going to the divertors rises rapidly over 10 MW m-2 for steady state operation. To accommodate the rapid increasing heat load in EAST, the bolting graphite tile divertor must be upgraded. An ITER-like tungsten (W) divertor has been designed and developed; and firstly used for the upper divertor of EAST. The EAST upper W divertor is modular structure with 80 modules in total. Eighty sets of W/Cu plasma-facing components (PFC) with each set consisting of an outer vertical target (OVT), an inner vertical target (IVT) and a DOME, are attached to 80 stainless steel cassette bodies (CB) by pins. The monoblock W/Cu-PFCs have been developed for the strike points of both OVT and IVT, and the flat type W/Cu-PFCs for the DOME and the baffle parts of both OVT and IVT, employing so-called hot isostatic pressing (HIP) technology for tungsten to CuCrZr heat sink bonding, and electron beam welding for CuCrZr to CuCrZr and CuCrZr to other material bonding. Both monoblock and flat type PFC mockups passed high heat flux (HHF) testing by means of electron beam facilities. The 80 divertor modules were installed in EAST in 2014 and results of the first commissioning are presented in this paper.

  16. BBQ Modeling of Recycling from the Tore Supra Ergodic Divertor Neutraliser

    NASA Astrophysics Data System (ADS)

    Giannella, R.; Guirlet, R.; Demichelis, C.; Hogan, J.; Cherigier, L.

    1998-11-01

    Generation and recycling of carbon and hydrocarbon impurities, and recycling of neon at the Tore Supra pumped ergodic divertor have been analyzed using the BBQ 3-D scrape-off layer transport code. Code results are compared with spectroscopic observations from fibres located on the neutralizer plates, and background plasma conditions used in the code are constrained with data from langmuir probes embedded in the plates. The sensitivity of neon recycling to assumed reflection coefficients has been studied. A detailed 3-D geometry model for the neutralizer, including all 4 plates, and recycling from the notches between plates, has been prepared. A version of the code describing deuterium processes is being developed to study conditions during the onset of detachment at high density

  17. Carbon flows in attached divertor plasmas

    SciTech Connect

    Isler, R.C.; Brooks, N.H.; West, W.P.; Porter, G.D. |; The DIII-D Divertor Team

    1999-05-01

    Parallel flow velocities of carbon ions in the DIII-D divertor [J. Luxon {ital et al.}, {ital Plasma Physics Controlled Nuclear Fusion Research}, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159; S. L. Allen {ital et al.}, {ital Controlled Fusion and Plasma Physics}, 1987 (Proc. 24th European Conf. Berchtesgaden, 1997), Vol. 21 A, Part III, p. 1129] have been studied under various operating conditions: L-mode (low-confinement mode), H-mode (high-confinement mode) with low-frequency ELMs (edge-localized modes), and H-mode with high-frequency ELMs. Both normal and reversed flows (toward the target plate and away from the target plate, respectively) are observed under all conditions, with the reversed speeds being as much as a factor of four greater than normal speeds. Magnitudes are approximately the same for L-mode and H-mode operation with high-frequency ELMs. In H-mode conditions with low-frequency ELMs, normal velocities are frequently observed to decline while reversed velocities increase in comparison to the other two conditions. {copyright} {ital 1999 American Institute of Physics.}

  18. Cryogenics Research and Engineering Experience

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.

    2013-01-01

    Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

  19. Valve for cryogenic service

    DOEpatents

    Worwetz, H.A.

    1975-09-02

    This patent relates to a valve for use with a liquefied gas at cryogenic temperatures in which a pair of joined knife edges are bellows controlled to contact an indium alloy seat in an annular slot when flow is to be stopped. The sealing alloy may be renewed by heating in situ. (auth)

  20. Compact cryogenic inductors

    SciTech Connect

    Singh, S.K.; Carr, W.J. Jr.; Fagan, T.J. Jr.; Hordubay, T.D.; Chuboy, H.L. . Science and Technology Center)

    1994-07-01

    Power systems requiring power levels as high as a few megawatts to a few gigawatts for periods of several microseconds to several milliseconds with repetitive frequencies of a few hertz to a few kilohertz are being considered for potential space applications. The impulsive nature of the power presents the opportunity to use inductive energy storage techniques for pulse duty to enhance economic and practical considerations. An inductors must be efficient, lightweight, and reliable, and it must have high energy density if it is to be used in space based power systems. Cryogenic inductors are best studied for such an application. Parametric analyses of the two potential types of cryogenic inductors (superconducting and hyperconducting reveal that the hyperconducting (high purity aluminum)) inductor would be significantly lighter and achieve higher energy densities without the added penalty of a helium refrigeration system, thus resulting in improved overall system reliability. The lightweight hyperconducting cryogenic inductor technology is, however, in its infancy. This paper describes the required technology base which would allow the eventual application of the lightweight cryogenic inductor in space power systems, and also conclusively demonstrates the underlying principles.

  1. High Power Cryogenic Targets

    SciTech Connect

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  2. R&D ERL: Cryogenic System

    SciTech Connect

    Than, R.

    2010-01-01

    The ERL cryogenic system will supply cooling to a super-conducting RF (SCRF) gun and the 5-cell super-conducting RF cavity system that need to be held cold at 2K. The engineering of the cavity cryomodules were carried out by AES in collaboration with BNL. The 2K superfluid bath is produced by pumping on the bath using a sub-atmospheric warm compression system. The cryogenic system makes use of mainly existing equipment relocated from other facilities: a 300W 4.5K coldbox, an 45 g/s screw compressor, a 3800 liter liquid helium storage dewar, a 170 m{sup 3} warm gas storage tank, and a 40,000 liter vertical low pressure liquid nitrogen storage dewar. An existing wet expander obtained from another facility has been added to increase the plant capacity. In order to deliver the required 3 to 4 bar helium to the cryomodules while using up stored liquid capacity at low pressure, a new subcooler will be installed to function as the capacity transfer device. A 2K to 4K recovery heat exchanger is also implemented for each cryomodule to recover refrigeration below 4K, thus maximizing 2K cooling capacity with the given sub-atmospheric pump. No 4K-300K refrigeration recovery is implemented at this time of the returning sub-atmospheric cold vapor, hence the 2K load appears as a liquefaction1 load on the cryogenic plant. A separate LN2 cooling loop supplies liquid nitrogen to the superconducting gun's cathode tip.

  3. Radiative snowflake divertor studies in DIII-D

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; Hill, D. N.; Lasnier, C. J.; Makowski, M. A.; McLean, A. G.; Meyer, W. H.; Kolemen, E.; Groebner, R. J.; Hyatt, A. W.; Leonard, A. W.; Osborne, T. H.; Petrie, T. W.

    2015-08-01

    Recent DIII-D experiments assessed the snowflake divertor (SF) configuration in a radiative regime in H-mode discharges with D2 seeding. The SF configuration was maintained for many energy confinement times (2-3 s) in H-mode discharges (Ip = 1.2 MA, PNBI = 4- 5 MW, and B × ∇B down (favorable direction toward the divertor)), and found to be compatible with high performance operation (H98y2 ⩾ 1). The two studied SF configurations, the SF-plus and the SF-minus, have a small finite distance between the primary X-point and the secondary Bp null located in the private flux region or the common flux region, respectively. In H-mode discharges with the SF configurations (cf. H-mode discharges with the standard divertor with similar conditions) the stored energy lost per the edge localized mode (ELM) was reduced, and significant divertor heat flux reduction between and during ELMs was observed over a range of collisionalities, from lower density conditions toward a higher density H-modes with the radiative SF divertor.

  4. Initial Development of the NSTX-U Snowflake Divertor Control

    NASA Astrophysics Data System (ADS)

    Vail, Patrick; Kolemen, Egemen; Welander, Anders; Lanctot, Matthew

    2015-11-01

    A feedback control system has been implemented at NSTX-U for real-time detection and manipulation of snowflake divertor (SFD) magnetic configurations. The SFD is an alternative magnetic divertor concept that is characterized by a second-order null formed by two x-points in close proximity. The SFD is an attractive option for heat flux mitigation for NSTX-U in which unmitigated peak heat fluxes in standard divertor operation near 20 MW/m2 may compromise plasma-facing components. The real-time control system at NSTX-U is capable of simultaneous control of multiple SFD parameters, such as the separation between the two x-points in the divertor region and their orientation. Control of SFD configurations in NSTX-U has been simulated in TOKSYS using the upgraded sets of poloidal field coils in both the upper and lower divertor regions. Performance of the real-time control system and its effect on plasma performance will be assessed experimentally as an initial step toward the development of the SFD concept at NSTX-U. Supported by the US DOE under DE-AC02-09CH11466.

  5. Cryogenic hydrogen-induced air-liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensive use of a special advanced airbreathing propulsion archives data base, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented in 1986. The resulting assessment report is summarized. Technical findings relating the status of air liquefaction technology are presented both as a singular technical area, and also as that of a cluster of collateral technical areas including: Compact lightweight cryogenic heat exchangers; Heat exchanger atmospheric constituents fouling alleviation; Para/ortho hydrogen shift conversion catalysts; Hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; Hydrogen recycling using slush hydrogen as heat sinks; Liquid hydrogen/liquid air rocket type combustion devices; Air Collection and Enrichment System (ACES); and Technically related engine concepts.

  6. Evaluation of pumping and fueling requirements for the ITER EDA

    NASA Astrophysics Data System (ADS)

    Houlberg, W. A.; Attenberger, S. E.

    1994-06-01

    The relationships between fueling (gas injection and pellets of various sizes and velocities), pumping in the divertor chamber (constrained by fuel processing and divertor design), core density (constrained by the desired fusion power and helium ash accumulation), separatrix density (constrained by divertor operation and density limits) and plasma confinement models are examined for the International Engineering Tokamak Reactor (ITER) Engineering Design Activity (EDA) for guidance in the definition of design requirements for the pumping and fueling systems. Various combinations of gas and pellet injection are found to meet the constraints for operation at 1,500 MW of fusion power and 1 bar(center dot)l/s (5.3 x 10(exp 22) atoms/s) of DT pumping. Very low pumping reduces fuel processing requirements, but can lead to excessive helium accumulation depending on the particle transport properties. Isotopic tailoring of the fuel sources, e.g., 20-30% of the input fuel stream as tritium pellets and the rest as deuterium gas, can maintain the core fuel species mixture in the optimum range for fusion production (at least a 40-60 mixture) while reducing the tritium concentration in the edge region to 20-30%. This should reduce the tritium inventory in the plasma facing components, since that is typically governed by the fuel density mix near the plasma edge. A high density, low temperature ignited regime supported by deep pellet injection is shown to exist under some low confinement conditions.

  7. Stirling-Cycle Refrigerator Containing Piezoelectric Pumps

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr.; Hellbaum, R. F.

    1995-01-01

    Advanced Stirling-cycle cryogenic apparatus suitable for cooling sensitive infrared detectors to very low temperatures. Working fluid in refrigerator helium. Working fluid compressed and circulated by three piezoelectrically actuated diaphragm pumps offering advantages of greater reliability, relative simplicity, and lower cost.

  8. PUMP CONSTRUCTION

    DOEpatents

    Strickland, G.; Horn, F.L.; White, H.T.

    1960-09-27

    A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

  9. Industrial Pumps

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A flow inducer is a device that increases the pump intake capacity of a Worthington Centrifugal pump. It lifts the suction pressure sufficiently for the rotating main impeller of the centrifugal pump to operate efficiently at higher fluid intake levels. The concept derives from 1960's NASA technology which was advanced by Worthington Pump Division. The pumps are used to recirculate wood molasses, a highly viscous substance.

  10. Cryogenic, high power, near diffraction limited, Yb:YAG slab laser.

    PubMed

    Ganija, Miftar; Ottaway, David; Veitch, Peter; Munch, Jesper

    2013-03-25

    A cryogenic slab laser that is suitable for scaling to high power, while taking full advantage of the improved thermo-optical and thermo-mechanical properties of Yb:YAG at cryogenic temperatures is described. The laser uses a conduction cooled, end pumped, zigzag slab geometry resulting in a near diffraction limited, robust, power scalable design. The design and the initial characterization of the laser up to 200W are presented. PMID:23546080

  11. Cryogenic magnetostrictive transducers and devices for commercial, military, and space applications

    NASA Astrophysics Data System (ADS)

    Weisensel, G. N.; McMasters, O. D.; Chave, Robert G.

    1998-06-01

    The unique attributes of magnetostrictive materials have been used to develop a wide variety of electromechanical transducers and devices. Most of these applications have been at or above room temperature. However, many applications at cryogenic temperatures also require high authority, high precision, efficient actuation. Other technologies, including all piezoelectric systems, tend to be inoperable or impractical and unreliable at cryogenic temperatures. Magnetostrictive materials have already demonstrated improved performance at low temperature down to near absolute zero with strains as high as 1% possible. These unique material attributes combine with novel magnetic field generation, transducer and mechanism concepts to meet the challenges of resolution, size, weight, power, thermal and reliability requirements of actuators for many cryogenic applications. Positioning and shaping optics in space, cryogen valving and pumping, heat switches, industrial processing, and active vibration control are just some examples of the many commercial, military and space applications where cryogenic magnetostrictive technologies are overcoming barriers to provide solutions.

  12. A novel approach to magnetic divertor configuration design

    NASA Astrophysics Data System (ADS)

    Blommaert, M.; Baelmans, M.; Dekeyser, W.; Gauger, N. R.; Reiter, D.

    2015-08-01

    Divertor exhaust system design and analysis tools are crucial to evolve from experimental fusion reactors towards commercial power plants. In addition to material research and dedicated vessel geometry design, improved magnetic configurations can contribute to sustaining the diverted heat loads. Yet, computational design of the magnetic divertor is a challenging process involving a magnetic equilibrium solver, a plasma edge grid generator and a computationally demanding plasma edge simulation. In this paper, an integrated approach to efficient sensitivity calculations is discussed and applied to a set of slightly reduced divertor models. Sensitivities of target heat load performance to the shaping coil currents are directly evaluated. Using adjoint methods, the cost for a sensitivity evaluation is reduced to about two times the simulation cost of one specific configuration. Further, the use of these sensitivities in an optimal design framework is illustrated by a case with realistic Joint European Torus (JET) configurational parameters.

  13. Radiative divertor plasmas with convection in DIII-D

    SciTech Connect

    Leornard, A.W.; Porter, G.D.; Wood, R.D.

    1998-01-01

    The radiation of divertor heat flux on DIII-D is shown to greatly exceed the limits imposed by assumptions of energy transport dominated by electron thermal conduction parallel to the magnetic field. Approximately 90% of the power flowing into the divertor is dissipated through low Z radiation and plasma recombination. The dissipation is made possible by an extended region of low electron temperature in the divertor. A one-dimensional analysis of the parallel heat flux finds that the electron temperature profile is incompatible with conduction dominated parallel transport. Plasma flow at up to the ion acoustic speed, produced by upstream ionization, can account for the parallel heat flux. Modeling with the two-dimensional fluid code UEDGE has reproduced many of the observed experimental features.

  14. A survey of problems in divertor and edge plasma theory

    SciTech Connect

    Boozer, A. ); Braams, B.; Weitzner, H. . Courant Inst. of Mathematical Sciences); Cohen, R. ); Hazeltine, R. . Inst. for Fusion Studies); Hinton, F. ); Houlberg, W. (Oak

    1992-12-22

    Theoretical physics problems related to divertor design are presented, organized by the region in which they occur. Some of the open questions in edge physics are presented from a theoretician's point of view. After a cursory sketch of the fluid models of the edge plasma and their numerical realization, the following topics are taken up: time-dependent problems, non-axisymmetric effects, anomalous transport in the scrape-off layer, edge kinetic theory, sheath effects and boundary conditions in divertors, electric field effects, atomic and molecular data issues, impurity transport in the divertor region, poloidally localized power dissipation (MARFEs and dense gas targets), helium ash removal, and neutral transport. The report ends with a summary of selected problems of particular significance and a brief bibliography of survey articles and related conference proceedings.

  15. A survey of problems in divertor and edge plasma theory

    SciTech Connect

    Boozer, A.; Braams, B.; Weitzner, H.; Cohen, R.; Hazeltine, R.; Hinton, F.; Houlberg, W.; Oktay, E.; Sadowski, W.; Post, D.; Sigmar, D.; Wootton, A.

    1992-12-22

    Theoretical physics problems related to divertor design are presented, organized by the region in which they occur. Some of the open questions in edge physics are presented from a theoretician`s point of view. After a cursory sketch of the fluid models of the edge plasma and their numerical realization, the following topics are taken up: time-dependent problems, non-axisymmetric effects, anomalous transport in the scrape-off layer, edge kinetic theory, sheath effects and boundary conditions in divertors, electric field effects, atomic and molecular data issues, impurity transport in the divertor region, poloidally localized power dissipation (MARFEs and dense gas targets), helium ash removal, and neutral transport. The report ends with a summary of selected problems of particular significance and a brief bibliography of survey articles and related conference proceedings.

  16. Plasma transport in a simulated magnetic-divertor configuration

    SciTech Connect

    Strawitch, C. M.

    1981-03-01

    The transport properties of plasma on magnetic field lines that intersect a conducting plate are studied experimentally in the Wisconsin internal ring D.C. machine. The magnetic geometry is intended to simulate certain aspects of plasma phenomena that may take place in a tokamak divertor. It is found by a variety of measurements that the cross field transport is non-ambipolar; this may have important implications in heat loading considerations in tokamak divertors. The undesirable effects of nonambipolar flow make it preferable to be able to eliminate it. However, we find that though the non-ambipolarity may be reduced, it is difficult to eliminate entirely. The plasma flow velocity parallel to the magnetic field is found to be near the ion acoustic velocity in all cases. The experimental density and electron temperature profiles are compared to the solutions to a one dimensional transport model that is commonly used in divertor theory.

  17. The cryogenic cooling program at the Advanced Photon Source

    SciTech Connect

    Rogers, C.S.; Mills, D.M.; Assoufid, L.

    1994-06-01

    This paper describes the experimental and analytical program in cryogenic cooling of high-heat-load optics at the Advanced-Photon Source. A prototype liquid nitrogen pumping system has been procured. This pump provides a variable flow rate of 1 to 10 gpm of pressurized liquid nitrogen and is sized to handle up to 5 kW of optic heat load. Also, a high-vacuum, double-crystal monochromator testing tank has been fabricated. This system will be used to test cryogenic crystals at existing synchrotron sources. A finite element analysis has been performed for a cryogenically cooled Si crystal in the inclined geometry for Undulator A at 100 mA. The inclination angle was 80{degrees}. It was set to diffract from the (111) planes at the first harmonic energy of 4.2 keV. The maximum slope error in the diffraction plane was calculated to be about 1 {mu}rad with a peak temperature of 94 K. An analysis has also been performed for a cryogenically-cooled ``thin`` crystal oriented in the Bragg geometry which accepts 87% of the lst harmonic photons at 3.866 keV. The total absorbed power was 131 W at 100 mA current and the peak temperature was 124 K.

  18. Toroidally symmetric plasma vortex at tokamak divertor null point

    NASA Astrophysics Data System (ADS)

    Umansky, M. V.; Ryutov, D. D.

    2016-03-01

    Reduced MHD equations are used for studying toroidally symmetric plasma dynamics near the divertor null point. Numerical solution of these equations exhibits a plasma vortex localized at the null point with the time-evolution defined by interplay of the curvature drive, magnetic restoring force, and dissipation. Convective motion is easier to achieve for a second-order null (snowflake) divertor than for a regular x-point configuration, and the size of the convection zone in a snowflake configuration grows with plasma pressure at the null point. The trends in simulations are consistent with tokamak experiments which indicate the presence of enhanced transport at the null point.

  19. Non-ambipolar transport in a magnetic divertor

    SciTech Connect

    Strawitch, C M; Emmert, G A

    1980-02-01

    Plasma transport is studied in a simulated magnetic divertor in the Wisconsin single ring DC machine. The transport perpendicular and parallel to the magnetic field is shown to be non-ambipolar by a variety of measurements, but can be forced to be ambipolar by an appropriately designed divertor target plate. The density profile in the scrape-off zone agrees with the predictions of a one-dimensional diffusion equation that assumes classical cross-field transport and plasma flow parallel to the field at the local ion acoustic velocity.

  20. Turbulence studies in Tokamak boundary plasmas with realistic divertor geometry

    SciTech Connect

    Xu, X.Q.

    1998-10-14

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT [1] and the linearized shooting code BAL[2] to study turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant, resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters.

  1. Flexible cryogenic conduit

    DOEpatents

    Brindza, Paul Daniel; Wines, Robin Renee; Takacs, James Joseph

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.

  2. Cryogenic support system

    DOEpatents

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1988-11-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member. 7 figs.

  3. Cryogenic support system

    DOEpatents

    Nicol, Thomas H.; Niemann, Ralph C.; Gonczy, John D.

    1988-01-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member.

  4. Cryogenic mirror analysis

    NASA Technical Reports Server (NTRS)

    Nagy, S.

    1988-01-01

    Due to extraordinary distances scanned by modern telescopes, optical surfaces in such telescopes must be manufactured to unimaginable standards of perfection of a few thousandths of a centimeter. The detection of imperfections of less than 1/20 of a wavelength of light, for application in the building of the mirror for the Space Infrared Telescope Facility, was undertaken. Because the mirror must be kept very cold while in space, another factor comes into effect: cryogenics. The process to test a specific morror under cryogenic conditions is described; including the follow-up analysis accomplished through computer work. To better illustrate the process and analysis, a Pyrex Hex-Core mirror is followed through the process from the laser interferometry in the lab, to computer analysis via a computer program called FRINGE. This analysis via FRINGE is detailed.

  5. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  6. Flexible cryogenic conduit

    SciTech Connect

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-12-21

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.

  7. Cryogenic treatment of gas

    DOEpatents

    Bravo, Jose Luis; Harvey, III, Albert Destrehan; Vinegar, Harold J.

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  8. Stirling cycle cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P.

    1983-06-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  9. Cryogenic thermal diodes

    NASA Astrophysics Data System (ADS)

    Paulsen, Brandon R.; Batty, J. C.; Agren, John

    2000-01-01

    Space based cryogenic thermal management systems for advanced infrared sensor platforms are a critical failure mode to the spacecraft missions they are supporting. Recent advances in cryocooler technologies have increased the achievable cooling capacities and decreased the operating temperatures of these systems, but there is still a fundamental need for redundancy in these systems. Cryogenic thermal diodes act as thermal switches, allowing heat to flow through them when in a conduction mode and restricting the flow of heat when in an isolation mode. These diodes will allow multiple cryocoolers to cool a single infrared focal plane array. The Space Dynamics Laboratory has undertaken an internal research and development effort to develop this innovative technology. This paper briefly describes the design parameters of several prototype thermal diodes that were developed and tested. .

  10. Stirling cycle cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P. (Inventor)

    1983-01-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  11. Computing Thermal Effects of Cavitation in Cryogenic Liquids

    NASA Technical Reports Server (NTRS)

    Hosangadi, Ashvin; Ahuja, Vineet; Dash, Sanford M.

    2005-01-01

    A computer program implements a numerical model of thermal effects of cavitation in cryogenic fluids. The model and program were developed for use in designing and predicting the performances of turbopumps for cryogenic fluids. Prior numerical models used for this purpose do not account for either the variability of properties of cryogenic fluids or the thermal effects (especially, evaporative cooling) involved in cavitation. It is important to account for both because in a cryogenic fluid, the thermal effects of cavitation are substantial, and the cavitation characteristics are altered by coupling between the variable fluid properties and the phase changes involved in cavitation. The present model accounts for both thermal effects and variability of properties by incorporating a generalized representation of the properties of cryogenic fluids into a generalized compressible-fluid formulation for a cavitating pump. The model has been extensively validated for liquid nitrogen and liquid hydrogen. Using the available data on the properties of these fluids, the model has been shown to predict accurate temperature-depression values.

  12. Cryogenic turbopump bearing materials

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.

    1989-01-01

    Materials used for modern cryogenic turbopump bearings must withstand extreme conditions of loads and speeds under marginal lubrication. Naturally, these extreme conditions tend to limit the bearing life. It is possible to significantly improve the life of these bearings, however, by improving the fatigue and wear resistance of bearing alloys, and improving the strength, liquid oxygen compatibility and lubricating ability of the bearing cage materials. Improved cooling will also help to keep the bearing temperatures low and hence prolong the bearing life.

  13. The Cryogenic Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Erickson, Edwin F.; Haas, Michael R.; Colgan, Sean W. J.; Simpson, Janet P.; Rubin, Robert H.

    1995-01-01

    The Cryogenic Grating Spectrometer (CGS) first flew on the KAO in 1982 December and has been open to guest investigators since 1984 October. In the past 12 years it has completed over 100 research flights supporting 13 different principal investigators studying a variety of objects. We briefly describe the instrument, its capabilities and accomplishments, and acknowledge the people who have contributed to its development and operation.

  14. Cryogenic Selective Surfaces

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Nurge, Mark

    2015-01-01

    Under our NASA Innovative Advanced Concepts (NIAC) project we have theoretically demonstrated a novel selective surface that reflects roughly 100 times more solar radiation than any other known coating. If this prediction holds up under experimental tests it will allow cryogenic temperatures to be reached in deep space even in the presence of the sun. It may allow LOX to be carried to the Moon and Mars. It may allow superconductors to be used in deep space without a refrigeration system.

  15. 165-W cryogenically cooled Yb:YAG laser.

    PubMed

    Ripin, Daniel J; Ochoa, Juan R; Aggarwal, R L; Fan, Tso Yee

    2004-09-15

    Thermo-optic distortions often limit the beam quality and power scaling of high-average-power lasers. Cryogenically cooled Yb:YAG is used to efficiently generate 165 W of near-diffraction-limited beam from a power oscillator with negligible thermo-optic effects. End pumped with 215 W of incident pump power from two diode modules, the laser has an optical-optical efficiency of 76%, a slope efficiency of 85%, and an M2 value of 1.02. PMID:15460887

  16. Cryogenic pellet production developments for long-pulse plasma operation

    NASA Astrophysics Data System (ADS)

    Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A.

    2014-01-01

    Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.

  17. Cryogenic pellet production developments for long-pulse plasma operation

    SciTech Connect

    Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A.

    2014-01-29

    Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.

  18. Surface Tension Confines Cryogenic Liquid

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  19. Experiments on Cryogenic Complex Plasma

    SciTech Connect

    Ishihara, O.; Sekine, W.; Kubota, J.; Uotani, N.; Chikasue, M.; Shindo, M.

    2009-11-10

    Experiments on a cryogenic complex plasma have been performed. Preliminary experiments include production of a plasma in a liquid helium or in a cryogenic helium gas by a pulsed discharge. The extended production of a plasma has been realized in a vapor of liquid helium or in a cryogenic helium gas by rf discharge. The charge of dust particles injected in such a plasma has been studied in detail.

  20. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    SciTech Connect

    Yoder Jr, Graydon L; Harvey, Karen; Ferrada, Juan J

    2011-02-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  1. Precision Cryogenic Dilatometer

    NASA Technical Reports Server (NTRS)

    Dudik, Matthew; Halverson, Peter; Levine-West, Marie; Marcin, Martin; Peters, Robert D.; Shaklan, Stuart

    2005-01-01

    A dilatometer based on a laser interferometer is being developed to measure mechanical creep and coefficients of thermal expansion (CTEs) of materials at temperatures ranging from ambient down to 15 K. This cryogenic dilatometer has been designed to minimize systematic errors that limit the best previously available dilatometers. At its prototype stage of development, this cryogenic dilatometer yields a strain measurement error of 35 ppb or 1.7 ppb/K CTE measurement error for a 20-K thermal load, for low-expansion materials in the temperature range from 310 down to 30 K. Planned further design refinements that include a provision for stabilization of the laser and addition of a high-precision sample-holding jig are expected to reduce the measurement error to 5-ppb strain error or 0.3-ppb/K CTE error for a 20-K thermal load. The dilatometer (see figure) includes a common-path, differential, heterodyne interferometer; a dual-frequency, stabilized source bench that serves as the light source for the interferometer; a cryogenic chamber in which one places the material sample to be studied; a cryogenic system for cooling the interior of the chamber to the measurement temperature; an ultra-stable alignment stage for positioning the chamber so that the sample is properly positioned with respect to the interferometer; and a data-acquisition and control system. The cryogenic chamber and the interferometer portion of the dilatometer are housed in a vacuum chamber on top of a vibration isolating optical table in a cleanroom. The sample consists of two pieces a pillar on a base both made of the same material. Using reflections of the interferometer beams from the base and the top of the pillar, what is measured is the change in length of the pillar as the temperature in the chamber is changed. In their fundamental optical and electronic principles of operation, the laser light source and the interferometer are similar to those described in Common-Path Heterodyne

  2. Oxygen pumps

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Special considerations to be given to the design, fabrication, and use of centrifugal pumps for liquid O2 to avoid conditions that lead to system failure are given. Emphasis was placed on turbine pumps for flight applications.

  3. Casing pump

    SciTech Connect

    Bass, H.E.; Bass, R.E.

    1987-09-29

    A natural gas operated pump is described for use in the casing of an oil well, comprising: a tubular pump body having an open lower end for admitting well fluids to the interior of the pump body and an open upper end, wherein a downwardly facing seating surface is formed on the inner periphery of the pump body adjacent the upper end thereof; means for forming a seal between the pump body and the casing of the well; a rod extending longitudinally through the seating surface formed in the pump body and protruding from the upper end of the pump body; a valve member mounted on the rod below the seating surface and shaped to mate with the seating surface; and means for vertically positioning the rod in proportion to fluid pressure within the pump body.

  4. Magnetocaloric pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  5. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  6. Taming the plasma-material interface with the snowflake divertor.

    SciTech Connect

    Soukhanovskii, V A

    2015-04-24

    Experiments in several tokamaks have provided increasing support for the snowflake configuration as a viable tokamak heat exhaust concept. This white paper summarizes the snowflake properties predicted theoretically and studied experimentally, and identifies outstanding issues to be resolved in existing and future facilities before the snowflake divertor can qualify for the reactor interface.

  7. Modeling results for a linear simulator of a divertor

    SciTech Connect

    Hooper, E.B.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Jackson, M.C.; Kaiser, T.B.; Molvik, A.W.; Nevins, W.M.; Nilson, D.G.; Pearlstein, L.D.; Rognlien, T.D.

    1993-06-23

    A divertor simulator, IDEAL, has been proposed by S. Cohen to study the difficult power-handling requirements of the tokamak program in general and the ITER program in particular. Projections of the power density in the ITER divertor reach {approximately} 1 Gw/m{sup 2} along the magnetic fieldlines and > 10 MW/m{sup 2} on a surface inclined at a shallow angle to the fieldlines. These power densities are substantially greater than can be handled reliably on the surface, so new techniques are required to reduce the power density to a reasonable level. Although the divertor physics must be demonstrated in tokamaks, a linear device could contribute to the development because of its flexibility, the easy access to the plasma and to tested components, and long pulse operation (essentially cw). However, a decision to build a simulator requires not just the recognition of its programmatic value, but also confidence that it can meet the required parameters at an affordable cost. Accordingly, as reported here, it was decided to examine the physics of the proposed device, including kinetic effects resulting from the intense heating required to reach the plasma parameters, and to conduct an independent cost estimate. The detailed role of the simulator in a divertor program is not explored in this report.

  8. Neoclassical and Initial Divertor-Geometry Tests of COGENT

    NASA Astrophysics Data System (ADS)

    Cohen, R. H.; Dorf, M.; Compton, J. C.; Dorr, M.; Rognlien, T. D.; Colella, P.; McCorquodale, P.; Angus, J.; Krasheninnikov, S.

    2012-03-01

    COGENT is a full-f continuum kinetic code being developed for study of edge physics phenomena in tokamaks. The code is distinguished by 4th order conservative discretization and mapped multiblock grid technology to handle the geometric complexity of the tokamak edge. We discuss a number of recent neoclassical results in closed-flux-surface geometry, in particular self-consistent neoclassical simulations with increasingly complete collision operators (Lorentz, full test-particle, and adding model momentum- and energy-conserving terms). We also examine the effects of strong radial electric fields on neoclassical transport and decay of geodesic acoustic modes (GAM's). The code is being upgraded to full single-null divertor geometry, with numerical geometric coefficients imported from an external MHD equilibrium calculation. We discuss several initial tests of the divertor code: advection of phase-space blobs through the x-point region, and neoclassical transport and flows in the presence of divertor losses. We also summarize progress on code-development activities needed to complete the divertor code.

  9. Theoretical design of a compact energy recovering divertor

    NASA Astrophysics Data System (ADS)

    Baver, D. A.

    2015-11-01

    An energy recovering divertor (ERD) is a type of plasma direct converter (PDC) designed to fit in the divertor channel of a tokamak. Such a device reduces the heat load to the divertor plate by converting a portion of it into electrical energy. This recovered energy can then be used for auxiliary heating and current drive, fundamentally altering the relationship between scientific and engineering breakeven and reducing dependence on bootstrap current. Previous work on the ERD concept focused on amplification of Alfven waves in a manner similar to a free-electron laser. While conceptually straightforward, this concept was also bulky, thus limiting its applicability to existing tokamak experiments. A design is presented for an ERD based on sheath-localized waves. This makes possible a device sufficiently compact to fit in the divertor channel of many existing tokamak experiments, and moreover requires no new shaping coils to achieve the desired magnetic geometry or topology. In addition, incidental advantages of this concept will be discussed.

  10. Development and implementation of the TPX structural and cryogenic design criteria

    SciTech Connect

    Zatz, I.; Heitzenroeder, P.; Schultz, J.H.

    1993-11-01

    The Tokamak Physics Experiment (TPX) is a superconducting tokamak utilizing both Nb{sub 3}Sn and NbTi superconducting magnets and will feature a low-activation titanium alloy vacuum vessel and carbon-carbon composite divertors. Due to the unique nature of the component designs, materials, and environment, the TPX project felt it necessary to develop a design criteria (code) which will specifically address the structural and cryogenic design aspects of such a device. The developed code is intended to serve all components of the device; namely, the TF and PF magnets, vacuum vessel, first wall and divertor, cryostat, diagnostics, heating devices, shielding, and all associated structural elements. The structural portion is based largely on that developed for the Burning Plasma Experiment (BPX), which was modeled after the CIT Vacuum Vessel Structural Design Criteria and ASME Boiler and Pressure Vessel (B & PV) Code. The cryogenic criteria is largely modeled after that proposed in the ITER CDA. This paper summarizes the TPX Criteria document.

  11. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  12. Cryogenic Flow Sensor

    NASA Technical Reports Server (NTRS)

    Justak, John

    2010-01-01

    An acousto-optic cryogenic flow sensor (CFS) determines mass flow of cryogens for spacecraft propellant management. The CFS operates unobtrusively in a high-pressure, high-flowrate cryogenic environment to provide measurements for fluid quality as well as mass flow rate. Experimental hardware uses an optical plane-of-light (POL) to detect the onset of two-phase flow, and the presence of particles in the flow of water. Acousto-optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. Acousto-optic interaction occurs in all optical media when an acoustic wave and a laser beam are present. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this grating will diffract the laser beam into several orders. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle. If the acoustic wave is traveling in a moving fluid, the fluid velocity will affect the frequency of the traveling wave, relative to a stationary sensor. This frequency shift changes the angle of diffraction, hence, fluid velocity can be determined from the diffraction angle. The CFS acoustic Bragg grating data test indicates that it is capable of accurately determining flow from 0 to 10 meters per second. The same sensor can be used in flow velocities exceeding 100 m/s. The POL module has successfully determined the onset of two-phase flow, and can distinguish vapor bubbles from debris.

  13. Cryogenic insulation development

    NASA Technical Reports Server (NTRS)

    Leonhard, K. E.

    1972-01-01

    Multilayer insulations for long term cryogenic storage are described. The development effort resulted in an insulation concept using lightweight radiation shields, separated by low conductive Dacron fiber tufts. The insulation is usually referred to as Superfloc. The fiber tufts are arranged in a triangular pattern and stand about .040 in. above the radiation shield base. Thermal and structural evaluation of Superfloc indicated that this material is a strong candidate for the development of high performance thermal protection systems because of its high strength, purge gas evacuation capability during boost, its density control and easy application to a tank.

  14. Cryogenic support member

    DOEpatents

    Niemann, Ralph C.; Gonczy, John D.; Nicol, Thomas H.

    1987-01-01

    A cryogenic support member is comprised of a non-metallic rod having a depression in at least one end and a metallic end connection assembled to the rod. The metallic end connection comprises a metallic plug which conforms to the shape and is disposed in the depression and a metallic sleeve is disposed over the rod and plug. The plug and the sleeve are shrink-fitted to the depression in the rod to form a connection good in compression, tension and bending.

  15. Refrigerated cryogenic envelope

    DOEpatents

    Loudon, John D.

    1976-11-16

    An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

  16. Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  17. FRIB cryogenic distribution system

    NASA Astrophysics Data System (ADS)

    Ganni, V.; Dixon, K.; Laverdure, N.; Knudsen, P.; Arenius, D.; Barrios, M.; Jones, S.; Johnson, M.; Casagrande, F.

    2014-01-01

    The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

  18. Kodak AMSD Cryogenic Test Plans

    NASA Technical Reports Server (NTRS)

    Matthews, Gary; Hammon, John; Barrett, David; Russell, Kevin (Technical Monitor)

    2002-01-01

    NGST will be an IR based optical system that will operate at cryogenic temperatures. As part of the AMSD program, Kodak must demonstrate the ability of our system to perform at these very cold temperatures. Kodak will discuss the test approach that will be used for cryogenic testing at MSFC's XRCF.

  19. Optical Detection Of Cryogenic Leaks

    NASA Technical Reports Server (NTRS)

    Wyett, Lynn M.

    1988-01-01

    Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.

  20. Axial and centrifugal pump meanline performance analysis

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1994-01-01

    A meanline pump flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump flow code (PUMPA) has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design point rotor efficiency is obtained from empirically derived correlations of loss to rotor specific speed. The rapid input setup and computer run time for the meanline pump flow code makes it an effective analysis and conceptual design tool. The map generation capabilities of the PUMPA code provide the information needed for interfacing with a rocket engine system modeling code.

  1. Diagnostic options for radiative divertor feedback control on NSTX-U

    SciTech Connect

    Soukhanovskii, V. A.; McLean, A. G.; Gerhardt, S. P.; Kaita, R.; Raman, R.

    2012-10-15

    A radiative divertor technique is used in present tokamak experiments and planned for ITER to mitigate high heat loads on divertor plasma-facing components (PFCs) to prevent excessive material erosion and thermal damage. In NSTX, a large spherical tokamak with lithium-coated graphite PFCs and high divertor heat flux (q{sub peak} Less-Than-Or-Slanted-Equal-To 15 MW/m{sup 2}), radiative divertor experiments have demonstrated a significant reduction of divertor peak heat flux simultaneously with good core H-mode confinement using pre-programmed D{sub 2} or CD{sub 4} gas injections. In this work diagnostic options for a new real-time feedback control system for active radiative divertor detachment control in NSTX-U, where steady-state peak divertor heat fluxes are projected to reach 20-30 MW/m{sup 2}, are discussed. Based on the NSTX divertor detachment measurements and analysis, the control diagnostic signals available for NSTX-U include divertor radiated power, neutral pressure, spectroscopic deuterium recombination signatures, infrared thermography of PFC surfaces, and thermoelectric scrape-off layer current. In addition, spectroscopic 'security' monitoring of possible confinement or pedestal degradation is recommended. These signals would be implemented in a digital plasma control system to manage the divertor detachment process via an actuator (impurity gas seeding rate).

  2. Diagnostic options for radiative divertor feedback control on NSTX-Ua)

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Gerhardt, S. P.; Kaita, R.; McLean, A. G.; Raman, R.

    2012-10-01

    A radiative divertor technique is used in present tokamak experiments and planned for ITER to mitigate high heat loads on divertor plasma-facing components (PFCs) to prevent excessive material erosion and thermal damage. In NSTX, a large spherical tokamak with lithium-coated graphite PFCs and high divertor heat flux (qpeak ⩽ 15 MW/m2), radiative divertor experiments have demonstrated a significant reduction of divertor peak heat flux simultaneously with good core H-mode confinement using pre-programmed D2 or CD4 gas injections. In this work diagnostic options for a new real-time feedback control system for active radiative divertor detachment control in NSTX-U, where steady-state peak divertor heat fluxes are projected to reach 20-30 MW/m2, are discussed. Based on the NSTX divertor detachment measurements and analysis, the control diagnostic signals available for NSTX-U include divertor radiated power, neutral pressure, spectroscopic deuterium recombination signatures, infrared thermography of PFC surfaces, and thermoelectric scrape-off layer current. In addition, spectroscopic "security" monitoring of possible confinement or pedestal degradation is recommended. These signals would be implemented in a digital plasma control system to manage the divertor detachment process via an actuator (impurity gas seeding rate).

  3. Cryogenics maintenance strategy

    NASA Astrophysics Data System (ADS)

    Cruzat, Fabiola

    2012-09-01

    ALMA is an interferometer composed of 66 independent systems, with specific maintenance requirements for each subsystem. To optimize the observation time and reduce downtime maintenance, requirements are very demanding. One subsystem with high maintenance efforts is cryogenics and vacuum. To organize the maintenance, the Cryogenic and Vacuum department is using and implementing different tools. These are monitoring and problem reporting systems and CMMS. This leads to different maintenance approaches: Preventive Maintenance, Corrective Maintenance and Condition Based Maintenance. In order to coordinate activities with other departments the preventive maintenance schedule is kept as flexible as systems allow. To cope with unavoidable failures, the team has to be prepared to work under any condition with the spares on time. Computerized maintenance management system (CMMS) will help to manage inventory control for reliable spare part handling, the correct record of work orders and traceability of maintenance activities. For an optimized approach the department is currently evaluating where preventive or condition based maintenance applies to comply with the individual system demand. Considering the change from maintenance contracts to in-house maintenance will help to minimize costs and increase availability of parts. Due to increased number of system and tasks the cryo team needs to grow. Training of all staff members is mandatory, in depth knowledge must be built up by doing complex maintenance activities in the Cryo group, use of advanced computerized metrology systems.

  4. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  5. Cryogenic fluid management experiment

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.

    1981-01-01

    The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.

  6. Cryogenic skirt support post

    NASA Astrophysics Data System (ADS)

    Niemann, R. C.; Buckles, W. E.

    The cold masses of cryostats having vertical axes, like vertical pressure vessels, can be effectively supported by means of a cylindrical skirt that wraps concentrically around the cold mass. The skirt is a cryogenic support post connected at its upper end to the cold mass and at its lower end to the cryostat vacuum vessel. A heat intercept connection to an intermediate temperature refrigeration source can be employed to control heat leak. The support post consists of a composite; e.g. epoxy fibreglass, or cylinder with bolted or thermal interference fit end connections. The support post, being a single element support, simplifies cryostat assembly and alignment. The composite cylinder, with a relatively large diameter, lends itself to structural soundness and stability under both static and dynamic loading conditions. Its relatively long length and intermediate temperature heat intercept allows low heat leak to the cold mass. The details of the design of a cryogenic skirt support post as applied to a superconducting magnetic energy storage cryostat are presented. Included are support post fabrication, cryostat assembly, and predicted structural and thermal performance. Fabrication of and operational experiences with a prototype support post assembly are discussed.

  7. Cryogenic Viscous Compressor Development and Modeling for the ITER Vacuum System

    SciTech Connect

    Baylor, Larry R; Meitner, Steven J; Barbier, Charlotte N; Combs, Stephen Kirk; Duckworth, Robert C; Edgemon, Timothy D; Rasmussen, David A; Hechler, Michael P; Kersevan, R.; Dremel, M.; Pearce, R.J.H.; Boissin, Jean Claude

    2011-01-01

    The ITER vacuum system requires a roughing pump system that can pump the exhaust gas from the torus cryopumps to the tritium exhaust processing plant. The gas will have a high tritium content and therefore conventional vacuum pumps are not suitable. A pump called a cryogenic viscous compressor (CVC) is being designed for the roughing system to pump from ~500 Pa to 10 Pa at flow rates of 200 Pa-m3/ s. A unique feature of this pump is that is allows any helium in the gas to flow through the pump where it is sent to the detritiation system before exhausting to atmosphere. A small scale prototype of the CVC is being tested for heat transfer characteristics and compared to modeling results to ensure reliable operation of the full scale CVC. Keywords- ITER; vacuum; fuel cycle

  8. Modeling of divertor geometry effects in China fusion engineering testing reactor by SOLPS/B2-Eirene

    SciTech Connect

    Zhao, M. L.; Chen, Y. P.; Li, G. Q.; Luo, Z. P.; Guo, H. Y.; Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031; General Atomics, P.O. Box 85608, San Diego, California 92186 ; Ye, M. Y.; Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 ; Tendler, M.

    2014-05-15

    The China Fusion Engineering Testing Reactor (CFETR) is currently under design. The SOLPS/B2-Eirene code package is utilized for the design and optimization of the divertor geometry for CFETR. Detailed modeling is carried out for an ITER-like divertor configuration and one with relatively open inner divertor structure, to assess, in particular, peak power loading on the divertor target, which is a key issue for the operation of a next-step fusion machine, such as ITER and CFETR. As expected, the divertor peak heat flux greatly exceeds the maximum steady-state heat load of 10 MW/m{sup 2}, which is a limit dictated by engineering, for both divertor configurations with a wide range of edge plasma conditions. Ar puffing is effective at reducing divertor peak heat fluxes below 10 MW/m{sup 2} even at relatively low densities for both cases, favoring the divertor configuration with more open inner divertor structure.

  9. Ultrastable Cryogenic Microwave Oscillators

    NASA Astrophysics Data System (ADS)

    Mann, Anthony G.

    Ultrastable cryogenic microwave oscillators are secondary frequency standards in the microwave domain. The best of these oscillators have demonstrated a short term frequency stability in the range 10-14 to a few times 10-16. The main application for these oscillators is as flywheel oscillators for the next generation of passive atomic frequency standards, and as local oscillators in space telemetry ground stations to clean up the transmitter close in phase noise. Fractional frequency stabilities of passive atomic frequency standards are now approaching 3 x10^-14 /τ where τ is the measurement time, limited only by the number of atoms that are being interrogated. This requires an interrogation oscillator whose short-term stability is of the order of 10-14 or better, which cannot be provided by present-day quartz technology. Ultrastable cryogenic microwave oscillators are based on resonators which have very high electrical Q-factors. The resolution of the resonator's linewidth is typically limited by electronics noise to about 1ppm and hence Q-factors in excess of 108 are required. As these are only attained in superconducting cavities or sapphire resonators at low temperatures, use of liquid helium cooling is mandatory, which has so far restricted these oscillators to the research or metrology laboratory. Recently, there has been an effort to dispense with the need for liquid helium and make compact flywheel oscillators for the new generation of primary frequency standards. Work is under way to achieve this goal in space-borne and mobile liquid-nitrogen-cooled systems. The best cryogenic oscillators developed to date are the ``whispering gallery'' (WG) mode sapphire resonator-oscillators of NASA's Jet Propulsion Laboratory (JPL) and the University of Western Australia (UWA), as well as Stanford University's superconducting cavity stabilized oscillator (SCSO). All of these oscillators have demonstrated frequency

  10. Superfluid helium cryogenic systems for superconducting RF cavities at KEK

    SciTech Connect

    Nakai, H.; Hara, K.; Honma, T.; Hosoyama, K.; Kojima, Y.; Nakanishi, K.; Kanekiyo, T.; Morita, S.

    2014-01-29

    Recent accelerator projects at KEK, such as the Superconducting RF Test Facility (STF) for R and D of the International Linear Collider (ILC) project and the compact Energy Recovery Linac (cERL), employ superconducting RF cavities made of pure niobium, which can generate high gradient acceleration field. Since the operation temperature of these cavities is selected to be 2 K, we have developed two 2 K superfluid helium cryogenic systems for stable operation of superconducting RF cavities for each of STF and cERL. These two 2 K superfluid helium cryogenic systems are identical in principle. Since the operation mode of the cavities is different for STF and cERL, i.e. the pulse mode for STF and the continuous wave mode for cERL, the heat loads from the cavities are quite different. The 2 K superfluid helium cryogenic systems mainly consists of ordinary helium liquefiers/refrigerators, 2 K refrigerator cold boxes, helium gas pumping systems and high-performance transfer lines. The 2 K refrigerators and the high-performance transfer lines are designed by KEK. Some superconducting RF cavity cryomodules have been already connected to the 2 K superfluid helium cryogenic systems for STF and cERL respectively, and cooled down to 2 K successfully.

  11. Cryogenic controls for Fermilab's SRF cavities and test facility

    SciTech Connect

    Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.; /Fermilab

    2007-07-01

    A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The facility is supplied cryogens from the Cryogenic Test Facility (CTF) located in a separate building 500-m away. The design incorporates ambient temperature pumping for super-fluid helium production, as well as three 0.6-kW at 4.5-K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+{trademark}, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+{trademark} allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+{trademark} nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLC's by KOYO{reg_sign} are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

  12. Cryogenic Controls for Fermilab's Srf Cavities and Test Facility

    NASA Astrophysics Data System (ADS)

    Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.

    2008-03-01

    A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The Cryogenic Test Facility (CTF), located in a separate building 500 m away, supplies the facility with cryogens. The design incorporates ambient temperature pumping for superfluid helium production, as well as three 0.6 kW at 4.5 K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+™, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+™ allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+™ nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLCs by KOYO® are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

  13. Investigation of the influence of divertor recycling on global plasma confinement in JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Tamain, P.; Joffrin, E.; Bufferand, H.; Järvinen, A.; Brezinsek, S.; Ciraolo, G.; Delabie, E.; Frassinetti, L.; Giroud, C.; Groth, M.; Lipschultz, B.; Lomas, P.; Marsen, S.; Menmuir, S.; Oberkofler, M.; Stamp, M.; Wiesen, S.; JET EFDA contributors

    2015-08-01

    The impact of the divertor geometry on global plasma confinement in type I ELMy H-mode has been investigated in the JET tokamak equipped with ITER-Like Wall. Discharges have been performed in which the position of the strike-points was changed while keeping the bulk plasma equilibrium essentially unchanged. Large variations of the global plasma confinement have been observed, the H98 factor changing from typically 0.7 when the outer strike-point is on the vertical or horizontal targets to 0.9 when it is located in the pump duct entrance. Profiles are mainly impacted in the pedestal but core gradient lengths, especially for the density, are also modified. Although substantial differences are observed in the divertor conditions, none seem to correlate directly with the confinement. Modelling with the EDGE2D-EIRENE and SOLEDGE2D-EIRENE transport codes exhibits differences in the energy losses due to neutrals inside the separatrix, but orders of magnitude are too low to explain simply the impact on the confinement.

  14. Material deposition on inner divertor quartz-micro balances during ITER-like wall operation in JET

    NASA Astrophysics Data System (ADS)

    Esser, H. G.; Philipps, V.; Freisinger, M.; Widdowson, A.; Heinola, K.; Kirschner, A.; Möller, S.; Petersson, P.; Brezinsek, S.; Huber, A.; Matthews, G. F.; Rubel, M.; Sergienko, G.

    2015-08-01

    The migration of beryllium, tungsten and carbon to remote areas of the inner JET-ILW divertor and the accompanying co-deposition of deuterium has been investigated using post-mortem analysis of the housings of quartz-micro balances (QMBs) and their quartz crystals. The analysis of the deposition provides that the rate of beryllium atoms is significantly reduced compared to the analogue deposition rate of carbon during the carbon wall conditions (JET-C) at the same locations of the QMBs. A reduction factor of 50 was found at the entrance gap to the cryo-pumps while it was 14 under tile 5, the semi-horizontal target plate. The deposits consist of C/Be atomic ratios of typically 0.1-0.5 showing an enrichment of carbon in remote areas compared to directly exposed areas with less carbon. The deuterium retention fraction D/Be is between 0.3 and 1 at these unheated locations in the divertor.

  15. Detached divertor operation in DIII-D helium plasmas

    SciTech Connect

    Hill, D. N., LLNL

    1998-05-01

    This paper presents results from operating helium plasmas in DIII-D in which helium gas puffing is used to reduce the peak divertor heat flux by factors of four or more. The threshold density for achieving these conditions is nearly the same as for deuterium plasmas, which is surprising given the fact that lack of chemical sputtering reduces the carbon concentration in the plasma by more than a factor of five. Spectroscopic analysis shows that helium becomes the primary radiation in these plasmas, which is possible because, unlike carbon, it is the primary species present. These plasmas differ from the usual partially detached divertor (PDD) plasmas in that there is no concomitant reduction in target plate ion flux with target plate heat flux in the scrape off later outside the separatrix.

  16. Innovative tokamak DEMO first wall and divertor material concepts

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.

    2009-06-01

    ITER has selected Be as the first wall and C and W as the divertor surface materials. When extrapolated to the DEMO design, C and Be layers will not be suitable due to radiation damage. The remaining material, W, could also suffer radiation damage from helium ion implantation and experience blistering at the first wall and form submicron fine structure at the divertor. In this paper we introduce a new concept called the boron W-mesh (BW-mesh) in which B is infiltrated into a W-mesh. The goal is to use a thin coating of B to protect the W-mesh from helium ion damage and to maintain a sufficient amount of B to protect the W from transient events like edge localized modes (ELMs) and disruptions. Critical issues and corresponding development of this BW-mesh concept have been identified, including the need for real time boronization.

  17. Investigation of tokamak solid divertor target options. Final report

    SciTech Connect

    McMurray, J.M.

    1981-05-26

    Analysis of survival constraints on the design of solid targets for tokamak bundle divertors is presented. Previous target design efforts are reviewed. Considerations of heat removal, surface erosion, and fatigue life are included in a generalized design window methodology which facilitates target selection. Using subcooled water as coolant, eight possible target materials are evaluated for use in tubular and plate targets as substrates, coatings, and claddings. Subject to the severe environment of the tokamak plasma, the most promising conventional designs are identified. A thermally bonded, mechanically unbonded laminated design is proposed and evaluated as a target design well suited to the divertor target environment. Due to fatigue and sputtering erosion this configuration has limited life, but appears to constitute an upper bound for the capabilities of a solid target design. Needs for experimental work are identified.

  18. An automated approach to magnetic divertor configuration design

    NASA Astrophysics Data System (ADS)

    Blommaert, M.; Dekeyser, W.; Baelmans, M.; Gauger, N. R.; Reiter, D.

    2015-01-01

    Automated methods based on optimization can greatly assist computational engineering design in many areas. In this paper an optimization approach to the magnetic design of a nuclear fusion reactor divertor is proposed and applied to a tokamak edge magnetic configuration in a first feasibility study. The approach is based on reduced models for magnetic field and plasma edge, which are integrated with a grid generator into one sensitivity code. The design objective chosen here for demonstrative purposes is to spread the divertor target heat load as much as possible over the entire target area. Constraints on the separatrix position are introduced to eliminate physically irrelevant magnetic field configurations during the optimization cycle. A gradient projection method is used to ensure stable cost function evaluations during optimization. The concept is applied to a configuration with typical Joint European Torus (JET) parameters and it automatically provides plausible configurations with reduced heat load.

  19. Divertor heat and particle control experiments on the DIII-D tokamak

    SciTech Connect

    Mahdavi, M.A; Baker, D.R.; Allen, S.L.

    1994-05-01

    In this paper we present a summary of recent DIII-D divertor physics activity and plans for future divertor upgrades. During the past year, DIII-D experimental effort was focused on areas of active heat and particle control and divertor target erosion studies. Using the DIII-D Advanced Divertor system we have succeeded for the first time to control the plasma density and demonstrate helium exhaust in H-mode plasmas. Divertor heat flux control by means of D{sub 2} gas puffing and impurity injection were studied separately and in, both cases up to a factor of five reduction of the divertor peak heat flux was observed. Using the DiMES sample transfer system we have obtained erosion data on various material samples in well diagnosed plasmas and compared the results with predictions of numerical models.

  20. Cryogenic Fluid Transfer for Exploration

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost effective approaches to the required on-orbit demonstration are suggested.

  1. Cryogenic Fluid Transfer for Exploration

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2008-01-01

    This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost-effective approaches to the required on-orbit demonstration are suggested.

  2. Basic cryogenics and materials

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1985-01-01

    The effects of cryogenic temperatures on the mechanical and physical properties of materials are summarized. Heat capacity and thermal conductivity are considered in the context of conservation of liquid nitrogen, thermal stability of the gas stream, and the response time for changes in operating temperature. Particular attention is given to the effects of differential expansion and failure due to thermal fatigue. Factors affecting safety are discussed, including hazards created due to the inadvertent production of liquid oxygen and the physiological effects of exposure to liquid and gaseous nitrogen, such as cold burns and asphyxiation. The preference for using f.c.c. metals at low temperatures is explained in terms of their superior toughness. The limitations on the use of ferritic steels is also considered. Nonmetallic materials are discussed, mainly in the context of their LOX compatibility and their use in the form of foams and fibers as insulatants, seals, and fiber reinforced composites.

  3. Cryogenic expansion machine

    DOEpatents

    Pallaver, Carl B.; Morgan, Michael W.

    1978-01-01

    A cryogenic expansion engine includes intake and exhaust poppet valves each controlled by a cam having adjustable dwell, the valve seats for the valves being threaded inserts in the valve block. Each cam includes a cam base and a ring-shaped cam insert disposed at an exterior corner of the cam base, the cam base and cam insert being generally circular but including an enlarged cam dwell, the circumferential configuration of the cam base and cam dwell being identical, the cam insert being rotatable with respect to the cam base. GI CONTRACTUAL ORIGIN OF THE INVENTION The invention described herein was made in the course of, or under, a contract with the UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION.

  4. Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Jones, David

    2011-01-01

    The CPS is an in-space cryogenic propulsive stage based largely on state of the practice design for launch vehicle upper stages. However, unlike conventional propulsive stages, it also contains power generation and thermal control systems to limit the loss of liquid hydrogen and oxygen due to boil-off during extended in-space storage. The CPS provides the necessary (Delta)V for rapid transfer of in-space elements to their destinations or staging points (i.e., E-M L1). The CPS is designed around a block upgrade strategy to provide maximum mission/architecture flexibility. Block 1 CPS: Short duration flight times (hours), passive cryo fluid management. Block 2 CPS: Long duration flight times (days/weeks/months), active and passive cryo fluid management.

  5. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, J.C.; Paulson, D.N.; Allen, P.C.

    1983-01-04

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. [sup 4]He, [sup 3]He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3--4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel. 10 figs.

  6. LUX Cryogenics and Circulation

    NASA Astrophysics Data System (ADS)

    Bradley, Adam

    2012-10-01

    LUX is a new dark matter direct detection experiment being carried out at the Sanford Underground Research Facility, at the renewed Homestake mine in Lead, SD. The detector's large size supports effective internal shielding from natural radioactivity of the surrounding materials and environment. The LUX detector consists of a cylindrical vessel containing 350 kg of liquid xenon (LXe) cooled down and maintained at 175-K operating temperature using a novel cryogenic system. We report the efficiency of our thermosyphon-based cooling system, as well as the efficiency of a unique internal heat exchanger with standard gas phase purification using a heated getter, which allows for very high flow purification without requiring large cooling power. Such systems are required for multi-ton scale up.

  7. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.

    1983-01-01

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. .sup.4 He, .sup.3 He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3-4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel.

  8. DiMES divertor erosion experiments on DIII-D

    SciTech Connect

    Whyte, D.G.; Brooks, J.N.; Wong, C.P.C.; West, W.P.; Bastasz, R.; Wampler, W.R.; Rubinstein, J.

    1996-06-01

    The DiMES (Divertor Material Evaluation Studies) mechanism allows insertion of material samples to the lower divertor floor of the DIII-D tokamak. The main purpose of these studies is to measure erosion rates and redeposition mechanisms under tokamak divertor plasma conditions in order to obtain a physical understanding of the erosion/redeposition processes and to determine its implications for fusion power plant plasma facing components. Thin metal films of Be, W, V, and Mo, were deposited on a Si depth-marked graphite sample and exposed to the steady-state outer strike point on DIII-D. A variety of surface analysis techniques are used to determine the erosion/redeposition of the metals and the carbon after 5--15 seconds of exposure. These short exposure times ensure controlled exposure conditions and the extensive array of DIII-D divertor diagnostics provide a well characterized plasma for modeling efforts. Erosion rates and redeposition lengths are found to decrease with the atomic number of the metallic species, as expected. Under these conditions, the peak net erosion rate for carbon is {approximately} 4 nm/s, with the erosion following the ion flux profile. Comparisons of the measured carbon erosion with REDEP code calculations show good agreement for both the absolute net erosion rate and its spatial variation. Measured erosion rates of the metals are smaller than predicted for sputtering from a bare metal surface, apparently due to effects of carbon deposition on the metal surface. Visible spectroscopic measurements of singly ionized Be have determined that the erosion process reaches steady-state during the exposure.

  9. Beyond 10 J/ 2 Hz LUCIA current status with cryogenic amplifier

    NASA Astrophysics Data System (ADS)

    Lucianetti, A.; Novo, T.; Vincent, B.; Albach, D.; Chanteloup, J.-C.

    2011-06-01

    More than 10 Joules at 2 Hz were recently obtained from the LUCIA laser system based on diode-pumped Yb:YAG active mirrors. This achievement is the result of careful management of both Amplified Spontaneous Emission and thermal effects in laser amplifiers. Future developments including a cryogenically-cooled active mirror are also presented.

  10. Ground-Based Investigations with the Cryogenic Hydrogen Maser

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.; Mattison, Edward; Vessot, Robert F. C.

    2003-01-01

    The cryogenic hydrogen maser (CHM) developed at the Smithsonian Astrophysical Observatory (SAO) was designed to be functionally similar to SAO room temperature hydrogen masers with appropriate modifications made for operation at cryogenic temperatures. A schematic of the SAO CHM is shown in Figure 1, and a description of this device and its operation follows. A beam of molecular hydrogen is dissociated into atoms at room temperature. The resultant beam of atomic hydrogen is then cooled, magnetically state selected, and focused into a quartz storage bulb centered inside of a microwave cavity resonant with the hydrogen hyperfine transition at 1420 MHz. The quartz storage bulb is coated with a superfluid He-4 film, and both the bulb and cavity are maintained near 0.5 K. The maser signal is coupled out inductively and carried to room temperature via semi-rigid coaxial cable. After passing through a room temperature isolator and preamp, the maser signal is detected with a low-noise heterodyne receiver as used in the room temperature SAO hydrogen masers. The maser temperature is lowered to 0.5 K using a recirculating He-3 refrigerator. This refrigerator consists of several cooling stages: a liquid nitrogen stage at 77 K, a liquid 4He bath at 4.2 K, a pumped He-4 pot at approximately 1.7 K, and the pumped, recirculating He-3 stage at 0.5 K. The atomic hydrogen beam, state selector, storage bulb and cavity are all connected inside a single, maser vacuum chamber (MVC). This space is pumped out from below by a turbo pump. Above the MVC, an inlet to the space allows for the input of flowing superfluid 4He film. External to the MVC is a second, outer vacuum chamber (OVC), maintained for operation of the cryostat and also pumped by a turbo pump. Inside the OVC, there is radiation shielding at 77 K and 1.7 K.

  11. Tokamak power exhaust with the snowflake divertor: Present results and outstanding issues

    DOE PAGESBeta

    Soukhanovskii, V. A.; Xu, X.

    2015-09-15

    Here, a snowflake divertor magnetic configuration (Ryutov in Phys Plasmas 14(6):064502, 2007) with the second-order poloidal field null offers a number of possible advantages for tokamak plasma heat and particle exhaust in comparison with the standard poloidal divertor with the first-order null. Results from snowflake divertor experiments are briefly reviewed and future directions for research in this area are outlined.

  12. Analytical calculations for impurity seeded partially detached divertor conditions

    NASA Astrophysics Data System (ADS)

    Kallenbach, A.; Bernert, M.; Dux, R.; Reimold, F.; Wischmeier, M.; ASDEX Upgrade Team

    2016-04-01

    A simple analytical formula for the impurity seeded partially detached divertor operational point has been developed using 1D modelling. The inclusion of charge exchange momentum loss terms improves the 1D modelling for ASDEX Upgrade conditions and its extrapolation to larger devices. The investigations are concentrated around a partially detached divertor working point of low heat flux and an electron temperature around 2.5 eV at the target which are required to maintain low sputtering rates at a tungsten target plate. An experimental formula for the onset of detachment by nitrogen seeding in ASDEX Upgrade is well reproduced, and predictions are given for N, Ne and Ar seeding for variable device size. Moderate deviations from a linear {{P}\\text{sep}}/R size dependence of the detachment threshold are seen in the modelling caused by upstream radiation at longer field line lengths. The presented formula allows the prediction of the neutral gas or seed impurity pressure which is required to achieve partial detachment for a given {{P}\\text{sep}} in devices with a closed divertor similar to the geometry in ASDEX Upgrade.

  13. UEDGE modeling of divertor geometry effects in NSTX

    NASA Astrophysics Data System (ADS)

    Izacard, Olivier; Soukhanovskii, Vlad; Scotti, Filippo

    2015-11-01

    We report efforts toward the modeling of divertor geometry effects using the fluid code UEDGE and NSTX experimental equilibria with different X-point heights. A variation of the geometry generates a competition between the poloidal magnetic flux expansion, which reduces the peak of the deposited heat flux and homogenizes its profile at divertor plates, and the proximity of the X-point to the divertor plates, which decreases the connection length and increases the peak heat flux. Our simulations use fixed fraction of carbon impurity, poloidally and radially constant transport coefficients, and high recycling boundary conditions, with a scan of density and pressure boundary conditions, and impurity fraction. Our simulations support the experimental observation that the poloidal flux expansion dominates the deposit heat flux over the parallel connection length effect. In opposite to experimental observation, detachment seems independent to the elevation. Improvement of the model is required. Supported by U.S. Department of Energy Contract No. DE-AC52-07NA27344.

  14. Assessment of issues for the MAST divertor biasing experiment

    NASA Astrophysics Data System (ADS)

    Helander, P.; Cohen, R. H.; Fielding, S.; Ryutov, D.

    2001-10-01

    A biasing experiment is being undertaken in the MAST scrape-off layer; the goal is to induce intense convection by a toroidally alternating biasing of divertor tiles. This would lead to a thickening of the SOL and a reduction of the heat load on the divertor plates. In addition, by studying the reaction of a plasma to a varying bias, one can collect new information regarding pre-existing SOL turbulence. We consider the following issues: 1. The bias amplitude required to produce significant SOL broadening; 2. Excitation of shear-flow turbulence in convective cells; 3. The role of magnetic shear; 4. Effects of electrostatic sheaths at the divertor plates; 5. Redistribution of heat fluxes during biasing. We show that a significant effect of the biasing on the SOL structure can be reached at relatively small bias voltages 30 V. We also show that the potential perturbations will be limited to a zone between the X-point and the biased tiles, and will be essentially decoupled from the main SOL plasma. Preliminary experimental results may be shown.

  15. Fast reciprocating Langmuir probe for the DIII-D divertor

    SciTech Connect

    Watkins, J.G.; Hunter, J.; Tafoya, B.; Ulrickson, M.; Watson, R.D.; Moyer, R.A.; Cuthbertson, J.W.; Gunner, G.; Lehmer, R.; Luong, P.; Hill, D.N.; Mascaro, M.; Robinson, J.I.; Snider, R.; Stambaugh, R.

    1997-01-01

    A new reciprocating Langmuir probe was used to measure density and temperature profiles, ion flow, and potential fluctuation levels from the lower divertor floor up to the X point on the DIII-D Tokamak. This probe is designed to make fast (2 kHz swept, 20 kHz Mach, 500 kHz Vfloat) measurements with 2 mm spatial resolution in the region where the largest gradients on the plasma open flux tubes are found and therefore provide the best benchmarks for scrap-off layer and divertor numerical models. Profiles are constructed using the 300 ms time history of the probe measurements during the 25 cm reciprocating stroke. Both single and double null plasmas can be measured and compared with a 20 Hz divertor Thomson scattering system. The probe head is constructed of four different kinds of graphite to optimize the electrical and thermal characteristics. Electrically insulated pyrolytic graphite rings act as a heat shield to absorb the plasma heat flux on the probe shaft and are mounted on a carbon/carbon composite core for mechanical strength. The Langmuir probe sampling tips are made of a linear carbon fiber composite. The mechanical, electrical, data acquisition, and power supply systems will be described. Initial measurements will also be presented. {copyright} {ital 1997 American Institute of Physics.}

  16. Island Divertor Plate Modeling for the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Hartwell, G. J.; Massidda, S. D.; Ennis, D. A.; Knowlton, S. F.; Maurer, D. A.; Bader, A.

    2015-11-01

    Edge magnetic island divertors can be used as a method of plasma particle and heat exhaust in long pulse stellarator experiments. Detailed power loading on these structures and its relationship to the long connection length scrape off layer physics is a new Compact Toroidal Hybrid (CTH) research thrust. CTH is a five field period, l = 2 torsatron with R0 = 0 . 75 m, ap ~ 0 . 2 m, and | B | <= 0 . 7 T. For these studies CTH is configured as a pure stellarator using a 28 GHz, 200 kW gyrotron operating at 2nd harmonic for ECRH. We report the results of EMC3-EIRENE modeling of divertor plates near magnetic island structures. The edge rotational transform is varied by adjusting the ratio of currents in the helical and toroidal field coils. A poloidal field coil adjusts the shear of the rotational transform profile, and width of the magnetic island, while the phase of the island is rotated with a set of five error coils producing an n = 1 perturbation. For the studies conducted, a magnetic configuration with a large n = 1 , m = 3 magnetic island at the edge is generated. Results from multiple potential divertor plate locations will be presented and discussed. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  17. Comparison of Ne and Ar seeded radiative divertor plasmas in JT-60U

    NASA Astrophysics Data System (ADS)

    Nakano, T.

    2015-08-01

    In H-mode plasmas with Ne, Ar and a mixture of Ne and Ar injection, the divertor radiation power fractions amongst these impurities in addition to an intrinsic impurity, C, are investigated. In plasmas with the inner divertor plasma attached, carbon is the biggest radiator, whichever impurity, Ne, Ar or a mixture of Ar and Ne is injected. In contrast, in plasmas with the inner divertor plasma detached, Ne is the biggest radiator due to a significantly high recombination radiation from Ne VIII. Ar is always a minor contributor in plasmas with the inner divertor both attached and detached.

  18. Active control of divertor asymmetry on EAST by localized D2 and Ar puffing

    NASA Astrophysics Data System (ADS)

    Wang, Dongsheng; Guo, Houyang; Wang, Huiqian; Luo, Guangnan; Wu, Zhenwei; Wu, Jinhua; Gao, Wei; Wang, Liang; Li, Qiang; East Team

    2011-03-01

    The divertor asymmetry in particle and power fluxes has been investigated on the EAST superconducting tokamak [S. Wu and EAST Team, Fusion Eng. Des. 82, 463 (2007)] for both single null (SN) and double null (DN) divertor configurations. D2 and Ar puffing at various divertor locations has also been explored as an active means to reduce peak target heat load and control divertor asymmetry. For SN, peak heat load on the outer divertor target is 2-3 times that on the inner divertor target under typical ohmic plasma conditions. DN operation leads to a stronger in-out asymmetry favoring the outer divertor. D2 and Ar puffing promotes partial detachment near the strike points, greatly reducing peak target heat load (over 50%), while the far-SOL divertor plasma remains attached. What is remarkable is that the particle flux is even increased away from the strike points when the B×∇B drift is directed toward the divertor target, thus facilitating particle removal.

  19. Modelling of radiative divertor operation towards detachment in experimental advanced superconducting tokamak

    SciTech Connect

    Chen Yiping; Wang, F. Q.; Hu, L. Q.; Guo, H. Y.; Wu, Z. W.; Zhang, X. D.; Wan, B. N.; Li, J. G.; Zha, X. J.

    2013-02-15

    In order to actively control power load on the divertor target plates and study the effect of radiative divertor on plasma parameters in divertor plasmas and heat fluxes to the targets, dedicated experiments with Ar impurity seeding have been performed on experimental advanced superconducting tokamak in typical L-mode discharge with single null divertor configuration, ohmic heating power of 0.5 MW, and lower hybrid wave heating power of 1.0 MW. Ar is puffed into the divertor plasma at the outer target plate near the separatrix strike point with the puffing rate 1.26 Multiplication-Sign 10{sup 20} s{sup -1}. The radiative divertor is formed during the Ar puffing. The SOL/divertor plasma in the L-mode discharge with radiative divertor has been modelled by using SOLPS5.2 code package [V. Rozhansky et al., Nucl. Fusion 49, 025007 (2009)]. The modelling shows the cooling of the divertor plasma due to Ar seeding and is compared with the experimental measurement. The changes of peak electron temperature and heat fluxes at the targets with the shot time from the modelling results are similar to the experimental measurement before and during the Ar impurity seeding, but there is a major difference in time scales when Ar affects the plasma in between experiment and modelling.

  20. Active control of divertor asymmetry on EAST by localized D{sub 2} and Ar puffing

    SciTech Connect

    Wang Dongsheng; Luo Guangnan; Guo Houyang; Wang Huiqian; Wu Zhenwei; Wu Jinhua; Gao Wei; Wang Liang; Li Qiang

    2011-03-15

    The divertor asymmetry in particle and power fluxes has been investigated on the EAST superconducting tokamak [S. Wu and EAST Team, Fusion Eng. Des. 82, 463 (2007)] for both single null (SN) and double null (DN) divertor configurations. D{sub 2} and Ar puffing at various divertor locations has also been explored as an active means to reduce peak target heat load and control divertor asymmetry. For SN, peak heat load on the outer divertor target is 2-3 times that on the inner divertor target under typical ohmic plasma conditions. DN operation leads to a stronger in-out asymmetry favoring the outer divertor. D{sub 2} and Ar puffing promotes partial detachment near the strike points, greatly reducing peak target heat load (over 50%), while the far-SOL divertor plasma remains attached. What is remarkable is that the particle flux is even increased away from the strike points when the Bx{nabla}B drift is directed toward the divertor target, thus facilitating particle removal.

  1. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  2. Ferroelectric Pump

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    2000-01-01

    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  3. Introduction to cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    The background to the evolution of the cryogenic wind tunnel is outlined, with particular reference to the late 60's/early 70's when efforts were begun to re-equip with larger wind tunnels. The problems of providing full scale Reynolds numbers in transonic testing were proving particularly intractible, when the notion of satisfying the needs with the cryogenic tunnel was proposed, and then adopted. The principles and advantages of the cryogenic tunnel are outlined, along with guidance on the coolant needs when this is liquid nitrogen, and with a note on energy recovery. Operational features of the tunnels are introduced with reference to a small low speed tunnel. Finally the outstanding contributions are highlighted of the 0.3-Meter Transonic Cryogenic Tunnel (TCT) at NASA Langley Research Center, and its personnel, to the furtherance of knowledge and confidence in the concept.

  4. A Piezoelectric Cryogenic Heat Switch

    NASA Technical Reports Server (NTRS)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  5. Cryogenic foam insulation: Abstracted publications

    NASA Technical Reports Server (NTRS)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  6. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  7. The RHIC cryogenic control system

    SciTech Connect

    Farah, Y.; Sondericker, J.

    1993-08-01

    A cryogenic process control system for the RHIC Project is discussed. It is independent of the main RHIC Control System, consisting of an upgrade of the existing 24.8 Kw helium refrigerator control section with the addition of a ring control section that regulates and monitors all cryogenic signals in the RHIC tunnel. The system is fully automated, which can run without the continuous presence of operators.

  8. Latest developments in cryogenic safety

    NASA Astrophysics Data System (ADS)

    Webster, T. J.

    1983-03-01

    The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of cryogenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.

  9. Latest developments in cryogenic safety

    NASA Technical Reports Server (NTRS)

    Webster, T. J.

    1983-01-01

    The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of cryogenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.

  10. Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    Oyama, Akira; Liou, Meng-Sing

    2001-01-01

    A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.

  11. Submersible pump

    SciTech Connect

    Todd, D. B.

    1985-08-27

    A method and apparatus for using a submersible pump to lift reservoir fluids in a well while having the tubing/casing annulus isolated from the produced fluids. The apparatus allows the submersible pump to be positioned above the annular packoff device. The apparatus comprises an outer shield that encloses the pump and can be attached to the production tubing. The lower end of the shield attaches to a short tubing section that seals with the annular packoff device or a receptacle above the annular packoff device.

  12. Numerical calculation of thermal effect on cavitation in cryogenic fluids

    NASA Astrophysics Data System (ADS)

    Shi, Suguo; Wang, Guoyu

    2012-11-01

    A key design issue related to the turbopump of the rocket engine is that cavitation occurs in cryogenic fluids when the fluid pressure is lower than the vapor pressure at a local thermodynamic state. Cavitation in cryogenic fluids generates substantial thermal effects and strong variations in fluid properties, which in turn alter the cavity characteristics. To date, fewer investigate the thermal effect on cavitation in cryogenic fluids clearly by the numerical methods due to the difficulty of the heat transfer in the phase change process. In order to study the thermal effect on cavitation in cryogenic fluid, computations are conducted around a 2D quarter caliber hydrofoil in liquid nitrogen and hydrogen respectively by implementing modified Merkle cavitation model, which accounts for the energy balance and variable thermodynamic properties of the fluid. The numerical results show that with the thermal effect, the vapour content in constant location decreases, the cavity becomes more porous and the interface becomes less distinct which shows increased spreading while getting shorter in length. In the cavity region, the temperature around the cavity depresses due to absorb the evaporation latent heat and the saturation pressure drops. When the vapour volume fraction is higher, the temperature depression and pressure depression becomes larger. It is also observed that a slight temperature rise is found above the reference fluid temperature at the cavity rear end attributed to the release of latent heat during the condensation process. When the fluid is operating close to its critical temperature, thermal effects on cavitation are more obviously in both the liquid nitrogen and hydrogen. The thermal effect on cavitation in liquid hydrogen is more distinctly compared with that in liquid nitrogen due to the density ratio, vapour pressure and other variable properties of the fluid. The investigation provides aid for the design of the cryogenic pump of the liquid rocket.

  13. Comparison of transient and stationary neutral pressure response in the DIII-D advanced divertor

    SciTech Connect

    Klepper, C.C.; Hogan, J.T.; Owen, L.W.; Mioduszewski, P.K. ); Maingi, R. ); Hill, D.N. ); Buchenauer, D. ); Ali Mahdavi, M.; Schaffer, M.J.; Petrie, T.W.; Jackson, G.L.; Evans, T.E. (General Atomics,

    1992-05-01

    The DIII-D divertor baffle system was designed to facilitate density control in long pulse H-mode discharges by removing a particle flux equal to the neutral beam fueling rate ({approximately}20 Torr-1/s) with a {approximately}1mTorr neutral pressure under the baffle (p{sub 0}). Initial measurements of the baffle pressure indicated that p{sub 0}{approximately} 10 mTorr (without pumping or biasing), a value much in excess of that required for long pulse density control. Radial sweeps of the X-point position have been employed to determine the maximum p{sub 0}, as well as to establish the dependence of this pressure on geometry. An estimate of the particle equilibration time for the baffle system has been made by studying the baffle pressure response to giant'' ELM effects. Steady state'' experiments in which the X-point position was fixed for {approximately}2.5s have also been carried out and steady baffle pressures were observed. The scaling of baffle pressure with plasma parameters has been found to be similar under transient and steady state'' conditions. Detailed modeling of these experiments with the B2, DEGAS, and WDIFFUSE (wall model) codes has been made.

  14. Comparison of transient and stationary neutral pressure response in the DIII-D advanced divertor

    SciTech Connect

    Klepper, C.C.; Hogan, J.T.; Owen, L.W.; Mioduszewski, P.K.; Maingi, R.; Hill, D.N.; Buchenauer, D.; Ali Mahdavi, M.; Schaffer, M.J.; Petrie, T.W.; Jackson, G.L.; Evans, T.E.; Haas, G.

    1992-05-01

    The DIII-D divertor baffle system was designed to facilitate density control in long pulse H-mode discharges by removing a particle flux equal to the neutral beam fueling rate ({approximately}20 Torr-1/s) with a {approximately}1mTorr neutral pressure under the baffle (p{sub 0}). Initial measurements of the baffle pressure indicated that p{sub 0}{approximately} 10 mTorr (without pumping or biasing), a value much in excess of that required for long pulse density control. Radial sweeps of the X-point position have been employed to determine the maximum p{sub 0}, as well as to establish the dependence of this pressure on geometry. An estimate of the particle equilibration time for the baffle system has been made by studying the baffle pressure response to ``giant`` ELM effects. ``Steady state`` experiments in which the X-point position was fixed for {approximately}2.5s have also been carried out and steady baffle pressures were observed. The scaling of baffle pressure with plasma parameters has been found to be similar under transient and ``steady state`` conditions. Detailed modeling of these experiments with the B2, DEGAS, and WDIFFUSE (wall model) codes has been made.

  15. Two phase liquid helium flow testing to simulate the operation of a cryocondensation pump in the D3-D tokamak

    NASA Astrophysics Data System (ADS)

    Laughon, G. J.; Baxi, C. B.; Campbell, G. L.; Mahdavi, M. A.; Makariou, C. C.; Smith, J. P.; Schaffer, M. J.; Schaubel, K. M.; Menon, M. M.

    1994-06-01

    A liquid helium-cooled cryocondensation pump has been installed in the D3-D tokamak fusion energy research experiment at General Atomics. The pump is located within the tokamak vacuum chamber beneath the divertor baffle plates and is utilized for plasma density and contamination control. Two-phase helium flows through the pump at 5 to 10 g/s utilizing the heat transfer and constant temperature characteristics of boiling liquid . helium. The pump is designed for a pumping speed of 32,000 1/s. Extensive testing was performed with a prototypical pump test fixture. Several pump geometries (simple tube, coaxial flow plug, and coaxial slotted insert) were tested, in an iterative process, to determine which was the most satisfactory for stable cryocondensation pumping. Results from the different tests illustrating the temperature distribution and flow characteristics for each configuration are presented.

  16. Two phase liquid helium flow testing to simulate the operation of a cryocondensation pump in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Laughon, G. J.; Baxi, C. B.; Campbell, G. L.; Mahdavi, M. A.; Makariou, C. C.; Menon, M. M.; Smith, J. P.; Schaffer, M. J.; Schaubel, K. M.

    A liquid helium-cooled cryocondensation pump has been installed in the DIII=D tokamak fusion energy research experiment at General Atomics. The pump is located within the tokamak vacuum chamber beneath the divertor baffle plates and is utilized for plasma density and contamination control. Two-phase helium flows through the pump at 5 to 10 g/s utilizing the beat transfer and constant temperature characteristics of boiling liquid helium. The pump is designed for a pumping speed of 32,0001/s. Extensive testing was performed with a prototypical pump test fixture. Several pump geometries (simple tube, coaxial flow plug, and coaxial slotted insert) were tested, in an iterative process, to determine which was the most satisfactory for stable cryocondensation pumping. Results from the different tests illustrating the temperature distribution and flow characteristics for each configuration are presented.

  17. Cryogenic Permanent Magnet Undulators

    SciTech Connect

    Chavanne, J.; Lebec, G.; Penel, C.; Revol, F.; Kitegi, C.

    2010-06-23

    For an in-vacuum undulator operated at small gaps the permanent magnet material needs to be highly resistant to possible electron beam exposure. At room temperature, one generally uses Sm{sub 2}Co{sub 17} or high coercivity NdFeB magnets at the expense of a limited field performance. In a cryogenic permanent magnet undulator (CPMU), at a temperature of around 150 K, any NdFeB grade reveals a coercivity large enough to be radiation resistant. In particular, very high remanence NdFeB material can be used to build undulators with enhanced field and X-ray brilliance at high photon energy provided that the pre-baking of the undulator above 100 deg. C can be eliminated. The ESRF has developed a full scale 2 m long CPMU with a period of 18 mm. This prototype has been in operation on the ID6 test beamline since January 2008. A significant effort was put into the characterization of NdFeB material at low temperature, the development of dedicated magnetic measurement systems and cooling methods. The measured heat budget with beam is found to be larger than expected without compromising the smooth operation of the device. Leading on from this first experience, new CPMUs are currently being considered for the upgrade of the ESRF.

  18. Cryogenic Neutron Spectrometer Development

    SciTech Connect

    Niedermayr, T; Hau, I D; Friedrich, S; Burger, A; Roy, U N; Bell, Z W

    2006-03-08

    Cryogenic microcalorimeter detectors operating at temperatures around {approx}0.1 K have been developed for the last two decades, driven mostly by the need for ultra-high energy resolution (<0.1%) in X-ray astrophysics and dark matter searches [1]. The Advanced Detector Group at Lawrence Livermore National Laboratory has developed different cryogenic detector technologies for applications ranging from X-ray astrophysics to nuclear science and non-proliferation. In particular, we have adapted cryogenic detector technologies for ultra-high energy resolution gamma-spectroscopy [2] and, more recently, fast-neutron spectroscopy [3]. Microcalorimeters are essentially ultra-sensitive thermometers that measure the energy of the radiation from the increase in temperature upon absorption. They consist of a sensitive superconducting thermometer operated at the transition between its superconducting and its normal state, where its resistance changes very rapidly with temperature such that even the minute energies deposited by single radiation quanta are sufficient to be detectable with high precision. The energy resolution of microcalorimeters is fundamentally limited by thermal fluctuations to {Delta}E{sub FWHM} {approx} 2.355 (k{sub B}T{sup 2}C{sub abs}){sup 1/2}, and thus allows an energy below 1 keV for neutron spectrometers for an operating temperature of T {approx} 0.1 K . The {Delta}E{sub FWHM} does not depend on the energy of the incident photon or particle. This expression is equivalent to the familiar (F{var_epsilon}E{sub {gamma}}){sup 1/2} considering that an absorber at temperature T contains a total energy C{sub abs}T, and the associated fluctuation are due to variations in uncorrelated (F=1) phonons ({var_epsilon} = k{sub B}T) dominated by the background energy C{sub abs}T >> E{gamma}. The rationale behind developing a cryogenic neutron spectrometer is the very high energy resolution combined with the high efficiency. Additionally, the response function is simple

  19. Cryogenic Electric Motor Tested

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  20. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    NASA Technical Reports Server (NTRS)

    Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.

    2001-01-01

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space, and would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray-bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray-bar system consists of a recirculation pump, a parallel flow concentric tube heat exchanger, and a spray-bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses.

  1. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    NASA Technical Reports Server (NTRS)

    Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.

    1999-01-01

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy is required. a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point. the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating, boil-off losses.

  2. Dual Cryogenic Capacitive Density Sensor

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Mata, Carlos; Vokrot, Peter; Cox, Robert

    2009-01-01

    A dual cryogenic capacitive density sensor has been developed. The device contains capacitive sensors that monitor two-phase cryogenic flow density to within 1% accuracy, which, if temperature were known, could be used to determine the ratio of liquid to gas in the line. Two of these density sensors, located a known distance apart, comprise the sensor, providing some information on the velocity of the flow. This sensor was constructed as a proposed mass flowmeter with high data acquisition rates. Without moving parts, this device is capable of detecting the density change within a two-phase cryogenic flow more than 100 times a second. Detection is enabled by a series of two sets of five parallel plates with stainless steel, cryogenically rated tubing. The parallel plates form the two capacitive sensors, which are measured by electrically isolated digital electronics. These capacitors monitor the dielectric of the flow essentially the density of the flow and can be used to determine (along with temperature) the ratio of cryogenic liquid to gas. Combining this information with the velocity of the flow can, with care, be used to approximate the total two-phase mass flow. The sensor can be operated at moderately high pressures and can be lowered into a cryogenic bath. The electronics have been substantially improved over the older sensors, incorporating a better microprocessor, elaborate ground loop protection and noise limiting circuitry, and reduced temperature sensitivity. At the time of this writing, this design has been bench tested at room temperature, but actual cryogenic tests are pending

  3. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  4. Electrokinetic pump

    DOEpatents

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  5. A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm

    NASA Astrophysics Data System (ADS)

    Cho, C. Y.; Tuan, P. H.; Yu, Y. T.; Huang, K. F.; Chen, Y. F.

    2013-04-01

    We experimentally explore the fluorescence spectra of the Nd:YAG (YAG: yttrium aluminum garnet) crystal at cryogenic temperatures to confirm the feasibility of dual-wavelength operation at 1061 and 1064 nm. Furthermore, a cryogenically cooled Nd:YAG crystal with coating to form a monolithic cavity is employed to investigate the performance of the dual-wavelength operation. At an incident pump power of 20 W, the output powers for each wavelength can simultaneously reach 6.0 W at the optimally balanced temperature of 152 K. The optimal temperature for balancing the output powers of the two wavelengths is experimentally determined as a function of the incident pump power intensity.

  6. SOLPS5.1 analysis of detachment with drifts and gas pumping effects in EAST

    NASA Astrophysics Data System (ADS)

    Du, Hailong; Sang, Chaofeng; Wang, Liang; Bonnin, Xavier; Guo, Houyang; Sun, Jizhong; Wang, Dezhen

    2016-08-01

    The aim of this paper is to estimate the effects of usual drifts and gas puffing/pumping locations on divertor detachment and Ar ion transport in the Experimental Advanced Superconducting Tokamak (EAST) by using the edge plasma code package SOLPS5.1. The simulated results reveal that which target plate first detaches depends strongly on the usual drifts, but not on the location of impurity gas puffing, which could be one of the possible explanations for the experimentally observed phenomenon (Chen et al 2013 Phys. Plasmas 20 022311) that the lower inner target first detached compared to the lower outer target with the lower outer gas puffing. The physics behind this phenomenon is that drifts not only can induce background ion flux, plasma density and temperature redistribution in the scrape-off layer (SOL) and divertor region, but also can change the Ar impurity force balance leading to Ar ions being dragged from bottom to top. Furthermore, the simulated results illustrate that the Ar ion transport in the SOL and divertor region is similar for different gas puffing locations including upstream and divertor region before partial detachment. However, the Ar ions penetrate into the core more easily, giving rise to more discharge disruption during complete detachment with upstream gas puffing than with divertor region puffing. Finally, we also estimate the effect of gas pumping on the detachment in order to realize long-pulse partial detachment in EAST. The results indicate that long-pulse partial detachment could be obtained by improving the pumping speed to match the puffing speed in case the excess Ar atoms accumulate in the core plasma during partial detachment in EAST.

  7. Investigation of scrape-off layer and divertor heat transport in ASDEX Upgrade L-mode

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Eich, T.; Faitsch, M.; Herrmann, A.; Scarabosio, A.; the ASDEX Upgrade Team

    2016-05-01

    Power exhaust is one of the major challenges for the development of a fusion power plant. Predictions based upon a multimachine database give a scrape-off layer power fall-off length {λq}≤slant 1 mm for large fusion devices such as ITER. The power deposition profile on the target is broadened in the divertor by heat transport perpendicular to the magnetic field lines. This profile broadening is described by the power spreading S. Hence both {λq} and S need to be understood in order to estimate the expected divertor heat load for future fusion devices. For the investigation of S and {λq} L-Mode discharges with stable divertor conditions in hydrogen and deuterium were conducted in ASDEX Upgrade. A strong dependence of S on the divertor electron temperature and density is found which is the result of the competition between parallel electron heat conductivity and perpendicular diffusion in the divertor region. For high divertor temperatures it is found that the ion gyro radius at the divertor target needs to be considered. The dependence of the in/out asymmetry of the divertor power load on the electron density is investigated. The influence of the main ion species on the asymmetric behaviour is shown for hydrogen, deuterium and helium. A possible explanation for the observed asymmetry behaviour based on vertical drifts is proposed.

  8. Near-infrared spectroscopy for divertor plasma diagnosis and control in DIII-D tokamak.

    PubMed

    Soukhanovskii, V A; McLean, A G; Allen, S L

    2014-11-01

    New near infrared (NIR) spectroscopic measurements performed in the DIII-D tokamak divertor plasma suggest new viable diagnostic applications: divertor recycling and low-Z impurity flux measurements, a spectral survey for divertor Thomson scattering (DTS) diagnostic, and Te monitoring for divertor detachment control. A commercial 0.3 m spectrometer coupled to an imaging lens via optical fiber and a InGaAs 1024 pixel array detector enabled deuterium and impurity emission measurements in the range 800-2300 nm. The first full NIR survey identified D, He, B, Li, C, N, O, Ne lines and provided plasma Te, ne estimates from deuterium Paschen and Brackett series intensity and Stark line broadening analysis. The range 1.000-1.060 mm was surveyed in high-density and neon seeded divertor plasmas for spectral background emission studies for λ = 1.064 μm laser-based DTS development. The ratio of adjacent deuterium Paschen-α and Brackett Br9 lines in recombining divertor plasmas is studied for divertor Te monitoring aimed at divertor detachment real-time feedback control. PMID:25430325

  9. Near-infrared spectroscopy for divertor plasma diagnosis and control in DIII-D tokamak

    SciTech Connect

    Soukhanovskii, V. A. McLean, A. G.; Allen, S. L.

    2014-11-15

    New near infrared (NIR) spectroscopic measurements performed in the DIII-D tokamak divertor plasma suggest new viable diagnostic applications: divertor recycling and low-Z impurity flux measurements, a spectral survey for divertor Thomson scattering (DTS) diagnostic, and T{sub e} monitoring for divertor detachment control. A commercial 0.3 m spectrometer coupled to an imaging lens via optical fiber and a InGaAs 1024 pixel array detector enabled deuterium and impurity emission measurements in the range 800–2300 nm. The first full NIR survey identified D, He, B, Li, C, N, O, Ne lines and provided plasma T{sub e}, n{sub e} estimates from deuterium Paschen and Brackett series intensity and Stark line broadening analysis. The range 1.000–1.060 mm was surveyed in high-density and neon seeded divertor plasmas for spectral background emission studies for λ = 1.064 μm laser-based DTS development. The ratio of adjacent deuterium Paschen-α and Brackett Br9 lines in recombining divertor plasmas is studied for divertor T{sub e} monitoring aimed at divertor detachment real-time feedback control.

  10. Magnetic turbulence and resistive MHD instabilities in a 0. 6 < q < 3 poloidal divertor tokamak

    SciTech Connect

    Agim, Y.Z.; Callen, J.D.; Chang, Z.; Dexter, R.N.; Goetz, J.A.; Graessle, D.E.; Haines, E.; Kortbawi, D.; LaPointe, M.A.; Moyer, R.A.

    1988-09-01

    Detailed statistical properties of internal magnetic turbulence, and internal disruptions in magnetically- and materially-limited discharges, are studied in the Tokapole II poloidal divertor tokamak over the safety factor range 0.6 < q{sub a} < 3. A nonlinear MHD code treats tearing modes in the divertor geometry. 9 refs., 2 figs.

  11. Near-infrared spectroscopy for divertor plasma diagnosis and control in DIII-D tokamaka)

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; McLean, A. G.; Allen, S. L.

    2014-11-01

    New near infrared (NIR) spectroscopic measurements performed in the DIII-D tokamak divertor plasma suggest new viable diagnostic applications: divertor recycling and low-Z impurity flux measurements, a spectral survey for divertor Thomson scattering (DTS) diagnostic, and Te monitoring for divertor detachment control. A commercial 0.3 m spectrometer coupled to an imaging lens via optical fiber and a InGaAs 1024 pixel array detector enabled deuterium and impurity emission measurements in the range 800-2300 nm. The first full NIR survey identified D, He, B, Li, C, N, O, Ne lines and provided plasma Te, ne estimates from deuterium Paschen and Brackett series intensity and Stark line broadening analysis. The range 1.000-1.060 mm was surveyed in high-density and neon seeded divertor plasmas for spectral background emission studies for λ = 1.064 μm laser-based DTS development. The ratio of adjacent deuterium Paschen-α and Brackett Br9 lines in recombining divertor plasmas is studied for divertor Te monitoring aimed at divertor detachment real-time feedback control.

  12. Study on Axially Distributed Divertor Magnetic Field Configuration in a Mirror Cell

    SciTech Connect

    Islam, M.K.; Nakashima, Y.; Higashizono, Y.; Katanuma, I.; Cho, T

    2005-01-15

    A mirror magnetic field configuration (MFC) is studied in which a divertor is distributed axially using multipole coils. Both configurations of divertor and minimum-B are obtained in a mirror cell. Magnetohydrodynamic (MHD) instability of a mirror cell can be eliminated in this way. Concept of the design and properties of the MFC are discussed.

  13. Alcator C-Mod: A high-field divertor tokamak

    NASA Astrophysics Data System (ADS)

    Lipschultz, B.; Becker, H.; Bonoli, P.; Coleman, J.; Fiore, C.; Golovato, S.; Granetz, R.; Greenwald, M.; Gwinn, D.; Humphries, D.; Hutchinson, I.; Irby, J.; Marmar, E.; Montgomery, D. B.; Najmabadi, F.; Parker, R.; Porkolab, M.; Rice, J.; Sevillano, E.; Takase, Y.; Terry, J.; Watterson, R.; Wolfe, S.

    1989-04-01

    The Alcator C-Mod tokamak is a new device presently under construction at Massachusetts Institute of Technology (M.I.T.) which is scheduled to begin operation in mid-1990. The projected operating parameters are as follows: Toroidal field of 9 T; Ip ≤ 3 MA, R = 66.5 cm, a = 21 cm, κ ≤ 2.0, δ ≤ 0.5, ne ≤ 10 21m-3, PICRF ≤ 6 MW. The divertor configuration includes mechanical baffling as opposed to an 'open' geometry. Under strictly ohmic heating conditions, central Ti and Te are predicted to be in the range 2.5-3.5 keV over the density range (4-8) × 10 20m-3. With the addition of 6 MW of ICRF heating, Ti should vary from 4-8 keV over the same density range (assuming either Kaye-Goldston or Neo-Alcator scalings for electron confinement). Based on edge plasma characterizations from Alcator-C and divertor tokamaks, the scrape-off layer (SOL) properties are predicted to be: λn ≈ 10mm, density at the divertor plate < 2 × 10 21m-3, H 0 ionization mean free path between 1 and 10 mm. Maximum heat loads on various internal components are predicted to be in the range 5-10 MW/m 2. The flexibility of the poloidal field system in forming a number of flux surface geometries will provide further comparisons of the relative impurity control capabilities of double-null, single-null and limiter plasmas.

  14. Cryogenic Technology for Superconducting Accelerators

    NASA Astrophysics Data System (ADS)

    Hosoyama, Kenji

    2012-01-01

    Superconducting devices such as magnets and cavities are key components in the accelerator field for increasing the beam energy and intensity, and at the same time making the system compact and saving on power consumption in operation. An effective cryogenic system is required to cool and keep the superconducting devices in the superconducting state stably and economically. The helium refrigeration system for application to accelerators will be discussed in this review article. The concept of two cooling modes -- the liquefier and refrigerator modes -- will be discussed in detail because of its importance for realizing efficient cooling and stable operation of the system. As an example of the practical cryogenic system, the TRISTAN cryogenic system of KEK Laboratory will be treated in detail and the main components of the cryogenic system, including the high-performance multichannel transfer line and liquid nitrogen circulation system at 80K, will also be discussed. In addition, we will discuss the operation of the cryogenic system, including the quench control and safety of the system. The satellite refrigeration system will be discussed because of its potential for wide application in medium-size accelerators and in industry.

  15. Collapsible Cryogenic Storage Vessel Project

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  16. Cryogenic system for the Energy Recovery Linac and vertical test facility at BNL

    SciTech Connect

    Than, R.; Soria, V.; Lederle, D.; Orfin, P.; Porqueddu, R.; Talty, P.; Zhang, Y.; Tallerico, T.; Masi, L.

    2011-03-28

    A small cryogenic system and warm helium vacuum pumping system provides cooling to either the Energy Recovery Linac's (ERL) cryomodules that consist of a 5-cell cavity and an SRF gun or a large Vertical Test Dewar (VTD) at any given time. The cryogenic system consists of a model 1660S PSI piston plant, a 3800 liter storage dewar, subcooler, a wet expander, a 50 g/s main helium compressor, and a 170 m{sup 3} storage tank. A system description and operating plan of the cryogenic plant and cryomodules is given. The cryogenic system for ERL and the Vertical Test Dewar has a plant that can produce the equivalent of 300W at 4.5K with the addition of a wet expander 350 W at 4.5K. Along with this system, a sub-atmospheric, warm compression system provides pumping to produce 2K at the ERL cryomodules or the Vertical Test Dewar. The cryogenic system for ERL and the Vertical Test Dewar makes use of existing equipment for putting a system together. It can supply either the ERL side or the Vertical Test Dewar side, but not both at the same time. Double valve isolation on the liquid helium supply line allows one side to be warmed to room temperature and worked on while the other side is being held at operating temperature. The cryogenic system maintain the end loads from 4.4K to 2K or colder depending on capacity. Liquid helium storage dewar capacity allows ERL or the VTD to operate above the plant's capacity when required and ERL cryomodules ballast reservoirs and VTD reservoir allows the end loads to operate on full vacuum pump capacity when required.

  17. Ballooning Modes in the Systems Stabilized by Divertors

    SciTech Connect

    Arsenin, V.V.; Skovoroda, A.A.; Zvonkov, A.V.

    2005-01-15

    MHD stability of a plasma in systems with closed magnetic field lines and open systems containing the nonparaxial stabilizing cells with large field lines curvature, in particular, divertors is analyzed. It is shown that population of particles trapped in such cells has a stabilizing effect not only on flute modes, but also on ballooning modes that determine the {beta} limit. At kinetic description that accounts for different effect of trapped and passing particles on perturbations, {beta} limit permitted by stability may be much greater then it follows from MHD model.

  18. Facilities for technology testing of ITER divertor concepts, models, and prototypes in a plasma environment

    SciTech Connect

    Cohen, S.A.

    1991-12-01

    The exhaust of power and fusion-reaction products from ITER plasma are critical physics and technology issues from performance, safety, and reliability perspectives. Because of inadequate pulse length, fluence, flux, scrape-off layer plasma temperature and density, and other parameters, the present generation of tokamaks, linear plasma devices, or energetic beam facilities are unable to perform adequate technology testing of divertor components, though they are essential contributors to many physics issues such as edge-plasma transport and disruption effects and control. This Technical Requirements Documents presents a description of the capabilities and parameters divertor test facilities should have to perform accelerated life testing on predominantly technological divertor issues such as basic divertor concepts, heat load limits, thermal fatigue, tritium inventory and erosion/redeposition. The cost effectiveness of such divertor technology testing is also discussed.

  19. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    NASA Astrophysics Data System (ADS)

    Zhu, C. C.; Song, Y. T.; Peng, X. B.; Wei, Y. P.; Mao, X.; Li, W. X.; Qian, X. Y.

    2016-02-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads.

  20. Reconstruction of Detached Divertor Plasma Conditions in DIII-D Using Spectroscopic and Probe Data

    SciTech Connect

    Stangeby, P; Fenstermacher, M

    2004-12-03

    For some divertor aspects, such as detached plasmas or the private flux zone, it is not clear that the controlling physics has been fully identified. This is a particular concern when the details of the plasma are likely to be important in modeling the problem--for example, modeling co-deposition in detached inner divertors. An empirical method of ''reconstructing'' the plasma based on direct experimental measurements may be useful in such situations. It is shown that a detached plasma in the outer divertor leg of DIII-D can be reconstructed reasonably well using spectroscopic and probe data as input to a simple onion-skin model and the Monte Carlo hydrogenic code, EIRENE. The calculated 2D distributions of n{sub e} and T{sub e} in the detached divertor were compared with direct measurements from the divertor Thomson scattering system, a diagnostic capability unique to DIII-D.

  1. Overflow sensor for cryogenic-fluid vessels

    NASA Technical Reports Server (NTRS)

    Tener, W. M.

    1972-01-01

    Overflow sensor for cryogenic fluid vessels has been designed by winding electrical resistance element on porous tubular coil form. Form is positioned in overflow vent of cryogenic fluid vessel where it can differentiate vapor from liquid at same temperature.

  2. Other cryogenic wind tunnel projects

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1989-01-01

    The first cryogenic tunnel was built in 1972. Since then, many cryogenic wind-tunnel projects were started at aeronautical research centers around the world. Some of the more significant of these projects are described which are not covered by other lecturers at this Special Course. Described are cryogenic wind-tunnel projects in five countries: China (Chinese Aeronautical Research and Development Center); England (College of Aeronautics at Cranfield, and Royal Aerospace Establishment-Bedford); Japan (National Aerospace Laboratory, University of Tsukuba, and National Defense Academy); United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign and NASA Langley); and U.S.S.R. (Central Aero-Hydronamics Institute (TsAGI), Institute of Theoretical and Applied Mechanics (ITAM), and Physical-Mechanical Institute at Kharkov (PMI-K).

  3. Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation.

    PubMed

    Ertel, K; Banerjee, S; Mason, P D; Phillips, P J; Siebold, M; Hernandez-Gomez, C; Collier, J C

    2011-12-19

    We present a numerical model of a pulsed, diode-pumped Yb:YAG laser amplifier for the generation of high energy ns-pulses. This model is used to explore how optical-to-optical efficiency depends on factors such as pump duration, pump spectrum, pump intensity, doping concentration, and operating temperature. We put special emphasis on finding ways to achieve high efficiency within the practical limitations imposed by real-world laser systems, such as limited pump brightness and limited damage fluence. We show that a particularly advantageous way of improving efficiency within those constraints is operation at cryogenic temperature. Based on the numerical findings we present a concept for a scalable amplifier based on an end-pumped, cryogenic, gas-cooled multi-slab architecture. PMID:22274245

  4. Gauging Systems Monitor Cryogenic Liquids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Rocket fuel needs to stay cool - super cool, in fact. The ability to store gas propellants like liquid hydrogen and oxygen at cryogenic temperatures (below -243 F) is crucial for space missions in order to reduce their volumes and allow their storage in smaller (and therefore, less costly) tanks. The Agency has used these cryogenic fluids for vehicle propellants, reactants, and life support systems since 1962 with the Centaur upper stage rocket, which was powered with liquid oxygen and liquid hydrogen. During proposed long-duration missions, super-cooled fluids will also be used in space power systems, spaceports, and lunar habitation systems. In the next generation of launch vehicles, gaseous propellants will be cooled to and stored for extended periods at even colder temperatures than currently employed via a process called densification. Densification sub-cools liquids to temperatures even closer to absolute zero (-459 F), increasing the fluid s density and shrinking its volume beyond common cryogenics. Sub-cooling cryogenic liquid hydrogen, for instance, from 20 K (-423 F) to 15 K (-432.4 F) reduces its mass by 10 percent. These densified liquid gases can provide more cost savings from reduced payload volume. In order to benefit from this cost savings, the Agency is working with private industry to prevent evaporation, leakage, and other inadvertent loss of liquids and gases in payloads - requiring new cryogenic systems to prevent 98 percent (or more) of boil-off loss. Boil-off occurs when cryogenic or densified liquids evaporate, and is a concern during launch pad holds. Accurate sensing of propellants aboard space vehicles is also critical for proper engine shutdown and re-ignition after launch, and zero boil-off fuel systems are also in development for the Altair lunar lander.

  5. Cryogenic thermal diode heat pipes

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1979-01-01

    The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.

  6. A piezoelectric cryogenic heat switch

    NASA Astrophysics Data System (ADS)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-06-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios of about 100-200 at lowest and highest measures temperature were achieved when the positioner applied its maximum force of 8 N, respectively. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an ideal PZHS.

  7. Optical Cryogenic Tank Level Sensor

    NASA Technical Reports Server (NTRS)

    Duffell, Amanda

    2005-01-01

    Cryogenic fluids play an important role in space transportation. Liquid oxygen and hydrogen are vital fuel components for liquid rocket engines. It is also difficult to accurately measure the liquid level in the cryogenic tanks containing the liquids. The current methods use thermocouple rakes, floats, or sonic meters to measure tank level. Thermocouples have problems examining the boundary between the boiling liquid and the gas inside the tanks. They are also slow to respond to temperature changes. Sonic meters need to be mounted inside the tank, but still above the liquid level. This causes problems for full tanks, or tanks that are being rotated to lie on their side.

  8. A piezoelectric cryogenic heat switch.

    PubMed

    Jahromi, Amir E; Sullivan, Dan F

    2014-06-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios of about 100-200 at lowest and highest measures temperature were achieved when the positioner applied its maximum force of 8 N, respectively. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an ideal PZHS. PMID:24985863

  9. Iron bulk lasers working under cryogenic and room temperature

    NASA Astrophysics Data System (ADS)

    Jelínková, H.; Doroshenko, M. E.; Šulc, J.; Jelínek, M.; Nemec, M.; Zagoruiko, Y. A.; Kovalenko, N. O.; Gerasimenko, A. S.; Puzikov, V. M.; Komar, V. K.

    2014-12-01

    Temperature dependence of spectroscopic characteristics as well as laser properties of the bulk Bridgman-grown Fe:ZnSe and Fe,Cr:Zn1-xMgxSe (x = 0.19, 0.38) active media were investigated under room and various cryogenic - liquid nitrogen - temperature . The pumping was provided by Er:YAG laser radiation at the wavelength of 2.94 μm, with energy 15 mJ in 110 ns Q-switched pulse or 200 mJ in 220 μs free-running pulse. The 55 mm long hemispherical resonator was formed by a dichroic pumping mirror (T = 92 % @ 2.94 μm and R = 100% @ 4.5 μm) and a concave output coupler (R = 95 % @ 4.5 μm, r = 200 mm). A strong dependence of generated output radiation parameters on temperature was observed for all samples.

  10. Axisymmetric curvature-driven instability in a model divertor geometry

    SciTech Connect

    Farmer, W. A.; Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 ; Ryutov, D. D.

    2013-09-15

    A model problem is presented which qualitatively describes a pressure-driven instability which can occur near the null-point in the divertor region of a tokamak where the poloidal field becomes small. The model problem is described by a horizontal slot with a vertical magnetic field which plays the role of the poloidal field. Line-tying boundary conditions are applied at the planes defining the slot. A toroidal field lying parallel to the planes is assumed to be very strong, thereby constraining the possible structure of the perturbations. Axisymmetric perturbations which leave the toroidal field unperturbed are analyzed. Ideal magnetohydrodynamics is used, and the instability threshold is determined by the energy principle. Because of the boundary conditions, the Euler equation is, in general, non-separable except at marginal stability. This problem may be useful in understanding the source of heat transport into the private flux region in a snowflake divertor which possesses a large region of small poloidal field, and for code benchmarking as it yields simple analytic results in an interesting geometry.

  11. Power deposition in the JET divertor during ELMs

    NASA Astrophysics Data System (ADS)

    Clement, S.; Chankin, A.; Ciric, D.; Coad, J. P.; Falter, J.; Gauthier, E.; Lingertat, J.; Puppin, S.

    The power deposited in the JET divertor during ELMs has been evaluated using an infrared camera specifically designed for fast measurements. The first results [E. Gauthier, A. Charkin, S. Clement et al., Proc. 24th Euro. conf. on contr. Fusion and Plasma Phys., Berchtesgaden, 1997 (European Physical Society, 1998), vol. 21A, p. 61.] indicated that during type I ELMs, surface temperatures in excess of 2000°C were measured, leading to peak power fluxes in the order of 4 GW/m 2. The time integrated power flux exceeded the measured plasma energy loss per ELM by a factor of four. The reasons for this discrepancy are studied in this paper. Redeposited carbon layers of up to 40 μm have been found on the divertor surface in the places where the highest temperatures are measured. The impact of such layers on the power flux evaluation has been studied with numerical calculations, and a controlled simulation of ELM heating has been performed in the JET neutral beam test facility. It is found that neglecting the existence of layers on the surface in a 2D calculation can lead to overestimating the power by a factor of 3, whereas the error in the calculation of the energy is much smaller. An energy based calculation reduces the peak power during type I ELMs to values around 1.2 GW/m 2.

  12. Ballooning modes localized near the null point of a divertor

    SciTech Connect

    Farmer, W. A.

    2014-04-15

    The stability of ballooning modes localized to the null point in both the standard and snowflake divertors is considered. Ideal magnetohydrodynamics is used. A series expansion of the flux function is performed in the vicinity of the null point with the lowest, non-vanishing term retained for each divertor configuration. The energy principle is used with a trial function to determine a sufficient instability threshold. It is shown that this threshold depends on the orientation of the flux surfaces with respect to the major radius with a critical angle appearing due to the convergence of the field lines away from the null point. When the angle the major radius forms with respect to the flux surfaces exceeds this critical angle, the system is stabilized. Further, the scaling of the instability threshold with the aspect ratio and the ratio of the scrape-off-layer width to the major radius is shown. It is concluded that ballooning modes are not a likely candidate for driving convection in the vicinity of the null for parameters relevant to existing machines. However, the results place a lower bound on the width of the heat flux in the private flux region. To explain convective mixing in the vicinity of the null point, new consideration should be given to an axisymmetric mixing mode [W. A. Farmer and D. D. Ryutov, Phys. Plasmas 20, 092117 (2013)] as a possible candidate to explain current experimental results.

  13. ALPS - advanced limiter-divertor plasma-facing systems.

    SciTech Connect

    Allain, J. P.; Bastasz, R.; Brooks, J. N.; Evans, T.; Hassanein, A.; Luckhardt, S.; Maingi, R.; Mattas, R. F.; McCarthy, K.; Mioduszewski, P.; Mogahed, E.; Moir, R.; Molokov, S.; Morely, N.; Nygren, R.; Reed, C.; Rognlien, T.; Ruzic, D.; Sviatoslavsky, I.; Sze, D.; Tillack, M.; Ulrickson, M.; Wade, P. M.; Wong, C.; Wooley, R.

    1999-09-15

    The Advanced Limiter-divertor Plasma-facing Systems (ALPS) program was initiated in order to evaluate the potential for improved performance and lifetime for plasma-facing systems. The main goal of the program is to demonstrate the advantages of advanced limiter/divertor systems over conventional systems in terms of power density capability, component lifetime, and power conversion efficiency, while providing for safe operation and minimizing impurity concerns for the plasma. Most of the work to date has been applied to free surface liquids. A multi-disciplinary team from several institutions has been organized to address the key issues associated with these systems. The main performance goals for advanced limiters and diverters are a peak heat flux of >50 MW/m{sup 2},elimination of a lifetime limit for erosion, and the ability to extract useful heat at high power conversion efficiency ({approximately}40%). The evaluation of various options is being conducted through a combination of laboratory experiments, modeling of key processes, and conceptual design studies. The current emphasis for the work is on the effects of free surface liquids on plasma edge performance.

  14. Mechanistic modeling of destratification in cryogenic storage tanks using ultrasonics.

    PubMed

    Jagannathan, T K; Mohanan, Srijith; Nagarajan, R

    2014-01-01

    Stratification is one of the main causes for vaporization of cryogens and increase of tank pressure during cryogenic storage. This leads subsequent problems such as cavitation in cryo-pumps, reduced length of storage time. Hence, it is vital to prevent stratification to improve the cost efficiency of storage systems. If stratified layers exist inside the tank, they have to be removed by suitable methods without venting the vapor. Sonication is one such method capable of keeping fluid layers mixed. In the present work, a mechanistic model for ultrasonic destratification is proposed and validated with destratification experiments done in water. Then, the same model is used to predict the destratification characteristics of cryogenic liquids such as liquid nitrogen (LN₂), liquid hydrogen (LH₂) and liquid ammonia (LNH₃). The destratification parameters are analysed for different frequencies of ultrasound and storage pressures by considering continuous and pulsed modes of ultrasonic operation. From the results, it is determined that use of high frequency ultrasound (low-power/continuous; high-power/pulsing) or low frequency ultrasound (continuous operation with moderate power) can both be effective in removing stratification. PMID:23810463

  15. Cryogenic cooling system for the ground test accelerator

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F.; Spulgis, I.

    1993-06-01

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH{sub 2}) storage Dewar with a transfer line to an LH{sub 2} run tank containing an LH{sub 2}/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  16. Cryogenic cooling system for the ground test accelerator

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F. ); Spulgis, I. )

    1993-01-01

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH[sub 2]) storage Dewar with a transfer line to an LH[sub 2] run tank containing an LH[sub 2]/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  17. Cryogenic cooling system for the Ground Test Accelerator

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F.; Spulgis, I.

    1994-12-31

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH{sub 2}) storage Dewar with a transfer line to an LH{sub 2} run tank containing an LH{sub 2}/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  18. An exploration of advanced X-divertor scenarios on ITER

    NASA Astrophysics Data System (ADS)

    Covele, B.; Valanju, P.; Kotschenreuther, M.; Mahajan, S.

    2014-07-01

    It is found that the X-divertor (XD) configuration (Kotschenreuther et al 2004 Proc. 20th Int. Conf. on Fusion Energy (Vilamoura, Portugal, 2004) (Vienna: IAEA) CD-ROM file [IC/P6-43] www-naweb.iaea.org/napc/physics/fec/fec2004/datasets/index.html, Kotschenreuther et al 2006 Proc. 21st Int. Conf. on Fusion Energy 2006 (Chengdu, China, 2006) (Vienna: IAEA), CD-ROM file [IC/P7-12] www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.htm, Kotschenreuther et al 2007 Phys. Plasmas 14 072502) can be made with the conventional poloidal field (PF) coil set on ITER (Tomabechi et al and Team 1991 Nucl. Fusion 31 1135), where all PF coils are outside the TF coils. Starting from the standard divertor, a sequence of desirable XD configurations are possible where the PF currents are below the present maximum design limits on ITER, and where the baseline divertor cassette is used. This opens the possibility that the XD could be tested and used to assist in high-power operation on ITER, but some further issues need examination. Note that the increased major radius of the super-X-divertor (Kotschenreuther et al 2007 Bull. Am. Phys. Soc. 53 11, Valanju et al 2009 Phys. Plasmas 16 5, Kotschenreuther et al 2010 Nucl. Fusion 50 035003, Valanju et al 2010 Fusion Eng. Des. 85 46) is not a feature of the XD geometry. In addition, we present an XD configuration for K-DEMO (Kim et al 2013 Fusion Eng. Des. 88 123) to demonstrate that it is also possible to attain the XD configuration in advanced tokamak reactors with all PF coils outside the TF coils. The results given here for the XD are far more encouraging than recent calculations by Lackner and Zohm (2012 Fusion Sci. Technol. 63 43) for the Snowflake (Ryutov 2007 Phys. Plasmas 14 064502, Ryutov et al 2008 Phys. Plasmas 15 092501), where the required high PF currents represent a major technological challenge. The magnetic field structure in the outboard divertor SOL (Kotschenreuther 2013 Phys. Plasmas 20 102507) in the recently created

  19. Insulin pumps.

    PubMed

    Pickup, J

    2011-02-01

    The last year has seen a continued uptake of insulin pump therapy in most countries. The USA is still a leader in pump use, with probably some 40% of type 1 diabetic patients on continuous subcutaneous insulin infusion (CSII), but the large variation in usage within Europe remains, with relatively high use (> 15%) in, for example, Norway, Austria, Germany and Sweden and low use (< 5%) in Spain, the UK, Finland and Portugal. There is much speculation on the factors responsible for this variation, and the possibilities include physician attitudes to CSII and knowledge about its benefits and indications for its use (and inappropriate beliefs about dangers), the availability of reimbursement from insurance companies or funding from national health services, the availability of sufficient diabetes nurse educators and dietitians trained in pump procedures, and clear referral pathways for the pump candidate from general practitioner or general hospital to specialist pump centre. There are now several comprehensive national guidelines on CSII use (see ATTD Yearbook 2009) but more work needs to be done in unifying uptake and ensuring all those who can benefit do so. Technology developments recently include increasing use of pumps with continuous glucose monitoring (CGM) connectivity (see elsewhere in this volume) and the emergence of numerous manufacturers developing so-called 'patch pumps', often for the type 2 diabetes market. Interestingly, the evidence base for CSII in this group is not well established, and for this reason the selected papers on CSII in this section include several in this area. The use of CSII in diabetic pregnancy is a long-established practice, in spite of the lack of evidence that it is superior to multiple daily injections (MDI), and few randomised controlled trials have been done in recent years. Several papers in this field this year continue the debate about the usefulness of CSII in diabetic pregnancy and are reviewed here. It is pleasing

  20. Electrokinetic pump

    DOEpatents

    Hencken, Kenneth R.; Sartor, George B.

    2004-08-03

    An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.

  1. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  2. Cryogenic Treatment of Production Components in High-Wear Rate Wells

    SciTech Connect

    Milliken, M.

    2002-04-29

    Deep Cryogenic Tempering (DCT) is a specialized process whereby the molecular structure of a material is ''re-trained'' through cooling to -300 F and then heating to +175-1100 F. Cryocon, Inc. (hereafter referred to as Cryocon) and RMOTC entered an agreement to test the process on oilfield production components, including rod pumps, rods, couplings, and tubing. Three Shannon Formation wells were selected (TD about 500 ft) based on their proclivity for high component wear rates. Phase 1 of the test involved operation for a nominal 120 calendar day period with standard, non-treated components. In Phase 2, treated components were installed and operated for another nominal 120 calendar day period. Different cryogenic treatment profiles were used for components in each well. Rod pumps (two treated and one untreated) were not changed between test phases. One well was operated in pumped-off condition, resulting in abnormal wear and disqualification from the test. Testing shows that cryogenic treatment reduced wear of rods, couplers, and pump barrels. Testing of production tubing produced mixed results.

  3. Divertor Experiments with MBI and Strong Gas Puffing on HL-2A

    NASA Astrophysics Data System (ADS)

    Duan, Xuru; Ding, Xuantong; Yang, Qingwei; Yan, Longwen; Yao, Lianghua; Hong, Wenyu; Xuan, Weimin; Liu, Dequan; Chen, Liaoyuan; Song, Xianming; Zhang, Jinhua; Cao, Zeng; Cui, Zhengying; Li, Wei; Liu, Yi; Pan, Yudong; Pan, Li; Zheng, Yinjia; Zhou, Yan; Mao, Weicheng; Liu, Yong; HL-2A Team

    2006-01-01

    In the HL-2A 2004 experiment campaign, pulsed molecular beam injection (MBI) and strong hydrogen gas puffing under the divertor configuration were used for gas fueling. The experimental results show that the MBI of hydrogen can reduce the heat flux to the divertor target plate. The electron temperature measured by the Langmuir probe array decreases significantly during the injection of the molecular beam whereas the electron density increases. This indicates that the plasma pressure near the target plates tends to be constant at a new equilibrium level. In the divertor plasmas with strong hydrogen gas puffing a high plasma density up to 4.4 × 1019 m-3 was achieved. In addition, a phenomenon similar to the partially detached divertor regime was observed, which is being studied in open divertor tokamaks such as DIII-D to reduce the peak heat flux on the target plates near the separatrix. After a strong gas puffing the electron temperature measured on the outer divertor target plate near the separatrix decreases till below 5 eV or even lower, but that of the farther outer divertor target plate does not change obviously; and the CIII and the Hα emissions at the plasma edge decrease as expected, but the Hα emission near the X-point increases. These results reflects some interesting characteristics, which needs to be studied by further modeling and experiments.

  4. Heat loads to divertor nearby components from secondary radiation evolved during plasma instabilities

    NASA Astrophysics Data System (ADS)

    Sizyuk, V.; Hassanein, A.

    2015-01-01

    A fundamental issue in tokamak operation related to power exhaust during plasma instabilities is the understanding of heat and particle transport from the core plasma into the scrape-off layer and to plasma-facing materials. During abnormal and disruptive operation in tokamaks, radiation transport processes play a critical role in divertor/edge-generated plasma dynamics and are very important in determining overall lifetimes of the divertor and nearby components. This is equivalent to or greater than the effect of the direct impact of escaped core plasma on the divertor plate. We have developed and implemented comprehensive enhanced physical and numerical models in the upgraded HEIGHTS package for simulating detailed photon and particle transport in the evolved edge plasma during various instabilities. The paper describes details of a newly developed 3D Monte Carlo radiation transport model, including optimization methods of generated plasma opacities in the full range of expected photon spectra. Response of the ITER divertor's nearby surfaces due to radiation from the divertor-developed plasma was simulated by using actual full 3D reactor design and magnetic configurations. We analyzed in detail the radiation emission spectra and compared the emission of both carbon and tungsten as divertor plate materials. The integrated 3D simulation predicted unexpectedly high damage risk to the open stainless steel legs of the dome structure in the current ITER design from the intense radiation during a disruption on the tungsten divertor plate.

  5. A comprehensive 2-D divertor data set from DIII-D for edge theory validation

    SciTech Connect

    Fenstermacher, M.E.; Allen, S.L.; Hill, D.N.

    1996-02-01

    A comprehensive set of experiments has been carried out on the DIII-D tokamak to measure the 2-D (R,Z) structure of the divertor plasma in a systematic way using new diagnostics. Measurements cover the divertor radially from inside the X-point to the outer target plate and vertically from the target plate to above the X-point. Identical, repeatable shots were made, each having radial sweeps of the X-point and divertor strike points, to allow complete plasma and radiation profile measurements. Data have been obtained in ohmic, L-mode, ELMing H-mode, and reversed B{sub T} operation ({gradient}B drift away from the X-point). In addition, complete measurements were made of radiative divertor plasmas with a Partially Detached Divertor (PDD) induced by D{sub 2} injection and with a Radiating Mantle induced by Impurity injection (RMI) using neon and nitrogen. The data set includes first observations of the radial and poloidal profiles of the X-point, inner and outer leg plasmas in PDD and RMI radiative divertor operation. Preliminary data analysis shows that intrinsic impurities play a critical role in determining the SOL and divertor conditions.

  6. Simulation of tokamak SOL and divertor region including heat flux mitigation by gas puffing

    SciTech Connect

    Park, Jin Woo; Na, Y. S.; Hong, S. H.; Ahn, J.W.; Kim, D. K.; Han, Hyunsun; Shim, Seong Bo; Lee, Hae June

    2012-01-01

    Two-dimensional (2D), scrape-off layer (SOL)-divertor transport simulations are performed using the integrated plasma-neutral-impurity code KTRAN developed at Seoul National University. Firstly, the code is applied to reproduce a National Spherical Torus eXperiment (NSTX) discharge by using the prescribed transport coefficients and the boundary conditions obtained from the experiment. The plasma density, the heat flux on the divertor plate, and the D (alpha) emission rate profiles from the numerical simulation are found to follow experimental trends qualitatively. Secondly, predictive simulations are carried out for the baseline operation mode in Korea Superconducting Tokamak Advanced Research (KSTAR) to predict the heat flux on the divertor target plates. The stationary peak heat flux in the KSTAR baseline operation mode is expected to be 6.5 MW/m(2) in the case of an orthogonal divertor. To study the mitigation of the heat flux, we investigated the puffing effects of deuterium and argon gases. The puffing position is assumed to be in front of the strike point at the outer lower divertor plate. In the simulations, mitigation of the peak heat flux at the divertor target plates is found to occur when the gas puffing rate exceeds certain values, similar to 1.0 x 10(20) /s and similar to 5.0 x 10(18) /s for deuterium and argon, respectively. Multi-charged impurity transport is also investigated for both NSTX and KSTAR SOL and divertor regions.

  7. Filling an Unvented Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    Beck, Phillip; Willen, Gary S.

    1987-01-01

    Slow-cooling technique enables tank lacking top vent to be filled with cryogenic liquid. New technique: pressure buildup prevented through condensation of accumulating gas resulting in condensate being added to bulk liquid. Filling method developed for vibration test on vacuum-insulated spherical tank containing liquid hydrogen.

  8. Survey of cryogenic semiconductor devices

    SciTech Connect

    Talarico, L.J.; McKeever, J.W.

    1996-04-01

    Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

  9. Dust Charge in Cryogenic Environment

    SciTech Connect

    Kubota, J.; Kojima, C.; Sekine, W.; Ishihara, O.

    2008-09-07

    Dust charges in a complex helium gas plasma, surrounded by cryogenic liquid, are studied experimentally. The charge is determined by frequency and equilibrium position of damped dust oscillation proposed by Tomme et al.(2000) and is found to decrease with ion temperature of the complex plasma.

  10. Status Of Sorption Cryogenic Refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1988-01-01

    Report reviews sorption refrigeration. Developed for cooling infrared detectors, cryogenic research, and other advanced applications, sorption refrigerators have few moving parts, little vibration, and lifetimes of 10 years or more. Describes types of sorption stages, multistage and hybrid refrigeration systems, power requirements, cooling capacities, and advantages and disadvantages of various stages and systems.

  11. Background reduction in cryogenic detectors

    SciTech Connect

    Bauer, Daniel A.; /Fermilab

    2005-04-01

    This paper discusses the background reduction and rejection strategy of the Cryogenic Dark Matter Search (CDMS) experiment. Recent measurements of background levels from CDMS II at Soudan are presented, along with estimates for future improvements in sensitivity expected for a proposed SuperCDMS experiment at SNOLAB.

  12. Foam shell cryogenic ICF target

    DOEpatents

    Darling, Dale H.

    1987-01-01

    A uniform cryogenic layer of DT fuel is maintained in a fusion target having a low density, small pore size, low Z rigid foam shell saturated with liquid DT fuel. Capillary action prevents gravitational slumping of the fuel layer. The saturated shell may be cooled to produce a solid fuel layer.

  13. Operation of large cryogenic systems

    SciTech Connect

    Rode, C.H.; Ferry, B.; Fowler, W.B.; Makara, J.; Peterson, T.; Theilacker, J.; Walker, R.

    1985-06-01

    This report is based on the past 12 years of experiments on R and D and operation of the 27 kW Fermilab Tevatron Cryogenic System. In general the comments are applicable for all helium plants larger than 1000W (400 l/hr) and non mass-produced nitrogen plants larger than 50 tons per day. 14 refs., 3 figs., 1 tab.

  14. ILC cryogenic systems reference design

    SciTech Connect

    Peterson, T.J.; Geynisman, M.; Klebaner, A.; Theilacker, J.; Parma, V.; Tavian, L.; /CERN

    2008-01-01

    A Global Design Effort (GDE) began in 2005 to study a TeV scale electron-positron linear accelerator based on superconducting radio-frequency (RF) technology, called the International Linear Collider (ILC). In early 2007, the design effort culminated in a reference design for the ILC, closely based on the earlier TESLA design. The ILC will consist of two 250 GeV linacs, which provide positron-electron collisions for high energy physics research. The particle beams will be accelerated to their final energy in superconducting niobium RF cavities operating at 2 kelvin. At a length of about 12 km each, the main linacs will be the largest cryogenic systems in the ILC. Positron and electron sources, damping rings, and beam delivery systems will also have a large number and variety of other superconducting RF cavities and magnets, which require cooling at liquid helium temperatures. Ten large cryogenic plants with 2 kelvin refrigeration are envisioned to cool the main linacs and the electron and positron sources. Three smaller cryogenic plants will cool the damping rings and beam delivery system components predominately at 4.5 K. This paper describes the cryogenic systems concepts for the ILC.

  15. Ilc Cryogenic Systems Reference Design

    NASA Astrophysics Data System (ADS)

    Peterson, T. J.; Geynisman, M.; Klebaner, A.; Parma, V.; Tavian, L.; Theilacker, J.

    2008-03-01

    A Global Design Effort (GDE) began in 2005 to study a TeV scale electron-positron linear accelerator based on superconducting radio-frequency (RF) technology, called the International Linear Collider (ILC). In early 2007, the design effort culminated in a reference design for the ILC, closely based on the earlier TESLA design. The ILC will consist of two 250 GeV linacs, which provide positron-electron collisions for high energy physics research. The particle beams will be accelerated to their final energy in superconducting niobium RF cavities operating at 2 kelvin. At a length of about 12 km each, the main linacs will be the largest cryogenic systems in the ILC. Positron and electron sources, damping rings, and beam delivery systems will also have a large number and variety of other superconducting RF cavities and magnets, which require cooling at liquid helium temperatures. Ten large cryogenic plants with 2 kelvin refrigeration are envisioned to cool the main linacs and the electron and positron sources. Three smaller cryogenic plants will cool the damping rings and beam delivery system components predominately at 4.5 K. This paper describes the cryogenic systems concepts for the ILC.

  16. Level Sensor for Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Simmons, N. E.; Schroff, R. A.

    1983-01-01

    Hot wire sensor combined with voltage-comparator circuit monitors liquid level in cryogenic-fluid storage tanks. Sensor circuit adaptable to different liquids and sensors. Constant-current source drives current through sensing probe and fixed resistor. Voltage comparator circuits interpret voltage drops to tell whether probe is immersed in liquid and is current in probe.

  17. Fast response cryogen level sensor

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, J. B.; Maier, L. C.

    1981-01-01

    Liquid level in cryogenic tank or pipe, or amount of gas trapped in pipeline flow, is monitored electronically by cylindrical capacitive sensor. Changes in liquid level between concentric tubes of capacitor change its impedance, varying current in drive circuit. Since it is oriented parallel to direction of liquid flow, sensor presents little resistance to moving fluid.

  18. Cryogenic MMIC Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Weinreb, S.; Gaier, T.; Fernandez, J.; Erickson, N.; Wielgus, J.

    2000-01-01

    Monolithic (MMIC) and discrete transistor (MIC) low noise amplifiers are compared on the basis of performance, cost, and reliability. The need for cryogenic LNA's for future large microwave arrays for radio astronomy is briefly discussed and data is presented on a prototype LNA for the 1 to 10 GZH range along with a very wideband LNA for the 1 to 60 GHz range.

  19. Sources of Cryogenic Data and Information

    NASA Astrophysics Data System (ADS)

    Mohling, R. A.; Hufferd, W. L.; Marquardt, E. D.

    It is commonly known that cryogenic data, technology, and information are applied across many military, National Aeronautics and Space Administration (NASA), and civilian product lines. Before 1950, however, there was no centralized US source of cryogenic technology data. The Cryogenic Data Center of the National Bureau of Standards (NBS) maintained a database of cryogenic technical documents that served the national need well from the mid 1950s to the early 1980s. The database, maintained on a mainframe computer, was a highly specific bibliography of cryogenic literature and thermophysical properties that covered over 100 years of data. In 1983, however, the Cryogenic Data Center was discontinued when NBS's mission and scope were redefined. In 1998, NASA contracted with the Chemical Propulsion Information Agency (CPIA) and Technology Applications, Inc. (TAI) to reconstitute and update Cryogenic Data Center information and establish a self-sufficient entity to provide technical services for the cryogenic community. The Cryogenic Information Center (CIC) provided this service until 2004, when it was discontinued due to a lack of market interest. The CIC technical assets were distributed to NASA Marshall Space Flight Center and the National Institute of Standards and Technology. Plans are under way in 2006 for CPIA to launch an e-commerce cryogenic website to offer bibliography data with capability to download cryogenic documents.

  20. Experiments in thermosensitive cavitation of a cryogenic rocket propellant surrogate

    NASA Astrophysics Data System (ADS)

    Kelly, Sean Benjamin

    Cavitation is a phase-change phenomenon that may appear in practical devices, often leading to loss of performance and possible physical damage. Of particular interest is the presence of cavitation in rocket engine pumps as the cryogenic fluids cavitate in impellers and inducers. Unlike water, which has been studied exhaustively, cryogenic fluids undergo cavitation with significant thermal effect. Past attempts at analyzing this behavior in water have led to poor predictive capability due to the lack of data in the regime defined as thermosensitive cavitation. Fluids flowing near their thermodynamic critical point have a liquid-vapor density ratio that is orders of magnitude less than typical experimental fluids, so that the traditional equation-of-state and cavitation models do not apply. Thermal effects in cavitation have not been fully investigated due to experimental difficulties handling cryogenics. This work investigates the physical effects of thermosensitive cavitation in a model representative of a turbopump inducer in a modern rocket engine. This is achieved by utilizing a room-temperature testing fluid that exhibits a thermal effect equivalent to that experienced by cryogenic propellants. Unsteady surface pressures and high speed imaging collected over the span of thermophysical regimes ranging from thermosensitive to isothermal cavitation offer both quantitative and qualitative insight into the physical process of thermal cavitation. Physical and thermodynamic effects are isolated to identify the source of cavity conditions, oscillations and growth/collapse behavior. Planar laser imaging offers an instantaneous look inside the vapor cavity and at the behavior of the boundary between the two-phase region and freestream liquid. Nondimensional parameters are explored, with cavitation numbers, Reynolds Numbers, coefficient of pressure and nondimensional temperature in a broad range. Results in the form of cavitation regime maps, Strouhal Number of cavity

  1. Optical testing cryogenic thermal vacuum facility

    NASA Astrophysics Data System (ADS)

    Dohogne, Patrick W.; Carpenter, Warren A.

    1990-11-01

    The construction of a turnkey cryogenic vacuum test facility was recently completed. The facility will be used to measure and record the surface profile of large diameter and 540 kg optics under simulated space conditions. The vacuum test chamber is a vertical stainless steel cylinder with a 3.5 diameter and a 7 m tangent length. The chamber was designed to maximize optical testing quality by minimizing the vibrations between the laser interferometer and the test specimen. This was accomplished by designing the chamber for a high natural frequency and vibration isolating the chamber. An optical test specimen is mounted on a movable presentation stage. During thermal vacuum testing, the specimen may be positioned to + or - 0.00025 cm accuracy with a fine adjustment mechanism. The chamber is evacuated by a close coupled Roots-type blower and rotary vane pump package and two cryopumps. The chamber is equipped with an optically dense gaseous nitrogen cooled thermal shroud. The thermal shroud is used to cool or warm the optical test specimen at a controlled rate. A control system is provided to automatically evacuate the chamber and cooldown the test specimen to the selected control temperature.

  2. Optical testing cryogenic thermal vacuum facility

    NASA Technical Reports Server (NTRS)

    Dohogne, Patrick W.; Carpenter, Warren A.

    1990-01-01

    The construction of a turnkey cryogenic vacuum test facility was recently completed. The facility will be used to measure and record the surface profile of large diameter and 540 kg optics under simulated space conditions. The vacuum test chamber is a vertical stainless steel cylinder with a 3.5 diameter and a 7 m tangent length. The chamber was designed to maximize optical testing quality by minimizing the vibrations between the laser interferometer and the test specimen. This was accomplished by designing the chamber for a high natural frequency and vibration isolating the chamber. An optical test specimen is mounted on a movable presentation stage. During thermal vacuum testing, the specimen may be positioned to + or - 0.00025 cm accuracy with a fine adjustment mechanism. The chamber is evacuated by a close coupled Roots-type blower and rotary vane pump package and two cryopumps. The chamber is equipped with an optically dense gaseous nitrogen cooled thermal shroud. The thermal shroud is used to cool or warm the optical test specimen at a controlled rate. A control system is provided to automatically evacuate the chamber and cooldown the test specimen to the selected control temperature.

  3. Cryogenic hydrogen-induced air-liquefaction technologies for combined-cycle propulsion applications

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1992-01-01

    Given here is a technical assessment of the realization of cryogenic hydrogen induced air liquefaction technologies in a prospective onboard aerospace vehicle process setting. The technical findings related to the status of air liquefaction technologies are reviewed. Compact lightweight cryogenic heat exchangers, heat exchanger atmospheric constituent fouling alleviation measures, para/ortho-hydrogen shift-conversion catalysts, cryogenic air compressors and liquid air pumps, hydrogen recycling using slush hydrogen as a heat sink, liquid hydrogen/liquid air rocket-type combustion devices, and technically related engine concepts are discussed. Much of the LACE work is related to aerospaceplane propulsion concepts that were developed in the 1960's. Emphasis is placed on the Liquid Air Cycle Engine (LACE).

  4. PERFORMANCE OF A LIQUID XENON CALORIMETER CRYOGENIC SYSTEM FOR THE MEG EXPERIMENT

    SciTech Connect

    Haruyama, T.; Kasami, K.; Hisamitsu, Y.; Iwamoto, T.; Mihara, S.; Mori, T.; Nishiguchi, H.; Otani, W.; Sawada, R.; Uchiyama, Y.; Nishitani, T.

    2008-03-16

    The {mu}-particle rare decay physics experiment, the MU-E-GAMMA (MEG) experiment, will soon be operational at the Paul Scherrer Institute in Zurich. To achieve the extremely high sensitivity required to detect gamma rays, 800 L of liquid xenon is used as the medium in the calorimeter, viewed by 830 photomultiplier tubes (PMT) immersed in it. The required liquid xenon purity is of the order of ppb of water, and is obtained by using a cryogenic centrifugal pump and cold molecular sieves. The heat load of the calorimeter at 165 K is to be approximately 120 W, which is removed by a pulse-tube cryocooler developed at KEK and built by Iwatani Industrial Gas Corp., with a cooling power of about 200 W at 165 K. The cryogenic system is also equipped with a 1000-L dewar. This paper describes the results of an initial performance test of each cryogenic component.

  5. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    SciTech Connect

    Lomanowski, B. A. Sharples, R. M.; Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM Collaboration: JET-EFDA Team

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  6. 18. Electrically driven pumps in Armory Street Pump House. Pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Electrically driven pumps in Armory Street Pump House. Pumps in background formerly drew water from the clear well. They went out of service when use of the beds was discontinued. Pumps in the foreground provide high pressure water to Hamden. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  7. Performance of JT-60SA divertor Thomson scattering diagnostics

    SciTech Connect

    Kajita, Shin; Hatae, Takaki; Tojo, Hiroshi; Hamano, Takashi; Shimizu, Katsuhiro; Kawashima, Hisato; Enokuchi, Akito

    2015-08-15

    For the satellite tokamak JT-60 Super Advanced (JT-60SA), a divertor Thomson scattering measurement system is planning to be installed. In this study, we improved the design of the collection optics based on the previous one, in which it was found that the solid angle of the collection optics became very small, mainly because of poor accessibility to the measurement region. By improvement, the solid angle was increased by up to approximately five times. To accurately assess the measurement performance, background noise was assessed using the plasma parameters in two typical discharges in JT-60SA calculated from the SONIC code. Moreover, the influence of the reflection of bremsstrahlung radiation by the wall is simulated by using a ray tracing simulation. The errors in the temperature and the density are assessed based on the simulation results for three typical field of views.

  8. Performance of JT-60SA divertor Thomson scattering diagnostics.

    PubMed

    Kajita, Shin; Hatae, Takaki; Tojo, Hiroshi; Enokuchi, Akito; Hamano, Takashi; Shimizu, Katsuhiro; Kawashima, Hisato

    2015-08-01

    For the satellite tokamak JT-60 Super Advanced (JT-60SA), a divertor Thomson scattering measurement system is planning to be installed. In this study, we improved the design of the collection optics based on the previous one, in which it was found that the solid angle of the collection optics became very small, mainly because of poor accessibility to the measurement region. By improvement, the solid angle was increased by up to approximately five times. To accurately assess the measurement performance, background noise was assessed using the plasma parameters in two typical discharges in JT-60SA calculated from the SONIC code. Moreover, the influence of the reflection of bremsstrahlung radiation by the wall is simulated by using a ray tracing simulation. The errors in the temperature and the density are assessed based on the simulation results for three typical field of views. PMID:26329196

  9. Is Carbon a Realistic Choice for ITER's Divertor?

    SciTech Connect

    C.H. Skinner; G. Federici

    2005-05-13

    Tritium retention by co-deposition with carbon on the divertor target plate is predicted to limit ITER's DT burning plasma operations (e.g. to about 100 pulses for the worst conditions) before the in-vessel tritium inventory limit, currently set at 350 g, is reached. At this point, ITER will only be able to continue its burning plasma program if technology is available that is capable of rapidly removing large quantities of tritium from the vessel with over 90% efficiency. The removal rate required is four orders of magnitude faster than that demonstrated in current tokamaks. Eighteen years after the observation of co-deposition on JET and TFTR, such technology is nowhere in sight. The inexorable conclusion is that either a major initiative in tritium removal should be funded or that research priorities for ITER should focus on metal alternatives.

  10. Cryogenics and the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management

  11. The cryogenic cooling program in high-heat-load optics at the Advanced Photon Source

    SciTech Connect

    Rogers, C.S.

    1993-07-01

    This paper describes some of the aspects of the cryogenic optics program at the Advanced Photon Source (APS). A liquid-nitrogen-cooled, high-vacuum, double crystal monochromator is being fabricated at Argonne National Laboratory (ANL). A pumping system capable of delivering a variable flow rate of up to 10 gallons per minute of pressurized liquid nitrogen and removing 5 kilowatts of x-ray power is also being constructed. This specialized pumping system and monochromator will be used to test the viability of cryogenically cooled, high-heat-load synchrotron optics. It has been determined that heat transfer enhancement will be required for optics used with APS insertion devices. An analysis of a porous-matrix-enhanced monochromator crystal is presented. For the particular case investigated, a heat transfer enhancement factor of 5 to 6 was calculated.

  12. Flute instability and the associated radial transport in the tandem mirror with a divertor mirror cell

    SciTech Connect

    Katanuma, I.; Yagi, K.; Haraguchi, Y.; Ichioka, N.; Masaki, S.; Ichimura, M.; Imai, T.

    2010-11-15

    The flute instability and the associated radial transport are investigated in the tandem mirror with a divertor mirror cell (the GAMMA10 A-divertor) with help of computer simulation, where GAMMA10 is introduced [Inutake et al., Phys. Rev. Lett. 55, 939 (1985)]. The basic equations used in the simulation were derived on the assumption of an axisymmetric magnetic field. So the high plasma pressure in a nonaxisymmetric minimum-B anchor mirror cell, which is important for the flute mode stability, is taken into account by redefining the specific volume of a magnetic field line. It is found that the flute modes are stabilized by the minimum-B magnetic field even with a divertor mirror although its stabilizing effects are weaker than that without the divertor mirror. The flute instability enhances the radial transport by intermittently repeating the growing up and down of the Fourier amplitude of the flute instability in time.

  13. Conceptual design of a divertor Thomson scattering diagnostic for NSTX-U.

    PubMed

    McLean, A G; Soukhanovskii, V A; Allen, S L; Carlstrom, T N; LeBlanc, B P; Ono, M; Stratton, B C

    2014-11-01

    A conceptual design for a divertor Thomson scattering (DTS) diagnostic has been developed for the NSTX-U device to operate in parallel with the existing multipoint Thomson scattering system. Higher projected peak heat flux in NSTX-U will necessitate application of advanced magnetics geometries and divertor detachment. Interpretation and modeling of these divertor scenarios will depend heavily on local measurement of electron temperature, Te, and density, ne, which DTS provides in a passive manner. The DTS design for NSTX-U adopts major elements from the successful DIII-D DTS system including 7-channel polychromators measuring Te to 0.5 eV. If implemented on NSTX-U, the divertor TS system would provide an invaluable diagnostic for the boundary program to characterize the edge plasma. PMID:25430390

  14. Conceptual design of a divertor Thomson scattering diagnostic for NSTX-U

    SciTech Connect

    McLean, A. G. Soukhanovskii, V. A.; Allen, S. L.; Carlstrom, T. N.; LeBlanc, B. P.; Ono, M.; Stratton, B. C.

    2014-11-15

    A conceptual design for a divertor Thomson scattering (DTS) diagnostic has been developed for the NSTX-U device to operate in parallel with the existing multipoint Thomson scattering system. Higher projected peak heat flux in NSTX-U will necessitate application of advanced magnetics geometries and divertor detachment. Interpretation and modeling of these divertor scenarios will depend heavily on local measurement of electron temperature, T{sub e}, and density, n{sub e}, which DTS provides in a passive manner. The DTS design for NSTX-U adopts major elements from the successful DIII-D DTS system including 7-channel polychromators measuring T{sub e} to 0.5 eV. If implemented on NSTX-U, the divertor TS system would provide an invaluable diagnostic for the boundary program to characterize the edge plasma.

  15. Development of microwave interferometer system for divertor simulation experiments in GAMMA 10/PDX

    NASA Astrophysics Data System (ADS)

    Kohagura, J.; Wang, X.; Kanno, S.; Yoshikawa, M.; Kuwahara, D.; Nagayama, Y.; Shima, Y.; Chikatsu, M.; Nojiri, K.; Sakamoto, M.; Imai, T.; Nakashima, Y.; Mase, A.

    2015-12-01

    Microwave interferometer has newly been installed on GAMMA 10/PDX for divertor simulation study. A divertor simulation experimental module (D-module) is used to investigate the physics of divertor in the end-cell of GAMMA 10/PDX where an open magnetic field configuration is formed. D-module has a rectangular chamber with an inlet aperture. Two tungsten target plates are mounted in V-shape inside the chamber. In order to develop understandings of divertor simulation experiments the microwave interferometer using heterodyne scheme and a 1D horn-antenna mixer array (HMA) is applied to obtain electron density and density distribution inside the V-shaped target plates. Line-averaged electron density distributions inside D-module are first observed in H2 gas injection experiments.

  16. Modeling divertor concepts for spherical tokamaks NSTX-U and ST-FNSF

    NASA Astrophysics Data System (ADS)

    Meier, E. T.; Gerhardt, S.; Menard, J. E.; Rognlien, T. D.; Soukhanovskii, V. A.

    2015-08-01

    The compact nature of the spherical tokamak (ST) presents an economically attractive path to fusion commercialization, but concentrates power exhaust, threatening the integrity of plasma-facing components. To address this challenge, experimentally constrained divertor modeling in the National Spherical Torus Experiment (NSTX) is extrapolated to investigate divertor concepts for future ST devices. Analysis of NSTX Upgrade with UEDGE shows that the secondary snowflake X-point position can be adjusted for favorable neutral transport, enabling stable partial detachment at reduced core densities. For a notional ST-based Fusion Nuclear Science Facility, divertor concepts are identified that provide heat flux mitigation (<10 MW m-2) and low temperatures (<10 eV) compatible with high-Z targets. This research provides guidance for upcoming experiments and a basis for continued development of predictive capability for divertor performance in STs.

  17. Cryogenic Flange and Seal Evaluation

    NASA Technical Reports Server (NTRS)

    Ramirez, Adrian

    2014-01-01

    The assembly of flanges, seals, and pipes are used to carry cryogenic fluid from a storage tank to the vehicle at launch sites. However, after a certain amount of cycles these raised face flanges with glass-filled Teflon gaskets have been found to have torque relaxation and are as a result susceptible to cryogenic fluid leakage if not re-torqued. The intent of this project is to identify alternate combinations of flanges and seals which may improve thermal cycle performance and decrease re-torque requirements. The general approach is to design a test fixture to evaluate leak characteristics between spiral and concentric serrations and to test alternate flange and seal combinations. Due to insufficient time, it was not possible to evaluate these different types of combinations for the combination that improved thermal cycle performance the most. However, the necessary drawings for the test fixture were designed and assembled along with the collection of the necessary parts.

  18. A cryogenic receiver for EPR.

    PubMed

    Narkowicz, R; Ogata, H; Reijerse, E; Suter, D

    2013-12-01

    Cryogenic probes have significantly increased the sensitivity of NMR. Here, we present a compact EPR receiver design capable of cryogenic operation. Compared to room temperature operation, it reduces the noise by a factor of ≈2.5. We discuss in detail the design and analyze the resulting noise performance. At low microwave power, the input noise density closely follows the emission of a cooled 50Ω resistor over the whole measurement range from 20K up to room temperature. To minimize the influence of the microwave source noise, we use high microwave efficiency (≈1.1-1.7mTW(-1/2)) planar microresonators. Their efficient conversion of microwave power to magnetic field permits EPR measurements with very low power levels, typically ranging from a few μW down to fractions of nW. PMID:24161681

  19. Cryogenic VPH grisms for MOIRCS

    NASA Astrophysics Data System (ADS)

    Ichikawa, Takashi; Ichiyama, Kotaro; Ebizuka, Noboru; Murata, Chihiro; Taniguchi, Yuichiro; Okura, Tsutomu; Harashima, Masakazu; Uchimoto, Yuka Katsuno; Maruyama, Miyoko; Iye, Masanori; Shimasaku, Kazuhiro

    2008-07-01

    We present the development and first astronomical applications of VPH grisms which are now operated at cryogenic temperature in MOIRCS, a Cassegrain near-infrared instrument of the Subaru Telescope. We designed and fabricated the VPH grisms with a resolving power ~3000 for the use in near-infrared bands. The VPH grating, encapsulated in BK7 glass, is glued between two ZnSe prisms with vertex angle of 20 deg. After repeating several thermal cycles down to ~100 K carefully enough not to cause irreparable damage on the grism during cooling, we evaluated the performance at cryogenic temperature in the laboratory and found no deterioration and no large difference in the performance from that measured in room temperature. Based on commissioning observations with MOIRCS, we have confirmed the high efficiency (~0.8) and the resolving power of the original design. Common use of the grisms is due to start in the second semester of 2008.

  20. The Cryogenic Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Sander, Joel

    2004-05-01

    The Cryogenic Dark Matter Search (CDMS) is an experiment to search for Weakly Interacting Massive Particles (WIMPs). The experiment initially was deployed at a shallow underground site, and is currently deployed at a deep underground site at the Soudan Mine in Minnesota. The detectors operate at cryogenic temperature, and are capable of distinguishing nuclear recoils from WIMP interactions from various backgrounds. The detectors are shielded from background by both active and passive elements. We will describe the components of the overall experiment, and focus on the novel data acquisition system that has been develop to control and monitor the experiment via the World Wide Web. Preliminary signals from the operation at Soudan will be discussed.

  1. Advanced cryogenic tank development status

    NASA Astrophysics Data System (ADS)

    Braun, G. F.; Tack, W. T.; Scholz, E. F.

    1993-06-01

    Significant advances have been made in the development of materials, structures, and manufacturing technologies for the next generation of cryogenic propellant tanks under the auspices of a joint U.S. Air Force/NASA sponsored advanced development program. This paper summarizes the achievements of this three-year program, particularly in the evolution and properties of Weldalite 049, net shape component technology, Al-Li welding technology, and efficient manufacturing concepts. Results of a recent mechanical property characterization of a full-scale integrally stiffened barrel panel extrusion are presented, as well as plans for an additional weld process optimization program using response surface design of experiment techniques. A further discussion is given to the status of hardware completed for the Advanced Manufacturing Development Center and Martin Marietta's commitment to the integration of these technologies into the production of low-cost, light-weight cryogenic propellant tanks.

  2. Cryogenic High-Sensitivity Magnetometer

    NASA Technical Reports Server (NTRS)

    Day, Peter; Chui, Talso; Goodstein, David

    2005-01-01

    A proposed magnetometer for use in a cryogenic environment would be sensitive enough to measure a magnetic-flux density as small as a picogauss (10(exp -16) Tesla). In contrast, a typical conventional flux-gate magnetometer cannot measure a magnetic-flux density smaller that about 1 microgauss (10(exp -10) Tesla). One version of this device, for operation near the low end of the cryogenic temperature range, would include a piece of a paramagnetic material on a platform, the temperature of which would be controlled with a periodic variation. The variation in temperature would be measured by use of a conventional germanium resistance thermometer. A superconducting coil would be wound around the paramagnetic material and coupled to a superconducting quantum interference device (SQUID) magnetometer.

  3. A Micro Electrical Mechanical Systems (MEMS)-based Cryogenic Deformable Mirror

    NASA Astrophysics Data System (ADS)

    Enya, K.; Kataza, H.; Bierden, P.

    2009-03-01

    We present our first results on the development and evaluation of a cryogenic deformable mirror (DM) based on Micro Electro Mechanical Systems (MEMS) technology. A MEMS silicon-based DM chip with 32 channels, in which each channel is 300 μm × 300 μm in size, was mounted on a silicon substrate in order to minimize distortion and prevent it from being permanently damaged by thermal stresses introduced by cooling. The silicon substrate was oxidized to obtain electric insulation and had a metal fan-out pattern on the surface. For cryogenic tests, we constructed a measurement system consisting of a Fizeau interferometer, a cryostat cooled by liquid N2, zooming optics, electric drivers. The surface of the mirror at 95 K deformed in response to the application of a voltage, and no significant difference was found between the deformation at 95 K and that at room temperature. The power dissipation by the cryogenic DM was also measured, and we suggest that this is small enough for it to be used in a space cryogenic telescope. The properties of the DM remained unchanged after five cycles of vacuum pumping, cooling, warming, and venting. We conclude that fabricating cryogenic DMs employing MEMS technology is a promising approach. Therefore, we intend to develop a more sophisticated device for actual use, and to look for potential applications including the Space Infrared Telescope for Cosmology & Astrophysics (SPICA), and other missions.

  4. Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article

    NASA Technical Reports Server (NTRS)

    Hedayat, A

    2013-01-01

    To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

  5. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    SciTech Connect

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  6. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-01

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  7. Triple-X Divertor Coil Designs for EAST, PEGASUS, MAST, and Reactors

    NASA Astrophysics Data System (ADS)

    Valanju, Prashant; Kotschenreuther, Michael; Wiley, James; Pekker, Mikhail; Rowan, William; He, Huang

    2006-04-01

    Novel magnetic divertor with additional X-points downstream from main plasma X-point have been proposed to overcome reactor heat flux limitations. PEGASUS, MAST, and EAST(China's new long-pulse, superconducting tokamak) are considering experimental implementation of these divertors. MHD equilibria, optimized coil designs, sensitivity to plasma motion, stresses, and heating will be presented for these machines as well as for some reactor designs.

  8. Overview of Stellarator Divertor Studies: Final Report of LDRD Project 01-ERD-069

    SciTech Connect

    Fenstermacher, M E; Rognlien, T D; Koniges, A; Unmansky, M; Hill, D N

    2003-01-21

    A summary is given of the work carried out under the LDRD project 01-ERD-069 entitled Stellarator Divertor Studies. This project has contributed to the development of a three-dimensional edge-plasma modeling and divertor diagnostic design capabilities at LLNL. Results are demonstrated by sample calculations and diagnostic possibilities for the edge plasma of the proposed U.S. National Compact Stellarator Experiment device. Details of the work are contained in accompanying LLNL reports that have been accepted for publication.

  9. Design and analysis of the DII-D radiative divertor water-cooled structures

    SciTech Connect

    Hollerbach, M.A.; Smith, J.P.; Baxi, C.B.; Bozek; Chin, E.; Phelps, R.D.; Redler, K.M.; Reis, E.E.

    1995-10-01

    The Radiative Divertor is a major modification to the divertor of DIII-D and is being designed and fabricated for installation in late 1996. The Radiative Divertor Program (RDP) will enhance the dissipative processes in the edge and divertor plasmas to reduce the heat flux and plasma erosion at the divertor target. This approach will have major implications for the heat removal methods used in future devices. The divertor is of slot-type configuration designed to minimize the flow of sputtered and injected impurities back to the core plasma. The new divertor will be composed of toroidally continuous, Inconel 625 water-cooled rings of sandwich construction with an internal water channel, incorporating seam welding to provide the water-to-vacuum seal as well as structural integrity. The divertor structure is designed to withstand electromagnetic loads as a result of halo currents and induced toroidal currents. It also accommodates the thermal differences experienced during the 400 {degrees}C bake used on DIII-D. A low Z plasma-facing surface is provided by mechanically attached graphite tiles. Water flow through the rings will inertially cool these tiles which will be subjected to 38 MW, 10 second pulses. Current schedules call for detailed design in 1996 with installation completed in March 1997. A full size prototype, one-quarter of one ring, is being built to validate manufacturing techniques, machining, roll-forming, and seam welding. The experience and knowledge gained through the fabrication of the prototype is discussed. The design of the electrically isolated (5 kV) vacuum-to-air water feedthroughs supplying the water-cooled rings is also discussed.

  10. Design and analysis of the DIII-D radiative divertor water-cooled structures

    SciTech Connect

    Hollerbach, M.A.; Smith, J.P.; Baxi, C.B.; Bozek, A.S.; Chin, E.; Phelps, R.D.; Redler, K.M.; Reis, E.E.

    1995-12-31

    The Radiative Divertor is a major modification to the divertor of DIII-D and is being designed and fabricated for installation in late 1996. The Radiative Divertor Program (RDP) will enhance the dissipative processes in the edge and divertor plasmas to reduce the heat flux and plasma erosion at the divertor target. This approach will have major implications for the heat removal methods used in future devices. The divertor is of slot-type configuration designed to minimize the flow of sputtered and injected impurities back to the core plasma. The new divertor will be composed of toroidally continuous, Inconel 625 water-cooled rings of sandwich construction with an internal water channel, incorporating seam welding to provide the water-to-vacuum seal as well as structural integrity. The divertor structure is designed to withstand electro-magnetic loads as a result of halo currents and induced toroidal currents. It also accommodates the thermal differences experienced during the 400 C bake used on DIII-D. A low Z plasma-facing surface is provided by mechanically attached graphite tiles. Water flow through the rings will inertially cool these tiles which will be subjected to 38 MW, 10 second pulses. Current schedules call for detailed design in 1996 with installation completed in March 1997. A full size prototype, one-quarter of one ring, is being built to validate manufacturing techniques, machining, roll-forming, and seam welding. The experience and knowledge gained through the fabrication of the prototype is discussed. The design of the electrically isolated (5 kV) vacuum-to-air water feedthroughs supplying the water-cooled rings is also discussed.

  11. Numerical simulations of resistive magnetohydrodynamic instabilities in a poloidal divertor tokamak

    NASA Astrophysics Data System (ADS)

    Uchimoto, E.

    1988-03-01

    A new 3-D resistive MHD initial value code RPD has been successfully developed from scratch to study the linear and nonlinear evolution of long wavelength resistive MHD instabilities in a square cross-section tokamak with or without a poloidal divertor. The code numerically advances the full set of compressible resistive MHD equations in a toroidal geometry, with an important option of permitting the divertor separatrix and the region outside it to be in the computational domain. A severe temporal step size restriction for numerical stability imposed by the fast compressional waves was removed by developing and implementing a new, efficient semi-implicit scheme extending one first proposed by Harned and Kerner. As a result, the code typically runs faster than that with a mostly explicit scheme by a factor of about the aspect ratio. The equilibrium input for RPD is generated by a new 2-D code EQPD that is based on the Chodura-Schluter method. The RPD code, as well as the new semi-implicit scheme, has passed very extensive numerical tests in both divertor and divertorless geometries. Linear and nonlinear simulations in a divertorless geometry have reproduced the standard, previously known results. In a geometry with a four-node divertor the m = 2, n = 1 (2/1) tearing mode tends to be linearly stabilized as the q = 2 surface approaches the divertor separatrix. However, the m = 1, n = 1 (1/1) resistive kink mode remains relatively unaffected by the nearness of the q = 1 surface to the divertor separatrix. When plasma current is added to the region outside the divertor separatrix, the 2/1 tearing mode is linearly stabilized not by this current, but by the profile modifications induced near the q = 2 surface and the divertor separatrix. A similar stabilization effect is seen for the 1/1 resistive kink mode, but to a lesser extent.

  12. Survivability of dust in tokamaks: Dust transport in the divertor sheath

    SciTech Connect

    Delzanno, Gian Luca; Tang, Xianzhu

    2014-02-15

    The survivability of dust being transported in the magnetized sheath near the divertor plate of a tokamak and its impact on the desired balance of erosion and redeposition for a steady-state reactor are investigated. Two different divertor scenarios are considered. The first is characterized by an energy flux perpendicular to the plate q{sub 0}≃1 MW/m{sup 2} typical of current short-pulse tokamaks. The second has q{sub 0}≃10 MW/m{sup 2} and is relevant to long-pulse machines like ITER or Demonstration Power Plant. It is shown that micrometer dust particles can survive rather easily near the plates of a divertor plasma with q{sub 0}≃1 MW/m{sup 2} because thermal radiation provides adequate cooling for the dust particle. On the other hand, the survivability of micrometer dust particles near the divertor plates is drastically reduced when q{sub 0}≃10 MW/m{sup 2}. Micrometer dust particles redeposit their material non-locally, leading to a net poloidal mass migration across the divertor. Smaller particles (with radius ∼0.1 μm) cannot survive near the divertor and redeposit their material locally. Bigger particle (with radius ∼10 μm) can instead survive partially and move outside the divertor strike points, thus causing a net loss of divertor material to dust accumulation inside the chamber and some non-local redeposition. The implications of these results for ITER are discussed.

  13. Foam Insulation for Cryogenic Flowlines

    NASA Technical Reports Server (NTRS)

    Sonju, T. R.; Carbone, R. L.; Oves, R. E.

    1985-01-01

    Welded stainless-steel vacuum jackets on cryogenic ducts replaced by plastic foam-insulation jackets that weigh 12 percent less. Foam insulation has 85 percent of insulating ability of stainless-steel jacketing enclosing vacuum of 10 microns of mercury. Foam insulation easier to install than vacuum jacket. Moreover, foam less sensitive to damage and requires minimal maintenance. Resists vibration and expected to have service life of at least 10 years.

  14. Cryogenic moderator simulations : confronting reality.

    SciTech Connect

    Iverson, E. B.

    1999-01-06

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source dedicated to materials research. Its three cryogenic methane moderators provide twelve neutron beams to fourteen instruments and test facilities. This report concerns ongoing activities for benchmarking our Monte Carlo model of the IPNS neutron generation system. This paper concentrates on the techniques (both experimental and calculational) used in such benchmarking activities.

  15. Insulating Cryogenic Pipes With Frost

    NASA Technical Reports Server (NTRS)

    Stephenson, J. G.; Bova, J. A.

    1985-01-01

    Crystallized water vapor fills voids in pipe insulation. Small, carefully controlled amount of water vapor introduced into dry nitrogen gas before it enters aft fuselage. Vapor freezes on pipes, filling cracks in insulation. Ice prevents gaseous nitrogen from condensing on pipes and dripping on structure, in addition to helping to insulate all parts. Industrial applications include large refrigeration plants or facilities that use cryogenic liquids.

  16. Cryosorption Pumps for a Neutral Beam Injector Test Facility

    SciTech Connect

    Dremel, M.; Mack, A.; Day, C.; Jensen, H.

    2006-04-27

    We present the experiences of the manufacturing and the operating of a system of two identical cryosorption pumps used in a neutral beam injector test facility for fusion reactors. Calculated and measured heat loads of the cryogenic liquid helium and liquid nitrogen circuits of the cryosorption pumps are discussed. The design calculations concerning the thermo-hydraulics of the helium circuit are compared with experiences from the operation of the cryosorption pumps. Both cryopumps are integrated in a test facility of a neutral beam injector that will be used to heat the plasma of a nuclear fusion reactor with a beam of deuterium or hydrogen molecules. The huge gas throughput into the vessel of the test facility results in challenging needs on the cryopumping system.The developed cryosorption pumps are foreseen to pump a hydrogen throughput of 20 - 30 mbar{center_dot}l/s. To establish a mean pressure of several 10-5 mbar in the test vessel a pumping speed of about 350 m3/s per pump is needed. The pressure conditions must be maintained over several hours pumping without regeneration of the cryopanels, which necessitates a very high pumping capacity. A possibility to fulfill these requirements is the use of charcoal coated cryopanels to pump the gasloads by adsorption. For the cooling of the cryopanels, liquid helium at saturation pressure is used and therefore a two-phase forced flow in the cryopump system must be controlled.

  17. Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics.

    PubMed

    Furuse, Hiroaki; Kawanaka, Junji; Takeshita, Kenji; Miyanaga, Noriaki; Saiki, Taku; Imasaki, Kazuo; Fujita, Masayuki; Ishii, Shinya

    2009-11-01

    An efficient high-power laser operation has been demonstrated by using a cryogenic Yb:YAG composite ceramic with a total-reflection active-mirror arrangement. The composite ceramic, which had no high-reflection coating and was cooled with liquid nitrogen directly, showed four-level operation even at 67 kW/cm(3) of high pump density. A 273 W cw output power was obtained with 65% optical efficiency and 72% slope efficiency. PMID:19881620

  18. 2-K pump down studies at SNS

    NASA Astrophysics Data System (ADS)

    Howell, M.; Casagrande, F.; DeGraff, B.; Ganni, V.; Kim, S.-H.; Knudsen, P.; Martinez, M.; Morris, B.; Neustadt, T.; Norton, R.; Scanlon, C.; Strong, H.; Vandygriff, D.; Wilson, G.

    2015-12-01

    The Spallation Neutron Source (SNS) linear accelerator (LINAC) consists of 81 superconducting radio frequency (SRF) cavities cooled to 2.1 K by a cryogenic refrigeration system. The 2-K cold box consists of four stages of cold compressors with liquid nitrogen cooled variable speed motors. Transitioning from 4.5-K operation to 2.1-K operation in the cryomodules involves pumping the cryomodules down from approximately 1 bar to 0.040 bar. This effort is conducted through the use of several sequences developed as a collaborative effort between Thomas Jefferson National Accelerator Facility (TJNAF) and SNS personnel during the original commissioning of the SNS cryogenic system. Over the last ten years, multiple lessons have been learned about VFD behavior, thermal stability, procedural development and refining the sequences. From 2012 to 2014, there were multiple pump down iterations that were not successful. Studies have been conducted to determine the cause of these unsuccessful iterations. The results of these studies including components replaced and aspects that have not yet been solved are presented in this paper. Future plans to refine the sequence and determine the cause of unsuccessful pump downs will also be presented.

  19. Cryogenic fluid management in space

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1988-01-01

    Many future space based vehicles and satellites will require on orbit refuelling procedures. Cryogenic fluid management technology is being developed to assess the requirements of such procedures as well as to aid in the design and development of these vehicles. Cryogenic fluid management technology for this application could be divided into two areas of study, one is concerned with fluid transfer process and the other with cryogenic liquid storage. This division is based upon the needed technology for the development of each area. In the first, the interaction of fluid dynamics with thermodynamics is essential, while in the second only thermodynamic analyses are sufficient to define the problem. The following specific process related to the liquid transfer area are discussed: tank chilldown and fill; tank pressurization; liquid positioning; and slosh dynamics and control. These specific issues are discussed in relation with the required technology for their development in the low gravity application area. In each process the relevant physics controlling the technology is identified and methods for resolving some of the basic questions are discussed.

  20. Cryogenic actuator for subnanometer positioning

    NASA Astrophysics Data System (ADS)

    Bree, B. v.; Janssen, H.; Paalvast, S.; Albers, R.

    2012-09-01

    This paper discusses the development, realization, and qualification of a positioning actuator concept specifically for cryogenic environments. Originally developed for quantum physics research, the actuator also has many applications in astronomic cryogenic instruments to position optical elements with nanometer level accuracy and stability. Typical applications include the correction of thermally induced position errors of optical components after cooling down from ambient to cryogenic temperatures or sample positioning in microscopes. The actuator is nicknamed the ‘PiezoKnob’ because it is piezo based and it is compatible with the typical manipulator knob often found in standard systems for optical benches, such as linear stages or tip/tilt lens holders. Actuation with high stiffness piezo elements enables the Piezoknob to deliver forces up to 50 Newton which allows relatively stiff guiding mechanisms or large pre-loads. The PiezoKnob has been qualified at 77 Kelvin and was shown to work down to 2 Kelvin. As part of the qualification program, the custom developed driving electronics and set point profile have been fine-tuned, by combing measurements with predictions from a dynamic model, thus maximizing efficiency and minimizing power dissipation. Furthermore, the actuator holds its position without power and thanks to its mechanical layout it is absolutely insensitive to drift of the piezo elements or the driving electronics.

  1. Cryogenic microwave anisotropic artificial materials

    NASA Astrophysics Data System (ADS)

    Trang, Frank

    This thesis addresses analysis and design of a cryogenic microwave anisotropic wave guiding structure that isolates an antenna from external incident fields from specific directions. The focus of this research is to design and optimize the radome's constituent material parameters for maximizing the isolation between an interior receiver antenna and an exterior transmitter without significantly disturbing the transmitter antenna far field characteristics. The design, characterization, and optimization of high-temperature superconducting metamaterials constitutive parameters are developed in this work at X-band frequencies. A calibrated characterization method for testing arrays of split-ring resonators at cryogenic temperature inside a TE10 waveguide was developed and used to back-out anisotropic equivalent material parameters. The artificial material elements (YBCO split-ring resonators on MgO substrate) are optimized to improve the narrowband performance of the metamaterial radome with respect to maximizing isolation and minimizing shadowing, defined as a reduction of the transmitted power external to the radome. The optimized radome is fabricated and characterized in a parallel plate waveguide in a cryogenic environment to demonstrate the degree of isolation and shadowing resulting from its presence. At 11.12 GHz, measurements show that the HTS metamaterial radome achieved an isolation of 10.5 dB and the external power at 100 mm behind the radome is reduced by 1.9 dB. This work demonstrates the feasibility of fabricating a structure that provides good isolation between two antennas and low disturbance of the transmitter's fields.

  2. Positronium production in cryogenic environments

    NASA Astrophysics Data System (ADS)

    Cooper, B. S.; Alonso, A. M.; Deller, A.; Liszkay, L.; Cassidy, D. B.

    2016-03-01

    We report measurements of positronium (Ps) formation following positron irradiation of mesoporous SiO2 films and Ge(100) single crystals at temperatures ranging from 12-700 K. As both of these materials generate Ps atoms via nonthermal processes, they are able to function as positron-positronium converters at cryogenic temperatures. Our data show that such Ps formation is possibly provided the targets are not compromised by adsorption of residual gas. In the case of SiO2 films, we observe a strong reduction in the Ps formation efficiency following irradiation with UV laser light (λ =243.01 nm) below 250 K, in accordance with previous observations of radiation-induced surface paramagnetic centers. Conversely, Ps emission from Ge is enhanced by irradiation with visible laser light (λ =532 nm) via a photoemission process that persists at cryogenic temperatures. Both mesoporous SiO2 films and Ge crystals were found to produce Ps efficiently in cryogenic environments. Accordingly, these materials are likely to prove useful in several areas of research, including Ps mediated antihydrogen formation conducted in the cold bore of a superconducting magnet, the production of Rydberg Ps for experiments in which the effects of black-body radiation must be minimized, and the utilization of mesoporous structures that have been modified to produce cold Ps atoms.

  3. Usaf Space Sensing Cryogenic Considerations

    NASA Astrophysics Data System (ADS)

    Roush, F.

    2010-04-01

    Infrared (IR) space sensing missions of the future depend upon low mass components and highly capable imaging technologies. Limitations in visible imaging due to the earth's shadow drive the use of IR surveillance methods for a wide variety of applications for Intelligence, Surveillance, and Reconnaissance (ISR), Ballistic Missile Defense (BMD) applications, and almost certainly in Space Situational Awareness (SSA) and Operationally Responsive Space (ORS) missions. Utilization of IR sensors greatly expands and improves mission capabilities including target and target behavioral discrimination. Background IR emissions and electronic noise that is inherently present in Focal Plane Arrays (FPAs) and surveillance optics bench designs prevents their use unless they are cooled to cryogenic temperatures. This paper describes the role of cryogenic coolers as an enabling technology for generic ISR and BMD missions and provides ISR and BMD mission and requirement planners with a brief glimpse of this critical technology implementation potential. The interaction between cryogenic refrigeration component performance and the IR sensor optics and FPA can be seen as not only mission enabling but also as mission performance enhancing when the refrigeration system is considered as part of an overall optimization problem.

  4. Cryogenics for the superconducting module test facility

    SciTech Connect

    Klebaner, A.L.; Theilacker, J.C.; /Fermilab

    2006-01-01

    A group of laboratories and universities, with Fermilab taking the lead, are constructing a superconducting cryomodule test facility (SMTF) in the Meson Detector Building (MDB) area at Fermilab. The facility will be used for testing and validating designs for both pulsed and CW systems. A multi phase approach is taken to construct the facility. For the initial phase of the project, cryogens for a single cavity cryomodule will be supplied from the existing Cryogenic Test Facility (CTF) that houses three Tevatron satellite refrigerators. The cooling capacity available for cryomodule testing at MDB results from the liquefaction capacity of the CTF cryogenic system. A cryogenic distribution system to supply cryogens from CTF to MDB is under construction. This paper describes plans, status and challenges of the initial phase of the SMTF cryogenic system.

  5. Exploration of magnetic perturbation effects on advanced divertor configurations in NSTX-U

    NASA Astrophysics Data System (ADS)

    Frerichs, H.; Schmitz, O.; Waters, I.; Canal, G. P.; Evans, T. E.; Feng, Y.; Soukhanovskii, V. A.

    2016-06-01

    The control of divertor heat loads - both steady state and transient - remains a key challenge for the successful operation of ITER and FNSF. Magnetic perturbations provide a promising technique to control ELMs (Edge Localized Modes) (transients), but understanding their detailed impact is difficult due to their symmetry breaking nature. One approach for reducing steady state heat loads is so called "advanced divertors" which aim at optimizing the magnetic field configuration: the snowflake and the (super-)X-divertor. It is likely that both concepts - magnetic perturbations and advanced divertors - will have to work together, and we explore their interaction based on the NSTX-U setup. An overview of different divertor configurations under the impact of magnetic perturbations is presented, and the resulting impact on plasma edge transport is investigated with the EMC3-EIRENE code. Variations in size of the magnetic footprint of the perturbed separatrix are found, which are related to the level of flux expansion on the divertor target. Non-axisymmetric peaking of the heat flux related to the perturbed separatrix is found at the outer strike point, but only in locations where flux expansion is not too large.

  6. Divertor Target Heat Load Reduction by Electrical Biasing, and Application to COMPASS-D

    SciTech Connect

    Fielding, S J; Cohen, R H; Helander, P; Ryutov, D D

    2001-03-07

    A toroidally-asymmetric potential structure in the scrape-off layer (SOL) plasma may be formed by toroidally distributed electrical biasing of the divertor target tiles. The resulting ExB convective motions should increase the plasma radial transport in the SOL and thereby reduce the heat load at the divertor [1]. In this paper we develop theoretical modeling and describe the implementation of this concept to the COMPASS-D divertor. We show that strong magnetic shear near the X-point should cause significant squeezing of the convective cells preventing convection from penetrating above the X-point. This should result in reduced heat load at the divertor target without increasing the radial transport in the portion of the SOL in direct contact with the core plasma, potentially avoiding any confinement degradation. implementation of divertor biasing is in hand on COMPASS-D involving insulation of, and modifications to, the present divertor tiles. Calculations based on measured edge parameters suggest that modest currents {approx} 8 A/tile are required, at up to 150V, to drive the convection. A technical test is preceeding full bias experiments.

  7. Linear peeling-ballooning mode simulations in snowflake-like divertor configuration using BOUT++ code

    NASA Astrophysics Data System (ADS)

    Ma, J. F.; Xu, X. Q.; Dudson, B. D.

    2014-03-01

    We present linear characteristics of peeling-ballooning (P-B) modes in the pedestal region of DIII-D tokamak with snowflake (SF) plus divertor configuration using edge two-fluid code BOUT++. A set of reduced magnetohydrodynamics (MHD) equations is found to simulate the linear P-B mode in both snowflake plus and standard (STD) single-null divertor configurations. Further analysis shows that the implementation of snowflake geometry changes the local magnetic shear in the pedestal region, which leads to different linear behaviours of the P-B mode in STD and SF divertor configuration. Primary linear simulation results are the following. (1) The growth rate of the coupled P-B mode in SF-plus divertor geometry is larger than that in STD divertor geometry. (2) The global linear mode structures are more radially extended yet less poloidally extended in SF-plus divertor geometry, especially for moderate and high toroidal mode numbers. (3) The current-gradient drive (the kink term) dominates the P-B mode for low n, while the pressure gradient drive (ballooning) dominates for n > 25. In addition, constraints on poloidal field and central solenoid coils for snowflake geometry are briefly discussed based on conclusions in this paper.

  8. A Fast Visible Camera Divertor-Imaging Diagnostic on DIII-D

    SciTech Connect

    Roquemore, A; Maingi, R; Lasnier, C; Nishino, N; Evans, T; Fenstermacher, M; Nagy, A

    2007-06-19

    In recent campaigns, the Photron Ultima SE fast framing camera has proven to be a powerful diagnostic when applied to imaging divertor phenomena on the National Spherical Torus Experiment (NSTX). Active areas of NSTX divertor research addressed with the fast camera include identification of types of EDGE Localized Modes (ELMs)[1], dust migration, impurity behavior and a number of phenomena related to turbulence. To compare such edge and divertor phenomena in low and high aspect ratio plasmas, a multi-institutional collaboration was developed for fast visible imaging on NSTX and DIII-D. More specifically, the collaboration was proposed to compare the NSTX small type V ELM regime [2] and the residual ELMs observed during Type I ELM suppression with external magnetic perturbations on DIII-D[3]. As part of the collaboration effort, the Photron camera was installed recently on DIII-D with a tangential view similar to the view implemented on NSTX, enabling a direct comparison between the two machines. The rapid implementation was facilitated by utilization of the existing optics that coupled the visible spectral output from the divertor vacuum ultraviolet UVTV system, which has a view similar to the view developed for the divertor tangential TV camera [4]. A remote controlled filter wheel was implemented, as was the radiation shield required for the DIII-D installation. The installation and initial operation of the camera are described in this paper, and the first images from the DIII-D divertor are presented.

  9. Erosion and deposition in the JET divertor during the first ILW campaign

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Krat, S.; Van Renterghem, W.; Baron-Wiechec, A.; Brezinsek, S.; Bykov, I.; Coad, P.; Gasparyan, Yu; Heinola, K.; Likonen, J.; Pisarev, A.; Ruset, C.; de Saint-Aubin, G.; Widdowson, A.; Contributors, JET

    2016-02-01

    Erosion and deposition were studied in the JET divertor during the first JET ITER-like wall campaign 2011 to 2012 using marker tiles. An almost complete poloidal section consisting of tiles 0, 1, 3, 4, 6, 7, 8 was studied. The data from divertor tile surfaces were completed by the analysis of samples from remote divertor areas and from the inner wall cladding. The total mass of material deposited in the divertor decreased by a factor of 4-9 compared to the deposition of carbon during all-carbon JET operation before 2010. Deposits in 2011 to 2012 consist mainly of beryllium with 5-20 at.% of carbon and oxygen, respectively, and small amounts of Ni, Cr, Fe and W. This decrease of material deposition in the divertor is accompanied by a decrease of total deuterium retention inside the JET vessel by a factor of 10 to 20. The detailed erosion/deposition pattern in the divertor with the ITER-like wall configuration shows rigorous changes compared to the pattern with the all-carbon JET configuration.

  10. Critical need for MFE: the Alcator DX advanced divertor test facility

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.

    2013-10-01

    Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.

  11. Shuttle cryogenic supply system optimization study. Volume 4: Cryogenic cooling in environmental control systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An analysis of cryogenic fluid cooling in the environmental control system of the space shuttle was conducted. The technique for treating the cryogenic fluid storage and supply tanks and subsystems as integrated systems was developed. It was concluded that a basic incompatibility exists between the heat generated and the cryogen usage rate and cryogens cannot be used to absorb the generated heat. The use of radiators and accumulators to provide additional cooling capability is recommended.

  12. Properties of cryogenically worked metals. [stainless steels

    NASA Technical Reports Server (NTRS)

    Schwartzberg, F. R.; Kiefer, T. F.

    1975-01-01

    A program was conducted to determine whether the mechanical properties of cryogenically worked 17-7PH stainless steel are suitable for service from ambient to cryogenic temperatures. It was determined that the stress corrosion resistance of the cryo-worked material is quite adequate for structural service. The tensile properties and fracture toughness at room temperature were comparable to titanium alloy 6Al-4V. However, at cryogenic temperatures, the properties were not sufficient to recommend consideration for structural service.

  13. Cryogenic transfer options for exploration missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1991-01-01

    The literature of in-space cryogenic transfer is reviewed in order to propose transportation concepts to support the Space Exploration Initiative (SEI). Forty-nine references are listed and key findings are synopsized. An assessment of the current maturity of cryogenic transfer system technology is made. Although the settled transfer technique is the most mature technology, the No-Vent Fill technology is maturing rapidly. Future options for development of cryogenic transfer technology are also discussed.

  14. The evolution of cryogenic safety at Fermilab

    SciTech Connect

    Stanek, R.; Kilmer, J.

    1992-12-01

    Over the past twenty-five years, Fermilab has been involved in cryogenic technology as it relates to pursuing experimentation in high energy physics. The Laboratory has instituted a strong cryogenic safety program and has maintained a very positive safety record. The solid commitment of management and the cryogenic community to incorporating safety into the system life cycle has led to policies that set requirements and help establish consistency for the purchase and installation of equipment and the safety analysis and documentation.

  15. Investigation of cryogenic rupture disc design

    NASA Technical Reports Server (NTRS)

    Keough, J. B.; Oldland, A. H.

    1973-01-01

    Rupture disc designs of both the active (command actuated) and passive (pressure ruptured) types were evaluated for performance characteristics at cryogenic temperatures and for capability to operate in a variety of cryogens, including gaseous and liquid fluorine. The test results, coupled with information from literature and industry searches, were used to establish a statement of design criteria and recommended practices for application of rupture discs to cryogenic rocket propellant feed and vent systems.

  16. Well pump

    DOEpatents

    Ames, Kenneth R.; Doesburg, James M.

    1987-01-01

    A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.

  17. Cryogenics at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Weisend, J. G., II; Arnold, P.; Hees, J. Fydrych. W.; Jurns, J. M.; Wang, X. L.

    Cryogenics plays an important role at the European Spallation Source, a world class neutron science center, currently under construction in Lund, Sweden. Three principal applications of cryogenics are found at ESS. The SRF cryomodules of the ESS proton linac require cooling at 2 K, 4.5 K and 40 K; the hydrogenmoderator surrounding the target that produces neutrons, requires cooling via 16.5 K helium and LHe is required for many of the scientific instruments. These needs will be met by a set of three cryogenic refrigeration/liquefaction plants and an extensive cryogenic distribution system. Significant progress has been made on the ESS cryogenic system in preparation for the expected first beam on target in 2019. This work includes: funding of industry studies for the accelerator cryoplant, preliminary design of the cryogenic distribution system, investigation of possible in kind contributors and release of the invitation to tender for the accelerator cryoplant.This paper describes the requirements, design solutions and current status of the ESS cryogenic system. The planned recovery of waste heat from the cryogenic plants, a unique aspect of ESS, is described. The procurement of the cryogenic system, expected to be done via a combination of purchase via competitive bids and in kind contributions is also discussed.

  18. Cryogenic Technology Development for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.

  19. Thermal Design and Analysis for the Cryogenic MIDAS Experiment

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth McElroy

    1997-01-01

    The Materials In Devices As Superconductors (MIDAS) spaceflight experiment is a NASA payload which launched in September 1996 on the Shuttle, and was transferred to the Mir Space Station for several months of operation. MIDAS was developed and built at NASA Langley Research Center (LaRC). The primary objective of the experiment was to determine the effects of microgravity and spaceflight on the electrical properties of high-temperature superconductive (HTS) materials. The thermal challenge on MIDAS was to maintain the superconductive specimens at or below 80 K for the entire operation of the experiment, including all ground testing and 90 days of spaceflight operation. Cooling was provided by a small tactical cryocooler. The superconductive specimens and the coldfinger of the cryocooler were mounted in a vacuum chamber, with vacuum levels maintained by an ion pump. The entire experiment was mounted for operation in a stowage locker inside Mir, with the only heat dissipation capability provided by a cooling fan exhausting to the habitable compartment. The thermal environment on Mir can potentially vary over the range 5 to 40 C; this was the range used in testing, and this wide range adds to the difficulty in managing the power dissipated from the experiment's active components. Many issues in the thermal design are discussed, including: thermal isolation methods for the cryogenic samples; design for cooling to cryogenic temperatures; cryogenic epoxy bonds; management of ambient temperature components self-heating; and fan cooling of the enclosed locker. Results of the design are also considered, including the thermal gradients across the HTS samples and cryogenic thermal strap, electronics and thermal sensor cryogenic performance, and differences between ground and flight performance. Modeling was performed in both SINDA-85 and MSC/PATRAN (with direct geometry import from the CAD design tool Pro/Engineer). Advantages of both types of models are discussed

  20. Fracture control of H-O engine components. [titanium tin alloy fuel pump impellers

    NASA Technical Reports Server (NTRS)

    Ryder, J. T.

    1977-01-01

    An investigation was made to obtain the material characterization and fatigue crack propagation data necessary to establish the salient characteristics of a Ti-6Al-2.5Sn(ELI) alloy fuel pump impeller to be used in a cryogenic service environment. Testing variables considered were: coupon orientation, frequency, load range ratio, and temperature. Data analysis correlated crack propagation data from conventional laboratory coupons with data from a parallel sided rotating disk used to model rotor stresses. Four major design recommendations when bore regions of fuel pump impellers to be operated in cryogenic environments are to be relatively highly stressed are discussed.

  1. Modeling and Commissioning of a Cold Compressor String for the Superfluid Cryogenic Plant at Fermilab's Cryo-module Test Facility

    NASA Astrophysics Data System (ADS)

    Ueresin, C.; Decker, L.; Treite, P.

    In 2011, Linde Cryogenics, a division of Linde Process Plants, Tulsa, Oklahoma, was awarded the contract to deliver a 500 W at 2 K superfluid cryogenic plant to Fermi National Accelerator Laboratory (FNAL) in Batavia, Illinois, USA. This system includes a cold compressor string with three centrifugal compressors and a vacuum pump skid with five volumetric pumps in parallel used to pump down helium to its saturation pressure corresponding to 2 K. Linde Kryotechnik AG, Pfungen Switzerland engineered and supplied the cold compressor system and commissioned it with its control logic to cover the complete range of system operation. The paper outlines issues regarding compressor design, compressor string modeling, control algorithms, controller performance, and surge protection.

  2. Cryogenic Detectors (Narrow Field Instruments)

    NASA Astrophysics Data System (ADS)

    Hoevers, H.; Verhoeve, P.

    Two cryogenic imaging spectrometer arrays are currently considered as focal plane instruments for XEUS. The narrow field imager 1 (NFI 1) will cover the energy range from 0.05 to 3 keV with an energy resolution of 2 eV, or better, at 500 eV. A second narrow field imager (NFI 2) covers the energy range from 1 to 15 keV with an energy resolution of 2 eV (at 1 keV) and 5 eV (at 7 keV), creating some overlap with part of the NFI 1 energy window. Both narrow field imagers have a 0.5 arcmin field of view. Their imaging capabilities are matched to the XEUS optics of 2 to 5 arcsec leading to 1 arcsec pixels. The detector arrays will be cooled by a closed cycle system comprising a mechanical cooler with a base temperature of 2.5 K and either a low temperature 3He sorption pump providing the very low temperature stage and/or an Adiabatic Demagnetization Refrigerator (ADR). The ADR cooler is explicitly needed to cool the NFI 2 array. The narrow field imager 1} Currently a 48 times 48 element array of superconducting tunnel junctions (STJ) is envisaged. Its operating temperature is in the range between 30 and 350 mK. Small, single Ta STJs (20-50 mum on a side) have shown 3.5 eV (FWHM) resolution at E = 525 eV and small arrays have been successfully demonstrated (6 times 6 pixels), or are currently tested (10 times 12 pixels). Alternatively, a prototype Distributed Read-Out Imaging Device (DROID), consisting of a linear superconducting Ta absorber of 20 times 100 mum2, including a 20 times 20 mum STJ for readout at either end, has shown a measured energy resolution of 2.4 eV (FWHM) at E = 500 eV. Simulations involving the diffusion properties as well as loss and tunnel rates have shown that the performance can be further improved by slight modifications in the geometry, and that the size of the DROIDS can be increased to 0.5-1.0 mm without loss in energy resolution. The relatively large areas and good energy resolution compared to single STJs make DROIDS good candidates for the

  3. Design Result of the Cryogenic Hydrogen Circulation System for 1 MW Pulse Spallation Neutron Source (JSNS) in J-PARC

    SciTech Connect

    Aso, T.; Tatsumoto, H.; Hasegawa, S.; Ushijima, I.; Ohtsu, K.; Kato, T.; Ikeda, Y.

    2006-04-27

    A cryogenic hydrogen circulation system to cool cryogenic hydrogen moderators for the spallation neutron source in J-PARC has been designed. This system consists of a helium refrigerator system and a hydrogen circulation system. The refrigeration capacity required for the cryogenic system is specified to be around 6 kW at 17 K. The hydrogen circulation system is composed of a hydrogen-helium heat exchanger, two circulation pumps, multiple transfer lines, three moderator vessels, an Ortho-Para hydrogen converter, an accumulator, a heater and others. The system adopts a centrifugal-type hydrogen pump that can circulate the cryogenic hydrogen (20 K, 0.5 to 1.5 MPa) with the mass flow up to 162 g/s through the three moderators. This forced-flow circulation can remove the nuclear heating from the moderators and can keep the temperature difference through the moderators within 3 K. The Ortho-Para hydrogen converter will be installed to maintain the Para-hydrogen concentration of more than 99% at the inlet of the moderators. For the pressure changes due to the proton beam being turned on and off, we will prepare an accumulator and a heater, which is called a hybrid pressure control. The cryogenic system has been designed with safety concepts that protect the public.

  4. In–out asymmetry of divertor particle flux in H-mode with edge localized modes on EAST

    NASA Astrophysics Data System (ADS)

    Liu, J. B.; Guo, H. Y.; Wang, L.; Xu, G. S.; Xia, T. Y.; Liu, S. C.; Xu, X. Q.; Li, Jie; Chen, L.; Yan, N.; Wang, H. Q.; Xu, J. C.; Feng, W.; Shao, L. M.; Deng, G. Z.; Liu, H.; EAST Probe Team

    2016-06-01

    The in–out divertor asymmetry in the Experimental Advanced Superconducting Tokamak (EAST), as manifested by particle fluxes measured by the divertor triple Langmuir probe arrays, is significantly enhanced during type-I edge localized modes (ELMs), favoring the inner divertor in lower single null (LSN) for the normal toroidal field (B t) direction, i.e. with the ion B  ×  \

  5. Reciprocating and fixed probe measurements of n{sub e} and T{sub e} in the DIII-D divertor

    SciTech Connect

    Watkins, J.G.; Moyer, R.A.; Cuthbertson, J.W.; Buchenauer, D.A.; Carlstrom, T.N.; Hill, D.N.; Ulrickson, M.

    1996-11-01

    This paper describes divertor density and temperature measurements using both a new reciprocating Langmuir probe (XPT-RCP) which plunges vertically above the divertor floor up to the X-point height and swept, single, Langmuir probes fixed horizontally across the divertor floor. These types of measurements are important for testing models of the SOL and divertor which then are used to design plasma facing components in reactor size tokamaks. This paper presents an overview of the new divertor probe measurements and how they compare with the new divertor Thomson scattering system. The fast time response of the probe measurements allows detailed study of ELMs.

  6. Ion cyclotron resonance heating in the divertor tokamak ASDEX

    SciTech Connect

    Steinmetz, K.; Wesner, F.; Niedermeyer, H.; Becker, G.; Braun, F.; Eberhagen, A.; Fussmann, G.; Gehre, O.; Gernhardt, J.; v. Gierke, G.

    1986-05-01

    The main topics of ICRF investigations in ASDEX are the influence of the divertor on impurity production and transport in ICRH heated discharges, and the heating efficiency and plasma confinement in various scenarios (minority and harmonics regimes). The first experiments were conducted in November 1984 at 67 MHz, corresponding to second harmonic heating of a hydrogen plasma at B/sub 0/ = 2.2 T. A transmitted power of 2.5 MW has been reached so far, the total capability being 3 MW. A linear increase of the central electron and ion temperature with the rf power is observed in Ohmically preheated plasmas (..delta..T/sub e/approx.280 eV, ..delta..T/sub i/approx.500 eV, ..delta..W/sub p/approx.17 kJ at a power of 1.2 MW coupled to the plasma and n-bar/sub e/ = 3.5 x 10/sup 13/ cm/sup -3/). The total radiation increases linearly with the power, too, and the ratio P/sub rad//P/sub tot/approx.0.35 stays approximately constant. However, first investigations indicate that with a divertor, ICRF operation is also accompanied by a significant increase in impurity production. The presence of neutral beam injection in addition to ICRH clearly enhances the absorption of the wave energy from about 50% to up to 90% with respect to the coupled power. With neutral beam injection (P/sub NI/< or =3.5 MW) the increment of the plasma energy content due to ICRH (P/sub rf/< or =2 MW) is found to be almost twice as large as in case OH+ICRH. Global heating efficiencies of up to 3 x 10/sup 13/ eV/kW cm/sup 3/ compare quite well with other ICRH experiments. First observations indicate a degradation of plasma confinement with ICRH to values in between L-type and OH confinement.

  7. High efficiency pump for space helium transfer

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael G.; Swift, Walter L.; Sixsmith, Herbert

    1991-01-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space.

  8. Comprehensive 2D measurements of radiative divertor plasmas in DIII-D

    SciTech Connect

    Fenstermacher, M.E.; Wood, R.D.; Allen, S.L.; Hill, D.N.

    1997-07-01

    This paper presents a comparison of the total radiated power profile and impurity line emission distributions in the SOL and divertor of DIII-D. This is done for ELMing H-mode plasmas with heavy deuterium injection (Partially Detached Divertor operation, PDD) and those without deuterium puffing. Results are described from a series of dedicated experiments performed on DIII-D to systematically measure the 2-D (R,Z) structure of the divertor plasma. The discharges were designed to optimize measurements with new divertor diagnostics including a divertor Thomson scattering system. Discharge sequences were designed to produce optimized data sets against which SOL and divertor theories and simulation codes could be benchmarked. During PDD operation the regions of significant radiated power shift from the inner divertor leg and SOL to the outer leg and X-point regions. D{alpha} emission shifts from the inner strikepoint to the outer strikepoint. Carbon emissions (visible CII and CIII) shift from the inner SOL near the X-point to a distributed region from the X-point to partially down the outer leg during moderate D2 puffing. In heavy puffing discharges the carbon emission coalesces on the outer separatrix near the X-point and for very heavy puffing it appears inside the last closed flux surface above the X-point. Calibrated spectroscopic measurements indicate that hydrogenic and carbon radiation can account for all of the radiated power. L{alpha} and CIV radiation are comparable and when combined account for as much as 90% of the total radiated power along chords viewing the significant radiating regions of the outer leg.

  9. The two-dimensional structure of radiative divertor plasmas in the DIII-D tokamak

    SciTech Connect

    Fenstermacher, M.E.; Allen, S.L.; Brooks, N.H.; Buchenauer, D.A.; Carlstrom, T.N.; Cuthbertson, J.W.; Doyle, E.J.; Evans, T.E.; Garbet, P.; Harvey, R.W.; Hill, D.N.; Hyatt, A.W.; Isler, R.C.; Jackson, G.; James, R.A.; Jong, R.; Klepper, C.C.; Lasnier, C.J.; Leonard, A.W.; Mahdavi, M.A.; Maingi, R.; Meyer, W.H.; Moyer, R.A.; Nilson, D.G.; Petrie, T.W.; Porter, G.D.; Rhodes, T.L.; Schaffer, M.J.; Stambaugh, R.D.; Thomas, D.M.; Tugarinov, S.; Wade, M.R.; Watkins, J.G.; West, W.P.; Whyte, D.G.; Wood, R.D.

    1997-05-01

    Recent measurements of the two-dimensional (2-D) spatial profiles of divertor plasma density, temperature, and emissivity in the DIII-D tokamak [J. Luxon {ital et al.}, in {ital Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion} (International Atomic Energy Agency, Vienna, 1987), p. 159] under highly radiating conditions are presented. Data are obtained using a divertor Thomson scattering system and other diagnostics optimized for measuring the high electron densities and low temperatures in these detached divertor plasmas (n{sub e}{le}10{sup 21}m{sup {minus}3}, 0.5eV{le}T{sub e}). D{sub 2} gas injection in the divertor increases the plasma radiation and lowers T{sub e} to less than 2 eV in most of the divertor volume. Modeling shows that this temperature is low enough to allow ion{endash}neutral collisions, charge exchange, and volume recombination to play significant roles in reducing the plasma pressure along the magnetic separatrix by a factor of 3{endash}5, consistent with the measurements. Absolutely calibrated vacuum ultraviolet spectroscopy and 2-D images of impurity emission show that carbon radiation near the X-point, and deuterium radiation near the target plates contribute to the reduction in T{sub e}. Uniformity of radiated power (P{sub rad}) (within a factor of 2) along the outer divertor leg, with peak heat flux on the divertor target reduced fourfold, was obtained. A comparison with 2-D fluid simulations shows good agreement when physical sputtering and an {ital ad hoc} chemical sputtering source (0.5{percent}) from the private flux region surface are used. {copyright} {ital 1997 American Institute of Physics.}

  10. An experimental examination of the loss-of-flow accident phenomenon for prototypical ITER divertor channels of Y=0 and Y=2

    SciTech Connect

    Marshall, T.D.; McDonald, J.M.; Cadwallader, L.C.; Steiner, D.

    2000-01-01

    This paper discusses the thermal response of two prototypical International Thermonuclear Experimental Reactor (ITER) divertor channels during simulated loss-of-flow-accident (LOFA) experiments. The thermal response was characterized by the time-to-burnout (TBO), which is a figure of merit on the mockups' survivability. Data from the LOFA experiments illustrate that (a) the pre-LOFA inlet velocity does not significantly influence the TBO, (b) the incident heat flux (IHF) does influence the TBO, and (c) a swirl tape insert significantly improves the TBO and promotes the initiation of natural circulation. This natural circulation enabled the mockup to absorb steady-state IHFs after the coolant circulation pump was disabled. Several methodologies for thermal-hydraulic modeling of the LOFA were attempted.

  11. An Experimental Examination of the Loss-of-Flow Accident Phenomenon for Prototypical ITER Divertor Channels of Y = 0 and Y = 2

    SciTech Connect

    Marshall, Theron D.; McDonald, Jimmie M.; Cadwallader, Lee C.; Steiner, Don

    2000-01-15

    This paper discusses the thermal response of two prototypical International Thermonuclear Experimental Reactor (ITER) divertor channels during simulated loss-of-flow-accident (LOFA) experiments. The thermal response was characterized by the time-to-burnout (TBO), which is a figure of merit on the mockups' survivability. Data from the LOFA experiments illustrate that (a) the pre-LOFA inlet velocity does not significantly influence the TBO, (b) the incident heat flux (IHF) does influence the TBO, and (c) a swirl tape insert significantly improves the TBO and promotes the initiation of natural circulation. This natural circulation enabled the mockup to absorb steady-state IHFs after the coolant circulation pump was disabled. Several methodologies for thermal-hydraulic modeling of the LOFA were attempted.

  12. Unpressurized Container For Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Walker, Susan B.

    1989-01-01

    Unpressurized cryostat makes mechanical testing of materials at low temperature more convenient. Maintains specimens at temperatures of -400 to -450 degree F without sealing them in gastight, vacuum-insulated container. Easy to insert and remove specimens and attach instrumentation wiring to them. Vents vapor continuously, so no danger of buildup of internal pressure from evaporating cryogenic liquid. Includes two concentric chambers with stainless-steel walls and fiber insulation. Specimen mounted in inner chamber, and such instruments as extensometers and thermocouples attached. Loose lid of polystyrene foam or other suitable material placed over vessel.

  13. Fiberglass supports for cryogenic tanks

    NASA Technical Reports Server (NTRS)

    Keller, C. W.

    1972-01-01

    Analysis, design, fabrication, and test activities were conducted to develop additional technology needed for application of filament-wound fiberglass struts to cryogenic flight tankage. It was conclusively verified that monocoque cylinder or ogive struts are optimum or near-optimum for the range of lengths and loads studied, that a higher strength-to-weight ratio can be achieved for fiberglass struts than for any metallic struts, and that integrally-wrapped metallic end fittings can be used to achieve axial load transfer without reliance on bond strength or mechanical fasteners.

  14. Self-Sealing Cryogenic Fitting

    NASA Technical Reports Server (NTRS)

    Jia, Lin Xiang; Chow, Wen Lung; Moslemian, Davood; Lin, Gary; Melton, Greg

    1994-01-01

    Self-sealing fitting for cryogenic tubes remains free of leakage from room temperature to liquid-helium temperature even at internal pressure as high as 2.7 MPa. Fitting comprises parts made of materials with different coefficients of thermal expansion to prevent leakage gaps from forming as temperature decreases. Consists of coupling nut, two flared tube ends, and flared O-ring spacer. Spacer contracts more than tube ends do as temperature decreases. This greater contraction seals tube ends more tightly, preventing leakage.

  15. Low Mn alloy steel for cryogenic service

    DOEpatents

    Morris, J.W. Jr.; Niikura, M.

    A ferritic cryogenic steel which has a relatively low (about 4 to 6%) manganese content and which has been made suitable for use at cryogenic temperatures by a thermal cycling treatment followed by a final tempering. The steel includes 4 to 6% manganese, 0.02 to 0.06% carbon, 0.1 to 0.4% molybdenum and 0 to 3% nickel.

  16. Cryogenic spin testing of NASA's shuttle engines

    NASA Astrophysics Data System (ADS)

    Maillar, Kenneth M.; Enos, Anthony; Gauthier, Robert

    1992-12-01

    Spin testing of the Space Shuttle Main Engine (SSME) high-pressure turbopump rotors is described focusing on the SSME cryogenic spin test facility. Testing at full operating speed is predicated on achieving and maintaining a cryogenic rotor temperature. Rotors are driven to operational speeds after being chilled to - 195 C.

  17. Cryogenic Boil-Off Reduction System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffery

    2014-01-01

    The Cryogenic Boil-Off Reduction System was tested with LH2 and LOX in a vacuum chamber to simulate space vacuum and the temperatures of low Earth orbit. Testing was successful and results validated the scaling study model that predicts active cooling reduces upper stage cryogenic propulsion mass for loiter periods greater than 2 weeks.

  18. Neutron Detection with Cryogenics and Semiconductors

    SciTech Connect

    bell, Z.W.; Carpenter, D.A.; Cristy, S.S.; Lamberti, V.E.

    2005-03-10

    The common methods of neutron detection are reviewed with special attention paid to the application of cryogenics and semiconductors to the problem. The authors' work with LiF- and boron-based cryogenic instruments is described as well as the use of CdTe and HgI{sub 2} for direct detection of neutrons.

  19. Continuous-Reading Cryogen Level Sensor

    NASA Technical Reports Server (NTRS)

    Barone, F. E.; Fox, E.; Macumber, S.

    1984-01-01

    Two pressure transducers used in system for measuring amount of cryogenic liquid in tank. System provides continuous measurements accurate within 0.03 percent. Sensors determine pressure in liquid and vapor in tank. Microprocessor uses pressure difference to compute mass of cryogenic liquid in tank. New system allows continuous sensing; unaffected by localized variations in composition and density as are capacitance-sensing schemes.

  20. Foam vessel for cryogenic fluid storage

    SciTech Connect

    Spear, Jonathan D

    2011-07-05

    Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.

  1. Cryogenic fluid management program flight concept definition

    NASA Technical Reports Server (NTRS)

    Kroeger, Erich

    1987-01-01

    The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.

  2. Response of NSTX Liquid Lithium divertor to High Heat Loads

    SciTech Connect

    Abrams, Tyler; Kallman, J; Kaitaa, R; Foley, E L; Grayd, T K; Kugel, H; Levinton, F; McLean, A G; Skinner, C H

    2012-07-18

    Samples of the NSTX Liquid Lithium Divertor (LLD) with and without an evaporative Li coating were directly exposed to a neutral beam ex-situ at a power of ~1.5 MW/m2 for 1-3 seconds. Measurements of front face and bulk sample temperature were obtained. Predictions of temperature evolution were derived from a 1D heat flux model. No macroscopic damage occurred when the "bare" sample was exposed to the beam but microscopic changes to the surface were observed. The Li-coated sample developed a lithium hydroxide (LiOH) coating, which did not change even when the front face temperature exceeded the pure Li melting point. These results are consistent with the lack of damage to the LLD surface and imply that heating alone may not expose pure liquid Li if the melting point of surface impurities is not exceeded. This suggests that flow and heat are needed for future PFCs requiring a liquid Li surface. __________________________________________________

  3. Plasma flow interaction with ITER divertor related surfaces

    NASA Astrophysics Data System (ADS)

    Dojčinović, Ivan P.

    2010-11-01

    It has been found that the plasma flow generated by quasistationary plasma accelerators can be used for simulation of high energy plasma interaction with different materials of interest for fusion experiments. It is especially important for the studies of the processes such as ELMs (edge localized modes), plasma disruptions and VDEs (vertical displacement events), during which a significant part of the confined hot plasma is lost from the core to the SOL (scrape off layer) enveloping the core region. Experiments using plasma guns have been used to assess erosion from disruptions and ELMs. Namely, in this experiment modification of different targets, like tungsten, molybdenum, CFC and silicon single crystal surface by the action of hydrogen and nitrogen quasistationary compression plasma flow (CPF) generated by magnetoplasma compressor (MPC) has been studied. MPC plasma flow with standard parameters (1 MJ/m2 in 0.1 ms) can be used for simulation of transient peak thermal loads during Type I ELMs and disruptions. Analysis of the targets erosion, brittle destruction, melting processes, and dust formation has been performed. These surface phenomena are results of specific conditions during CPF interaction with target surface. The investigations are related to the fundamental aspects of high energy plasma flow interaction with different material of interest for fusion. One of the purposes is a study of competition between melting and cleavage of treated solid surface. The other is investigation of plasma interaction with first wall and divertor component materials related to the ITER experiment.

  4. Current understanding of divertor detachment: experiments and modelling

    SciTech Connect

    Wischmeier, W; Groth, M; Kallenbach, A; Chankin, A; Coster, D; Dux, R; Herrmann, A; Muller, H; Pugno, R; Reiter, D; Scarabosio, A; Watkins, J; Team, T D; Team, A U

    2008-05-23

    A qualitative as well as quantitative evaluation of experimentally observed plasma parameters in the detached regime proves to be difficult for several tokamaks. A series of ohmic discharges have been performed in ASDEX Upgrade and DIII-D at similar as possible plasma parameters and at different line averaged densities, {bar n}{sub e}. The experimental data represent a set of well diagnosed discharges against which numerical simulations are compared. For the numerical modeling the fluid-code B2.5 coupled to the Monte Carlo neutrals transport code EIRENE is used. Only the combined enhancement of effects, such as geometry, drift terms, neutral conductance, increased radial transport and divertor target composition, explains a significant fraction of the experimentally observed asymmetries of the ion fluxes as a function of {bar n}{sub e} to the inner and outer target plates in ASDEX Upgrade. The relative importance of the mechanisms leading to detachment are different in DIII-D and ASDEX Upgrade.

  5. Cryogenic recovery. [of space shuttle propellants

    NASA Technical Reports Server (NTRS)

    Howard, F. S.

    1976-01-01

    Because of the low boiling temperature of cryogenic propellants to be used on the Space Shuttle, loss of cryogens from boiloff could become very costly. This paper describes how this shuttle problem is being solved at Kennedy Space Center. Cryogenic losses are categorized relative to the particular cryogenic involved, the Space Shuttle servicing operation causing boiloff and the magnitude of the loss. The techniques under consideration are discussed in detail. These techniques include reclaiming the boiloff by reliquefaction, upgrading the reclaimed boiloff by purification, and interim boiloff storage in metal hydride prior to reprocessing. One of the reliquefaction processes discussed in detail utilizes the cooling effect of venting some of the liquid hydrogen boiloff to provide a simple hydrogen reliquefaction unit. Possible future applications of these cryogenics recovery techniques to industry and transportation systems using liquid hydrogen for energy storage and fuel are also discussed.

  6. Numerical simulations of cryogenic cavitating flows

    NASA Astrophysics Data System (ADS)

    Kim, Hyunji; Kim, Hyeongjun; Min, Daeho; Kim, Chongam

    2015-12-01

    The present study deals with a numerical method for cryogenic cavitating flows. Recently, we have developed an accurate and efficient baseline numerical scheme for all-speed water-gas two-phase flows. By extending such progress, we modify the numerical dissipations to be properly scaled so that it does not show any deficiencies in low Mach number regions. For dealing with cryogenic two-phase flows, previous EOS-dependent shock discontinuity sensing term is replaced with a newly designed EOS-free one. To validate the proposed numerical method, cryogenic cavitating flows around hydrofoil are computed and the pressure and temperature depression effect in cryogenic cavitation are demonstrated. Compared with Hord's experimental data, computed results are turned out to be satisfactory. Afterwards, numerical simulations of flow around KARI turbopump inducer in liquid rocket are carried out under various flow conditions with water and cryogenic fluids, and the difference in inducer flow physics depending on the working fluids are examined.

  7. Techniques for on-orbit cryogenic servicing

    NASA Astrophysics Data System (ADS)

    DeLee, C. H.; Barfknecht, P.; Breon, S.; Boyle, R.; DiPirro, M.; Francis, J.; Huynh, J.; Li, X.; McGuire, J.; Mustafi, S.; Tuttle, J.; Wegel, D.

    2014-11-01

    NASA (National Aeronautics and Space Administration) has a renewed interest in on-orbit cryogen storage and transfer to support its mission to explore near-earth objects such as asteroids and comets. The Cryogenic Propellant Storage and Transfer Technology Demonstration Mission (CPST-TDM), managed by the NASA Glenn Research Center (GRC) and scheduled for launch in 2018, will demonstrate numerous key technologies applicable to a cryopropellant fuel depot. As an adjunct to the CPST-TDM work, experiments at NASA Goddard Space Flight Center (GSFC) will support the development of techniques to manage and transfer cryogens on-orbit and expand these techniques as they may be applicable to servicing science missions using solid cryogens such as the Wide-field Infrared Survey Explorer (WISE). The results of several ground experiments are described, including autogenous pressurization used for transfer of liquid nitrogen and argon, characterization of the transfer and solidification of argon, and development of robotic tools for cryogen transfer.

  8. Linac cryogenic distribution system maintenance and upgrades at Jlab

    SciTech Connect

    Dixon, Kelly D.; Wright, Mathew C.; Ganni, Venkatarao

    2014-01-01

    The Central Helium Liquefier (CHL) distribution system to the CEBAF and FEL linacs at Jefferson Lab (JLab) experienced a planned warm up during the late summer and fall of 2012 for the first time after its commissioning in 1991. Various maintenance and modifications were performed to support high beam availability to the experimental users, meet 10 CFR 851 requirements for pressure systems, address operational issues, and prepare the cryogenic interfaces for the high-gradient cryomodules needed for the 12 GeV upgrade. Cryogenic maintenance and installation work had to be coordinated with other activities in the linacs and compete for manpower from other department installation activities. With less than a quarter of the gas storage capacity available to handle the boil-off from the more than 40 cryomodules, 35,000 Nm{sup 3} of helium was re-liquefied and shipped to a vendor via a liquid tanker trailer. Nearly 200 u-tubes had to be removed and stored while seals were replaced on related equipment such as vacuum pump outs, bayonet isolation and process valves.

  9. Linac cryogenic distribution system maintenance and upgrades at JLab

    SciTech Connect

    Dixon, K.; Wright, M.; Ganni, V.

    2014-01-29

    The Central Helium Liquefier (CHL) distribution system to the CEBAF and FEL linacs at Jefferson Lab (JLab) experienced a planned warm up during the late summer and fall of 2012 for the first time after its commissioning in 1991. Various maintenance and modifications were performed to support high beam availability to the experimental users, meet 10 CFR 851 requirements for pressure systems, address operational issues, and prepare the cryogenic interfaces for the high-gradient cryomodules needed for the 12 GeV upgrade. Cryogenic maintenance and installation work had to be coordinated with other activities in the linacs and compete for manpower from other department installation activities. With less than a quarter of the gas storage capacity available to handle the boil-off from the more than 40 cryomodules, 35,000 Nm{sup 3} of helium was re-liquefied and shipped to a vendor via a liquid tanker trailer. Nearly 200 u-tubes had to be removed and stored while seals were replaced on related equipment such as vacuum pump outs, bayonet isolation and process valves.

  10. Cryogenic techniques for large superconducting magnets in space

    NASA Technical Reports Server (NTRS)

    Green, M. A.

    1989-01-01

    A large superconducting magnet is proposed for use in a particle astrophysics experiment, ASTROMAG, which is to be mounted on the United States Space Station. This experiment will have a two-coil superconducting magnet with coils which are 1.3 to 1.7 meters in diameter. The two-coil magnet will have zero net magnetic dipole moment. The field 15 meters from the magnet will approach earth's field in low earth orbit. The issue of high Tc superconductor will be discussed in the paper. The reasons for using conventional niobium-titanium superconductor cooled with superfluid helium will be presented. Since the purpose of the magnet is to do particle astrophysics, the superconducting coils must be located close to the charged particle detectors. The trade off between the particle physics possible and the cryogenic insulation around the coils is discussed. As a result, the ASTROMAG magnet coils will be operated outside of the superfluid helium storage tank. The fountain effect pumping system which will be used to cool the coil is described in the report. Two methods for extending the operating life of the superfluid helium dewar are discussed. These include: operation with a third shield cooled to 90 K with a sterling cycle cryocooler, and a hybrid cryogenic system where there are three hydrogen-cooled shields and cryostat support heat intercept points.

  11. Design and prototype fabrication of a 30 tesla cryogenic magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Swanson, M. C.; Brown, G. V.

    1977-01-01

    A liquid neon cooled magnet was designed to produce 30 teslas in steady operation. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors, tensile shear tests on the cryogenic adhesives, and simulated flow studies for the coolant. The magnet will consist of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.

  12. LMFBR with booster pump in pumping loop

    DOEpatents

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  13. Geometrical Effects in Plasma Stability and Dynamics of Coherent Structures in the Divertor

    SciTech Connect

    Ryutov, D D; Cohen, R H

    2007-05-16

    Plasma dynamics in the divertor region is strongly affected by a variety of phenomena associated with the magnetic field geometry and the shape of the divertor plates. One of the most universal effects is the squeezing of a normal cross-section of a thin magnetic flux-tube on its way from the divertor plate to the main SOL. It leads to decoupling of the most unstable perturbations in the divertor legs from those in the main SOL. For perturbations on either side of the X-point, this effect can be cast as a boundary condition at some 'control surface' situated near the X-point. We discuss several boundary conditions proposed thus far and assess the influence of the magnetic field geometry on them. Another set of geometrical effects is related to the transformation of a flux-tube that occurs when it is displaced in such a way that its central magnetic field line coincides with some other field line, and the magnetic field is not perturbed. These flute-like displacements are of a particular interest for the low-beta edge plasmas. It turns out that this transformation may also lead to a considerable deformation of a flux-tube cross-section; in addition, the distance between plasma particles occupying the flux-tube may change significantly even if there is no parallel plasma motion. We present expressions describing aforementioned transformations for the general tokamak geometry and simplify them for the divertor region (using the proximity of the X-point). We also discuss the effects associated with the shape of the plasma-limiting surfaces, both those designed to intercept the plasma (like divertor plates and limiters) and those that can be hit in some 'abnormal' events, e.g., in the course of a radial motion of an isolated plasma filament. The orientation of the limiting surface with respect to the magnetic field affects the plasma dynamics via the sheath boundary conditions. One can enhance or suppress plasma instabilities in the divertor legs by tilting the divertor

  14. Winding for linear pump

    DOEpatents

    Kliman, Gerald B.; Brynsvold, Glen V.; Jahns, Thomas M.

    1989-01-01

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  15. Winding for linear pump

    DOEpatents

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  16. Liquid metal pump

    DOEpatents

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  17. CRYOTE (Cryogenic Orbital Testbed) Concept

    NASA Technical Reports Server (NTRS)

    Gravlee, Mari; Kutter, Bernard; Wollen, Mark; Rhys, Noah; Walls, Laurie

    2009-01-01

    Demonstrating cryo-fluid management (CFM) technologies in space is critical for advances in long duration space missions. Current space-based cryogenic propulsion is viable for hours, not the weeks to years needed by space exploration and space science. CRYogenic Orbital TEstbed (CRYOTE) provides an affordable low-risk environment to demonstrate a broad array of critical CFM technologies that cannot be tested in Earth's gravity. These technologies include system chilldown, transfer, handling, health management, mixing, pressure control, active cooling, and long-term storage. United Launch Alliance is partnering with Innovative Engineering Solutions, the National Aeronautics and Space Administration, and others to develop CRYOTE to fly as an auxiliary payload between the primary payload and the Centaur upper stage on an Atlas V rocket. Because satellites are expensive, the space industry is largely risk averse to incorporating unproven systems or conducting experiments using flight hardware that is supporting a primary mission. To minimize launch risk, the CRYOTE system will only activate after the primary payload is separated from the rocket. Flying the testbed as an auxiliary payload utilizes Evolved Expendable Launch Vehicle performance excess to cost-effectively demonstrate enhanced CFM.

  18. The cryogenic storage ring CSR.

    PubMed

    von Hahn, R; Becker, A; Berg, F; Blaum, K; Breitenfeldt, C; Fadil, H; Fellenberger, F; Froese, M; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; Heber, O; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lange, M; Laux, F; Lohmann, S; Menk, S; Meyer, C; Mishra, P M; Novotný, O; O'Connor, A P; Orlov, D A; Rappaport, M L; Repnow, R; Saurabh, S; Schippers, S; Schröter, C D; Schwalm, D; Schweikhard, L; Sieber, T; Shornikov, A; Spruck, K; Sunil Kumar, S; Ullrich, J; Urbain, X; Vogel, S; Wilhelm, P; Wolf, A; Zajfman, D

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams. PMID:27370434

  19. Cryogenics for HL-LHC

    NASA Astrophysics Data System (ADS)

    Tavian, L.; Brodzinski, K.; Claudet, S.; Ferlin, G.; Wagner, U.; van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  20. A new cryogenic diode thermometer

    NASA Astrophysics Data System (ADS)

    Courts, S. S.; Swinehart, P. R.; Yeager, C. J.

    2002-05-01

    While the introduction of yet another cryogenic diode thermometer is not earth shattering, a new diode thermometer, the DT-600 series, recently introduced by Lake Shore Cryotronics, possesses three features that make it unique among commercial diode thermometers. First, these diodes have been probed at the chip level, allowing for the availability of a bare chip thermometer matching a standard curve-an important feature in situations where real estate is at a premium (IR detectors), or where in-situ calibration is difficult. Second, the thermometry industry has assumed that interchangeability should be best at low temperatures. Thus, good interchangeability at room temperatures implies a very good interchangeability at cryogenic temperature, resulting in a premium priced sensor. The DT-600 series diode thermometer is available in an interchangeability band comparable to platinum RTDs with the added advantage of interchangeability to 2 K. Third, and most important, the DT-600 series diode does not exhibit an instability in the I-V characteristic in the 8 K to 20 K temperature range that is observed in other commercial diode thermometer devices [1]. This paper presents performance characteristics for the DT-600 series diode thermometer along with a comparison of I-V curves for this device and other commercial diode thermometers exhibiting an I-V instability.