Sample records for dividing cellular asymmetry

  1. Cellular mechanisms underlying growth asymmetry during stem gravitropism

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1997-01-01

    Plant stems respond to gravitropic stimulation with a rapid, local and reversible change in cell growth rate (elongation), generally on both the upper and lower sides of the stem. The cellular and biochemical mechanisms for this differential growth are reviewed. Considerable evidence implicates an asymmetry in wall pH in the growth response. The strengths and weaknesses of the wall "loosening enzyme" concept are reviewed and the possibility of expansin involvement in the bending response of stems is considered. Also discussed is the possibility that wall stiffening processes, e.g. phenolic coupling driven by oxidative bursts or altered orientation of newly deposited cellulose, might mediate the growth responses during gravitropism.

  2. Asymmetric cellular memory in bacteria exposed to antibiotics.

    PubMed

    Mathis, Roland; Ackermann, Martin

    2017-03-09

    The ability to form a cellular memory and use it for cellular decision-making could help bacteria to cope with recurrent stress conditions. We analyzed whether bacteria would form a cellular memory specifically if past events are predictive of future conditions. We worked with the asymmetrically dividing bacterium Caulobacter crescentus where past events are expected to only be informative for one of the two cells emerging from division, the sessile cell that remains in the same microenvironment and does not migrate. Time-resolved analysis of individual cells revealed that past exposure to low levels of antibiotics increases tolerance to future exposure for the sessile but not for the motile cell. Using computer simulations, we found that such an asymmetry in cellular memory could be an evolutionary response to situations where the two cells emerging from division will experience different future conditions. Our results raise the question whether bacteria can evolve the ability to form and use cellular memory conditionally in situations where it is beneficial.

  3. Quantifying asymmetry: ratios and alternatives.

    PubMed

    Franks, Erin M; Cabo, Luis L

    2014-08-01

    Traditionally, the study of metric skeletal asymmetry has relied largely on univariate analyses, utilizing ratio transformations when the goal is comparing asymmetries in skeletal elements or populations of dissimilar dimensions. Under this approach, raw asymmetries are divided by a size marker, such as a bilateral average, in an attempt to produce size-free asymmetry indices. Henceforth, this will be referred to as "controlling for size" (see Smith: Curr Anthropol 46 (2005) 249-273). Ratios obtained in this manner often require further transformations to interpret the meaning and sources of asymmetry. This model frequently ignores the fundamental assumption of ratios: the relationship between the variables entered in the ratio must be isometric. Violations of this assumption can obscure existing asymmetries and render spurious results. In this study, we examined the performance of the classic indices in detecting and portraying the asymmetry patterns in four human appendicular bones and explored potential methodological alternatives. Examination of the ratio model revealed that it does not fulfill its intended goals in the bones examined, as the numerator and denominator are independent in all cases. The ratios also introduced strong biases in the comparisons between different elements and variables, generating spurious asymmetry patterns. Multivariate analyses strongly suggest that any transformation to control for overall size or variable range must be conducted before, rather than after, calculating the asymmetries. A combination of exploratory multivariate techniques, such as Principal Components Analysis, and confirmatory linear methods, such as regression and analysis of covariance, appear as a promising and powerful alternative to the use of ratios. © 2014 Wiley Periodicals, Inc.

  4. Magnetic-Flux-Compensated Voltage Divider

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.

    2005-01-01

    A magnetic-flux-compensated voltage-divider circuit has been proposed for use in measuring the true potential across a component that is exposed to large, rapidly varying electric currents like those produced by lightning strikes. An example of such a component is a lightning arrester, which is typically exposed to currents of the order of tens of kiloamperes, having rise times of the order of hundreds of nanoseconds. Traditional voltage-divider circuits are not designed for magnetic-flux-compensation: They contain uncompensated loops having areas large enough that the transient magnetic fluxes associated with large transient currents induce spurious voltages large enough to distort voltage-divider outputs significantly. A drawing of the proposed circuit was not available at the time of receipt of information for this article. What is known from a summary textual description is that the proposed circuit would contain a total of four voltage dividers: There would be two mixed dividers in parallel with each other and with the component of interest (e.g., a lightning arrester), plus two mixed dividers in parallel with each other and in series with the component of interest in the same plane. The electrical and geometric configuration would provide compensation for induced voltages, including those attributable to asymmetry in the volumetric density of the lightning or other transient current, canceling out the spurious voltages and measuring the true voltage across the component.

  5. Decision making in noisy bistable systems with time-dependent asymmetry

    NASA Astrophysics Data System (ADS)

    Nené, Nuno R.; Zaikin, Alexey

    2013-01-01

    Our work draws special attention to the importance of the effects of time-dependent parameters on decision making in bistable systems. Here, we extend previous studies of the mechanism known as speed-dependent cellular decision making in genetic circuits by performing an analytical treatment of the canonical supercritical pitchfork bifurcation problem with an additional time-dependent asymmetry and control parameter. This model has an analogous behavior to the genetic switch. In the presence of transient asymmetries and fluctuations, slow passage through the critical region in both systems increases substantially the probability of specific decision outcomes. We also study the relevance for attractor selection of reaching maximum values for the external asymmetry before and after the critical region. Overall, maximum asymmetries should be reached at an instant where the position of the critical point allows for compensation of the detrimental effects of noise in retaining memory of the transient asymmetries.

  6. Morphogenesis of the node and notochord: the cellular basis for the establishment and maintenance of left-right asymmetry in the mouse.

    PubMed

    Lee, Jeffrey D; Anderson, Kathryn V

    2008-12-01

    Establishment of left-right asymmetry in the mouse embryo depends on leftward laminar fluid flow in the node, which initiates a signaling cascade that is confined to the left side of the embryo. Leftward fluid flow depends on two cellular processes: motility of the cilia that generate the flow and morphogenesis of the node, the structure where the cilia reside. Here, we provide an overview of the current understanding and unresolved questions about the regulation of ciliary motility and node structure. Analysis of mouse mutants has shown that the motile cilia must have a specific structure and length, and that they must point posteriorly to generate the necessary leftward fluid flow. However, the precise structure of the motile cilia is not clear and the mechanisms that position cilia on node cells have not been defined. The mouse node is a teardrop-shaped pit at the distal tip of the early embryo, but the morphogenetic events that create the mature node from cells derived from the primitive streak are only beginning to be characterized. Recent live imaging experiments support earlier scanning electron microscopy (SEM) studies and show that node assembly is a multi-step process in which clusters of node precursors appear on the embryo surface as overlying endoderm cells are removed. We present additional SEM and confocal microscopy studies that help define the transition stages during node morphogenesis. After the initiation of left-sided signaling, the notochordal plate, which is contiguous with the node, generates a barrier at the embryonic midline that restricts the cascade of gene expression to the left side of the embryo. The field is now poised to dissect the genetic and cellular mechanisms that create and organize the specialized cells of the node and midline that are essential for left-right asymmetry. (c) 2008 Wiley-Liss, Inc.

  7. Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry.

    PubMed

    Wan, Leo Q; Ronaldson, Kacey; Park, Miri; Taylor, Grace; Zhang, Yue; Gimble, Jeffrey M; Vunjak-Novakovic, Gordana

    2011-07-26

    Left-right (LR) asymmetry (handedness, chirality) is a well-conserved biological property of critical importance to normal development. Changes in orientation of the LR axis due to genetic or environmental factors can lead to malformations and disease. While the LR asymmetry of organs and whole organisms has been extensively studied, little is known about the LR asymmetry at cellular and multicellular levels. Here we show that the cultivation of cell populations on micropatterns with defined boundaries reveals intrinsic cell chirality that can be readily determined by image analysis of cell alignment and directional motion. By patterning 11 different types of cells on ring-shaped micropatterns of various sizes, we found that each cell type exhibited definite LR asymmetry (p value down to 10(-185)) that was different between normal and cancer cells of the same type, and not dependent on surface chemistry, protein coating, or the orientation of the gravitational field. Interestingly, drugs interfering with actin but not microtubule function reversed the LR asymmetry in some cell types. Our results show that micropatterned cell populations exhibit phenotype-specific LR asymmetry that is dependent on the functionality of the actin cytoskeleton. We propose that micropatterning could potentially be used as an effective in vitro tool to study the initiation of LR asymmetry in cell populations, to diagnose disease, and to study factors involved with birth defects in laterality.

  8. Salient features of the ciliated organ of asymmetry

    PubMed Central

    Amack, Jeffrey D.

    2014-01-01

    Many internal organs develop distinct left and right sides that are essential for their functions. In several vertebrate embryos, motile cilia generate an asymmetric fluid flow that plays an important role in establishing left-right (LR) signaling cascades. These ‘LR cilia’ are found in the ventral node and posterior notochordal plate in mammals, the gastrocoel roof plate in amphibians and Kupffer’s vesicle in teleost fish. I consider these transient ciliated structures as the ‘organ of asymmetry’ that directs LR patterning of the developing embryo. Variations in size and morphology of the organ of asymmetry in different vertebrate species have raised questions regarding the fundamental features that are required for LR determination. Here, I review current models for how LR asymmetry is established in vertebrates, discuss the cellular architecture of the ciliated organ of asymmetry and then propose key features of this organ that are critical for orienting the LR body axis. PMID:24481178

  9. A Cul-3-BTB ubiquitylation pathway regulates junctional levels and asymmetry of core planar polarity proteins

    PubMed Central

    Strutt, Helen; Searle, Elizabeth; Thomas-MacArthur, Victoria; Brookfield, Rosalind; Strutt, David

    2013-01-01

    The asymmetric localisation of core planar polarity proteins at apicolateral junctions is required to specify cell polarity in the plane of epithelia. This asymmetric distribution of the core proteins is proposed to require amplification of an initial asymmetry by feedback loops. In addition, generation of asymmetry appears to require the regulation of core protein levels, but the importance of such regulation and the underlying mechanisms is unknown. Here we show that ubiquitylation acts through more than one mechanism to control core protein levels in Drosophila, and that without this regulation cellular asymmetry is compromised. Levels of Dishevelled at junctions are regulated by a Cullin-3-Diablo/Kelch ubiquitin ligase complex, the activity of which is most likely controlled by neddylation. Furthermore, activity of the deubiquitylating enzyme Fat facets is required to maintain Flamingo levels at junctions. Notably, ubiquitylation does not alter the total cellular levels of Dishevelled or Flamingo, but only that of the junctional population. When junctional core protein levels are either increased or decreased by disruption of the ubiquitylation machinery, their asymmetric localisation is reduced and this leads to disruption of planar polarity at the tissue level. Loss of asymmetry by altered core protein levels can be explained by reference to feedback models for amplification of asymmetry. PMID:23487316

  10. Between-subject variability in asymmetry analysis of macular thickness.

    PubMed

    Alluwimi, Muhammed S; Swanson, William H; Malinovsky, Victor E

    2014-05-01

    To investigate the use of asymmetry analysis to reduce between-subject variability of macular thickness measurements using spectral domain optical coherence tomography. Sixty-three volunteers (33 young subjects [aged 21 to 35 years] and 30 older subjects [aged 45 to 85 years]) free of eye disease were recruited. Macular images were gathered with the Spectralis optical coherence tomography. An overlay 24- by 24-degree grid was divided into five zones per hemifield, and asymmetry analysis was computed as the difference between superior and inferior zone thicknesses. We hypothesized that the lowest variation and the highest density of ganglion cells will be found approximately 3 to 6 degrees from the foveola, corresponding to zones 1 and 2. For each zone and age group, between-subject SDs were compared for retinal thickness versus asymmetry analysis using an F test. To account for repeated comparisons, p < 0.0125 was required for statistical significance. Axial length and corneal curvature were measured with an IOLMaster. For OD, asymmetry analysis reduced between-subject variability in zones 1 and 2 in both groups (F > 3.2, p < 0.001). Standard deviation for zone 1 dropped from 12.0 to 3.0 μm in the young group and from 11.7 to 2.6 μm in the older group. Standard deviation for zone 2 dropped from 13.6 to 5.3 μm in the young group and from 11.1 to 5.8 μm in the older group. Combining all subjects, neither retinal thickness nor asymmetry analysis showed a strong correlation with axial length or corneal curvature (R² < 0.01). Analysis for OS yielded the same pattern of results, as did asymmetry analyses between eyes (F > 3.8, p < 0.0001). Asymmetry analysis reduced between-subject variability in zones 1 and 2. Combining the five zones together produced a higher between-subject variation of the retinal thickness asymmetry analysis; thus, we encourage clinicians to be cautious when interpreting the asymmetry analysis printouts.

  11. Lean Mass Asymmetry Influences Force and Power Asymmetry During Jumping in Collegiate Athletes

    PubMed Central

    Bell, David R.; Sanfilippo, Jennifer L.; Binkley, Neil; Heiderscheit, Bryan C.

    2015-01-01

    The purpose of this investigation was to: (1) examine how asymmetry in lower extremity lean mass influenced force and power asymmetry during jumping, (2) determine how power and force asymmetry affected jump height, and (3) report normative values in collegiate athletes. Force and power were assessed from each limb using bilateral force plates during a countermovement jump in 167 Division 1 athletes (mass=85.7±20.3kg, age=20.0±1.2years, 103M/64F). Lean mass of the pelvis, thigh, and shank was assessed via dual-energy X-ray absorptiometry. Percent asymmetry was calculated for lean mass at each region (pelvis, thigh, and shank) as well as force and power. Forward stepwise regressions were performed to determine the influence of lean mass asymmetry on force and power asymmetry. Thigh and shank lean mass asymmetry explained 20% of the variance in force asymmetry (R2=0.20, P<0.001), while lean mass asymmetry of the pelvis, thigh and shank explained 25% of the variance in power asymmetry (R2=0.25, P<0.001). Jump height was compared across level of force and power asymmetry (P>0.05) and greater than 10% asymmetry in power tended to decrease performance (effect size>1.0). Ninety-five percent of this population (2.5th to 97.5th percentile) displayed force asymmetry between −11.8 to 16.8% and a power asymmetry between −9.9 to 11.5%. A small percentage (<4%) of these athletes displayed more than 15% asymmetry between limbs. These results demonstrate that lean mass asymmetry in the lower extremity is at least partially responsible for asymmetries in force and power. However, a large percentage remains unexplained by lean mass asymmetry. PMID:24402449

  12. Lean mass asymmetry influences force and power asymmetry during jumping in collegiate athletes.

    PubMed

    Bell, David R; Sanfilippo, Jennifer L; Binkley, Neil; Heiderscheit, Bryan C

    2014-04-01

    The purpose of this investigation was to (a) examine how asymmetry in lower extremity lean mass influenced force and power asymmetry during jumping, (b) determine how power and force asymmetry affected jump height, and (c) report normative values in collegiate athletes. Force and power were assessed from each limb using bilateral force plates during a countermovement jump in 167 division 1 athletes (mass = 85.7 ± 20.3 kg, age = 20.0 ± 1.2 years; 103 men and 64 women). Lean mass of the pelvis, thigh, and shank was assessed using dual-energy x-ray absorptiometry. Percent asymmetry was calculated for lean mass at each region (pelvis, thigh, and shank) as well as force and power. Forward stepwise regressions were performed to determine the influence of lean mass asymmetry on force and power asymmetry. Thigh and shank lean mass asymmetry explained 20% of the variance in force asymmetry (R = 0.20, p < 0.001), whereas lean mass asymmetry of the pelvis, thigh, and shank explained 25% of the variance in power asymmetry (R = 0.25, p < 0.001). Jump height was compared across level of force and power asymmetry (p > 0.05) and greater than 10% asymmetry in power tended to decrease the performance (effect size >1.0). Ninety-five percent of this population (2.5th to 97.5th percentile) displayed force asymmetry between -11.8 and 16.8% and a power asymmetry between -9.9 and 11.5%. A small percentage (<4%) of these athletes displayed more than 15% asymmetry between limbs. These results demonstrate that lean mass asymmetry in the lower extremity is at least partially responsible for asymmetries in force and power. However, a large percentage remains unexplained by lean mass asymmetry.

  13. Nasopupillary asymmetry.

    PubMed

    Arenas, Eduardo; Muñoz, Diana; Matheus, Evelyn; Morales, Diana

    2014-01-01

    To establish the prevalence of nasopupillary asymmetry (difference in nasopupillary distances) in the population and its relation with the interpupillary distance. A retrospective descriptive study was conducted by reviewing of 1262 medical records. The values of nasopupillary asymmetry and the interpupillary distance were obtained. A statistical analysis was made and the correlation between these variables was established. Seventy-nine percent of the population presented some degree of nasopupillary asymmetry. The interpupillary distance had a very low correlation with the nasopupillary asymmetry (r = 0.074, P = 0.0). It is advisable to use the nasopupillary distance of each eye as a standard measurement.

  14. Hemispheric asymmetry of liking for representational and abstract paintings.

    PubMed

    Nadal, Marcos; Schiavi, Susanna; Cattaneo, Zaira

    2017-10-13

    Although the neural correlates of the appreciation of aesthetic qualities have been the target of much research in the past decade, few experiments have explored the hemispheric asymmetries in underlying processes. In this study, we used a divided visual field paradigm to test for hemispheric asymmetries in men and women's preference for abstract and representational artworks. Both male and female participants liked representational paintings more when presented in the right visual field, whereas preference for abstract paintings was unaffected by presentation hemifield. We hypothesize that this result reflects a facilitation of the sort of visual processes relevant to laypeople's liking for art-specifically, local processing of highly informative object features-when artworks are presented in the right visual field, given the left hemisphere's advantage in processing such features.

  15. Role asymmetry and code transmission in signaling games: an experimental and computational investigation.

    PubMed

    Moreno, Maggie; Baggio, Giosuè

    2015-07-01

    In signaling games, a sender has private access to a state of affairs and uses a signal to inform a receiver about that state. If no common association of signals and states is initially available, sender and receiver must coordinate to develop one. How do players divide coordination labor? We show experimentally that, if players switch roles at each communication round, coordination labor is shared. However, in games with fixed roles, coordination labor is divided: Receivers adjust their mappings more frequently, whereas senders maintain the initial code, which is transmitted to receivers and becomes the common code. In a series of computer simulations, player and role asymmetry as observed experimentally were accounted for by a model in which the receiver in the first signaling round has a higher chance of adjusting its code than its partner. From this basic division of labor among players, certain properties of role asymmetry, in particular correlations with game complexity, are seen to follow. Copyright © 2014 Cognitive Science Society, Inc.

  16. From symmetry to asymmetry: Phylogenetic patterns of asymmetry variation in animals and their evolutionary significance

    PubMed Central

    Palmer, A. Richard

    1996-01-01

    Phylogenetic analyses of asymmetry variation offer a powerful tool for exploring the interplay between ontogeny and evolution because (i) conspicuous asymmetries exist in many higher metazoans with widely varying modes of development, (ii) patterns of bilateral variation within species may identify genetically and environmentally triggered asymmetries, and (iii) asymmetries arising at different times during development may be more sensitive to internal cytoplasmic inhomogeneities compared to external environmental stimuli. Using four broadly comparable asymmetry states (symmetry, antisymmetry, dextral, and sinistral), and two stages at which asymmetry appears developmentally (larval and postlarval), I evaluated relations between ontogenetic and phylogenetic patterns of asymmetry variation. Among 140 inferred phylogenetic transitions between asymmetry states, recorded from 11 classes in five phyla, directional asymmetry (dextral or sinistral) evolved directly from symmetrical ancestors proportionally more frequently among larval asymmetries. In contrast, antisymmetry, either as an end state or as a transitional stage preceding directional asymmetry, was confined primarily to postlarval asymmetries. The ontogenetic origin of asymmetry thus significantly influences its subsequent evolution. Furthermore, because antisymmetry typically signals an environmentally triggered asymmetry, the phylogenetic transition from antisymmetry to directional asymmetry suggests that many cases of laterally fixed asymmetries evolved via genetic assimilation. PMID:8962039

  17. Structural white matter asymmetries in relation to functional asymmetries during speech perception and production.

    PubMed

    Ocklenburg, Sebastian; Hugdahl, Kenneth; Westerhausen, René

    2013-12-01

    Functional hemispheric asymmetries of speech production and perception are a key feature of the human language system, but their neurophysiological basis is still poorly understood. Using a combined fMRI and tract-based spatial statistics approach, we investigated the relation of microstructural asymmetries in language-relevant white matter pathways and functional activation asymmetries during silent verb generation and passive listening to spoken words. Tract-based spatial statistics revealed several leftward asymmetric clusters in the arcuate fasciculus and uncinate fasciculus that were differentially related to activation asymmetries in the two functional tasks. Frontal and temporal activation asymmetries during silent verb generation were positively related to the strength of specific microstructural white matter asymmetries in the arcuate fasciculus. In contrast, microstructural uncinate fasciculus asymmetries were related to temporal activation asymmetries during passive listening. These findings suggest that white matter asymmetries may indeed be one of the factors underlying functional hemispheric asymmetries. Moreover, they also show that specific localized white matter asymmetries might be of greater relevance for functional activation asymmetries than microstructural features of whole pathways. © 2013.

  18. Peripheral neuropathy reduces asymmetries in inter-limb transfer in a visuo-motor task.

    PubMed

    Pan, Zhujun; Van Gemmert, Arend W A

    2016-01-01

    Asymmetry of inter-limb transfer has been associated with the specialization of the dominant and non-dominant motor system. Reductions of asymmetry have been interpreted as behavioural evidence showing a decline of hemispheric lateralization. A previous study showed that ageing did not qualitatively change the inter-limb transfer asymmetry of a visuo-motor task. The current study elaborates on these findings; it examines whether diminished somatosensory information as a result of peripheral neuropathy (PN) adversely affects inter-limb transfer asymmetry. Twenty individuals affected by PN and 20 older controls were recruited and divided equally across two groups. One group trained a visuo-motor task with the right hand while the other group trained it with the left hand. Performance (initial direction error) of the untrained hand before and after training was collected to determine learning effects from inter-limb transfer. Similar to previous studies, the current study showed asymmetric inter-limb transfer in older controls. In contrast, PN showed inter-limb transfer in both directions indicating that PN reduces inter-limb transfer asymmetry. Increased bilateral hemispheric recruitment is suggested to be responsible for this reduced asymmetry which may compensate for deteriorated tactile and/or proprioceptive inputs in PN. Two possible hypotheses are discussed explaining the relationship between declined somatosensory information and increases in bilateral hemispheric recruitment.

  19. Creation and Relaxation of Phospholipid Compositional Asymmetry in Lipid Bilayers Examined by Sum-Frequency Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Anglin, Timothy C.; Brown, Krystal; Conboy, John C.

    2010-08-01

    Eukaryotic cells contain an asymmetric distribution of phospholipids in the two leaflets of the lipid bilayer which is known to contribute to cellular function. In the plasma membrane of eukaryotic cells, the aminophospholipids with phosphatidylserine (PS) and phosphatidylethanolamine (PE) headgroups are predominately located on the cytosolic leaflet while sphingolipids with phosphatidylcholine (PC) headgroups and sphingomeylin are on the extra-cellular leaflet. There have been a number of theories about the mechanism of transbilayer movement of lipids in cellular systems and the physical process by which lipid compositional asymmetry in the plasma membrane of eukaryotic cells is maintained. It is generally accepted that a significant barrier to native lipid translocation (movement between leaflets of the bilayer) exists which is related to the energetic penalty of moving the hydrophilic headgroup of a phospholipid through the hydrophobic core of the membrane. Overcoming this energetic barrier represents the rate limiting step in the spontaneous flip-flop of phospholipids in biological membranes, yet, while numerous kinetic studies of phospholipid flip-flop have been conducted, few researchers have reported thermodynamic parameters for the process. Using methods of classical surface chemistry coupled with nonlinear optical methods, we have developed a novel analytical approach, using sum-frequency vibrational spectroscopy (SFVS), to selectively probe lipid compositional asymmetry in a planar supported lipid bilayer. This new method allows for the detection of lipid flip-flop kinetics and compositional asymmetry without the need for a fluorescent or spin-labeled lipid species by exploiting the coherent nature of SFVS. The SFVS intensity arising from the terminal methyl groups of the lipid fatty acid chains is used as an internal probe to directly monitor the compositional asymmetry in planar supported lipid bilayers (PSLBs(. By selectively deuterating a sub

  20. Three-dimensional assessment of facial asymmetry in preschool patients with orofacial clefts after neonatal cheiloplasty.

    PubMed

    Moslerová, Veronika; Dadáková, Martina; Dupej, Ján; Hoffmannova, Eva; Borský, Jiří; Černý, Miloš; Bejda, Přemysl; Kočandrlová, Karolína; Velemínská, Jana

    2018-05-01

    To evaluate facial asymmetry changes in pre-school patients with orofacial clefts after neonatal cheiloplasty and to compare facial asymmetry with age-matched healthy controls. The sample consisted of patients with unilateral cleft lip (UCL), unilateral cleft lip and palate (UCLP), and bilateral cleft lip and palate (BCLP). The patients were divided in two age groups with a mean age of 3 years (n = 51) and 4.5 years (n = 45), respectively, and 78 age-matched individuals as controls. Three-dimensional (3D) facial scans were analyzed using geometric morphometry and multivariate statistics. Geometric morphometry showed positive deviations from perfect symmetry on the right side of the forehead in the intervention groups and the controls. The UCL groups showed the greatest asymmetric nasolabial area on the cleft-side labia and the contralateral nasal tip. The UCLP group showed, moreover, asymmetry in buccal region due to typical maxillar hypoplasia, which was accentuated in the older group. The BCLP groups showed slightly similar but greater asymmetry than the control groups, except for the philtrum region. Asymmetry of each of the cleft groups significantly differed from the controls. Except for the buccal region in the UCLP and BCLP groups, asymmetry did not significantly increase with age. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Kinetic Sprint Asymmetries on a non-motorised Treadmill in Rugby Union Athletes.

    PubMed

    Brown, Scott R; Cross, Matt R; Girard, Olivier; Brocherie, Franck; Samozino, Pierre; Morin, Jean-Benoît

    2017-11-01

    The purpose of this study was to present a potential link between sprint kinetic (vertical [F V ] and horizontal force [F H ]) asymmetries and athletic performance during acceleration and maximal velocity (v max ) sprinting. Thirty un-injured male rugby athletes performed 8-s sprints on a non-motorised treadmill. Kinetic data were divided into 'strong' and 'weak' legs based on individually averaged peak values observed during sprinting and were analysed to evaluate asymmetry. Large differences were found between the strong and weak legs in F H during acceleration (4.3 vs. 3.5 N·kg -1 ) and v max (3.7 vs. 2.8 N·kg -1 ) sprinting (both ES=1.2), but not in F V (21.8 vs. 20.8 N·kg -1 , ES=- 0.6 for acceleration; 23.9 vs. 22.8 N·kg -1 , ES=- 0.5 for v max , respectively). Group mean asymmetry was lower in F V compared to F H during acceleration (1.6 vs. 6.8%) and v max (1.6 vs. 8.2%). The range of asymmetry was much lower in F V (0.03-4.3%) compared to F H (0.2-28%). In un-injured rugby athletes, the magnitude and range of asymmetry scores in F H , occurring during acceleration and v max phases, where much greater than those found in F V . These findings highlight the potential for some un-injured athletes to possess kinetic asymmetries known as crucial components for acceleration performance in sprinting. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Head, withers and pelvic movement asymmetry and their relative timing in trot in racing Thoroughbreds in training.

    PubMed

    Pfau, T; Noordwijk, K; Sepulveda Caviedes, M F; Persson-Sjodin, E; Barstow, A; Forbes, B; Rhodin, M

    2018-01-01

    Horses show compensatory head movement in hindlimb lameness and compensatory pelvis movement in forelimb lameness but little is known about the relationship of withers movement symmetry with head and pelvic asymmetry in horses with naturally occurring gait asymmetries. To document head, withers and pelvic movement asymmetry and timing differences in horses with naturally occurring gait asymmetries. Retrospective analysis of gait data. Head, withers and pelvic movement asymmetry and timing of displacement minima and maxima were quantified from inertial sensors in 163 Thoroughbreds during trot-ups on hard ground. Horses were divided into 4 subgroups using the direction of head and withers movement asymmetry. Scatter plots of head vs. pelvic movement asymmetry illustrated how the head-withers relationship distinguishes between contralateral and ipsilateral head-pelvic movement asymmetry. Independent t test or Mann-Whitney U test (P<0.05) compared pelvic movement asymmetry and timing differences between groups. The relationship between head and withers asymmetry (i.e. same sided or opposite sided asymmetry) predicts the relationship between head and pelvic asymmetry in 69-77% of horses. Pelvic movement symmetry was significantly different between horses with same sign vs. opposite sign of head-withers asymmetry (P<0.0001). Timing of the maximum head height reached after contralateral ('sound') stance was delayed compared to withers (P = 0.02) and pelvis (P = 0.04) in horses with contralateral head-withers asymmetry. The clinical lameness status of the horses was not investigated. In the Thoroughbreds with natural gait asymmetries investigated here, the direction of head vs. withers movement asymmetry identifies the majority of horses with ipsilateral and contralateral head and pelvic movement asymmetries. Withers movement should be further investigated for differentiating between forelimb and hindlimb lame horses. Horses with opposite sided head and withers

  3. Systematic Mapping and Statistical Analyses of Valley Landform and Vegetation Asymmetries Across Hydroclimatic Gradients

    NASA Astrophysics Data System (ADS)

    Poulos, M. J.; Pierce, J. L.; McNamara, J. P.; Flores, A. N.; Benner, S. G.

    2015-12-01

    Terrain aspect alters the spatial distribution of insolation across topography, driving eco-pedo-hydro-geomorphic feedbacks that can alter landform evolution and result in valley asymmetries for a suite of land surface characteristics (e.g. slope length and steepness, vegetation, soil properties, and drainage development). Asymmetric valleys serve as natural laboratories for studying how landscapes respond to climate perturbation. In the semi-arid montane granodioritic terrain of the Idaho batholith, Northern Rocky Mountains, USA, prior works indicate that reduced insolation on northern (pole-facing) aspects prolongs snow pack persistence, and is associated with thicker, finer-grained soils, that retain more water, prolong the growing season, support coniferous forest rather than sagebrush steppe ecosystems, stabilize slopes at steeper angles, and produce sparser drainage networks. We hypothesize that the primary drivers of valley asymmetry development are changes in the pedon-scale water-balance that coalesce to alter catchment-scale runoff and drainage development, and ultimately cause the divide between north and south-facing land surfaces to migrate northward. We explore this conceptual framework by coupling land surface analyses with statistical modeling to assess relationships and the relative importance of land surface characteristics. Throughout the Idaho batholith, we systematically mapped and tabulated various statistical measures of landforms, land cover, and hydroclimate within discrete valley segments (n=~10,000). We developed a random forest based statistical model to predict valley slope asymmetry based upon numerous measures (n>300) of landscape asymmetries. Preliminary results suggest that drainages are tightly coupled with hillslopes throughout the region, with drainage-network slope being one of the strongest predictors of land-surface-averaged slope asymmetry. When slope-related statistics are excluded, due to possible autocorrelation, valley

  4. Beyond apoptosis: the mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells.

    PubMed

    Rysavy, Noel M; Shimoda, Lori M N; Dixon, Alyssa M; Speck, Mark; Stokes, Alexander J; Turner, Helen; Umemoto, Eric Y

    2014-01-01

    Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation.

  5. Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity

    PubMed Central

    Wang, Danhong; Buckner, Randy L.

    2013-01-01

    Asymmetry of the human cerebellum was investigated using intrinsic functional connectivity. Regions of functional asymmetry within the cerebellum were identified during resting-state functional MRI (n = 500 subjects) and replicated in an independent cohort (n = 500 subjects). The most strongly right lateralized cerebellar regions fell within the posterior lobe, including crus I and crus II, in regions estimated to link to the cerebral association cortex. The most strongly left lateralized cerebellar regions were located in lobules VI and VIII in regions linked to distinct cerebral association networks. Comparison of cerebellar asymmetry with independently estimated cerebral asymmetry revealed that the lateralized regions of the cerebellum belong to the same networks that are strongly lateralized in the cerebrum. The degree of functional asymmetry of the cerebellum across individuals was significantly correlated with cerebral asymmetry and varied with handedness. In addition, cerebellar asymmetry estimated at rest predicted cerebral lateralization during an active language task. These results demonstrate that functional lateralization is likely a unitary feature of large-scale cerebrocerebellar networks, consistent with the hypothesis that the cerebellum possesses a roughly homotopic map of the cerebral cortex including the prominent asymmetries of the association cortex. PMID:23076113

  6. Fluctuating asymmetry and testing isolation of Montana grizzly bear populations

    USGS Publications Warehouse

    Picton, Harold D.; Palmisciano, Daniel A.; Nelson, Gerald

    1990-01-01

    Fluctuating asymmetry of adult skulls was used to test he genetic isolation of the Yellowstone grizzly bear population from its nearest neighbor. An overall summary statistic was used in addition to 16 other parameters. Tests found the males of the Yellowstone populaion to be more vaiable than those of the North Conitinental Divide Exosystem. Evidence for precipitaiton effects is also included. This test tends to support the existing management haypothesis that the Yellowstone population is isolatied.

  7. Plantar pressure asymmetry and risk of stress injuries in the foot of young soccer players.

    PubMed

    Azevedo, Renato R; da Rocha, Emmanuel S; Franco, Pedro S; Carpes, Felipe P

    2017-03-01

    Asymmetries in the magnitude of plantar pressure are considered a risk factor for stress fracture of the fifth metatarsal in soccer athletes. To investigate the presence of plantar pressure asymmetries among young soccer athletes. Observational. Laboratory. Thirty young adolescents divided into a soccer player group (n = 15) or a matched control group (n = 15). Mean plantar pressure was determined for seven different regions of the foot. Data were compared between the preferred and non-preferred foot, and between the groups, during barefoot standing on a pressure mat system. Higher pressure was found in the hallux, 5th metatarsal and medial rearfoot of the non-preferred foot in the young soccer players. These asymmetries were not observed in the control group. Magnitudes of plantar pressure did not differ between the groups. Young soccer players present asymmetries in plantar pressure in the hallux, 5th metatarsal and medial rearfoot, with higher pressure observed in the non-preferred foot. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Beyond apoptosis: The mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells

    PubMed Central

    Rysavy, Noel M.; Shimoda, Lori M. N.; Dixon, Alyssa M.; Speck, Mark; Stokes, Alexander J.; Turner, Helen; Umemoto, Eric Y.

    2014-01-01

    Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation. PMID:25759911

  9. Autotaxin/Lpar3 signaling regulates Kupffer's vesicle formation and left-right asymmetry in zebrafish.

    PubMed

    Lai, Shih-Lei; Yao, Wan-Ling; Tsao, Ku-Chi; Houben, Anna J S; Albers, Harald M H G; Ovaa, Huib; Moolenaar, Wouter H; Lee, Shyh-Jye

    2012-12-01

    Left-right (L-R) patterning is essential for proper organ morphogenesis and function. Calcium fluxes in dorsal forerunner cells (DFCs) are known to regulate the formation of Kupffer's vesicle (KV), a central organ for establishing L-R asymmetry in zebrafish. Here, we identify the lipid mediator lysophosphatidic acid (LPA) as a regulator of L-R asymmetry in zebrafish embryos. LPA is produced by Autotaxin (Atx), a secreted lysophospholipase D, and triggers various cellular responses through activation of specific G protein-coupled receptors (Lpar1-6). Knockdown of Atx or LPA receptor 3 (Lpar3) by morpholino oligonucleotides perturbed asymmetric gene expression in lateral plate mesoderm and disrupted organ L-R asymmetries, whereas overexpression of lpar3 partially rescued those defects in both atx and lpar3 morphants. Similar defects were observed in embryos treated with the Atx inhibitor HA130 and the Lpar1-3 inhibitor Ki16425. Knockdown of either Atx or Lpar3 impaired calcium fluxes in DFCs during mid-epiboly stage and compromised DFC cohesive migration, KV formation and ciliogenesis. Application of LPA to DFCs rescued the calcium signal and laterality defects in atx morphants. This LPA-dependent L-R asymmetry is mediated via Wnt signaling, as shown by the accumulation of β-catenin in nuclei at the dorsal side of both atx and lpar3 morphants. Our results suggest a major role for the Atx/Lpar3 signaling axis in regulating KV formation, ciliogenesis and L-R asymmetry via a Wnt-dependent pathway.

  10. The Digital Divide: A Global View

    NASA Astrophysics Data System (ADS)

    Ntoko, Alexander

    2011-04-01

    Huge progress was made in bridging the digital divide in first decade of 21^st century. This was largely due to the explosive growth of mobile, which saw numbers rise from under 500 million to over five billion mobile cellular subscriptions in just ten years. With household mobile penetration rates of over 50% even in rural areas of developing countries, we have achieved the dream of bringing all the world's people within reach of communications technology. We must now, however, replicate the mobile miracle for the Internet, and especially broadband, if we are to avoid creating a new broadband breach to replace the digital divide. Three things need to happen for this to be achieved: firstly, broadband needs to be brought to the top of the development agenda; secondly, broadband needs to become much more affordable and thirdly, security needs to be part of the strategy.

  11. Animal left-right asymmetry.

    PubMed

    Blum, Martin; Ott, Tim

    2018-04-02

    Symmetry is appealing, be it in architecture, art or facial expression, where symmetry is a key feature to finding someone attractive or not. Yet, asymmetries are widespread in nature, not as an erroneous deviation from the norm but as a way to adapt to the prevailing environmental conditions at a time. Asymmetries in many cases are actively selected for: they might well have increased the evolutionary fitness of a species. Even many single-celled organisms are built asymmetrically, such as the pear-shaped ciliate Paramecium, which may depend on its asymmetry to navigate towards the oxygen-richer surface of turbid waters, at least based on modeling. Everybody knows the lobster with its asymmetric pair of claws, the large crusher usually on the left and the smaller cutter on the right. Snail shells coil asymmetrically, as do the organs they house. Organ asymmetries are found throughout the animal kingdom, referring to asymmetric positioning, asymmetric morphology or both, with the vertebrate heart being an example for the latter. Functional asymmetries, such as that of the human brain with its localization of the language center in one hemisphere, add to the complexity of organ asymmetries and presumably played a decisive role for sociocultural evolution. The evolutionary origin of organ asymmetries may have been a longer than body length gut, which allows efficient retrieval of nutrients, and the need to stow a long gut in the body cavity in an orderly manner that ensures optimal functioning. Vertebrate organ asymmetries (situs solitus) are quite sophisticated: in humans, the apex of the asymmetrically built heart points to the left; the lung in turn, due to space restrictions, has fewer lobes on the left than on the right side (two versus three in humans), stomach and spleen are found on the left, the liver on the right, and small and large intestine coil in a chiral manner (Figure 1A). In very rare cases (1:10,000), the organ situs is inverted (situs inversus

  12. Asymmetry in the epithalamus of vertebrates

    PubMed Central

    L. CONCHA, MIGUEL; W. WILSON, STEPHEN

    2001-01-01

    The epithalamus is a major subdivision of the diencephalon constituted by the habenular nuclei and pineal complex. Structural asymmetries in this region are widespread amongst vertebrates and involve differences in size, neuronal organisation, neurochemistry and connectivity. In species that possess a photoreceptive parapineal organ, this structure projects asymmetrically to the left habenula, and in teleosts it is also situated on the left side of the brain. Asymmetries in size between the left and right sides of the habenula are often associated with asymmetries in neuronal organisation, although these two types of asymmetry follow different evolutionary courses. While the former is more conspicuous in fishes (with the exception of teleosts), asymmetries in neuronal organisation are more robust in amphibia and reptiles. Connectivity of the parapineal organ with the left habenula is not always coupled with asymmetries in habenular size and/or neuronal organisation suggesting that, at least in some species, assignment of parapineal and habenular asymmetries may be independent events. The evolutionary origins of epithalamic structures are uncertain but asymmetry in this region is likely to have existed at the origin of the vertebrate, perhaps even the chordate, lineage. In at least some extant vertebrate species, epithalamic asymmetries are established early in development, suggesting a genetic regulation of asymmetry. In some cases, epigenetic factors such as hormones also influence the development of sexually dimorphic habenular asymmetries. Although the genetic and developmental mechanisms by which neuroanatomical asymmetries are established remain obscure, some clues regarding the mechanisms underlying laterality decisions have recently come from studies in zebrafish. The Nodal signalling pathway regulates laterality by biasing an otherwise stochastic laterality decision to the left side of the epithalamus. This genetic mechanism ensures a consistency of

  13. Asymmetry and coherence weight of quantum states

    NASA Astrophysics Data System (ADS)

    Bu, Kaifeng; Anand, Namit; Singh, Uttam

    2018-03-01

    The asymmetry of quantum states is an important resource in quantum information processing tasks such as quantum metrology and quantum communication. In this paper, we introduce the notion of asymmetry weight—an operationally motivated asymmetry quantifier in the resource theory of asymmetry. We study the convexity and monotonicity properties of asymmetry weight and focus on its interplay with the corresponding semidefinite programming (SDP) forms along with its connection to other asymmetry measures. Since the SDP form of asymmetry weight is closely related to asymmetry witnesses, we find that the asymmetry weight can be regarded as a (state-dependent) asymmetry witness. Moreover, some specific entanglement witnesses can be viewed as a special case of an asymmetry witness—which indicates a potential connection between asymmetry and entanglement. We also provide an operationally meaningful coherence measure, which we term coherence weight, and investigate its relationship to other coherence measures like the robustness of coherence and the l1 norm of coherence. In particular, we show that for Werner states in any dimension d all three coherence quantifiers, namely, the coherence weight, the robustness of coherence, and the l1 norm of coherence, are equal and are given by a single letter formula.

  14. Periplasmic Acid Stress Increases Cell Division Asymmetry (Polar Aging) of Escherichia coli

    PubMed Central

    Clark, Michelle W.; Yie, Anna M.; Eder, Elizabeth K.; Dennis, Richard G.; Basting, Preston J.; Martinez, Keith A.; Jones, Brian D.; Slonczewski, Joan L.

    2015-01-01

    Under certain kinds of cytoplasmic stress, Escherichia coli selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH), no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5) the cells maintained cytoplasmic pH values at 7.2–7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress. PMID:26713733

  15. Trans-Membrane Area Asymmetry Controls the Shape of Cellular Organelles

    PubMed Central

    Beznoussenko, Galina V.; Pilyugin, Sergei S.; Geerts, Willie J. C.; Kozlov, Michael M.; Burger, Koert N. J.; Luini, Alberto; Derganc, Jure; Mironov, Alexander A.

    2015-01-01

    Membrane organelles often have complicated shapes and differ in their volume, surface area and membrane curvature. The ratio between the surface area of the cytosolic and luminal leaflets (trans-membrane area asymmetry (TAA)) determines the membrane curvature within different sites of the organelle. Thus, the shape of the organelle could be critically dependent on TAA. Here, using mathematical modeling and stereological measurements of TAA during fast transformation of organelle shapes, we present evidence that suggests that when organelle volume and surface area are constant, TAA can regulate transformation of the shape of the Golgi apparatus, endosomal multivesicular bodies, and microvilli of brush borders of kidney epithelial cells. Extraction of membrane curvature by small spheres, such as COPI-dependent vesicles within the Golgi (extraction of positive curvature), or by intraluminal vesicles within endosomes (extraction of negative curvature) controls the shape of these organelles. For instance, Golgi tubulation is critically dependent on the fusion of COPI vesicles with Golgi cisternae, and vice versa, for the extraction of membrane curvature into 50–60 nm vesicles, to induce transformation of Golgi tubules into cisternae. Also, formation of intraluminal ultra-small vesicles after fusion of endosomes allows equilibration of their TAA, volume and surface area. Finally, when microvilli of the brush border are broken into vesicles and microvilli fragments, TAA of these membranes remains the same as TAA of the microvilli. Thus, TAA has a significant role in transformation of organelle shape when other factors remain constant. PMID:25761238

  16. Intrachromosomal karyotype asymmetry in Orchidaceae.

    PubMed

    Medeiros-Neto, Enoque; Nollet, Felipe; Moraes, Ana Paula; Felix, Leonardo P

    2017-01-01

    The asymmetry indexes have helped cytotaxonomists to interpret and classify plant karyotypes for species delimitation efforts. However, there is no consensus about the best method to calculate the intrachromosomal asymmetry. The present study aimed to compare different intrachromosomal asymmetry indexes in order to indicate which are more efficient for the estimation of asymmetry in different groups of orchids. Besides, we aimed to compare our results with the Orchidaceae phylogenetic proposal to test the hypothesis of Stebbins (1971). Through a literature review, karyotypes were selected and analyzed comparatively with ideal karyotypes in a cluster analysis. All karyotypes showed some level of interchromosomal asymmetry, ranging from slightly asymmetric to moderately asymmetric. The five tested intrachromosomal asymmetry indexes indicated Sarcoglottis grandiflora as the species with the most symmetrical karyotype and Christensonella pachyphylla with the most asymmetrical karyotype. In the cluster analysis, the largest number of species were grouped with the intermediary ideal karyotypes B or C. Considering our results, we recommend the combined use of at least two indexes, especially Ask% or A1 with Syi, for cytotaxonomic analysis in groups of orchids. In an evolutionary perspective, our results support Stebbins' hypothesis that asymmetric karyotypes derive from a symmetric karyotypes.

  17. [Diagnosis of facial and craniofacial asymmetry].

    PubMed

    Arnaud, E; Marchac, D; Renier, D

    2001-10-01

    Craniofacial asymmetry is caused by various aetiologies but clinical examination remains the most important criteria since minor asymmetry is always present. The diagnosis can be confirmed by anthropometric measurements and radiological examinations but only severe asymmetries or asymmetries with an associated functional impairment should be treated. The treatment depends on the cause, and on the time of appearance. Congenital asymmetries might be treated early, during the first year of life if a craniosynostosis is present. Hemifacial microsomia are treated later if there is no breathing impairment. Since the pediatricians have recommended the dorsal position for infant sleeping, an increasing number of posterior flattening of the skull has been appearing, and could be prevented by adequate nursing. Other causes of craniofacial asymmetries are rare and should be adapted to the cause (tumors, atrophies, neurological paralysis, hypertrophies) by a specialized multidisciplinar team.

  18. Assessing and conceptualizing frontal EEG asymmetry: An updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry.

    PubMed

    Smith, Ezra E; Reznik, Samantha J; Stewart, Jennifer L; Allen, John J B

    2017-01-01

    Frontal electroencephalographic (EEG) alpha asymmetry is widely researched in studies of emotion, motivation, and psychopathology, yet it is a metric that has been quantified and analyzed using diverse procedures, and diversity in procedures muddles cross-study interpretation. The aim of this article is to provide an updated tutorial for EEG alpha asymmetry recording, processing, analysis, and interpretation, with an eye towards improving consistency of results across studies. First, a brief background in alpha asymmetry findings is provided. Then, some guidelines for recording, processing, and analyzing alpha asymmetry are presented with an emphasis on the creation of asymmetry scores, referencing choices, and artifact removal. Processing steps are explained in detail, and references to MATLAB-based toolboxes that are helpful for creating and investigating alpha asymmetry are noted. Then, conceptual challenges and interpretative issues are reviewed, including a discussion of alpha asymmetry as a mediator/moderator of emotion and psychopathology. Finally, the effects of two automated component-based artifact correction algorithms-MARA and ADJUST-on frontal alpha asymmetry are evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Dichotic listening in patients with situs inversus: brain asymmetry and situs asymmetry.

    PubMed

    Tanaka, S; Kanzaki, R; Yoshibayashi, M; Kamiya, T; Sugishita, M

    1999-06-01

    In order to investigate the relation between situs asymmetry and functional asymmetry of the human brain, a consonant-vowel syllable dichotic listening test known as the Standard Dichotic Listening Test (SDLT) was administered to nine subjects with situs inversus (SI) that ranged in age from 6 to 46 years old (mean of 21.8 years old, S.D. = 15.6); the four males and five females all exhibited strong right-handedness. The SDLT was also used to study twenty four age-matched normal subjects that were from 6 to 48 years old (mean 21.7 years old, S.D. = 15.3); the twelve males and twelve females were all strongly right-handed and served as a control group. Eight out of the nine subjects (88.9%) with SI more often reproduced the sounds from the right ear than sounds from the left ear; this is called right ear advantage (REA). The ratio of REA in the control group was almost the same, i.e., nineteen out of the twenty-four subjects (79.1%) showed REA. Results of the present study suggest that the left-right reversal in situs inversus does not involve functional asymmetry of the brain. As such, the system that produces functional asymmetry in the human brain must independently recognize laterality from situs asymmetry.

  20. Black–white asymmetry in visual perception

    PubMed Central

    Lu, Zhong-Lin; Sperling, George

    2012-01-01

    With eleven different types of stimuli that exercise a wide gamut of spatial and temporal visual processes, negative perturbations from mean luminance are found to be typically 25% more effective visually than positive perturbations of the same magnitude (range 8–67%). In Experiment 12, the magnitude of the black–white asymmetry is shown to be a saturating function of stimulus contrast. Experiment 13 shows black–white asymmetry primarily involves a nonlinearity in the visual representation of decrements. Black–white asymmetry in early visual processing produces even-harmonic distortion frequencies in all ordinary stimuli and in illusions such as the perceived asymmetry of optically perfect sine wave gratings. In stimuli intended to stimulate exclusively second-order processing in which motion or shape are defined not by luminance differences but by differences in texture contrast, the black–white asymmetry typically generates artifactual luminance (first-order) motion and shape components. Because black–white asymmetry pervades psychophysical and neurophysiological procedures that utilize spatial or temporal variations of luminance, it frequently needs to be considered in the design and evaluation of experiments that involve visual stimuli. Simple procedures to compensate for black–white asymmetry are proposed. PMID:22984221

  1. Intrachromosomal karyotype asymmetry in Orchidaceae

    PubMed Central

    Medeiros-Neto, Enoque; Nollet, Felipe; Moraes, Ana Paula; Felix, Leonardo P.

    2017-01-01

    Abstract The asymmetry indexes have helped cytotaxonomists to interpret and classify plant karyotypes for species delimitation efforts. However, there is no consensus about the best method to calculate the intrachromosomal asymmetry. The present study aimed to compare different intrachromosomal asymmetry indexes in order to indicate which are more efficient for the estimation of asymmetry in different groups of orchids. Besides, we aimed to compare our results with the Orchidaceae phylogenetic proposal to test the hypothesis of Stebbins (1971). Through a literature review, karyotypes were selected and analyzed comparatively with ideal karyotypes in a cluster analysis. All karyotypes showed some level of interchromosomal asymmetry, ranging from slightly asymmetric to moderately asymmetric. The five tested intrachromosomal asymmetry indexes indicated Sarcoglottis grandiflora as the species with the most symmetrical karyotype and Christensonella pachyphylla with the most asymmetrical karyotype. In the cluster analysis, the largest number of species were grouped with the intermediary ideal karyotypes B or C. Considering our results, we recommend the combined use of at least two indexes, especially Ask% or A1 with Syi, for cytotaxonomic analysis in groups of orchids. In an evolutionary perspective, our results support Stebbins’ hypothesis that asymmetric karyotypes derive from a symmetric karyotypes. PMID:28644507

  2. Exploring a new bilateral focal density asymmetry based image marker to predict breast cancer risk

    NASA Astrophysics Data System (ADS)

    Aghaei, Faranak; Mirniaharikandehei, Seyedehnafiseh; Hollingsworth, Alan B.; Wang, Yunzhi; Qiu, Yuchen; Liu, Hong; Zheng, Bin

    2017-03-01

    Although breast density has been widely considered an important breast cancer risk factor, it is not very effective to predict risk of developing breast cancer in a short-term or harboring cancer in mammograms. Based on our recent studies to build short-term breast cancer risk stratification models based on bilateral mammographic density asymmetry, we in this study explored a new quantitative image marker based on bilateral focal density asymmetry to predict the risk of harboring cancers in mammograms. For this purpose, we assembled a testing dataset involving 100 positive and 100 negative cases. In each of positive case, no any solid masses are visible on mammograms. We developed a computer-aided detection (CAD) scheme to automatically detect focal dense regions depicting on two bilateral mammograms of left and right breasts. CAD selects one focal dense region with the maximum size on each image and computes its asymmetrical ratio. We used this focal density asymmetry as a new imaging marker to divide testing cases into two groups of higher and lower focal density asymmetry. The first group included 70 cases in which 62.9% are positive, while the second group included 130 cases in which 43.1% are positive. The odds ratio is 2.24. As a result, this preliminary study supported the feasibility of applying a new focal density asymmetry based imaging marker to predict the risk of having mammography-occult cancers. The goal is to assist radiologists more effectively and accurately detect early subtle cancers using mammography and/or other adjunctive imaging modalities in the future.

  3. Bilateral asymmetry prediction.

    PubMed

    Kostoff, Ronald Neil

    2003-08-01

    This study predicts asymmetries in lateral organ cancer incidence from text mining of the Medline database. Lung, kidney, teste, and ovary cancers were examined. For each cancer, Medline case report articles focused solely on (1) cancer of the right organ and (2) cancer of the left organ were retrieved. The ratio of right organ to left organ articles was compared to actual patient incidence data obtained from the National Cancer Institute's (NCI) SEER database for the period 1979-1998. The agreement between the Medline record ratios and the NCI's patient incidence data ratios ranged from within 3% for lung cancer to within 1% for teste and ovary cancer. This is the first known study to generate cancer lateral incidence asymmetries from the Medline database. The technique should be applicable to other diseases and other types of system asymmetries.

  4. The effect of cognitive load on hemispheric asymmetries in true and false memory.

    PubMed

    Tat, Michael J; Azuma, Tamiko

    2016-01-01

    Studies examining hemispheric asymmetries in false memory have shown that the right hemisphere (RH) is more susceptible to false memories compared to the left hemisphere (LH). Theories suggest that hemispheric asymmetries in true and false memory may be due to differences in representational coding and the use of top-down mechanisms in each hemisphere. In the current study, the Deese-Roediger-McDermott false memory paradigm was used in conjunction with divided visual field presentation to examine the role of top-down mechanisms in hemispheric asymmetries of true and false memory. In Experiment 1, participants studied lists of related words while completing secondary cognitive load tasks. In Experiment 2, the secondary tasks were administered during memory retrieval instead of memory encoding. Results revealed that cognitive loads imposed during the study phase influenced veridical memory in the LH more than the RH, but cognitive loads imposed during retrieval did not influence veridical memory in either hemisphere. Surprisingly, false memory rates were not influenced by cognitive loads and were higher in the LH. These data provide evidence that, at least for veridical memory, top-down control mechanisms are used more readily for the encoding of information into memory in the LH compared to the RH.

  5. Fluctuating Asymmetry and Intelligence

    ERIC Educational Resources Information Center

    Bates, Timothy C.

    2007-01-01

    The general factor of mental ability ("g") may reflect general biological fitness. If so, "g"-loaded measures such as Raven's progressive matrices should be related to morphological measures of fitness such as fluctuating asymmetry (FA: left-right asymmetry of a set of typically left-right symmetrical body traits such as finger…

  6. Asymmetry-defective oligodendrocyte progenitors are glioma precursors

    PubMed Central

    Sugiarto, Sista; Persson, Anders I.; Munoz, Elena Gonzalez; Waldhuber, Markus; Lamagna, Chrystelle; Andor, Noemi; Hanecker, Patrizia; Ayers-Ringler, Jennifer; Phillips, Joanna; Siu, Jason; Lim, Daniel; Vandenberg, Scott; Stallcup, William; Berger, Mitchel S.; Bergers, Gabriele; Weiss, William A.; Petritsch, Claudia

    2012-01-01

    Summary Postnatal oligodendrocyte progenitor cells (OPC) self-renew, generate mature oligodendrocytes, and are a cellular origin of oligodendrogliomas. We show that the proteoglycan NG2 segregates asymmetrically during mitosis to generate OPC cells of distinct fate. NG2 is required for asymmetric segregation of EGFR to the NG2+ progeny, which consequently activates EGFR and undergoes EGF-dependent proliferation and self-renewal. In contrast, the NG2− progeny differentiates. In a mouse model, decreased NG2 asymmetry coincides with premalignant, abnormal self-renewal rather than differentiation and with tumor-initiating potential. Asymmetric division of human NG2+ cells is prevalent in non-neoplastic tissue but is decreased in oligodendrogliomas. Regulators of asymmetric cell division are misexpressed in low-grade oligodendrogliomas. Our results identify loss of asymmetric division associated with the neoplastic transformation of OPC. PMID:21907924

  7. Asymmetries of solar oscillation line profiles

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Jefferies, S. M.; Harvey, J. W.; Osaki, Y.; Pomerantz, M. A.

    1993-01-01

    Asymmetries of the power spectral line profiles of solar global p-modes are detected in full-disk intensity observations of the Ca II K Fraunhofer line. The asymmetry is a strong function of temporal frequency being strongest at the lowest frequencies observed and vanishing near the peak of the power distribution. The variation with spherical harmonic degree is small. The asymmetry is interpreted in terms of a model in which the solar oscillation cavity is compared to a Fabry-Perot interferometer with the source slightly outside the cavity. A phase difference between an outward direct wave and a corresponding inward wave that passes through the cavity gives rise to the asymmetry. The asymmetry is different in velocity and intensity observations. Neglecting the asymmetry when modeling the power spectrum can lead to systematic errors in the measurement of mode frequencies of as much as 10 exp -4 of the mode frequency. The present observations and interpretation locate the source of the oscillations to be approximately 60 km beneath the photosphere, the shallowest position suggested to date.

  8. ``Green's function'' approach & low-mode asymmetries

    NASA Astrophysics Data System (ADS)

    Masse, Laurent; Clark, Dan; Salmonson, Jay; MacLaren, Steve; Ma, Tammy; Khan, Shahab; Pino, Jesse; Ralph, Jo; Czajka, C.; Tipton, Robert; Landen, Otto; Kyrala, Georges; 2 Team; 1 Team

    2017-10-01

    Long wavelength, low mode asymmetries are believed to play a leading role in limiting the performance of current ICF implosions on NIF. These long wavelength modes are initiated and driven by asymmetries in the x-ray flux from the hohlraum; however, the underlying hydrodynamics of the implosion also act to amplify these asymmetries. The work presented here aim to deepen our understanding of the interplay of the drive asymmetries and the underlying implosion hydrodynamics in determining the final imploded configuration. This is accomplished through a synthesis of numerical modeling, analytic theory, and experimental data. In detail, we use a Green's function approach to connect the drive asymmetry seen by the capsule to the measured inflight and hot spot symmetries. The approach has been validated against a suite of numerical simulations. Ultimately, we hope this work will identify additional measurements to further constrain the asymmetries and increase hohlraum illumination design flexibility on the NIF. The technique and derivation of associated error bars will be presented. LLC, (LLNS) Contract No. DE-AC52-07NA27344.

  9. ERP evidence for hemispheric asymmetries in abstract but not exemplar-specific repetition priming.

    PubMed

    Küper, Kristina; Liesefeld, Anna M; Zimmer, Hubert D

    2015-12-01

    Implicit memory retrieval is thought to be exemplar-specific in the right hemisphere (RH) but abstract in the left hemisphere (LH). Yet, conflicting behavioral priming results illustrate that the level at which asymmetries take effect is difficult to pinpoint. In the present divided visual field experiment, we tried to address this issue by analyzing ERPs in addition to behavioral measures. Participants made a natural/artificial decision on lateralized visual objects that were either new, identical repetitions, or different exemplars of studied items. Hemispheric asymmetries did not emerge in either behavioral or late positive complex (LPC) priming effects, but did affect the process of implicit memory retrieval proper as indexed by an early frontal negativity (N350/(F)N400). Whereas exemplar-specific N350/(F)N400 priming effects emerged irrespective of presentation side, abstract implicit memory retrieval of different exemplars was contingent on right visual field presentation and the ensuing initial stimulus processing by the LH. © 2015 Society for Psychophysiological Research.

  10. Bilateral Asymmetry in the Human Pelvis.

    PubMed

    Kurki, Helen K

    2017-04-01

    Asymmetry of the human axial skeleton has received much less attention that of the limb skeleton. Pelvic morphology is subject to multiple selective factors, including bipedal locomotion and obstetrics, among others, as well as environmental factors such as biomechanical loading. How these various factors influence or restrict asymmetry of the pelvis is unknown and few studies have investigated levels and patterns of pelvic asymmetry. This study examines percentage directional (%DA) and absolute (%AA) asymmetry in 14 bilaterally paired dimensions of the pelvic canal, non-canal pelvis, and femur in female (n = 111) and male (n = 126) skeletons from nine geographically dispersed skeletal samples. Directional asymmetries were uniformly low for all measures and lacked any consistent patterning across the variables, while %AA was highest in the pelvic canal, particularly the posterior aspects. Few sex differences and no population differences were found for %DA and %AA; however the latter was correlated with coefficients of variation across the 14 variables in both sexes. While sample mean %DA were low, standard deviations of the canal variables were high and the majority of individuals in both sexes displayed %DA values >±0.5, suggesting asymmetry is common, if not directionally consistent. Biomechanical loading of the pelvic girdle may influence asymmetry of both the canal and non-canal aspects of the pelvis; however it is unlikely that these asymmetries negatively affect obstetric function, given the prevalence for %DA found in this study. Anat Rec, 300:653-665, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. The evolution and genetics of cerebral asymmetry

    PubMed Central

    Corballis, Michael C.

    2008-01-01

    Handedness and cerebral asymmetry are commonly assumed to be uniquely human, and even defining characteristics of our species. This is increasingly refuted by the evidence of behavioural asymmetries in non-human species. Although complex manual skill and language are indeed unique to our species and are represented asymmetrically in the brain, some non-human asymmetries appear to be precursors, and others are shared between humans and non-humans. In all behavioural and cerebral asymmetries so far investigated, a minority of individuals reverse or negate the dominant asymmetry, suggesting that such asymmetries are best understood in the context of the overriding bilateral symmetry of the brain and body, and a trade-off between the relative advantages and disadvantages of symmetry and asymmetry. Genetic models of handedness, for example, typically postulate a gene with two alleles, one disposing towards right-handedness and the other imposing no directional influence. There is as yet no convincing evidence as to the location of this putative gene, suggesting that several genes may be involved, or that the gene may be monomorphic with variations due to environmental or epigenetic influences. Nevertheless, it is suggested that, in behavioural, neurological and evolutionary terms, it may be more profitable to examine the degree rather than the direction of asymmetry. PMID:19064358

  12. Compact divided-pupil line-scanning confocal microscope for investigation of human tissues

    NASA Astrophysics Data System (ADS)

    Glazowski, Christopher; Peterson, Gary; Rajadhyaksha, Milind

    2013-03-01

    Divided-pupil line-scanning confocal microscopy (DPLSCM) can provide a simple and low-cost approach for imaging of human tissues with pathology-like nuclear and cellular detail. Using results from a multidimensional numerical model of DPLSCM, we found optimal pupil configurations for improved axial sectioning, as well as control of speckle noise in the case of reflectance imaging. The modeling results guided the design and construction of a simple (10 component) microscope, packaged within the footprint of an iPhone, and capable of cellular resolution. We present the optical design with experimental video-images of in-vivo human tissues.

  13. Compensation procedures for facial asymmetries.

    PubMed

    Kozol, F

    1995-01-01

    Why would a patient complain of "fuzzy and uncomfortable" vision with a variety of glasses? Perhaps because the practitioner has failed to take facial asymmetry into account. Methods of measuring facial asymmetry and optically correcting for it are discussed.

  14. Analytical formulation of lunar cratering asymmetries

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Zhou, Ji-Lin

    2016-10-01

    Context. The cratering asymmetry of a bombarded satellite is related to both its orbit and impactors. The inner solar system impactor populations, that is, the main-belt asteroids (MBAs) and the near-Earth objects (NEOs), have dominated during the late heavy bombardment (LHB) and ever since, respectively. Aims: We formulate the lunar cratering distribution and verify the cratering asymmetries generated by the MBAs as well as the NEOs. Methods: Based on a planar model that excludes the terrestrial and lunar gravitations on the impactors and assuming the impactor encounter speed with Earth venc is higher than the lunar orbital speed vM, we rigorously integrated the lunar cratering distribution, and derived its approximation to the first order of vM/venc. Numerical simulations of lunar bombardment by the MBAs during the LHB were performed with an Earth-Moon distance aM = 20-60 Earth radii in five cases. Results: The analytical model directly proves the existence of a leading/trailing asymmetry and the absence of near/far asymmetry. The approximate form of the leading/trailing asymmetry is (1 + A1cosβ), which decreases as the apex distance β increases. The numerical simulations show evidence of a pole/equator asymmetry as well as the leading/trailing asymmetry, and the former is empirically described as (1 + A2cos2ϕ), which decreases as the latitude modulus | ϕ | increases. The amplitudes A1,2 are reliable measurements of asymmetries. Our analysis explicitly indicates the quantitative relations between cratering distribution and bombardment conditions (impactor properties and the lunar orbital status) like A1 ∝ vM/venc, resulting in a method for reproducing the bombardment conditions through measuring the asymmetry. Mutual confirmation between analytical model and numerical simulations is found in terms of the cratering distribution and its variation with aM. Estimates of A1 for crater density distributions generated by the MBAs and the NEOs are 0.101-0.159 and 0

  15. Possible mechanisms for initiating macroscopic left-right asymmetry in developing organisms

    NASA Astrophysics Data System (ADS)

    Henley, Christopher L.

    2009-05-01

    How might systematic left-right (L/R) asymmetry of the body plan originate in multicellular animals (and plants)? Somehow, the microscopic handedness of biological molecules must be brought up to macroscopic scales. Basic symmetry principles suggest that the usual "biological" mechanisms—diffusion and gene regulation—are insufficient to implement the "right-hand rule" defining a third body axis from the other two. Instead, on the cellular level, "physical" mechanisms (forces and collective dynamic states) are needed involving the long stiff fibers of the cytoskeleton. I discuss some possible scenarios; only in the case of vertebrate internal organs is the answer currently known (and even that is in dispute).

  16. Toroidal current asymmetry in tokamak disruptions

    NASA Astrophysics Data System (ADS)

    Strauss, H. R.

    2014-10-01

    It was discovered on JET that disruptions were accompanied by toroidal asymmetry of the toroidal plasma current I ϕ. It was found that the toroidal current asymmetry was proportional to the vertical current moment asymmetry with positive sign for an upward vertical displacement event (VDE) and negative sign for a downward VDE. It was observed that greater displacement leads to greater measured I ϕ asymmetry. Here, it is shown that this is essentially a kinematic effect produced by a VDE interacting with three dimensional MHD perturbations. The relation of toroidal current asymmetry and vertical current moment is calculated analytically and is verified by numerical simulations. It is shown analytically that the toroidal variation of the toroidal plasma current is accompanied by an equal and opposite variation of the toroidal current flowing in a thin wall surrounding the plasma. These currents are connected by 3D halo current, which is π/2 radians out of phase with the n = 1 toroidal current variations.

  17. Stochastic left-right neuronal asymmetry in Caenorhabditis elegans.

    PubMed

    Alqadah, Amel; Hsieh, Yi-Wen; Xiong, Rui; Chuang, Chiou-Fen

    2016-12-19

    Left-right asymmetry in the nervous system is observed across species. Defects in left-right cerebral asymmetry are linked to several neurological diseases, but the molecular mechanisms underlying brain asymmetry in vertebrates are still not very well understood. The Caenorhabditis elegans left and right amphid wing 'C' (AWC) olfactory neurons communicate through intercellular calcium signalling in a transient embryonic gap junction neural network to specify two asymmetric subtypes, AWC OFF (default) and AWC ON (induced), in a stochastic manner. Here, we highlight the molecular mechanisms that establish and maintain stochastic AWC asymmetry. As the components of the AWC asymmetry pathway are highly conserved, insights from the model organism C. elegans may provide a window onto how brain asymmetry develops in humans.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).

  18. Why do bacteria divide?

    PubMed Central

    Norris, Vic

    2015-01-01

    The problem of not only how but also why cells divide can be tackled using recent ideas. One idea from the origins of life – Life as independent of its constituents – is that a living entity like a cell is a particular pattern of connectivity between its constituents. This means that if the growing cell were just to get bigger the average connectivity between its constituents per unit mass – its cellular connectivity – would decrease and the cell would lose its identity. The solution is division which restores connectivity. The corollary is that the cell senses decreasing cellular connectivity and uses this information to trigger division. A second idea from phenotypic diversity – Life on the Scales of Equilibria – is that a bacterium must find strategies that allow it to both survive and grow. This means that it has learnt to reconcile the opposing constraints that these strategies impose. The solution is that the cell cycle generates daughter cells with different phenotypes based on sufficiently complex equilibrium (E) and non-equilibrium (NE) cellular compounds and structures appropriate for survival and growth, respectively, alias ‘hyperstructures.’ The corollary is that the cell senses both the quantity of E material and the intensity of use of NE material and then uses this information to trigger the cell cycle. A third idea from artificial intelligence – Competitive Coherence – is that a cell selects the active subset of elements that actively determine its phenotype from a much larger set of available elements. This means that the selection of an active subset of a specific size and composition must be done so as to generate both a coherent cell state, in which the cell’s contents work together harmoniously, and a coherent sequence of cell states, each coherent with respect to itself and to an unpredictable environment. The solution is the use of a range of mechanisms ranging from hyperstructure dynamics to the cell cycle itself. PMID

  19. A voxel-based asymmetry study of the relationship between hemispheric asymmetry and language dominance in Wada tested patients.

    PubMed

    Keller, Simon S; Roberts, Neil; Baker, Gus; Sluming, Vanessa; Cezayirli, Enis; Mayes, Andrew; Eldridge, Paul; Marson, Anthony G; Wieshmann, Udo C

    2018-03-23

    Determining the anatomical basis of hemispheric language dominance (HLD) remains an important scientific endeavor. The Wada test remains the gold standard test for HLD and provides a unique opportunity to determine the relationship between HLD and hemispheric structural asymmetries on MRI. In this study, we applied a whole-brain voxel-based asymmetry (VBA) approach to determine the relationship between interhemispheric structural asymmetries and HLD in a large consecutive sample of Wada tested patients. Of 135 patients, 114 (84.4%) had left HLD, 10 (7.4%) right HLD, and 11 (8.2%) bilateral language representation. Fifty-four controls were also studied. Right-handed controls and right-handed patients with left HLD had comparable structural brain asymmetries in cortical, subcortical, and cerebellar regions that have previously been documented in healthy people. However, these patients and controls differed in structural asymmetry of the mesial temporal lobe and a circumscribed region in the superior temporal gyrus, suggesting that only asymmetries of these regions were due to brain alterations caused by epilepsy. Additional comparisons between patients with left and right HLD, matched for type and location of epilepsy, revealed that structural asymmetries of insula, pars triangularis, inferior temporal gyrus, orbitofrontal cortex, ventral temporo-occipital cortex, mesial somatosensory cortex, and mesial cerebellum were significantly associated with the side of HLD. Patients with right HLD and bilateral language representation were significantly less right-handed. These results suggest that structural asymmetries of an insular-fronto-temporal network may be related to HLD. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  20. Behavioral evidence for inter-hemispheric cooperation during a lexical decision task: a divided visual field experiment.

    PubMed

    Perrone-Bertolotti, Marcela; Lemonnier, Sophie; Baciu, Monica

    2013-01-01

    HIGHLIGHTSThe redundant bilateral visual presentation of verbal stimuli decreases asymmetry and increases the cooperation between the two hemispheres.The increased cooperation between the hemispheres is related to semantic information during lexical processing.The inter-hemispheric interaction is represented by both inhibition and cooperation. This study explores inter-hemispheric interaction (IHI) during a lexical decision task by using a behavioral approach, the bilateral presentation of stimuli within a divided visual field experiment. Previous studies have shown that compared to unilateral presentation, the bilateral redundant (BR) presentation decreases the inter-hemispheric asymmetry and facilitates the cooperation between hemispheres. However, it is still poorly understood which type of information facilitates this cooperation. In the present study, verbal stimuli were presented unilaterally (left or right visual hemi-field successively) and bilaterally (left and right visual hemi-field simultaneously). Moreover, during the bilateral presentation of stimuli, we manipulated the relationship between target and distractors in order to specify the type of information which modulates the IHI. Thus, three types of information were manipulated: perceptual, semantic, and decisional, respectively named pre-lexical, lexical and post-lexical processing. Our results revealed left hemisphere (LH) lateralization during the lexical decision task. In terms of inter-hemisphere interaction, the perceptual and decision-making information increased the inter-hemispheric asymmetry, suggesting the inhibition of one hemisphere upon the other. In contrast, semantic information decreased the inter-hemispheric asymmetry, suggesting cooperation between the hemispheres. We discussed our results according to current models of IHI and concluded that cerebral hemispheres interact and communicate according to various excitatory and inhibitory mechanisms, all which depend on specific

  1. Behavioral evidence for inter-hemispheric cooperation during a lexical decision task: a divided visual field experiment

    PubMed Central

    Perrone-Bertolotti, Marcela; Lemonnier, Sophie; Baciu, Monica

    2013-01-01

    HIGHLIGHTS The redundant bilateral visual presentation of verbal stimuli decreases asymmetry and increases the cooperation between the two hemispheres.The increased cooperation between the hemispheres is related to semantic information during lexical processing.The inter-hemispheric interaction is represented by both inhibition and cooperation. This study explores inter-hemispheric interaction (IHI) during a lexical decision task by using a behavioral approach, the bilateral presentation of stimuli within a divided visual field experiment. Previous studies have shown that compared to unilateral presentation, the bilateral redundant (BR) presentation decreases the inter-hemispheric asymmetry and facilitates the cooperation between hemispheres. However, it is still poorly understood which type of information facilitates this cooperation. In the present study, verbal stimuli were presented unilaterally (left or right visual hemi-field successively) and bilaterally (left and right visual hemi-field simultaneously). Moreover, during the bilateral presentation of stimuli, we manipulated the relationship between target and distractors in order to specify the type of information which modulates the IHI. Thus, three types of information were manipulated: perceptual, semantic, and decisional, respectively named pre-lexical, lexical and post-lexical processing. Our results revealed left hemisphere (LH) lateralization during the lexical decision task. In terms of inter-hemisphere interaction, the perceptual and decision-making information increased the inter-hemispheric asymmetry, suggesting the inhibition of one hemisphere upon the other. In contrast, semantic information decreased the inter-hemispheric asymmetry, suggesting cooperation between the hemispheres. We discussed our results according to current models of IHI and concluded that cerebral hemispheres interact and communicate according to various excitatory and inhibitory mechanisms, all which depend on specific

  2. Asymmetry in search.

    PubMed

    Kaindl, H; Kainz, G; Radda, K

    2001-01-01

    Most of the work on search in artificial intelligence (AI) deals with one search direction only-mostly forward search-although it is known that a structural asymmetry of the search graph causes differences in the efficiency of searching in the forward or the backward direction, respectively. In the case of symmetrical graph structure, however, current theory would not predict such differences in efficiency. In several classes of job sequencing problems, we observed a phenomenon of asymmetry in search that relates to the distribution of the are costs in the search graph. This phenomenon can be utilized for improving the search efficiency by a new algorithm that automatically selects the search direction. We demonstrate fur a class of job sequencing problems that, through the utilization of this phenomenon, much more difficult problems can be solved-according to our best knowledge-than by the best published approach, and on the same problems, the running time is much reduced. As a consequence, we propose to check given problems for asymmetrical distribution of are costs that may cause asymmetry in search.

  3. Mapping hemispheric symmetries, relative asymmetries, and absolute asymmetries underlying the auditory laterality effect.

    PubMed

    Westerhausen, René; Kompus, Kristiina; Hugdahl, Kenneth

    2014-01-01

    Functional hemispheric differences for speech and language processing have been traditionally studied by using verbal dichotic-listening paradigms. The commonly observed right-ear preference for the report of dichotically presented syllables is taken to reflect the left hemispheric dominance for speech processing. However, the results of recent functional imaging studies also show that both hemispheres - not only the left - are engaged by dichotic listening, suggesting a more complex relationship between behavioral laterality and functional hemispheric activation asymmetries. In order to more closely examine the hemispheric differences underlying dichotic-listening performance, we report an analysis of functional magnetic resonance imaging (fMRI) data of 104 right-handed subjects, for the first time combining an interhemispheric difference and conjunction analysis. This approach allowed for a distinction of homotopic brain regions which showed symmetrical (i.e., brain region significantly activated in both hemispheres and no activation difference between the hemispheres), relative asymmetrical (i.e., activated in both hemispheres but significantly stronger in one than the other hemisphere), and absolute asymmetrical activation patterns (i.e., activated only in one hemisphere and this activation is significantly stronger than in the other hemisphere). Symmetrical activation was found in large clusters encompassing temporal, parietal, inferior frontal, and medial superior frontal regions. Relative and absolute left-ward asymmetries were found in the posterior superior temporal gyrus, located adjacent to symmetrically activated areas, and creating a lateral-medial gradient from symmetrical towards absolute asymmetrical activation within the peri-Sylvian region. Absolute leftward asymmetry was also found in the post-central and medial superior frontal gyri, while rightward asymmetries were found in middle temporal and middle frontal gyri. We conclude that dichotic

  4. Movement asymmetry in working polo horses.

    PubMed

    Pfau, T; Parkes, R S; Burden, E R; Bell, N; Fairhurst, H; Witte, T H

    2016-07-01

    The high, repetitive demands imposed on polo horses in training and competition may predispose them to musculoskeletal injuries and lameness. To quantify movement symmetry and lameness in a population of polo horses, and to investigate the existence of a relationship with age. Convenience sampled cross-sectional study. Sixty polo horses were equipped with inertial measurement units (IMUs) attached to the poll, and between the tubera sacrale. Six movement symmetry measures were calculated for vertical head and pelvic displacement during in-hand trot and compared with values for perfect symmetry, compared between left and right limb lame horses, and compared with published thresholds for lameness. Regression lines were calculated as a function of age of horse. Based on 2 different sets of published asymmetry thresholds 52-53% of the horses were quantified with head movement asymmetry and 27-50% with pelvic movement asymmetry resulting in 60-67% of horses being classified with movement asymmetry outside published guideline values for either the forelimbs, hindlimbs or both. Neither forelimb nor hindlimb asymmetries were preferentially left or right sided, with directional asymmetry values across all horses not different from perfect symmetry and absolute values not different between left and right lame horses (P values >0.6 for all forelimb symmetry measures and >0.2 for all hindlimb symmetry measures). None of the symmetry parameters increased or decreased significantly with age. A large proportion of polo horses show gait asymmetries consistent with previously defined thresholds for lameness. These do not appear to be lateralised or associated with age. © 2015 EVJ Ltd.

  5. SLC7 family transporters control the establishment of left-right asymmetry during organogenesis in medaka by activating mTOR signaling.

    PubMed

    Asaoka, Yoichi; Nagai, Yoko; Namae, Misako; Furutani-Seiki, Makoto; Nishina, Hiroshi

    2016-05-20

    The precise government of the left-right (LR) specification of an organ is an essential aspect of its morphogenesis. Multiple signaling cascades have been implicated in the establishment of vertebrate LR asymmetry. Recently, mTOR signaling was found to critically regulate the development of LR asymmetry in zebrafish. However, the upstream factor(s) that activate mTOR signaling in the context of LR specification are as yet unknown. In this study, we identify the SLC7 amino acid transporters Slc7a7 and Slc7a8 as novel regulators of LR asymmetry development in the small fish medaka. Knockdown of Slc7a7 and/or Slc7a8 in medaka embryos disrupted LR organ asymmetries. Depletion of Slc7a7 hindered left-sided expression of the southpaw (spaw) gene, which is responsible for LR axis determination. Work at the cellular level revealed that Slc7a7 coordinates ciliogenesis in the epithelium of Kupffer's vesicle and thereby the generation of the nodal fluid flow required for LR asymmetry. Interestingly, knockdown of Slc7a7 depressed mTOR signaling activity in medaka embryos. Treatment with rapamycin, an inhibitor of mTOR signaling, together with Slc7a7 knockdown synergistically perturbed spaw expression, indicating an interaction between Slc7a7 and mTOR signaling affecting gene expression required for LR specification. Taken together, our results demonstrate that Slc7a7 governs the regulation of LR asymmetry development via the activation of mTOR signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Pockmark asymmetry and seafloor currents in the Santos Basin offshore Brazil

    USGS Publications Warehouse

    Schattner, U.; Lazar, M.; Souza, L. A. P.; ten Brink, Uri S.; Mahiques, M. M.

    2016-01-01

    Pockmarks form by gas/fluid expulsion into the ocean and are preserved under conditions of negligible sedimentation. Ideally, they are circular at the seafloor and symmetrical in profile. Elliptical pockmarks are more enigmatic. They are associated with seafloor currents while asymmetry is connected to sedimentation patterns. This study examines these associations through morphological analysis of new multibeam data collected across the Santos continental slope offshore Brazil in 2011 (353–865 mbsl). Of 984 pockmarks, 78% are both elliptical and asymmetric. Geometric criteria divide the pockmarks into three depth ranges that correlate with a transition between two currents: the Brazil Current transfers Tropical Water and South Atlantic Central Water southwestwards while the Intermediate Western Boundary Current transfers Antarctic Intermediate Water northeastwards. It is suggested that the velocity of seafloor currents and their persistence dictate pockmark ellipticity, orientation and profile asymmetry. Fast currents (>20 cm/s) are capable of maintaining pockmark flank steepness close to the angle of repose. These morphological expressions present direct evidence for an edge effect of the South Atlantic Subtropical Gyre and, in general, provide a correlation between pockmark geometry and seafloor currents that can be applied at other locations worldwide.

  7. [Orthodontic treatment of Class III patients with mandibular asymmetry].

    PubMed

    Duan, Yin-Zhong; Huo, Na; Chen, Lei; Chen, Xue-Peng; Lin, Yang

    2008-12-01

    To investigate the treatment outcome of Class III patients with dental, functional and mild skeletal mandibular asymmetry. Thirty-five patients (14 males and 21 females) with dental, functional and mild skeletal mandibular asymmetry were selected. The age range of the patients was 7 - 22 years with a mean age of 16.5 years. Dental mandibular asymmetry was treated with expansion of maxillary arch to help the mandible returning to normal position. Functional mandibular asymmetry was treated with activator or asymmetrical protraction and Class III elastics. Mild skeletal mandibular asymmetry was treated with camouflage treatment. Good occlusal relationships were achieved and facial esthetics was greatly improved after orthodontic treatment in patients with dental and functional mandibular asymmetry. However, patients with skeletal mandibular asymmetry should be treated with both extraction and genioplasty. Orthodontic treatment was suitable for patients with dental and functional mandibular asymmetry, while combined orthodontics and surgery could get good results in patients with skeletal mandibular asymmetry.

  8. Cellular and Nuclear Alignment Analysis for Determining Epithelial Cell Chirality

    PubMed Central

    Raymond, Michael J.; Ray, Poulomi; Kaur, Gurleen; Singh, Ajay V.; Wan, Leo Q.

    2015-01-01

    Left-right (LR) asymmetry is a biologically conserved property in living organisms that can be observed in the asymmetrical arrangement of organs and tissues and in tissue morphogenesis, such as the directional looping of the gastrointestinal tract and heart. The expression of LR asymmetry in embryonic tissues can be appreciated in biased cell alignment. Previously an in vitro chirality assay was reported by patterning multiple cells on microscale defined geometries and quantified the cell phenotype–dependent LR asymmetry, or cell chirality. However, morphology and chirality of individual cells on micropatterned surfaces has not been well characterized. Here, a Python-based algorithm was developed to identify and quantify immunofluorescence stained individual epithelial cells on multicellular patterns. This approach not only produces results similar to the image intensity gradient-based method reported previously, but also can capture properties of single cells such as area and aspect ratio. We also found that cell nuclei exhibited biased alignment. Around 35% cells were misaligned and were typically smaller and less elongated. This new imaging analysis approach is an effective tool for measuring single cell chirality inside multicellular structures and can potentially help unveil biophysical mechanisms underlying cellular chiral bias both in vitro and in vivo. PMID:26294010

  9. The Inherent Asymmetry of DNA Replication.

    PubMed

    Snedeker, Jonathan; Wooten, Matthew; Chen, Xin

    2017-10-06

    Semiconservative DNA replication has provided an elegant solution to the fundamental problem of how life is able to proliferate in a way that allows cells, organisms, and populations to survive and replicate many times over. Somewhat lost, however, in our admiration for this mechanism is an appreciation for the asymmetries that occur in the process of DNA replication. As we discuss in this review, these asymmetries arise as a consequence of the structure of the DNA molecule and the enzymatic mechanism of DNA synthesis. Increasing evidence suggests that asymmetries in DNA replication are able to play a central role in the processes of adaptation and evolution by shaping the mutagenic landscape of cells. Additionally, in eukaryotes, recent work has demonstrated that the inherent asymmetries in DNA replication may play an important role in the process of chromatin replication. As chromatin plays an essential role in defining cell identity, asymmetries generated during the process of DNA replication may play critical roles in cell fate decisions related to patterning and development.

  10. Karyotype asymmetry in Cynodon Rich. (Poaceae) accessions.

    PubMed

    Chiavegatto, R B; Paula, C M P; Souza Sobrinho, F; Benites, F R G; Techio, V H

    2016-12-02

    Cynodon is a genus of plants with forage potential that has attracted the interest of breeders. These species have high morphological variability in a large number of varieties and cytotypes, hampering identification. This study aimed to determine the karyotype asymmetry index among accessions of Cynodon to discriminate between them. Karyotype symmetry was based on three estimates, which were compared. The basic number for the genus is x = 9. The results of the chromosome count and DNA quantification, respectively, were as follows: two diploid accessions (2n = 2x = 18 and 1.08 ± 0.094 to 1.17 ± 0.036 pg DNA and ± standard deviation), one triploid accession (2n = 3x = 27 and 1.63 ± 0.017 pg DNA), four tetraploid accessions (2n = 4x = 36 and 1.88 ± 0.069 to 2.10 ± 0.07 pg DNA), and one pentaploid accession (2n = 5x = 45 and 2.55 ± 0.098 pg DNA). C. incompletus var. hirsutus had the longest total length of the haploid lot (29.05 µm), with chromosomes that ranged from 1.7 to 6.2 µm in length. On the basis of the karyotype asymmetry indices, the accessions were divided into two groups: 1) C. dactylon var. dactylon, C. transvaalensis, C. dactylon var. polevansii, three accessions of Cynodon sp, and C. nlemfuensis; and 2) C. incompletus var. hirsutus. This is the first description of tetraploidy in C. transvaalensis. The karyotypic data facilitated a determination of the degree of proximity between the accessions.

  11. Poloidal asymmetries in edge transport barriersa)

    NASA Astrophysics Data System (ADS)

    Churchill, R. M.; Theiler, C.; Lipschultz, B.; Hutchinson, I. H.; Reinke, M. L.; Whyte, D.; Hughes, J. W.; Catto, P.; Landreman, M.; Ernst, D.; Chang, C. S.; Hager, R.; Hubbard, A.; Ennever, P.; Walk, J. R.

    2015-05-01

    Measurements of impurities in Alcator C-Mod indicate that in the pedestal region, significant poloidal asymmetries can exist in the impurity density, ion temperature, and main ion density. In light of the observation that ion temperature and electrostatic potential are not constant on a flux surface [Theiler et al., Nucl. Fusion 54, 083017 (2014)], a technique based on total pressure conservation to align profiles measured at separate poloidal locations is presented and applied. Gyrokinetic neoclassical simulations with XGCa support the observed large poloidal variations in ion temperature and density, and that the total pressure is approximately constant on a flux surface. With the updated alignment technique, the observed in-out asymmetry in impurity density is reduced from previous publishing [Churchill et al., Nucl. Fusion 53, 122002 (2013)], but remains substantial ( n z , H / n z , L ˜ 6 ). Candidate asymmetry drivers are explored, showing that neither non-uniform impurity sources nor localized fluctuation-driven transport are able to explain satisfactorily the impurity density asymmetry. Since impurity density asymmetries are only present in plasmas with strong electron density gradients, and radial transport timescales become comparable to parallel transport timescales in the pedestal region, it is suggested that global transport effects relating to the strong electron density gradients in the pedestal are the main driver for the pedestal in-out impurity density asymmetry.

  12. TMD evolution of the Sivers asymmetry

    NASA Astrophysics Data System (ADS)

    Boer, Daniël

    2013-09-01

    The energy scale dependence of the Sivers asymmetry in semi-inclusive deep inelastic scattering is studied numerically within the framework of TMD factorization that was put forward in 2011. The comparison to previous results in the literature shows that the treatment of next-to-leading logarithmic effects is important for the fall-off of the Sivers asymmetry with energy in the measurable regime. The TMD factorization based approach indicates that the peak of the Sivers asymmetry falls off with energy scale Q to good approximation as 1/Q0.7, somewhat faster than found previously based on the first TMD factorization expressions by Collins and Soper in 1981. It is found that the peak of the asymmetry moves rather slowly towards higher transverse momentum values as Q increases, which may be due to the absence of perturbative tails of the TMDs in the presented treatments. We conclude that the behavior of the peak of the asymmetry as a function of energy and transverse momentum allows for valuable tests of the TMD formalism and the considered approximations. To confront the TMD approach with experiment, high energy experimental data from an Electron-Ion Collider is required. Note that in B01/B09 the Gaussian width of the Sivers TMD appears in the asymmetry expressions, because of the derivative in f1T⊥ ' a(x;Q0).

  13. Using asymmetry analysis to reduce normal variability of Spectral Domain Optical Coherence Tomography (SD-OCT) macular thickness

    NASA Astrophysics Data System (ADS)

    Alluwimi, Muhammed Saad

    Purpose: To investigate the use of asymmetry analysis to reduce normal between-subject variability of macular thickness measurements using SD-OCT. Methods: 63 volunteers free of eye disease were recruited: 33 young subjects (ages 21 to 35 years with mean and SD of 25 +/- 1.7), and 30 older subjects (ages 45 to 85 years with mean and SD of 66.7 +/- 9.0). All participants passed a comprehensive ophthalmic examination within the past two years. Macular images were gathered with the Spectralis OCT (V 5.4, Heidelberg Engineering, GmbH). The overlay 8x8 grid was manually centered on the fovea and aligned with the foveal-disc axis, then divided into five zones per hemifield following the method of Um et al (2012 IOVS 53:1139); asymmetry was computed as the difference between superior and inferior zone thicknesses. We assumed that the lowest variation and the highest density of ganglion cells will be found ~3° to 6° from the foveal center, corresponding to zones 1 and 2. For each zone and age group, between-subject standard deviations (SDs) were compared for retinal thickness (RT) versus asymmetry using an F-test. To account for repeated measures, a probability of p < 0.0125 was required for statistical significance. Axial length (AL) and corneal curvature (CC) were measured with an IOLMaster by the same operator and during the same imaging session. Results: For OD, asymmetry analysis reduced between-subject variability in zones 1 and 2 in both groups (F > 3.2, p < 0.001). SD for zone 1 dropped from 12.0 to 3.0 mum in the young group and from 11.7 to 2.6 mum in the older group. SD for zone 2 dropped from 13.6 to 5.3 mum (young) and from 11.1 to 5.8 mum (older). Combining all subjects, neither RT nor asymmetry showed a strong correlation with AL or CC (R2 < 0.01). Analysis for OS yielded the same pattern of results, as did asymmetry analyses between eyes (F > 3.8, p < 0.0001). Conclusions: Asymmetry analysis reduced between-subject variability. These findings demonstrate

  14. Timing divided attention.

    PubMed

    Hogendoorn, Hinze; Carlson, Thomas A; VanRullen, Rufin; Verstraten, Frans A J

    2010-11-01

    Visual attention can be divided over multiple objects or locations. However, there is no single theoretical framework within which the effects of dividing attention can be interpreted. In order to develop such a model, here we manipulated the stage of visual processing at which attention was divided, while simultaneously probing the costs of dividing attention on two dimensions. We show that dividing attention incurs dissociable time and precision costs, which depend on whether attention is divided during monitoring or during access. Dividing attention during monitoring resulted in progressively delayed access to attended locations as additional locations were monitored, as well as a one-off precision cost. When dividing attention during access, time costs were systematically lower at one of the accessed locations than at the other, indicating that divided attention during access, in fact, involves rapid sequential allocation of undivided attention. We propose a model in which divided attention is understood as the simultaneous parallel preparation and subsequent sequential execution of multiple shifts of undivided attention. This interpretation has the potential to bring together diverse findings from both the divided-attention and saccade preparation literature and provides a framework within which to integrate the broad spectrum of divided-attention methodologies.

  15. Exchange asymmetry in experimental settings

    Treesearch

    Thomas C. Brown; Mark D. Morrison; Jacob A. Benfield; Gretchen Nurse Rainbolt; Paul A. Bell

    2015-01-01

    We review past trading experiments and present 11 new experiments designed to show how the trading rate responds to alterations of the experimental procedure. In agreement with earlier studies, results show that if the trade decision is converted to one resembling a choice between goods the exchange asymmetry disappears, but otherwise the asymmetry is...

  16. Nodal signalling and asymmetry of the nervous system

    PubMed Central

    Signore, Iskra A.; Palma, Karina

    2016-01-01

    The role of Nodal signalling in nervous system asymmetry is still poorly understood. Here, we review and discuss how asymmetric Nodal signalling controls the ontogeny of nervous system asymmetry using a comparative developmental perspective. A detailed analysis of asymmetry in ascidians and fishes reveals a critical context-dependency of Nodal function and emphasizes that bilaterally paired and midline-unpaired structures/organs behave as different entities. We propose a conceptual framework to dissect the developmental function of Nodal as asymmetry inducer and laterality modulator in the nervous system, which can be used to study other types of body and visceral organ asymmetries. Using insights from developmental biology, we also present novel evolutionary hypotheses on how Nodal led the evolution of directional asymmetry in the brain, with a particular focus on the epithalamus. We intend this paper to provide a synthesis on how Nodal signalling controls left–right asymmetry of the nervous system. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821531

  17. Stochastic left–right neuronal asymmetry in Caenorhabditis elegans

    PubMed Central

    Alqadah, Amel; Hsieh, Yi-Wen; Xiong, Rui

    2016-01-01

    Left–right asymmetry in the nervous system is observed across species. Defects in left–right cerebral asymmetry are linked to several neurological diseases, but the molecular mechanisms underlying brain asymmetry in vertebrates are still not very well understood. The Caenorhabditis elegans left and right amphid wing ‘C’ (AWC) olfactory neurons communicate through intercellular calcium signalling in a transient embryonic gap junction neural network to specify two asymmetric subtypes, AWCOFF (default) and AWCON (induced), in a stochastic manner. Here, we highlight the molecular mechanisms that establish and maintain stochastic AWC asymmetry. As the components of the AWC asymmetry pathway are highly conserved, insights from the model organism C. elegans may provide a window onto how brain asymmetry develops in humans. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821536

  18. Permeability Asymmetry in Composite Porous Ceramic Membranes

    NASA Astrophysics Data System (ADS)

    Kurcharov, I. M.; Laguntsov, N. I.; Uvarov, V. I.; Kurchatova, O. V.

    The results from the investigation of transport characteristics and gas transport asymmetry in bilayer composite membranes are submitted. These membranes are produced by SHS method. Asymmetric effect and hysteresis of permeability in nanoporous membranes are detected. It's shown, that permeability ratio (asymmetry value of permeability) increases up to several times. The asymmetry of permeability usually decreases monotonically with the pressure decrease.

  19. Bessel Weighted Asymmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakian, Harut; Gamberg, Leonard; Rossi, Patrizia

    We review the concept of Bessel weighted asymmetries for semi-inclusive deep inelastic scattering and focus on the cross section in Fourier space, conjugate to the outgoing hadron’s transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation functions become simple products. Individual asymmetric terms in the cross section can be projected out by means of a generalized set of weights involving Bessel functions. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized partonmore » model. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy and hard scale Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less

  20. Validity and sensitivity of the longitudinal asymmetry index to detect gait asymmetry using Microsoft Kinect data.

    PubMed

    Auvinet, E; Multon, F; Manning, V; Meunier, J; Cobb, J P

    2017-01-01

    Gait asymmetry information is a key point in disease screening and follow-up. Constant Relative Phase (CRP) has been used to quantify within-stride asymmetry index, which requires noise-free and accurate motion capture, which is difficult to obtain in clinical settings. This study explores a new index, the Longitudinal Asymmetry Index (ILong) which is derived using data from a low-cost depth camera (Kinect). ILong is based on depth images averaged over several gait cycles, rather than derived joint positions or angles. This study aims to evaluate (1) the validity of CRP computed with Kinect, (2) the validity and sensitivity of ILong for measuring gait asymmetry based solely on data provided by a depth camera, (3) the clinical applicability of a posteriorly mounted camera system to avoid occlusion caused by the standard front-fitted treadmill consoles and (4) the number of strides needed to reliably calculate ILong. The gait of 15 subjects was recorded concurrently with a marker-based system (MBS) and Kinect, and asymmetry was artificially reproduced by introducing a 5cm sole attached to one foot. CRP computed with Kinect was not reliable. ILong detected this disturbed gait reliably and could be computed from a posteriorly placed Kinect without loss of validity. A minimum of five strides was needed to achieve a correlation coefficient of 0.9 between standard MBS and low-cost depth camera based ILong. ILong provides a clinically pragmatic method for measuring gait asymmetry, with application for improved patient care through enhanced disease, screening, diagnosis and monitoring. Copyright © 2016. Published by Elsevier B.V.

  1. MMP21 is mutated in human heterotaxy and is required for normal left-right asymmetry in vertebrates

    PubMed Central

    Guimier, Anne; Gabriel, George C.; Bajolle, Fanny; Tsang, Michael; Liu, Hui; Noll, Aaron; Schwartz, Molly; El Malti, Rajae; Smith, Laurie D.; Klena, Nikolai T.; Jimenez, Gina; Miller, Neil A.; Oufadem, Myriam; Moreau de Bellaing, Anne; Yagi, Hisato; Saunders, Carol J.; Baker, Candice N.; Di Filippo, Sylvie; Peterson, Kevin A.; Thiffault, Isabelle; Bole-Feysot, Christine; Cooley, Linda D.; Farrow, Emily G.; Masson, Cécile; Schoen, Patric; Deleuze, Jean-François; Nitschké, Patrick; Lyonnet, Stanislas; de Pontual, Loic; Murray, Stephen A.; Bonnet, Damien; Kingsmore, Stephen F.; Amiel, Jeanne; Bouvagnet, Patrice; Lo, Cecilia W.; Gordon, Christopher T.

    2017-01-01

    Heterotaxy results from a failure to establish normal left-right asymmetry early in embryonic development. By whole exome sequencing, whole genome sequencing and high-throughput cohort resequencing we identified recessive mutations in matrix metallopeptidase 21 (MMP21), in nine index cases with heterotaxy. In addition, Mmp21 mutant mice and morphant zebrafish display heterotaxy and abnormal cardiac looping, respectively, suggesting a novel role for extra-cellular remodeling in the establishment of laterality in vertebrates. PMID:26437028

  2. Facial Asymmetry: Brow and Ear Position.

    PubMed

    Perumal, Balaji; Meyer, Dale R

    2018-04-01

    The purpose of the current study was to analyze brow and ear position, and examine the relationship between these structures in patients presenting for blepharoplasty evaluation. A retrospective chart review was performed, which included all patients presenting to one oculoplastic physician for a blepharoplasty evaluation from November, 2012 to March, 2014. The prevalence of brow ptosis and brow and ear asymmetry was calculated; the proportional distribution was determined, and chi-square analysis and the z-test of proportions were used to calculate the significance. Institutional Review Board approval was obtained for this study. A total of 133 patients met the inclusion criteria. Some degree of brow ptosis was noted in 83% of patients. Brow asymmetry was found in 88% of patients, and ear asymmetry in 77%. Of those patients who had asymmetry, 61% had the right brow lower and 75% had the right ear lower; 73% of all patients had the brow and ear lower on the same side ( p  < 0.001). In this study, brow ptosis and asymmetry were quite common. In addition, the side of the lower brow correlated strongly with the side of the lower ear, and the right side structures were lower more often than the left. Patients presenting for blepharoplasty evaluation may have an element of generalized facial asymmetry which includes the brows and ears. These observations can be important for preoperative planning and patient counseling. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Asymmetry identification in rigid rotating bodies—Theory and experiment

    NASA Astrophysics Data System (ADS)

    Bucher, Izhak; Shomer, Ofer

    2013-12-01

    Asymmetry and anisotropy are important parameters in rotating devices that can cause instability; indicate a manufacturing defect or a developing fault. The present paper discusses an identification method capable of detecting minute levels of asymmetry by exploiting the unique dynamics of parametric excitation caused by asymmetry and rotation. The detection relies on rigid body dynamics without resorting to nonlinear vibration analysis, and the natural dynamics of elastically supported systems is exploited in order to increase the sensitivity to asymmetry. It is possible to isolate asymmetry from other rotation-induced phenomena like unbalance. An asymmetry detection machine which was built in the laboratory demonstrates the method alongside theoretical analysis.

  4. Charging-induced asymmetry in molecular conductors

    NASA Astrophysics Data System (ADS)

    Zahid, F.; Ghosh, A. W.; Paulsson, M.; Polizzi, E.; Datta, S.

    2004-12-01

    We investigate the origin of asymmetry in various measured current-voltage (I-V) characteristics of molecules with no inherent spatial asymmetry, with particular focus on a recent break junction measurement. We argue that such asymmetry arises due to unequal coupling with the contacts and a consequent difference in charging effects, which can only be captured in a self-consistent model for molecular conduction. The direction of the asymmetry depends on the sign of the majority carriers in the molecule. For conduction through highest occupied molecular orbitals (i.e., HOMO or p -type conduction), the current is smaller for positive voltage on the stronger contact, while for conduction through lowest unoccupied molecular orbitals (i.e., LUMO or n -type conduction), the sense of the asymmetry is reversed. Within an extended Hückel description of the molecular chemistry and the contact microstructure (with two adjustable parameters, the position of the Fermi energy and the sulphur-gold bond length), an appropriate description of Poisson’s equation, and a self-consistently coupled nonequilibrium Green’s function description of transport, we achieve good agreement between theoretical and experimental I-V characteristics, both in shape as well as overall magnitude.

  5. Asymmetry Analysis of Macular Inner Retinal Layers for Glaucoma Diagnosis: Swept-Source Optical Coherence Tomography Study.

    PubMed

    Lee, Sang-Yoon; Lee, Eun Kyoung; Park, Ki Ho; Kim, Dong Myung; Jeoung, Jin Wook

    2016-01-01

    To report an asymmetry analysis of macular inner retinal layers using swept-source optical coherence tomography (OCT) and to evaluate the utility for glaucoma diagnosis. Observational, cross-sectional study. Seventy normal healthy subjects and 62 glaucoma patients. Three-dimensional scans were acquired from 70 normal subjects and 62 open angle glaucoma patients by swept-source OCT. The thickness of the retinal nerve fiber layer, ganglion cell-inner plexiform layer (GCIPL), ganglion cell complex, and total retina were calculated within a 6.2×6.2 mm macular area divided into a 31×31 grid of 200×200 μm superpixels. For each of the corresponding superpixels, the thickness differences between the subject eyes and contra-lateral eyes and between the upper and lower macula halves of the subject eyes were determined. The negative differences were displayed on a gray-scale asymmetry map. Black superpixels were defined as thickness decreases over the cut-off values. The negative inter-ocular and inter-hemisphere differences in GCIPL thickness (mean ± standard deviation) were -2.78 ± 0.97 μm and -3.43 ± 0.71 μm in the normal group and -4.26 ± 2.23 μm and -4.88 ± 1.46 μm in the glaucoma group. The overall extent of the four layers' thickness decrease was larger in the glaucoma group than in the normal group (all Ps<0.05). The numbers of black superpixels on all of the asymmetry maps were larger in the glaucoma group than in the normal group (all Ps<0.05). The area under receiver operating characteristic curves of average negative thickness differences in macular inner layers for glaucoma diagnosis ranged from 0.748 to 0.894. The asymmetry analysis of macular inner retinal layers showed significant differences between the normal and glaucoma groups. The diagnostic performance of the asymmetry analysis was comparable to that of previous methods. These findings suggest that the asymmetry analysis can be a potential ancillary diagnostic tool.

  6. Asymmetry Analysis of Macular Inner Retinal Layers for Glaucoma Diagnosis: Swept-Source Optical Coherence Tomography Study

    PubMed Central

    Lee, Sang-Yoon; Lee, Eun Kyoung; Park, Ki Ho; Kim, Dong Myung

    2016-01-01

    Purpose To report an asymmetry analysis of macular inner retinal layers using swept-source optical coherence tomography (OCT) and to evaluate the utility for glaucoma diagnosis. Design Observational, cross-sectional study. Participants Seventy normal healthy subjects and 62 glaucoma patients. Methods Three-dimensional scans were acquired from 70 normal subjects and 62 open angle glaucoma patients by swept-source OCT. The thickness of the retinal nerve fiber layer, ganglion cell-inner plexiform layer (GCIPL), ganglion cell complex, and total retina were calculated within a 6.2×6.2 mm macular area divided into a 31×31 grid of 200×200 μm superpixels. For each of the corresponding superpixels, the thickness differences between the subject eyes and contra-lateral eyes and between the upper and lower macula halves of the subject eyes were determined. The negative differences were displayed on a gray-scale asymmetry map. Black superpixels were defined as thickness decreases over the cut-off values. Results The negative inter-ocular and inter-hemisphere differences in GCIPL thickness (mean ± standard deviation) were -2.78 ± 0.97 μm and -3.43 ± 0.71 μm in the normal group and -4.26 ± 2.23 μm and -4.88 ± 1.46 μm in the glaucoma group. The overall extent of the four layers’ thickness decrease was larger in the glaucoma group than in the normal group (all Ps<0.05). The numbers of black superpixels on all of the asymmetry maps were larger in the glaucoma group than in the normal group (all Ps<0.05). The area under receiver operating characteristic curves of average negative thickness differences in macular inner layers for glaucoma diagnosis ranged from 0.748 to 0.894. Conclusions The asymmetry analysis of macular inner retinal layers showed significant differences between the normal and glaucoma groups. The diagnostic performance of the asymmetry analysis was comparable to that of previous methods. These findings suggest that the asymmetry analysis can be a

  7. Digital divide: variation in internet and cellular phone use among women attending an urban sexually transmitted infections clinic.

    PubMed

    Samal, Lipika; Hutton, Heidi E; Erbelding, Emily J; Brandon, Elizabeth S; Finkelstein, Joseph; Chander, Geetanjali

    2010-01-01

    We sought to describe: (1) the prevalence of internet, cellular phone, and text message use among women attending an urban sexually transmitted infections (STI) clinic, (2) the acceptability of health advice by each mode of information and communication technology (ICT), and (3) demographic characteristics associated with ICT use. This study is a cross-sectional survey of 200 English-speaking women presenting to a Baltimore City STI clinic with STI complaints. Participants completed a self-administered survey querying ICT use and demographic characteristics. Three separate questions asked about interest in receiving health advice delivered by the three modalities: internet, cellular phone, and text message. We performed logistic regression to examine how demographic factors (age, race, and education) are associated with likelihood of using each modality. The median age of respondents was 27 years; 87% were African American, and 71% had a high school diploma. The rate of any internet use was 80%; 31% reported daily use; 16% reported weekly use; and 32% reported less frequent use. Almost all respondents (93%) reported cellular phone use, and 79% used text messaging. Acceptability of health advice by each of the three modalities was about 60%. In multivariate analysis, higher education and younger age were associated with internet use, text messaging, and cellular phone use. Overall rate of internet use was high, but there was an educational disparity in internet use. Cellular phone use was almost universal in this sample. All three modalities were equally acceptable forms of health communication. Describing baseline ICT access and the acceptability of health advice via ICT, as we have done, is one step toward determining the feasibility of ICT-delivered health interventions in urban populations.

  8. Induced static asymmetry of the pelvis is associated with functional asymmetry of the lumbo-pelvo-hip complex.

    PubMed

    Gnat, Rafał; Saulicz, Edward

    2008-03-01

    This study evaluates the hypothesis that triggering and eliminating induced static pelvic asymmetry (SPA) may be followed by immediate change in functional asymmetry of the lumbo-pelvo-hip complex. Repeated measures experimental design with 2 levels of independent variable, that is, induced SPA triggered and induced SPA eliminated, was implemented. Three series of measurements were performed, that is, baseline, after triggering SPA, and after eliminating SPA. A group of 84 subjects with no initial symptoms of SPA was studied. Different forms of mechanical stimulation were applied aiming to induce SPA, and the 2 manual stretching-manipulating techniques were performed aiming to eliminate it. A hand inclinometer was used to measure SPA in standing posture. Selected ranges of motion of the hip joints and lumbar spine were used to depict functional asymmetry of the lumbo-pelvo-hip complex. The functional asymmetry indices for individual movements were calculated. Repeated measures design of analysis of variance, dependent data Student t test, and linear Pearson's correlation test were used. Assessment of the SPA showed its significant increase between baseline and series 2 measurements, with a subsequent significant decrease between series 2 and series 3 measurements. Values of the functional asymmetry indices changed accordingly, that is, they increased significantly between series 1 and series 2 and had returned to their initial level in series 3 measurements. Induced SPA shows considerable association with functional asymmetry of the lumbo-pelvo-hip complex.

  9. Autophoretic locomotion from geometric asymmetry.

    PubMed

    Michelin, Sébastien; Lauga, Eric

    2015-02-01

    Among the few methods which have been proposed to create small-scale swimmers, those relying on self-phoretic mechanisms present an interesting design challenge in that chemical gradients are required to generate net propulsion. Building on recent work, we propose that asymmetries in geometry are sufficient to induce chemical gradients and swimming. We illustrate this idea using two different calculations. We first calculate exactly the self-propulsion speed of a system composed of two spheres of unequal sizes but identically chemically homogeneous. We then consider arbitrary, small-amplitude, shape deformations of a chemically homogeneous sphere, and calculate asymptotically the self-propulsion velocity induced by the shape asymmetries. Our results demonstrate how geometric asymmetries can be tuned to induce large locomotion speeds without the need of chemical patterning.

  10. Prevalence of arytenoid asymmetry in relation to vocal symptoms.

    PubMed

    Hamdan, A-L; Nassar, J; Ashkar, J; Sibai, A

    2011-03-01

    (1) To assess the prevalence of arytenoid asymmetry during adduction, and (2) to correlate arytenoid asymmetry with vocal symptoms. The medical records and video recordings of 116 patients who presented to the voice clinic were reviewed for the presence of arytenoid asymmetry, as regards sharpening of the aryepiglottic fold angle and altered positioning of the cuneiform and corniculate cartilages. There were 61 males and 55 females, with a mean age of 39 years and a standard deviation of 15 years. Almost one-third had a history of reflux, 25 per cent had a history of smoking and 9.6 per cent had a history of allergy. Hoarseness was the most common symptom, occurring in 42.2 per cent of patients, followed by vocal fatigue (25 per cent) and inability to project the voice. The most common type of asymmetry was corniculate asymmetry, present in 27.6 per cent of the cases and accounting for 74.39 per cent of cases. This was followed by cuneiform cartilage asymmetry, present in 15.5 per cent of cases. There was no correlation between arytenoid asymmetry and vocal symptoms, except for vocal fatigue (p = 0.038). The prevalence of arytenoid asymmetry during adduction is common. The presence of vocal symptoms such as hoarseness, breathiness, inability to project the voice and straining does not generally seem to correlate with the prevalence of arytenoid asymmetry. However, subjects with vocal fatigue are more likely to have cuneiform asymmetry.

  11. Dynamic behavior of cellular materials and cellular structures: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Gao, Ziyang

    Cellular solids, including cellular materials and cellular structures (CMS), have attracted people's great interests because of their low densities and novel physical, mechanical, thermal, electrical and acoustic properties. They offer potential for lightweight structures, energy absorption, thermal management, etc. Therefore, the studies of cellular solids have become one of the hottest research fields nowadays. From energy absorption point of view, any plastically deformed structures can be divided into two types (called type I and type II), and the basic cells of the CMS may take the configurations of these two types of structures. Accordingly, separated discussions are presented in this thesis. First, a modified 1-D model is proposed and numerically solved for a typical type II structure. Good agreement is achieved with the previous experimental data, hence is used to simulate the dynamic behavior of a type II chain. Resulted from different load speeds, interesting collapse modes are observed, and the parameters which govern the cell's post-collapse behavior are identified through a comprehensive non-dimensional analysis on general cellular chains. Secondly, the MHS specimens are chosen as an example of type I foam materials because of their good uniformity of the cell geometry. An extensive experimental study was carried out, where more attention was paid to their responses to dynamic loadings. Great enhancement of the stress-strain curve was observed in dynamic cases, and the energy absorption capacity is found to be several times higher than that of the commercial metal foams. Based on the experimental study, finite elemental simulations and theoretical modeling are also conducted, achieving good agreements and demonstrating the validities of those models. It is believed that the experimental, numerical and analytical results obtained in the present study will certainly deepen the understanding of the unsolved fundamental issues on the mechanical behavior of

  12. Rightward dominance in temporal high-frequency electrical asymmetry corresponds to higher resting heart rate and lower baroreflex sensitivity in a heterogeneous population.

    PubMed

    Tegeler, Charles H; Shaltout, Hossam A; Tegeler, Catherine L; Gerdes, Lee; Lee, Sung W

    2015-06-01

    Explore potential use of a temporal lobe electrical asymmetry score to discriminate between sympathetic and parasympathetic tendencies in autonomic cardiovascular regulation. 131 individuals (82 women, mean age 43.1, range 13-83) with diverse clinical conditions completed inventories for depressive (CES-D or BDI-II) and insomnia-related (ISI) symptomatology, and underwent five-minute recordings of heart rate and blood pressure, allowing calculation of heart rate variability and baroreflex sensitivity (BRS), followed by one-minute, two-channel, eyes-closed scalp recordings of brain electrical activity. A temporal lobe high-frequency (23-36 Hz) electrical asymmetry score was calculated for each subject by subtracting the average amplitude in the left temporal region from amplitude in the right temporal region, and dividing by the lesser of the two. Depressive and insomnia-related symptomatology exceeding clinical threshold levels were reported by 48% and 50% of subjects, respectively. Using a cutoff value of 5% or greater to define temporal high-frequency asymmetry, subjects with leftward compared to rightward asymmetry were more likely to report use of a sedative-hypnotic medication (42% vs. 22%, P = 0.02). Among subjects with asymmetry of 5% or greater to 30% or greater, those with rightward compared to leftward temporal high-frequency asymmetry had higher resting heart rate (≥5% asymmetry, 72.3 vs. 63.8, P = 0.004; ≥10%, 71.5 vs. 63.0, P = 0.01; ≥20%, 72.2 vs. 64.2, P = 0.05; ≥30%, 71.4 vs. 64.6, P = 0.05). Subjects with larger degrees of rightward compared to leftward temporal high-frequency asymmetry had lower baroreflex sensitivity (≥40% asymmetry, 10.6 vs. 16.4, P = 0.03; ≥50% asymmetry, 10.4 vs. 16.7, P = 0.05). In a heterogeneous population, individuals with rightward compared to leftward temporal high-frequency electrical asymmetry had higher resting heart rate and lower BRS. Two-channel recording of brain electrical activity from

  13. Quantum asymmetry between time and space

    PubMed Central

    2016-01-01

    An asymmetry exists between time and space in the sense that physical systems inevitably evolve over time, whereas there is no corresponding ubiquitous translation over space. The asymmetry, which is presumed to be elemental, is represented by equations of motion and conservation laws that operate differently over time and space. If, however, the asymmetry was found to be due to deeper causes, this conventional view of time evolution would need reworking. Here we show, using a sum-over-paths formalism, that a violation of time reversal (T) symmetry might be such a cause. If T symmetry is obeyed, then the formalism treats time and space symmetrically such that states of matter are localized both in space and in time. In this case, equations of motion and conservation laws are undefined or inapplicable. However, if T symmetry is violated, then the same sum over paths formalism yields states that are localized in space and distributed without bound over time, creating an asymmetry between time and space. Moreover, the states satisfy an equation of motion (the Schrödinger equation) and conservation laws apply. This suggests that the time–space asymmetry is not elemental as currently presumed, and that T violation may have a deep connection with time evolution. PMID:26997899

  14. Cellular chirality arising from the self-organization of the actin cytoskeleton.

    PubMed

    Tee, Yee Han; Shemesh, Tom; Thiagarajan, Visalatchi; Hariadi, Rizal Fajar; Anderson, Karen L; Page, Christopher; Volkmann, Niels; Hanein, Dorit; Sivaramakrishnan, Sivaraj; Kozlov, Michael M; Bershadsky, Alexander D

    2015-04-01

    Cellular mechanisms underlying the development of left-right asymmetry in tissues and embryos remain obscure. Here, the development of a chiral pattern of actomyosin was revealed by studying actin cytoskeleton self-organization in cells with isotropic circular shape. A radially symmetrical system of actin bundles consisting of α-actinin-enriched radial fibres (RFs) and myosin-IIA-enriched transverse fibres (TFs) evolved spontaneously into the chiral system as a result of the unidirectional tilting of all RFs, which was accompanied by a tangential shift in the retrograde movement of TFs. We showed that myosin-IIA-dependent contractile stresses within TFs drive their movement along RFs, which grow centripetally in a formin-dependent fashion. The handedness of the chiral pattern was shown to be regulated by α-actinin-1. Computational modelling demonstrated that the dynamics of the RF-TF system can explain the pattern transition from radial to chiral. Thus, actin cytoskeleton self-organization provides built-in machinery that potentially allows cells to develop left-right asymmetry.

  15. Anomalies and asymmetries in quark-gluon matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teryaev, O. V., E-mail: teryaev@theor.jinr.ru

    The manifestations of axial anomaly and related effects in heavy-ion collisions are considered. Special role is played by various asymmetries. The azimuthal correlational asymmetries of neutron pairs at NICA/FAIR energy range may probe the global rotation of strongly interacting matter. The conductivity is related to the angular asymmetries of dilepton pairs. The strong magnetic field generated in heavy-ion collisions leads to the excess of soft dileptons flying predominantly in the scattering plane.

  16. Geometric asymmetry driven Janus micromotors

    NASA Astrophysics Data System (ADS)

    Zhao, Guanjia; Pumera, Martin

    2014-09-01

    The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors.The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors. Electronic supplementary information (ESI) available: Additional SEM images, data analysis, Videos S

  17. Introduction to provocative questions in left-right asymmetry.

    PubMed

    Levin, Michael; Klar, Amar J S; Ramsdell, Ann F

    2016-12-19

    Left-right asymmetry is a phenomenon that has a broad appeal-to anatomists, developmental biologists and evolutionary biologists-because it is a morphological feature of organisms that spans scales of size and levels of organization, from unicellular protists, to vertebrate organs, to social behaviour. Here, we highlight a number of important aspects of asymmetry that encompass several areas of biology-cell-level, physiological, genetic, anatomical and evolutionary components-and that are based on research conducted in diverse model systems, ranging from single cells to invertebrates to human developmental disorders. Together, the contributions in this issue reveal a heretofore-unsuspected variety in asymmetry mechanisms, including ancient chirality elements that could underlie a much more universal basis to asymmetry development, and provide much fodder for thought with far reaching implications in biomedical, developmental, evolutionary and synthetic biology. The new emerging theme of binary cell-fate choice, promoted by asymmetric cell division of a deterministic cell, has focused on investigating asymmetry mechanisms functioning at the single cell level. These include cytoskeleton and DNA chain asymmetry-mechanisms that are amplified and coordinated with those employed for the determination of the anterior-posterior and dorsal-ventral axes of the embryo.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).

  18. Target and beam-target spin asymmetries in exclusive π+ and π- electroproduction with 1.6- to 5.7-GeV electrons

    NASA Astrophysics Data System (ADS)

    Bosted, P. E.; Biselli, A. S.; Careccia, S.; Dodge, G.; Fersch, R.; Guler, N.; Kuhn, S. E.; Pierce, J.; Prok, Y.; Zheng, X.; Adhikari, K. P.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Boiarinov, S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; McCracken, M. E.; McKinnon, B.; Meyer, C. A.; Minehart, R.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sparveris, N.; Stankovic, Ivana; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2016-11-01

    Beam-target double-spin asymmetries and target single-spin asymmetries in exclusive π+ and quasiexclusive π- electroproduction were obtained from scattering of 1.6- to 5.7-GeV longitudinally polarized electrons from longitudinally polarized protons (for π+) and deuterons (for π-) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic range covered is 1.1 asymmetry results were divided into approximately 40 000 kinematic bins for π+ from free protons and 15 000 bins for π- production from bound nucleons in the deuteron. The present results are found to be in reasonable agreement with fits to previous world data for W <1.7 GeV and Q2<0.5 GeV2 , with discrepancies increasing at higher values of Q2, especially for W >1.5 GeV. Very large target-spin asymmetries are observed for W >1.6 GeV. When combined with cross-section measurements, the present results can provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q2, for resonances with masses as high as 2.3 GeV.

  19. Target and beam-target spin asymmetries in exclusive π + and π - electroproduction with 1.6- to 5.7-GeV electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosted, P. E.; Biselli, A. S.; Careccia, S.

    Beam-target double-spin asymmetries and target single-spin asymmetries in exclusive pi(+) and quasiexclusive pi(-) electroproduction were obtained from scattering of 1.6- to 5.7-GeV longitudinally polarized electrons from longitudinally polarized protons (for pi(+)) and deuterons (for pi(-)) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic range covered is 1.1 < W < 2.6 GeV and 0.05 < Q(2) < 5 GeV2, with good angular coverage in the forward hemisphere. The asymmetry results were divided into approximately 40 000 kinematic bins for pi(+) from free protons and 15 000 bins for pi(-) production from bound nucleons in the deuteron.more » The present results are found to be in reasonable agreement with fits to previous world data for W < 1.7 GeV and Q(2) < 0.5 GeV2, with discrepancies increasing at higher values of Q(2), especially for W > 1.5 GeV. Very large target-spin asymmetries are observed for W > 1.6 GeV. When combined with cross-section measurements, the present results can provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q(2), for resonances with masses as high as 2.3 GeV.« less

  20. Three-dimensional assessment of facial asymmetry: A systematic review.

    PubMed

    Akhil, Gopi; Senthil Kumar, Kullampalayam Palanisamy; Raja, Subramani; Janardhanan, Kumaresan

    2015-08-01

    For patients with facial asymmetry, complete and precise diagnosis, and surgical treatments to correct the underlying cause of the asymmetry are significant. Conventional diagnostic radiographs (submento-vertex projections, posteroanterior radiography) have limitations in asymmetry diagnosis due to two-dimensional assessments of three-dimensional (3D) images. The advent of 3D images has greatly reduced the magnification and projection errors that are common in conventional radiographs making it as a precise diagnostic aid for assessment of facial asymmetry. Thus, this article attempts to review the newly introduced 3D tools in the diagnosis of more complex facial asymmetries.

  1. Entanglement asymmetry for boosted black branes and the bound

    NASA Astrophysics Data System (ADS)

    Mishra, Rohit; Singh, Harvendra

    2017-06-01

    We study the effects of asymmetry in the entanglement thermodynamics of CFT subsystems. It is found that “boosted” Dp-brane backgrounds give rise to the first law of the entanglement thermodynamics where the CFT pressure asymmetry plays a decisive role in the entanglement. Two different strip like subsystems, one parallel to the boost and the other perpendicular, are studied in the perturbative regime Tthermal ≪ TE. We mainly seek to quantify this entanglement asymmetry as a ratio of the first-order entanglement entropies of the excitations. We discuss the AdS-wave backgrounds at zero temperature having maximum asymmetry from where a bound on entanglement asymmetry is obtained. The entanglement asymmetry reduces as we switch on finite temperature in the CFT while it is maximum at zero temperature.

  2. Replication-associated mutational asymmetry in the human genome.

    PubMed

    Chen, Chun-Long; Duquenne, Lauranne; Audit, Benjamin; Guilbaud, Guillaume; Rappailles, Aurélien; Baker, Antoine; Huvet, Maxime; d'Aubenton-Carafa, Yves; Hyrien, Olivier; Arneodo, Alain; Thermes, Claude

    2011-08-01

    During evolution, mutations occur at rates that can differ between the two DNA strands. In the human genome, nucleotide substitutions occur at different rates on the transcribed and non-transcribed strands that may result from transcription-coupled repair. These mutational asymmetries generate transcription-associated compositional skews. To date, the existence of such asymmetries associated with replication has not yet been established. Here, we compute the nucleotide substitution matrices around replication initiation zones identified as sharp peaks in replication timing profiles and associated with abrupt jumps in the compositional skew profile. We show that the substitution matrices computed in these regions fully explain the jumps in the compositional skew profile when crossing initiation zones. In intergenic regions, we observe mutational asymmetries measured as differences between complementary substitution rates; their sign changes when crossing initiation zones. These mutational asymmetries are unlikely to result from cryptic transcription but can be explained by a model based on replication errors and strand-biased repair. In transcribed regions, mutational asymmetries associated with replication superimpose on the previously described mutational asymmetries associated with transcription. We separate the substitution asymmetries associated with both mechanisms, which allows us to determine for the first time in eukaryotes, the mutational asymmetries associated with replication and to reevaluate those associated with transcription. Replication-associated mutational asymmetry may result from unequal rates of complementary base misincorporation by the DNA polymerases coupled with DNA mismatch repair (MMR) acting with different efficiencies on the leading and lagging strands. Replication, acting in germ line cells during long evolutionary times, contributed equally with transcription to produce the present abrupt jumps in the compositional skew. These results

  3. Regional facial asymmetries and attractiveness of the face.

    PubMed

    Kaipainen, Anu E; Sieber, Kevin R; Nada, Rania M; Maal, Thomas J; Katsaros, Christos; Fudalej, Piotr S

    2016-12-01

    Facial attractiveness is an important factor in our social interactions. It is still not entirely clear which factors influence the attractiveness of a face and facial asymmetry appears to play a certain role. The aim of the present study was to assess the association between facial attractiveness and regional facial asymmetries evaluated on three-dimensional (3D) images. 3D facial images of 59 (23 male, 36 female) young adult patients (age 16-25 years) before orthodontic treatment were evaluated for asymmetry. The same 3D images were presented to 12 lay judges who rated the attractiveness of each subject on a 100mm visual analogue scale. Reliability of the method was assessed with Bland-Altman plots and Cronbach's alpha coefficient. All subjects showed a certain amount of asymmetry in all regions of the face; most asymmetry was found in the chin and cheek areas and less in the lip, nose and forehead areas. No statistically significant differences in regional facial asymmetries were found between male and female subjects (P > 0.05). Regression analyses demonstrated that the judgement of facial attractiveness was not influenced by absolute regional facial asymmetries when gender, facial width-to-height ratio and type of malocclusion were controlled (P > 0.05). A potential limitation of the study could be that other biologic and cultural factors influencing the perception of facial attractiveness were not controlled for. A small amount of asymmetry was present in all subjects assessed in this study, and asymmetry of this magnitude may not influence the assessment of facial attractiveness. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering

    DOE PAGES

    Wang, D.; Pan, K.; Subedi, R.; ...

    2015-04-01

    The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were publishedmore » earlier, but are presented here in more detail.« less

  5. Mercury exposure may influence fluctuating asymmetry in waterbirds

    USGS Publications Warehouse

    Herring, Garth; Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2017-01-01

    Variation in avian bilateral symmetry can be an indicator of developmental instability in response to a variety of stressors, including environmental contaminants. The authors used composite measures of fluctuating asymmetry to examine the influence of mercury concentrations in 2 tissues on fluctuating asymmetry within 4 waterbird species. Fluctuating asymmetry increased with mercury concentrations in whole blood and breast feathers of Forster's terns (Sterna forsteri), a species with elevated mercury concentrations. Specifically, fluctuating asymmetry in rectrix feather 1 was the most strongly correlated structural variable of those tested (wing chord, tarsus, primary feather 10, rectrix feather 6) with mercury concentrations in Forster's terns. However, for American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), and Caspian terns (Hydroprogne caspia), the authors found no relationship between fluctuating asymmetry and either whole-blood or breast feather mercury concentrations, even though these species had moderate to elevated mercury exposure. The results indicate that mercury contamination may act as an environmental stressor during development and feather growth and contribute to fluctuating asymmetry of some species of highly contaminated waterbirds.

  6. Cholinergic left-right asymmetry in the habenulo-interpeduncular pathway.

    PubMed

    Hong, Elim; Santhakumar, Kirankumar; Akitake, Courtney A; Ahn, Sang Jung; Thisse, Christine; Thisse, Bernard; Wyart, Claire; Mangin, Jean-Marie; Halpern, Marnie E

    2013-12-24

    The habenulo-interpeduncular pathway, a highly conserved cholinergic system, has emerged as a valuable model to study left-right asymmetry in the brain. In larval zebrafish, the bilaterally paired dorsal habenular nuclei (dHb) exhibit prominent left-right differences in their organization, gene expression, and connectivity, but their cholinergic nature was unclear. Through the discovery of a duplicated cholinergic gene locus, we now show that choline acetyltransferase and vesicular acetylcholine transporter homologs are preferentially expressed in the right dHb of larval zebrafish. Genes encoding the nicotinic acetylcholine receptor subunits α2 and β4 are transcribed in the target interpeduncular nucleus (IPN), suggesting that the asymmetrical cholinergic pathway is functional. To confirm this, we activated channelrhodopsin-2 specifically in the larval dHb and performed whole-cell patch-clamp recording of IPN neurons. The response to optogenetic or electrical stimulation of the right dHb consisted of an initial fast glutamatergic excitatory postsynaptic current followed by a slow-rising cholinergic current. In adult zebrafish, the dHb are divided into discrete cholinergic and peptidergic subnuclei that differ in size between the left and right sides of the brain. After exposing adults to nicotine, fos expression was activated in subregions of the IPN enriched for specific nicotinic acetylcholine receptor subunits. Our studies of the newly identified cholinergic gene locus resolve the neurotransmitter identity of the zebrafish habenular nuclei and reveal functional asymmetry in a major cholinergic neuromodulatory pathway of the vertebrate brain.

  7. Asymmetry of the Brain: Development and Implications.

    PubMed

    Duboc, Véronique; Dufourcq, Pascale; Blader, Patrick; Roussigné, Myriam

    2015-01-01

    Although the left and right hemispheres of our brains develop with a high degree of symmetry at both the anatomical and functional levels, it has become clear that subtle structural differences exist between the two sides and that each is dominant in processing specific cognitive tasks. As the result of evolutionary conservation or convergence, lateralization of the brain is found in both vertebrates and invertebrates, suggesting that it provides significant fitness for animal life. This widespread feature of hemispheric specialization has allowed the emergence of model systems to study its development and, in some cases, to link anatomical asymmetries to brain function and behavior. Here, we present some of what is known about brain asymmetry in humans and model organisms as well as what is known about the impact of environmental and genetic factors on brain asymmetry development. We specifically highlight the progress made in understanding the development of epithalamic asymmetries in zebrafish and how this model provides an exciting opportunity to address brain asymmetry at different levels of complexity.

  8. Comprehensive Analysis of Mandibular Residual Asymmetry after Bilateral Sagittal Split Ramus Osteotomy Correction of Menton Point Deviation

    PubMed Central

    Lin, Qiuping; Huang, Xiaoqiong; Xu, Yue; Yang, Xiaoping

    2016-01-01

    Purpose Facial asymmetry often persists even after mandibular deviation corrected by the bilateral sagittal split ramus osteotomy (BSSRO) operation, since the reference facial sagittal plane for the asymmetry analysis is usually set up before the mandibular menton (Me) point correction. Our aim is to develop a predictive and quantitative method to assess the true asymmetry of the mandible after a midline correction performed by a virtual BSSRO, and to verify its availability by evaluation of the post-surgical improvement. Patients and Methods A retrospective cohort study was conducted at the Hospital of Stomatology, Sun Yat-sen University (China) of patients with pure hemi-mandibular elongation (HE) from September 2010 through May 2014. Mandibular models were reconstructed from CBCT images of patients with pre-surgical orthodontic treatment. After mandibular de-rotation and midline alignment with virtual BSSRO, the elongation hemi-mandible was virtually mirrored along the facial sagittal plane. The residual asymmetry, defined as the superimposition and boolean operation of the mirrored elongation side on the normal side, was calculated, including the volumetric differences and the length of transversal and vertical asymmetry discrepancy. For more specific evaluation, both sides of the hemi-mandible were divided into the symphysis and parasymphysis (SP), mandibular body (MB), and mandibular angle (MA) regions. Other clinical variables include deviation of Me point, dental midline and molar relationship. The measurement of volumetric discrepancy between the two sides of post-surgical hemi-mandible were also calculated to verify the availability of virtual surgery. Paired t-tests were computed and the P value was set at .05. Results This study included 45 patients. The volume differences were 407.8±64.8 mm3, 2139.1±72.5 mm3, and 422.5±36.9 mm3; residual average transversal discrepancy, 1.9 mm, 1.0 mm, and 2.2 mm; average vertical discrepancy, 1.1 mm, 2.2 mm, and 2

  9. Comprehensive Analysis of Mandibular Residual Asymmetry after Bilateral Sagittal Split Ramus Osteotomy Correction of Menton Point Deviation.

    PubMed

    Lin, Han; Zhu, Ping; Lin, Qiuping; Huang, Xiaoqiong; Xu, Yue; Yang, Xiaoping

    2016-01-01

    Facial asymmetry often persists even after mandibular deviation corrected by the bilateral sagittal split ramus osteotomy (BSSRO) operation, since the reference facial sagittal plane for the asymmetry analysis is usually set up before the mandibular menton (Me) point correction. Our aim is to develop a predictive and quantitative method to assess the true asymmetry of the mandible after a midline correction performed by a virtual BSSRO, and to verify its availability by evaluation of the post-surgical improvement. A retrospective cohort study was conducted at the Hospital of Stomatology, Sun Yat-sen University (China) of patients with pure hemi-mandibular elongation (HE) from September 2010 through May 2014. Mandibular models were reconstructed from CBCT images of patients with pre-surgical orthodontic treatment. After mandibular de-rotation and midline alignment with virtual BSSRO, the elongation hemi-mandible was virtually mirrored along the facial sagittal plane. The residual asymmetry, defined as the superimposition and boolean operation of the mirrored elongation side on the normal side, was calculated, including the volumetric differences and the length of transversal and vertical asymmetry discrepancy. For more specific evaluation, both sides of the hemi-mandible were divided into the symphysis and parasymphysis (SP), mandibular body (MB), and mandibular angle (MA) regions. Other clinical variables include deviation of Me point, dental midline and molar relationship. The measurement of volumetric discrepancy between the two sides of post-surgical hemi-mandible were also calculated to verify the availability of virtual surgery. Paired t-tests were computed and the P value was set at .05. This study included 45 patients. The volume differences were 407.8±64.8 mm3, 2139.1±72.5 mm3, and 422.5±36.9 mm3; residual average transversal discrepancy, 1.9 mm, 1.0 mm, and 2.2 mm; average vertical discrepancy, 1.1 mm, 2.2 mm, and 2.2 mm (before virtual surgery). The

  10. Sensing phosphatidylserine in cellular membranes.

    PubMed

    Kay, Jason G; Grinstein, Sergio

    2011-01-01

    Phosphatidylserine, a phospholipid with a negatively charged head-group, is an important constituent of eukaryotic cellular membranes. On the plasma membrane, rather than being evenly distributed, phosphatidylserine is found preferentially in the inner leaflet. Disruption of this asymmetry, leading to the appearance of phosphatidylserine on the surface of the cell, is known to play a central role in both apoptosis and blood clotting. Despite its importance, comparatively little is known about phosphatidylserine in cells: its precise subcellular localization, transmembrane topology and intracellular dynamics are poorly characterized. The recent development of new, genetically-encoded probes able to detect phosphatidylserine within live cells, however, is leading to a more in-depth understanding of the biology of this phospholipid. This review aims to give an overview of the current methods for phosphatidylserine detection within cells, and some of the recent realizations derived from their use.

  11. Fluctuating asymmetry and stress in a medieval Nubian population.

    PubMed

    Deleon, Valerie B

    2007-04-01

    Fluctuating asymmetry is commonly used as a bioindicator of developmental stress. This study addresses asymmetry under nutritional/systemic stress in the human craniofacial skeleton and its utility as an indicator of developmental instability. Crania from the diachronic Christian cemeteries at Kulubnarti (Sudanese Nubia) were chosen as a model for nutrition/systemic stress. Previous studies indicate that individuals from the Early Christian cemetery were subjected to greater developmental stress when compared with individuals from the Late Christian cemetery. Therefore, crania from the Early Christian cemetery should display a greater magnitude of fluctuating asymmetry than crania from the Late Christian cemetery. Thirty adult crania of comparable age and sex were selected from each population. Landmark coordinates were digitized in two separate trials and averaged to minimize error. Euclidean distance matrix analysis (EDMA) was used to measure and compare the magnitude of fluctuating asymmetry in each sample. Results indicate that crania from the Early Christian cemetery display greater amounts of fluctuating asymmetry than those from the Late Christian cemetery, as predicted. The degree of fluctuating asymmetry for each linear distance is highly correlated between the cemeteries, suggesting that all humans may share common patterns of fluctuating asymmetry in the skull. In contrast, there is little correlation between magnitude of fluctuating asymmetry and length of linear distance, between-subject variability, or measurement error. These results support the hypothesis that poor nutrition/systemic stress increases developmental instability in the human skull and that increased fluctuating asymmetry constitutes morphological evidence of this stress.

  12. Transverse single-spin asymmetries: Challenges and recent progress

    DOE PAGES

    Metz, Andreas; Pitonyak, Daniel; Schafer, Andreas; ...

    2014-11-25

    In this study, transverse single-spin asymmetries are among the most intriguing observables in hadronic physics. Though such asymmetries were already measured for the first time about four decades ago, their origin is still under debate. Here we consider transverse single-spin asymmetries in semi-inclusive lepton–nucleon scattering, in nucleon–nucleon scattering, and in inclusive lepton–nucleon scattering. It is argued that, according to recent work, the single-spin asymmetries for those three processes may be simultaneously described in perturbative QCD, where the re-scattering of the active partons plays a crucial role. A comparison of single-spin asymmetries in different reactions can also shed light on themore » universality of transverse momentum dependent parton correlation functions. In particular, we discuss what existing data may tell us about the predicted process dependence of the Sivers function.« less

  13. Hemispheric asymmetry of visual scene processing in the human brain: evidence from repetition priming and intrinsic activity.

    PubMed

    Stevens, W Dale; Kahn, Itamar; Wig, Gagan S; Schacter, Daniel L

    2012-08-01

    Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes.

  14. Hemispheric Asymmetry of Visual Scene Processing in the Human Brain: Evidence from Repetition Priming and Intrinsic Activity

    PubMed Central

    Kahn, Itamar; Wig, Gagan S.; Schacter, Daniel L.

    2012-01-01

    Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes. PMID:21968568

  15. Effects of longitudinal asymmetry in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Raniwala, Rashmi; Raniwala, Sudhir; Loizides, Constantin

    2018-02-01

    In collisions of identical nuclei at a given impact parameter, the number of nucleons participating in the overlap region of each nucleus can be unequal due to nuclear density fluctuations. The asymmetry due to the unequal number of participating nucleons, referred to as longitudinal asymmetry, causes a shift in the center-of-mass rapidity of the participant zone. The information of the event asymmetry allows us to isolate and study the effect of longitudinal asymmetry on rapidity distribution of final state particles. In a Monte Carlo Glauber model the average rapidity shift is found to be almost linearly related to the asymmetry. Using toy models, as well as Monte Carlo data for Pb-Pb collisions at 2.76 TeV generated with hijing, two different versions of ampt and dpmjet models, we demonstrate that the effect of asymmetry on final state rapidity distribution can be quantitatively related to the average rapidity shift via a third-order polynomial with a dominantly linear term. The coefficients of the polynomial are proportional to the rapidity shift with the dependence being sensitive to the details of the rapidity distribution. Experimental estimates of the spectator asymmetry through the measurement of spectator nucleons in a zero-degree calorimeter may hence be used to further constrain the initial conditions in ultra-relativistic heavy-ion collisions.

  16. Nucleotide-induced asymmetry within ATPase activator ring drives σ54-RNAP interaction and ATP hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sysoeva, Tatyana A.; Chowdhury, Saikat; Guo, Liang

    2013-12-10

    It is largely unknown how the typical homomeric ring geometry of ATPases associated with various cellular activities enables them to perform mechanical work. Small-angle solution X-ray scattering, crystallography, and electron microscopy (EM) reconstructions revealed that partial ATP occupancy caused the heptameric closed ring of the bacterial enhancer-binding protein (bEBP) NtrC1 to rearrange into a hexameric split ring of striking asymmetry. The highly conserved and functionally crucial GAFTGA loops responsible for interacting with σ54–RNA polymerase formed a spiral staircase. We propose that splitting of the ensemble directs ATP hydrolysis within the oligomer, and the ring's asymmetry guides interaction between ATPase andmore » the complex of σ54 and promoter DNA. Similarity between the structure of the transcriptional activator NtrC1 and those of distantly related helicases Rho and E1 reveals a general mechanism in homomeric ATPases whereby complex allostery within the ring geometry forms asymmetric functional states that allow these biological motors to exert directional forces on their target macromolecules.« less

  17. Navigating novel mechanisms of cellular plasticity with the NAD+ precursor and nutrient nicotinamide.

    PubMed

    Li, Faqi; Chong, Zhao Zhong; Maiese, Kenneth

    2004-09-01

    Interest in neuroprotectants for the central nervous system continues to garner significant attention. Nicotinamide, the amide form of niacin (vitamin B3), is the precursor for the coenzyme beta-nicotinamide adenine dinucleotide (NAD+) and is considered to be necessary for cellular function and metabolism. However, recent work has focused on the development of nicotinamide as a novel agent that is critical for modulating cellular plasticity, longevity, and inflammatory microglial function. The ability of nicotinamide to preserve both neuronal and vascular cell populations in the brain during injury is intriguing, but further knowledge of the specific cellular mechanisms that determine protection by this agent is required. The capacity of nicotinamide to govern not only intrinsic cellular integrity, but also extrinsic cellular inflammation rests with the modulation of a host of cellular targets that involve protein kinase B, glycogen synthase kinase-3 beta (GSK-3 beta), Forkhead transcription factors, mitochondrial dysfunction, poly(ADP-ribose) polymerase, cysteine proteases, and microglial activation. Intimately tied to the cytoprotection of nicotinamide is the modulation of an early and late phase of apoptotic injury that is triggered by the loss of membrane asymmetry. Identifying robust cytoprotective agents as nicotinamide in conjunction with the elucidation of the cellular mechanisms responsible for cell survival will continue to solidify the development of therapeutic strategies against neurodegenerative diseases

  18. Gait asymmetry: composite scores for mechanical analyses of sprint running.

    PubMed

    Exell, T A; Gittoes, M J R; Irwin, G; Kerwin, D G

    2012-04-05

    Gait asymmetry analyses are beneficial from clinical, coaching and technology perspectives. Quantifying overall athlete asymmetry would be useful in allowing comparisons between participants, or between asymmetry and other factors, such as sprint running performance. The aim of this study was to develop composite kinematic and kinetic asymmetry scores to quantify athlete asymmetry during maximal speed sprint running. Eight male sprint trained athletes (age 22±5 years, mass 74.0±8.7 kg and stature 1.79±0.07 m) participated in this study. Synchronised sagittal plane kinematic and kinetic data were collected via a CODA motion analysis system, synchronised to two Kistler force plates. Bilateral, lower limb data were collected during the maximal velocity phase of sprint running (velocity=9.05±0.37 ms(-1)). Kinematic and kinetic composite asymmetry scores were developed using the previously established symmetry angle for discrete variables associated with successful sprint performance and comparisons of continuous joint power data. Unlike previous studies quantifying gait asymmetry, the scores incorporated intra-limb variability by excluding variables from the composite scores that did not display significantly larger (p<0.05) asymmetry than intra-limb variability. The variables that contributed to the composite scores and the magnitude of asymmetry observed for each measure varied on an individual participant basis. The new composite scores indicated the inter-participant differences that exist in asymmetry during sprint running and may serve to allow comparisons between overall athlete asymmetry with other important factors such as performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Precise discussion of time-reversal asymmetries in B-meson decays

    DOE PAGES

    Morozumi, Takuya; Okane, Hideaki; Umeeda, Hiroyuki

    2015-02-26

    BaBar collaboration announced that they observed time reversal (T) asymmetry through B meson system. In the experiment, time dependencies of two distinctive processes, B_ →B¯ 0 and B¯ 0 → B_ (– expresses CP value) are compared with each other. In our study, we examine event number difference of these two processes. In contrast to the BaBar asymmetry, the asymmetry of events number includes the overall normalization difference for rates. Time dependence of the asymmetry is more general and it includes terms absent in one used by BaBar collaboration. Both of the BaBar asymmetry and ours are naively thought tomore » be T-odd since two processes compared are related with flipping time direction. We investigate the time reversal transformation property of our asymmetry. Using our notation, one can see that the asymmetry is not precisely a T-odd quantity, taking into account indirect CP and CPT violation of K meson systems. The effect of ϵK is extracted and gives rise to O(10 –3) contribution. The introduced parameters are invariant under rephasing of quarks so that the coefficients of our asymmetry are expressed as phase convention independent quantities. Some combinations of the asymmetry enable us to extract parameters for wrong sign decays of B d meson, CPT violation, etc. As a result, we also study the reason why the T-even terms are allowed to contribute to the asymmetry, and find that several conditions are needed for the asymmetry to be a T-odd quantity.« less

  20. A voxel-based approach to gray matter asymmetries.

    PubMed

    Luders, E; Gaser, C; Jancke, L; Schlaug, G

    2004-06-01

    Voxel-based morphometry (VBM) was used to analyze gray matter (GM) asymmetries in a large sample (n = 60) of male and female professional musicians with and without absolute pitch (AP). We chose to examine these particular groups because previous studies using traditional region-of-interest (ROI) analyses have shown differences in hemispheric asymmetry related to AP and gender. Voxel-based methods may have advantages over traditional ROI-based methods since the analysis can be performed across the whole brain with minimal user bias. After determining that the VBM method was sufficiently sensitive for the detection of differences in GM asymmetries between groups, we found that male AP musicians were more leftward lateralized in the anterior region of the planum temporale (PT) than male non-AP musicians. This confirmed the results of previous studies using ROI-based methods that showed an association between PT asymmetry and the AP phenotype. We further observed that male non-AP musicians revealed an increased leftward GM asymmetry in the postcentral gyrus compared to female non-AP musicians, again corroborating results of a previously published study using ROI-based methods. By analyzing hemispheric GM differences across our entire sample, we were able to partially confirm findings of previous studies using traditional morphometric techniques, as well as more recent, voxel-based analyses. In addition, we found some unusually pronounced GM asymmetries in our musician sample not previously detected in subjects unselected for musical training. Since we were able to validate gender- and AP-related brain asymmetries previously described using traditional ROI-based morphometric techniques, the results of our analyses support the use of VBM for examinations of GM asymmetries.

  1. Target and beam-target spin asymmetries in exclusive π + and π – electroproduction with 1.6- to 5.7-GeV electrons

    DOE PAGES

    Bosted, P. E.; Biselli, A. S.; Careccia, S.; ...

    2016-11-01

    Here, beam-target double-spin asymmetries and target single-spin asymmetries in exclusive π + and quasiexclusive π – electroproduction were obtained from scattering of 1.6- to 5.7-GeV longitudinally polarized electrons from longitudinally polarized protons (for π +) and deuterons (for π –) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic range covered is 1.1 < W < 2.6 GeV and 0.05 < Q 2 < 5GeV 2, with good angular coverage in the forward hemisphere. The asymmetry results were divided into approximately 40 000 kinematic bins for π + from free protons and 15 000 bins for πmore » – production from bound nucleons in the deuteron. The present results are found to be in reasonable agreement with fits to previous world data for W < 1.7 GeV and Q 2 < 0.5GeV 2, with discrepancies increasing at higher values of Q 2, especially for W > 1.5 GeV. Very large target-spin asymmetries are observed for W > 1.6 GeV. When combined with cross-section measurements, the present results can provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q 2, for resonances with masses as high as 2.3 GeV.« less

  2. Hertwig's Epithelial Root Sheath Fate during Initial Cellular Cementogenesis in Rat Molars.

    PubMed

    Yamamoto, Tsuneyuki; Yamada, Tamaki; Yamamoto, Tomomaya; Hasegawa, Tomoka; Hongo, Hiromi; Oda, Kimimitsu; Amizuka, Norio

    2015-06-29

    To elucidate the fate of the epithelial root sheath during initial cellular cementogenesis, we examined developing maxillary first molars of rats by immunohistochemistry for keratin, vimentin, and tissue non-specific alkaline phosphatase (TNALP) and by TdT-mediated dUTP nick end labeling (TUNEL). The advancing root end was divided into three sections, which follow three distinct stages of initial cellular cementogenesis: section 1, where the epithelial sheath is intact; section 2, where the epithelial sheath becomes fragmented; and section 3, where initial cellular cementogenesis begins. After fragmentation of the epithelial sheath, many keratin-positive epithelial sheath cells were embedded in the rapidly growing cellular cementum. A few unembedded epithelial cells located on the cementum surface. Dental follicle cells, precementoblasts, and cementoblasts showed immunoreactivity for vimentin and TNALP. In all three sections, there were virtually no cells possessing double immunoreactivity for vimentin-keratin or TNALP-keratin and only embedded epithelial cells showed TUNEL reactivity. Taken together, these findings suggest that: (1) epithelial sheath cells divide into two groups; one group is embedded in the cementum and thereafter dies by apoptosis, and the other survives on the cementum surface as epithelial cell rests of Malassez; and (2) epithelial sheath cells do not undergo epithelial-mesenchymal transition during initial cellular cementogenesis.

  3. Asymmetry in power-law magnitude correlations.

    PubMed

    Podobnik, Boris; Horvatić, Davor; Tenenbaum, Joel N; Stanley, H Eugene

    2009-07-01

    Time series of increments can be created in a number of different ways from a variety of physical phenomena. For example, in the phenomenon of volatility clustering-well-known in finance-magnitudes of adjacent increments are correlated. Moreover, in some time series, magnitude correlations display asymmetry with respect to an increment's sign: the magnitude of |x_{i}| depends on the sign of the previous increment x_{i-1} . Here we define a model-independent test to measure the statistical significance of any observed asymmetry. We propose a simple stochastic process characterized by a an asymmetry parameter lambda and a method for estimating lambda . We illustrate both the test and process by analyzing physiological data.

  4. Facial asymmetry quantitative evaluation in oculoauriculovertebral spectrum.

    PubMed

    Manara, Renzo; Schifano, Giovanni; Brotto, Davide; Mardari, Rodica; Ghiselli, Sara; Gerunda, Antonio; Ghirotto, Cristina; Fusetti, Stefano; Piacentile, Katherine; Scienza, Renato; Ermani, Mario; Martini, Alessandro

    2016-03-01

    Facial asymmetries in oculoauriculovertebral spectrum (OAVS) patients might require surgical corrections that are mostly based on qualitative approach and surgeon's experience. The present study aimed to develop a quantitative 3D CT imaging-based procedure suitable for maxillo-facial surgery planning in OAVS patients. Thirteen OAVS patients (mean age 3.5 ± 4.0 years; range 0.2-14.2, 6 females) and 13 controls (mean age 7.1 ± 5.3 years; range 0.6-15.7, 5 females) who underwent head CT examination were retrospectively enrolled. Eight bilateral anatomical facial landmarks were defined on 3D CT images (porion, orbitale, most anterior point of frontozygomatic suture, most superior point of temporozygomatic suture, most posterior-lateral point of the maxilla, gonion, condylion, mental foramen) and distance from orthogonal planes (in millimeters) was used to evaluate the asymmetry on each axis and to calculate a global asymmetry index of each anatomical landmark. Mean asymmetry values and relative confidence intervals were obtained from the control group. OAVS patients showed 2.5 ± 1.8 landmarks above the confidence interval while considering the global asymmetry values; 12 patients (92%) showed at least one pathologically asymmetric landmark. Considering each axis, the mean number of pathologically asymmetric landmarks increased to 5.5 ± 2.6 (p = 0.002) and all patients presented at least one significant landmark asymmetry. Modern CT-based 3D reconstructions allow accurate assessment of facial bone asymmetries in patients affected by OAVS. The evaluation as a global score and in different orthogonal axes provides precise quantitative data suitable for maxillo-facial surgical planning. CT-based 3D reconstruction might allow a quantitative approach for planning and following-up maxillo-facial surgery in OAVS patients.

  5. What determines direction of asymmetry: genes, environment or chance?

    PubMed Central

    2016-01-01

    Conspicuous asymmetries seen in many animals and plants offer diverse opportunities to test how the development of a similar morphological feature has evolved in wildly different types of organisms. One key question is: do common rules govern how direction of asymmetry is determined (symmetry is broken) during ontogeny to yield an asymmetrical individual? Examples from numerous organisms illustrate how diverse this process is. These examples also provide some surprising answers to related questions. Is direction of asymmetry in an individual determined by genes, environment or chance? Is direction of asymmetry determined locally (structure by structure) or globally (at the level of the whole body)? Does direction of asymmetry persist when an asymmetrical structure regenerates following autotomy? The answers vary greatly for asymmetries as diverse as gastropod coiling direction, flatfish eye side, crossbill finch bill crossing, asymmetrical claws in shrimp, lobsters and crabs, katydid sound-producing structures, earwig penises and various plant asymmetries. Several examples also reveal how stochastic asymmetry in mollusc and crustacean early cleavage, in Drosophila oogenesis, and in Caenorhabditis elegans epidermal blast cell movement, is a normal component of deterministic development. Collectively, these examples shed light on the role of genes as leaders or followers in evolution. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821528

  6. Discriminating different Z{sup '}'s via asymmetries at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Zhongqiu; Xiao Bo; Wang Youkai

    2011-05-01

    In practice the asymmetry, which is defined based on the angular distribution of the final states in scattering or decay processes, can be utilized to scrutinize underlying dynamics in and/or beyond the standard model (BSM). As one of the possible BSM physics which might be discovered early at the LHC, extra neutral gauge bosons Z{sup '}'s are theoretically well motivated. Once Z{sup '}'s are discovered at the LHC, it is crucial to discriminate different Z{sup '}'s in various BSM. In principle such a task can be accomplished by measuring the angular distribution of the final states which are produced viamore » Z{sup '}-mediated processes. In the real data analysis, asymmetry is always adopted. In the literature several asymmetries have been proposed at the LHC. Based on these works, we stepped further on to study how to optimize the asymmetries in the left-right model and the sequential standard model, as the examples of BSM. In this paper, we examined four kinds of asymmetries, namely, rapidity-dependent forward-backward asymmetry, oneside forward-backward asymmetry, central charge asymmetry, and edge charge asymmetry (see text for details), with l{sup +}l{sup -} (l=e, {mu}), bb, and tt as the final states. In the calculations with bb and tt final states, the QCD-induced higher-order contributions to the asymmetric cross section were also included. For each kind of final state, we estimated the four kinds of asymmetries and especially the optimal cut usually associated with the definition of the asymmetry. Our numerical results indicated that the capacity to discriminate Z{sup '} models can be improved by imposing the optimal cuts.« less

  7. Forward-backward asymmetry in top quark-antiquark production

    DOE PAGES

    Abazov, Victor Mukhamedovich

    2011-12-12

    We present a measurement of forward-backward asymmetry in top quark-antiquark production in proton-antiproton collisions in the final state containing a lepton and at least four jets. Using a dataset corresponding to an integrated luminosity of 5.4 fb -1, collected by the D0 experiment at the Fermilab Tevatron Collider, we measure the t{bar t} forward-backward asymmetry to be (9.2 ± 3.7)% at the reconstruction level. When corrected for detector acceptance and resolution, the asymmetry is found to be (19.6 ± 6.5)%. We also measure a corrected asymmetry based on the lepton from a top quark decay, found to be (15.2 ±more » 4.0)%. The results are compared to predictions based on the next-to-leading-order QCD generator mc@nlo. The sensitivity of the measured and predicted asymmetries to the modeling of gluon radiation is discussed.« less

  8. Infant Positioning, Baby Gear Use, and Cranial Asymmetry.

    PubMed

    Zachry, Anne H; Nolan, Vikki G; Hand, Sarah B; Klemm, Susan A

    2017-12-01

    Objectives This study aimed to identify predictors of cranial asymmetry. We hypothesize that among infants diagnosed with cranial asymmetry in the sampled region, there is an association between exposure to more time in baby gear and less awake time in prone and side-lying than in infants who do not present with this condition. Methods The study employed a cross sectional survey of caregivers of typically developing infants and infants diagnosed with cranial asymmetry. Results A mutivariable model reveals that caregivers of children who are diagnosed with cranial asymmetry report their children spending significantly less time in prone play than those children without a diagnosis of cranial asymmetry. Side-lying and time spent in baby gear did not attain statistical significance. Conclusions for Practice Occupational therapists, physical therapists, pediatricians, nurses and other health care professionals must provide parents with early education about the importance of varying positions and prone play in infancy and address fears and concerns that may serve as barriers to providing prone playtime.

  9. Bottom-quark forward-backward asymmetry in the standard model and beyond.

    PubMed

    Grinstein, Benjamín; Murphy, Christopher W

    2013-08-09

    We computed the bottom-quark forward-backward asymmetry at the Tevatron in the standard model (SM) and for several new physics scenarios. Near the Z pole, the SM bottom asymmetry is dominated by tree level exchanges of electroweak gauge bosons. While above the Z pole, next-to-leading order QCD dominates the SM asymmetry as was the case with the top-quark forward-backward asymmetry. Light new physics, M(NP)≲150  GeV, can cause significant deviations from the SM prediction for the bottom asymmetry. The bottom asymmetry can be used to distinguish between competing new physics (NP) explanations of the top asymmetry based on how the NP interferes with s-channel gluon and Z exchange.

  10. Birth order and fluctuating asymmetry: a first look.

    PubMed Central

    Lalumière, M L; Harris, G T; Rice, M E

    1999-01-01

    We investigated the hypothesis that maternal immunoreactivity to male-specific features of the foetus can increase developmental instability. We predicted that the participants' number of older brothers would be positively related to the fluctuating asymmetry of ten bilateral morphological traits. The participants were 40 adult male psychiatric patients and 31 adult male hospital employees. Consistent with the hypothesis, the participants' number of older brothers--but not number of older sisters, younger brothers or younger sisters--was positively associated with fluctuating asymmetry. The patients had significantly larger fluctuating asymmetry scores and tended to have more older brothers than the employees, but the positive relationship between the number of older brothers and fluctuating asymmetry was observed in both groups. PMID:10643079

  11. Cerebral blood flow asymmetries in headache-free migraineurs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, S.R.; Welch, K.M.; Ewing, J.R.

    1987-11-01

    Regional cerebral blood flow (rCBF) asymmetries were studied in controls and patients with common and classic/complicated migraine using /sup 133/Xe inhalation with 8 homologously situated external collimators over each cerebral hemisphere. Migraine patients as a group more frequently had posterior rCBF asymmetries than controls (p less than 0.03). Although there were no differences in the number of anterior rCBF asymmetries, migraine patients had 2 or more asymmetric probe pairs more often than controls (p less than 0.02). The posterior rCBF asymmetries, consistent with the site of activation of many migraine attacks, may be related to more labile control of themore » cerebral circulation.« less

  12. The association between static pelvic asymmetry and low back pain.

    PubMed

    Levangie, P K

    1999-06-15

    A cross-sectional case-control approach was used to estimate the association between low back pain of less than 12 months' duration and pelvic asymmetry among 21-50-year-old patients seeking physical therapy services. To evaluate the premise that asymmetrical positioning of the innominates of the pelvis is a source of low back pain. No published studies have been conducted to evaluate systematically the association between low back pain and pelvic asymmetry in a clinic-based sample. Pelvic landmark data were obtained in 144 cases and 138 control subjects. The associations of low back pain with levels of pelvic asymmetry were estimated by use of odds ratios and 95% confidence intervals. Effect modification and confounding of the low back pain-pelvic asymmetry association by several factors was assessed and alternative asymmetry measures considered. Pelvic asymmetry was not positively associated with low back pain in any way that seemed clinically meaningful. Asymmetry of posterior superior iliac spine landmarks showed some evidence of a weak positive association with low back pain. In the absence of meaningful positive association between pelvic asymmetry and low back pain, evaluation and treatment strategies based on this premise should be questioned.

  13. Symmetry and asymmetry in the human brain

    NASA Astrophysics Data System (ADS)

    Hugdahl, Kenneth

    2005-10-01

    Structural and functional asymmetry in the human brain and nervous system is reviewed in a historical perspective, focusing on the pioneering work of Broca, Wernicke, Sperry, and Geschwind. Structural and functional asymmetry is exemplified from work done in our laboratory on auditory laterality using an empirical procedure called dichotic listening. This also involves different ways of validating the dichotic listening procedure against both invasive and non-invasive techniques, including PET and fMRI blood flow recordings. A major argument is that the human brain shows a substantial interaction between structurally, or "bottom-up" asymmetry and cognitively, or "top-down" modulation, through a focus of attention to the right or left side in auditory space. These results open up a more dynamic and interactive view of functional brain asymmetry than the traditional static view that the brain is lateralized, or asymmetric, only for specific stimuli and stimulus properties.

  14. Sensing Phosphatidylserine in Cellular Membranes

    PubMed Central

    Kay, Jason G.; Grinstein, Sergio

    2011-01-01

    Phosphatidylserine, a phospholipid with a negatively charged head-group, is an important constituent of eukaryotic cellular membranes. On the plasma membrane, rather than being evenly distributed, phosphatidylserine is found preferentially in the inner leaflet. Disruption of this asymmetry, leading to the appearance of phosphatidylserine on the surface of the cell, is known to play a central role in both apoptosis and blood clotting. Despite its importance, comparatively little is known about phosphatidylserine in cells: its precise subcellular localization, transmembrane topology and intracellular dynamics are poorly characterized. The recent development of new, genetically-encoded probes able to detect phosphatidylserine within live cells, however, is leading to a more in-depth understanding of the biology of this phospholipid. This review aims to give an overview of the current methods for phosphatidylserine detection within cells, and some of the recent realizations derived from their use. PMID:22319379

  15. The Relationship Between Asymmetry and Athletic Performance: A Critical Review.

    PubMed

    Maloney, Sean J

    2018-05-08

    Maloney, SJ. The relationship between asymmetry and athletic performance: A critical review. J Strength Cond Res XX(X): 000-000, 2018-Symmetry may be defined as the quality to demonstrate an exact correspondence of size, shape, and form when split along a given axis. Although it has been widely asserted that the bilateral asymmetries are detrimental to athletic performance, research does not wholly support such an association. Moreover, the research rarely seeks to distinguish between different types of bilateral asymmetry. Fluctuating asymmetries describe bilateral differences in anthropometric attributes, such as nostril width and ear size, and are thought to represent the developmental stability of an organism. There is evidence to suggest that fluctuating asymmetries may be related to impaired athletic performance, although contradictory findings have been reported. Sporting asymmetries is a term that may better describe bilateral differences in parameters, such as force output or jump height. These asymmetries are likely to be a function of limb dominance and magnified by long-standing participation within sport. Sporting asymmetries do not seem to carry a clear influence on athletic performance measures. Given the vast discrepancy in the methodologies used by different investigations, further research is warranted. Recent investigations have demonstrated that training interventions can reduce sporting asymmetries and improve performance. However, studies have not sought to determine whether the influence of sporting asymmetry is independent of improvements in neuromuscular parameters. It may be hypothesized that the deficient (weaker) limb has a greater potential for adaptation in comparison to the strong limb and may demonstrate greater responsiveness to training.

  16. Geometric asymmetry driven Janus micromotors.

    PubMed

    Zhao, Guanjia; Pumera, Martin

    2014-10-07

    The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a "coconut" micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors.

  17. Asymmetry dependence of the caloric curve for mononuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoel, C.; Sobotka, L. G.; Charity, R. J.

    2007-01-15

    The asymmetry dependence of the caloric curve, for mononuclear configurations, is studied as a function of neutron-to-proton asymmetry with a model that allows for independent variation of the neutron and proton surface diffusenesses. The evolution of the effective mass with density and excitation is included in a schematic fashion and the entropies are extracted in a local density approximation. The plateau in the caloric curve displays only a slight sensitivity to the asymmetry.

  18. Hertwig’s Epithelial Root Sheath Fate during Initial Cellular Cementogenesis in Rat Molars

    PubMed Central

    Yamamoto, Tsuneyuki; Yamada, Tamaki; Yamamoto, Tomomaya; Hasegawa, Tomoka; Hongo, Hiromi; Oda, Kimimitsu; Amizuka, Norio

    2015-01-01

    To elucidate the fate of the epithelial root sheath during initial cellular cementogenesis, we examined developing maxillary first molars of rats by immunohistochemistry for keratin, vimentin, and tissue non-specific alkaline phosphatase (TNALP) and by TdT-mediated dUTP nick end labeling (TUNEL). The advancing root end was divided into three sections, which follow three distinct stages of initial cellular cementogenesis: section 1, where the epithelial sheath is intact; section 2, where the epithelial sheath becomes fragmented; and section 3, where initial cellular cementogenesis begins. After fragmentation of the epithelial sheath, many keratin-positive epithelial sheath cells were embedded in the rapidly growing cellular cementum. A few unembedded epithelial cells located on the cementum surface. Dental follicle cells, precementoblasts, and cementoblasts showed immunoreactivity for vimentin and TNALP. In all three sections, there were virtually no cells possessing double immunoreactivity for vimentin-keratin or TNALP-keratin and only embedded epithelial cells showed TUNEL reactivity. Taken together, these findings suggest that: (1) epithelial sheath cells divide into two groups; one group is embedded in the cementum and thereafter dies by apoptosis, and the other survives on the cementum surface as epithelial cell rests of Malassez; and (2) epithelial sheath cells do not undergo epithelial-mesenchymal transition during initial cellular cementogenesis. PMID:26160988

  19. CP asymmetry in charged Higgs decays to chargino-neutralino pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Mariana; Turan, Ismail

    2007-10-01

    We analyze the charge-parity (CP) asymmetry in the charged Higgs boson decays to chargino-neutralino pairs, H{sup {+-}}{yields}{chi}{sub i}{sup {+-}}{chi}{sub j}{sup 0}, i=1, 2, j=1,...,4. We show first that these modes have a large branching ratio for m{sub H{sup {+-}}} > or approx. 600 GeV. We use Cutkosky rules to obtain the analytical formulas needed for the evaluation of the asymmetry under consideration. We then calculate the CP asymmetry in chargino-neutralino decays by including supersymmetric mass bounds, as well as constraints from b{yields}s{gamma} (g-2){sub {mu}}, {delta}{rho} and electric dipole moments. Finally, we discuss observability of the asymmetry at the LHC bymore » calculating the number of required charged Higgs events to observe the asymmetry for each decay channel. We show that the inclusion of constraints considerably reduces the projected CP asymmetry, and that the optimal channel for observing the asymmetry is H{sup {+-}}{yields}{chi}{sub 1}{sup {+-}}{chi}{sub 2}{sup 0}.« less

  20. Subcycle dynamics of Coulomb asymmetry in strong elliptical laser fields.

    PubMed

    Li, Min; Liu, Yunquan; Liu, Hong; Ning, Qicheng; Fu, Libin; Liu, Jie; Deng, Yongkai; Wu, Chengyin; Peng, Liang-You; Peng, Liangyou; Gong, Qihuang

    2013-07-12

    We measure photoelectron angular distributions of noble gases in intense elliptically polarized laser fields, which indicate strong structure-dependent Coulomb asymmetry. Using a dedicated semiclassical model, we have disentangled the contribution of direct ionization and multiple forward scattering on Coulomb asymmetry in elliptical laser fields. Our theory quantifies the roles of the ionic potential and initial transverse momentum on Coulomb asymmetry, proving that the small lobes of asymmetry are induced by direct ionization and the strong asymmetry is induced by multiple forward scattering in the ionic potential. Both processes are distorted by the Coulomb force acting on the electrons after tunneling. Lowering the ionization potential, the relative contribution of direct ionization on Coulomb asymmetry substantially decreases and Coulomb focusing on multiple rescattering is more important. We do not observe evident initial longitudinal momentum spread at the tunnel exit according to our simulation.

  1. First unitary, then divided: the temporal dynamics of dividing attention.

    PubMed

    Jefferies, Lisa N; Witt, Joseph B

    2018-04-24

    Whether focused visual attention can be divided has been the topic of much investigation, and there is a compelling body of evidence showing that, at least under certain conditions, attention can be divided and deployed as two independent foci. Three experiments were conducted to examine whether attention can be deployed in divided form from the outset, or whether it is first deployed as a unitary focus before being divided. To test this, we adapted the methodology of Jefferies, Enns, and Di Lollo (Journal of Experimental Psychology: Human Perception and Performance 40: 465, 2014), who used a dual-stream Attentional Blink paradigm and two letter-pair targets. One aspect of the AB, Lag-1 sparing, has been shown to occur only if the second target pair appears within the focus of attention. By presenting the second target pair at various spatial locations and assessing the magnitude of Lag-1 sparing, we probed the spatial distribution of attention. By systematically manipulating the stimulus-onset-asynchrony between the targets, we also tracked changes to the spatial distribution of attention over time. The results showed that even under conditions which encourage the division of attention, the attentional focus is first deployed in unitary form before being divided. It is then maintained in divided form only briefly before settling on a single location.

  2. CMB hemispherical asymmetry from non-linear isocurvature perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan

    2015-04-01

    We investigate whether non-adiabatic perturbations from inflation could produce an asymmetric distribution of temperature anisotropies on large angular scales in the cosmic microwave background (CMB). We use a generalised non-linear δ N formalism to calculate the non-Gaussianity of the primordial density and isocurvature perturbations due to the presence of non-adiabatic, but approximately scale-invariant field fluctuations during multi-field inflation. This local-type non-Gaussianity leads to a correlation between very long wavelength inhomogeneities, larger than our observable horizon, and smaller scale fluctuations in the radiation and matter density. Matter isocurvature perturbations contribute primarily to low CMB multipoles and hence can lead to a hemisphericalmore » asymmetry on large angular scales, with negligible asymmetry on smaller scales. In curvaton models, where the matter isocurvature perturbation is partly correlated with the primordial density perturbation, we are unable to obtain a significant asymmetry on large angular scales while respecting current observational constraints on the observed quadrupole. However in the axion model, where the matter isocurvature and primordial density perturbations are uncorrelated, we find it may be possible to obtain a significant asymmetry due to isocurvature modes on large angular scales. Such an isocurvature origin for the hemispherical asymmetry would naturally give rise to a distinctive asymmetry in the CMB polarisation on large scales.« less

  3. Femoral head asymmetry and coxa magna: anatomic study.

    PubMed

    Young, Ernest Y; Gebhart, Jeremy J; Bajwa, Navkirat; Cooperman, Daniel R; Ahn, Nicholas U

    2014-06-01

    Coxa magna, the asymmetrical circumferential enlargement of the femoral head, is an important sequela of pediatric disorders such as Legg-Calvé-Perthes disease. Definitions vary because of lack of controls and a scarcity of research on the distribution of the femoral head asymmetry. This study aims at defining the normal distribution of asymmetry between the left and the right femoral head and neck in the population and how demographics affect these properties. The study also looked at the distribution of side dominance (left or right). This study measured 230 paired femurs from individuals (20 to 40 y old) distributed for sex and ethnicity. The height and weight of the individuals were also recorded. The femoral head diameter and minimal femoral neck diameter in the anteroposterior view were measured on each paired femurs. The absolute and percent differences were determined to define asymmetry. Most of the population fell within 3% of asymmetry for the femoral head and 4% for the femoral neck. The maximum head percent asymmetry was 7.4%. Absolute difference in millimeters to percent asymmetry showed a ratio of 2:1 for the femoral head and 3:1 for the femoral neck. African Americans showed greater femoral head symmetry and a bias toward left-sided femoral head and neck enlargement when compared with their white counterparts. There was a high degree of symmetry between the left and right femoral heads and necks, which supports definitions found in the literature that define coxa magna above 10%. This study defines asymmetry in the femoral head in the normal population, which will help to define a quantitative definition of coxa magna.

  4. Mapping the stability of human brain asymmetry across five sex-chromosome aneuploidies.

    PubMed

    Lin, Amy; Clasen, Liv; Lee, Nancy Raitano; Wallace, Gregory L; Lalonde, Francois; Blumenthal, Jonathan; Giedd, Jay N; Raznahan, Armin

    2015-01-07

    The human brain displays stereotyped and early emerging patterns of cortical asymmetry in health. It is unclear if these asymmetries are highly sensitive to genetic and environmental variation or fundamental features of the brain that can survive severe developmental perturbations. To address this question, we mapped cortical thickness (CT) asymmetry in a group of genetically defined disorders known to impact CT development. Participants included 137 youth with one of five sex-chromosome aneuploidies [SCAs; XXX (n = 28), XXY (n = 58), XYY (n = 26), XXYY (n = 20), and XXXXY (n = 5)], and 169 age-matched typically developing controls (80 female). In controls, we replicated previously reported rightward inferior frontal and leftward lateral parietal CT asymmetry. These opposing frontoparietal CT asymmetries were broadly preserved in all five SCA groups. However, we also detected foci of shifting CT asymmetry with aneuploidy, which fell almost exclusively within regions of significant CT asymmetry in controls. Specifically, X-chromosome aneuploidy accentuated normative rightward inferior frontal asymmetries, while Y-chromosome aneuploidy reversed normative rightward medial prefrontal and lateral temporal asymmetries. These findings indicate that (1) the stereotyped normative pattern of opposing frontoparietal CT asymmetry arises from developmental mechanisms that can withstand gross chromosomal aneuploidy and (2) X and Y chromosomes can exert focal, nonoverlapping and directionally opposed influences on CT asymmetry within cortical regions of significant asymmetry in health. Our study attests to the resilience of developmental mechanisms that support the global patterning of CT asymmetry in humans, and motivates future research into the molecular bases and functional consequences of sex chromosome dosage effects on CT asymmetry. Copyright © 2015 the authors 0270-6474/15/350140-06$15.00/0.

  5. Atypical Alpha Asymmetry in Adults with ADHD

    ERIC Educational Resources Information Center

    Hale, T. Sigi; Smalley, Susan L.; Hanada, Grant; Macion, James; McCracken, James T.; McGough, James J.; Loo, Sandra K.

    2009-01-01

    Introduction: A growing body of literature suggests atypical cerebral asymmetry and interhemispheric interaction in ADHD. A common means of assessing lateralized brain function in clinical populations has been to examine the relative proportion of EEG alpha activity (8-12 Hz) in each hemisphere (i.e., alpha asymmetry). Increased rightward alpha…

  6. Common Genetic Variant in VIT Is Associated with Human Brain Asymmetry.

    PubMed

    Tadayon, Sayed H; Vaziri-Pashkam, Maryam; Kahali, Pegah; Ansari Dezfouli, Mitra; Abbassian, Abdolhossein

    2016-01-01

    Brain asymmetry varies across individuals. However, genetic factors contributing to this normal variation are largely unknown. Here we studied variation of cortical surface area asymmetry in a large sample of subjects. We performed principal component analysis (PCA) to capture correlated asymmetry variation across cortical regions. We found that caudal and rostral anterior cingulate together account for a substantial part of asymmetry variation among individuals. To find SNPs associated with this subset of brain asymmetry variation we performed a genome-wide association study followed by replication in an independent cohort. We identified one SNP (rs11691187) that had genome-wide significant association (P Combined = 2.40e-08). The rs11691187 is in the first intron of VIT. In a follow-up analysis, we found that VIT gene expression is associated with brain asymmetry in six donors of the Allen Human Brain Atlas. Based on these findings we suggest that VIT contributes to normal brain asymmetry variation. Our results can shed light on disorders associated with altered brain asymmetry.

  7. Frontal EEG asymmetry as a moderator and mediator of emotion.

    PubMed

    Coan, James A; Allen, John J B

    2004-10-01

    Frontal EEG asymmetry appears to serve as (1) an individual difference variable related to emotional responding and emotional disorders, and (2) a state-dependent concomitant of emotional responding. Such findings, highlighted in this review, suggest that frontal EEG asymmetry may serve as both a moderator and a mediator of emotion- and motivation-related constructs. Unequivocal evidence supporting frontal EEG asymmetry as a moderator and/or mediator of emotion is lacking, as insufficient attention has been given to analyzing the frontal EEG asymmetries in terms of moderators and mediators. The present report reviews the frontal EEG asymmetry literature from the framework of moderators and mediators, and overviews data analytic strategies that would support claims of moderation and mediation.

  8. High prevalence of cranial asymmetry exists in infants with neonatal brachial plexus palsy.

    PubMed

    Tang, Megan; Gorbutt, Kimberly A; Peethambaran, Ammanath; Yang, Lynda; Nelson, Virginia S; Chang, Kate Wan-Chu

    2016-11-30

    This study aimed to: 1) evaluate the prevalence of cranial asymmetry (positional plagiocephaly) in infants with neonatal brachial plexus palsy (NBPP); 2) examine the association of patient demographics, arm function, and NBPP-related factors to positional plagiocephaly; and 3) determine percentage of spontaneous recovery from positional plagiocephaly and its association with arm function. Infants < 1 year of age with NBPP and no previous exposure to plagiocephaly cranial remolding therapy or surgical intervention were recruited for this prospective cross-sectional study. Positional plagiocephaly (diagonal difference) measurements were captured using a fiberglass circumferential mold of the cranium. Included infants were divided into 2 groups: 1) those with positional plagiocephaly at most recent evaluation (plagio group), including infants with resolved positional plagiocephaly (plagio-resolved subgroup); and 2) those who never had positional plagiocephaly (non-plagio group). Standard statistics were applied. Eighteen of 28 infants (64%) had positional plagiocephaly. Delivery type might be predictive for plagiocephaly. Infants in the non-plagio group exhibited more active range of motion than infants in the plagio group. All other factors had no significant correlations. A high prevalence of positional plagiocephaly exists among the NBPP population examined. Parents and physicians should encourage infants to use their upper extremities to change position and reduce chance of cranial asymmetry.

  9. A theoretical explanation for the Central Molecular Zone asymmetry

    NASA Astrophysics Data System (ADS)

    Sormani, Mattia C.; Treß, Robin G.; Ridley, Matthew; Glover, Simon C. O.; Klessen, Ralf S.; Binney, James; Magorrian, John; Smith, Rowan

    2018-04-01

    It has been known for more than 30 yr that the distribution of molecular gas in the innermost 300 parsecs of the Milky Way, the Central Molecular Zone, is strongly asymmetric. Indeed, approximately three quarters of molecular emission come from positive longitudes, and only one quarter from negative longitudes. However, despite much theoretical effort, the origin of this asymmetry has remained a mystery. Here, we show that the asymmetry can be neatly explained by unsteady flow of gas in a barred potential. We use high-resolution 3D hydrodynamical simulations coupled to a state-of-the-art chemical network. Despite the initial conditions and the bar potential being point symmetric with respect to the Galactic Centre, asymmetries develop spontaneously due to the combination of a hydrodynamical instability known as the `wiggle instability' and the thermal instability. The observed asymmetry must be transient: observations made tens of megayears in the past or in the future would often show an asymmetry in the opposite sense. Fluctuations of amplitude comparable to the observed asymmetry occur for a large fraction of time in our simulations, and suggest that the present is not an exceptional moment in the life of our Galaxy.

  10. Soft tissue nasal asymmetry as an indicator of orofacial cleft predisposition.

    PubMed

    Zhang, Charles; Miller, Steven F; Roosenboom, Jasmien; Wehby, George L; Moreno Uribe, Lina M; Hecht, Jacqueline T; Deleyiannis, Frederic W B; Christensen, Kaare; Marazita, Mary L; Weinberg, Seth M

    2018-06-01

    The biological relatives of offspring with nonsyndromic orofacial clefts have been shown to exhibit distinctive facial features, including excess asymmetry, which are hypothesized to indicate the presence of genetic risk factors. The significance of excess soft tissue nasal asymmetry in at-risk relatives is unclear and was examined in the present study. Our sample included 164 unaffected parents from families with a history of orofacial clefting and 243 adult controls. Geometric morphometric methods were used to analyze the coordinates of 15 nasal landmarks collected from three-dimensional facial surface images. Following generalized Procrustes analysis, Procrustes ANOVA and MANOVA tests were applied to determine the type and magnitude of nasal asymmetry present in each group. Group differences in mean nasal asymmetry were also assessed via permutation testing. We found that nasal asymmetry in both parents and controls was directional in nature, although the magnitude of the asymmetry was greater in parents. This was confirmed with permutation testing, where the mean nasal asymmetry was significantly different (p < .0001) between parents and controls. The asymmetry was greatest for midline structures and the nostrils. When subsets of parents were subsequently analyzed and compared (parents with bilateral vs. unilateral offspring; parents with left vs. right unilateral offspring), each group showed a similar pattern of asymmetry and could not be distinguished statistically. Thus, the side of the unilateral cleft (right vs. left) in offspring was not associated with the direction of the nasal asymmetry in parents. © 2018 Wiley Periodicals, Inc.

  11. Assessment of postural asymmetry in mild to moderate Parkinson's disease.

    PubMed

    Geurts, A C H; Boonstra, T A; Voermans, N C; Diender, M G; Weerdesteyn, V; Bloem, B R

    2011-01-01

    Asymmetry of symptoms of Parkinson's disease is clinically most evident for appendicular impairments. For axial impairments such as freezing of gait, asymmetry is less obvious. To date, asymmetries in balance control in PD patients have seldom been studied. Therefore, in this study we investigated whether postural control can be asymmetrically affected in mild to moderate PD patients. Seventeen PD patients were instructed to stand as still and symmetrically as possible on a dual force-plate during two trials. Dynamic postural asymmetry was assessed by comparing the centre-of-pressure velocities between both legs. Results showed that four patients (24%) had dynamic postural asymmetry, even after correcting for weight-bearing asymmetry. Hence, this study suggests that postural control can be asymmetrical in early PD. However, future studies should investigate the prevalence of dynamic postural asymmetry, in a larger group of PD patients. It should also be further investigated whether this approach can be used as a tool to support the initial diagnosis or monitor disease progression, or as an outcome measure for interventions aimed at improving balance in PD. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Calcium movements and the cellular basis of gravitropism

    NASA Astrophysics Data System (ADS)

    Roux, S. J.; Biro, R. L.; Hale, C. C.

    An early gravity-transduction event in oat coleoptiles which precedes any noticeable bending is the accumulation of calcium on their prospective slower-growing side. Sub-cellular calcium localization studies indicate that the gravity-stimulated redistribution of calcium results in an increased concentration of calcium in the walls of responding cells. Since calcium can inhibit the extension growth of plant cell walls, this selective accumulation of calcium in walls may play a role in inducing the asymmetry of growth which characterizes gravitropism. The active transport of calcium from cells into walls is performed by a calcium-dependent ATPase localized in the plasma membrane. Evidence is presented in support of the hypothesis that this calcium pump is regulated by a feed-back mechanism which includes the participation of calmodulin.

  13. Tension-compression asymmetry of a rolled Mg-Y-Nd alloy

    NASA Astrophysics Data System (ADS)

    Song, Bo; Pan, Hucheng; Ren, Weijie; Guo, Ning; Wu, Zehong; Xin, Renlong

    2017-07-01

    In this work, tension and compression deformation behaviors of rolled and aged Mg-Y-Nd alloys were investigated. The microstructure evolution and plastic deformation mechanism during tension and compression were analyzed by combined use of electron backscatter diffraction and a visco-plastic self-consistent crystal plasticity model. The results show that both rolled and aged Mg-Y-Nd sheets show an extremely low yield asymmetry. Elimination of yield asymmetry can be ascribed to the tilted basal texture and suppression of {10-12} twinning. The rolled sheet has almost no yield asymmetry, however exhibits a remarkable strain-hardening behavior asymmetry. Compressed sample shows lower initial strain hardening rate and keeps higher strain hardening rate at the later stage compared with tension. The strain-hardening asymmetry can be aggravated by aging at 280 C. It is considered the limited amount of twins in compression plays the critical role in the strain hardening asymmetry. Finally, the relevant mechanism was analyzed and discussed.

  14. Mercury exposure may influence fluctuating asymmetry in waterbirds.

    PubMed

    Herring, Garth; Eagles-Smith, Collin A; Ackerman, Joshua T

    2017-06-01

    Variation in avian bilateral symmetry can be an indicator of developmental instability in response to a variety of stressors, including environmental contaminants. The authors used composite measures of fluctuating asymmetry to examine the influence of mercury concentrations in 2 tissues on fluctuating asymmetry within 4 waterbird species. Fluctuating asymmetry increased with mercury concentrations in whole blood and breast feathers of Forster's terns (Sterna forsteri), a species with elevated mercury concentrations. Specifically, fluctuating asymmetry in rectrix feather 1 was the most strongly correlated structural variable of those tested (wing chord, tarsus, primary feather 10, rectrix feather 6) with mercury concentrations in Forster's terns. However, for American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), and Caspian terns (Hydroprogne caspia), the authors found no relationship between fluctuating asymmetry and either whole-blood or breast feather mercury concentrations, even though these species had moderate to elevated mercury exposure. The results indicate that mercury contamination may act as an environmental stressor during development and feather growth and contribute to fluctuating asymmetry of some species of highly contaminated waterbirds. Environ Toxicol Chem 2017;36:1599-1605. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  15. Audiometric asymmetry and tinnitus laterality.

    PubMed

    Tsai, Betty S; Sweetow, Robert W; Cheung, Steven W

    2012-05-01

    To identify an optimal audiometric asymmetry index for predicting tinnitus laterality. Retrospective medical record review. Data from adult tinnitus patients (80 men and 44 women) were extracted for demographic, audiometric, tinnitus laterality, and related information. The main measures were sensitivity, specificity, positive predictive value (PPV), and receiver operating characteristic (ROC) curves. Three audiometric asymmetry indices were constructed using one, two, or three frequency elements to compute the average interaural threshold difference (aITD). Tinnitus laterality predictive performance of a particular index was assessed by increasing the cutoff or minimum magnitude of the aITD from 10 to 35 dB in 5-dB steps to determine its ROC curve. Single frequency index performance was inferior to the other two (P < .05). Double and triple frequency indices were indistinguishable (P > .05). Two adjoining frequency elements with aITD ≥ 15 dB performed optimally for predicting tinnitus laterality (sensitivity = 0.59, specificity = 0.71, and PPV = 0.76). Absolute and relative magnitudes of hearing loss in the poorer ear were uncorrelated with tinnitus distress. An optimal audiometric asymmetry index to predict tinnitus laterality is one whereby 15 dB is the minimum aITD of two adjoining frequencies, inclusive of the maximal ITD. Tinnitus laterality dependency on magnitude of interaural asymmetry may inform design and interpretation of neuroimaging studies. Monaural acoustic tinnitus therapy may be an initial consideration for asymmetric hearing loss meeting the criterion of aITD ≥ 15 dB. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  16. Hemispheric and facial asymmetry: faces of academe.

    PubMed

    Smith, W M

    1998-11-01

    Facial asymmetry (facedness) of selected academic faculty members was studied in relation to brain asymmetry and cognitive specialization. Comparisons of facedness were made among humanities faculty (H), faculty members of mathematics and physics (M-P), psychologists (P), and a group of randomly selected individuals (R). Facedness was defined in terms of the relative sizes (in square centimeters) of the two hemifaces. It was predicted that the four groups would show differences in facedness, namely, H, right face bias; M-P, left face bias; P, no bias; and R, no bias. The predictions were confirmed, and the results interpreted in terms of known differences in hemispheric specialization of cognitive functions as they relate to the dominant cognitive activity of each of the different groups. In view of the contralateral control of the two hemifaces (below the eyes) by the two hemispheres of the brain, the two sides of the face undergo differential muscular development, thus creating facial asymmetry. Other factors, such as gender, also may affect facial asymmetry. Suggestions for further research on facedness are discussed.

  17. Frontal Brain Asymmetry and Willingness to Pay.

    PubMed

    Ramsøy, Thomas Z; Skov, Martin; Christensen, Maiken K; Stahlhut, Carsten

    2018-01-01

    Consumers frequently make decisions about how much they are willing to pay (WTP) for specific products and services, but little is known about the neural mechanisms underlying such calculations. In this study, we were interested in testing whether specific brain activation-the asymmetry in engagement of the prefrontal cortex-would be related to consumer choice. Subjects saw products and subsequently decided how much they were willing to pay for each product, while undergoing neuroimaging using electroencephalography. Our results demonstrate that prefrontal asymmetry in the gamma frequency band, and a trend in the beta frequency band that was recorded during product viewing was significantly related to subsequent WTP responses. Frontal asymmetry in the alpha band was not related to WTP decisions. Besides suggesting separate neuropsychological mechanisms of consumer choice, we find that one specific measure-the prefrontal gamma asymmetry-was most strongly related to WTP responses, and was most coupled to the actual decision phase. These findings are discussed in light of the psychology of WTP calculations, and in relation to the recent emergence of consumer neuroscience and neuromarketing.

  18. Cellular fatty acids and aldehydes of oral Eubacterium.

    PubMed

    Itoh, U; Sato, M; Tsuchiya, H; Namikawa, I

    1995-02-01

    The cellular fatty acids and aldehydes of oral Eubacterium species were determined by gas chromatography-mass spectrometry. E. brachy and E. lentum contained mainly branched-chain fatty acids, whereas the others contained straight-chain acids. E. brachy, E. lentum, E. yurii ssp. yurii, E. yurii spp. margaretiae, E. limosum, E. plauti and E. aerofaciens also contained aldehydes with even carbon numbers. In addition to species-specific components, the compositional ratios of fatty acids and aldehydes characterized each individual species. The 10 species tested were divided into 5 groups by the principal component analysis. Cellular fatty acids and aldehydes would be chemical markers for interspecies differentiation of oral Eubacterium.

  19. Asymmetries in visual search for conjunctive targets.

    PubMed

    Cohen, A

    1993-08-01

    Asymmetry is demonstrated between conjunctive targets in visual search with no detectable asymmetries between the individual features that compose these targets. Experiment 1 demonstrated this phenomenon for targets composed of color and shape. Experiment 2 and 4 demonstrate this asymmetry for targets composed of size and orientation and for targets composed of contrast level and orientation, respectively. Experiment 3 demonstrates that search rate of individual features cannot predict search rate for conjunctive targets. These results demonstrate the need for 2 levels of representations: one of features and one of conjunction of features. A model related to the modified feature integration theory is proposed to account for these results. The proposed model and other models of visual search are discussed.

  20. Functional asymmetry of posture and body system regulation

    NASA Technical Reports Server (NTRS)

    Boloban, V. N.; Otsupok, A. P.

    1980-01-01

    The manifestation of functional asymmetry during the regulation of an athlete's posture and a system of bodies and its effect on the execution of individual and group acrobatic exercises were studied. Functional asymmetry of posture regulation was recorded in acrobats during the execution of individual and group exercises. It was shown that stability is maintained at the expense of bending and twisting motions. It is important to consider whether the functional asymmetry of posture regulation is left or right sided in making up pairs and groups of acrobats.

  1. Asymmetries of the arcuate fasciculus in monozygotic twins: genetic and nongenetic influences.

    PubMed

    Häberling, Isabelle S; Badzakova-Trajkov, Gjurgjica; Corballis, Michael C

    2013-01-01

    We assessed cerebral asymmetry for language in 35 monozygotic twin pairs. Using DTI, we reconstructed the arcuate fasciculus in each twin. Among the male twins, right-handed pairs showed greater left-sided asymmetry of connectivity in the arcuate fasciculus than did those with discordant handedness, and within the discordant group the right-handers had greater left-sided volume asymmetry of the arcuate fasciculus than did their left-handed co-twins. There were no such effects in the female twins. Cerebral asymmetry for language showed more consistent results, with the more left-cerebrally dominant twins also showing more leftward asymmetry of high anisotropic fibers in the arcuate fasciculus, a result applying equally to female as to male twins. Reversals of arcuate fasciculus asymmetry were restricted to pairs discordant for language dominance, with the left-cerebrally dominant twins showing leftward and the right-cerebrally dominant twins rightward asymmetry of anisotropic diffusion in the arcuate fasciculus. Because monozygotic twin pairs share the same genotype, our results indicate a strong nongenetic component in arcuate fasciculus asymmetry, particularly in those discordant for cerebral asymmetry.

  2. Hand preference and magnetic resonance imaging asymmetries of the central sulcus.

    PubMed

    Foundas, A L; Hong, K; Leonard, C M; Heilman, K M

    1998-04-01

    Hand preference is perhaps the most evident behavioral asymmetry observed in humans. Anatomic brain asymmetries that may be associated with hand preference have not been extensively studied, and no clear relationship between asymmetries of the motor system and hand preference have been established. Therefore, using volumetric magnetic resonance imaging methodologies, the surface area of the hand representation was measured along the length of the central sulcus in 15 consistent right- and 15 left-handers matched for age and gender. There was a significant leftward asymmetry of the motor hand area of the precentral gyrus in the right-handers, but no directional asymmetry was found in the left-handers. When asymmetry quotients were computed to determine the distribution of interhemispheric asymmetries, the left motor bank was greater than the right motor bank in 9 of 15 right-handers, the right motor bank was greater than the left motor bank in 3 of 15 right-handers, and the motor banks were equal in 3 of 15 right-handers. In contrast, among left-handers, the left motor bank was greater than the right motor bank in 5 of 15, the right motor bank was greater than the left motor bank in 5 of 15, and the motor banks were equal in 5 of 15. Although no direct measure of motor dexterity and skill was performed, these data suggest that anatomic asymmetries of the motor hand area may be related to hand preference because of the differences in right-handers and left-handers. Furthermore, the predominant leftward asymmetry in right-handers and the random distribution of asymmetries in the left-handers support Annett's right-shift theory. It is unclear, however, whether these asymmetries are the result of preferential hand use or are a reflection of a biologic preference to use one limb over the other.

  3. The association between infantile postural asymmetry and unsettled behaviour in babies.

    PubMed

    Ellwood, Julie; Ford, Michael; Nicholson, Alf

    2017-12-01

    Unsettled infant behaviour is a common problem of infancy without known aetiology or clearly effective management. Some manual therapists propose that musculoskeletal dysfunction contributes to unsettled infant behaviour, yet reported improvement following treatment is anecdotal. The infantile postural asymmetry measurement scale is a tool which measures infantile asymmetry, a form of musculoskeletal dysfunction. The first part of the study aimed to investigate its reliability and validity for measuring infantile postural asymmetry. This study also aimed to investigate whether there was an association between infantile postural asymmetry and unsettled infant behaviour and whether an association was mediated by, or confounded with, the demographic variables of age, sex, parity, birth weight and weight gain in 12- to 16-week-old infants. Fifty-eight infants were recruited and a quantitative cross-sectional observational design was used. An association between unsettled behaviour and infantile postural asymmetry was not found. A significant difference between high and low cervical rotation deficit groups for surgency was detected in female babies and needs further examination. Questions remain regarding the construct validity of the infantile postural asymmetry scale. No association between unsettled infant behaviour and infantile postural asymmetry was found in 12- to 16-week-old infants. The influence of sex on the interaction between infantile postural asymmetry and infant behaviour needs further examination. An association between unsettled infant behaviour and infantile postural asymmetry is still unproven. What is known: • Unsettled infant behaviour has a considerable impact on many family situations. • Identifying a definitive cause has been a source of much examination and research. Many different hypotheses have been suggested yet much is still unknown. What is new: • The association between unsettled infant behaviour and infantile postural asymmetry is

  4. Pelvic bone asymmetry in 323 study participants receiving abdominal CT scans.

    PubMed

    Badii, Maziar; Shin, Sonya; Torreggiani, William C; Jankovic, Bojana; Gustafson, Paul; Munk, Peter L; Esdaile, John M

    2003-06-15

    Retrospective review of all CT scans of pelvis and abdomen performed at our institution in October and November 2000. To determine the prevalence and extent of radiographic pelvic asymmetry in a population of patients not preselected for having low back pain. Pelvic asymmetry refers to asymmetric positioning of landmarks on the two sides of the pelvis and may have a structural or functional etiology. Pelvic asymmetry can be associated with the presence of true leg length discrepancy, lead to false diagnosis or inaccurate measurement of leg length discrepancy, or itself be independently associated with back pain. Although the prevalence of pelvic asymmetry has been reported in patients with back pain to be 24-91%, its prevalence in the general population is not known. A total of 323 consecutive CT scans of the pelvis/abdomen were assessed for pelvic asymmetry by one of three examiners. Pelvic asymmetry was defined as an unequal distance from the iliac crests to the acetabuli bilaterally, measured on the anteroposterior scout view of the CT scan. Measurements made on 30 randomly selected scans by the three examiners were used to assess interrater reliability of the measurement method. Pelvic asymmetry ranged in magnitude from -11 mm to 7 mm [right pelvis (mm) - left pelvis (mm)]. Pelvic asymmetry was >5 mm in 17 of 323 (5.3%) and >10 mm in 2 of 323 (0.6%) of the subjects; 172 of 323 (53.3%) had a smaller right hemipelvis (mean asymmetry = -3.0 mm). A total of 95 of 323 (29.4%) had a smaller left hemipelvis (mean asymmetry = 2.1 mm). The intraclass correlation coefficient [ICC(2,1)] between the three observers was high (0.91). Pelvic asymmetry of >5 mm was uncommon, with a prevalence of approximately 5% in the population studied. CT scanography was found to be a practical and reliable method for the assessment of suspected pelvic asymmetry.

  5. Relationship Between Muscle Strength Asymmetry and Body Sway in Older Adults.

    PubMed

    Koda, Hitoshi; Kai, Yoshihiro; Murata, Shin; Osugi, Hironori; Anami, Kunihiko; Fukumoto, Takahiko; Imagita, Hidetaka

    2018-05-31

    The purpose of this study was to investigate the relationship between muscle strength asymmetry and body sway while walking. We studied 63 older adult women. Strong side and weak side of knee extension strength, toe grip strength, hand grip strength, and body sway while walking were measured. The relationship between muscle strength asymmetry for each muscle and body sway while walking was evaluated using Pearson's correlation coefficient. Regarding the muscles recognized to have significant correlation with body sway, the asymmetry cutoff value causing an increased sway was calculated. Toe grip strength asymmetry was significantly correlated with body sway. Toe grip strength asymmetry causing an increased body sway had a cutoff value of 23.5%. Our findings suggest toe grip strength asymmetry may be a target for improving gait stability.

  6. The validity of individual frontal alpha asymmetry EEG neurofeedback

    PubMed Central

    Quaedflieg, C. W. E. M.; Smulders, F. T. Y.; Meyer, T.; Peeters, F.; Merckelbach, H.; Smeets, T.

    2016-01-01

    Frontal asymmetry in alpha oscillations is assumed to be associated with psychopathology and individual differences in emotional responding. Brain-activity-based feedback is a promising tool for the modulation of cortical activity. Here, we validated a neurofeedback protocol designed to change relative frontal asymmetry based on individual alpha peak frequencies, including real-time average referencing and eye-correction. Participants (N = 60) were randomly assigned to a right, left or placebo neurofeedback group. Results show a difference in trainability between groups, with a linear change in frontal alpha asymmetry over time for the right neurofeedback group during rest. Moreover, the asymmetry changes in the right group were frequency and location specific, even though trainability did not persist at 1 week and 1 month follow-ups. On the behavioral level, subjective stress on the second test day was reduced in the left and placebo neurofeedback groups, but not in the right neurofeedback group. We found individual differences in trainability that were dependent on training group, with participants in the right neurofeedback group being more likely to change their frontal asymmetry in the desired direction. Individual differences in trainability were also reflected in the ability to change frontal asymmetry during the feedback. PMID:26163671

  7. Gaussian quantum steering and its asymmetry in curved spacetime

    NASA Astrophysics Data System (ADS)

    Wang, Jieci; Cao, Haixin; Jing, Jiliang; Fan, Heng

    2016-06-01

    We study Gaussian quantum steering and its asymmetry in the background of a Schwarzschild black hole. We present a Gaussian channel description of quantum state evolution under the influence of Hawking radiation. We find that thermal noise introduced by the Hawking effect will destroy the steerability between an inertial observer Alice and an accelerated observer Bob who hovers outside the event horizon, while it generates steerability between Bob and a hypothetical observer anti-Bob inside the event horizon. Unlike entanglement behaviors in curved spacetime, here the steering from Alice to Bob suffers from a "sudden death" and the steering from anti-Bob to Bob experiences a "sudden birth" with increasing Hawking temperature. We also find that the Gaussian steering is always asymmetric and the maximum steering asymmetry cannot exceed ln 2 , which means the state never evolves to an extremal asymmetry state. Furthermore, we obtain the parameter settings that maximize steering asymmetry and find that (i) s =arccosh cosh/2r 1 -sinh2r is the critical point of steering asymmetry and (ii) the attainment of maximal steering asymmetry indicates the transition between one-way steerability and both-way steerability for the two-mode Gaussian state under the influence of Hawking radiation.

  8. Evaluation of Limb Load Asymmetry Using Two New Mathematical Models

    PubMed Central

    Kumar, Senthil NS; Omar, Baharudin; Joseph, Leonard H.; Htwe, Ohnmar; Jagannathan, K.; Hamdan, Nor M Y; Rajalakshmi, D.

    2015-01-01

    Quantitative measurement of limb loading is important in orthopedic and neurological rehabilitation. In current practice, mathematical models such as Symmetry index (SI), Symmetry ratio (SR), and Symmetry angle (SA) are used to quantify limb loading asymmetry. Literatures have identified certain limitations with the above mathematical models. Hence this study presents two new mathematical models Modified symmetry index (MSI) and Limb loading error (LLE) that would address these limitations. Furthermore, the current mathematical models were compared against the new model with the goal of achieving a better model. This study uses hypothetical data to simulate an algorithmic preliminary computational measure to perform with all numerical possibilities of even and uneven limb loading that can occur in human legs. Descriptive statistics are used to interpret the limb loading patterns: symmetry, asymmetry and maximum asymmetry. The five mathematical models were similar in analyzing symmetry between limbs. However, for asymmetry and maximum asymmetry data, the SA and SR values do not give any meaningful interpretation, and SI gives an inflated value. The MSI and LLE are direct, easy to interpret and identify the loading patterns with the side of asymmetry. The new models are notable as they quantify the amount and side of asymmetry under different loading patterns. PMID:25716372

  9. Shifting brain asymmetry: the link between meditation and structural lateralization

    PubMed Central

    Kurth, Florian; MacKenzie-Graham, Allan; Toga, Arthur W.

    2015-01-01

    Previous studies have revealed an increased fractional anisotropy and greater thickness in the anterior parts of the corpus callosum in meditation practitioners compared with control subjects. Altered callosal features may be associated with an altered inter-hemispheric integration and the degree of brain asymmetry may also be shifted in meditation practitioners. Therefore, we investigated differences in gray matter asymmetry as well as correlations between gray matter asymmetry and years of meditation practice in 50 long-term meditators and 50 controls. We detected a decreased rightward asymmetry in the precuneus in meditators compared with controls. In addition, we observed that a stronger leftward asymmetry near the posterior intraparietal sulcus was positively associated with the number of meditation practice years. In a further exploratory analysis, we observed that a stronger rightward asymmetry in the pregenual cingulate cortex was negatively associated with the number of practice years. The group difference within the precuneus, as well as the positive correlations with meditation years in the pregenual cingulate cortex, suggests an adaptation of the default mode network in meditators. The positive correlation between meditation practice years and asymmetry near the posterior intraparietal sulcus may suggest that meditation is accompanied by changes in attention processing. PMID:24643652

  10. Amplitude and polarization asymmetries in a ring laser

    NASA Technical Reports Server (NTRS)

    Campbell, L. L.; Buholz, N. E.

    1971-01-01

    Asymmetric amplitude effects between the oppositely directed traveling waves in a He-Ne ring laser are analyzed both theoretically and experimentally. These effects make it possible to detect angular orientations of an inner-cavity bar with respect to the plane of the ring cavity. The amplitude asymmetries occur when a birefringent bar is placed in the three-mirror ring cavity, and an axial magnetic field is applied to the active medium. A simplified theoretical analysis is performed by using a first order perturbation theory to derive an expression for the polarization of the active medium, and a set of self-consistent equations are derived to predict threshold conditions. Polarization asymmetries between the oppositely directed waves are also predicted. Amplitude asymmetries similar in nature to those predicted at threshold occur when the laser is operating in 12-15 free-running modes, and polarization asymmetry occurs simultaneously.

  11. Characterization of Asymmetry in Magnetoacoustic Emission Burst by Numerical Processes

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Fulton, J. P.; Wincheski, B.; DeNale, R.

    1991-01-01

    It has been well known that the pattern of the magnetoacoustic emission (MAE) burst observed during the sweep over one half-cycle of the hysteresis loop becomes asymmetric depending on the strength of the magnetic domain wall-defect interaction and the state of residual stresses in a ferromagnet. The ascending asymmetry due to the former has been observed at a very low frequency (.7 Hz) of applied AC magnetic field at a given amplitude. The descending asymmetry due to uniaxial compressive stress has been typically observed at the AC applied magnetic field frequency of 20 Hz. The physical interpretation of both types of asymmetry has been well established. It is, however, necessary to perform investigations of the dependence of asymmetry on externally controlled parameters such as the amplitude and frequency of the AC applied magnetic fields. The purpose of the present study is therefore to devise a mathematical means that describes the degree of asymmetry of the MAE burst and apply this scheme to investigate the AC magnetic field amplitude dependence of the asymmetry.

  12. Asymmetry of the winter extra-tropical teleconnections in the Northern Hemisphere associated with two types of ENSO

    NASA Astrophysics Data System (ADS)

    Feng, Juan; Chen, Wen; Li, Yanjie

    2017-04-01

    Asymmetric atmospheric responses to ENSO are revisited after dividing it into two types: eastern-Pacific (EP) and central-Pacific (CP) ENSO. The EP ENSO triggers two obvious asymmetric atmospheric teleconnections: One is the Pacific-North American-like teleconnection. Its asymmetry is characterized by weaker amplitudes during the EP La Niña than EP El Niño, which is caused by a much weaker EP La Niña tropical forcing and the resultant weaker extra-tropical vorticity forcing. The other is the Atlantic-Eurasian teleconnection with negative height anomalies in the subtropical Atlantic and Eurasia and positive anomalies in the high-latitude Atlantic and northeast Asia, which appears during the EP La Niña but not during the EP El Niño. The background state plays a vital role in this asymmetry. The EP La Niña-type basic state is more conducive to propagation of the wave rays into the Atlantic-Eurasian region compared to EP El Niño situation. In contrast, the CP ENSO yields an Arctic Oscillation-like teleconnection, presenting an appreciable asymmetry in the subtropical amplitudes that are stronger during the CP El Niño than during the CP La Niña. In this case, the distinct effects of the different background state on the equatorward wave rays are responsible for this asymmetry. Under the CP El Niño-type background state, the equatorward wave rays tend to be reflected at the latitudes where the zonal wind equals zero (U = 0), and then successfully captured by the subtropical westerly jet. However, under the CP La Niña-type background state, the equatorward wave rays disappear at U = 0 latitudes.

  13. Cortical asymmetries in unaffected siblings of patients with obsessive-compulsive disorder.

    PubMed

    Peng, Ziwen; Li, Gang; Shi, Feng; Shi, Changzheng; Yang, Qiong; Chan, Raymond C K; Shen, Dinggang

    2015-12-30

    Obsessive-compulsive disorder (OCD) is considered to be associated with atypical brain asymmetry. However, no study has examined the asymmetry in OCD from the perspective of cortical morphometry. This study is aimed to describe the characteristics of cortical asymmetry in OCD patients, and to investigate whether these features exist in their unaffected siblings - a vital step in identifying putative endophenotypes for OCD. A total of 48 subjects (16 OCD patients, 16 unaffected siblings, and 16 matched controls) were recruited who had complete magnetic resonance imaging scans. Left-right hemispheric asymmetries of cortical thickness were measured using a surface-based threshold-free cluster enhancement method. OCD patients and siblings both showed leftward asymmetries of cortical thickness in the anterior cingulate cortex (ACC), which showed a significant positive correlation with compulsive subscale scores. In addition, siblings and healthy controls showed significantly decreased leftward asymmetries in the orbitofrontal cortex (OFC), and the decreased leftward bias in the OFC was accompanied by lower scales on the Yale-Brown Obsessive-Compulsive Scale. To sum up, leftward asymmetries of cortical thickness in the ACC may represent an endophenotype of increased hereditary risk for OCD, while decreased leftward asymmetries of cortical thickness in the OFC may represent a protective factor. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. The role of frontal EEG asymmetry in post-traumatic stress disorder.

    PubMed

    Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W E M; Smulders, Fren T Y; Meijer, Ewout H; Merckelbach, Harald L G J

    2015-05-01

    Frontal alpha asymmetry, a biomarker derived from electroencephalography (EEG) recordings, has often been associated with psychological adjustment, with more left-sided frontal activity predicting approach motivation and lower levels of depression and anxiety. This suggests high relevance to post-traumatic stress disorder (PTSD), a disorder comprising anxiety and dysphoria symptoms. We review this relationship and show that frontal asymmetry can be plausibly linked to neuropsychological abnormalities seen in PTSD. However, surprisingly few studies (k = 8) have directly addressed frontal asymmetry in PTSD, mostly reporting that trait frontal asymmetry has little (if any) predictive value. Meanwhile, preliminary evidence suggest that state-dependent asymmetry during trauma-relevant stimulation distinguishes PTSD patients from resilient individuals. Thus, exploring links between provocation-induced EEG asymmetry and PTSD appears particularly promising. Additionally, we recommend more fine-grained analyses into PTSD symptom clusters in relation to frontal asymmetry. Finally, we highlight hypotheses that may guide future research and help to fully apprehend the practical and theoretical relevance of this biological marker. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. New tuning method of the low-mode asymmetry for ignition capsule implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng; Zou, Shiyang

    2015-12-15

    In the deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility, the hot spot and the surrounding main fuel layer show obvious P2 asymmetries. This may be caused by the large positive P2 radiation flux asymmetry during the peak pulse resulting form the poor propagation of the inner laser beam in the gas-filled hohlraum. The symmetry evolution of ignition capsule implosions is investigated by applying P2 radiation flux asymmetries during different time intervals. A series of two-dimensional simulation results show that a positive P2 flux asymmetry during the peak pulse results in a positive P2 shell ρR asymmetry;more » while an early time positive P2 flux asymmetry causes a negative P2 in the fuel ρR shape. The opposite evolution behavior of shell ρR asymmetry is used to develop a new tuning method to correct the radiation flux asymmetry during the peak pulse by adding a compensating same-phased P2 drive asymmetry during the early time. The significant improvements of the shell ρR symmetry, hot spot shape, hot spot internal energy, and neutron yield indicate that the tuning method is quite effective. The similar tuning method can also be used to control the early time drive asymmetries.« less

  16. The functional and structural asymmetries of the superior temporal sulcus.

    PubMed

    Specht, Karsten; Wigglesworth, Philip

    2018-02-01

    The superior temporal sulcus (STS) is an anatomical structure that increasingly interests researchers. This structure appears to receive multisensory input and is involved in several perceptual and cognitive core functions, such as speech perception, audiovisual integration, (biological) motion processing and theory of mind capacities. In addition, the superior temporal sulcus is not only one of the longest sulci of the brain, but it also shows marked functional and structural asymmetries, some of which have only been found in humans. To explore the functional-structural relationships of these asymmetries in more detail, this study combines functional and structural magnetic resonance imaging. Using a speech perception task, an audiovisual integration task, and a theory of mind task, this study again demonstrated an involvement of the STS in these processes, with an expected strong leftward asymmetry for the speech perception task. Furthermore, this study confirmed the earlier described, human-specific asymmetries, namely that the left STS is longer than the right STS and that the right STS is deeper than the left STS. However, this study did not find any relationship between these structural asymmetries and the detected brain activations or their functional asymmetries. This can, on the other hand, give further support to the notion that the structural asymmetry of the STS is not directly related to the functional asymmetry of the speech perception and the language system as a whole, but that it may have other causes and functions. © 2018 The Authors. Scandinavian Journal of Psychology published by Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  17. Auxin asymmetry during gravitropism by tomato hypocotyls

    NASA Technical Reports Server (NTRS)

    Harrison, M. A.; Pickard, B. G.

    1989-01-01

    Gravitropic asymmetry of auxin was observed in hypocotyls of tomato (Lycopersicon esculentum Mill.) soon after horizontal placement: the ratio of apically supplied [3H]IAA collected from the lower sides to that from the upper sides was about 1.4 between 5 and 10 minutes. This was adequately early to account for the beginning of curvature. The auxin asymmetry ratio rose to about 2.5 between 20 and 25 minutes, and to 3.5 during the main phase of curvature. This compares reasonably well with the roughly 3.9 ratio for elongation on the lower side to elongation on the upper side that is the basis for the curvature. These data extend evidence that the Went-Cholodny theory for the mediation of tropisms is valid for dicot stems. Also consistent with the theory, an auxin asymmetry ratio of 2.5 was observed when wrong-way gravitropic curvature developed following application of a high level of auxin. In addition to reversing the asymmetry of elongation, the large supplement of auxin resulted in lower net elongation. Previous data established that ethylene is not involved in this decrease of growth as a function of increasing level of auxin.

  18. [Presurgical orthodontics for facial asymmetry].

    PubMed

    Labarrère, H

    2003-03-01

    As with the treatment of all facial deformities, orthodontic pre-surgical preparation for facial asymmetry should aim at correcting severe occlusal discrepancies not solely on the basis of a narrow occlusal analysis but also in a way that will not disturb the proposed surgical protocol. In addition, facial asymmetries require specific adjustments, difficult to derive and to apply because of their inherent atypical morphological orientation of both alveolar and basal bony support. Three treated cases illustrate different solutions to problems posed by pathological torque: this torque must be considered with respect to proposed surgical changes, within the framework of their limitations and their possible contra-indications.

  19. Cellular Scale Anisotropic Topography Guides Schwann Cell Motility

    PubMed Central

    Mitchel, Jennifer A.; Hoffman-Kim, Diane

    2011-01-01

    Directed migration of Schwann cells (SC) is critical for development and repair of the peripheral nervous system. Understanding aspects of motility specific to SC, along with SC response to engineered biomaterials, may inform strategies to enhance nerve regeneration. Rat SC were cultured on laminin-coated microgrooved poly(dimethyl siloxane) platforms that were flat or presented repeating cellular scale anisotropic topographical cues, 30 or 60 µm in width, and observed with timelapse microscopy. SC motion was directed parallel to the long axis of the topography on both the groove floor and the plateau, with accompanying differences in velocity and directional persistence in comparison to SC motion on flat substrates. In addition, feature dimension affected SC morphology, alignment, and directional persistence. Plateaus and groove floors presented distinct cues which promoted differential motility and variable interaction with the topographical features. SC on the plateau surfaces tended to have persistent interactions with the edge topography, while SC on the groove floors tended to have infrequent contact with the corners and walls. Our observations suggest the capacity of SC to be guided without continuous contact with a topographical cue. SC exhibited a range of distinct motile morphologies, characterized by their symmetry and number of extensions. Across all conditions, SC with a single extension traveled significantly faster than cells with more or no extensions. We conclude that SC motility is complex, where persistent motion requires cellular asymmetry, and that anisotropic topography with cellular scale features can direct SC motility. PMID:21949703

  20. Prefrontal brain asymmetry and aggression in imprisoned violent offenders.

    PubMed

    Keune, Philipp M; van der Heiden, Linda; Várkuti, Bálint; Konicar, Lilian; Veit, Ralf; Birbaumer, Niels

    2012-05-02

    Anterior brain asymmetry, assessed through the alpha and beta band in resting-state electroencephalogram (EEG) is associated with approach-related behavioral dispositions, particularly with aggression in the general population. To date, the association between frontal asymmetry and aggression has not been examined in highly aggressive groups. We examined the topographic characteristics of alpha and beta activity, the relation of both asymmetry metrics to trait aggression, and whether alpha asymmetry was extreme in anterior regions according to clinical standards in a group of imprisoned violent offenders. As expected, these individuals were characterized by stronger right than left-hemispheric alpha activity, which was putatively extreme in anterior regions in one third of the cases. We also report that in line with observations made in the general population, aggression was associated with stronger right-frontal alpha activity in these violent individuals. This suggests that frontal alpha asymmetry, as a correlate of trait aggression, might be utilizable as an outcome measure in studies which assess the effects of anti-aggressiveness training in violent offenders. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Frobenius-norm-based measures of quantum coherence and asymmetry

    PubMed Central

    Yao, Yao; Dong, G. H.; Xiao, Xing; Sun, C. P.

    2016-01-01

    We formulate the Frobenius-norm-based measures for quantum coherence and asymmetry respectively. In contrast to the resource theory of coherence and asymmetry, we construct a natural measure of quantum coherence inspired from optical coherence theory while the group theoretical approach is employed to quantify the asymmetry of quantum states. Besides their simple structures and explicit physical meanings, we observe that these quantities are intimately related to the purity (or linear entropy) of the corresponding quantum states. Remarkably, we demonstrate that the proposed coherence quantifier is not only a measure of mixedness, but also an intrinsic (basis-independent) quantification of quantum coherence contained in quantum states, which can also be viewed as a normalized version of Brukner-Zeilinger invariant information. In our context, the asymmetry of N-qubit quantum systems is considered under local independent and collective transformations. In- triguingly, it is illustrated that the collective effect has a significant impact on the asymmetry measure, and quantum correlation between subsystems plays a non-negligible role in this circumstance. PMID:27558009

  2. Parity-violating electroweak asymmetry in e→ p scattering

    NASA Astrophysics Data System (ADS)

    Aniol, K. A.; Armstrong, D. S.; Averett, T.; Baylac, M.; Burtin, E.; Calarco, J.; Cates, G. D.; Cavata, C.; Chai, Z.; Chang, C. C.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Coman, M.; Dale, D.; Deur, A.; Djawotho, P.; Epstein, M. B.; Escoffier, S.; Ewell, L.; Falletto, N.; Finn, J. M.; Fissum, K.; Fleck, A.; Frois, B.; Frullani, S.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gerstner, G. M.; Gilman, R.; Glamazdin, A.; Gomez, J.; Gorbenko, V.; Hansen, O.; Hersman, F.; Higinbotham, D. W.; Holmes, R.; Holtrop, M.; Humensky, T. B.; Incerti, S.; Iodice, M.; de Jager, C. W.; Jardillier, J.; Jiang, X.; Jones, M. K.; Jorda, J.; Jutier, C.; Kahl, W.; Kelly, J. J.; Kim, D. H.; Kim, M.-J.; Kim, M. S.; Kominis, I.; Kooijman, E.; Kramer, K.; Kumar, K. S.; Kuss, M.; Lerose, J.; de Leo, R.; Leuschner, M.; Lhuillier, D.; Liang, M.; Liyanage, N.; Lourie, R.; Madey, R.; Malov, S.; Margaziotis, D. J.; Marie, F.; Markowitz, P.; Martino, J.; Mastromarino, P.; McCormick, K.; McIntyre, J.; Meziani, Z.-E.; Michaels, R.; Milbrath, B.; Miller, G. W.; Mitchell, J.; Morand, L.; Neyret, D.; Pedrisat, C.; Petratos, G. G.; Pomatsalyuk, R.; Price, J. S.; Prout, D.; Punjabi, V.; Pussieux, T.; Quéméner, G.; Ransome, R. D.; Relyea, D.; Roblin, Y.; Roche, J.; Rutledge, G. A.; Rutt, P. M.; Rvachev, M.; Sabatie, F.; Saha, A.; Souder, P. A.; Spradlin, M.; Strauch, S.; Suleiman, R.; Templon, J.; Teresawa, T.; Thompson, J.; Tieulent, R.; Todor, L.; Tonguc, B. T.; Ulmer, P. E.; Urciuoli, G. M.; Vlahovic, B.; Wijesooriya, K.; Wilson, R.; Wojtsekhowski, B.; Woo, R.; Xu, W.; Younus, I.; Zhang, C.

    2004-06-01

    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from protons. Significant contributions to this asymmetry could arise from the contributions of strange form factors in the nucleon. The measured asymmetry is A= -15.05±0.98 (stat) ±0.56 (syst) ppm at the kinematic point < θlab > =12.3° and < Q2 > =0.477 (GeV/c)2 . Based on these data as well as data on electromagnetic form factors, we extract the linear combination of strange form factors GsE +0.392 GsM = 0.014±0.020±0.010 , where the first error arises from this experiment and the second arises from the electromagnetic form factor data. This paper provides a full description of the special experimental techniques employed for precisely measuring the small asymmetry, including the first use of a strained GaAs crystal and a laser-Compton polarimeter in a fixed target parity-violation experiment.

  3. Using ground reaction force to predict knee kinetic asymmetry following anterior cruciate ligament reconstruction.

    PubMed

    Dai, B; Butler, R J; Garrett, W E; Queen, R M

    2014-12-01

    Asymmetries in sagittal plane knee kinetics have been identified as a risk factor for anterior cruciate ligament (ACL) re-injury. Clinical tools are needed to identify the asymmetries. This study examined the relationships between knee kinetic asymmetries and ground reaction force (GRF) asymmetries during athletic tasks in adolescent patients following ACL reconstruction (ACL-R). Kinematic and GRF data were collected during a stop-jump task and a side-cutting task for 23 patients. Asymmetry indices between the surgical and non-surgical limbs were calculated for GRF and knee kinetic variables. For the stop-jump task, knee kinetics asymmetry indices were correlated with all GRF asymmetry indices (P < 0.05), except for loading rate. Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2)  ≥ 0.78, P < 0.01) asymmetry indices. For the side-cutting tasks, knee kinetic asymmetry indices were correlated with the peak propulsion vertical GRF and vertical GRF impulse asymmetry indices (P < 0.05). Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2)  ≥ 0.55, P < 0.01) asymmetry indices. The vertical GRF asymmetries may be a viable surrogate for knee kinetic asymmetries and therefore may assist in optimizing rehabilitation outcomes and minimizing re-injury rates. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. microRNA function in left-right neuronal asymmetry: perspectives from C. elegans.

    PubMed

    Alqadah, Amel; Hsieh, Yi-Wen; Chuang, Chiou-Fen

    2013-09-23

    Left-right asymmetry in anatomical structures and functions of the nervous system is present throughout the animal kingdom. For example, language centers are localized in the left side of the human brain, while spatial recognition functions are found in the right hemisphere in the majority of the population. Disruption of asymmetry in the nervous system is correlated with neurological disorders. Although anatomical and functional asymmetries are observed in mammalian nervous systems, it has been a challenge to identify the molecular basis of these asymmetries. C. elegans has emerged as a prime model organism to investigate molecular asymmetries in the nervous system, as it has been shown to display functional asymmetries clearly correlated to asymmetric distribution and regulation of biologically relevant molecules. Small non-coding RNAs have been recently implicated in various aspects of neural development. Here, we review cases in which microRNAs are crucial for establishing left-right asymmetries in the C. elegans nervous system. These studies may provide insight into how molecular and functional asymmetries are established in the human brain.

  5. Left-right leaf asymmetry in decussate and distichous phyllotactic systems.

    PubMed

    Martinez, Ciera C; Chitwood, Daniel H; Smith, Richard S; Sinha, Neelima R

    2016-12-19

    Leaves in plants with spiral phyllotaxy exhibit directional asymmetries, such that all the leaves originating from a meristem of a particular chirality are similarly asymmetric relative to each other. Models of auxin flux capable of recapitulating spiral phyllotaxis predict handed auxin asymmetries in initiating leaf primordia with empirically verifiable effects on superficially bilaterally symmetric leaves. Here, we extend a similar analysis of leaf asymmetry to decussate and distichous phyllotaxy. We found that our simulation models of these two patterns predicted mirrored asymmetries in auxin distribution in leaf primordia pairs. To empirically verify the morphological consequences of asymmetric auxin distribution, we analysed the morphology of a tomato sister-of-pin-formed1a (sopin1a) mutant, entire-2, in which spiral phyllotaxy consistently transitions to a decussate state. Shifts in the displacement of leaflets on the left and right sides of entire-2 leaf pairs mirror each other, corroborating predicted model results. We then analyse the shape of more than 800 common ivy (Hedera helix) and more than 3000 grapevine (Vitis and Ampelopsis spp.) leaf pairs and find statistical enrichment of predicted mirrored asymmetries. Our results demonstrate that left-right auxin asymmetries in models of decussate and distichous phyllotaxy successfully predict mirrored asymmetric leaf morphologies in superficially symmetric leaves.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).

  6. Magnetic fields and chiral asymmetry in the early hot universe

    NASA Astrophysics Data System (ADS)

    Sydorenko, Maksym; Tomalak, Oleksandr; Shtanov, Yuri

    2016-10-01

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of `inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.

  7. Subtasks affecting step-length asymmetry in post-stroke hemiparetic walking.

    PubMed

    Kim, Woo-Sub

    2016-10-01

    This study was performed to investigate whether components from trunk progression (TP) and step length were related to step length asymmetry in walking in patients with hemiparesis. Gait analysis was performed for participants with hemiparesis and healthy controls. The distance between the pelvis and foot in the anterior-posterior axis was calculated at initial-contact. Step length was partitioned into anterior foot placement (AFP) and posterior foot placement (PFP). TP was partitioned into anterior trunk progression (ATP) and posterior trunk progression (PTP). The TP pattern and step length pattern were defined to represent intra-TP and intra-step spatial balance, respectively. Of 29 participants with hemiparesis, nine participants showed longer paretic step length, eight participants showed symmetric step length, and 12 participants showed shorter paretic step length. For the hemiparesis group, linear regression analysis showed that ATP asymmetry, AFP asymmetry, and TP patterns had significant predictability regarding step length asymmetry. Prolonged paretic ATP and shortened paretic AFP was the predominant pattern in the hemiparesis group, even in participants with symmetric step length. However, some participants showed same direction of ATP and AFP asymmetry. These findings indicate the following: (1) ATP asymmetries should be observed to determine individual characteristics of step length asymmetry, and (2) TP patterns can provide complementary information for non-paretic limb compensation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Visual search asymmetries within color-coded and intensity-coded displays.

    PubMed

    Yamani, Yusuke; McCarley, Jason S

    2010-06-01

    Color and intensity coding provide perceptual cues to segregate categories of objects within a visual display, allowing operators to search more efficiently for needed information. Even within a perceptually distinct subset of display elements, however, it may often be useful to prioritize items representing urgent or task-critical information. The design of symbology to produce search asymmetries (Treisman & Souther, 1985) offers a potential technique for doing this, but it is not obvious from existing models of search that an asymmetry observed in the absence of extraneous visual stimuli will persist within a complex color- or intensity-coded display. To address this issue, in the current study we measured the strength of a visual search asymmetry within displays containing color- or intensity-coded extraneous items. The asymmetry persisted strongly in the presence of extraneous items that were drawn in a different color (Experiment 1) or a lower contrast (Experiment 2) than the search-relevant items, with the targets favored by the search asymmetry producing highly efficient search. The asymmetry was attenuated but not eliminated when extraneous items were drawn in a higher contrast than search-relevant items (Experiment 3). Results imply that the coding of symbology to exploit visual search asymmetries can facilitate visual search for high-priority items even within color- or intensity-coded displays. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  9. Shifting brain asymmetry: the link between meditation and structural lateralization.

    PubMed

    Kurth, Florian; MacKenzie-Graham, Allan; Toga, Arthur W; Luders, Eileen

    2015-01-01

    Previous studies have revealed an increased fractional anisotropy and greater thickness in the anterior parts of the corpus callosum in meditation practitioners compared with control subjects. Altered callosal features may be associated with an altered inter-hemispheric integration and the degree of brain asymmetry may also be shifted in meditation practitioners. Therefore, we investigated differences in gray matter asymmetry as well as correlations between gray matter asymmetry and years of meditation practice in 50 long-term meditators and 50 controls. We detected a decreased rightward asymmetry in the precuneus in meditators compared with controls. In addition, we observed that a stronger leftward asymmetry near the posterior intraparietal sulcus was positively associated with the number of meditation practice years. In a further exploratory analysis, we observed that a stronger rightward asymmetry in the pregenual cingulate cortex was negatively associated with the number of practice years. The group difference within the precuneus, as well as the positive correlations with meditation years in the pregenual cingulate cortex, suggests an adaptation of the default mode network in meditators. The positive correlation between meditation practice years and asymmetry near the posterior intraparietal sulcus may suggest that meditation is accompanied by changes in attention processing. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Short-term tidal asymmetry inversion in a macrotidal estuary (Beira, Mozambique)

    NASA Astrophysics Data System (ADS)

    Nzualo, Teodósio N. M.; Gallo, Marcos N.; Vinzon, Susana B.

    2018-05-01

    The distortion of the tide in estuaries, bays and coastal areas is the result of the generation of overtides due to the non-linear effects associated with friction, advection, and the finite effects of the tidal amplitude in shallow waters. The Beira estuary is classified as macrotidal, with a large ratio of S2/M2. Typical tides ranges from 6 m and 0.8 m, during springs and neaps tides, respectively. As a consequence of this large fortnightly tidal amplitude difference and the estuarine morphology, asymmetry inversions occur. Two types of tidal asymmetries were investigated in this paper, one considering tidal duration asymmetry (time difference between rising and falling tide) and the other, related to tidal velocity asymmetry (unequal magnitudes of flood and ebb peaks currents). In the Beira estuary when we examine the tidal duration asymmetry, flood dominance is observed during spring tide periods (negative time difference between rising and falling tide), while ebb dominance appears during neap tides (positive time difference between rising and falling tide). A 2DH hydrodynamic model was implemented to analyze this asymmetry inversion. The model was calibrated with water-level data measured at the Port of Beira and current data measured along the estuary. The model was run for different scenarios considering tidal constituents at the ocean boundary, river discharge and the morphology of the estuary. River discharge did not show significant effects on the tidal duration asymmetry. Through comparison of the scenarios, it was shown that the incoming ocean tide at the boundary has an ebb-dominant asymmetry, changing to flood-dominant only during spring tides due to the effect of shoaling and friction within the estuary. During neap tides, the propagation occurs mainly in the channels, and ebb dominance remains. The interplay between the estuary morphodynamics was thus identified and the relation between tidal duration asymmetry and tidal velocity asymmetry was

  11. The validity of individual frontal alpha asymmetry EEG neurofeedback.

    PubMed

    Quaedflieg, C W E M; Smulders, F T Y; Meyer, T; Peeters, F; Merckelbach, H; Smeets, T

    2016-01-01

    Frontal asymmetry in alpha oscillations is assumed to be associated with psychopathology and individual differences in emotional responding. Brain-activity-based feedback is a promising tool for the modulation of cortical activity. Here, we validated a neurofeedback protocol designed to change relative frontal asymmetry based on individual alpha peak frequencies, including real-time average referencing and eye-correction. Participants (N = 60) were randomly assigned to a right, left or placebo neurofeedback group. Results show a difference in trainability between groups, with a linear change in frontal alpha asymmetry over time for the right neurofeedback group during rest. Moreover, the asymmetry changes in the right group were frequency and location specific, even though trainability did not persist at 1 week and 1 month follow-ups. On the behavioral level, subjective stress on the second test day was reduced in the left and placebo neurofeedback groups, but not in the right neurofeedback group. We found individual differences in trainability that were dependent on training group, with participants in the right neurofeedback group being more likely to change their frontal asymmetry in the desired direction. Individual differences in trainability were also reflected in the ability to change frontal asymmetry during the feedback. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Automated measurement of vocal fold vibratory asymmetry from high-speed videoendoscopy recordings.

    PubMed

    Mehta, Daryush D; Deliyski, Dimitar D; Quatieri, Thomas F; Hillman, Robert E

    2011-02-01

    In prior work, a manually derived measure of vocal fold vibratory phase asymmetry correlated to varying degrees with visual judgments made from laryngeal high-speed videoendoscopy (HSV) recordings. This investigation extended this work by establishing an automated HSV-based framework to quantify 3 categories of vocal fold vibratory asymmetry. HSV-based analysis provided for cycle-to-cycle estimates of left-right phase asymmetry, left-right amplitude asymmetry, and axis shift during glottal closure for 52 speakers with no vocal pathology producing comfortable and pressed phonation. An initial cross-validation of the automated left-right phase asymmetry measure was performed by correlating the measure with other objective and subjective assessments of phase asymmetry. Vocal fold vibratory asymmetry was exhibited to a similar extent in both comfortable and pressed phonations. The automated measure of left-right phase asymmetry strongly correlated with manually derived measures and moderately correlated with visual-perceptual ratings. Correlations with the visual-perceptual ratings remained relatively consistent as the automated measure was derived from kymograms taken at different glottal locations. An automated HSV-based framework for the quantification of vocal fold vibratory asymmetry was developed and initially validated. This framework serves as a platform for investigating relationships between vocal fold tissue motion and acoustic measures of voice function.

  13. Ear asymmetries in middle-ear, cochlear, and brainstem responses in human infants

    PubMed Central

    Keefe, Douglas H.; Gorga, Michael P.; Jesteadt, Walt; Smith, Lynette M.

    2008-01-01

    In 2004, Sininger and Cone-Wesson examined asymmetries in the signal-to-noise ratio (SNR) of otoacoustic emissions (OAE) in infants, reporting that distortion-product (DP)OAE SNR was larger in the left ear, whereas transient-evoked (TE)OAE SNR was larger in the right. They proposed that cochlear and brainstem asymmetries facilitate development of brain-hemispheric specialization for sound processing. Similarly, in 2006 Sininger and Cone-Wesson described ear asymmetries mainly favoring the right ear in infant auditory brainstem responses (ABRs). The present study analyzed 2640 infant responses to further explore these effects. Ear differences in OAE SNR, signal, and noise were evaluated separately and across frequencies (1.5, 2, 3, and 4 kHz), and ABR asymmetries were compared with cochlear asymmetries. Analyses of ear-canal reflectance and admittance showed that asymmetries in middle-ear functioning did not explain cochlear and brainstem asymmetries. Current results are consistent with earlier studies showing right-ear dominance for TEOAE and ABR. Noise levels were higher in the right ear for OAEs and ABRs, causing ear asymmetries in SNR to differ from those in signal level. No left-ear dominance for DPOAE signal was observed. These results do not support a theory that ear asymmetries in cochlear processing mimic hemispheric brain specialization for auditory processing. PMID:18345839

  14. Crossed asymmetry in Russell-Silver syndrome.

    PubMed Central

    Qazi, Q H; Kassner, E G; Ganapathy, C

    1977-01-01

    Since the initial report by Silver et al (1953), more than 50 examples of the Russell-Silver syndrome have been reported. Unilateral congenital asymmetry of the extremities has been considered one of the major features of this disorder (Silver, 1964). We recently observed a child with otherwise typical features of the Russell-Silver syndrome who had enlargement of the right hand and of the left lower extremity. We know of no other recorded example of crossed asymmetry in this clinical entity. Images PMID:839508

  15. Symmetry and asymmetry in aesthetics and the arts

    NASA Astrophysics Data System (ADS)

    McManus, I. C.

    2005-10-01

    Symmetry and beauty are often claimed to be linked, particularly by mathematicians and scientists. However philosophers and art historians seem generally agreed that although symmetry is indeed attractive, there is also a somewhat sterile rigidity about it, which can make it less attractive than the more dynamic, less predictable beauty associated with asymmetry. Although a little asymmetry can be beautiful, an excess merely results in chaos. As Adorno suggested, asymmetry probably results most effectively in beauty when the underlying symmetry upon which it is built is still apparent. This paper examines the ways in which asymmetries, particularly left-right asymmetries, were used by painters in the Italian Renaissance. Polyptychs often show occasional asymmetries, which are more likely to involve the substitution of a left cheek for a right cheek, than vice-versa. A hypothesis is developed that the left and right cheeks have symbolic meanings, with the right cheek meaning "like self" and the left cheek meaning "unlike self". This principle is evaluated in pictures such as the Crucifixion, the Annunciation and, the Madonna and Child. The latter is particularly useful because the theological status of the Madonna changed during the Renaissance, and her left-right portrayal also changed at the same time in a comprehensible way. Some brief experimental tests of the hypothesis are also described. Finally the paper ends by considering why it is that the left rather than the right cheek is associated with "unlike self", and puts that result in the context of the universal "dual symbolic classification" of right and left, which was first described by the anthropologist Robert Hertz.

  16. Baryogenesis and dark matter through a Higgs asymmetry.

    PubMed

    Servant, Géraldine; Tulin, Sean

    2013-10-11

    In addition to explaining the masses of elementary particles, the Higgs boson may have far-reaching implications for the generation of the matter content in the Universe. For instance, the Higgs boson plays a key role in two main theories of baryogenesis, namely, electroweak baryogenesis and leptogenesis. In this Letter, we propose a new cosmological scenario where the Higgs chemical potential mediates asymmetries between visible and dark matter sectors, either generating a baryon asymmetry from a dark matter asymmetry or vice versa. We illustrate this mechanism with a simple model with two new fermions coupled to the Higgs boson and discuss the associated signatures.

  17. Perisylvian sulcal morphology and cerebral asymmetry patterns in adults who stutter.

    PubMed

    Cykowski, Matthew D; Kochunov, Peter V; Ingham, Roger J; Ingham, Janis C; Mangin, Jean-François; Rivière, Denis; Lancaster, Jack L; Fox, Peter T

    2008-03-01

    Previous investigations of cerebral anatomy in persistent developmental stutterers have reported bilateral anomalies in the perisylvian region and atypical patterns of cerebral asymmetry. In this study, perisylvian sulcal patterns were analyzed to compare subjects with persistent developmental stuttering (PDS) and an age-, hand-, and gender-matched control group. This analysis was accomplished using software designed for 3-dimensional sulcal identification and extraction. Patterns of cerebral asymmetry were also investigated with standard planimetric measurements. PDS subjects showed a small but significant increase in both the number of sulci connecting with the second segment of the right Sylvian fissure and in the number of suprasylvian gyral banks (of sulci) along this segment. No differences were seen in the left perisylvian region for either sulcal number or gyral bank number. Measurements of asymmetry revealed typical patterns of cerebral asymmetry in both groups with no significant differences in frontal and occipital width asymmetry, frontal and occipital pole asymmetry, or planum temporale and Sylvian fissure asymmetries. The subtle difference in cortical folding of the right perisylvian region observed in PDS subjects may correlate with functional imaging studies that have reported increased right-hemisphere activity during stuttered speech.

  18. Mechanisms of left-right asymmetry and patterning: driver, mediator and responder.

    PubMed

    Hamada, Hiroshi; Tam, Patrick P L

    2014-01-01

    The establishment of a left-right (LR) organizer in the form of the ventral node is an absolute prerequisite for patterning the tissues on contralateral sides of the body of the mouse embryo. The experimental findings to date are consistent with a mechanistic paradigm that the laterality information, which is generated in the ventral node, elicits asymmetric molecular activity and cellular behaviour in the perinodal tissues. This information is then relayed to the cells in the lateral plate mesoderm (LPM) when the left-specific signal is processed and translated into LR body asymmetry. Here, we reflect on our current knowledge and speculate on the following: (a) what are the requisite anatomical and functional attributes of an LR organizer, (b) what asymmetric information is emanated from this organizer, and (c) how this information is transferred across the paraxial tissue compartment and elicits a molecular response specifically in the LPM.

  19. Hemispheric Asymmetry in the Efficiency of Attentional Networks

    ERIC Educational Resources Information Center

    Asanowicz, Dariusz; Marzecova, Anna; Jaskowski, Piotr; Wolski, Piotr

    2012-01-01

    Despite the fact that hemispheric asymmetry of attention has been widely studied, a clear picture of this complex phenomenon is still lacking. The aim of the present study was to provide an efficient and reliable measurement of potential hemispheric asymmetries of three attentional networks, i.e. alerting, orienting and executive attention.…

  20. Gender specificity of resting anterior electroencephalographic asymmetry and defensiveness in the elderly.

    PubMed

    Kline, J P; Blackhart, G C; Schwartz, G E

    1999-01-01

    It has been reported that defensiveness in women is associated with relative left-frontal electroencephalogram (EEG) activation, while defensiveness in men is associated with relative right-frontal EEG activation. The present study examined whether this result generalized to men and women between the ages of 58 and 70. The Marlowe-Crowne Social Desirability Scale (MCSD) and EEG testing were used to examine relationships between gender, defensiveness, and anterior asymmetry. Men (n = 18) and women (n = 54) between the ages of 58 and 70 (mean age = 64.22, standard deviation = 3.003) were recruited from Tucson and surrounding areas of Pima County, Arizona. They were selected from among participants in an integrative health sciences study of aging that took place between 1991 and 1993. Subjects were divided into high-defensive and low-defensive groups based on a median split on the MCSD. EEGs were recorded from 19 channels (standard 10-20 montage), referenced to linked ears, and digitalized on-line at 128 Hz (band pass 2-32 Hz) during consecutive 60-second eyes-open and eyes-closed baselines. Two-second epochs containing bioelectric artifacts > 50 microvolts were eliminated from analyses. Average alpha (8-13 Hz) power (microV2)) was computed by Fast Fourier Transform and natural log (ln) transformed for normalization. Asymmetry scores were computed (log[right]-log[left]) for F4-F3, Fp2-Fp1, F8-F7, C4-C3, T4-T3, T6-T5, P4-P3, and O2-O1 for aggregated eyes-open and eyes-closed baselines. R-L asymmetry scores were analyzed for the aggregate frontal lead pairs, as well as for each pair separately. Findings were similar to those previously reported in that the direction of the relationship in men and women was the same. The results differed in that we found left-frontal activation in low-defensive men, whereas the previous study found right-frontal activation in high-defensive men. Furthermore, although in the same direction, the relationship for women was nonsignificant

  1. Magnetic fields and chiral asymmetry in the early hot universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sydorenko, Maksym; Shtanov, Yuri; Tomalak, Oleksandr, E-mail: maxsydorenko@gmail.com, E-mail: tomalak@uni-mainz.de, E-mail: shtanov@bitp.kiev.ua

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field andmore » lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.« less

  2. Significance of postshunt ventricular asymmetries.

    PubMed

    Linder, M; Diehl, J T; Sklar, F H

    1981-08-01

    Ventricular asymmetries after shunt surgery were studied. Right and left ventricular areas from pre-and postoperative computerized tomography scans were measured with a computer digitizing technique, and the respective areas were expressed as a ratio. Measurements were made from the scans of 15 hydrocephalic children selected at random. Ages at surgery ranged from 1 to 101 weeks. The results indicate a significantly greater decrease in ventricular size on the side of the ventricular shunt catheter. Multiple regression analysis showed no relationship between the magnitude of change in ventricular size and either the patients' age orn the time intervals between surgery and follow-up scans. Possible mechanisms for these postshunt ventricular asymmetries are discussed.

  3. Ocular adnexal asymmetry in models: a magazine photograph analysis.

    PubMed

    Ing, Edsel; Safarpour, Azien; Ing, Tom; Ing, Sabrina

    2006-04-01

    Symmetry of facial features often correlates with a perception of physical attractiveness, and ophthalmologists are sometimes consulted by patients for eyelid, eyebrow, or orbital asymmetry. Our objective was to determine the prevalence of ocular adnexal asymmetry among people generally regarded as attractive. The mean width of the horizontal palpebral fissure (MHPF) for both men and women was determined in 40 adult volunteers. Then unobscured, head-on photographs of models looking in the primary position were digitally scanned from popular magazines. Eyelid height, eyelid folds, eyebrow height, medial canthus to midline distance, pupil to midline distance, and orbital dystopia measurements were made. After the measurements from the models were scaled to size by factoring with the MHPF obtained from the volunteers, the results were analyzed by paired samples t test for right-left asymmetry of the ocular adnexal measurements. We also examined for antimongoloid slant in the models. The MHPF of the volunteers was 27+/-1.3 mm for women and 29.6+/-2.0 mm for men. Of 102 magazine photographs analyzed, 55 were women and 47 men. As a group, the models showed a statistically significant asymmetry (p<0.05) in the horizontal fissure width, upper central lid fold, upper temporal lid fold, central eyebrow height, temporal eyebrow height, medial canthal to midline distance, pupil to midline distance, and orbital dystopia. The female models had more eyebrow asymmetry. The male models had more asymmetry at the horizontal fissure and with orbital dystopia. Two male models also had a unilateral antimongoloid slant. Small to moderate amounts of eyelid, eyebrow, and orbital asymmetry were observed in faces generally perceived as attractive. This fact should be considered during preoperative discussions with patients considering oculoplastic surgery.

  4. Hemispheric asymmetry of emotion words in a non-native mind: a divided visual field study.

    PubMed

    Jończyk, Rafał

    2015-05-01

    This study investigates hemispheric specialization for emotional words among proficient non-native speakers of English by means of the divided visual field paradigm. The motivation behind the study is to extend the monolingual hemifield research to the non-native context and see how emotion words are processed in a non-native mind. Sixty eight females participated in the study, all highly proficient in English. The stimuli comprised 12 positive nouns, 12 negative nouns, 12 non-emotional nouns and 36 pseudo-words. To examine the lateralization of emotion, stimuli were presented unilaterally in a random fashion for 180 ms in a go/no-go lexical decision task. The perceptual data showed a right hemispheric advantage for processing speed of negative words and a complementary role of the two hemispheres in the recognition accuracy of experimental stimuli. The data indicate that processing of emotion words in non-native language may require greater interhemispheric communication, but at the same time demonstrates a specific role of the right hemisphere in the processing of negative relative to positive valence. The results of the study are discussed in light of the methodological inconsistencies in the hemifield research as well as the non-native context in which the study was conducted.

  5. The intricate Galaxy disk: velocity asymmetries in Gaia-TGAS

    NASA Astrophysics Data System (ADS)

    Antoja, T.; de Bruijne, J.; Figueras, F.; Mor, R.; Prusti, T.; Roca-Fàbrega, S.

    2017-06-01

    We use Gaia-TGAS data to compare the transverse velocities in Galactic longitude (coming from proper motions and parallaxes) in the Milky Way disk for negative and positive longitudes as a function of distance. The transverse velocities are strongly asymmetric and deviate significantly from the expectations for an axisymmetric galaxy. The value and sign of the asymmetry changes at spatial scales of several tens of degrees in Galactic longitude and about 0.5 kpc in distance. The asymmetry is statistically significant at 95% confidence level for 57% of the region probed, which extends up to 1.2 kpc. A percentage of 24% of the region shows absolute differences at this confidence level larger than 5 km s-1 and 7% larger than 10 km s-1. The asymmetry pattern shows mild variations in the vertical direction and with stellar type. A first qualitative comparison with spiral arm models indicates that the arms are probably not the main source of the asymmetry. We briefly discuss alternative origins. This is the first time that global all-sky asymmetries are detected in the Milky Way kinematics beyond the local neighbourhood and with a purely astrometric sample.

  6. Co-clustering directed graphs to discover asymmetries and directional communities

    PubMed Central

    Rohe, Karl; Qin, Tai; Yu, Bin

    2016-01-01

    In directed graphs, relationships are asymmetric and these asymmetries contain essential structural information about the graph. Directed relationships lead to a new type of clustering that is not feasible in undirected graphs. We propose a spectral co-clustering algorithm called di-sim for asymmetry discovery and directional clustering. A Stochastic co-Blockmodel is introduced to show favorable properties of di-sim. To account for the sparse and highly heterogeneous nature of directed networks, di-sim uses the regularized graph Laplacian and projects the rows of the eigenvector matrix onto the sphere. A nodewise asymmetry score and di-sim are used to analyze the clustering asymmetries in the networks of Enron emails, political blogs, and the Caenorhabditis elegans chemical connectome. In each example, a subset of nodes have clustering asymmetries; these nodes send edges to one cluster, but receive edges from another cluster. Such nodes yield insightful information (e.g., communication bottlenecks) about directed networks, but are missed if the analysis ignores edge direction. PMID:27791058

  7. Co-clustering directed graphs to discover asymmetries and directional communities.

    PubMed

    Rohe, Karl; Qin, Tai; Yu, Bin

    2016-10-21

    In directed graphs, relationships are asymmetric and these asymmetries contain essential structural information about the graph. Directed relationships lead to a new type of clustering that is not feasible in undirected graphs. We propose a spectral co-clustering algorithm called di-sim for asymmetry discovery and directional clustering. A Stochastic co-Blockmodel is introduced to show favorable properties of di-sim To account for the sparse and highly heterogeneous nature of directed networks, di-sim uses the regularized graph Laplacian and projects the rows of the eigenvector matrix onto the sphere. A nodewise asymmetry score and di-sim are used to analyze the clustering asymmetries in the networks of Enron emails, political blogs, and the Caenorhabditis elegans chemical connectome. In each example, a subset of nodes have clustering asymmetries; these nodes send edges to one cluster, but receive edges from another cluster. Such nodes yield insightful information (e.g., communication bottlenecks) about directed networks, but are missed if the analysis ignores edge direction.

  8. Communication Apprehension and Resting Alpha Range Asymmetry in the Anterior Cortex

    ERIC Educational Resources Information Center

    Beatty, Michael J.; Heisel, Alan D.; Lewis, Robert J.; Pence, Michelle E.; Reinhart, Amber; Tian, Yan

    2011-01-01

    In this study, we examined the relationship between trait-like communication apprehension (CA) and resting alpha range asymmetry in the anterior cortex (AC). Although theory and research in cognitive neuroscience suggest that asymmetry in the AC constitutes a relatively stable, inborn, substrate of emotion, some studies indicate that asymmetry can…

  9. Challenging Postural Tasks Increase Asymmetry in Patients with Parkinson’s Disease

    PubMed Central

    Beretta, Victor Spiandor; Gobbi, Lilian Teresa Bucken; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Barbieri, Fabio Augusto

    2015-01-01

    The unilateral predominance of Parkinson’s disease (PD) symptoms suggests that balance control could be asymmetrical during static tasks. Although studies have shown that balance control asymmetries exist in patients with PD, these analyses were performed using only simple bipedal standing tasks. Challenging postural tasks, such as unipedal or tandem standing, could exacerbate balance control asymmetries. To address this, we studied the impact of challenging standing tasks on postural control asymmetry in patients with PD. Twenty patients with PD and twenty neurologically healthy individuals (control group) participated in this study. Participants performed three 30s trials for each postural task: bipedal, tandem adapted and unipedal standing. The center of pressure parameter was calculated for both limbs in each of these conditions, and the asymmetry between limbs was assessed using the symmetric index. A significant effect of condition was observed, with unipedal standing and tandem standing showing greater asymmetry than bipedal standing for the mediolateral root mean square (RMS) and area of sway parameters, respectively. In addition, a group*condition interaction indicated that, only for patients with PD, the unipedal condition showed greater asymmetry in the mediolateral RMS and area of sway than the bipedal condition and the tandem condition showed greater asymmetry in the area of sway than the bipedal condition. Patients with PD exhibited greater asymmetry while performing tasks requiring postural control when compared to neurologically healthy individuals, especially for challenging tasks such as tandem and unipedal standing. PMID:26367032

  10. Frontal alpha asymmetry and sexually motivated states.

    PubMed

    Prause, Nicole; Staley, Cameron; Roberts, Verena

    2014-03-01

    Anterior alpha asymmetry of electroencephalographic (EEG) signals has been suggested to index state approach (or avoidance) motivation. This model has not yet been extended to high approach-motivation sexual stimuli, which may represent an important model of reward system function. Sixty-five participants viewed a neutral and a sexually motivating film while their EEG was recorded, and reported their sexual feelings after each film. Greater alpha power in the left hemisphere during sexually motivated states was evident. A positive relationship between self-reported mental sexual arousal and alpha asymmetry was identified, where coherence between these indicators was higher in women. Notably, coherence was stronger when mental versus physical sexual arousal was rated. Alpha asymmetry appears to offer a new method for further examining this novel coherence pattern across men and women. Copyright © 2014 Society for Psychophysiological Research.

  11. Hemispheric asymmetry in the efficiency of attentional networks.

    PubMed

    Asanowicz, Dariusz; Marzecová, Anna; Jaśkowski, Piotr; Wolski, Piotr

    2012-07-01

    Despite the fact that hemispheric asymmetry of attention has been widely studied, a clear picture of this complex phenomenon is still lacking. The aim of the present study was to provide an efficient and reliable measurement of potential hemispheric asymmetries of three attentional networks, i.e. alerting, orienting and executive attention. Participants (N=125) were tested with the Lateralized Attention Network Test (LANT) that allowed us to investigate the efficiency of the networks in both visual fields (VF). We found a LVF advantage when a target occurred in an unattended location, which seems to reflect right hemisphere superiority in control of the reorienting of attention. Furthermore, a LVF advantage in conflict resolution was observed, which may indicate hemispheric asymmetry of the executive network. No VF effect for alerting was found. The results, consistent with the common notion of general right hemisphere dominance for attention, provide a more detailed account of hemispheric asymmetries of the attentional networks than previous studies using the LANT task. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Search asymmetries: parallel processing of uncertain sensory information.

    PubMed

    Vincent, Benjamin T

    2011-08-01

    What is the mechanism underlying search phenomena such as search asymmetry? Two-stage models such as Feature Integration Theory and Guided Search propose parallel pre-attentive processing followed by serial post-attentive processing. They claim search asymmetry effects are indicative of finding pairs of features, one processed in parallel, the other in serial. An alternative proposal is that a 1-stage parallel process is responsible, and search asymmetries occur when one stimulus has greater internal uncertainty associated with it than another. While the latter account is simpler, only a few studies have set out to empirically test its quantitative predictions, and many researchers still subscribe to the 2-stage account. This paper examines three separate parallel models (Bayesian optimal observer, max rule, and a heuristic decision rule). All three parallel models can account for search asymmetry effects and I conclude that either people can optimally utilise the uncertain sensory data available to them, or are able to select heuristic decision rules which approximate optimal performance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Critical asymmetry in renormalization group theory for fluids.

    PubMed

    Zhao, Wei; Wu, Liang; Wang, Long; Li, Liyan; Cai, Jun

    2013-06-21

    The renormalization-group (RG) approaches for fluids are employed to investigate critical asymmetry of vapour-liquid equilibrium (VLE) of fluids. Three different approaches based on RG theory for fluids are reviewed and compared. RG approaches are applied to various fluid systems: hard-core square-well fluids of variable ranges, hard-core Yukawa fluids, and square-well dimer fluids and modelling VLE of n-alkane molecules. Phase diagrams of simple model fluids and alkanes described by RG approaches are analyzed to assess the capability of describing the VLE critical asymmetry which is suggested in complete scaling theory. Results of thermodynamic properties obtained by RG theory for fluids agree with the simulation and experimental data. Coexistence diameters, which are smaller than the critical densities, are found in the RG descriptions of critical asymmetries of several fluids. Our calculation and analysis show that the approach coupling local free energy with White's RG iteration which aims to incorporate density fluctuations into free energy is not adequate for VLE critical asymmetry due to the inadequate order parameter and the local free energy functional used in the partition function.

  14. Creation and Evolution of Particle Number Asymmetry in an Expanding Universe

    NASA Astrophysics Data System (ADS)

    Morozumi, T.; Nagao, K. I.; Adam, A. S.; Takata, H.

    2017-03-01

    We introduce a model which may generate particle number asymmetry in an expanding Universe. The model includes charge parity (CP) violating and particle number violating interactions. The model consists of a real scalar field and a complex scalar field. Starting with an initial condition specified by a density matrix, we show how the asymmetry is created through the interaction and how it evolves at later time. We compute the asymmetry using non-equilibrium quantum field theory and as a first test of the model, we study how the asymmetry evolves in the flat limit.

  15. Line asymmetry in the Seyfert Galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    Ramirez, J. M.; Bautista, Manuel; Kallman, Timothy

    2005-01-01

    We have reanalyzed the 900 ks Chandra X-ray spectrum of NGC 3783, finding evidence on the asymmetry of the spectral absorption lines. The lines are fitted with a parametric expression that results from an analytical treatment of radiatively driven winds. The line asymmetry distribution derived from the spectrum is consistent with a non-spherical outflow with a finite optical depth. Within this scenario, our model explains the observed correlations between the line velocity shifts and the ionization parameter and between the line velocity shift and the line asymmetry. The present results may provide a framework for detailed testing of models for the dynamic and physical properties of warm absorber in Seyfert galaxies.

  16. Yield Asymmetry Design of Magnesium Alloys by Integrated Computational Materials Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Joshi, Vineet V.; Lavender, Curt A.

    2013-11-01

    Deformation asymmetry of magnesium alloys is an important factor on machine design in automobile industry. Represented by the ratio of compressive yield stress (CYS) against tensile yield stress (TYS), deformation asymmetry is strongly related to microstructure, characterized by texture and grain size. Modified intermediate phi-model, a polycrystalline viscoplasticity model, is used to predict the deformation behavior of magnesium alloys with different grain sizes. Validated with experimental results, integrated computational materials engineering is applied to find out the route in achieving desired asymmetry by thermomechanical processing. In some texture, for example, rolled texture, CYS/TYS is smaller than 1 under different loadingmore » directions. In some texture, for example, extruded texture, asymmetry is large along normal direction. Starting from rolled texture, the asymmetry will increased to close to 1 along rolling direction after compressed to a strain of 0.2. Our model shows that grain refinement increases CYS/TYS. Besides texture control, grain refinement can also optimize the yield asymmetry. After the grain size decreased to a critical value, CYS/TYS reaches to 1 since CYS increases much faster than TYS. By tailoring the microstructure using texture control and grain refinement, it is achievable to optimize yield asymmetry in wrought magnesium alloys.« less

  17. ATRX contributes to epigenetic asymmetry and silencing of major satellite transcripts in the maternal genome of the mouse embryo

    PubMed Central

    De La Fuente, Rabindranath; Baumann, Claudia; Viveiros, Maria M.

    2015-01-01

    A striking proportion of human cleavage-stage embryos exhibit chromosome instability (CIN). Notably, until now, no experimental model has been described to determine the origin and mechanisms of complex chromosomal rearrangements. Here, we examined mouse embryos deficient for the chromatin remodeling protein ATRX to determine the cellular mechanisms activated in response to CIN. We demonstrate that ATRX is required for silencing of major satellite transcripts in the maternal genome, where it confers epigenetic asymmetry to pericentric heterochromatin during the transition to the first mitosis. This stage is also characterized by a striking kinetochore size asymmetry established by differences in CENP-C protein between the parental genomes. Loss of ATRX results in increased centromeric mitotic recombination, a high frequency of sister chromatid exchanges and double strand DNA breaks, indicating the formation of mitotic recombination break points. ATRX-deficient embryos exhibit a twofold increase in transcripts for aurora kinase B, the centromeric cohesin ESCO2, DNMT1, the ubiquitin-ligase (DZIP3) and the histone methyl transferase (EHMT1). Thus, loss of ATRX activates a pathway that integrates epigenetic modifications and DNA repair in response to chromosome breaks. These results reveal the cellular response of the cleavage-stage embryo to CIN and uncover a mechanism by which centromeric fission induces the formation of large-scale chromosomal rearrangements. Our results have important implications to determine the epigenetic origins of CIN that lead to congenital birth defects and early pregnancy loss, as well as the mechanisms involved in the oocyte to embryo transition. PMID:25926359

  18. Targeted presurgical decompensation in patients with yaw-dependent facial asymmetry

    PubMed Central

    Kim, Kyung-A; Lee, Ji-Won; Park, Jeong-Ho; Kim, Byoung-Ho; Ahn, Hyo-Won

    2017-01-01

    Facial asymmetry can be classified into the rolling-dominant type (R-type), translation-dominant type (T-type), yawing-dominant type (Y-type), and atypical type (A-type) based on the distorted skeletal components that cause canting, translation, and yawing of the maxilla and/or mandible. Each facial asymmetry type represents dentoalveolar compensations in three dimensions that correspond to the main skeletal discrepancies. To obtain sufficient surgical correction, it is necessary to analyze the main skeletal discrepancies contributing to the facial asymmetry and then the skeletal-dental relationships in the maxilla and mandible separately. Particularly in cases of facial asymmetry accompanied by mandibular yawing, it is not simple to establish pre-surgical goals of tooth movement since chin deviation and posterior gonial prominence can be either aggravated or compromised according to the direction of mandibular yawing. Thus, strategic dentoalveolar decompensations targeting the real basal skeletal discrepancies should be performed during presurgical orthodontic treatment to allow for sufficient skeletal correction with stability. In this report, we document targeted decompensation of two asymmetry patients focusing on more complicated yaw-dependent types than others: Y-type and A-type. This may suggest a clinical guideline on the targeted decompensation in patient with different types of facial asymmetries. PMID:28523246

  19. Targeted presurgical decompensation in patients with yaw-dependent facial asymmetry.

    PubMed

    Kim, Kyung-A; Lee, Ji-Won; Park, Jeong-Ho; Kim, Byoung-Ho; Ahn, Hyo-Won; Kim, Su-Jung

    2017-05-01

    Facial asymmetry can be classified into the rolling-dominant type (R-type), translation-dominant type (T-type), yawing-dominant type (Y-type), and atypical type (A-type) based on the distorted skeletal components that cause canting, translation, and yawing of the maxilla and/or mandible. Each facial asymmetry type represents dentoalveolar compensations in three dimensions that correspond to the main skeletal discrepancies. To obtain sufficient surgical correction, it is necessary to analyze the main skeletal discrepancies contributing to the facial asymmetry and then the skeletal-dental relationships in the maxilla and mandible separately. Particularly in cases of facial asymmetry accompanied by mandibular yawing, it is not simple to establish pre-surgical goals of tooth movement since chin deviation and posterior gonial prominence can be either aggravated or compromised according to the direction of mandibular yawing. Thus, strategic dentoalveolar decompensations targeting the real basal skeletal discrepancies should be performed during presurgical orthodontic treatment to allow for sufficient skeletal correction with stability. In this report, we document targeted decompensation of two asymmetry patients focusing on more complicated yaw-dependent types than others: Y-type and A-type. This may suggest a clinical guideline on the targeted decompensation in patient with different types of facial asymmetries.

  20. Effects of Convective Asymmetries on Hurricane Intensity: A Numerical Study

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Braun, Scott A.

    2003-01-01

    The influence of the uniform large-scale flow, beta effect, and vertical shear of the environmental flow on hurricane intensity is investigated in the context of the induced convective or potential vorticity asymmetries with a hydrostatic primitive equation hurricane model. In agreement with the previous studies, imposing of one of these environmental effects can substantially weaken the simulated tropical cyclones. In response t o the environmental influence, significant asymmetries develop with a structure similar to the spiral bands in real hurricanes, which are dominated by wavenumber-one components. The tendencies of the mean radial, azimuthal winds and temperature associated with the environment-induced convective asymmetries are evaluated respectively. The resulting asymmetries can effectively reduce hurricane intensity by directly producing the negative tendency of the mean tangential wind in the vicinity of the radius of maximum wind, and by weakening the mean radial circulation. The reduction effects are closely associated with the spiral structure of the induced asymmetries. The time lag observed between the imposition of the environmental influence and the resulting rise in the minimum central pressure is the time required for developing the spiral structure. This study also confirms the axisymmetrization process associated with the induced wavenumber-one components of potential vorticity asymmetries, but it exists only within the radius of maximum wind.

  1. Substrate Stiffness Regulates the Development of Left-Right Asymmetry in Cell Orientation.

    PubMed

    Bao, Yuanye; Huang, Yaozhun; Lam, Miu Ling; Xu, Ting; Zhu, Ninghao; Guo, Zhaobin; Cui, Xin; Lam, Raymond H W; Chen, Ting-Hsuan

    2016-07-20

    Left-right (LR) asymmetry of tissue/organ structure is a morphological feature essential for many tissue functions. The ability to incorporate the LR formation in constructing tissue/organ replacement is important for recapturing the inherent tissue structure and functions. However, how LR asymmetry is formed remains largely underdetermined, which creates significant hurdles to reproduce and regulate the formation of LR asymmetry in an engineering context. Here, we report substrate rigidity functioning as an effective switch that turns on the development of LR asymmetry. Using micropatterned cell-adherent stripes on rigid substrates, we found that cells collectively oriented at a LR-biased angle relative to the stripe boundary. This LR asymmetry was initiated by a LR-biased migration of cells at stripe boundary, which later generated a velocity gradient propagating from stripe boundary to the center. After a series of cell translocations and rotations, ultimately, an LR-biased cell orientation within the micropatterned stripe was formed. Importantly, this initiation and propagation of LR asymmetry was observed only on rigid but not on soft substrates, suggesting that the LR asymmetry was regulated by rigid substrate probably through the organization of actin cytoskeleton. Together, we demonstrated substrate rigidity as a determinant factor that mediates the self-organizing LR asymmetry being unfolded from single cells to multicellular organization. More broadly, we anticipate that our findings would pave the way for rebuilding artificial tissue constructs with inherent LR asymmetry in the future.

  2. Mandibular asymmetry and the fourth dimension.

    PubMed

    Kaban, Leonard B

    2009-03-01

    This paper represents more than 30 years of discussion and collaboration with Drs Joseph Murray and John Mulliken in an attempt to understand growth patterns over time (ie, fourth dimension) in patients with hemifacial microsomia (HFM). This is essential for the development of rational treatment protocols for children and adults with jaw asymmetry. Traditionally, HFM was thought of as a unilateral deformity, but it was recognized that 20% to 30% of patients had bilateral abnormalities. However, early descriptions of skeletal correction addressed almost exclusively lengthening of the short (affected) side of the face. Based on longitudinal clinical observations of unoperated HFM patients, we hypothesized that abnormal mandibular growth is the earliest skeletal manifestation and that restricted growth of the mandible plays a pivotal role in progressive distortion of both the ipsilateral and contralateral facial skeleton. This hypothesis explains the progressive nature of the asymmetry in patients with HFM and provides the rationale for surgical lengthening of the mandible in children to prevent end-stage deformity. During the past 30 years, we have learned that this phenomenon of progressive distortion of the adjacent and contralateral facial skeleton occurs with other asymmetric mandibular undergrowth (tumor resection, radiation therapy, or posttraumatic defects) and overgrowth (mandibular condylar hyperplasia) conditions. In this paper, I describe the progression of deformity with time in patients with mandibular asymmetry as a result of undergrowth and overgrowth. Understanding these concepts is critical for the development of rational treatment protocols for adults with end-stage asymmetry and for children to minimize secondary deformity.

  3. Left-right asymmetries and shape analysis on Ceroglossus chilensis (Coleoptera: Carabidae)

    NASA Astrophysics Data System (ADS)

    Bravi, Raffaella; Benítez, Hugo A.

    2013-10-01

    Bilateral symmetry is widespread in animal kingdom, however most animal can deviate from expected symmetry and manifest some kind of asymmetries. Fluctuating asymmetry is considered as a tool for valuating developmental instability, whereas directional asymmetry is inherited and could be used for evaluating evolutionary development. We use the method of geometric morphometrics to analyze left/right asymmetries in the whole body, in two sites and totally six populations of Ceroglossus chilensis with the aim to infer and explain morphological disparities between populations and sexes in this species. In all individuals analyzed we found both fluctuating asymmetry and directional asymmetry for size and shape variation components, and a high sexual dimorphism. Moreover a high morphological variability between the two sites emerged as well. Differences in diet could influence the expression of morphological variation and simultaneously affect body sides, and therefore contribute to the symmetric component of variation. Moreover differences emerged between two sites could be a consequence of isolation and fragmentation, rather than a response to local environmental differences between sampling sites.

  4. Observation of the limit cycle in asymmetric plasma divided by a magnetic filter

    NASA Astrophysics Data System (ADS)

    Ohi, Kazuo; Naitou, Hiroshi; Tauchi, Yasushi; Fukumasa, Osamu

    2001-01-01

    An asymmetric plasma divided by a magnetic filter is numerically simulated by the one-dimensional particle-in-cell code VSIM1D [Koga et al., J. Phys. Soc. Jpn. 68, 1578 (1999)]. Depending on the asymmetry, the system behavior is static or dynamic. In the static state, the potentials of the main plasma and the subplasma are given by the sheath potentials, φM˜3TMe/e and φS˜3TSe/e, respectively, with e being an electron charge and TMe and TSe being electron temperatures (TMe>TSe). In the dynamic state, while φM˜3TMe/e, φS oscillates periodically between φS,min˜3TSe/e and φS,max˜3TMe/e. The ions accelerated by the time varying potential gap get into the subplasma and excite the laminar shock waves. The period of the limit cycle is determined by the transit time of the shock wave structure.

  5. The nondeterministic divide

    NASA Technical Reports Server (NTRS)

    Charlesworth, Arthur

    1990-01-01

    The nondeterministic divide partitions a vector into two non-empty slices by allowing the point of division to be chosen nondeterministically. Support for high-level divide-and-conquer programming provided by the nondeterministic divide is investigated. A diva algorithm is a recursive divide-and-conquer sequential algorithm on one or more vectors of the same range, whose division point for a new pair of recursive calls is chosen nondeterministically before any computation is performed and whose recursive calls are made immediately after the choice of division point; also, access to vector components is only permitted during activations in which the vector parameters have unit length. The notion of diva algorithm is formulated precisely as a diva call, a restricted call on a sequential procedure. Diva calls are proven to be intimately related to associativity. Numerous applications of diva calls are given and strategies are described for translating a diva call into code for a variety of parallel computers. Thus diva algorithms separate logical correctness concerns from implementation concerns.

  6. Prefrontal Asymmetry and Parent-Rated Temperament in Infants

    PubMed Central

    LoBue, Vanessa; Coan, James A.; Thrasher, Cat; DeLoache, Judy S.

    2011-01-01

    Indicators of temperament appear early in infancy and remain relatively stable over time. Despite a great deal of interest in biological indices of temperament, most studies of infant temperament rely on parental reports or behavioral tasks. Thus, the extent to which commonly used temperament measures relate to potential biological indicators of infant temperament is still relatively unknown. The current experiment examines the relationship between a common parental report measure of temperament – the Infant Behavior Questionnaire – Revised (IBQ-R) – and measures of frontal EEG asymmetry in infants. We examined associations between the subscales of the IBQ-R and frontal EEG asymmetry scores recorded during a combined series of neutral attentional and putatively emotional recording conditions in infants between 7 and 9 months of age. We predicted that approach-related subscales of the IBQ-R (e.g., Approach, Soothability) would be related to greater left prefrontal asymmetry, while withdrawal-related subscales (e.g., Distress to Limitations, Fear, Falling Reactivity, Perceptual Sensitivity) would be related to greater right prefrontal asymmetry. In the mid- and lateral-frontal regions, Approach, Distress to Limitations, Fear, Soothability, and Perceptual Sensitivity were generally associated with greater left frontal activation (rs≥.23, ps<0.05), while only Falling Reactivity was associated with greater right frontal activation (rs≤−.44, ps<0.05). Results suggest that variability in frontal EEG asymmetry is robustly associated with parental report measures of temperament in infancy. PMID:21829482

  7. Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium.

    PubMed

    Kong, Xiang-Zhen; Mathias, Samuel R; Guadalupe, Tulio; Glahn, David C; Franke, Barbara; Crivello, Fabrice; Tzourio-Mazoyer, Nathalie; Fisher, Simon E; Thompson, Paul M; Francks, Clyde

    2018-05-29

    Hemispheric asymmetry is a cardinal feature of human brain organization. Altered brain asymmetry has also been linked to some cognitive and neuropsychiatric disorders. Here, the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium presents the largest-ever analysis of cerebral cortical asymmetry and its variability across individuals. Cortical thickness and surface area were assessed in MRI scans of 17,141 healthy individuals from 99 datasets worldwide. Results revealed widespread asymmetries at both hemispheric and regional levels, with a generally thicker cortex but smaller surface area in the left hemisphere relative to the right. Regionally, asymmetries of cortical thickness and/or surface area were found in the inferior frontal gyrus, transverse temporal gyrus, parahippocampal gyrus, and entorhinal cortex. These regions are involved in lateralized functions, including language and visuospatial processing. In addition to population-level asymmetries, variability in brain asymmetry was related to sex, age, and intracranial volume. Interestingly, we did not find significant associations between asymmetries and handedness. Finally, with two independent pedigree datasets ( n = 1,443 and 1,113, respectively), we found several asymmetries showing significant, replicable heritability. The structural asymmetries identified and their variabilities and heritability provide a reference resource for future studies on the genetic basis of brain asymmetry and altered laterality in cognitive, neurological, and psychiatric disorders.

  8. Left-right asymmetry specification in amphioxus: review and prospects.

    PubMed

    Soukup, Vladimir

    2017-01-01

    Extant bilaterally symmetrical animals usually show asymmetry in the arrangement of their inner organs. However, the exaggerated left-right (LR) asymmetry in amphioxus represents a true peculiarity among them. The amphioxus larva shows completely disparate fates of left and right body sides, so that organs associated with pharynx are either positioned exclusively on the left or on the right side. Moreover, segmented paraxial structures such as muscle blocks and their neuronal innervation show offset arrangement between the sides making it difficult to propose any explanation or adaptivity to larval and adult life. First LR asymmetries can be traced back to an early embryonic period when morphological asymmetries are preceded by molecular asymmetries driven by the action of the Nodal signaling pathway. This review sums up recent advances in understanding LR asymmetry specification in amphioxus and proposes upstream events that may regulate asymmetric Nodal signaling. These events include the presence of the vertebrate-like LR organizer and a cilia-driven fluid flow that may be involved in the breaking of bilateral symmetry. The upstream pathways comprising the ion flux, Delta/Notch, Wnt/β-catenin and Wnt/PCP are hypothesized to regulate both formation of the LR organizer and expression of the downstream Nodal signaling pathway genes. These suggestions are in line with what we know from vertebrate and ambulacrarian LR axis specification and are directly testable by experimental manipulations. Thanks to the phylogenetic position of amphioxus, the proposed mechanisms may be helpful in understanding the evolution of LR axis specification across deuterostomes.

  9. New Views on Strand Asymmetry in Insect Mitochondrial Genomes

    PubMed Central

    Wei, Shu-Jun; Shi, Min; Chen, Xue-Xin; Sharkey, Michael J.; van Achterberg, Cornelis; Ye, Gong-Yin; He, Jun-Hua

    2010-01-01

    Strand asymmetry in nucleotide composition is a remarkable feature of animal mitochondrial genomes. Understanding the mutation processes that shape strand asymmetry is essential for comprehensive knowledge of genome evolution, demographical population history and accurate phylogenetic inference. Previous studies found that the relative contributions of different substitution types to strand asymmetry are associated with replication alone or both replication and transcription. However, the relative contributions of replication and transcription to strand asymmetry remain unclear. Here we conducted a broad survey of strand asymmetry across 120 insect mitochondrial genomes, with special reference to the correlation between the signs of skew values and replication orientation/gene direction. The results show that the sign of GC skew on entire mitochondrial genomes is reversed in all species of three distantly related families of insects, Philopteridae (Phthiraptera), Aleyrodidae (Hemiptera) and Braconidae (Hymenoptera); the replication-related elements in the A+T-rich regions of these species are inverted, confirming that reversal of strand asymmetry (GC skew) was caused by inversion of replication origin; and finally, the sign of GC skew value is associated with replication orientation but not with gene direction, while that of AT skew value varies with gene direction, replication and codon positions used in analyses. These findings show that deaminations during replication and other mutations contribute more than selection on amino acid sequences to strand compositions of G and C, and that the replication process has a stronger affect on A and T content than does transcription. Our results may contribute to genome-wide studies of replication and transcription mechanisms. PMID:20856815

  10. The influence of sex chromosome aneuploidy on brain asymmetry.

    PubMed

    Rezaie, Roozbeh; Daly, Eileen M; Cutter, William J; Murphy, Declan G M; Robertson, Dene M W; DeLisi, Lynn E; Mackay, Clare E; Barrick, Thomas R; Crow, Timothy J; Roberts, Neil

    2009-01-05

    The cognitive deficits present in individuals with sex chromosome aneuploidies suggest that hemispheric differentiation of function is determined by an X-Y homologous gene [Crow (1993); Lancet 342:594-598]. In particular, females with Turner's syndrome (TS) who have only one X-chromosome exhibit deficits of spatial ability whereas males with Klinefelter's syndrome (KS) who possess a supernumerary X-chromosome are delayed in acquiring words. Since spatial and verbal abilities are generally associated with right and left hemispheric function, such deficits may relate to anomalies of cerebral asymmetry. We therefore applied a novel image analysis technique to investigate the relationship between sex chromosome dosage and structural brain asymmetry. Specifically, we tested Crow's prediction that the magnitude of the brain torque (i.e., a combination of rightward frontal and leftward occipital asymmetry) would, as a function of sex chromosome dosage, be respectively decreased in TS women and increased in KS men, relative to genotypically normal controls. We found that brain torque was not significantly different in TS women and KS men, in comparison to controls. However, TS women exhibited significantly increased leftward brain asymmetry, restricted to the posterior of the brain and focused on the superior temporal and parietal-occipital association cortex, while KS men showed a trend for decreased brain asymmetry throughout the frontal lobes. The findings suggest that the number of sex chromosomes influences the development of brain asymmetry not simply to modify the torque but in a complex pattern along the antero-posterior axis. 2008 Wiley-Liss, Inc.

  11. Target and double spin asymmetries of deeply virtual π0 production with a longitudinally polarized proton target and CLAS

    NASA Astrophysics Data System (ADS)

    Kim, A.; Avakian, H.; Burkert, V.; Joo, K.; Kim, W.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Badui, R. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Bosted, P.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garc con, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; McCracken, M. E.; McKinnon, B.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Zachariou, N.; Zana, L.; Zhang, J.

    2017-05-01

    The target and double spin asymmetries of the exclusive pseudoscalar channel e → p → → epπ0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2, xB, -t and ϕ. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs H˜T and ET, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HT and EbarT. These data provide a crucial input for parametrizations of essentially unknown chiral-odd GPDs and will strongly influence existing theoretical calculations based on the handbag formalism.

  12. Target and double spin asymmetries of deeply virtual π 0 production with a longitudinally polarized proton target and CLAS

    DOE PAGES

    Kim, A.; Avakian, H.; Burkert, V.; ...

    2017-02-22

    The target and double spin asymmetries of the exclusive pseudoscalar channelmore » $$\\vec e\\vec p\\to ep\\pi^0$$ were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of $Q^2$, $$x_B$$, $-t$ and $$\\phi$$. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs $$\\tilde{H}_T$$ and $$E_T$$, and complement previous measurements of unpolarized structure functions sensitive to the GPDs $$H_T$$ and $$\\bar E_T$$. Finally, these data provide necessary constraints for chiral-odd GPD parametrizations and will strongly influence existing theoretical handbag models.« less

  13. Perceptual asymmetry in texture perception.

    PubMed

    Williams, D; Julesz, B

    1992-07-15

    A fundamental property of human visual perception is our ability to distinguish between textures. A concerted effort has been made to account for texture segregation in terms of linear spatial filter models and their nonlinear extensions. However, for certain texture pairs the ease of discrimination changes when the role of figure and ground are reversed. This asymmetry poses a problem for both linear and nonlinear models. We have isolated a property of texture perception that can account for this asymmetry in discrimination: subjective closure. This property, which is also responsible for visual illusions, appears to be explainable by early visual processes alone. Our results force a reexamination of the process of human texture segregation and of some recent models that were introduced to explain it.

  14. Analysis of Facial Asymmetry in Deformational Plagiocephaly Using Three-Dimensional Computed Tomographic Review

    PubMed Central

    Moon, Il Yung; Oh, Kap Sung

    2014-01-01

    Background Infants with deformational plagiocephaly (DP) usually present with cranial vault deformities as well as facial asymmetry. The purpose of this study was to use three-dimensional anthropometric data to evaluate the influence of cranial deformities on facial asymmetry. Methods We analyzed three-dimensional computed tomography data for infants with DP (n=48) and without DP (n=30, control). Using 16 landmarks and 3 reference planes, 22 distance parameters and 2 angular parameters were compared. This cephalometric assessment focused on asymmetry of the orbits, nose, ears, maxilla, and mandible. We then assessed the correlation between 23 of the measurements and cranial vault asymmetry (CVA) for statistical significance using relative differences and correlation analysis. Results With the exception of few orbital asymmetry variables, most measurements indicated that the facial asymmetry was greater in infants with DP. Mandibular and nasal asymmetry was correlated highly with severity of CVA. Shortening of the ipsilateral mandibular body was particularly significant. There was no significant deformity in the maxilla or ear. Conclusion This study demonstrated that the cranial vault deformity in DP is associated with facial asymmetry. Compared with the control group, the infants with DP were found to have prominent asymmetry of the nose and mandible. PMID:28913202

  15. Sources of Local Time Asymmetries in Magnetodiscs

    NASA Astrophysics Data System (ADS)

    Arridge, C. S.; Kane, M.; Sergis, N.; Khurana, K. K.; Jackman, C. M.

    2015-04-01

    The rapidly rotating magnetospheres at Jupiter and Saturn contain a near-equatorial thin current sheet over most local times known as the magnetodisc, resembling a wrapped-up magnetotail. The Pioneer, Voyager, Ulysses, Galileo, Cassini and New Horizons spacecraft at Jupiter and Saturn have provided extensive datasets from which to observationally identify local time asymmetries in these magnetodiscs. Imaging in the infrared and ultraviolet from ground- and space-based instruments have also revealed the presence of local time asymmetries in the aurora which therefore must map to local time asymmetries in the magnetosphere. Asymmetries are found in (i) the configuration of the magnetic field and magnetospheric currents, where a thicker disc is found in the noon and dusk sectors; (ii) plasma flows where the plasma flow has local time-dependent radial components; (iii) a thicker plasma sheet in the dusk sector. Many of these features are also reproduced in global MHD simulations. Several models have been developed to interpret these various observations and typically fall into two groups: ones which invoke coupling with the solar wind (via reconnection or viscous processes) and ones which invoke internal rotational processes operating inside an asymmetrical external boundary. In this paper we review these observational in situ findings, review the models which seek to explain them, and highlight open questions and directions for future work.

  16. Patterns of directional asymmetry in the pelvis and pelvic canal.

    PubMed

    Tobolsky, Victoria A; Kurki, Helen K; Stock, Jay T

    2016-11-01

    The human pelvis is unique among modern taxa for supporting both parturition of large brained young and obligate bipedalism. Though much work has focused on pelvic development and variation, little work has explored the presence or absence of asymmetry in the pelvis despite well-known patterns of asymmetry in other skeletal regions. This study investigated whether patterns of directional asymmetry (DA) could be observed in the pelvis or pelvic canal. Seventeen bilaterally paired osteometric measurements of the os coxae (34 measures in total) were taken from 128 skeletons (female n = 65, male n = 63) from recent human populations in five geographic regions. Paired sample t-tests and Mann-Whitney U-tests were used to investigate DA. Results from a pooled sample of all individuals showed that the pelvis exhibited a left-bias in DA. In contrast, the pelvic canal exhibited a pattern in which the anterior canal exhibited a right-bias and the posterior canal exhibited a left-bias. Neither sex nor populational differences in DA were observed in the pelvis or pelvic canal. The varying patterns of asymmetry uncovered here accord with prior work and may indicate that loading from the trunk and legs place differing stresses on the pelvis and canal, yielding these unequal asymmetries. However, this is speculative and the possible influence of genetics, biomechanics, and nutritional status on the development of pelvic and canal asymmetries presents a rich area for future study. Additionally, the potential influence of pelvic canal asymmetry on obstetric measures of pelvic capacity merits future research. Am. J. Hum. Biol. 28:804-810, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Quantification of upper limb kinetic asymmetries in front crawl swimming.

    PubMed

    Morouço, Pedro G; Marinho, Daniel A; Fernandes, Ricardo J; Marques, Mário C

    2015-04-01

    This study aimed at quantifying upper limb kinetic asymmetries in maximal front crawl swimming and to examine if these asymmetries would affect the contribution of force exertion to swimming performance. Eighteen high level male swimmers with unilateral breathing patterns and sprint or middle distance specialists, volunteered as participants. A load-cell was used to quantify the forces exerted in water by completing a 30s maximal front crawl tethered swimming test and a maximal 50 m free swimming was considered as a performance criterion. Individual force-time curves were obtained to calculate the mean and maximum forces per cycle, for each upper limb. Following, symmetry index was estimated and breathing laterality identified by questionnaire. Lastly, the pattern of asymmetries along the test was estimated for each upper limb using linear regression of peak forces per cycle. Asymmetrical force exertion was observed in the majority of the swimmers (66.7%), with a total correspondence of breathing laterality opposite to the side of the force asymmetry. Forces exerted by the dominant upper limb presented a higher decrease than from the non-dominant. Very strong associations were found between exerted forces and swimming performance, when controlling the isolated effect of symmetry index. Results point that force asymmetries occur in the majority of the swimmers, and that these asymmetries are most evident in the first cycles of a maximum bout. Symmetry index stood up as an influencing factor on the contribution of tethered forces over swimming performance. Thus, to some extent, a certain degree of asymmetry is not critical for short swimming performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Auxin Asymmetry during Gravitropism by Tomato Hypocotyls 1

    PubMed Central

    Harrison, Marcia A.; Pickard, Barbara G.

    1989-01-01

    Gravitropic asymmetry of auxin was observed in hypocotyls of tomato (Lycopersicon esculentum Mill.) soon after horizontal placement: the ratio of apically supplied [3H]IAA collected from the lower sides to that from the upper sides was about 1.4 between 5 and 10 minutes. This was adequately early to account for the beginning of curvature. The auxin asymmetry ratio rose to about 2.5 between 20 and 25 minutes, and to 3.5 during the main phase of curvature. This compares reasonably well with the roughly 3.9 ratio for elongation on the lower side to elongation on the upper side that is the basis for the curvature. These data extend evidence that the Went-Cholodny theory for the mediation of tropisms is valid for dicot stems. Also consistent with the theory, an auxin asymmetry ratio of 2.5 was observed when wrong-way gravitropic curvature developed following application of a high level of auxin. In addition to reversing the asymmetry of elongation, the large supplement of auxin resulted in lower net elongation. Previous data established that ethylene is not involved in this decrease of growth as a function of increasing level of auxin. PMID:11537450

  19. Believing in paranormal phenomena: relations to asymmetry of body and brain.

    PubMed

    Schulter, Günter; Papousek, Ilona

    2008-01-01

    The goal of this study was to investigate the possible relationship between established measures of body and brain asymmetries and individual differences in paranormal beliefs. In addition to behavioural measures of cerebral laterality, measures of facial features and finger length were taken to calculate body asymmetry scores and indicators of fluctuating asymmetry (average absolute differences between left and right body features). Both the direction and degree of laterality measures were used. In addition to that, quantitative measures of inconsistency of cerebral lateralization were obtained. Results indicated that a stronger belief in paranormal phenomena was associated with fluctuating asymmetry of finger length, and that this aspect of body asymmetry may be related to greater intraindividual variability in the degree of 'atypical' functional lateralization. This intraindividual variability index, in turn, significantly predicted strength of belief in the paranormal. Belief in the paranormal was also higher in women than men and it was negatively correlated with the education level. In sum, these findings suggest that a part of the variance of strength of belief in paranormal phenomena can be explained by patterns of functional hemispheric asymmetry that may be related to perturbations during fetal development.

  20. Asymmetry in the F1-ATPase and Its Implications for the Rotational Cycle

    PubMed Central

    Sun, Sean X.; Wang, Hongyun; Oster, George

    2004-01-01

    ATP synthase uses a rotary mechanism to carry out its cellular function of manufacturing ATP. The centralγ-shaft rotates inside a hexameric cylinder composed of alternating α- and β-subunits. When operating in the hydrolysis direction under high frictional loads and low ATP concentrations, a coordinated mechanochemical cycle in the three catalytic sites of the β-subunits rotates the γ-shaft in three 120° steps. At low frictional loads, the 120° steps alternate with three ATP-independent substeps separated by ∼30°. We present a quantitative model that accounts for these substeps and show that the observed pauses are due to 1), the asymmetry of the F1 hexamer that produces a propeller-like motion of the power-stroke and 2), the relatively tight binding of ADP to the catalytic sites. PMID:14990467

  1. Disentangling the Relationship between Hemispheric Asymmetry and Cognitive Performance

    ERIC Educational Resources Information Center

    Hirnstein, Marco; Leask, Stuart; Rose, Jonas; Hausmann, Markus

    2010-01-01

    It is widely believed that advantages of hemispheric asymmetries originated in better cognitive processing, hence it is often implied that the relationship between hemispheric asymmetry and cognitive performance is linearly positive: the higher the degree of lateralization in a specific cognitive domain, the better the performance in a…

  2. Postural asymmetries in young adults with cerebral palsy

    PubMed Central

    Rodby-Bousquet, Elisabet; Czuba, Tomasz; Hägglund, Gunnar; Westbom, Lena

    2013-01-01

    Aim The purpose was to describe posture, ability to change position, and association between posture and contractures, hip dislocation, scoliosis, and pain in young adults with cerebral palsy (CP). Methods Cross-sectional data of 102 people (63 males, 39 females; age range 19–23y, median 21y) out of a total population with CP was analysed in relation to Gross Motor Function Classification System (GMFCS) levels I (n=38), II (n=21), III (n=13), IV (n=10), and V (n=20). The CP subtypes were unilateral spastic (n=26), bilateral spastic (n=45), ataxic (n=12), and dyskinetic CP (n=19). The Postural Ability Scale was used to assess posture. The relationship between posture and joint range of motion, hip dislocation, scoliosis, and pain was analysed using logistic regression and Spearman’s correlation. Results At GMFCS levels I to II, head and trunk asymmetries were most common; at GMFCS levels III to V postural asymmetries varied with position. The odds ratios (OR) for severe postural asymmetries were significantly higher for those with scoliosis (OR=33 sitting), limited hip extension (OR=39 supine), or limited knee extension (OR=37 standing). Postural asymmetries correlated to hip dislocations: supine (rs=0.48), sitting (rs=0.40), standing (rs=0.41), and inability to change position: supine (rs=0.60), sitting (rs=0.73), and standing (rs=0.64). Conclusions Postural asymmetries were associated with scoliosis, hip dislocations, hip and knee contractures, and inability to change position. This article is commented on by Novak on page 974 of this issue. PMID:23834239

  3. The myosin ID pathway and left-right asymmetry in Drosophila.

    PubMed

    Géminard, Charles; González-Morales, Nicanor; Coutelis, Jean-Baptiste; Noselli, Stéphane

    2014-06-01

    Drosophila is a classical model to study body patterning, however left-right (L/R) asymmetry had remained unexplored, until recently. The discovery of the conserved myosin ID gene as a major determinant of L/R asymmetry has revealed a novel L/R pathway involving the actin cytoskeleton and the adherens junction. In this process, the HOX gene Abdominal-B plays a major role through the control of myosin ID expression and therefore symmetry breaking. In this review, we present organs and markers showing L/R asymmetry in Drosophila and discuss our current understanding of the underlying molecular genetic mechanisms. Drosophila represents a valuable model system revealing novel strategies to establish L/R asymmetry in invertebrates and providing an evolutionary perspective to the problem of laterality in bilateria. © 2014 Wiley Periodicals, Inc.

  4. Sex differences in oral asymmetries during wordrepetition.

    PubMed

    Hausmann, M; Behrendt-Körbitz, S; Kautz, H; Lamm, C; Radelt, F; Güntürkün, O

    1998-12-01

    During speech production the right side of the mouth is opened to a larger degree in most people. This facial asymmetry is thought to be related to a left hemisphere dominance in language processing and/or motor programming. We investigated asymmetrical lip separations during discrete or serial word productions in right handed persons. The results revealed a right sided lip separation bias in both genders during discrete word production in which the words had to be uttered once. As soon as the words had to be produced continuously, however, a clear sex difference appeared with males having the usual right bias but females now showing no clear asymmetry, with a tendency for larger lip separations on the left side. These results suggest the existence of two separate neural systems from which one controls the discrete task and which is left hemisphere dominant in both genders. The other is probably involved in serial word productions and shows a sex difference with regard to its asymmetry pattern.

  5. Cranium asymmetry in a modern Greek population sample of known age and sex.

    PubMed

    Chovalopoulou, Maria-Eleni; Papageorgopoulou, Christina; Bertsatos, Andreas

    2017-05-01

    The aim of this paper is to evaluate and quantify cranium asymmetry, sexual differences in the set of individual asymmetry scores, and the relationship between fluctuating asymmetry and age, in a modern Greek population sample. In addition, we test for the developmental origins of health and disease hypothesis by assessing the correlation between fluctuating asymmetry and cause of death. The study sample consisted of 173 crania of known sex and adult age (92 males, 81 females) belonging to individuals who lived in Greece during the twentieth century. The three-dimensional coordinates of 77 ectocranial landmarks were digitized using a Microscribe 3DX contact digitizer and landmark configurations were analyzed using the generalized least-squares Procrustes method. Regarding directional asymmetry, the results show that the human skull has a tendency for a left-side excess for the Greek population. No significant directional asymmetry differences between the sexes are found. The highest levels of fluctuating asymmetry for both sexes are located on the skull base. The levels of fluctuating asymmetry in all cranial regions appear higher for males than females. Nevertheless, these differences do not present any statistical significance between sexes. Additionally, there is no relationship between fluctuating asymmetry scores and age for both males and females. Finally, the results of this study could not confirm that early development has a significant impact on adult health outcomes.

  6. Enhanced Handoff Scheme for Downlink-Uplink Asymmetric Channels in Cellular Systems

    PubMed Central

    2013-01-01

    In the latest cellular networks, data services like SNS and UCC can create asymmetric packet generation rates over the downlink and uplink channels. This asymmetry can lead to a downlink-uplink asymmetric channel condition being experienced by cell edge users. This paper proposes a handoff scheme to cope effectively with downlink-uplink asymmetric channels. The proposed handoff scheme exploits the uplink channel quality as well as the downlink channel quality to determine the appropriate timing and direction of handoff. We first introduce downlink and uplink channel models that consider the intercell interference, to verify the downlink-uplink channel asymmetry. Based on these results, we propose an enhanced handoff scheme that exploits both the uplink and downlink channel qualities to reduce the handoff-call dropping probability and the service interruption time. The simulation results show that the proposed handoff scheme reduces the handoff-call dropping probability about 30% and increases the satisfaction of the service interruption time requirement about 7% under high-offered load, compared to conventional mobile-assisted handoff. Especially, the proposed handoff scheme is more efficient when the uplink QoS requirement is much stricter than the downlink QoS requirement or uplink channel quality is worse than downlink channel quality. PMID:24501576

  7. Growth models and the expected distribution of fluctuating asymmetry

    USGS Publications Warehouse

    Graham, John H.; Shimizu, Kunio; Emlen, John M.; Freeman, D. Carl; Merkel, John

    2003-01-01

    Multiplicative error accounts for much of the size-scaling and leptokurtosis in fluctuating asymmetry. It arises when growth involves the addition of tissue to that which is already present. Such errors are lognormally distributed. The distribution of the difference between two lognormal variates is leptokurtic. If those two variates are correlated, then the asymmetry variance will scale with size. Inert tissues typically exhibit additive error and have a gamma distribution. Although their asymmetry variance does not exhibit size-scaling, the distribution of the difference between two gamma variates is nevertheless leptokurtic. Measurement error is also additive, but has a normal distribution. Thus, the measurement of fluctuating asymmetry may involve the mixing of additive and multiplicative error. When errors are multiplicative, we recommend computing log E(l) − log E(r), the difference between the logarithms of the expected values of left and right sides, even when size-scaling is not obvious. If l and r are lognormally distributed, and measurement error is nil, the resulting distribution will be normal, and multiplicative error will not confound size-related changes in asymmetry. When errors are additive, such a transformation to remove size-scaling is unnecessary. Nevertheless, the distribution of l − r may still be leptokurtic.

  8. [THE SYSTEMIC IMMUNITY CELLULAR LINK REACTION IN PATIENTS WITH TRAUMATIC ILLNESS].

    PubMed

    Plehutsa, I M; Sydorchuk, R I; Plehutsa, O M

    2015-01-01

    The effect of trauma on parameters of cellular immunity changes is studied. The study includes 52 patients with various forms of traumatic illness, aged 18-69 years (37.91-4.28). The control group consisted of 16 patients who underwent routine surgery not related to the pathology of musculoskeletal system. All patients of the main group were divided into 3 groups according to severity of the condition. Analysis of parameters of cellular link of immune system was performed by defining subpopulations of T-lymphocytes in indirect immunofluorescence method using a panel of monoclonal antibodies for CD3, CD4, CD8, CD22 lymphocytes' receptors and calculation of integrated indicators. The highest expression (immune disorders of II-III grades) of changes of cellular immunity observed in patients with severe traumatic: illness (expand clinical picture). Surgical intervention, even without traumatic injury significantly impact cellular immunity, but in patients with traumatic illness immunity violation were significantly higher than in comparison groups patients except immunoregulatory index.

  9. Voxel-wise grey matter asymmetry analysis in left- and right-handers.

    PubMed

    Ocklenburg, Sebastian; Friedrich, Patrick; Güntürkün, Onur; Genç, Erhan

    2016-10-28

    Handedness is thought to originate in the brain, but identifying its structural correlates in the cortex has yielded surprisingly incoherent results. One idea proclaimed by several authors is that structural grey matter asymmetries might underlie handedness. While some authors have found significant associations with handedness in different brain areas (e.g. in the central sulcus and precentral sulcus), others have failed to identify such associations. One method used by many researchers to determine structural grey matter asymmetries is voxel based morphometry (VBM). However, it has recently been suggested that the standard VBM protocol might not be ideal to assess structural grey matter asymmetries, as it establishes accurate voxel-wise correspondence across individuals but not across both hemispheres. This could potentially lead to biased and incoherent results. Recently, a new toolbox specifically geared at assessing structural asymmetries and involving accurate voxel-wise correspondence across hemispheres has been published [F. Kurth, C. Gaser, E. Luders. A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM), Nat Protoc 10 (2015), 293-304]. Here, we used this new toolbox to re-assess grey matter asymmetry differences in left- vs. right-handers and linked them to quantitative measures of hand preference and hand skill. While we identified several significant left-right asymmetries in the overall sample, no difference between left- and right-handers reached significance after correction for multiple comparisons. These findings indicate that the structural brain correlates of handedness are unlikely to be rooted in macroscopic grey matter area differences that can be assessed with VBM. Future studies should focus on other potential structural correlates of handedness, e.g. structural white matter asymmetries. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. SIMULATION STUDY OF HEMISPHERIC PHASE-ASYMMETRY IN THE SOLAR CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukuya, D.; Kusano, K., E-mail: kusano@nagoya-u.jp

    2017-01-20

    Observations of the Sun suggest that solar activities systematically create north–south hemispheric asymmetries. For instance, the hemisphere in which sunspot activity is more active tends to switch after the early half of each solar cycle. Svalgaard and Kamide recently pointed out that the time gaps of polar field reversal between the northern and southern hemispheres are simply consequences of the asymmetry of sunspot activity. However, the mechanism underlying the asymmetric feature in solar cycle activity is not yet well understood. In this paper, in order to explain the cause of the asymmetry from the theoretical point of view, we investigatemore » the relationship between the dipole- and quadrupole-type components of the magnetic field in the solar cycle using the mean-field theory based on the flux transport dynamo model. As a result, we found that there are two different attractors of the solar cycle, in which either the north or the south polar field is first reversed, and that the flux transport dynamo model explains well the phase-asymmetry of sunspot activity and the polar field reversal without any ad hoc source of asymmetry.« less

  11. Hemispheric asymmetry and theory of mind: is there an association?

    PubMed

    Herzig, Daniela A; Sullivan, Sarah; Evans, Jonathan; Corcoran, Rhiannon; Mohr, Christine

    2012-01-01

    In autism and schizophrenia attenuated/atypical functional hemispheric asymmetry and theory of mind impairments have been reported, suggesting common underlying neuroscientific correlates. We here investigated whether impaired theory of mind performance is associated with attenuated/atypical hemispheric asymmetry. An association may explain the co-occurrence of both dysfunctions in psychiatric populations. Healthy participants (n=129) performed a left hemisphere (lateralised lexical decision task) and right hemisphere (lateralised face decision task) dominant task as well as a visual cartoon task to assess theory of mind performance. Linear regression analyses revealed inconsistent associations between theory of mind performance and functional hemisphere asymmetry: enhanced theory of mind performance was only associated with (1) faster right hemisphere language processing, and (2) reduced right hemisphere dominance for face processing (men only). The majority of non-significant findings suggest that theory of mind and functional hemispheric asymmetry are unrelated. Instead of "overinterpreting" the two significant results, discrepancies in the previous literature relating to the problem of the theory of mind concept, the variety of tasks, and the lack of normative data are discussed. We also suggest how future studies could explore a possible link between hemispheric asymmetry and theory of mind.

  12. Evaluating Metrics of Drainage Divide Mobility

    NASA Astrophysics Data System (ADS)

    Forte, A. M.; Whipple, K. X.; DiBiase, R.; Gasparini, N. M.; Ouimet, W. B.

    2016-12-01

    Watersheds are the fundamental organizing units in landscapes and thus the controls on drainage divide location and mobility are an essential facet of landscape evolution. Additionally, many common topographic analyses fundamentally assume that river network topology and divide locations are largely static, allowing channel profile form to be interpreted in terms of spatio-temporal patterns of rock uplift rate relative to baselevel, climate, or rock properties. Recently however, it has been suggested that drainage divides are more mobile than previously thought and that divide mobility, and resulting changes in drainage area, can potentially induce changes to fluvial topography comparable to spatio-temporal variation in rock uplift, climate, or rock properties. Ultimately, reliable metrics are needed to diagnose the mobility of divides. One such recently proposed metric is cross-divide contrasts in `chi', a measure of the current topology of the drainage network, but cross-divide contrasts in a number of topographic metrics show promise. Here we use a series of landscape evolution modeling scenarios in which we induce divide mobility under different conditions to test the utility of a suite of plausible topographic metrics of divide mobility and compare these to natural examples. Specifically, we test cross-divide contrasts in mean slope, mean local relief, channel bed elevation at a reference drainage area, and chi. Our results highlight that cross-divide contrasts in chi can only be accurately interpreted in terms of divide mobility when uplift, rock erodibility, climate, and base-level are uniform across both river networks on either side of the divide. This is problematic for application of this metric to natural landscapes as (1) uniformity of all of these parameters is exceedingly unlikely and (2) quantifying the spatial patterns of these parameters is difficult. Consequently, as shown here for both simulated and natural landscapes, simple measures of cross-divide

  13. Tidal asymmetry in a funnel-shaped estuary with mixed semidiurnal tides

    NASA Astrophysics Data System (ADS)

    Gong, Wenping; Schuttelaars, Henk; Zhang, Heng

    2016-05-01

    Different types of tidal asymmetry (see review of de Swart and Zimmerman Annu Rev Fluid Mech 41: 203-229, 2009) are examined in this study. We distinguish three types of tidal asymmetry: duration and magnitude differences between flood and ebb tidal flow, duration difference between the rising and falling tides. For waterborne substance transport, the first two asymmetries are important while the last one is not. In this study, we take the Huangmaohai Estuary (HE), Pearl River Delta, China as an example to examine the spatio-temporal variations of the tidal asymmetry in a mixed semidiurnal tidal regime and to explain them by investigating the associated mechanisms. The methodology defining the tidal duration asymmetry and velocity skewness, proposed by Nidzieko (J Geophys Res 115: C08006. doi: 10.1029/2009JC005864 , 2010) and synthesized by Song et al. (J Geophys Res 116: C12007. doi: 10.1029/2011JC007270 , 2011), is utilized here and referred to as tidal duration asymmetry (TDA) and flow velocity asymmetry (FVA), respectively. The methodology is further used to quantify the flow duration asymmetry (FDA). A positive asymmetry means a shorter duration of low water slack for FDA, a shorter duration of the rising tide for TDA, and a flood dominance for FVA and vice versa. The Regional Ocean Modeling System (ROMS) model is used to provide relatively long-term water elevation and velocity data and to conduct diagnostic experiments. In the HE, the main tidal constituents are diurnal tides K 1, O 1 and semidiurnal tides M 2 and S 2. The interaction among the diurnal and semidiurnal tides generates a negative tidal asymmetry, while the interactions among semidiurnal tides and their overtides or compound tides result in a positive tidal asymmetry. The

  14. Fetal origin of the posterior cerebral artery produces left-right asymmetry on perfusion imaging.

    PubMed

    Wentland, A L; Rowley, H A; Vigen, K K; Field, A S

    2010-03-01

    Fetal origin of the PCA is a common anatomic variation of the circle of Willis. On perfusion imaging, patients with unilateral fetal-type PCA may demonstrate left-right asymmetry that could mimic cerebrovascular disease. The aim of this study was to characterize the relationship between a fetal-type PCA and asymmetry of hemodynamic parameters derived from MR perfusion imaging. We retrospectively reviewed MR perfusion studies of 36 patients to determine the relationship between hemodynamic and vascular asymmetries in the PCA territory. Perfusion asymmetry indices for the PCA territory were computed from maps of rCBF, rCBV, MTT, T(max), and FMT. Vascular asymmetry indices were derived from calibers of the PCA-P1 segments relative to the posterior communicating arteries. Asymmetrically smaller values of FMT and T(max) were observed with unilateral fetal-type PCA, and these were strongly correlated with the degree of vascular asymmetry (Spearman's rho = 0.76 and 0.74, respectively, P < 1 x 10(-6)). Asymmetries of rCBF, MTT, and rCBV were neither significant nor related to vascular asymmetry. Faster perfusion transit times are seen for parameters sensitive to macrovascular transit effects (eg, FMT and T(max)) ipsilateral to fetal origin of the PCA in proportion to the degree of arterial asymmetry. Knowledge of this normal variation is critical in the interpretation of perfusion studies because asymmetry could mimic cerebrovascular pathology.

  15. Frontal alpha asymmetry neurofeedback for the reduction of negative affect and anxiety.

    PubMed

    Mennella, Rocco; Patron, Elisabetta; Palomba, Daniela

    2017-05-01

    Frontal alpha asymmetry has been proposed to underlie the balance between approach and withdrawal motivation associated to each individual's affective style. Neurofeedback of EEG frontal alpha asymmetry represents a promising tool to reduce negative affect, although its specific effects on left/right frontal activity and approach/withdrawal motivation are still unclear. The present study employed a neurofeedback training to increase frontal alpha asymmetry (right - left), in order to evaluate discrete changes in alpha power at left and right sites, as well as in positive and negative affect, anxiety and depression. Thirty-two right-handed females were randomly assigned to receive either the neurofeedback on frontal alpha asymmetry, or an active control training (N = 16 in each group). The asymmetry group showed an increase in alpha asymmetry driven by higher alpha at the right site (p < 0.001), as well as a coherent reduction in both negative affect and anxiety symptoms (ps < 0.05), from pre-to post-training. No training-specific modulation emerged for positive affect and depressive symptoms. These findings provide a strong rationale for the use of frontal alpha asymmetry neurofeedback for the reduction of negative affect and anxiety in clinical settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Yield asymmetry design of magnesium alloys by integrated computational materials engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Joshi, Vineet; Lavender, Curt

    2013-11-01

    Deformation asymmetry of magnesium alloys is an important factor on machine design in the automobile industry. Represented by the ratio of compressive yield stress (CYS) against tensile yield stress (TYS), deformation asymmetry is strongly related to texture and grain size. A polycrystalline viscoplasticity model, modified intermediate Φ-model, is used to predict the deformation behavior of magnesium alloys with different grain sizes. Validated with experimental results, integrated computational materials engineering is applied to find out the route in achieving desired asymmetry via thermomechanical processing. For example, CYS/TYS in rolled texture is smaller than 1 under different loading directions. In other textures,more » such as extruded texture, CYS/TYS is large along the normal direction. Starting from rolled texture, asymmetry will increase to close to 1 along the rolling direction after being compressed to a strain of 0.2. Our modified Φ-model also shows that grain refinement increases CYS/TYS. Along with texture control, grain refinement also can optimize the yield asymmetry. After the grain size decreases to a critical value, CYS/TYS reaches to 1 because CYS increases much faster than TYS. By tailoring the microstructure using texture control and grain refinement, it is achievable to optimize yield asymmetry in wrought magnesium alloys.« less

  17. Scale-dependent cyclone-anticyclone asymmetry in a forced rotating turbulence experiment

    NASA Astrophysics Data System (ADS)

    Gallet, B.; Campagne, A.; Cortet, P.-P.; Moisy, F.

    2014-03-01

    We characterize the statistical and geometrical properties of the cyclone-anticyclone asymmetry in a statistically steady forced rotating turbulence experiment. Turbulence is generated by a set of vertical flaps which continuously inject velocity fluctuations towards the center of a tank mounted on a rotating platform. We first characterize the cyclone-anticyclone asymmetry from conventional single-point vorticity statistics. We propose a phenomenological model to explain the emergence of the asymmetry in the experiment, from which we predict scaling laws for the root-mean-square velocity in good agreement with the experimental data. We further quantify the cyclone-anticyclone asymmetry using a set of third-order two-point velocity correlations. We focus on the correlations which are nonzero only if the cyclone-anticyclone symmetry is broken. They offer two advantages over single-point vorticity statistics: first, they are defined from velocity measurements only, so an accurate resolution of the Kolmogorov scale is not required; second, they provide information on the scale-dependence of the cyclone-anticyclone asymmetry. We compute these correlation functions analytically for a random distribution of independent identical vortices. These model correlations describe well the experimental ones, indicating that the cyclone-anticyclone asymmetry is dominated by the large-scale long-lived cyclones.

  18. Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Askew, A.; Atkins, S.; Auerbach, B.; Augsten, K.; Aurisano, A.; Aushev, V.; Aushev, Y.; Avila, C.; Azfar, F.; Badaud, F.; Badgett, W.; Bae, T.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barbaro-Galtieri, A.; Barberis, E.; Baringer, P.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartlett, J. F.; Bartos, P.; Bassler, U.; Bauce, M.; Bazterra, V.; Bean, A.; Bedeschi, F.; Begalli, M.; Behari, S.; Bellantoni, L.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Bhatti, A.; Bland, K. R.; Blazey, G.; Blessing, S.; Bloom, K.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bortoletto, D.; Borysova, M.; Boudreau, J.; Boveia, A.; Brandt, A.; Brandt, O.; Brigliadori, L.; Brochmann, M.; Brock, R.; Bromberg, C.; Bross, A.; Brown, D.; Brucken, E.; Bu, X. B.; Budagov, J.; Budd, H. S.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buszello, C. P.; Butti, P.; Buzatu, A.; Calamba, A.; Camacho-Pérez, E.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Casey, B. C. K.; Castilla-Valdez, H.; Castro, A.; Catastini, P.; Caughron, S.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapelain, A.; Chapon, E.; Chen, G.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Cho, S. W.; Choi, S.; Chokheli, D.; Choudhary, B.; Cihangir, S.; Claes, D.; Clark, A.; Clarke, C.; Clutter, J.; Convery, M. E.; Conway, J.; Cooke, M.; Cooper, W. E.; Corbo, M.; Corcoran, M.; Cordelli, M.; Couderc, F.; Cousinou, M.-C.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; Cuth, J.; Cutts, D.; Das, A.; d'Ascenzo, N.; Datta, M.; Davies, G.; de Barbaro, P.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Demortier, L.; Deninno, M.; Denisov, D.; Denisov, S. P.; D'Errico, M.; Desai, S.; Deterre, C.; DeVaughan, K.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dittmann, J. R.; Dominguez, A.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Drutskoy, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Ebina, K.; Edgar, R.; Edmunds, D.; Elagin, A.; Ellison, J.; Elvira, V. D.; Enari, Y.; Erbacher, R.; Errede, S.; Esham, B.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Farrington, S.; Fauré, A.; Feng, L.; Ferbel, T.; Fernández Ramos, J. P.; Fiedler, F.; Field, R.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Flanagan, G.; Forrest, R.; Fortner, M.; Fox, H.; Franc, J.; Franklin, M.; Freeman, J. C.; Frisch, H.; Fuess, S.; Funakoshi, Y.; Galloni, C.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Garfinkel, A. F.; Garosi, P.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gerberich, H.; Gerchtein, E.; Gershtein, Y.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Ginther, G.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gogota, O.; Gold, M.; Goldin, D.; Golossanov, A.; Golovanov, G.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grosso-Pilcher, C.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Guimaraes da Costa, J.; Gutierrez, G.; Gutierrez, P.; Hahn, S. R.; Haley, J.; Han, J. Y.; Han, L.; Happacher, F.; Hara, K.; Harder, K.; Hare, M.; Harel, A.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hauptman, J. M.; Hays, C.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinrich, J.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herndon, M.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hocker, A.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Hong, Z.; Hopkins, W.; Hou, S.; Howley, I.; Hubacek, Z.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Introzzi, G.; Iori, M.; Ito, A. S.; Ivanov, A.; Jabeen, S.; Jaffré, M.; James, E.; Jang, D.; Jayasinghe, A.; Jayatilaka, B.; Jeon, E. J.; Jeong, M. S.; Jesik, R.; Jiang, P.; Jindariani, S.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jones, M.; Jonsson, P.; Joo, K. K.; Joshi, J.; Jun, S. Y.; Jung, A. W.; Junk, T. R.; Juste, A.; Kajfasz, E.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Karmanov, D.; Kasmi, A.; Kato, Y.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Ketchum, W.; Keung, J.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Kiselevich, I.; Kohli, J. M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kozelov, A. V.; Kraus, J.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kumar, A.; Kupco, A.; Kurata, M.; Kurča, T.; Kuzmin, V. A.; Laasanen, A. T.; Lammel, S.; Lammers, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lebrun, P.; Lee, H. S.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Leo, S.; Leone, S.; Lewis, J. D.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Limosani, A.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipeles, E.; Lipton, R.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Liu, Y.; Lobodenko, A.; Lockwitz, S.; Loginov, A.; Lokajicek, M.; Lopes de Sa, R.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Luna-Garcia, R.; Lungu, G.; Lyon, A. L.; Lys, J.; Lysak, R.; Maciel, A. K. A.; Madar, R.; Madrak, R.; Maestro, P.; Magaña-Villalba, R.; Malik, S.; Malik, S.; Malyshev, V. L.; Manca, G.; Manousakis-Katsikakis, A.; Mansour, J.; Marchese, L.; Margaroli, F.; Marino, P.; Martínez-Ortega, J.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McCarthy, R.; McGivern, C. L.; McNulty, R.; Mehta, A.; Mehtala, P.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Mesropian, C.; Meyer, A.; Meyer, J.; Miao, T.; Miconi, F.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondal, N. K.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Mulhearn, M.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nagy, E.; Nakano, I.; Napier, A.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Nett, J.; Neustroev, P.; Nguyen, H. T.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Nunnemann, T.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Orduna, J.; Ortolan, L.; Osman, N.; Pagliarone, C.; Pal, A.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parashar, N.; Parihar, V.; Park, S. K.; Parker, W.; Partridge, R.; Parua, N.; Patwa, A.; Pauletta, G.; Paulini, M.; Paus, C.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pleier, M.-A.; Podstavkov, V. M.; Pondrom, L.; Popov, A. V.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prewitt, M.; Price, D.; Prokopenko, N.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ripp-Baudot, I.; Ristori, L.; Rizatdinova, F.; Robson, A.; Rodriguez, T.; Rolli, S.; Rominsky, M.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sajot, G.; Sakumoto, W. K.; Sakurai, Y.; Sánchez-Hernández, A.; Sanders, M. P.; Santi, L.; Santos, A. S.; Sato, K.; Savage, G.; Saveliev, V.; Savitskyi, M.; Savoy-Navarro, A.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlabach, P.; Schmidt, E. E.; Schott, M.; Schwanenberger, C.; Schwarz, T.; Schwienhorst, R.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Sekaric, J.; Semenov, A.; Severini, H.; Sforza, F.; Shabalina, E.; Shalhout, S. Z.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shkola, O.; Shochet, M.; Shreyber-Tecker, I.; Simak, V.; Simonenko, A.; Skubic, P.; Slattery, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Song, H.; Sonnenschein, L.; Sorin, V.; Soustruznik, K.; St. Denis, R.; Stancari, M.; Stark, J.; Stefaniuk, N.; Stentz, D.; Stoyanova, D. A.; Strauss, M.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Suter, L.; Svoisky, P.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Titov, M.; Toback, D.; Tokar, S.; Tokmenin, V. V.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Ukegawa, F.; Uozumi, S.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Vázquez, F.; Velev, G.; Vellidis, C.; Verkheev, A. Y.; Vernieri, C.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vidal, M.; Vilanova, D.; Vilar, R.; Vizán, J.; Vogel, M.; Vokac, P.; Volpi, G.; Wagner, P.; Wahl, H. D.; Wallny, R.; Wang, M. H. L. S.; Wang, S. M.; Warchol, J.; Waters, D.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Williams, M. R. J.; Wilson, G. W.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wobisch, M.; Wolbers, S.; Wolfmeister, H.; Wood, D. R.; Wright, T.; Wu, X.; Wu, Z.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yamamoto, K.; Yamato, D.; Yang, S.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yeh, G. P.; Yi, K.; Yin, H.; Yip, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Youn, S. W.; Yu, G. B.; Yu, I.; Yu, J. M.; Zanetti, A. M.; Zeng, Y.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhou, C.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; Zucchelli, S.; CDF Collaboration

    2018-01-01

    The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of √{s }=1.96 TeV . We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is AFBt t ¯=0.128 ±0.025 . The combined inclusive and differential asymmetries are consistent with recent standard model predictions.

  19. Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron.

    PubMed

    Aaltonen, T; Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Askew, A; Atkins, S; Auerbach, B; Augsten, K; Aurisano, A; Aushev, V; Aushev, Y; Avila, C; Azfar, F; Badaud, F; Badgett, W; Bae, T; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barbaro-Galtieri, A; Barberis, E; Baringer, P; Barnes, V E; Barnett, B A; Barria, P; Bartlett, J F; Bartos, P; Bassler, U; Bauce, M; Bazterra, V; Bean, A; Bedeschi, F; Begalli, M; Behari, S; Bellantoni, L; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Bhatti, A; Bland, K R; Blazey, G; Blessing, S; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bortoletto, D; Borysova, M; Boudreau, J; Boveia, A; Brandt, A; Brandt, O; Brigliadori, L; Brochmann, M; Brock, R; Bromberg, C; Bross, A; Brown, D; Brucken, E; Bu, X B; Budagov, J; Budd, H S; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burkett, K; Busetto, G; Bussey, P; Buszello, C P; Butti, P; Buzatu, A; Calamba, A; Camacho-Pérez, E; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Casey, B C K; Castilla-Valdez, H; Castro, A; Catastini, P; Caughron, S; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chakrabarti, S; Chan, K M; Chandra, A; Chapelain, A; Chapon, E; Chen, G; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Cho, S W; Choi, S; Chokheli, D; Choudhary, B; Cihangir, S; Claes, D; Clark, A; Clarke, C; Clutter, J; Convery, M E; Conway, J; Cooke, M; Cooper, W E; Corbo, M; Corcoran, M; Cordelli, M; Couderc, F; Cousinou, M-C; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; Cuth, J; Cutts, D; Das, A; d'Ascenzo, N; Datta, M; Davies, G; de Barbaro, P; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Demortier, L; Deninno, M; Denisov, D; Denisov, S P; D'Errico, M; Desai, S; Deterre, C; DeVaughan, K; Devoto, F; Di Canto, A; Di Ruzza, B; Diehl, H T; Diesburg, M; Ding, P F; Dittmann, J R; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Drutskoy, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Ebina, K; Edgar, R; Edmunds, D; Elagin, A; Ellison, J; Elvira, V D; Enari, Y; Erbacher, R; Errede, S; Esham, B; Evans, H; Evdokimov, A; Evdokimov, V N; Farrington, S; Fauré, A; Feng, L; Ferbel, T; Fernández Ramos, J P; Fiedler, F; Field, R; Filthaut, F; Fisher, W; Fisk, H E; Flanagan, G; Forrest, R; Fortner, M; Fox, H; Franc, J; Franklin, M; Freeman, J C; Frisch, H; Fuess, S; Funakoshi, Y; Galloni, C; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Garfinkel, A F; Garosi, P; Gavrilov, V; Geng, W; Gerber, C E; Gerberich, H; Gerchtein, E; Gershtein, Y; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Ginther, G; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gogota, O; Gold, M; Goldin, D; Golossanov, A; Golovanov, G; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grosso-Pilcher, C; Grünendahl, S; Grünewald, M W; Guillemin, T; Guimaraes da Costa, J; Gutierrez, G; Gutierrez, P; Hahn, S R; Haley, J; Han, J Y; Han, L; Happacher, F; Hara, K; Harder, K; Hare, M; Harel, A; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hauptman, J M; Hays, C; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinrich, J; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herndon, M; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hocker, A; Hoeneisen, B; Hogan, J; Hohlfeld, M; Holzbauer, J L; Hong, Z; Hopkins, W; Hou, S; Howley, I; Hubacek, Z; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Introzzi, G; Iori, M; Ito, A S; Ivanov, A; Jabeen, S; Jaffré, M; James, E; Jang, D; Jayasinghe, A; Jayatilaka, B; Jeon, E J; Jeong, M S; Jesik, R; Jiang, P; Jindariani, S; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jones, M; Jonsson, P; Joo, K K; Joshi, J; Jun, S Y; Jung, A W; Junk, T R; Juste, A; Kajfasz, E; Kambeitz, M; Kamon, T; Karchin, P E; Karmanov, D; Kasmi, A; Kato, Y; Katsanos, I; Kaur, M; Kehoe, R; Kermiche, S; Ketchum, W; Keung, J; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Kiselevich, I; Kohli, J M; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kozelov, A V; Kraus, J; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kumar, A; Kupco, A; Kurata, M; Kurča, T; Kuzmin, V A; Laasanen, A T; Lammel, S; Lammers, S; Lancaster, M; Lannon, K; Latino, G; Lebrun, P; Lee, H S; Lee, H S; Lee, J S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Leo, S; Leone, S; Lewis, J D; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Limosani, A; Lincoln, D; Linnemann, J; Lipaev, V V; Lipeles, E; Lipton, R; Lister, A; Liu, H; Liu, Q; Liu, T; Liu, Y; Lobodenko, A; Lockwitz, S; Loginov, A; Lokajicek, M; Lopes de Sa, R; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Luna-Garcia, R; Lungu, G; Lyon, A L; Lys, J; Lysak, R; Maciel, A K A; Madar, R; Madrak, R; Maestro, P; Magaña-Villalba, R; Malik, S; Malik, S; Malyshev, V L; Manca, G; Manousakis-Katsikakis, A; Mansour, J; Marchese, L; Margaroli, F; Marino, P; Martínez-Ortega, J; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McCarthy, R; McGivern, C L; McNulty, R; Mehta, A; Mehtala, P; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Mesropian, C; Meyer, A; Meyer, J; Miao, T; Miconi, F; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondal, N K; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Mulhearn, M; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nagy, E; Nakano, I; Napier, A; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Nett, J; Neustroev, P; Nguyen, H T; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Nunnemann, T; Oakes, L; Oh, S H; Oh, Y D; Okusawa, T; Orava, R; Orduna, J; Ortolan, L; Osman, N; Pagliarone, C; Pal, A; Palencia, E; Palni, P; Papadimitriou, V; Parashar, N; Parihar, V; Park, S K; Parker, W; Partridge, R; Parua, N; Patwa, A; Pauletta, G; Paulini, M; Paus, C; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pleier, M-A; Podstavkov, V M; Pondrom, L; Popov, A V; Poprocki, S; Potamianos, K; Pranko, A; Prewitt, M; Price, D; Prokopenko, N; Prokoshin, F; Ptohos, F; Punzi, G; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ripp-Baudot, I; Ristori, L; Rizatdinova, F; Robson, A; Rodriguez, T; Rolli, S; Rominsky, M; Ronzani, M; Roser, R; Rosner, J L; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sajot, G; Sakumoto, W K; Sakurai, Y; Sánchez-Hernández, A; Sanders, M P; Santi, L; Santos, A S; Sato, K; Savage, G; Saveliev, V; Savitskyi, M; Savoy-Navarro, A; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schlabach, P; Schmidt, E E; Schott, M; Schwanenberger, C; Schwarz, T; Schwienhorst, R; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Sekaric, J; Semenov, A; Severini, H; Sforza, F; Shabalina, E; Shalhout, S Z; Shary, V; Shaw, S; Shchukin, A A; Shears, T; Shepard, P F; Shimojima, M; Shkola, O; Shochet, M; Shreyber-Tecker, I; Simak, V; Simonenko, A; Skubic, P; Slattery, P; Sliwa, K; Smith, J R; Snider, F D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, H; Sonnenschein, L; Sorin, V; Soustruznik, K; St Denis, R; Stancari, M; Stark, J; Stefaniuk, N; Stentz, D; Stoyanova, D A; Strauss, M; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Suter, L; Svoisky, P; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Titov, M; Toback, D; Tokar, S; Tokmenin, V V; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Ukegawa, F; Uozumi, S; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vázquez, F; Velev, G; Vellidis, C; Verkheev, A Y; Vernieri, C; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vidal, M; Vilanova, D; Vilar, R; Vizán, J; Vogel, M; Vokac, P; Volpi, G; Wagner, P; Wahl, H D; Wallny, R; Wang, M H L S; Wang, S M; Warchol, J; Waters, D; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Williams, M R J; Wilson, G W; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wobisch, M; Wolbers, S; Wolfmeister, H; Wood, D R; Wright, T; Wu, X; Wu, Z; Wyatt, T R; Xie, Y; Yamada, R; Yamamoto, K; Yamato, D; Yang, S; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yeh, G P; Yi, K; Yin, H; Yip, K; Yoh, J; Yorita, K; Yoshida, T; Youn, S W; Yu, G B; Yu, I; Yu, J M; Zanetti, A M; Zeng, Y; Zennamo, J; Zhao, T G; Zhou, B; Zhou, C; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zucchelli, S

    2018-01-26

    The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of sqrt[s]=1.96  TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is A_{FB}^{tt[over ¯]}=0.128±0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions.

  20. Diagnostic ability of macular ganglion cell asymmetry for glaucoma.

    PubMed

    Hwang, Young Hoon; Ahn, Sang Il; Ko, Sung Ju

    2015-11-01

    Using spectral-domain optical coherence tomography (OCT), this study aims to investigate the glaucoma diagnostic ability of macular ganglion cell asymmetry analysis. A cross-sectional study was conducted. This study was performed to investigate glaucoma diagnostic ability of macular ganglion cell asymmetry analysis in eyes with various degrees of glaucoma. We enrolled 181 healthy eyes and 265 glaucomatous eyes. Glaucomatous eyes were subdivided into pre-perimetric, early, moderate and advanced-to-severe glaucoma based on visual field test results. For each eye, macular ganglion cell-inner plexiform layer (GCIPL) thickness was measured using OCT. Average GCIPL thickness, GCIPL thicknesses in superior and inferior hemispheres, absolute difference in GCIPL thickness between superior and inferior hemispheres and GCIPL asymmetry index calculated as the absolute value of log10 (inferior hemisphere thickness/superior hemisphere thickness) were analysed. Areas under the receiver operating characteristics curves (AUCs) of GCIPL parameter were calculated and compared. All of the GCIPL parameters showed good glaucoma diagnostic ability (AUCs ≥ 0.817, P < 0.01). AUCs of average, superior and inferior GCIPL thickness increased as the severity of glaucoma increased. GCIPL thickness difference and asymmetry index showed the highest AUCs in early and moderate glaucoma and lower AUCs in pre-perimetric and advanced-to-severe glaucoma. GCIPL thickness difference and asymmetry index showed better glaucoma diagnostic ability than other GCIPL parameters only in early stage of glaucoma (P < 0.05); in other stages, these parameters had similar to or worse glaucoma diagnostic ability than other GCIPL parameters. Macular ganglion cell asymmetry analysis showed good glaucoma diagnostic ability, especially in early-stage glaucoma. However, it has limited usefulness in other stages of glaucoma. © 2015 Royal Australian and New Zealand College of Ophthalmologists.

  1. Asymmetries for the Visual Expression and Perception of Speech

    ERIC Educational Resources Information Center

    Nicholls, Michael E. R.; Searle, Dara A.

    2006-01-01

    This study explored asymmetries for movement, expression and perception of visual speech. Sixteen dextral models were videoed as they articulated: "bat," "cat," "fat," and "sat." Measurements revealed that the right side of the mouth was opened wider and for a longer period than the left. The asymmetry was accentuated at the beginning and ends of…

  2. Postural asymmetries in young adults with cerebral palsy.

    PubMed

    Rodby-Bousquet, Elisabet; Czuba, Tomasz; Hägglund, Gunnar; Westbom, Lena

    2013-11-01

    The purpose was to describe posture, ability to change position, and association between posture and contractures, hip dislocation, scoliosis, and pain in young adults with cerebral palsy (CP). Cross-sectional data of 102 people (63 males, 39 females; age range 19-23 y, median 21 y) out of a total population with CP was analysed in relation to Gross Motor Function Classification System (GMFCS) levels I (n=38), II (n=21), III (n=13), IV (n=10), and V (n=20). The CP subtypes were unilateral spastic (n=26), bilateral spastic (n=45), ataxic (n=12), and dyskinetic CP (n=19). The Postural Ability Scale was used to assess posture. The relationship between posture and joint range of motion, hip dislocation, scoliosis, and pain was analysed using logistic regression and Spearman's correlation. At GMFCS levels I to II, head and trunk asymmetries were most common; at GMFCS levels III to V postural asymmetries varied with position. The odds ratios (OR) for severe postural asymmetries were significantly higher for those with scoliosis (OR=33 sitting), limited hip extension (OR=39 supine), or limited knee extension (OR=37 standing). Postural asymmetries correlated to hip dislocations: supine (r(s) =0.48), sitting (r(s) =0.40), standing (r(s) =0.41), and inability to change position: supine (r(s) =0.60), sitting (r(s) =0.73), and standing (r(s) =0.64). Postural asymmetries were associated with scoliosis, hip dislocations, hip and knee contractures, and inability to change position. © 2013 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.

  3. Energy evolution for the Sivers asymmetries in hard processes

    NASA Astrophysics Data System (ADS)

    Sun, Peng; Yuan, Feng

    2013-08-01

    We investigate the energy evolution of the azimuthal spin asymmetries in semi-inclusive hadron production in deep inelastic scattering (SIDIS) and Drell-Yan lepton pair production in pp collisions. The scale dependence is evaluated by applying an approximate solution to the Collins-Soper-Sterman evolution equation at one-loop order, which is adequate for moderate Q2 variations. This describes well the unpolarized cross sections for the SIDIS and Drell-Yan process in the Q2 range of 2.4-100GeV2. A combined analysis of the Sivers asymmetries in SIDIS from HERMES and COMPASS experiments and the predictions for the Drell-Yan process at RHIC at S=200GeV are presented. We further extend to the Collins asymmetries and find, for the first time, a consistent description for HERMES/COMPASS and BELLE experiments with the evolution effects. We emphasize an important test of the evolution effects by studying di-hadron azimuthal asymmetry in e+e- annihilation at moderate energy range, such as at BEPC at S=4.6GeV.

  4. Nonlinear growth dynamics and the origin of fluctuating asymmetry

    USGS Publications Warehouse

    Emlen, J.M.; Freeman, D.C.; Graham, J.H.

    1993-01-01

    The nonlinear, complex nature of biosynthesis magnifies the impacts of small, random perturbations on organism growth, leading to distortions in adaptive allometries and, in particular, to fluctuating asymmetry. These distortions can be partly checked by cell-cell and inter-body part feedback during growth and development, though the latter mechanism also may lead to complex patterns in right-left asymmetry. Stress can be expected to increase the degree to which random growth perturbations are magnified and may also result in disruption of the check mechanisms, thus exaggerating fluctuating asymmetry.The processes described not only provide one explanation for the existence of fluctuating asymmetry and its augmentation under stress, but suggest additional effects of stress as well. Specifically, stress is predicted to lead to decreased fractal dimension of bone sutures and branching structures in animals, and in increased dimension of growth trace patterns such as those found in mollusc shells and fish otoliths and scales.A basic yet broad primer on fractals and chaos is provided as background for the theoretical development in this manuscript.

  5. Foot force production and asymmetries in elite rowers.

    PubMed

    Buckeridge, Erica M; Bull, Anthony M J; McGregor, Alison H

    2014-03-01

    The rowing stroke is a leg-driven action, in which forces developed by the lower limbs provide a large proportion of power delivered to the oars. In terms of both performance and injury, it is important to initiate each stroke with powerful and symmetrical loading of the foot stretchers. The aims of this study were to assess the reliability of foot force measured by footplates developed for the Concept2 indoor ergometer and to examine the magnitude and symmetry of bilateral foot forces in different groups of rowers. Five heavyweight female scullers, six heavyweight female sweep rowers, and six lightweight male (LWM) rowers performed an incremental step test on the Concept2 ergometer. Vertical, horizontal, and resultant forces were recorded bilaterally, and asymmetries were quantified using the absolute symmetry index. Foot force was measured with high consistency (coefficient of multiple determination > 0.976 +/- 0.010). Relative resultant, vertical, and horizontal forces were largest in LWM rowers, whilst average foot forces significantly increased across stroke rates for all three groups of rowers. Asymmetries ranged from 5.3% for average resultant force to 28.9% for timing of peak vertical force. Asymmetries were not sensitive to stroke rate or rowing group, however, large inter-subject variability in asymmetries was evident.

  6. Investors’ risk attitudes and stock price fluctuation asymmetry

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Honggang

    2011-05-01

    Price rise/fall asymmetry, which indicates enduring but modest rises and sudden short-term falls, is a ubiquitous phenomenon in stock markets throughout the world. Instead of the widely used time series method, we adopt inverse statistics from turbulence to analyze this asymmetry. To explore its underlying mechanism, we build a multi-agent model with two kinds of investors, which are specifically referred to as fundamentalists and chartists. Inspired by Kahneman and Tversky’s claim regarding peoples’ asymmetric psychological responses to the equivalent levels of gains and losses, we assume that investors take different risk attitudes to gains and losses and adopt different trading strategies. The simulation results of the model developed herein are consistent with empirical work, which may support our conjecture that investors’ asymmetric risk attitudes might be one origin of rise/fall asymmetry.

  7. Genetic basis of human left-right asymmetry disorders.

    PubMed

    Deng, Hao; Xia, Hong; Deng, Sheng

    2015-01-27

    Humans and other vertebrates exhibit left-right (LR) asymmetric arrangement of the internal organs, and failure to establish normal LR asymmetry leads to internal laterality disorders, including situs inversus and heterotaxy. Situs inversus is complete mirror-imaged arrangement of the internal organs along LR axis, whereas heterotaxy is abnormal arrangement of the internal thoraco-abdominal organs across LR axis of the body, most of which are associated with complex cardiovascular malformations. Both disorders are genetically heterogeneous with reduced penetrance, presumably because of monogenic, polygenic or multifactorial causes. Research in genetics of LR asymmetry disorders has been extremely prolific over the past 17 years, and a series of loci and disease genes involved in situs inversus and heterotaxy have been described. The review highlights the classification, chromosomal abnormalities, pathogenic genes and the possible mechanism of human LR asymmetry disorders.

  8. Functional asymmetry of pelvic floor innervation--myth or fact?

    PubMed

    Enck, Paul

    2004-01-01

    Neurophysiology of the pelvic floor is not completely understood yet. The importance of its symmetry and asymmetry of innervation has been pointed out lately. These facts have the clinical relevance in case of pelvic floor trauma or incontinence surgery. New techniques of EMG are necessary to confirm correlations between symptoms development and asymmetry of sphincter innervation.

  9. 40 CFR 1065.248 - Gas divider.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... use a gas divider to blend calibration gases. (b) Component requirements. Use a gas divider that... testing. You may use critical-flow gas dividers, capillary-tube gas dividers, or thermal-mass-meter gas... and CO2 Measurements ...

  10. 40 CFR 1065.248 - Gas divider.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... use a gas divider to blend calibration gases. (b) Component requirements. Use a gas divider that... testing. You may use critical-flow gas dividers, capillary-tube gas dividers, or thermal-mass-meter gas... and CO2 Measurements ...

  11. 40 CFR 1065.248 - Gas divider.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... use a gas divider to blend calibration gases. (b) Component requirements. Use a gas divider that... testing. You may use critical-flow gas dividers, capillary-tube gas dividers, or thermal-mass-meter gas... and CO2 Measurements ...

  12. 40 CFR 1065.248 - Gas divider.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... use a gas divider to blend calibration gases. (b) Component requirements. Use a gas divider that... testing. You may use critical-flow gas dividers, capillary-tube gas dividers, or thermal-mass-meter gas... and CO2 Measurements ...

  13. Effects of fatigue on bilateral ground reaction force asymmetries during the squat exercise.

    PubMed

    Hodges, Stephanie J; Patrick, Ryan J; Reiser, Raoul F

    2011-11-01

    Physical performance and injury risk have been related to functional asymmetries of the lower extremity. The effect of fatigue on asymmetries is not well understood. The goal of this investigation was to examine asymmetries during fatiguing repetitions and sets of the free-weight barbell back squat exercise. Seventeen healthy recreationally trained men and women (age = 22.3 ± 2.5 years; body mass = 73.4 ± 13.8 kg; squat 8 repetition maximum [8RM] = 113 ± 35% body mass [mean ± SD]) performed 5 sets of 8 repetitions with 90% 8RM while recording bilateral vertical ground reaction force (GRFv). The GRFv asymmetry during the first 2 (R1 and R2) and the last 2 (R7 and R8) repetitions of each set was calculated by subtracting the % load on the right foot from that of the left foot. Most subjects placed more load on their left foot (also their preferred non-kicking foot). Average absolute asymmetry level across all sets was 4.3 ± 2.5 and 3.6 ± 2.3% for R1 and R2 and R7 and R8, respectively. There were no effects of fatigue on GRFv asymmetries in whole-group analysis (n = 17). However, when initially highly symmetric subjects (±1.7% Left-Right) were removed, average absolute GRFv asymmetry dropped from the beginning to the end of a set (n = 12, p = 0.044) as did peak instantaneous GRFv asymmetry when exploring general shifts toward the left or right leg (n = 12, p = 0.042). The GRFv asymmetries were highly repeatable for 8 subjects that repeated the protocol (Cronbach's α ≥ 0.733, p ≤ 0.056). These results suggest that functional asymmetries, though low, are present in healthy people during the squat exercise and remain consistent. Asymmetries do not increase with fatigue, potentially even decreasing, suggesting that healthy subjects load limbs similarly as fatigue increases, exposing each to similar training stimuli.

  14. Quantitative facial asymmetry: using three-dimensional photogrammetry to measure baseline facial surface symmetry.

    PubMed

    Taylor, Helena O; Morrison, Clinton S; Linden, Olivia; Phillips, Benjamin; Chang, Johnny; Byrne, Margaret E; Sullivan, Stephen R; Forrest, Christopher R

    2014-01-01

    Although symmetry is hailed as a fundamental goal of aesthetic and reconstructive surgery, our tools for measuring this outcome have been limited and subjective. With the advent of three-dimensional photogrammetry, surface geometry can be captured, manipulated, and measured quantitatively. Until now, few normative data existed with regard to facial surface symmetry. Here, we present a method for reproducibly calculating overall facial symmetry and present normative data on 100 subjects. We enrolled 100 volunteers who underwent three-dimensional photogrammetry of their faces in repose. We collected demographic data on age, sex, and race and subjectively scored facial symmetry. We calculated the root mean square deviation (RMSD) between the native and reflected faces, reflecting about a plane of maximum symmetry. We analyzed the interobserver reliability of the subjective assessment of facial asymmetry and the quantitative measurements and compared the subjective and objective values. We also classified areas of greatest asymmetry as localized to the upper, middle, or lower facial thirds. This cluster of normative data was compared with a group of patients with subtle but increasing amounts of facial asymmetry. We imaged 100 subjects by three-dimensional photogrammetry. There was a poor interobserver correlation between subjective assessments of asymmetry (r = 0.56). There was a high interobserver reliability for quantitative measurements of facial symmetry RMSD calculations (r = 0.91-0.95). The mean RMSD for this normative population was found to be 0.80 ± 0.24 mm. Areas of greatest asymmetry were distributed as follows: 10% upper facial third, 49% central facial third, and 41% lower facial third. Precise measurement permitted discrimination of subtle facial asymmetry within this normative group and distinguished norms from patients with subtle facial asymmetry, with placement of RMSDs along an asymmetry ruler. Facial surface symmetry, which is poorly assessed

  15. Intrinsic Dawn-Dusk Asymmetry of Magnetotail Thin Current Sheet

    NASA Astrophysics Data System (ADS)

    Lu, S.; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A.

    2017-12-01

    Magnetic reconnection and its related phenomena (flux ropes, dipolarization fronts, bursty bulk flows, particle injections, etc.) occur more frequently on the duskside in the Earth's magnetotail. Magnetohydrodynamic simulations attributed the asymmetry to the nonuniform ionospheric conductance through global scale magnetosphere-ionosphere interaction. Hybrid simulations, on the other hand, found an alternative responsible mechanism: the Hall effect in the magnetotail thin current sheet, but left an open question: What is the physical origin of the asymmetric Hall effect? The answer could be the temperature difference on the two sides and/or the dawn-dusk transportation of magnetic flux and plasmas. In this work, we use 3-D particle-in-cell simulations to further explore the magnetotail dawn-dusk asymmetry. The magnetotail equilibrium contains a dipole magnetic field and a current sheet region. The simulation is driven by a symmetric and localized (in the y direction) high-latitude electric field, under which the current sheet thins with a decrease of Bz. During the same time, a dawn-dusk asymmetry is formed intrinsically in the thin current sheet, with a smaller Bz, a stronger Hall effect (indicated by the Hall electric field Ez), and a stronger cross-tail current jy on the duskside. The deep origin of the asymmetry is also shown to be dominated by the dawnward E×B drift of magnetic flux and plasmas. A direct consequence of this intrinsic dawn-dusk asymmetry is that it favors magnetotail reconnection and related phenomena to preferentially occur on the duskside.

  16. Frontal Brain Asymmetry and Willingness to Pay

    PubMed Central

    Ramsøy, Thomas Z.; Skov, Martin; Christensen, Maiken K.; Stahlhut, Carsten

    2018-01-01

    Consumers frequently make decisions about how much they are willing to pay (WTP) for specific products and services, but little is known about the neural mechanisms underlying such calculations. In this study, we were interested in testing whether specific brain activation—the asymmetry in engagement of the prefrontal cortex—would be related to consumer choice. Subjects saw products and subsequently decided how much they were willing to pay for each product, while undergoing neuroimaging using electroencephalography. Our results demonstrate that prefrontal asymmetry in the gamma frequency band, and a trend in the beta frequency band that was recorded during product viewing was significantly related to subsequent WTP responses. Frontal asymmetry in the alpha band was not related to WTP decisions. Besides suggesting separate neuropsychological mechanisms of consumer choice, we find that one specific measure—the prefrontal gamma asymmetry—was most strongly related to WTP responses, and was most coupled to the actual decision phase. These findings are discussed in light of the psychology of WTP calculations, and in relation to the recent emergence of consumer neuroscience and neuromarketing. PMID:29662432

  17. Menstrual cycle-related changes of functional cerebral asymmetries in fine motor coordination.

    PubMed

    Bayer, Ulrike; Hausmann, Markus

    2012-06-01

    Fluctuating sex hormone levels during the menstrual cycle have been shown to affect functional cerebral asymmetries in cognitive domains. These effects seem to result from the neuromodulatory properties of sex hormones and their metabolites on interhemispheric processing. The present study was carried out to investigate whether functional cerebral asymmetries in fine motor coordination as reflected by manual asymmetries are also susceptible to natural sex hormonal variations during the menstrual cycle. Sixteen right-handed women with a regular menstrual cycle performed a finger tapping paradigm consisting of two conditions (simple, sequential) during the low hormone menstrual phase and the high estrogen and progesterone luteal phase. To validate the luteal phase, saliva levels of free progesterone (P) were analysed using chemiluminescence assays. As expected, normally cycling women showed a substantial decrease in manual asymmetries in a more demanding sequential tapping condition involving four fingers compared with simple (repetitive) finger tapping. This reduction in the degree of dominant (right) hand manual asymmetries was evident during the luteal phase. During the menstrual phase, however, manual asymmetries were even reversed in direction, indicating a slight advantage in favour of the non-dominant (left) hand. These findings suggest that functional cerebral asymmetries in fine motor coordination are affected by sex hormonal changes during the menstrual cycle, probably via hormonal modulations of interhemispheric interaction. © 2012 Elsevier Inc. All rights reserved.

  18. Cerebral volumetric asymmetries in non-human primates: A magnetic resonance imaging study

    PubMed Central

    Pilcher, Dawn L.; Hammock, Elizabeth A.D.; Hopkins, William D.

    2007-01-01

    Magnetic resonance images (MRI) were collected in a sample of 23 apes, 14 Old World monkeys, and 8 New World monkeys. The total area or volume of the anterior and posterior cerebral regions of each hemisphere of the brain was measured. The results indicated that a rightward frontal and leftward occipital pattern of asymmetry was present at a population level in the great ape sample. Population-level cerebral asymmetries were not revealed in the sample of New or Old World monkeys. The total area or volume of the planum temporale, which was localised only in the great apes, was also measured in both hemispheres. A leftward planum temporale asymmetry was evident at the population level in the great apes. It was hypothesised that the rightward frontal and leftward occipital asymmetries would correlate with leftward planum temporale asymmetries. This hypothesis was based on the assumption that, similar to development of the human brain, the non-human primate brain ‘‘torques’’ during development due to a growth gradient which progresses anterior to posterior, ventral to dorsal, and right to left. The results of this study confirmed the predicted relationship between cerebral volume and the planum temporale asymmetries. This supports the hypothesis that the great ape brain may develop in a ‘‘torquing’’ manner, producing similar anatomical asymmetries as reported in humans. PMID:15513168

  19. Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, T.; Abazov, V. M.; Abbott, B.

    The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy ofmore » $$\\sqrt s =1.96$$ TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is $$A_{\\mathrm{FB}}^{t\\bar{t}} = 0.128 \\pm 0.025$$. As a result, the combined inclusive and differential asymmetries are consistent with recent standard model predictions.« less

  20. Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    DOE PAGES

    Aaltonen, T.; Abazov, V. M.; Abbott, B.; ...

    2018-01-24

    The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy ofmore » $$\\sqrt s =1.96$$ TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is $$A_{\\mathrm{FB}}^{t\\bar{t}} = 0.128 \\pm 0.025$$. As a result, the combined inclusive and differential asymmetries are consistent with recent standard model predictions.« less

  1. Information Asymmetries as Trade Barriers: ISO 9000 Increases International Commerce

    ERIC Educational Resources Information Center

    Potoski, Matthew; Prakash, Aseem

    2009-01-01

    Spatial, cultural, and linguistic barriers create information asymmetries between buyers and sellers that impede international trade. The International Organization for Standardization's ISO 9000 program is designed to reduce these information asymmetries by providing assurance about the product quality of firms that receive its certification.…

  2. Asymmetries of Knowledge and Epistemic Change in Social Gaming Interaction

    ERIC Educational Resources Information Center

    Piirainen-Marsh, Arja; Tainio, Liisa

    2014-01-01

    While a growing number of studies investigate the role of knowledge and interactional management of knowledge asymmetries in conversation analysis, the epistemic organization of multilingual and second language interactions is still largely unexplored. This article addresses this issue by investigating how knowledge asymmetries and changing…

  3. Effects of age and the use of hands-free cellular phones on driving behavior and task performance.

    PubMed

    Liu, Yung-Ching; Ou, Yang-Kun

    2011-12-01

    This study used a driving simulator to investigate the effect of using a Bluetooth hands-free cellular phone earpiece on the driving behavior of two age groups. Forty-eight participants (24 aged 20-26 and 24 aged 65-73) were examined to assess their performance on the following divided-attention tasks under 2 driving load conditions (high and low): (1) attempting to maintain the speed limit and (2) using a cellular phone while driving. The length of the call conversation (long vs. short) and the conversational content (complex vs. simple) were manipulated as within-subject independent variables. The driving behavior of the participants, their task reaction times and accuracy, and subjective ratings were collected as dependent variables. The results indicate that under low driving loads, short talk times, and simple conversational content, the driving behavior of the participants showed low variance in the vehicle's mean speed. In contrast, complex conversation had a significantly negative impact on driving behavior. Notably, under a low driving load, motorists' driving behaviors, measured in lateral acceleration, caused significantly smaller variance in complex conversations compared to no call and simple conversations. The use of a hands-free cellular phone affected the performance (acceleration, lane deviation, reaction time, and accuracy) of older drivers significantly more than younger drivers. While performing divided attention tasks, the accuracy of the older drivers was 66.3 percent and that of the younger drivers was 96.3 percent. Although this study did not find a clear impact of cellular phone use on the driving behavior of younger drivers, their divided-attention task reaction times and accuracy were better under no-call than calling conditions. This study indicates that the use of hands-free cellular phones could significantly affect the safety of driving among the older and present risks, although lesser, for younger drivers.

  4. A newly identified left-right asymmetry in larval sea urchins.

    PubMed

    Hodin, Jason; Lutek, Keegan; Heyland, Andreas

    2016-08-01

    Directional asymmetry (DA) in body form is a widespread phenomenon in animals and plants alike, and a functional understanding of such asymmetries can offer insights into the ways in which ecology and development interface to drive evolution. Echinoids (sea urchins, sand dollars and their kin) with planktotrophic development have a bilaterally symmetrical feeding pluteus larva that undergoes a dramatic metamorphosis into a pentameral juvenile that enters the benthos at settlement. The earliest stage of this transformation involves a DA: a left-side invagination in mid-stage larvae leads to the formation of the oral field of the juvenile via a directionally asymmetric structure called the echinus rudiment. Here, we show for the first time in two echinoid species that there is a corresponding DA in the overall shape of the larva: late-stage plutei have consistently shorter arms specifically on the rudiment (left) side. We then demonstrate a mechanistic connection between the rudiment and arm length asymmetries by examining rare, anomalous purple urchin larvae that have rudiments on both the left and the right side. Our data suggest that this asymmetry is probably a broadly shared feature characterizing ontogeny in the class Echinoidea. We propose several functional hypotheses-including developmental constraints and water column stability-to account for this newly identified asymmetry.

  5. A newly identified left–right asymmetry in larval sea urchins

    PubMed Central

    Hodin, Jason; Lutek, Keegan

    2016-01-01

    Directional asymmetry (DA) in body form is a widespread phenomenon in animals and plants alike, and a functional understanding of such asymmetries can offer insights into the ways in which ecology and development interface to drive evolution. Echinoids (sea urchins, sand dollars and their kin) with planktotrophic development have a bilaterally symmetrical feeding pluteus larva that undergoes a dramatic metamorphosis into a pentameral juvenile that enters the benthos at settlement. The earliest stage of this transformation involves a DA: a left-side invagination in mid-stage larvae leads to the formation of the oral field of the juvenile via a directionally asymmetric structure called the echinus rudiment. Here, we show for the first time in two echinoid species that there is a corresponding DA in the overall shape of the larva: late-stage plutei have consistently shorter arms specifically on the rudiment (left) side. We then demonstrate a mechanistic connection between the rudiment and arm length asymmetries by examining rare, anomalous purple urchin larvae that have rudiments on both the left and the right side. Our data suggest that this asymmetry is probably a broadly shared feature characterizing ontogeny in the class Echinoidea. We propose several functional hypotheses—including developmental constraints and water column stability—to account for this newly identified asymmetry. PMID:27853591

  6. Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex.

    PubMed

    Guadalupe, Tulio; Mathias, Samuel R; vanErp, Theo G M; Whelan, Christopher D; Zwiers, Marcel P; Abe, Yoshinari; Abramovic, Lucija; Agartz, Ingrid; Andreassen, Ole A; Arias-Vásquez, Alejandro; Aribisala, Benjamin S; Armstrong, Nicola J; Arolt, Volker; Artiges, Eric; Ayesa-Arriola, Rosa; Baboyan, Vatche G; Banaschewski, Tobias; Barker, Gareth; Bastin, Mark E; Baune, Bernhard T; Blangero, John; Bokde, Arun L W; Boedhoe, Premika S W; Bose, Anushree; Brem, Silvia; Brodaty, Henry; Bromberg, Uli; Brooks, Samantha; Büchel, Christian; Buitelaar, Jan; Calhoun, Vince D; Cannon, Dara M; Cattrell, Anna; Cheng, Yuqi; Conrod, Patricia J; Conzelmann, Annette; Corvin, Aiden; Crespo-Facorro, Benedicto; Crivello, Fabrice; Dannlowski, Udo; de Zubicaray, Greig I; de Zwarte, Sonja M C; Deary, Ian J; Desrivières, Sylvane; Doan, Nhat Trung; Donohoe, Gary; Dørum, Erlend S; Ehrlich, Stefan; Espeseth, Thomas; Fernández, Guillén; Flor, Herta; Fouche, Jean-Paul; Frouin, Vincent; Fukunaga, Masaki; Gallinat, Jürgen; Garavan, Hugh; Gill, Michael; Suarez, Andrea Gonzalez; Gowland, Penny; Grabe, Hans J; Grotegerd, Dominik; Gruber, Oliver; Hagenaars, Saskia; Hashimoto, Ryota; Hauser, Tobias U; Heinz, Andreas; Hibar, Derrek P; Hoekstra, Pieter J; Hoogman, Martine; Howells, Fleur M; Hu, Hao; Hulshoff Pol, Hilleke E; Huyser, Chaim; Ittermann, Bernd; Jahanshad, Neda; Jönsson, Erik G; Jurk, Sarah; Kahn, Rene S; Kelly, Sinead; Kraemer, Bernd; Kugel, Harald; Kwon, Jun Soo; Lemaitre, Herve; Lesch, Klaus-Peter; Lochner, Christine; Luciano, Michelle; Marquand, Andre F; Martin, Nicholas G; Martínez-Zalacaín, Ignacio; Martinot, Jean-Luc; Mataix-Cols, David; Mather, Karen; McDonald, Colm; McMahon, Katie L; Medland, Sarah E; Menchón, José M; Morris, Derek W; Mothersill, Omar; Maniega, Susana Munoz; Mwangi, Benson; Nakamae, Takashi; Nakao, Tomohiro; Narayanaswaamy, Janardhanan C; Nees, Frauke; Nordvik, Jan E; Onnink, A Marten H; Opel, Nils; Ophoff, Roel; Paillère Martinot, Marie-Laure; Papadopoulos Orfanos, Dimitri; Pauli, Paul; Paus, Tomáš; Poustka, Luise; Reddy, Janardhan Yc; Renteria, Miguel E; Roiz-Santiáñez, Roberto; Roos, Annerine; Royle, Natalie A; Sachdev, Perminder; Sánchez-Juan, Pascual; Schmaal, Lianne; Schumann, Gunter; Shumskaya, Elena; Smolka, Michael N; Soares, Jair C; Soriano-Mas, Carles; Stein, Dan J; Strike, Lachlan T; Toro, Roberto; Turner, Jessica A; Tzourio-Mazoyer, Nathalie; Uhlmann, Anne; Hernández, Maria Valdés; van den Heuvel, Odile A; van der Meer, Dennis; van Haren, Neeltje E M; Veltman, Dick J; Venkatasubramanian, Ganesan; Vetter, Nora C; Vuletic, Daniella; Walitza, Susanne; Walter, Henrik; Walton, Esther; Wang, Zhen; Wardlaw, Joanna; Wen, Wei; Westlye, Lars T; Whelan, Robert; Wittfeld, Katharina; Wolfers, Thomas; Wright, Margaret J; Xu, Jian; Xu, Xiufeng; Yun, Je-Yeon; Zhao, JingJing; Franke, Barbara; Thompson, Paul M; Glahn, David C; Mazoyer, Bernard; Fisher, Simon E; Francks, Clyde

    2017-10-01

    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders.

  7. UV Observations of Hemispheric Asymmetry

    NASA Astrophysics Data System (ADS)

    Schaefer, R. K.; Paxton, L. J.; Wolven, B. C.; Zhang, Y.; Romeo, G.

    2015-12-01

    Asymmetry in the auroral patterns can be an important diagnostic for understanding the dynamics of solar wind interaction with the magnetosphere-ionosphere-thermosphere system (e.g., Newel and Meng, 1998; Fillingrim et al., 2005). Molecular nitrogen emission in the UV Lyman-Birge-Hopfield bands can be used to determine energy flux and electron mean energy (Sotirelis, et al, 2013) and thereby Hall and Pederson integrated conductances (Gjerloev, et al., 2014). UV imagery provided by the 4 SSUSI instruments on the Defense Meteorological Satellite Program (DMSP) F16-F19 spacecraft provide two dimensional maps of this emission at different local times. Often there are near simultaneous observations of both poles by some combination of the satellites. (see figure 1) The SSUSI auroral data products are well suited to this study, as they have the following features.: - dayglow has been subtracted on dayside aurora - electron energy flux and mean energy are pre-calculated - individual arcs have been identified through image processing. In order to intercompare data from multiple satellites, we must first ensure that the instrument calibrations are consistent. In this work we show that the instruments are consistently calibrated, and that results generated from the SSUSI data products can be trusted. Several examples of storm time asymmetries captured by the SSUSI instruments will be discussed. Fillingim, M. O., G. K. Parks, H. U. Frey, T. J. Immel, and S. B. Mende (2005), Hemispheric asymmetry of the afternoon electron aurora, Geophys. Res. Lett., 32, L03113, doi:10.1029/2004GL021635. Gjerloev, J., Schaefer, R., Paxton, L, and Zhang, Y. (2014), A comprehensive empirical model of the ionospheric conductivity derived from SSUSI/GUVI, SuperMAG and SuperDARN data, SM51G-4339, Fall 2014 AGU meeting, San Francisco. Newell, P. T., and C.-I. Meng (1988), Hemispherical asymmetry in cusp precipitation near solstices, J. Geophys. Res., 93(A4), 2643-2648, doi:10.1029/JA093iA04p02643

  8. Interhemispheric Asymmetry in the Mesosphere and Lower Thermosphere Observed by SABER/TIMED

    NASA Astrophysics Data System (ADS)

    Yee, J. H.

    2017-12-01

    In this paper we analyze nearly 15 years of satellite observations of temperature, airglow, and composition in the Mesosphere and Lower Thermosphere (MLT) to quantify their interhemispheric asymmetries ao one can provide quantitative links between observed asymmetries and the spatial and temporal variations of the gravity wave activity. Two processes are believed to be responsible for observed interhemispheric differences in the MLT. The first is the direct radiation effect from the eccentricity of the Earth orbit amd the other is the difference in gravity wave source distribution and filtering due to asymmetries in mean winds of the lower atmosphere. Both processes have been theoretically investigated to explain the observed asymmetry in some of the atmospheric parameters, but not self-consistently in all observed parameters together. In this paper we will show the asymmetry in the time-varying zonal-mean latitudinal structures of temperature, airglow emission rate, and composition observed by TIMED/SABER. We will quantify their interhemispheric asymmetries for different seasons under different solar activity conditions. In addition, temperature measurements will also be used to obtain temporal and spatial morphology of gravity wave potential energies. We will interpret the asymmetry in the observed fields and examine qualitatively their consistency with the two responsible processes, especially the one due to gravity wave filtering process. Our goal is to introduce and to share the spatial and temporal morphologies of all the observed fields to the modeling community so, together self-consistently, they be can be used to gain physical insights into the relative importance of various drivers responsible for the observed asymmetry, especially the role of gravity wave induced eddy drag and mixing, a critical, but least quantitatively understood process.

  9. North–South Asymmetry of the Rotation of the Solar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Xie, Jinglan; Shi, Xiangjun; Qu, Zhining

    2018-03-01

    Using the rotation rates of the solar magnetic field during solar cycles 21 to 23 obtained by Chu et al. by analyzing the synoptic magnetic maps produced by the NSO/Kitt Peak and SOHO/MDI during the years 1975 to 2008, the temporal variation of the equatorial rotation rate (A) and the latitude gradient of rotation (B) in the northern and southern hemispheres are studied separately. The results indicate that the rotation is more differential (about 4.3%) in the southern hemisphere in the considered time frame. It is found that the north–south asymmetry of A and the asymmetry of B show increasing trends in the considered time frame, while the north–south asymmetry of the solar activity shows a decreasing trend. There exists a significant negative correlation (at 95% confidence level) between the asymmetry of B and the asymmetry of the solar activity, and this may be due to stronger magnetic activity in a certain hemisphere that may suppress the differential rotation to some extent. The periodicities in the variation of A and B are also studied, and periods of about 5.0 and 10.5 yr (5.5 and 10.4 yr) can be found for the variation of the northern (southern) hemisphere B. Moreover, the north–south asymmetry of A and the asymmetry of B have similar periods of about 2.6–2.7 and 5.2–5.3 yr. Further, cross-correlation analysis indicates that there exists a phase difference (about eight months) between the northern and southern hemisphere B, and this means that the northern hemisphere B generally leads by about eight months.

  10. Sex differences in structural brain asymmetry predict overt aggression in early adolescents.

    PubMed

    Visser, Troy A W; Ohan, Jeneva L; Whittle, Sarah; Yücel, Murat; Simmons, Julian G; Allen, Nicholas B

    2014-04-01

    The devastating social, emotional and economic consequences of human aggression are laid bare nightly on newscasts around the world. Aggression is principally mediated by neural circuitry comprising multiple areas of the prefrontal cortex and limbic system, including the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), amygdala and hippocampus. A striking characteristic of these regions is their structural asymmetry about the midline (i.e. left vs right hemisphere). Variations in these asymmetries have been linked to clinical disorders characterized by aggression and the rate of aggressive behavior in psychiatric patients. Here, we show for the first time that structural asymmetries in prefrontal cortical areas are also linked to aggression in a normal population of early adolescents. Our findings indicate a relationship between parent reports of aggressive behavior in adolescents and structural asymmetries in the limbic and paralimbic ACC and OFC, and moreover, that this relationship varies by sex. Furthermore, while there was no relationship between aggression and structural asymmetries in the amygdala or hippocampus, hippocampal volumes did predict aggression in females. Taken together, the results suggest that structural asymmetries in the prefrontal cortex may influence human aggression, and that the anatomical basis of aggression varies substantially by sex.

  11. Transverse-plane pelvic asymmetry in patients with cerebral palsy and scoliosis.

    PubMed

    Ko, Phebe S; Jameson, Paul G; Chang, Tai-Li; Sponseller, Paul D

    2011-01-01

    Pelvic obliquity and loss of sitting balance develop from progressive scoliosis in cerebral palsy (CP) and are indications for surgery. Our goal was to quantify pelvic asymmetry to help understand skeletal deformity in CP and its surgical correction. We assessed pelvic angles and transverse plane symmetry in 27 consecutive patients with scoliosis and severe CP who had undergone computed tomography for spinal surgery (subjects). The program used allowed measurement of angles in the true transverse plane, compensating for any obliquity present. Measurements included angles of the upper and lower ilium with respect to the sacrum, acetabular anteversion, and sacroiliac joint angles. We compared subject measurements with those of 20 age-matched controls and used Student t test to determine whether subjects had greater asymmetry and if the asymmetry direction was correlated with the adducted hip and/or the scoliosis in subjects with windswept hips. Subjects had significantly more iliac angle asymmetry (P=0.01) and asymmetry of at least 10 degrees in these categories: upper ilium, 15 (mean difference, 18); above sciatic notch, 14 (mean difference, 17); just below sciatic notch, 15 (mean difference, 19); sacroiliac joint, 5; and acetabular anteversion, 6. No control had asymmetry greater than 10 degrees. Comparing subjects with and without windswept hips, the former had more asymmetrical upper iliac angles. In 16 subjects with windswept hips, the scoliosis curve convexity was ipsilateral to the more internally rotated ilium. In 4 of the 5 subjects with severely windswept hips, the side of the adducted hip had more inward iliac rotation than did the contralateral (abducted) hip. Transverse pelvic asymmetry, a little-recognized deformity in patients with severe CP, is most pronounced above the acetabulum and is more common in patients with windswept hips. Spine surgeons should be aware of such asymmetry because it may make iliac fixation challenging and account for some

  12. A new genus of long-legged flies displaying remarkable wing directional asymmetry

    Treesearch

    Justin B. Runyon; Richard L. Hurley

    2004-01-01

    A previously unknown group of flies is described whose males exhibit directional asymmetry, in that the left wing is larger than, and of a different shape from, the right wing. To our knowledge, wing asymmetry of this degree has not previously been reported in an animal capable of flight. Such consistent asymmetry must result from a left­right axis during development...

  13. [Epidemiological study of dental and facial asymmetries in a sample of preschool subjects].

    PubMed

    Vitale, Marina Consuelo; Barbieri, Federica; Ricotta, Riccardo; Arpesella, Marisa; Emanuelli, Maria Teresa

    2015-01-01

    to identify the typologies of facial and dental asymmetries in a sample of children aged between 3 and 6 years and to correlate these asymmetries with possible morphological and functional situations. cross-sectional observational study. sample of 95 subjects aged between 3 and 6 years. Clinical data were collected in 10 sessions conducted during school hours in April 2013 by a doctor of Dentistry at two preschools in the city of Sanremo (Liguria Region, Northern Italy) and a kindergarten in the city of Pavia (Lombardy Region, Northern Italy). To collect the data, a weighted clinical questionnaire was used. presence and type of bad habit, type of breathing, presence and type of facial asymmetry, dental formula, presence of diastema, presence and type of occlusal asymmetries, presence and type of dental malocclusions. analysed sample consisted of 53.7% (51/95) of males and 46.3 % (44/95) females; the mean age was 4.3 ± 0.9 years. Most frequent facial asymmetry is orbits asymmetry (35%, 33/95); dental malocclusions are detected in 70%(67/95) of cases. High percentage of subjects (69.5%, 66/95) presents displacement between superior dental midline (SDM) and inferior dental midline (IDM). Several statistically significant associations are observed: in particular, asymmetry of molar ratios is linked to asymmetry of the cheekbones and displacement of the SDM; facial midline has statistical association with asymmetry of the cheekbones (p <0.001). the results of this study agree with scientific literature, in particular as regards the prevalence of compromising habits observed and the close correlation between: the presence of dental malocclusions and the presence of compromising habits, the presence of dental malocclusions and the presence of oral breathing.

  14. Frontal brain asymmetry in adult attention-deficit/hyperactivity disorder (ADHD): extending the motivational dysfunction hypothesis.

    PubMed

    Keune, Philipp M; Wiedemann, Eva; Schneidt, Alexander; Schönenberg, Michael

    2015-04-01

    Attention-deficit/hyperactivity disorder (ADHD) involves motivational dysfunction, characterized by excessive behavioral approach tendencies. Frontal brain asymmetry in the alpha band (8-13 Hz) in resting-state electroencephalogram (EEG) represents a neural correlate of global motivational tendencies, and abnormal asymmetry, indicating elevated approach motivation, was observed in pediatric and adult patients. To date, the relation between ADHD symptoms, depression and alpha asymmetry, its temporal metric properties and putative gender-specificity remain to be explored. Adult ADHD patients (n=52) participated in two resting-state EEG recordings, two weeks apart. Asymmetry measures were aggregated across recordings to increase trait specificity. Putative region-specific associations between asymmetry, ADHD symptoms and depression, its gender-specificity and test-retest reliability were examined. ADHD symptoms were associated with approach-related asymmetry (stronger relative right-frontal alpha power). Approach-related asymmetry was pronounced in females, and also associated with depression. The latter association was mediated by ADHD symptoms. Test-retest reliability was sufficient. The association between reliably assessable alpha asymmetry and ADHD symptoms supports the motivational dysfunction hypothesis. ADHD symptoms mediating an atypical association between asymmetry and depression may be attributed to depression arising secondary to ADHD. Gender-specific findings require replication. Frontal alpha asymmetry may represent a new reliable marker of ADHD symptoms. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. The EIT- and N- joint resonance lineshape asymmetry

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Hancox, Cindy; Hohensee, Michael; Phillips, David; Walsworth, Ron

    2008-03-01

    The solution of a quantum optics model for the joint EIT- and N- resonance explains the experimentally observed two-photon lineshape asymmetry as arising from interference and AC stark effects. This solution is evaluated for various light field intensities, detunings and couplings associated with experiments performed on the D1 and D2 transition of 87Rb. Because of its contribution to clock instability, lineshape asymmetry remains perhaps the main impediment to improving all-optical time standards based on the joint resonance.

  16. An Azimuthal Asymmetry in the LkHα 330 Disk

    NASA Astrophysics Data System (ADS)

    Isella, Andrea; Pérez, Laura M.; Carpenter, John M.; Ricci, Luca; Andrews, Sean; Rosenfeld, Katherine

    2013-09-01

    Theory predicts that giant planets and low mass stellar companions shape circumstellar disks by opening annular gaps in the gas and dust spatial distribution. For more than a decade it has been debated whether this is the dominant process that leads to the formation of transitional disks. In this paper, we present millimeter-wave interferometric observations of the transitional disk around the young intermediate mass star LkHα 330. These observations reveal a lopsided ring in the 1.3 mm dust thermal emission characterized by a radius of about 100 AU and an azimuthal intensity variation of a factor of two. By comparing the observations with a Gaussian parametric model, we find that the observed asymmetry is consistent with a circular arc, that extends azimuthally by about 90° and emits about 1/3 of the total continuum flux at 1.3 mm. Hydrodynamic simulations show that this structure is similar to the azimuthal asymmetries in the disk surface density that might be produced by the dynamical interaction with unseen low mass companions orbiting within 70 AU from the central star. We argue that such asymmetries might lead to azimuthal variations in the millimeter-wave dust opacity and in the dust temperature, which will also affect the millimeter-wave continuum emission. Alternative explanations for the observed asymmetry that do not require the presence of companions cannot be ruled out with the existing data. Further observations of both the dust and molecular gas emission are required to derive firm conclusions on the origin of the asymmetry observed in the LkHα 330 disk.

  17. Lip line changes in Class III facial asymmetry patients after orthodontic camouflage treatment, one-jaw surgery, and two-jaw surgery: A preliminary study.

    PubMed

    Lee, Gung-Chol; Yoo, Jo-Kwang; Kim, Seong-Hun; Moon, Cheol-Hyun

    2017-03-01

    To evaluate the effects of orthodontic camouflage treatment (OCT), one-jaw surgery, and two-jaw surgery on the correction of lip line cant (LLC) and to examine factors affecting the correction of LLC in Class III craniofacial asymmetry patients. A sample of 30 Class III craniofacial asymmetry patients was divided into OCT (n = 10), one-jaw surgery (n = 10), and two-jaw surgery (n = 10) groups such that the pretreatment LLC was similar in each group. Pretreatment and posttreatment cone-beam computed tomography scans were used to measure dental and skeletal parameters and LLC. Pretreatment and posttreatment measurements were compared within groups and between groups. Pearson's correlation tests and multiple regression analyses were performed to investigate factors affecting the amount and rate of LLC correction. The average LLC correction was 1.00° in the one-jaw surgery group, and in the two-jaw surgery group, it was 1.71°. In the OCT group it was -0.04°, which differed statistically significantly from the LLC correction in the other two groups. The amount and rate of LLC correction could be explained by settling of skeletal discrepancies or LLC at pretreatment with goodness of fit percentages of approximately 82% and 41%, respectively. Orthognathic surgery resulted in significant correction of LLC in Class III craniofacial asymmetry patients, while OCT did not.

  18. Asymmetry in Food Handling Behavior of a Tree-Dwelling Rodent (Sciurus vulgaris)

    PubMed Central

    Polo-Cavia, Nuria; Vázquez, Zoraida; de Miguel, Francisco Javier

    2015-01-01

    Asymmetry in motor patterns is present in a wide variety of animals. Many lateralized behaviors seem to depend on brain asymmetry, as it is the case of different tasks associated to food handling by several bird and mammal species. Here, we analyzed asymmetry in handling behavior of pine cones by red squirrels (Sciurus vulgaris). Red squirrels devote most of their daily activity to feeding, thus this species constitutes an appropriate model for studying asymmetry in food processing. We aimed to explore 1) the potential lateralization in handling of pine cones by squirrels, 2) the dominant pattern for this behavior (left- vs. right-handed), and 3) whether this pattern varies among populations and depending on the pine tree species available. Results revealed that red squirrels handle pine cones in an asymmetrical way, and that direction of asymmetry varies among populations and seems to be determined more by local influences rather than by the pine tree species. PMID:25714614

  19. Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left-Right Asymmetry

    PubMed Central

    Pai, Vaibhav P.; Vandenberg, Laura N.; Blackiston, Douglas; Levin, Michael

    2012-01-01

    Consistent left-right asymmetry in organ morphogenesis is a fascinating aspect of bilaterian development. Although embryonic patterning of asymmetric viscera, heart, and brain is beginning to be understood, less is known about possible subtle asymmetries present in anatomically identical paired structures. We investigated two important developmental events: physiological controls of eye development and specification of neural crest derivatives, in Xenopus laevis embryos. We found that the striking hyperpolarization of transmembrane potential (V mem) demarcating eye induction usually occurs in the right eye field first. This asymmetry is randomized by perturbing visceral left-right patterning, suggesting that eye asymmetry is linked to mechanisms establishing primary laterality. Bilateral misexpression of a depolarizing channel mRNA affects primarily the right eye, revealing an additional functional asymmetry in the control of eye patterning by V mem. The ATP-sensitive K+ channel subunit transcript, SUR1, is asymmetrically expressed in the eye primordia, thus being a good candidate for the observed physiological asymmetries. Such subtle asymmetries are not only seen in the eye: consistent asymmetry was also observed in the migration of differentiated melanocytes on the left and right sides. These data suggest that even anatomically symmetrical structures may possess subtle but consistent laterality and interact with other developmental left-right patterning pathways. PMID:23346115

  20. Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left-Right Asymmetry.

    PubMed

    Pai, Vaibhav P; Vandenberg, Laura N; Blackiston, Douglas; Levin, Michael

    2012-01-01

    Consistent left-right asymmetry in organ morphogenesis is a fascinating aspect of bilaterian development. Although embryonic patterning of asymmetric viscera, heart, and brain is beginning to be understood, less is known about possible subtle asymmetries present in anatomically identical paired structures. We investigated two important developmental events: physiological controls of eye development and specification of neural crest derivatives, in Xenopus laevis embryos. We found that the striking hyperpolarization of transmembrane potential (V(mem)) demarcating eye induction usually occurs in the right eye field first. This asymmetry is randomized by perturbing visceral left-right patterning, suggesting that eye asymmetry is linked to mechanisms establishing primary laterality. Bilateral misexpression of a depolarizing channel mRNA affects primarily the right eye, revealing an additional functional asymmetry in the control of eye patterning by V(mem). The ATP-sensitive K(+) channel subunit transcript, SUR1, is asymmetrically expressed in the eye primordia, thus being a good candidate for the observed physiological asymmetries. Such subtle asymmetries are not only seen in the eye: consistent asymmetry was also observed in the migration of differentiated melanocytes on the left and right sides. These data suggest that even anatomically symmetrical structures may possess subtle but consistent laterality and interact with other developmental left-right patterning pathways.

  1. Temporal change of EIA asymmetry revealed by a beacon receiver network in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Watthanasangmechai, Kornyanat; Yamamoto, Mamoru; Saito, Akinori; Maruyama, Takashi; Yokoyama, Tatsuhiro; Nishioka, Michi; Ishii, Mamoru

    2015-05-01

    To reveal the temporal change of the equatorial ionization anomaly (EIA) asymmetry, a multipoint satellite-ground beacon experiment was conducted along the meridional plane of the Thailand-Indonesia sector. The observation includes one station near the magnetic equator and four stations at off-equator latitudes. This is the first EIA asymmetry study with high spatial resolution using GNU Radio Beacon Receiver (GRBR) observations in Southeast Asia. GRBR-total electron contents (TECs) from 97 polar-orbit satellite passes in March 2012 were analyzed in this study. Successive passes captured rapid evolution of EIA asymmetry, especially during geomagnetic disturbances. The penetrating electric fields that occur during geomagnetic disturbed days are not the cause of the asymmetry. Instead, high background TEC associated with an intense electric field empowers the neutral wind to produce severe asymmetry of the EIA. Such rapid evolution of EIA asymmetry was not seen during nighttime, when meridional wind mainly controlled the asymmetric structures. Additional data are necessary to identify the source of the variations, i.e., atmospheric waves. Precisely capturing the locations of the crests and the evolution of the asymmetry enhances understanding of the temporal change of EIA asymmetry at the local scale and leads to a future local modeling for TEC prediction in Southeast Asia.

  2. Socioeconomic Status Is Not Related with Facial Fluctuating Asymmetry: Evidence from Latin-American Populations

    PubMed Central

    Quinto-Sánchez, Mirsha; Cintas, Celia; Silva de Cerqueira, Caio Cesar; Ramallo, Virginia; Acuña-Alonzo, Victor; Adhikari, Kaustubh; Castillo, Lucía; Gomez-Valdés, Jorge; Everardo, Paola; De Avila, Francisco; Hünemeier, Tábita; Jaramillo, Claudia; Arias, Williams; Fuentes, Macarena; Gallo, Carla; Poletti, Giovani; Schuler-Faccini, Lavinia; Bortolini, Maria Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; Rosique, Javier; Ruiz-Linares, Andrés; González-José, Rolando

    2017-01-01

    The expression of facial asymmetries has been recurrently related with poverty and/or disadvantaged socioeconomic status. Departing from the developmental instability theory, previous approaches attempted to test the statistical relationship between the stress experienced by individuals grown in poor conditions and an increase in facial and corporal asymmetry. Here we aim to further evaluate such hypothesis on a large sample of admixed Latin Americans individuals by exploring if low socioeconomic status individuals tend to exhibit greater facial fluctuating asymmetry values. To do so, we implement Procrustes analysis of variance and Hierarchical Linear Modelling (HLM) to estimate potential associations between facial fluctuating asymmetry values and socioeconomic status. We report significant relationships between facial fluctuating asymmetry values and age, sex, and genetic ancestry, while socioeconomic status failed to exhibit any strong statistical relationship with facial asymmetry. These results are persistent after the effect of heterozygosity (a proxy for genetic ancestry) is controlled in the model. Our results indicate that, at least on the studied sample, there is no relationship between socioeconomic stress (as intended as low socioeconomic status) and facial asymmetries. PMID:28060876

  3. Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims

    DOE PAGES

    Clark, D. S.; Weber, C. R.; Smalyuk, V. A.; ...

    2016-07-22

    Here, current indirect drive implosion experiments on the National Ignition Facility (NIF) are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or “shimmed,” so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy of capsule shimming to correct the asymmetries inmore » two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater.« less

  4. Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Weber, C. R.; Smalyuk, V. A.

    2016-07-15

    Current indirect drive implosion experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or “shimmed,” so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy ofmore » capsule shimming to correct the asymmetries in two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater.« less

  5. Socioeconomic Status Is Not Related with Facial Fluctuating Asymmetry: Evidence from Latin-American Populations.

    PubMed

    Quinto-Sánchez, Mirsha; Cintas, Celia; Silva de Cerqueira, Caio Cesar; Ramallo, Virginia; Acuña-Alonzo, Victor; Adhikari, Kaustubh; Castillo, Lucía; Gomez-Valdés, Jorge; Everardo, Paola; De Avila, Francisco; Hünemeier, Tábita; Jaramillo, Claudia; Arias, Williams; Fuentes, Macarena; Gallo, Carla; Poletti, Giovani; Schuler-Faccini, Lavinia; Bortolini, Maria Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; Rosique, Javier; Ruiz-Linares, Andrés; González-José, Rolando

    2017-01-01

    The expression of facial asymmetries has been recurrently related with poverty and/or disadvantaged socioeconomic status. Departing from the developmental instability theory, previous approaches attempted to test the statistical relationship between the stress experienced by individuals grown in poor conditions and an increase in facial and corporal asymmetry. Here we aim to further evaluate such hypothesis on a large sample of admixed Latin Americans individuals by exploring if low socioeconomic status individuals tend to exhibit greater facial fluctuating asymmetry values. To do so, we implement Procrustes analysis of variance and Hierarchical Linear Modelling (HLM) to estimate potential associations between facial fluctuating asymmetry values and socioeconomic status. We report significant relationships between facial fluctuating asymmetry values and age, sex, and genetic ancestry, while socioeconomic status failed to exhibit any strong statistical relationship with facial asymmetry. These results are persistent after the effect of heterozygosity (a proxy for genetic ancestry) is controlled in the model. Our results indicate that, at least on the studied sample, there is no relationship between socioeconomic stress (as intended as low socioeconomic status) and facial asymmetries.

  6. Load Asymmetry Observed During Orion Main Parachute Inflation

    NASA Technical Reports Server (NTRS)

    Morris, Aaron L.; Taylor, Thomas; Olson, Leah

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) has flight tested the first two generations of the Orion parachute program. Three of the second generation tests instrumented the dispersion bridles of the Main parachute with a Tension Measuring System. The goal of this load measurement was to better understand load asymmetry during the inflation process of a cluster of Main parachutes. The CPAS Main parachutes exhibit inflations that are much less symmetric than current parachute literature and design guides would indicate. This paper will examine loads data gathered on three cluster tests, quantify the degree of asymmetry observed, and contrast the results with published design guides. Additionally, the measured loads data will be correlated with videos of the parachute inflation to make inferences about the shape of the parachute and the relative load asymmetry. The goal of this inquiry and test program is to open a dialogue regarding asymmetrical parachute inflation load factors.

  7. Reduction of Helicity-Dependent Instrumental Laser Intensity Asymmetries

    NASA Astrophysics Data System (ADS)

    Burtwistle, Samantha; Dreiling, Joan; Gay, Timothy

    2014-05-01

    We present a new optical system that greatly reduces helicity-dependent instrumental intensity asymmetries. The optical setup is similar to that described in Fabrikant et al., where two beams with orthogonal linear polarizations are sent through a chopper, allowing only one beam to pass through the optical system at a time. The two temporally-separated beams are then spatially recombined. We now use a system, with a second active polarization changing element, that is analogous to that described in Gay and Dunning, which compensates for false asymmetries in Mott polarimetry. In our setup, the orthogonal linear polarizations are now circularly polarized by a Pockels cell switching between a retardance of + λ /4 and - λ/4 at the same frequency as the chopper, but with a 90-degree phase shift. Using this method, we have been able to control the standard deviation of the mean of our asymmetries, as measured by a photodiode with lock-in signal processing, to 3*10-8.

  8. Children’s Depressive Symptoms in Relation to EEG Frontal Asymmetry and Maternal Depression

    PubMed Central

    Feng, Xin; Forbes, Erika E.; Kovacs, Maria; George, Charles J.; Lopez-Duran, Nestor L.; Fox, Nathan A.; Cohn, Jeffrey F.

    2011-01-01

    This study examined the relations of school-age children’s depressive symptoms, frontal EEG asymmetry, and maternal history of childhood-onset depression (COD). Participants were 73 children, 43 of whom had mothers with COD. Children’s EEG was recorded at baseline and while watching happy and sad film clips. Depressive symptoms were measured using parent-report of Children’s Depression Inventory. The key findings are the interaction effects between baseline and film frontal EEG asymmetry on child depressive symptoms. Specifically, relative right frontal EEG asymmetry while watching happy or sad film clip was associated with elevated depressive symptoms for children who also exhibited right frontal EEG asymmetry at baseline. Results suggest that right frontal EEG asymmetry that is consistent across situations may be an marker of depression-prone children. PMID:21894523

  9. Brain structural and functional asymmetry in human situs inversus totalis.

    PubMed

    Vingerhoets, Guy; Li, Xiang; Hou, Lewis; Bogaert, Stephanie; Verhelst, Helena; Gerrits, Robin; Siugzdaite, Roma; Roberts, Neil

    2018-05-01

    Magnetic resonance imaging was used to investigate brain structural and functional asymmetries in 15 participants with complete visceral reversal (situs inversus totalis, SIT). Language-related brain structural and functional lateralization of SIT participants, including peri-Sylvian gray and white matter asymmetries and hemispheric language dominance, was similar to those of 15 control participants individually matched for sex, age, education, and handedness. In contrast, the SIT cohort showed reversal of the brain (Yakovlevian) torque (occipital petalia and occipital bending) compared to the control group. Secondary findings suggested different asymmetry patterns between SIT participants with (n = 6) or without (n = 9) primary ciliary dyskinesia (PCD, also known as Kartagener syndrome) although the small sample sizes warrant cautious interpretation. In particular, reversed brain torque was mainly due to the subgroup with PCD-unrelated SIT and this group also included 55% left handers, a ratio close to a random allocation of handedness. We conclude that complete visceral reversal has no effect on the lateralization of brain structural and functional asymmetries associated with language, but seems to reverse the typical direction of the brain torque in particular in participants that have SIT unrelated to PCD. The observed differences in asymmetry patterns of SIT groups with and without PCD seem to suggest that symmetry breaking of visceral laterality, brain torque, and language dominance rely on different mechanisms.

  10. Right-frontal cortical asymmetry predicts increased proneness to nostalgia.

    PubMed

    Tullett, Alexa M; Wildschut, Tim; Sedikides, Constantine; Inzlicht, Michael

    2015-08-01

    Nostalgia is often triggered by feelings-such as sadness, loneliness, or meaninglessness-that are typically associated with withdrawal motivation. Here, we examined whether a trait tendency to experience withdrawal motivation is associated with nostalgia proneness. Past work indicates that baseline right-frontal cortical asymmetry is a neural correlate of withdrawal-related motivation. We therefore hypothesized that higher baseline levels of right-frontal asymmetry would predict increased proneness to nostalgia. We assessed participants' baseline levels of frontal cortical activity using EEG. Results supported the hypothesis and demonstrated that the association between relative right-frontal asymmetry and increased nostalgia remained significant when controlling for the Big Five personality traits. Overall, these findings indicate that individuals with a stronger dispositional tendency to experience withdrawal-related motivation are more prone to nostalgia. © 2015 Society for Psychophysiological Research.

  11. Karyomorphology and karyotype asymmetry in the South American Caesalpinia species (Leguminosae and Caesalpinioideae).

    PubMed

    Rodrigues, P S; Souza, M M; Corrêa, R X

    2014-10-20

    With the purpose of addressing the pattern of karyotype evolution in Caesalpinia species, chromosome morphology was characterized in five species from Brazil, and karyotypic asymmetry was analyzed in 14 species from South America. All accessions had the chromosome number 2n = 24, which was first described here for Caesalpinia laxiflora Tul. and Cenostigma macrophyllum Tul. The karyotype formula of C. laxiflora, Caesalpinia pyramidalis Tul., and C. macrophyllum was 12 m. The formula varies amongst the populations of Caesalpinia bracteosa Tul. (11 m + 1 sm) and Caesalpinia echinata Lam. (10 m + 2 sm and 9 m + 3 sm). The intra- and interspecific variations in chromosome length were significant (analysis of variance, P < 0.05). Analyzing the asymmetry index (AI), revealed that Caesalpinia calycina Benth. had the most asymmetrical karyotype (AI = 10.52), whereas Caesalpinia paraguarienses (D. Parodi) Burkat. and Caesalpinia gilliesii (Hook.) Benth. had the most symmetrical karyotypes (AI = 0.91 and 1.10, respectively). There has been a trend to lower AI values for the Caesalpinia s.l. species assigned in Libidibia and intermediate values for those combined into Poincianella. On the other hand, the karyotypes of Erythrostemon species had extremely different AI values. This study confirms the existence of karyotype variability in Caesalpinia s.l. while revealing a possible uniformity of this trait in some of the new genera that are being divided from Caesalpinia s.l. More broadly, the 2n = 24 chromosome number is conserved. Metacentric chromosomes and low AI values predominate among Caesalpinia s.l. and Cenostigma.

  12. A full picture of large lepton number asymmetries of the Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barenboim, Gabriela; Park, Wan-Il, E-mail: Gabriela.Barenboim@uv.es, E-mail: wipark@jbnu.ac.kr

    A large lepton number asymmetry of O(0.1−1) at present Universe might not only be allowed but also necessary for consistency among cosmological data. We show that, if a sizeable lepton number asymmetry were produced before the electroweak phase transition, the requirement for not producing too much baryon number asymmetry through sphalerons processes, forces the high scale lepton number asymmetry to be larger than about 03. Therefore a mild entropy release causing O(10-100) suppression of pre-existing particle density should take place, when the background temperature of the Universe is around T = O(10{sup −2}-10{sup 2}) GeV for a large but experimentallymore » consistent asymmetry to be present today. We also show that such a mild entropy production can be obtained by the late-time decays of the saxion, constraining the parameters of the Peccei-Quinn sector such as the mass and the vacuum expectation value of the saxion field to be m {sub φ} ∼> O(10) TeV and φ{sub 0} ∼> O(10{sup 14}) GeV, respectively.« less

  13. Static innominate asymmetry and leg length discrepancy in asymptomatic collegiate athletes.

    PubMed

    Krawiec, C J; Denegar, C R; Hertel, J; Salvaterra, G F; Buckley, W E

    2003-11-01

    The objectives of the study were to assess: (1) static innominate asymmetry in the sagittal plane, (2) leg length discrepancy (LLD), and (3) the relationship between static innominate rotation and LLD in asymptomatic collegiate athletes. The study was an observational study by design which took place in a University athletic training research laboratory. The participants were twenty-four male and 20 female asymptomatic intercollegiate athletes who volunteered to take part in the study. Static innominate asymmetry was assessed with a caliper/inclinometer tool and LLD was measured with a tape measure using standard clinical methods. Results showed that forty-two subjects (95%) demonstrated some degree of static innominate asymmetry. In 32 subjects (73%), the right innominate was more anteriorly rotated than the left. Nearly all subjects were determined to have unequal leg lengths with a majority, 30 subjects (68%), showing a slightly longer left leg. Weak correlations (r=0.33 - 0.44) were identified between static innominate asymmetry and LLD. In Conclusion static innominate asymmetry and LLD are common among asymptomatic collegiate athletes. This information provides clinicians with normative data of common clinical measures in a physically active population.

  14. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    PubMed Central

    Liu, Yaou; Duan, Yunyun; Li, Kuncheng

    2015-01-01

    The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain. PMID:26539535

  15. In-flight observations of low-mode ρR asymmetries in NIF implosionsa)

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Rygg, J. R.; Kritcher, A.; Rosenberg, M. J.; Rinderknecht, H. G.; Hicks, D. G.; Friedrich, S.; Bionta, R.; Meezan, N. B.; Olson, R.; Atherton, J.; Barrios, M.; Bell, P.; Benedetti, R.; Berzak Hopkins, L.; Betti, R.; Bradley, D.; Callahan, D.; Casey, D.; Collins, G.; Dewald, E. L.; Dixit, S.; Döppner, T.; Edwards, M. J.; Gatu Johnson, M.; Glenn, S.; Grim, G.; Hatchett, S.; Jones, O.; Khan, S.; Kilkenny, J.; Kline, J.; Knauer, J.; Kyrala, G.; Landen, O.; LePape, S.; Li, C. K.; Lindl, J.; Ma, T.; Mackinnon, A.; Manuel, M. J.-E.; Meyerhofer, D.; Moses, E.; Nagel, S. R.; Nikroo, A.; Parham, T.; Pak, A.; Petrasso, R. D.; Prasad, R.; Ralph, J.; Robey, H. F.; Ross, J. S.; Sangster, T. C.; Sepke, S.; Sinenian, N.; Sio, H. W.; Spears, B.; Tommasini, R.; Town, R.; Weber, S.; Wilson, D.; Yeamans, C.; Zacharias, R.

    2015-05-01

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D3He gas-filled implosions at the National Ignition Facility produce energetic protons via D+3He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3-5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳ 10 % , which are interpreted as ℓ = 2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained ("no-coast"), implying a significant time-dependent asymmetry in peak drive.

  16. Fluctuating Dermatoglyphic Asymmetries in Youth at Ultrahigh-risk for Psychotic Disorders

    PubMed Central

    Russak, Olivia Diane Fern; Ives, Lindsay; Mittal, Vijay A.; Dean, Derek J.

    2015-01-01

    Fluctuating dermatoglyphic asymmetry represents one specific class of minor physical anomaly that has been proposed to reflect prenatal insult and vulnerability to psychosis. However, very little is known about fluctuating dermatoglyphic asymmetry in youth showing symptoms of ultrahigh risk (UHR) for psychosis. Using high-resolution photographs of fingerprints and clinical interviews, the UHR group in this study showed greater fluctuating dermatoglyphic asymmetry compared to controls; however, this was not further linked to symptomatology. The results of this study provide an important perspective on potential biomarkers and support neurodevelopmental conceptions of psychosis. PMID:26723845

  17. Hemispheric asymmetry: Looking for a novel signature of the modulation of spatial attention in multisensory processing.

    PubMed

    Chen, Yi-Chuan; Spence, Charles

    2017-06-01

    The extent to which attention modulates multisensory processing in a top-down fashion is still a subject of debate among researchers. Typically, cognitive psychologists interested in this question have manipulated the participants' attention in terms of single/dual tasking or focal/divided attention between sensory modalities. We suggest an alternative approach, one that builds on the extensive older literature highlighting hemispheric asymmetries in the distribution of spatial attention. Specifically, spatial attention in vision, audition, and touch is typically biased preferentially toward the right hemispace, especially under conditions of high perceptual load. We review the evidence demonstrating such an attentional bias toward the right in extinction patients and healthy adults, along with the evidence of such rightward-biased attention in multisensory experimental settings. We then evaluate those studies that have demonstrated either a more pronounced multisensory effect in right than in left hemispace, or else similar effects in the two hemispaces. The results suggest that the influence of rightward-biased attention is more likely to be observed when the crossmodal signals interact at later stages of information processing and under conditions of higher perceptual load-that is, conditions under which attention is perhaps a compulsory enhancer of information processing. We therefore suggest that the spatial asymmetry in attention may provide a useful signature of top-down attentional modulation in multisensory processing.

  18. 40 CFR 1065.248 - Gas divider.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... testing. You may use critical-flow gas dividers, capillary-tube gas dividers, or thermal-mass-meter gas... PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.248 Gas divider. (a) Application. You may...

  19. Quantifying Normal Craniofacial Form and Baseline Craniofacial Asymmetry in the Pediatric Population.

    PubMed

    Cho, Min-Jeong; Hallac, Rami R; Ramesh, Jananie; Seaward, James R; Hermann, Nuno V; Darvann, Tron A; Lipira, Angelo; Kane, Alex A

    2018-03-01

    Restoring craniofacial symmetry is an important objective in the treatment of many craniofacial conditions. Normal form has been measured using anthropometry, cephalometry, and photography, yet all of these modalities have drawbacks. In this study, the authors define normal pediatric craniofacial form and craniofacial asymmetry using stereophotogrammetric images, which capture a densely sampled set of points on the form. After institutional review board approval, normal, healthy children (n = 533) with no known craniofacial abnormalities were recruited at well-child visits to undergo full head stereophotogrammetric imaging. The children's ages ranged from 0 to 18 years. A symmetric three-dimensional template was registered and scaled to each individual scan using 25 manually placed landmarks. The template was deformed to each subject's three-dimensional scan using a thin-plate spline algorithm and closest point matching. Age-based normal facial models were derived. Mean facial asymmetry and statistical characteristics of the population were calculated. The mean head asymmetry across all pediatric subjects was 1.5 ± 0.5 mm (range, 0.46 to 4.78 mm), and the mean facial asymmetry was 1.2 ± 0.6 mm (range, 0.4 to 5.4 mm). There were no significant differences in the mean head or facial asymmetry with age, sex, or race. Understanding the "normal" form and baseline distribution of asymmetry is an important anthropomorphic foundation. The authors present a method to quantify normal craniofacial form and baseline asymmetry in a large pediatric sample. The authors found that the normal pediatric craniofacial form is asymmetric, and does not change in magnitude with age, sex, or race.

  20. Fluctuating Asymmetry and General Intelligence: No Genetic or Phenotypic Association

    ERIC Educational Resources Information Center

    Johnson, Wendy; Segal, Nancy L.; Bouchard, Thomas J., Jr.

    2008-01-01

    Fluctuating asymmetry (FA) is the non-pathological left-right asymmetry of body traits that are usually left-right symmetrical, such as eye breadths and elbow to wrist lengths in humans, but which can be affected by developmental stressors. It is generally considered throughout biology to be an indicator of developmental instability and thus of…

  1. Theoretical morphology and development of flight feather vane asymmetry with experimental tests in parrots.

    PubMed

    Feo, Teresa J; Prum, Richard O

    2014-06-01

    Asymmetry in flight feather vane width is a major functional innovation associated with the evolution of flight in the ancestors of birds. However, the developmental and morphological basis of feather shape is not simple, and the developmental processes involved in vane width asymmetry are poorly understood. We present a theoretical model of feather morphology and development that describes the possible ways to modify feather development and produce vane asymmetry. Our model finds that the theoretical morphospace of feather shape is redundant, and that many different combinations of parameters could be responsible for vane asymmetry in a given feather. Next, we empirically measured morphological and developmental model parameters in asymmetric and symmetric feathers from two species of parrots to identify which combinations of parameters create vane asymmetry in real feathers. We found that both longer barbs, and larger barb angles in the relatively wider trailing vane drove asymmetry in tail feathers. Developmentally, longer barbs were the result of an offset of the radial position of the new barb locus, whereas larger barb angles were produced by differential expansion of barbs as the feather unfurls from the tubular feather germ. In contrast, the helical angle of barb ridge development did not contribute to vane asymmetry and could be indicative of a constraint. This research provides the first comprehensive description of both the morphological and developmental modifications responsible for vane asymmetry within real feathers, and identifies key steps that must have occurred during the evolution of vane asymmetry. © 2014 Wiley Periodicals, Inc.

  2. Impact of Stratospheric Ozone Zonal Asymmetries on the Tropospheric Circulation

    NASA Technical Reports Server (NTRS)

    Tweedy, Olga; Waugh, Darryn; Li, Feng; Oman, Luke

    2015-01-01

    The depletion and recovery of Antarctic ozone plays a major role in changes of Southern Hemisphere (SH) tropospheric climate. Recent studies indicate that the lack of polar ozone asymmetries in chemistry climate models (CCM) leads to a weaker and warmer Antarctic vortex, and smaller trends in the tropospheric mid-latitude jet and the surface pressure. However, the tropospheric response to ozone asymmetries is not well understood. In this study we report on a series of integrations of the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to further examine the effect of zonal asymmetries on the state of the stratosphere and troposphere. Integrations with the full, interactive stratospheric chemistry are compared against identical simulations using the same CCM except that (1) the monthly mean zonal mean stratospheric ozone from first simulation is prescribed and (2) ozone is relaxed to the monthly mean zonal mean ozone on a three day time scale. To analyze the tropospheric response to ozone asymmetries, we examine trends and quantify the differences in temperatures, zonal wind and surface pressure among the integrations.

  3. North-south asymmetries in cold ion outflow and lobe density

    NASA Astrophysics Data System (ADS)

    Haaland, Stein; Laundal, Karl; Maes, Lukas; Baddeley, Lisa; Lybekk, Bjørn

    2016-04-01

    A significant fraction of the plasma in the terrestrial magnetosphere is supplied by the high-latitude ionosphere. The filling process starts with ionization of atoms and gas molecules in the thermosphere, and is often accompanied by upflow due to thermal and electromagnetic forces. Some of this material can reach escape velocities and be further accelerated and eventually evacuated into space. Ions are governed by electromagnetic forces and their transport path from the ionosphere to the magnetosphere go through the magnetotail lobes. The transport is largely dictated by magnetospheric convection. External influences, such as daily and seasonal variations in the Earth's tilt angle, but also non-dipolar terms in the Earth's internal magnetic field introduce north-south asymmetries in the magnetic field and thus north-south asymmetries in the ion outflow and lobe filling. In this presentation, we show observational results of this asymmetry. The results are based on more than a full solar cycle of cold ion measurements from the Cluster constellation of spacecraft, and allows us to quantify the outflow, identify sources of asymmetry and estimate transport paths.

  4. Cerebral asymmetry in twins: predictions of the right shift theory.

    PubMed

    Annett, Marian

    2003-01-01

    A study of the heritability of lobar brain volumes in twins has introduced a new approach to questions about the genetics of cerebral asymmetry. In addition to the classic comparison between monozygotic (MZ) and dizygotic (DZ) twins, a contrast was made between pairs of two right-handers (RR pairs) and pairs including one or more non-right-hander (non-RR pairs), in the light of the right shift (RS) theory of handedness. This paper explains the predictions of the RS model for pair concordance for genotype, cerebral asymmetry and handedness in healthy MZ and DZ twins. It shows how predictions for cerebral asymmetry vary between RR and non-RR pairs over a range of incidences of left-handedness. Although MZ twins are always concordant for genotype and DZ twins may be discordant, differences for handedness and cerebral asymmetry are expected to be small, consistent with the scarcity of significant effects in the literature. Marked differences between RR and non-RR pairs are predicted at all levels of incidence, the differences slightly larger in MZ than DZ pairs.

  5. Study of the s - s bar asymmetry in the proton

    NASA Astrophysics Data System (ADS)

    Goharipour, Muhammad

    2018-05-01

    The study of s - s bar asymmetry is essential to better understand of the structure of nucleon and also the perturbative and nonperturbative mechanisms for sea quark generation. Actually, the nature and dynamical origins of this asymmetry have always been an interesting subject to research both experimentally and theoretically. One of the most powerful models can lead to s - s bar asymmetry is the meson-baryon model (MBM). In this work, using a simplified configuration of this model suggested by Pumplin, we calculate the s - s bar asymmetry for different values of cutoff parameter Λ, to study the dependence of model to this parameter and also to estimate the theoretical uncertainty imposed on the results due to its uncertainty. Then, we study the evolution of distributions obtained both at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) using different evolution schemes. It is shown that the evolution of the intrinsic quark distributions from a low initial scale, as suggested by Chang and Pang, is not a good choice at NNLO using variable flavor number scheme (VFNS).

  6. ENSO Transition Asymmetry: Internal and External Causes and Intermodel Diversity

    NASA Astrophysics Data System (ADS)

    An, Soon-Il; Kim, Ji-Won

    2018-05-01

    El Niño is frequently followed by La Niña, but the opposite case rarely happens. Here we explore a mechanism for such an asymmetrical transition and its future changes. Internally, the asymmetrical response of upper ocean waves against surface wind stress anomaly exerts a primary cause of El Niño-Southern Oscillation (ENSO) transition asymmetry. Externally, the asymmetrical capacitor effects of both Indian and Atlantic Oceans play some roles in driving the ENSO transition asymmetry via the interbasin interactions. The historical runs of Coupled Model Intercomparison Project Phase 5 show that the intermodel transition asymmetry is significantly correlated with the intermodel asymmetry in ocean wave response to surface wind forcing but not with that in the interbasin interactions. In addition, the El Niño-to-La Niña transition tendency was weaker in moderate global warming scenario runs (Representative Concentration Pathway 4.5) while slightly enhanced in strong warming scenario runs (Representative Concentration Pathway 8.5). Similar changes also appeared in the asymmetrical response of ocean waves against the surface wind forcing.

  7. Gender asymmetry in concurrent partnerships and HIV prevalence.

    PubMed

    Leung, Ka Yin; Powers, Kimberly A; Kretzschmar, Mirjam

    2017-06-01

    The structure of the sexual network of a population plays an essential role in the transmission of HIV. Concurrent partnerships, i.e. partnerships that overlap in time, are important in determining this network structure. Men and women may differ in their concurrent behavior, e.g. in the case of polygyny where women are monogamous while men may have concurrent partnerships. Polygyny has been shown empirically to be negatively associated with HIV prevalence, but the epidemiological impacts of other forms of gender-asymmetric concurrency have not been formally explored. Here we investigate how gender asymmetry in concurrency, including polygyny, can affect the disease dynamics. We use a model for a dynamic network where individuals may have concurrent partners. The maximum possible number of simultaneous partnerships can differ for men and women, e.g. in the case of polygyny. We control for mean partnership duration, mean lifetime number of partners, mean degree, and sexually active lifespan. We assess the effects of gender asymmetry in concurrency on two epidemic phase quantities (R 0 and the contribution of the acute HIV stage to R 0 ) and on the endemic HIV prevalence. We find that gender asymmetry in concurrent partnerships is associated with lower levels of all three epidemiological quantities, especially in the polygynous case. This effect on disease transmission can be attributed to changes in network structure, where increasing asymmetry leads to decreasing network connectivity. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. Signs of Asymmetry in Exploding Stars

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-03-01

    Supernova explosions enrich the interstellar medium and can even briefly outshine their host galaxies. However, the mechanism behind these massive explosions still isnt fully understood. Could probing the asymmetry of supernova remnants help us better understand what drives these explosions?Hubble image of the remnant of supernova 1987A, one of the first remnants discovered to be asymmetrical. [ESA/Hubble, NASA]Stellar Send-OffsHigh-mass stars end their lives spectacularly. Each supernova explosion churns the interstellar medium and unleashes high-energy radiation and swarms of neutrinos. Supernovae also suffuse the surrounding interstellar medium with heavy elements that are incorporated into later generations of stars and the planets that form around them.The bubbles of expanding gas these explosions leave behind often appear roughly spherical, but mounting evidence suggests that many supernova remnants are asymmetrical. While asymmetry in supernova remnants can arise when the expanding material plows into the non-uniform interstellar medium, it can also be an intrinsic feature of the explosion itself.Simulation results clockwise from top left: Mass density, calcium mass fraction, oxygen mass fraction, nickel-56 mass fraction. Click to enlarge. [Adapted from Wollaeger et al. 2017]Coding ExplosionsThe presence or absence of asymmetry in a supernova remnant can hold clues as to what drove the explosion. But how can we best observe asymmetry in a supernova remnant? Modeling lets us explore different observational approaches.A team of scientists led by Ryan T. Wollaeger (Los Alamos National Laboratory) used radiative transfer and radiative hydrodynamics simulations to model the explosion of a core-collapse supernova. Wollaeger and collaborators introduced asymmetry into the explosion by creating a single-lobed, fast-moving outflow along one axis.Their simulations showed that while some chemical elements lingered near the origin of the explosion or were distributed

  9. Morphologic evaluation and classification of facial asymmetry using 3-dimensional computed tomography.

    PubMed

    Baek, Chaehwan; Paeng, Jun-Young; Lee, Janice S; Hong, Jongrak

    2012-05-01

    A systematic classification is needed for the diagnosis and surgical treatment of facial asymmetry. The purposes of this study were to analyze the skeletal structures of patients with facial asymmetry and to objectively classify these patients into groups according to these structural characteristics. Patients with facial asymmetry and recent computed tomographic images from 2005 through 2009 were included in this study, which was approved by the institutional review board. Linear measurements, angles, and reference planes on 3-dimensional computed tomograms were obtained, including maxillary (upper midline deviation, maxilla canting, and arch form discrepancy) and mandibular (menton deviation, gonion to midsagittal plane, ramus height, and frontal ramus inclination) measurements. All measurements were analyzed using paired t tests with Bonferroni correction followed by K-means cluster analysis using SPSS 13.0 to determine an objective classification of facial asymmetry in the enrolled patients. Kruskal-Wallis test was performed to verify differences among clustered groups. P < .05 was considered statistically significant. Forty-three patients (18 male, 25 female) were included in the study. They were classified into 4 groups based on cluster analysis. Their mean age was 24.3 ± 4.4 years. Group 1 included subjects (44% of patients) with asymmetry caused by a shift or lateralization of the mandibular body. Group 2 included subjects (39%) with a significant difference between the left and right ramus height with menton deviation to the short side. Group 3 included subjects (12%) with atypical asymmetry, including deviation of the menton to the short side, prominence of the angle/gonion on the larger side, and reverse maxillary canting. Group 4 included subjects (5%) with severe maxillary canting, ramus height differences, and menton deviation to the short side. In this study, patients with asymmetry were classified into 4 statistically distinct groups according to

  10. Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Weber, Christopher; Smalyuk, Vladimir; Robey, Harry; Kritcher, Andrea; Milovich, Jose; Salmonson, Jay

    2016-10-01

    Current indirect drive implosion experiments on the National Ignition Facility (NIF) are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or ``shimmed,'' so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy of capsule shimming to correct the asymmetries in two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Genetic specification of left-right asymmetry in the diaphragm muscles and their motor innervation.

    PubMed

    Charoy, Camille; Dinvaut, Sarah; Chaix, Yohan; Morlé, Laurette; Sanyas, Isabelle; Bozon, Muriel; Kindbeiter, Karine; Durand, Bénédicte; Skidmore, Jennifer M; De Groef, Lies; Seki, Motoaki; Moons, Lieve; Ruhrberg, Christiana; Martin, James F; Martin, Donna M; Falk, Julien; Castellani, Valerie

    2017-06-22

    The diaphragm muscle is essential for breathing in mammals. Its asymmetric elevation during contraction correlates with morphological features suggestive of inherent left-right (L/R) asymmetry. Whether this asymmetry is due to L versus R differences in the muscle or in the phrenic nerve activity is unknown. Here, we have combined the analysis of genetically modified mouse models with transcriptomic analysis to show that both the diaphragm muscle and phrenic nerves have asymmetries, which can be established independently of each other during early embryogenesis in pathway instructed by Nodal, a morphogen that also conveys asymmetry in other organs. We further found that phrenic motoneurons receive an early L/R genetic imprint, with L versus R differences both in Slit/Robo signaling and MMP2 activity and in the contribution of both pathways to establish phrenic nerve asymmetry. Our study therefore demonstrates L-R imprinting of spinal motoneurons and describes how L/R modulation of axon guidance signaling helps to match neural circuit formation to organ asymmetry.

  12. High-strength cellular ceramic composites with 3D microarchitecture.

    PubMed

    Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver

    2014-02-18

    To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m(3); only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina-polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m(3).

  13. First measurement of the Sivers asymmetry for gluons using SIDIS data

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Antoshkin, A.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C. D. R.; Badełek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bodlak, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.-U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Dreisbach, Ch.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; Du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giarra, J.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Horikawa, N.; D'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O. M.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G. V.; Meyer, M.; Meyer, W.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rogacheva, N. S.; Ryabchikov, D. I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Srnka, A.; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Thiel, A.; Tosello, F.; Tskhay, V.; Uhl, S.; Vauth, A.; Veloso, J.; Virius, M.; Vondra, J.; Wallner, S.; Weisrock, T.; Wilfert, M.; Ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.; Zink, A.; Compass Collaboration

    2017-09-01

    The Sivers function describes the correlation between the transverse spin of a nucleon and the transverse motion of its partons. For quarks, it was studied in previous measurements of the azimuthal asymmetry of hadrons produced in semi-inclusive deep inelastic scattering of leptons off transversely polarised nucleon targets, and it was found to be non-zero. In this letter the evaluation of the Sivers asymmetry for gluons is presented. The contribution of the photon-gluon fusion subprocess is enhanced by requiring two high transverse-momentum hadrons. The analysis method is based on a Monte Carlo simulation that includes three hard processes: photon-gluon fusion, QCD Compton scattering and the leading-order virtual-photon absorption process. The Sivers asymmetries of the three processes are simultaneously extracted using the LEPTO event generator and a neural network approach. The method is applied to samples of events containing at least two hadrons with large transverse momentum from the COMPASS data taken with a 160 GeV/c muon beam scattered off transversely polarised deuterons and protons. With a significance of about two standard deviations, a negative value is obtained for the gluon Sivers asymmetry. The result of a similar analysis for a Collins-like asymmetry for gluons is consistent with zero.

  14. Anisotropy and Asymmetry of Yield in Magnesium Alloys at Room Temperature

    NASA Astrophysics Data System (ADS)

    Robson, Joseph

    2014-10-01

    Mechanical anisotropy and asymmetry are often pronounced in wrought magnesium alloys and are detrimental to formability and service performance. Single crystals of magnesium are highly anisotropic due to the large difference in critical resolved shear stress between the softest and hardest deformation modes. Polycrystalline magnesium alloys exhibit lower anisotropy, influenced by texture, solute level, and precipitates. In this work, a fundamental study of the effects of alloying, precipitate formation, and texture on the change in anisotropy and asymmetry from the pure magnesium single crystal case to polycrystalline alloys has been performed. It is demonstrated that much of the reduction in anisotropy and asymmetry arises from overall strengthening as solute, precipitates, and grain boundary effects are accounted for. Precipitates are predicted to be more effective than solute in reducing anisotropy and asymmetry, but shape and habit are critical since precipitates produce highly anisotropic strengthening. A small deviation from an ideal basal texture (15 deg spread) has a very strong effect in reducing anisotropy and asymmetry, similar in magnitude to the maximum effect produced by precipitation. Elasto-plastic modeling suggests that this is due to a contribution from basal slip to initial plastic deformation, even when global yield is not controlled by this mode.

  15. In-flight observations of low-mode ρR asymmetries in NIF implosions

    DOE PAGES

    Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; ...

    2015-05-01

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D 3He gas-filled implosions at the National Ignition Facility produce energetic protons via D+ 3He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3-5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳10%,more » which are interpreted as l=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.« less

  16. In-flight observations of low-mode ρR asymmetries in NIF implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Frenje, J. A.; Séguin, F. H.

    2015-05-15

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D{sup 3}He gas-filled implosions at the National Ignition Facility produce energetic protons via D+{sup 3}He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3–5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳10%,more » which are interpreted as ℓ=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.« less

  17. Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets.

    PubMed

    Guadalupe, Tulio; Zwiers, Marcel P; Teumer, Alexander; Wittfeld, Katharina; Vasquez, Alejandro Arias; Hoogman, Martine; Hagoort, Peter; Fernandez, Guillen; Buitelaar, Jan; Hegenscheid, Katrin; Völzke, Henry; Franke, Barbara; Fisher, Simon E; Grabe, Hans J; Francks, Clyde

    2014-07-01

    Functional and anatomical asymmetries are prevalent features of the human brain, linked to gender, handedness, and cognition. However, little is known about the neurodevelopmental processes involved. In zebrafish, asymmetries arise in the diencephalon before extending within the central nervous system. We aimed to identify genes involved in the development of subtle, left-right volumetric asymmetries of human subcortical structures using large datasets. We first tested the feasibility of measuring left-right volume differences in such large-scale samples, as assessed by two automated methods of subcortical segmentation (FSL|FIRST and FreeSurfer), using data from 235 subjects who had undergone MRI twice. We tested the agreement between the first and second scan, and the agreement between the segmentation methods, for measures of bilateral volumes of six subcortical structures and the hippocampus, and their volumetric asymmetries. We also tested whether there were biases introduced by left-right differences in the regional atlases used by the methods, by analyzing left-right flipped images. While many bilateral volumes were measured well (scan-rescan r = 0.6-0.8), most asymmetries, with the exception of the caudate nucleus, showed lower repeatabilites. We meta-analyzed genome-wide association scan results for caudate nucleus asymmetry in a combined sample of 3,028 adult subjects but did not detect associations at genome-wide significance (P < 5 × 10(-8) ). There was no enrichment of genetic association in genes involved in left-right patterning of the viscera. Our results provide important information for researchers who are currently aiming to carry out large-scale genome-wide studies of subcortical and hippocampal volumes, and their asymmetries. Copyright © 2013 Wiley Periodicals, Inc.

  18. Ear Asymmetry for Monaurally Presented Word Lists in Children and Adults.

    ERIC Educational Resources Information Center

    Burns, Kathy Martindale; Manning, Walter H.

    1985-01-01

    To study ear asymmetry during monaural stimulation, 80 listeners were asked to recall the word which followed a probe word in 40 10-word lists. Ear asymmetry during monaural stimulation appeared to be related to competition between incoming and rehearsed stimuli during central memory processing. (Author/CL)

  19. Effect of sonic boom asymmetry on subjective loudness

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.; Sullivan, Brenda M.

    1992-01-01

    The NASA Langley Research Center's sonic boom apparatus was used in an experimental study to quantify subjective loudness response to a wide range of asymmetrical N-wave sonic boom signatures. Results were used to assess the relative performance of several metrics as loudness estimators for asymmetrical signatures and to quantify in detail the effects on subjective loudness of varying both the degree and direction of signature loudness asymmetry. Findings of the study indicated that Perceived Level (Steven's Mark 7) and A-weighted sound exposure level were the best metrics for quantifying asymmetrical boom loudness. Asymmetrical signatures were generally rated as being less loud than symmetrical signatures of equivalent Perceived Level. The magnitude of the loudness reductions increased as the degree of boom asymmetry increased, and depended upon the direction of asymmetry. These loudness reductions were not accounted for by any of the metrics. Corrections were determined for use in adjusting calculated Perceived Level values to account for these reductions. It was also demonstrated that the subjects generally incorporated the loudness components of the complete signatures when making their subjective judgments.

  20. A capability model of individual differences in frontal EEG asymmetry.

    PubMed

    Coan, James A; Allen, John J B; McKnight, Patrick E

    2006-05-01

    Researchers interested in measuring individual differences in affective style via asymmetries in frontal brain activity have depended almost exclusively upon the resting state for EEG recording. This reflects an implicit conceptualization of affective style as a response predisposition that is manifest in frontal EEG asymmetry, with the goal to describe individuals in terms of their general approach or withdrawal tendencies. Alternatively, the response capability conceptualization seeks to identify individual capabilities for approach versus withdrawal responses during emotionally salient events. The capability approach confers a variety of advantages to the study of affective style and personality, and suggests new possibilities for the approach/withdrawal motivational model of frontal EEG asymmetry and emotion. Logical as well as empirical arguments supportive of this conclusion are presented.

  1. Alpha decay hindrance factors and reflection asymmetry in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheline, R.K.; Bossinga, B.B.

    1991-07-01

    All available hindrance factors of alpha transitions to low-lying negative-parity states in doubly even nuclei, to odd-{ital A} parity doublets and to doubly odd parity doublet bands, are used to study the systematics of reflection asymmetry in the {ital A}{similar to}218--230 region. Special attention is given to the polarization effect of the odd particle in increasing reflection asymmetry and therefore decreasing hindrance factors to the opposite parity states of octupole bands.

  2. Event-related potentials in homosexual and heterosexual men and women: sex-dimorphic patterns in verbal asymmetries and mental rotation.

    PubMed

    Wegesin, D J

    1998-02-01

    To elucidate neurobiological factors related to gender and sexual orientation, event-related brain potentials of 20 heterosexual (HT) men, 20 HT women, 20 homosexual (HM) men, and 20 HM women were examined for neurophysiological differences. Cognitive tasks which typically elicit sex differences were administered. A mental rotation (MR) task assessed spatial ability, and a divided-visual-field lexical-decision/semantic monitoring task (LD/SM) assessed verbal ability and relative degrees of language lateralization. Slow wave activity recorded during MR was greater for HT men than for HT women and gay men. N400 asymmetries recorded during the LD/SM task revealed differences between men and women, but no intrasex differences. Copyright 1998 Academic Press.

  3. Structural connectivity asymmetry in the neonatal brain.

    PubMed

    Ratnarajah, Nagulan; Rifkin-Graboi, Anne; Fortier, Marielle V; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D; Meaney, Michael J; Qiu, Anqi

    2013-07-15

    Asymmetry of the neonatal brain is not yet understood at the level of structural connectivity. We utilized DTI deterministic tractography and structural network analysis based on graph theory to determine the pattern of structural connectivity asymmetry in 124 normal neonates. We tracted white matter axonal pathways characterizing interregional connections among brain regions and inferred asymmetry in left and right anatomical network properties. Our findings revealed that in neonates, small-world characteristics were exhibited, but did not differ between the two hemispheres, suggesting that neighboring brain regions connect tightly with each other, and that one region is only a few paths away from any other region within each hemisphere. Moreover, the neonatal brain showed greater structural efficiency in the left hemisphere than that in the right. In neonates, brain regions involved in motor, language, and memory functions play crucial roles in efficient communication in the left hemisphere, while brain regions involved in emotional processes play crucial roles in efficient communication in the right hemisphere. These findings suggest that even at birth, the topology of each cerebral hemisphere is organized in an efficient and compact manner that maps onto asymmetric functional specializations seen in adults, implying lateralized brain functions in infancy. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. APOE associated hemispheric asymmetry of entorhinal cortical thickness in aging and Alzheimer’s disease

    PubMed Central

    Donix, Markus; Burggren, Alison C.; Scharf, Maria; Marschner, Kira; Suthana, Nanthia A.; Siddarth, Prabha; Krupa, Allison K.; Jones, Michael; Martin-Harris, Laurel; Ercoli, Linda M.; Miller, Karen J.; Werner, Annett; von Kummer, Rüdiger; Sauer, Cathrin; Small, Gary W.; Holthoff, Vjera A.; Bookheimer, Susan Y.

    2013-01-01

    Across species structural and functional hemispheric asymmetry is a fundamental feature of the brain. Environmental and genetic factors determine this asymmetry during brain development and modulate its interaction with brain disorders. The e4 allele of the apolipoprotein E gene (APOE-4) is a risk factor for Alzheimer’s disease, associated with regionally specific effects on brain morphology and function during the life span. Furthermore, entorhinal and hippocampal hemispheric asymmetry could be modified by pathology during Alzheimer’s disease development. Using high-resolution magnetic resonance imaging and a cortical unfolding technique we investigated whether carrying the APOE-4 allele influences hemispheric asymmetry in the entorhinal cortex and the hippocampus among patients with Alzheimer’s disease as well as in middle-aged and older cognitively healthy individuals. APOE-4 carriers showed a thinner entorhinal cortex in the left hemisphere when compared with the right hemisphere across all participants. Non-carriers of the allele showed this asymmetry only in the patient group. Cortical thickness in the hippocampus did not vary between hemispheres among APOE-4 allele carriers and non-carriers. The APOE-4 allele modulates hemispheric asymmetry in entorhinal cortical thickness. Among Alzheimer’s disease patients, this asymmetry might be less dependent on the APOE genotype and a more general marker of incipient disease pathology. PMID:24080518

  5. Hemispheric Asymmetries and Cognitive Flexibility: An ERP and sLORETA Study

    ERIC Educational Resources Information Center

    Ocklenburg, Sebastian; Gunturkun, Onur; Beste, Christian

    2012-01-01

    Although functional cerebral asymmetries (FCAs) affect all cognitive domains, their modulation of the efficacy of specific executive functions is largely unexplored. In the present study, we used a lateralized version of the task switching paradigm to investigate the relevance of hemispheric asymmetries for cognitive control processes. Words were…

  6. Comparing Neutron Star Kicks to Supernova Remnant Asymmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland-Ashford, Tyler; Lopez, Laura A.; Auchettl, Katie

    2017-07-20

    Supernova explosions are inherently asymmetric and can accelerate new-born neutron stars (NSs) to hundreds of km s{sup −1}. Two prevailing theories to explain NS kicks are ejecta asymmetries (e.g., conservation of momentum between NS and ejecta) and anisotropic neutrino emission. Observations of supernova remnants (SNRs) can give us insights into the mechanism that generates these NS kicks. In this paper, we investigate the relationship between NS kick velocities and the X-ray morphologies of 18 SNRs observed with the Chandra X-ray Observatory and the Röntgen Satellite ( ROSAT ). We measure SNR asymmetries using the power-ratio method (a multipole expansion technique),more » focusing on the dipole, quadrupole, and octupole power ratios. Our results show no correlation between the magnitude of the power ratios and NS kick velocities, but we find that for Cas A and G292.0+1.8, whose emission traces the ejecta distribution, their NSs are preferentially moving opposite to the bulk of the X-ray emission. In addition, we find a similar result for PKS 1209–51, CTB 109, and Puppis A; however, their emission is dominated by circumstellar/interstellar material, so their asymmetries may not reflect their ejecta distributions. Our results are consistent with the theory that NS kicks are a consequence of ejecta asymmetries as opposed to anisotropic neutrino emission. In the future, additional observations to measure NS proper motions within ejecta-dominated SNRs are necessary to robustly constrain the NS kick mechanism.« less

  7. Myosin1D is an evolutionarily conserved regulator of animal left-right asymmetry.

    PubMed

    Juan, Thomas; Géminard, Charles; Coutelis, Jean-Baptiste; Cerezo, Delphine; Polès, Sophie; Noselli, Stéphane; Fürthauer, Maximilian

    2018-05-16

    The establishment of left-right (LR) asymmetry is fundamental to animal development, but the identification of a unifying mechanism establishing laterality across different phyla has remained elusive. A cilia-driven, directional fluid flow is important for symmetry breaking in numerous vertebrates, including zebrafish. Alternatively, LR asymmetry can be established independently of cilia, notably through the intrinsic chirality of the acto-myosin cytoskeleton. Here, we show that Myosin1D (Myo1D), a previously identified regulator of Drosophila LR asymmetry, is essential for the formation and function of the zebrafish LR organizer (LRO), Kupffer's vesicle (KV). Myo1D controls the orientation of LRO cilia and interacts functionally with the planar cell polarity (PCP) pathway component VanGogh-like2 (Vangl2), to shape a productive LRO flow. Our findings identify Myo1D as an evolutionarily conserved regulator of animal LR asymmetry, and show that functional interactions between Myo1D and PCP are central to the establishment of animal LR asymmetry.

  8. Infant frontal EEG asymmetry in relation with postnatal maternal depression and parenting behavior.

    PubMed

    Wen, D J; Soe, N N; Sim, L W; Sanmugam, S; Kwek, K; Chong, Y-S; Gluckman, P D; Meaney, M J; Rifkin-Graboi, A; Qiu, A

    2017-03-14

    Right frontal electroencephalogram (EEG) asymmetry associates with negative affect and depressed mood, which, among children, are predicted by maternal depression and poor parenting. This study examined associations of maternal depression and maternal sensitivity with infant frontal EEG asymmetry based on 111 mother-6-month-infant dyads. There were no significant effects of postnatal maternal depression or maternal sensitivity, or their interaction, on infant EEG frontal asymmetry. However, in a subsample for which the infant spent at least 50% of his/her day time hours with his/her mother, both lower maternal sensitivity and higher maternal depression predicted greater relative right frontal EEG asymmetry. Our study further showed that greater relative right frontal EEG asymmetry of 6-month-old infants predicted their greater negative emotionality at 12 months of age. Our study suggested that among infants with sufficient postnatal maternal exposure, both maternal sensitivity and mental health are important influences on early brain development.

  9. The ontogenesis of the forebrain commissures and the determination of brain asymmetries.

    PubMed

    Lent, R; Schmidt, S L

    1993-02-01

    We have reviewed the organization and development of the interhemispheric projections through the forebrain commissures, especially those of the CC, in connection with the development of brain asymmetries. Analyzing the available data, we conclude that the developing CC plays an important role in the ontogenesis of brain asymmetries. We have extended a previous hypothesis that the rodent CC may exert a stabilizing effect over the unstable populational asymmetries of cortical size and shape, and that it participates in the developmental stabilization of lateralized motor behaviors.

  10. Early embryonic programming of neuronal left/right asymmetry in C. elegans.

    PubMed

    Poole, Richard J; Hobert, Oliver

    2006-12-05

    Nervous systems are largely bilaterally symmetric on a morphological level but often display striking degrees of functional left/right (L/R) asymmetry. How L/R asymmetric functional features are superimposed onto an essentially bilaterally symmetric structure and how nervous-system laterality relates to the L/R asymmetry of internal organs are poorly understood. We address these questions here by using the establishment of L/R asymmetry in the ASE chemosensory neurons of C. elegans as a paradigm. This bilaterally symmetric neuron pair is functionally lateralized in that it senses a distinct class of chemosensory cues and expresses a putative chemoreceptor family in a L/R asymmetric manner. We show that the directionality of the asymmetry of the two postmitotic ASE neurons ASE left (ASEL) and ASE right (ASER) in adults is dependent on a L-/R-symmetry-breaking event at a very early embryonic stage, the six-cell stage, which also establishes the L/R asymmetric placement of internal organs. However, the L/R asymmetry of the ASE neurons per se is dependent on an even earlier anterior-posterior (A/P) Notch signal that specifies embryonic ABa/ABp blastomere identities at the four-cell stage. This Notch signal, which functions through two T box genes, acts genetically upstream of a miRNA-controlled bistable feedback loop that regulates the L/R asymmetric gene-expression program in the postmitotic ASE cells. Our results link adult neuronal laterality to the generation of the A/P axis at the two-cell stage and raise the possibility that neural asymmetries observed across the animal kingdom are similarly established by very early embryonic interactions.

  11. [Changes of masseter muscle asymmetry due to unilateral mastication after intervention: a electromyographic analysis].

    PubMed

    Wang, Yun; Teng, Chen; Wang, Meng-Ya

    2015-04-01

    To explore the effect of intervention with unilateral mastication on masseter muscle asymmetry. Forty-three subjects (19 males and 24 females, mean age 20.0∓0.5 years) with unilateral chewing were divided into group A0 with motivation and without intervention, group A1 with motivation and intervention, group B0 without motivation or intervention, and group B1 without motivation but with intervention. In groups A0 and A1, the motivation was removed and groups A1 and group B1 received interventions. Surface electromyography was recorded using surface electromyography in all the subjects in mandible postural position (MPP), with maximum clenching in intercuspal position (ICP) and during chewing. The sEMG of the left and right masseter muscle were separately recorded to assess the asymmetry index of the masseter muscles (ASMM) and its changes after intervention. In groupA0, the ASMM at MPP, during maximum clenching and chewing had no obvious changes after removal of the motivation. In group A1, the ASMM at MPP, during maximum clenching and chewing were obviously decreased after intervention. In group B0, the ASMM at MPP and during maximum clenching showed no obvious changes but ASMM during chewing significantly increased after removal of the motivation. In group B1, the ASMM at MPP, during maximum clenching and chewing all decreased obviously after intervention. Interventions can significantly improve the bilateral symmetry of the masseter muscles in subjects with unilateral chewing, and the motivation for unilateral chewing should be removed before intervention.

  12. Influence of non-preferred foot technical training in reducing lower limbs functional asymmetry among young football players.

    PubMed

    Guilherme, José; Garganta, Júlio; Graça, Amândio; Seabra, André

    2015-01-01

    The functional asymmetry of the lower limbs has been regarded as a relevant factor of the performance of football players. We purposed to ascertain whether a specific technical training programme for the non-preferred foot has implications in the increasing utilisation rate of the respective member during the game. Young football players (n = 71) were randomly divided into experimental group (N = 35; 14.37 ± 1.94 years) and control group (N = 36; 14.50 ± 1.81 years). The study was developed into three stages: first, assessment of the index utilisation of both limbs during the game; second, application of a technical training programme that includes the drilling of specific motor skills exclusively directed to the non-preferred foot; and third, assessment of the new rate of both limbs' utilisation after the predefined six months. The main findings were: (1) the use of the non-preferred foot increased significantly with the technical training programme in the experimental group and remained constant in the control group; (2) the use of the preferred foot decreased significantly in the experimental group and remained similar in control group. We concluded that a systematic and specific technical training for the non-preferred foot increases its use and reduces functional asymmetry in game situation, consequently improving the player's performance.

  13. Asymmetry of wind waves studied in a laboratory tank

    NASA Astrophysics Data System (ADS)

    Ileykin, L. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.

    1995-03-01

    Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.

  14. Asymmetry of wind waves studied in a laboratory tank

    NASA Astrophysics Data System (ADS)

    Leykin, I. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.

    Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.

  15. Asymmetry and basic pathways in sleep-stage transitions

    NASA Astrophysics Data System (ADS)

    Lo, Chung-Chuan; Bartsch, Ronny P.; Ivanov, Plamen Ch.

    2013-04-01

    We study dynamical aspects of sleep micro-architecture. We find that sleep dynamics exhibits a high degree of asymmetry, and that the entire class of sleep-stage transition pathways underlying the complexity of sleep dynamics throughout the night can be characterized by two independent asymmetric transition paths. These basic pathways remain stable under sleep disorders, even though the degree of asymmetry is significantly reduced. Our findings demonstrate an intriguing temporal organization in sleep micro-architecture at short time scales that is typical for physical systems exhibiting self-organized criticality (SOC), and indicates nonequilibrium critical dynamics in brain activity during sleep.

  16. Genetic specification of left–right asymmetry in the diaphragm muscles and their motor innervation

    PubMed Central

    Charoy, Camille; Dinvaut, Sarah; Chaix, Yohan; Morlé, Laurette; Sanyas, Isabelle; Bozon, Muriel; Kindbeiter, Karine; Durand, Bénédicte; Skidmore, Jennifer M; De Groef, Lies; Seki, Motoaki; Moons, Lieve; Ruhrberg, Christiana; Martin, James F; Martin, Donna M; Falk, Julien; Castellani, Valerie

    2017-01-01

    The diaphragm muscle is essential for breathing in mammals. Its asymmetric elevation during contraction correlates with morphological features suggestive of inherent left–right (L/R) asymmetry. Whether this asymmetry is due to L versus R differences in the muscle or in the phrenic nerve activity is unknown. Here, we have combined the analysis of genetically modified mouse models with transcriptomic analysis to show that both the diaphragm muscle and phrenic nerves have asymmetries, which can be established independently of each other during early embryogenesis in pathway instructed by Nodal, a morphogen that also conveys asymmetry in other organs. We further found that phrenic motoneurons receive an early L/R genetic imprint, with L versus R differences both in Slit/Robo signaling and MMP2 activity and in the contribution of both pathways to establish phrenic nerve asymmetry. Our study therefore demonstrates L–R imprinting of spinal motoneurons and describes how L/R modulation of axon guidance signaling helps to match neural circuit formation to organ asymmetry. DOI: http://dx.doi.org/10.7554/eLife.18481.001 PMID:28639940

  17. Cellular Contraction and Polarization Drive Collective Cellular Motion.

    PubMed

    Notbohm, Jacob; Banerjee, Shiladitya; Utuje, Kazage J C; Gweon, Bomi; Jang, Hwanseok; Park, Yongdoo; Shin, Jennifer; Butler, James P; Fredberg, Jeffrey J; Marchetti, M Cristina

    2016-06-21

    Coordinated motions of close-packed multicellular systems typically generate cooperative packs, swirls, and clusters. These cooperative motions are driven by active cellular forces, but the physical nature of these forces and how they generate collective cellular motion remain poorly understood. Here, we study forces and motions in a confined epithelial monolayer and make two experimental observations: 1) the direction of local cellular motion deviates systematically from the direction of the local traction exerted by each cell upon its substrate; and 2) oscillating waves of cellular motion arise spontaneously. Based on these observations, we propose a theory that connects forces and motions using two internal state variables, one of which generates an effective cellular polarization, and the other, through contractile forces, an effective cellular inertia. In agreement with theoretical predictions, drugs that inhibit contractility reduce both the cellular effective elastic modulus and the frequency of oscillations. Together, theory and experiment provide evidence suggesting that collective cellular motion is driven by at least two internal variables that serve to sustain waves and to polarize local cellular traction in a direction that deviates systematically from local cellular velocity. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Heritabilities of Directional Asymmetry in the Fore- and Hindlimbs of Rabbit Fetuses

    PubMed Central

    Breno, Matteo; Bots, Jessica; Van Dongen, Stefan

    2013-01-01

    Directional asymmetry (DA), where at the population level symmetry differs from zero, has been reported in a wide range of traits and taxa, even for traits in which symmetry is expected to be the target of selection such as limbs or wings. In invertebrates, DA has been suggested to be non-adaptive. In vertebrates, there has been a wealth of research linking morphological asymmetry to behavioural lateralisation. On the other hand, the prenatal expression of DA and evidences for quantitative genetic variation for asymmetry may suggest it is not solely induced by differences in mechanic loading between sides. We estimate quantitative genetic variation of fetal limb asymmetry in a large dataset of rabbits. Our results showed a low but highly significant level of DA that is partially under genetic control for all traits, with forelimbs displaying higher levels of asymmetry. Genetic correlations were positive within limbs, but negative across bones of fore and hind limbs. Environmental correlations were positive for all, but smaller across fore and hind limbs. We discuss our results in light of the existence and maintenance of DA in locomotory traits. PMID:24130770

  19. Bilateral asymmetry of humeral torsion and length in African apes and humans.

    PubMed

    Barros, Anna; Soligo, Christophe

    2013-01-01

    Few studies have directly compared human and African ape upper limb skeletal asymmetries despite the potential such comparisons have for understanding the origins of functional lateralization in humans and non-human primates. Here, we report the magnitude and direction of asymmetries in humeral torsion and humeral length in paired humeri of 40 Gorilla gorilla, 40 Pan troglodytes and 40 Homo sapiens. We test whether absolute and directional asymmetries differ between measurements, species and sexes. Our results show that humans are unique in being lateralized to the right for both measurements, consistent with human population-level handedness patterns, while apes show no significant directionality at the species level in either measurement. However, absolute torsion asymmetries in apes occur in the same magnitude as in humans, suggesting the existence of functional lateralization at the individual level. Copyright © 2013 S. Karger AG, Basel

  20. Left-right asymmetry of biophoton emission from hemiparesis patients.

    PubMed

    Jung, Hyun-Hee; Woo, Won-Myung; Yang, Joon-Mo; Choi, Chunho; Lee, Jonghan; Yoon, Gilwon; Yang, Jong S; Lee, Sungmuk; Soh, Kwang-Sup

    2003-05-01

    Left-right biophoton asymmetry from the palm and the dorsum of hands from 7 Korean hemiparesis patients were studied. There is a strong tendency that the left-hemiparesis patients emit more biophotons from the right than the left hands, while the right-hemiparesis patient emits more from the left hand. Acupuncture treatment reduces dramatically the left-right asymmetry of biophoton emission rates. However there is no systematic difference for the patients in the emission rates from the palm and the dorsum of hands.

  1. The SAMI Galaxy Survey: gas content and interaction as the drivers of kinematic asymmetry

    NASA Astrophysics Data System (ADS)

    Bloom, J. V.; Croom, S. M.; Bryant, J. J.; Schaefer, A. L.; Bland-Hawthorn, J.; Brough, S.; Callingham, J.; Cortese, L.; Federrath, C.; Scott, N.; van de Sande, J.; D'Eugenio, F.; Sweet, S.; Tonini, C.; Allen, J. T.; Goodwin, M.; Green, A. W.; Konstantopoulos, I. S.; Lawrence, J.; Lorente, N.; Medling, A. M.; Owers, M. S.; Richards, S. N.; Sharp, R.

    2018-05-01

    In order to determine the causes of kinematic asymmetry in the Hα gas in the SAMI (Sydney-AAO Multi-object IFS) Galaxy Survey sample, we investigate the comparative influences of environment and intrinsic properties of galaxies on perturbation. We use spatially resolved Hα velocity fields from the SAMI Galaxy Survey to quantify kinematic asymmetry (\\overline{v_asym}) in nearby galaxies and environmental and stellar mass data from the Galaxy And Mass Assembly survey. We find that local environment, measured as distance to nearest neighbour, is inversely correlated with kinematic asymmetry for galaxies with log (M*/M⊙) > 10.0, but there is no significant correlation for galaxies with log (M*/M⊙) < 10.0. Moreover, low-mass galaxies [log (M*/M⊙) < 9.0] have greater kinematic asymmetry at all separations, suggesting a different physical source of asymmetry is important in low-mass galaxies. We propose that secular effects derived from gas fraction and gas mass may be the primary causes of asymmetry in low-mass galaxies. High gas fraction is linked to high σ _m/V (where σm is Hα velocity dispersion and V the rotation velocity), which is strongly correlated with \\overline{v_asym}, and galaxies with log (M*/M⊙) < 9.0 have offset \\overline{σ _m/V} from the rest of the sample. Further, asymmetry as a fraction of dispersion decreases for galaxies with log (M*/M⊙) < 9.0. Gas mass and asymmetry are also inversely correlated in our sample. We propose that low gas masses in dwarf galaxies may lead to asymmetric distribution of gas clouds, leading to increased relative turbulence.

  2. Influence of pelvic asymmetry and idiopathic scoliosis in adolescents on postural balance during sitting.

    PubMed

    Jung, Ji-Yong; Cha, Eun-Jong; Kim, Kyung-Ah; Won, Yonggwan; Bok, Soo-Kyung; Kim, Bong-Ok; Kim, Jung-Ja

    2015-01-01

    The effects of pelvic asymmetry and idiopathic scoliosis on postural balance during sitting were studied by measuring inclination angles, pressure distribution, and electromyography. Participants were classified into a control group, pelvic asymmetry group, scoliosis group, and scoliosis with pelvic asymmetry and then performed anterior, posterior, left, and right pelvic tilting while sitting on the unstable board for 5 seconds to assess their postural balance. Inclination and obliquity angles between the groups were measured by an accelerometer located on the unstable board. Pressure distribution (maximum force and peak pressure) was analyzed using a capacitive seat sensor. In addition, surface electrodes were attached to the abdominal and erector spinae muscles of each participant. Inclination and obliquity angles increased more asymmetrically in participants with both pelvic asymmetry and scoliosis than with pelvic asymmetry or scoliosis alone. Maximum forces and peak pressures of each group showed an asymmetrical pressure distribution caused by the difference in height between the left and right pelvis and curve type of the patients' spines when performing anterior, posterior, left, and right pelvic tilting while sitting. Muscle contraction patterns of external oblique, thoracic erector spinae, lumbar erector spinae, and lumbar multifidus muscles may be influenced by spine curve type and region of idiopathic scoliosis. Asymmetrical muscle activities were observed on the convex side of scoliotic patients and these muscle activity patterns were changed by the pelvic asymmetry. From these results, it was confirmed that pelvic asymmetry and idiopathic scoliosis cause postural asymmetry, unequal weight distribution, and muscular imbalance during sitting.

  3. Directional asymmetries and age effects in human self-motion perception.

    PubMed

    Roditi, Rachel E; Crane, Benjamin T

    2012-06-01

    Directional asymmetries in vestibular reflexes have aided the diagnosis of vestibular lesions; however, potential asymmetries in vestibular perception have not been well defined. This investigation sought to measure potential asymmetries in human vestibular perception. Vestibular perception thresholds were measured in 24 healthy human subjects between the ages of 21 and 68 years. Stimuli consisted of a single cycle of sinusoidal acceleration in a single direction lasting 1 or 2 s (1 or 0.5 Hz), delivered in sway (left-right), surge (forward-backward), heave (up-down), or yaw rotation. Subject identified self-motion directions were analyzed using a forced choice technique, which permitted thresholds to be independently determined for each direction. Non-motion stimuli were presented to measure possible response bias. A significant directional asymmetry in the dynamic response occurred in 27% of conditions tested within subjects, and in at least one type of motion in 92% of subjects. Directional asymmetries were usually consistent when retested in the same subject but did not occur consistently in one direction across the population with the exception of heave at 0.5 Hz. Responses during null stimuli presentation suggested that asymmetries were not due to biased guessing. Multiple models were applied and compared to determine if sensitivities were direction specific. Using Akaike information criterion, it was found that the model with direction specific sensitivities better described the data in 86% of runs when compared with a model that used the same sensitivity for both directions. Mean thresholds for yaw were 1.3±0.9°/s at 0.5 Hz and 0.9±0.7°/s at 1 Hz and were independent of age. Thresholds for surge and sway were 1.7±0.8 cm/s at 0.5 Hz and 0.7±0.3 cm/s at 1.0 Hz for subjects <50 and were significantly higher in subjects >50 years old. Heave thresholds were higher and were independent of age.

  4. Reassessing the Ritz-Einstein debate on the radiation asymmetry in classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Frisch, Mathias; Pietsch, Wolfgang

    2016-08-01

    We investigate the debate between Walter Ritz and Albert Einstein on the origin and nature of the radiation asymmetry. We argue that Ritz's views on the radiation asymmetry were far richer and nuanced than the oft-cited joint letter with Einstein (Ritz & Einstein, 1909) suggests, and that Einstein's views in 1909 on the asymmetry are far more ambiguous than is commonly recognized. Indeed, there is strong evidence that Einstein ultimately came to agree with Ritz that elementary radiation processes in classical electrodynamics are non-symmetric and fully retarded.

  5. Asymmetries and Visual Field Summaries as Predictors of Glaucoma in the Ocular Hypertension Treatment Study

    PubMed Central

    Levine, Richard A.; Demirel, Shaban; Fan, Juanjuan; Keltner, John L.; Johnson, Chris A.; Kass, Michael A.

    2007-01-01

    Purpose To evaluate whether baseline visual field data and asymmetries between eyes predict the onset of primary open-angle glaucoma (POAG) in Ocular Hypertension Treatment Study (OHTS) participants. Methods A new index, mean prognosis (MP), was designed for optimal combination of visual field thresholds, to discriminate between eyes that developed POAG from eyes that did not. Baseline intraocular pressure (IOP) in fellow eyes was used to construct measures of IOP asymmetry. Age-adjusted baseline thresholds were used to develop indicators of visual field asymmetry and summary measures of visual field defects. Marginal multivariate failure time models were constructed that relate the new index MP, IOP asymmetry, and visual field asymmetry to POAG onset for OHTS participants. Results The marginal multivariate failure time analysis showed that the MP index is significantly related to POAG onset (P < 0.0001) and appears to be a more highly significant predictor of POAG onset than either mean deviation (MD; P = 0.17) or pattern standard deviation (PSD; P = 0.046). A 1-mm Hg increase in IOP asymmetry between fellow eyes is associated with a 17% increase in risk for development of POAG. When threshold asymmetry between eyes existed, the eye with lower thresholds was at a 37% greater risk of development of POAG, and this feature was more predictive of POAG onset than the visual field index MD, though not as strong a predictor as PSD. Conclusions The MP index, IOP asymmetry, and binocular test point asymmetry can assist in clinical evaluation of eyes at risk of development of POAG. PMID:16936102

  6. Bbs8, together with the planar cell polarity protein Vangl2, is required to establish left-right asymmetry in zebrafish.

    PubMed

    May-Simera, Helen L; Kai, Masatake; Hernandez, Victor; Osborn, Daniel P S; Tada, Masazumi; Beales, Philip L

    2010-09-15

    Laterality defects such as situs inversus are not uncommonly encountered in humans, either in isolation or as part of another syndrome, but can have devastating developmental consequences. The events that break symmetry during early embryogenesis are highly conserved amongst vertebrates and involve the establishment of unidirectional flow by cilia within an organising centre such as the node in mammals or Kupffer's vesicle (KV) in teleosts. Disruption of this flow can lead to the failure to successfully establish left-right asymmetry. The correct apical-posterior cellular position of each node/KV cilium is critical for its optimal radial movement which serves to sweep fluid (and morphogens) in the same direction as its neighbours. Planar cell polarity (PCP) is an important conserved process that governs ciliary position and posterior tilt; however the underlying mechanism by which this occurs remains unclear. Here we show that Bbs8, a ciliary/basal body protein important for intraciliary/flagellar transport and the core PCP protein Vangl2 interact and are required for establishment and maintenance of left-right asymmetry during early embryogenesis in zebrafish. We discovered that loss of bbs8 and vangl2 results in laterality defects due to cilia disruption at the KV. We showed that perturbation of cell polarity following abrogation of vangl2 causes nuclear mislocalisation, implying defective centrosome/basal body migration and apical docking. Moreover, upon loss of bbs8 and vangl2, we observed defective actin organisation. These data suggest that bbs8 and vangl2 act synergistically on cell polarization to establish and maintain the appropriate length and number of cilia in the KV and thereby facilitate correct LR asymmetry. (c) 2010. Published by Elsevier Inc.

  7. Lateral asymmetry of the Hoffmann reflex: relation to cortical laterality.

    PubMed Central

    Goode, D J; Glenn, S; Manning, A A; Middleton, J F

    1980-01-01

    Lateral asymmetry of the Hoffmann reflex (H-reflex) recovery curve was found in seven subjects with no personal or family history of neurological or psychiatric disorder. Differences between recovery curves from the right and left leg were larger than differences in the same leg on two successive test days. In a group of 27 psychiatric inpatients, lateral asymmetry of the later portion of the recovery curve was correlated with cortical laterality, as measured by selective identification of differing verbal stimuli presented simultaneously to both ears (DL) and to total laterality scores, a sum of visual half-field, DL, and motor laterality scores. Asymmetry of the recovery curve is related in part to cortical laterality, possibly through selective activation of cortical motor centres on the preferred side. PMID:7420106

  8. Terrestrial laser scanning used to detect asymmetries in boat hulls

    NASA Astrophysics Data System (ADS)

    Roca-Pardiñas, Javier; López-Alvarez, Francisco; Ordóñez, Celestino; Menéndez, Agustín; Bernardo-Sánchez, Antonio

    2012-01-01

    We describe a methodology for identifying asymmetries in boat hull sections reconstructed from point clouds captured using a terrestrial laser scanner (TLS). A surface was first fit to the point cloud using a nonparametric regression method that permitted the construction of a continuous smooth surface. Asymmetries in cross-sections of the surface were identified using a bootstrap resampling technique that took into account uncertainty in the coordinates of the scanned points. Each reconstructed section was analyzed to check, for a given level of significance, that it was within the confidence interval for the theoretical symmetrical section. The method was applied to the study of asymmetries in a medium-sized yacht. Identified were differences of up to 5 cm between the real and theoretical sections in some parts of the hull.

  9. Strongly scale-dependent CMB dipolar asymmetry from super-curvature fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrnes, Christian; Domènech, Guillem; Sasaki, Misao

    2016-12-01

    We reconsider the observed CMB dipolar asymmetry in the context of open inflation, where a supercurvature mode might survive the bubble nucleation. If such a supercurvature mode modulates the amplitude of the curvature power spectrum, it would easily produce an asymmetry in the power spectrum. We show that current observational data can be accommodated in a three-field model, with simple quadratic potentials and a non-trivial field-space metric. Despite the presence of three fields, we believe this model is so far the simplest that can match current observations. We are able to match the observed strong scale dependence of the dipolarmore » asymmetry, without a fine tuning of initial conditions, breaking slow roll or adding a feature to the evolution of any field.« less

  10. Top anti-top Asymmetries at the Tevatron and the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Yvonne Reinhild

    2012-11-01

    The heaviest known elementary particle today, the top quark, has been discovered in 1995 by the CDF and D0 collaborations at the Tevatron proton antiproton collider at Fermilab. Recently, the CDF and D0 collaborations have studied the forward-backward asymmetry in ttbar events, resulting in measured values larger than the standard model prediction. With the start of the LHC at CERN in 2010, a new top quark factory has opened and asymmetry measurements in ttbar have also been performed in a proton proton environment with higher collision energy. No deviations from the standard model have been noticed so far in themore » measurements of ATLAS and CMS. This article discusses recent results of asymmetry measurements in ttbar events of the ATLAS, CDF, CMS and D0 collaborations.« less

  11. [Artificial Inversion of the Left-Right Visceral Asymmetry in Vertebrates: Conceptual Approaches and Experimental Solutions].

    PubMed

    Truleva, A S; Malashichev, E B; Ermakov, A S

    2015-01-01

    Externally, vertebrates are bilaterally symmetrical; however, left-right asymmetry is observed in the structure of their internal organs and systems of organs (circulatory, digestive, and respiratory). In addition to the asymmetry of internal organs (visceral), there is also functional (i.e., asymmetrical functioning of organs on the left and right sides of the body) and behavioral asymmetry. The question of a possible association between different types of asymmetry is still open. The study of the mechanisms of such association, in addition to the fundamental interest, has important applications for biomedicine, primarily for the understanding of the brain functioning in health and disease and for the development of methods of treatment of certain mental diseases, such as schizophrenia and autism, for which the disturbance of left-right asymmetry of the brain was shown. To study the deep association between different types of asymmetry, it is necessary to obtain adequate animal models (primarily animals with inverted visceral organs, situs inversus totalis). There are two main possible approaches to obtaining such model organisms: mutagenesis followed by selection of mutant strains with mutations in the genes that affect the formation of the left-right visceral asymmetry and experimental obtaining of animals with inverted internal organs. This review focuses on the second approach. We describe the theoretical models for establishing left-right asymmetry and possible experimental approaches to obtaining animals with inverted internal organs.

  12. Figure-ground asymmetries in the Implicit Association Test (IAT).

    PubMed

    Rothermund, K; Wentura, D

    2001-01-01

    Based on the assumption that binary classification tasks are often processed asymmetrically (figure-ground asymmetries), two experiments showed that association alone cannot account for effects observed in the Implicit Association Test (IAT). Experiment 1 (N = 16) replicated a standard version of the IAT effect using old vs. young names as target categories and good and bad words as attribute categories. However, reliable compatibility effects were also found for a modified version of the task in which neutral words vs. nonwords instead of good vs. bad words were used as attribute categories. In Experiment 2 (N = 8), a reversed IAT effect was observed after the figure-ground asymmetry in the target dimension had been inverted by a previous go/nogo detection task in which participants searched for exemplars of the category "young." The experiments support the hypothesis that figure-ground asymmetries produce compatibility effects in the IAT and suggest that IAT effects do not rely exclusively on evaluative associations between the target and attribute categories.

  13. Prevalence of frontal plane pelvic postural asymmetry--part 1.

    PubMed

    Juhl, John Henry; Ippolito Cremin, Tonya M; Russell, George

    2004-10-01

    Despite 80 years of study, questions of how leg length difference relates to recurrent pain and somatic dysfunction remain controversial. The authors hypothesize that a correlation exists between leg length inequality and back pain. They further hypothesize that if common compensatory patterns described in classic osteopathic medical literature exist, these patterns should interact with the pelvic postural asymmetry patterns of Lloyd and Eimerbrink in a predictable, most probable, and congruent fashion. This article reviews the osteopathic medical, as well as the allopathic medical and chiropractic literature for studies that meet criteria for evidence-based comparison. Using lumbar radiographic studies produced with subjects standing, the authors examined the prevalence of six types of pelvic postural asymmetry in a consecutive case series of 421 patients with low back pain. Establishing the frequency of pelvic postural asymmetry patterns is a necessary first step in creating an evidence-based foundation to further clarify postural compensatory patterns. Various correlations between and within these patterns are identified.

  14. Gait Asymmetry During 400- to 1000-m High-Intensity Track Running in Relation to Injury History.

    PubMed

    Gilgen-Ammann, Rahel; Taube, Wolfgang; Wyss, Thomas

    2017-04-01

    To quantify gait asymmetry in well-trained runners with and without previous injuries during interval training sessions incorporating different distances. Twelve well-trained runners participated in 8 high-intensity interval-training sessions on a synthetic track over a 4-wk period. The training consisted of 10 × 400, 8 × 600, 7 × 800, and 6 × 1000-m running. Using an inertial measurement unit, the ground-contact time (GCT) of every step was recorded. To determine gait asymmetry, the GCTs between the left and right foot were compared. Overall, gait asymmetry was 3.3% ± 1.4%, and over the course of a training session, the gait asymmetry did not change (F 1,33 = 1.673, P = .205). The gait asymmetry of the athletes with a previous history of injury was significantly greater than that of the athletes without a previous injury. However, this injury-related enlarged asymmetry was detectable only at short (400 m), but not at longer, distances (600-1000 m). The gait asymmetry of well-trained athletes differed, depending on their history of injury and the running distance. To detect gait asymmetries, high-intensity runs over relatively short distances are recommended.

  15. Individual variation in hemispheric asymmetry: multitask study of effects related to handedness and sex.

    PubMed

    Hellige, J B; Bloch, M I; Cowin, E L; Eng, T L; Eviatar, Z; Sergent, V

    1994-09-01

    Functional hemispheric asymmetries were examined for right- or left-handed men and women. Tasks involved (a) auditory processing of verbal material, (b) processing of emotions shown on faces, (c) processing of visual categorical and coordinate spatial relations, and (d) visual processing of verbal material. Similar performance asymmetries were found for the right-handed and left-handed groups, but the average asymmetries tended to be smaller for the left-handed group. For the most part, measures of performance asymmetry obtained from the different tasks did not correlate with each other, suggesting that individual subjects cannot be simply characterized as strongly or weakly lateralized. However, ear differences obtained in Task 1 did correlate significantly with certain visual field differences obtained in Task 4, suggesting that both tasks are sensitive to hemispheric asymmetry in similar phonetic or language-related processes.

  16. TGFβ signaling in establishing left-right asymmetry.

    PubMed

    Shiratori, Hidetaka; Hamada, Hiroshi

    2014-08-01

    Two TGFβ-related proteins, Nodal and Lefty, are asymmetrically expressed and play central roles in establishing left-right (L-R) asymmetry of our body. Nodal acts as a left-side determinant whereas Lefty restricts Nodal activity to the left side by acting as a feedback inhibitor of Nodal. While the mechanism for symmetry breaking is variable among animals, the pair of Nodal and Lefty has a conserved role in the L-R asymmetry pathway. Function and regulation of Nodal and Lefty have been revealed in the last decades, but in this review we summarize the role of TGFβ-related proteins together with more recent findings. We mainly discuss observations made with mouse embryos, unless indicated otherwise. Copyright © 2014. Published by Elsevier Ltd.

  17. Strength Asymmetry and Landing Mechanics at Return to Sport after ACL Reconstruction

    PubMed Central

    Schmitt, Laura C.; Paterno, Mark V.; Ford, Kevin R.; Myer, Gregory D.; Hewett, Timothy E.

    2014-01-01

    Purpose Evidence-based quadriceps femoris muscle (QF) strength guidelines for return to sport following anterior cruciate ligament (ACL) reconstruction are lacking. This study investigated the impact of QF strength asymmetry on knee landing biomechanics at the time of return to sport following ACL reconstruction. Methods Seventy-seven individuals (17.4 years) at the time of return to sport following primary ACL reconstruction (ACLR group) and 47 uninjured control individuals (17.0 years) (CTRL group) participated. QF strength was assessed and Quadriceps Index calculated (QI = [involved strength/uninvolved strength]*100%). The ACLR group was sub-divided based on QI: High Quadriceps (HQ, QI≥90%) and Low-Quadriceps (LQ, QI<85%). Knee kinematic and kinetic variables were collected during a drop vertical jump maneuver. Limb symmetry during landing, and discrete variables were compared among the groups with multivariate analysis of variance and linear regression analyses. Results The LQ group demonstrated worse asymmetry in all kinetic and ground reaction force variables compared to the HQ and CTRL groups, including reduced involved limb peak knee external flexion moments (p<.001), reduced involved limb (p=.003) and increased uninvolved limb (p=.005) peak vertical ground reaction forces, and higher uninvolved limb peak loading rates (p<.004). There were no differences in the landing patterns between the HQ and CTRL groups on any variable (p>.05). In the ACLR group, QF strength estimated limb symmetry during landing after controlling for graft type, meniscus injury, knee pain and symptoms. Conclusion At the time of return to sport, individuals post-ACL reconstruction with weaker QF demonstrate altered landing patterns. Conversely, those with nearly symmetrical QF strength demonstrate landing patterns similar to uninjured individuals. Consideration of an objective QF strength measure may aid clinical decision-making to optimize sports participation following ACL

  18. Diversity, Disability, and Geographic Digital Divide

    ERIC Educational Resources Information Center

    Sumari, Melati; Carr, Erika; Ndebe-Ngovo, Manjerngie

    2006-01-01

    The phenomenon called digital divide was the focus of this paper. Diversity, disability, and geographical digital divide were relevant to this collaborative project. An extensive review of the literature was conducted for the completion of this project. The evidence for the digital divide in terms of race, level of education, and gender in the…

  19. Semantic Asymmetries Are Modulated by Phonological Asymmetries: Evidence from the Disambiguation of Homophonic versus Heterophonic Homographs

    ERIC Educational Resources Information Center

    Peleg, Orna; Eviatar, Zohar

    2009-01-01

    The present study investigated cerebral asymmetries in accessing multiple meanings of two types of homographs: homophonic homographs (e.g., "bank") and heterophonic homographs (e.g., "tear"). Participants read homographs preceded by either a biasing or a non-biasing sentential context and performed a lexical decision on lateralized targets…

  20. Visual Field Asymmetries in Attention Vary with Self-Reported Attention Deficits

    ERIC Educational Resources Information Center

    Poynter, William; Ingram, Paul; Minor, Scott

    2010-01-01

    The purpose of this study was to determine whether an index of self-reported attention deficits predicts the pattern of visual field asymmetries observed in behavioral measures of attention. Studies of "normal" subjects do not present a consistent pattern of asymmetry in attention functions, with some studies showing better left visual field (LVF)…

  1. Attachment classification, psychophysiology and frontal EEG asymmetry across the lifespan: a review

    PubMed Central

    Gander, Manuela; Buchheim, Anna

    2015-01-01

    In recent years research on physiological response and frontal electroencephalographic (EEG) asymmetry in different patterns of infant and adult attachment has increased. We review research findings regarding associations between attachment classifications and frontal EEG asymmetry, the autonomic nervous system (ANS) and the hypothalamic-pituitary-adrenocortical axis (HPA). Studies indicate that insecure attachment is related to a heightened adrenocortical activity, heart rate and skin conductance in response to stress, which is consistent with the hypothesis that attachment insecurity leads to impaired emotion regulation. Research on frontal EEG asymmetry also shows a clear difference in the emotional arousal between the attachment groups evidenced by specific frontal asymmetry changes. Furthermore, we discuss neurophysiological evidence of attachment organization and present up-to-date findings of EEG-research with adults. Based on the overall patterns of results presented in this article we identify some major areas of interest and directions for future research. PMID:25745393

  2. Giant adsorption of microswimmers: Duality of shape asymmetry and wall curvature

    NASA Astrophysics Data System (ADS)

    Wysocki, Adam; Elgeti, Jens; Gompper, Gerhard

    2015-05-01

    The effect of shape asymmetry of microswimmers on their adsorption capacity at confining channel walls is studied by a simple dumbbell model. For a shape polarity of a forward-swimming cone, like the stroke-averaged shape of a sperm, extremely long wall retention times are found, caused by a nonvanishing component of the propulsion force pointing steadily into the wall, which grows exponentially with the self-propulsion velocity and the shape asymmetry. A direct duality relation between shape asymmetry and wall curvature is proposed and verified. Our results are relevant for the design microswimmer with controlled wall-adhesion properties. In addition, we confirm that pressure in active systems is strongly sensitive to the details of the particle-wall interactions.

  3. Cell chirality: emergence of asymmetry from cell culture.

    PubMed

    Wan, Leo Q; Chin, Amanda S; Worley, Kathryn E; Ray, Poulomi

    2016-12-19

    Increasing evidence suggests that intrinsic cell chirality significantly contributes to the left-right (LR) asymmetry in embryonic development, which is a well-conserved characteristic of living organisms. With animal embryos, several theories have been established, but there are still controversies regarding mechanisms associated with embryonic LR symmetry breaking and the formation of asymmetric internal organs. Recently, in vitro systems have been developed to determine cell chirality and to recapitulate multicellular chiral morphogenesis on a chip. These studies demonstrate that chirality is indeed a universal property of the cell that can be observed with well-controlled experiments such as micropatterning. In this paper, we discuss the possible benefits of these in vitro systems to research in LR asymmetry, categorize available platforms for single-cell chirality and multicellular chiral morphogenesis, and review mathematical models used for in vitro cell chirality and its applications in in vivo embryonic development. These recent developments enable the interrogation of the intracellular machinery in LR axis establishment and accelerate research in birth defects in laterality.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).

  4. The Role of Task-Related Learned Representations in Explaining Asymmetries in Task Switching

    PubMed Central

    Barutchu, Ayla; Becker, Stefanie I.; Carter, Olivia; Hester, Robert; Levy, Neil L.

    2013-01-01

    Task switch costs often show an asymmetry, with switch costs being larger when switching from a difficult task to an easier task. This asymmetry has been explained by difficult tasks being represented more strongly and consequently requiring more inhibition prior to switching to the easier task. The present study shows that switch cost asymmetries observed in arithmetic tasks (addition vs. subtraction) do not depend on task difficulty: Switch costs of similar magnitudes were obtained when participants were presented with unsolvable pseudo-equations that did not differ in task difficulty. Further experiments showed that neither task switch costs nor switch cost asymmetries were due to perceptual factors (e.g., perceptual priming effects). These findings suggest that asymmetrical switch costs can be brought about by the association of some tasks with greater difficulty than others. Moreover, the finding that asymmetrical switch costs were observed (1) in the absence of a task switch proper and (2) without differences in task difficulty, suggests that present theories of task switch costs and switch cost asymmetries are in important ways incomplete and need to be modified. PMID:23613919

  5. In-Band Asymmetry Compensation for Accurate Time/Phase Transport over Optical Transport Network

    PubMed Central

    Siu, Sammy; Hu, Hsiu-fang; Lin, Shinn-Yan; Liao, Chia-Shu; Lai, Yi-Liang

    2014-01-01

    The demands of precise time/phase synchronization have been increasing recently due to the next generation of telecommunication synchronization. This paper studies the issues that are relevant to distributing accurate time/phase over optical transport network (OTN). Each node and link can introduce asymmetry, which affects the adequate time/phase accuracy over the networks. In order to achieve better accuracy, protocol level full timing support is used (e.g., Telecom-Boundary clock). Due to chromatic dispersion, the use of different wavelengths consequently causes fiber link delay asymmetry. The analytical result indicates that it introduces significant time error (i.e., phase offset) within 0.3397 ns/km in C-band or 0.3943 ns/km in L-band depending on the wavelength spacing. With the proposed scheme in this paper, the fiber link delay asymmetry can be compensated relying on the estimated mean fiber link delay by the Telecom-Boundary clock, while the OTN control plane is responsible for processing the fiber link delay asymmetry to determine the asymmetry compensation in the timing chain. PMID:24982948

  6. Esthetic evaluation of dental and gingival asymmetries.

    PubMed

    Fernandes, Liliana; Pinho, Teresa

    2015-06-01

    The aim of this study was to determine which smile asymmetries were less esthetic, dental or gingival. Laypeople (297), generalists (223), prosthodontists (50) and orthodontists (49), evaluated the esthetics of digitally-modified images taken from the same frontal intra-oral photograph, using the same lips, simulating upper maxillary midline shift, occlusal plane inclination, asymmetric incisal edge and asymmetric gingival migration. The images were later paired into 3 groups. The only ones considered esthetic were the asymmetric incisal edge of the 0.5 mm shorter upper central incisor and the asymmetric gingival migration (2 mm) of the upper central incisor. In the paired images, upper maxillary midline shift vs. occlusal plane inclination, the former was rated less esthetic, while in the asymmetric incisal edge vs. asymmetric gingival migration pair, the latter was considered to be less esthetic. Laypeople and generalists consider smiles more attractive. The only images considered esthetic were the asymmetric incisal edge of the central incisor shorter by 0.5 mm and the 2 mm asymmetric gingival migration of the upper central incisor. In the horizontal plane (maxillary midline shift vs. occlusal plane cant), the dental asymmetries were considered less esthetic than the gingival asymmetries. However, in the vertical plane (asymmetric incisal edge vs. asymmetric gingival migration) the opposite was recorded. Copyright © 2015 CEO. Published by Elsevier Masson SAS. All rights reserved.

  7. Frontal alpha asymmetry predicts inhibitory processing in youth with attention deficit/hyperactivity disorder.

    PubMed

    Ellis, Alissa J; Kinzel, Chantelle; Salgari, Giulia C; Loo, Sandra K

    2017-07-28

    Atypical asymmetry in brain activity has been implicated in the behavioral and attentional dysregulation observed in ADHD. Specifically, asymmetry in neural activity in the right versus left frontal regions has been linked to ADHD, as well as to symptoms often associated with ADHD such as heightened approach behaviors, impulsivity and difficulties with inhibition. Clarifying the role of frontal asymmetry in ADHD-like traits, such as disinhibition, may provide information on the neurophysiological processes underlying these behaviors. ADHD youth (ADHD: n = 25) and healthy, typically developing controls (TD: n = 25) underwent an electroencephalography (EEG) recording while completing a go/no-go task-a commonly used test measuring behavioral inhibition. In addition, advanced signal processing for source localization estimated the location of signal generators underlying frontal alpha asymmetry (FA) during correct and incorrect trials. This is the first study in ADHD to demonstrate that the dorsal-lateral prefrontal cortex (DLPFC) may be responsible for generating frontal alpha. During failed inhibition trials, ADHD youth displayed greater FA than TD youth. In addition, within the ADHD group, frontal asymmetry during later processing stages (i.e., 400-800ms after stimulus) predicted a higher number of commission errors throughout the task. These results suggest that frontal alpha asymmetry may be a specific biomarker of cognitive disinhibition among youth with ADHD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Discriminating Majorana neutrino textures in light of the baryon asymmetry

    NASA Astrophysics Data System (ADS)

    Borah, Manikanta; Borah, Debasish; Das, Mrinal Kumar

    2015-06-01

    We study all possible texture zeros in the Majorana neutrino mass matrix which are allowed from neutrino oscillation as well as cosmology data when the charged lepton mass matrix is assumed to take the diagonal form. In the case of one-zero texture, we write down the Majorana phases which are assumed to be equal and the lightest neutrino mass as a function of the Dirac C P phase. In the case of two-zero texture, we numerically evaluate all the three C P phases and lightest neutrino mass by solving four real constraint equations. We then constrain texture zero mass matrices from the requirement of producing correct baryon asymmetry through the mechanism of leptogenesis by assuming the Dirac neutrino mass matrix to be diagonal. Adopting a type I seesaw framework, we consider the C P -violating out of equilibrium decay of the lightest right-handed neutrino as the source of lepton asymmetry. Apart from discriminating between the texture zero mass matrices and light neutrino mass hierarchy, we also constrain the Dirac and Majorana C P phases so that the observed baryon asymmetry can be produced. In two-zero texture, we further constrain the diagonal form of the Dirac neutrino mass matrix from the requirement of producing correct baryon asymmetry.

  9. Asymmetry of cerebral gray and white matter and structural volumes in relation to sex hormones and chromosomes.

    PubMed

    Savic, Ivanka

    2014-01-01

    Whilst many studies show sex differences in cerebral asymmetry, their mechanisms are still unknown. This report describes the potential impact of sex hormones and sex chromosomes by comparing MR data from 39 male and 47 female controls and 33 men with an extra X-chromosome (47,XXY). Regional asymmetry in gray and white matter volumes (GMV and WMV) was calculated using voxel based moprhometry (SPM5), by contrasting the unflipped and flipped individual GMV and WMV images. In addition, structural volumes were calculated for the thalamus, caudate, putamen, amygdala, and hippocampus, using the FreeSurfer software. Effects of plasma testosterone and estrogen on the GMV and WMV, as well on the right/left ratios of the subcortical volumes were tested by multi-regression analysis. All three groups showed a leftward asymmetry in the motor cortex and the planum temporale, and a rightward asymmetry of the middle occipital cortex. Both asymmetries were more pronounced in 46,XY males than 46,XX females and 47,XXY males, and were positively correlated with testosterone levels. There was also a rightward asymmetry of the vermis and leftward GMV asymmetry in the cerebellar hemispheres in all groups. Notably, cerebellar asymmetries were larger in 46,XX females and 47,XXY males, but were not related to sex hormone levels. No asymmetry differences between 46,XX females and 47,XXY males, and no overall effects of brain size were detected. The asymmetry in the planum temporale area and the occipital cortex seem related to processes associated with testosterone, whereas the observed cerebellar asymmetries suggest a link with X-chromosome escapee genes. Sex differences in cerebral asymmetry are moderated by sex hormones and X-chromosome genes, in a regionally differentiated manner.

  10. Asymmetry of cerebral gray and white matter and structural volumes in relation to sex hormones and chromosomes

    PubMed Central

    Savic, Ivanka

    2014-01-01

    Whilst many studies show sex differences in cerebral asymmetry, their mechanisms are still unknown. This report describes the potential impact of sex hormones and sex chromosomes by comparing MR data from 39 male and 47 female controls and 33 men with an extra X-chromosome (47,XXY). Methods: Regional asymmetry in gray and white matter volumes (GMV and WMV) was calculated using voxel based moprhometry (SPM5), by contrasting the unflipped and flipped individual GMV and WMV images. In addition, structural volumes were calculated for the thalamus, caudate, putamen, amygdala, and hippocampus, using the FreeSurfer software. Effects of plasma testosterone and estrogen on the GMV and WMV, as well on the right/left ratios of the subcortical volumes were tested by multi-regression analysis. Results: All three groups showed a leftward asymmetry in the motor cortex and the planum temporale, and a rightward asymmetry of the middle occipital cortex. Both asymmetries were more pronounced in 46,XY males than 46,XX females and 47,XXY males, and were positively correlated with testosterone levels. There was also a rightward asymmetry of the vermis and leftward GMV asymmetry in the cerebellar hemispheres in all groups. Notably, cerebellar asymmetries were larger in 46,XX females and 47,XXY males, but were not related to sex hormone levels. No asymmetry differences between 46,XX females and 47,XXY males, and no overall effects of brain size were detected. Conclusion: The asymmetry in the planum temporale area and the occipital cortex seem related to processes associated with testosterone, whereas the observed cerebellar asymmetries suggest a link with X-chromosome escapee genes. Sex differences in cerebral asymmetry are moderated by sex hormones and X-chromosome genes, in a regionally differentiated manner. PMID:25505869

  11. [The application of the asymmetry index in assessment of mandible size in difficult diagnostic case].

    PubMed

    Syryńska, Maria; Szyszka, Liliana; Post, Marcin

    2008-01-01

    Recognised and unrecognised bone diseases including maxilla and/or mandible may have influance on formation of malocclusions. In first stages of diseases the patients are directed or report for orthodontic treatment which starting need additional examinations mainly pantomographic views. In spite doing necessary additional examinations sometimes we can't recognise disorder like patient presented in our study. Then we can observate and if changes will begin disturbing the function--surgical intervention. Establishment of orthodontic treatment plan and explanation if during three years the dimension of asymmetry resulting from wrong growth right and left part of mandible and the estimation the rate of changes happening in this time. In study we used the own asymmetry index to estimate the patient's pantomographic views who reported for orthodontic treatment because of occlusion disorders, facial asymmetry and discomfort of mastication and speech. The telerentgenographic lateral views in right and posterior-anterior (PA) projection were also done. We measured and estimated the own asymmetry index on pantomographic views. The radiographs reveal the asymmetry of left part of mandible. The comparative analysis of pantomographic views enables the estimation of changes happening in time and the telerentgenographic lateral views, PA and computer tomography (CT) confirm changes which increase the asymmetry. The asymmetry index is the instrument which enable the estimation of growth changes in mandible with unsteady aetiology and histopathological unrecognised, allow determine the growth rate and facilitate the permanent control the dimension of mandible asymmetry.

  12. Harmful situations, impure people: an attribution asymmetry across moral domains.

    PubMed

    Chakroff, Alek; Young, Liane

    2015-03-01

    People make inferences about the actions of others, assessing whether an act is best explained by person-based versus situation-based accounts. Here we examine people's explanations for norm violations in different domains: harmful acts (e.g., assault) and impure acts (e.g., incest). Across four studies, we find evidence for an attribution asymmetry: people endorse more person-based attributions for impure versus harmful acts. This attribution asymmetry is partly explained by the abnormality of impure versus harmful acts, but not by differences in the moral wrongness or the statistical frequency of these acts. Finally, this asymmetry persists even when the situational factors that lead an agent to act impurely are stipulated. These results suggest that, relative to harmful acts, impure acts are linked to person-based attributions. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Biometric identification based on novel frequency domain facial asymmetry measures

    NASA Astrophysics Data System (ADS)

    Mitra, Sinjini; Savvides, Marios; Vijaya Kumar, B. V. K.

    2005-03-01

    In the modern world, the ever-growing need to ensure a system's security has spurred the growth of the newly emerging technology of biometric identification. The present paper introduces a novel set of facial biometrics based on quantified facial asymmetry measures in the frequency domain. In particular, we show that these biometrics work well for face images showing expression variations and have the potential to do so in presence of illumination variations as well. A comparison of the recognition rates with those obtained from spatial domain asymmetry measures based on raw intensity values suggests that the frequency domain representation is more robust to intra-personal distortions and is a novel approach for performing biometric identification. In addition, some feature analysis based on statistical methods comparing the asymmetry measures across different individuals and across different expressions is presented.

  14. Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes

    DOE PAGES

    Smith, Jeremy C.; Cheng, Xiaolin; Nickels, Jonathan D.

    2015-07-29

    Understanding of cell membrane organization has evolved significantly from the classic fluid mosaic model. It is now recognized that biological membranes are highly organized structures, with differences in lipid compositions between inner and outer leaflets and in lateral structures within the bilayer plane, known as lipid rafts. These organizing principles are important for protein localization and function as well as cellular signaling. However, the mechanisms and biophysical basis of lipid raft formation, structure, dynamics and function are not clearly understood. One key question, which we focus on in this review, is how lateral organization and leaflet compositional asymmetry are coupled.more » Detailed information elucidating this question has been sparse because of the small size and transient nature of rafts and the experimental challenges in constructing asymmetric bilayers. Resolving this mystery will require advances in both experimentation and modeling. We discuss here the preparation of model systems along with experimental and computational approaches that have been applied in efforts to address this key question in membrane biology. Furthermore, we seek to place recent and future advances in experimental and computational techniques in context, providing insight into in-plane and transverse organization of biological membranes.« less

  15. Mechanisms of Gait Asymmetry Due to Push-off Deficiency in Unilateral Amputees

    PubMed Central

    Adamczyk, Peter Gabriel; Kuo, Arthur D.

    2015-01-01

    Unilateral lower-limb amputees exhibit asymmetry in many gait features, such as ground force, step time, step length, and joint mechanics. Although these asymmetries result from weak prosthetic-side push-off, there is no proven mechanistic explanation of how that impairment propagates to the rest of the body. We used a simple dynamic walking model to explore possible consequences of a unilateral impairment similar to that of a transtibial amputee. The model compensates for reduced push-off work from one leg by performing more work elsewhere, for example during the middle of stance by either or both legs. The model predicts several gait abnormalities, including slower forward velocity of the body center-of-mass (COM) during intact-side stance, greater energy dissipation in the intact side, and more positive work overall. We tested these predictions with data from unilateral transtibial amputees (N = 11) and non-amputee control subjects (N = 10) walking on an instrumented treadmill. We observed several predicted asymmetries, including forward velocity during stance phases and energy dissipation from the two limbs, as well as greater work overall. Secondary adaptations, such as to reduce discomfort, may exacerbate asymmetry, but these simple principles suggest that some asymmetry may be unavoidable in cases of unilateral limb loss. PMID:25222950

  16. Mechanisms of Gait Asymmetry Due to Push-Off Deficiency in Unilateral Amputees.

    PubMed

    Adamczyk, Peter Gabriel; Kuo, Arthur D

    2015-09-01

    Unilateral lower-limb amputees exhibit asymmetry in many gait features, such as ground force, step time, step length, and joint mechanics. Although these asymmetries result from weak prosthetic-side push-off, there is no proven mechanistic explanation of how that impairment propagates to the rest of the body. We used a simple dynamic walking model to explore possible consequences of a unilateral impairment similar to that of a transtibial amputee. The model compensates for reduced push-off work from one leg by performing more work elsewhere, for example during the middle of stance by either or both legs. The model predicts several gait abnormalities, including slower forward velocity of the body center-of-mass during intact-side stance, greater energy dissipation in the intact side, and more positive work overall. We tested these predictions with data from unilateral transtibial amputees (N = 11) and nonamputee control subjects (N = 10) walking on an instrumented treadmill. We observed several predicted asymmetries, including forward velocity during stance phases and energy dissipation from the two limbs, as well as greater work overall. Secondary adaptations, such as to reduce discomfort, may exacerbate asymmetry, but these simple principles suggest that some asymmetry may be unavoidable in cases of unilateral limb loss.

  17. Scintillation Monitoring Using Asymmetry Index

    NASA Astrophysics Data System (ADS)

    Shaikh, Muhammad Mubasshir; Mahrous, Ayman; Abdallah, Amr; Notarpietro, Riccardo

    Variation in electron density can have significant effect on GNSS signals in terms of propagation delay. Ionospheric scintillation can be caused by rapid change of such delay, specifically, when they last for a longer period of time. Ionospheric irregularities that account for scintillation may vary significantly in spatial range and drift with the background plasma at speeds of 45 to 130 m/sec. These patchy irregularities may occur several times during night, e.g. in equatorial region, with the patches move through the ray paths of the GNSS satellite signals. These irregularities are often characterized as either ‘large scale’ (which can be as large as several hundred km in East-West direction and many times that in the North-South direction) or ‘small scale’ (which can be as small as 1m). These small scale irregularities are regarded as the main cause of scintillation [1,2]. In normal solar activity conditions, the mid-latitude ionosphere is not much disturbed. However, during severe magnetic storms, the aurora oval extends towards the equator and the equator anomaly region may stretched towards poles extending the scintillation phenomena more typically associated with those regions into mid-latitudes. In such stormy conditions, the predicted TEC may deviate largely from the true value of the TEC both at low and mid-latitudes due to which GNSS applications may be strongly degraded. This work is an attempt to analyze ionospheric scintillation (S4 index) using ionospheric asymmetry index [3]. The asymmetry index is based on trans-ionospheric propagation between GPS and LEO satellites in a radio occultation (RO) scenario, using background ionospheric data provided by MIDAS [4]. We attempted to simulate one of the recent geomagnetic storms (NOAA scale G4) occurred over low/mid-latitudes. The storm started on 26 September 2011 at UT 18:00 and lasted until early hours of 27 September 2011. The scintillation data for the storm was taken from an ionospheric

  18. On the cos ⁡ϕh asymmetry in electroproduction of pions in double longitudinally polarized process

    NASA Astrophysics Data System (ADS)

    Mao, Wenjuan; Wang, Xiaoyu; Du, Xiaozhen; Lu, Zhun; Ma, Bo-Qiang

    2016-01-01

    We study the cos ⁡ϕh azimuthal asymmetry in double polarized semi-inclusive pion production by considering the twist-3 effects directly from a quark-quark correlator. In particular, we evaluate the role of the transverse momentum dependent distributions eL (x, k T2) and gL⊥ (x, kT2) on the asymmetry. Using two different sets of spectator model results for these distributions, we predict the cos ⁡ϕh asymmetry of π+, π-, and π0 at the kinematic configuration available at CLAS, HERMES. Our estimate shows that the asymmetries for charged and neutral pions are sizable and could be accessed by CLAS and HERMES. We also calculate the asymmetries for charged hadrons at the kinematics of COMPASS and compare them with the experimental data. We find that the asymmetry at COMPASS in our model is small which is consistent with the COMPASS data. We also find that gL⊥ gives the dominant contribution to the cos ⁡ϕh asymmetry, while the contribution of eL is almost negligible.

  19. Bilateral pedaling asymmetry during a simulated 40-km cycling time-trial.

    PubMed

    Carpes, F P; Rossato, M; Faria, I E; Bolli Mota, C

    2007-03-01

    This study investigated the pedaling asymmetry during a 40-km cycling time-trial (TT). Six sub-elite competitive male cyclists pedaled a SRM Training Systems cycle ergometer throughout a simulated 40-km TT. A SRM scientific crank dynamometer was used to measure the bilateral crank torque (N.m) and pedaling cadence (rpm). All data were analyzed into 4 stages with equal length obtained according to total time. Comparisons between each stage of the 40-km TT were made by an analysis of variance (ANOVA). Dominant (DO) and non-dominant (ND) crank peak torque asymmetry was determined by the equation: asymmetry index (AI%)=[(DO-ND)/DO] 100. Pearson correlation analysis was performed to verify the relationship between exercise intensity, mean and crank peak torque. The crank peak torque was significantly (P<0.05) greater in the 4th stage compared with other stages. During the stages 2 and 3, was observed the AI% of 13.51% and 17.28%, respectively. Exercise intensity (%VO(2max)) was greater for stage 4 (P<0.05) and was highly correlated with mean and crank peak torque (r=0.97 and r=0.92, respectively) for each stage. The DO limb was always responsible for the larger crank peak torque. It was concluded that pedaling asymmetry is present during a simulated 40-km TT and an increase on crank torque output and exercise intensity elicits a reduction in pedaling asymmetry.

  20. New Lower-Limb Gait Asymmetry Indices Based on a Depth Camera

    PubMed Central

    Auvinet, Edouard; Multon, Franck; Meunier, Jean

    2015-01-01

    Background: Various asymmetry indices have been proposed to compare the spatiotemporal, kinematic and kinetic parameters of lower limbs during the gait cycle. However, these indices rely on gait measurement systems that are costly and generally require manual examination, calibration procedures and the precise placement of sensors/markers on the body of the patient. Methods: To overcome these issues, this paper proposes a new asymmetry index, which uses an inexpensive, easy-to-use and markerless depth camera (Microsoft Kinect™) output. This asymmetry index directly uses depth images provided by the Kinect™ without requiring joint localization. It is based on the longitudinal spatial difference between lower-limb movements during the gait cycle. To evaluate the relevance of this index, fifteen healthy subjects were tested on a treadmill walking normally and then via an artificially-induced gait asymmetry with a thick sole placed under one shoe. The gait movement was simultaneously recorded using a Kinect™ placed in front of the subject and a motion capture system. Results: The proposed longitudinal index distinguished asymmetrical gait (p < 0.001), while other symmetry indices based on spatiotemporal gait parameters failed using such Kinect™ skeleton measurements. Moreover, the correlation coefficient between this index measured by Kinect™ and the ground truth of this index measured by motion capture is 0.968. Conclusion: This gait asymmetry index measured with a Kinect™ is low cost, easy to use and is a promising development for clinical gait analysis. PMID:25719863

  1. FACIAL ASYMMETRY IS NEGATIVELY RELATED TO CONDITION IN FEMALE MACAQUE MONKEYS

    PubMed Central

    Little, Anthony C.; Paukner, Annika; Woodward, Ruth A.; Suomi, Stephen J.

    2013-01-01

    The face is an important visual trait in social communication across many species. In evolutionary terms there are large and obvious selective advantages in detecting healthy partners, both in terms of avoiding individuals with poor health to minimise contagion and in mating with individuals with high health to help ensure healthy offspring. Many models of sexual selection suggest that an individual’s phenotype provides cues to their quality. Fluctuating asymmetry is a trait that is proposed to be an honest indicator of quality and previous studies have demonstrated that rhesus monkeys gaze longer at symmetric faces, suggesting preferences for such faces. The current study examined the relationship between measured facial symmetry and measures of health in a captive population of female rhesus macaque monkeys. We measured asymmetry from landmarks marked on front-on facial photographs and computed measures of health based on veterinary health and condition ratings, number of minor and major wounds sustained, and gain in weight over the first four years of life. Analysis revealed that facial asymmetry was negatively related to condition related health measures, with symmetric individuals being healthier than more asymmetric individuals. Facial asymmetry appears to be an honest indicator of health in rhesus macaques and asymmetry may then be used by conspecifics in mate-choice situations. More broadly, our data support the notion that faces are valuable sources of information in non-human primates and that sexual selection based on facial information is potentially important across the primate lineage. PMID:23667290

  2. Essays on the Digital Divide

    ERIC Educational Resources Information Center

    Abdelfattah, Belal M. T.

    2013-01-01

    The digital divide is a phenomenon that is globally persistent, despite rapidly decreasing costs in technology. While much of the variance in the adoption and use of information communication technology (ICT) that defines the digital divide can be explained by socioeconomic and demographic variables, there is still significant unaccounted variance…

  3. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Séguin, F. H.; Li, C. K.; DeCiantis, J. L.

    Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).

  4. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seguin, F. H.; Li, C. K.; DeCiantis, J. L.

    Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Furthermore, measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).

  5. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield

    DOE PAGES

    Seguin, F. H.; Li, C. K.; DeCiantis, J. L.; ...

    2016-03-22

    Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Furthermore, measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).

  6. Conformational Asymmetry and Quasicrystal Approximants in Linear Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Schulze, Morgan W.; Lewis, Ronald M.; Lettow, James H.; Hickey, Robert J.; Gillard, Timothy M.; Hillmyer, Marc A.; Bates, Frank S.

    2017-05-01

    Small angle x-ray scattering experiments on three model low molar mass diblock copolymer systems containing minority polylactide and majority hydrocarbon blocks demonstrate that conformational asymmetry stabilizes the Frank-Kasper σ phase. Differences in block flexibility compete with space filling at constant density inducing the formation of polyhedral shaped particles that assemble into this low symmetry ordered state with local tetrahedral coordination. These results confirm predictions from self-consistent field theory that establish the origins of symmetry breaking in the ordering of block polymer melts subjected to compositional and conformational asymmetry.

  7. Analysis of behavioral asymmetries in the elevated plus-maze and in the T-maze.

    PubMed

    Schwarting, Rainer K W; Borta, Andreas

    2005-02-15

    When studying functional asymmetries in normal laboratory rats, several behavioral tests have been applied and proven their utility, including turning in rotometers or open-fields, handedness in paw usage, T-maze alternation, and others. Here, we analyzed male Wistar rats in two tests, namely the elevated plus-maze and the T-maze. In these tests, behavioral asymmetries are rather likely to occur, since the animals have to show several types of turns towards the left or right when ambulating through these environments. In a first study using the plus-maze, we provide detailed data on (A) the types of turns which the animals showed when changing their direction within arms (i.e., 180 degrees turns), and (B) the types of turns when proceeding from one arm to an adjacent one (i.e., 90 degrees turns). With respect to asymmetry, we found moderate biases in favor of the right. On the 1st day of plus-maze testing, there was a trend for more rightward turns within arms. On the 2nd day of testing, there was a trend for turns towards the right when alternating between arms of the plus-maze. In a 2nd study, we asked for asymmetries in the plus-maze in animals, which had been treated acutely with the psychostimulatory amphetamine analogue 3,4-methylene-dioxymethamphetamine (MDMA). Psychostimulants drugs, especially amphetamine, have repeatedly been used before in work on functional asymmetry, since they can enhance or reveal asymmetries in normal rats. MDMA had dose-dependent effects on activity, which affected turns within arms, and turns between arms; however, there was only sparse evidence with respect to asymmetry. Interestingly, and if at all, asymmetry was in favor of the right. Finally, we present data for behavior in the T-maze, where we used a spontaneous test version, that is, the animals could explore the maze but had no task to solve. Asymmetries were measured as turns within the start arm (180 degrees), and as left- or rightward turns between arms (90 degrees ) at

  8. European Starlings Are Capable of Discriminating Subtle Size Asymmetries in Paired Stimuli

    ERIC Educational Resources Information Center

    Swaddle, John P.; Johnson, Charles W.

    2007-01-01

    Small deviations from bilateral symmetry (fluctuating asymmetries) are cues to fitness differences in some animals. Therefore, researchers have considered whether animals use these small asymmetries as visual cues to determine appropriate behavioral responses (e.g., mate preferences). However, there have been few systematic studies of animals'…

  9. A General Valence Asymmetry in Similarity: Good Is More Alike than Bad

    ERIC Educational Resources Information Center

    Koch, Alex; Alves, Hans; Krüger, Tobias; Unkelbach, Christian

    2016-01-01

    The density hypothesis (Unkelbach, Fiedler, Bayer, Stegmüller, & Danner, 2008) claims a general higher similarity of positive information to other positive information compared with the similarity of negative information to other negative information. This similarity asymmetry might explain valence asymmetries on all levels of cognitive…

  10. Investigation of the Causes of Breast Cancer at the Cellular Level: Isolation of In Vivo Binding Sites of the Human Origin Recognition Complex

    DTIC Science & Technology

    2000-08-01

    The coordination between cellular DNA replication and mitosis is critical to ensure controlled cell proliferation and accurate transmission of the...proteins involved in the initiation of DNA replication . Preliminary results are presented....genetic information as cells divide -two aspects of cellular life tipically lost in cancer. In order to unravel the molecular mechanisms of human DNA

  11. CP-violating asymmetries in charmless nonleptonic decays B-->PP, PV, VV in the factorization approach

    NASA Astrophysics Data System (ADS)

    Ali, A.; Kramer, G.; Lü, Cai-Dian

    1999-01-01

    We present estimates of the direct (in decay amplitudes) and indirect (mixing-induced) CP-violating asymmetries in the nonleptonic charmless two-body decay rates for B-->PP, B-->PV, and B-->VV decays and their charged conjugates, where P(V) is a light pseudoscalar (vector) meson. These estimates are based on a generalized factorization approach making use of next-to-leading order perturbative QCD contributions which generate the required strong phases. No soft final state interactions are included. We study the dependence of the asymmetries on a number of input parameters and show that there are at least two (possibly three) classes of decays in which the asymmetries are parametrically stable in this approach. The decay modes of particular interest are B(-)0-->π+π-, B(-)0-->K0Sπ0, B(-)0-->K0Sη', B(-)0-->K0Sη, and B(-)0-->ρ+ρ-. Likewise, the CP-violating asymmetry in the decays B(-)0-->K0Sh0 with h0=π0, K0S, η, η' is found to be parametrically stable and large. Measurements of these asymmetries will lead to a determination of the phases sin 2α and sin 2β and we work out the relationships in these modes in the present theoretical framework. We also show the extent of the so-called ``penguin pollution'' in the rate asymmetry ACP(π+π-) and of the ``tree shadow'' in the asymmetry ACP(K0Sη') which will effect the determination of sin 2α and sin 2β from the respective measurements. CP-violating asymmetries in B+/- decays depend on a model parameter in the penguin amplitudes and theoretical predictions require further experimental or theoretical input. Of these, CP-violating asymmetries in B+/--->π+/-η', B+/--->K*+/-η, B+/--->K*+/-η', and B+/--->K*+/-ρ0 are potentially interesting and are studied here.

  12. Triple product asymmetries in Λ b and Ξ 0 b decays

    DOE PAGES

    Gronau, Michael; Rosner, Jonathan L.

    2015-07-28

    In this study, the LHCb experiment is capable of studying four-body decays of the b-flavored baryons Λ b and Ξ 0 b to charmless final states consisting of charged pions, kaons, and baryons. We remark on the search in such modes for CP-violating triple product asymmetries and for CP rate asymmetries relative to decays involving charmed baryons.

  13. Left-right spin asymmetry in ℓ N ↑ → h X

    DOE PAGES

    Gamberg, Leonard; Kang, Zhong -Bo; Metz, Andreas; ...

    2014-10-09

    In this study, we consider the inclusive production of hadrons in lepton-nucleon scattering. For a transversely polarized nucleon this reaction shows a left-right azimuthal asymmetry, which we compute in twist-3 collinear factorization at leading order in perturbation theory. All non-perturbative parton correlators of the calculation are fixed through information from other hard processes. Our results for the left-right asymmetry agree in sign with recent data for charged pion production from the HERMES Collaboration and from Jefferson Lab. However, the magnitude of the computed asymmetries tends to be larger than the data. Potential reasons for this outcome are identified. We alsomore » give predictions for future experiments and highlight in particular the unique opportunities at an Electron Ion Collider.« less

  14. Left-right spin asymmetry in ℓ N ↑ → h X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamberg, Leonard; Kang, Zhong -Bo; Metz, Andreas

    In this study, we consider the inclusive production of hadrons in lepton-nucleon scattering. For a transversely polarized nucleon this reaction shows a left-right azimuthal asymmetry, which we compute in twist-3 collinear factorization at leading order in perturbation theory. All non-perturbative parton correlators of the calculation are fixed through information from other hard processes. Our results for the left-right asymmetry agree in sign with recent data for charged pion production from the HERMES Collaboration and from Jefferson Lab. However, the magnitude of the computed asymmetries tends to be larger than the data. Potential reasons for this outcome are identified. We alsomore » give predictions for future experiments and highlight in particular the unique opportunities at an Electron Ion Collider.« less

  15. Glucose supplement reverses the fasting-induced suppression of cellular immunity in Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Xu, De-Li; Wang, De-Hua

    2011-10-01

    Glucose plays an important role in immunity. Three day fasting will decrease cellular immunity and blood glucose levels in Mongolian gerbils (Meriones unguiculatus). In the present study, we tested the hypothesis that glucose supplement can reverse the fasting-induced suppression in cellular immunity in gerbils. Twenty-eight male gerbils were selected and randomly divided into fed and fasting groups. Half of the gerbils in each group were then provided with either 10% glucose water or pure water. After 66 h, each gerbil was injected with phytohaemagglutinin (PHA) solution to challenge cellular immunity. Results showed that glucose supplement restored blood glucose levels in fasted gerbils to those of the fed controls. It also recovered cellular immunity, body fat mass and serum leptin levels in fasted gerbils to the values of the fed controls. Blood glucose levels were positively correlated with body fat mass, leptin levels and cellular immune responses. Thymus and spleen masses, and white blood cells in fasted gerbils were not affected by glucose supplement. In general, our data demonstrate that glucose supplement could reverse fasting-induced suppression of cellular immunity in Mongolian gerbils. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Fluctuating asymmetry and psychometric intelligence.

    PubMed Central

    Furlow, F B; Armijo-Prewitt, T; Gangestad, S W; Thornhill, R

    1997-01-01

    Little is known about the genetic nature of human psychometric intelligence (IQ), but it is widely assumed that IQ's heritability is at loci for intelligence per se. We present evidence consistent with a hypothesis that interindividual IQ differences are partly due to heritable vulnerabilities to environmental sources of developmental stress, an indirect genetic mechanism for the heritability of IQ. Using fluctuating asymmetry (FA) of the body (the asymmetry resulting from errors in the development of normally symmetrical bilateral traits under stressful conditions), we estimated the relative developmental instability of 112 undergraduates and administered to them Cattell's culture fair intelligence test (CFIT). A subsequent replication on 128 students was performed. In both samples, FA correlated negatively and significantly with CFIT scores. We propose two non-mutually exclusive physiological explanations for this correlation. First, external body FA may correlate negatively with the developmental integrity of the brain. Second, individual energy budget allocations and/or low metabolic efficiency in high-FA individuals may lower IQ scores. We review the data on IQ in light of our findings and conclude that improving developmental quality may increase average IQ in future generations. PMID:9265189

  17. Frontal EEG Asymmetry and Temperament Across Infancy and Early Childhood: An Exploration of Stability and Bidirectional Relations

    PubMed Central

    Howarth, Grace Z.; Fettig, Nicole B.; Curby, Timothy W.; Bell, Martha Ann

    2015-01-01

    The stability of frontal electroencephalogram (EEG) asymmetry, temperamental activity level and fear, as well as bidirectional relations between asymmetry and temperament across the first four years of life were examined in a sample of 183 children. Children participated in annual lab visits through 48 months, providing EEG and maternal report of temperament. EEG asymmetry showed moderate stability between 10 and 24 months. Analyses revealed that more left asymmetry predicted later activity level across the first three years. Conversely, asymmetry did not predict fear. Rather, fear at 36 months predicted more right asymmetry at 48 months. Results highlight the need for additional longitudinal research of infants and children to increase understanding of bidirectional relations between EEG and temperament in typically developing populations. PMID:26659466

  18. A Surface-based Analysis of Language Lateralization and Cortical Asymmetry

    PubMed Central

    Greve, Douglas N.; Van der Haegen, Lise; Cai, Qing; Stufflebeam, Steven; Sabuncu, Mert R.; Fischl, Bruce; Bysbaert, Marc

    2013-01-01

    Among brain functions, language is one of the most lateralized. Cortical language areas are also some of the most asymmetrical in the brain. An open question is whether the asymmetry in function is linked to the asymmetry in anatomy. To address this question, we measured anatomical asymmetry in 34 participants shown with fMRI to have language dominance of the left hemisphere (LLD) and 21 participants shown to have atypical right hemisphere dominance (RLD). All participants were healthy and left-handed, and most (80%) were female. Gray matter (GM) volume asymmetry was measured using an automated surface-based technique in both ROIs and exploratory analyses. In the ROI analysis, a significant difference between LLD and RLD was found in the insula. No differences were found in planum temporale (PT), pars opercularis (POp), pars triangularis (PTr), or Heschl’s gyrus (HG). The PT, POp, insula, and HG were all significantly left lateralized in both LLD and RLD participants. Both the positive and negative ROI findings replicate a previous study using manually labeled ROIs in a different cohort [Keller, S. S., Roberts, N., Garcia-Finana, M., Mohammadi, S., Ringelstein, E. B., Knecht, S., et al. Can the language-dominant hemisphere be predicted by brain anatomy? Journal of Cognitive Neuroscience, 23, 2013–2029, 2011]. The exploratory analysis was accomplished using a new surface-based registration that aligns cortical folding patterns across both subject and hemisphere. A small but significant cluster was found in the superior temporal gyrus that overlapped with the PT. A cluster was also found in the ventral occipitotemporal cortex corresponding to the visual word recognition area. The surface-based analysis also makes it possible to disentangle the effects of GM volume, thickness, and surface area while removing the effects of curvature. For both the ROI and exploratory analyses, the difference between LLD and RLD volume laterality was most strongly driven by

  19. Development of cortical asymmetry in typically developing children and its disruption in attention-deficit/hyperactivity disorder.

    PubMed

    Shaw, Philip; Lalonde, Francois; Lepage, Claude; Rabin, Cara; Eckstrand, Kristen; Sharp, Wendy; Greenstein, Deanna; Evans, Alan; Giedd, J N; Rapoport, Judith

    2009-08-01

    Just as typical development of anatomical asymmetries in the human brain has been linked with normal lateralization of motor and cognitive functions, disruption of asymmetry has been implicated in the pathogenesis of neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD). No study has examined the development of cortical asymmetry using longitudinal neuroanatomical data. To delineate the development of cortical asymmetry in children with and without ADHD. Longitudinal study. Government Clinical Research Institute. A total of 218 children with ADHD and 358 typically developing children, from whom 1133 neuroanatomical magnetic resonance images were acquired prospectively. Cortical thickness was estimated at 40 962 homologous points in the left and right hemispheres, and the trajectory of change in asymmetry was defined using mixed-model regression. In right-handed typically developing individuals, a mean (SE) increase in the relative thickness of the right orbitofrontal and inferior frontal cortex with age of 0.011 (0.0018) mm per year (t(337) = 6.2, P < .001) was balanced against a relative left-hemispheric increase in the occipital cortical regions of 0.013 (0.0015) mm per year (t(337) = 8.1, P < .001). Age-related change in asymmetry in non-right-handed typically developing individuals was less extensive and was localized to different cortical regions. In ADHD, the posterior component of this evolving asymmetry was intact, but the prefrontal component was lost. These findings explain the way that, in typical development, the increased dimensions of the right frontal and left occipital cortical regions emerge in adulthood from the reversed pattern of childhood cortical asymmetries. Loss of the prefrontal component of this evolving asymmetry in ADHD is compatible with disruption of prefrontal function in the disorder and demonstrates the way that disruption of typical processes of asymmetry can inform our understanding of

  20. J/ψ production in polarized and unpolarized ep collision and Sivers and cos 2φ asymmetries

    NASA Astrophysics Data System (ADS)

    Mukherjee, Asmita; Rajesh, Sangem

    2017-12-01

    We calculate the Sivers and cos 2φ azimuthal asymmetries in J/ψ production in the polarized and unpolarized semi-inclusive ep collision, respectively, using the formalism based on the transverse momentum-dependent parton distributions (TMDs). The non-relativistic QCD-based color octet model is employed in calculating the J/ψ production rate. The Sivers asymmetry in this process directly probes the gluon Sivers function. The estimated Sivers asymmetry at z=1 is negative, which is in good agreement with the COMPASS data. The effect of TMD evolution on the Sivers asymmetry is also investigated. The cos 2φ asymmetry is sizable and probes the linearly polarized gluon distribution in an unpolarized proton.

  1. Origin of tension-compression asymmetry in ultrafine-grained fcc metals

    NASA Astrophysics Data System (ADS)

    Tsuru, T.

    2017-08-01

    A mechanism of anomalous tension-compression (T-C) asymmetry in ultrafine-grained (UFG) metals is proposed using large-scale atomistic simulations and dislocation theory. Unlike coarse-grained metals, UFG Al exhibits remarkable T-C asymmetry of the yield stress. The atomistic simulations reveal that the yield event is not related to intragranular dislocations but caused by dislocation nucleation from the grain boundaries (GBs). The dislocation core structure associated with the stacking fault energy in Al is strongly affected by the external stress compared with Cu; specifically, high tensile stress stabilizes the dissociation into partial dislocations. These dislocations are more likely to be nucleated from GBs and form deformation twins from an energetic viewpoint. The mechanism, which is different from well-known mechanisms for nanocrystalline and amorphous metals, is unique to high-strength UFG metals and can explain the difference in T-C asymmetry between UFG Cu and Al.

  2. Developmental Changes in Topological Asymmetry Between Hemispheric Brain White Matter Networks from Adolescence to Young Adulthood.

    PubMed

    Zhong, Suyu; He, Yong; Shu, Hua; Gong, Gaolang

    2017-04-01

    Human brain asymmetries have been well described. Intriguingly, a number of asymmetries in brain phenotypes have been shown to change throughout the lifespan. Recent studies have revealed topological asymmetries between hemispheric white matter networks in the human brain. However, it remains unknown whether and how these topological asymmetries evolve from adolescence to young adulthood, a critical period that constitutes the second peak of human brain and cognitive development. To address this question, the present study included a large cohort of healthy adolescents and young adults. Diffusion and structural magnetic resonance imaging were acquired to construct hemispheric white matter networks, and graph-theory was applied to quantify topological parameters of the hemispheric networks. In both adolescents and young adults, rightward asymmetry in both global and local network efficiencies was consistently observed between the 2 hemispheres, but the degree of the asymmetry was significantly decreased in young adults. At the nodal level, the young adults exhibited less rightward asymmetry of nodal efficiency mainly around the parasylvian area, posterior tempo-parietal cortex, and fusiform gyrus. These developmental patterns of network asymmetry provide novel insight into the human brain structural development from adolescence to young adulthood and also likely relate to the maturation of language and social cognition that takes place during this period. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Positive and Negative Emotionality at Age 3 Predicts Change in Frontal EEG Asymmetry across Early Childhood.

    PubMed

    Goldstein, Brandon L; Shankman, Stewart A; Kujawa, Autumn; Torpey-Newman, Dana C; Dyson, Margaret W; Olino, Thomas M; Klein, Daniel N

    2018-04-24

    Depression is characterized by low positive emotionality (PE) and high negative emotionality (NE), as well as asymmetries in resting electroencephalography (EEG) alpha power. Moreover, frontal asymmetry has itself been linked to PE, NE, and related constructs. However, little is known about associations of temperamental PE and NE with resting EEG asymmetries in young children and whether this association changes as a function of development. In a longitudinal study of 254 three-year old children, we assessed PE and NE at age 3 using a standard laboratory observation procedure. Frontal EEG asymmetries were assessed at age 3 and three years later at age 6. We observed a significant three-way interaction of preschool PE and NE and age at assessment for asymmetry at F3-F4 electrode sites, such that children with both low PE and high NE developed a pattern of increasingly lower relative left-frontal cortical activity over time. In addition, F7-F8 asymmetry was predicted by a PE by time interaction, such that the frontal asymmetry in children with high PE virtually disappeared by age 6. Overall, these findings suggest that early temperament is associated with developmental changes in frontal asymmetry, and that the combination of low PE and high NE predicts the development of the pattern of frontal symmetry that is associated with depression.

  4. North-south components of the annual asymmetry in the ionosphere

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Arikan, F.; Hernandez-Pajares, M.; Veselovsky, I. S.

    2014-07-01

    A retrospective study of the asymmetry in the ionosphere during the solstices is made using the different geospace parameters in the North and South magnetic hemispheres. Data of total electron content (TEC) and global electron content (GEC) produced from global ionospheric maps, GIM-TEC for 1999-2013, the ionospheric electron content (IEC) measured by TOPEX-Jason 1 and 2 satellites for 2001-2012, the F2 layer critical frequency and peak height measured on board ISIS 1, ISIS 2, and IK19 satellites during 1969-1982, and the earthquakes M5+ occurrences for 1999-2013 are analyzed. Annual asymmetry is observed with GEC and IEC for the years of observation with asymmetry index, AI, showing January > July excess from 0.02 to 0.25. The coincident pattern of January-to-July asymmetry ratio of TEC and IEC colocated along the magnetic longitude sector of 270° ± 5°E in the Pacific Ocean is obtained varying with local time and magnetic latitude. The sea/land differences in the F2 layer peak electron density, NmF2, and the peak height, hmF2, gathered with topside sounding data exhibit tilted ionosphere along the seashores with denser electron population at greater peak heights over the sea. The topside peak electron density NmF2, TEC, IEC, and the hemisphere part of GEC are dominant in the South hemisphere which resembles the pattern for seismic activity with dominant earthquake occurrence in the South magnetic hemisphere. Though the study is made for the hemispheric and annual asymmetry during solstices in the ionosphere, the conclusions seem valid for other aspects of seismic-ionospheric associations with tectonic plate boundaries representing zones of enhanced risk for space weather.

  5. Comparison of Humoral and Cellular Immune Responses to Inactivated Swine Influenza Virus Vaccine in Weaned Pigs

    USDA-ARS?s Scientific Manuscript database

    Purpose: To evaluate and compare humoral and cellular immune responses to inactivated swine influenza virus (SIV) vaccine. Methods: Fifty 3-week-old weaned pigs from a herd free of SIV and PRRSV were randomly divided into the non-vaccinated control group and vaccinated group containing 25 pigs each....

  6. Comparison of Humoral and Cellular Immune Responses to Inactivated Swine Influenza Virus Vaccine in Weaned Pigs

    USDA-ARS?s Scientific Manuscript database

    Humoral and cellular immune responses to inactivated swine influenza virus (SIV) vaccine were evaluated and compared. Fifty 3-week-old weaned pigs from a herd free of SIV and PRRSV were randomly divided into the non-vaccinated control group and vaccinated group containing 25 pigs each. Pigs were va...

  7. Quadrupolar asymmetry in shifted-stem vane-shaped-rod radio frequency quadrupole accelerator

    NASA Astrophysics Data System (ADS)

    Mehrotra, Nitin

    2018-04-01

    Quadrupolar Asymmetry (QA), which has been a rampant problem for rod-type Radio Frequency Quadrupole (RFQ) Linacs, arises due to the geometry of resonant structure. A systematic parametric simulation study has been performed to unravel their effect on Figure of Merit (FoM) quantities namely Quality Factor (Q), Shunt Impedance (Rsh) and Quadrupolar Asymmetry (QA). A novel stem and cavity shape is proposed, which caters to the profile of electromagnetic fields of the resonant structure. A design methodology is formulated, which demonstrates that Quadrupolar Asymmetry can be annihilated, and a symmetric electric field can be produced in all four quadrants of rod-type RFQ accelerator.

  8. Can theories of visual representation help to explain asymmetries in amygdala function?

    PubMed

    McMenamin, Brenton W; Marsolek, Chad J

    2013-06-01

    Emotional processing differs between the left and right hemispheres of the brain, and functional differences have been reported more specifically between the left and right amygdalae, subcortical structures heavily implicated in emotional processing. However, the empirical pattern of amygdalar asymmetries is inconsistent with extant theories of emotional asymmetries. Here we review this discrepancy, and we hypothesize that hemispheric differences in visual object processing help to explain the previously reported functional differences between the left and right amygdalae. The implication that perceptual factors play a large role in determining amygdalar asymmetries may help to explain amygdalar dysfunction in the development and maintenance of posttraumatic stress disorder.

  9. Criteria and tools for determining drainage divide stability

    NASA Astrophysics Data System (ADS)

    Forte, Adam M.; Whipple, Kelin X.

    2018-07-01

    Watersheds are the fundamental organizing units in landscapes and thus the controls on drainage divide location and mobility are an essential facet of landscape evolution. Additionally, many common topographic analyses fundamentally assume that river network topology and divide locations are largely static, allowing channel profile form to be interpreted in terms of spatio-temporal patterns of rock uplift rate relative to base level, climate, or rock properties. Recently however, it has been suggested that drainage divides are more mobile than previously thought and that divide mobility, and resulting changes in drainage area, could potentially confound interpretations of river profiles. Ultimately, reliable metrics are needed to diagnose the mobility of divides as part of routine landscape analyses. One such recently proposed metric is cross-divide contrasts in χ, a proxy for steady-state channel elevation, but cross-divide contrasts in a number of topographic metrics show promise. Here we use a series of landscape evolution simulations in which we induce divide mobility under different conditions to test the utility of a suite of topographic metrics of divide mobility and for comparison with natural examples in the eastern Greater Caucasus Mountains, the Kars Volcanic Plateau, and the western San Bernadino Mountains. Specifically, we test cross-divide contrasts in mean gradient, mean local relief, channel bed elevation, and χ all measured at, or averaged upstream of, a reference drainage area. Our results highlight that cross-divide contrasts in χ only faithfully reflect current divide mobility when uplift, rock erodibility, climate, and catchment outlet elevation are uniform across both river networks on either side of the divide, otherwise a χ-anomaly only indicates a possible future divide instability. The other metrics appear to be more reliable representations of current divide motion, but in natural landscapes, only cross-divide contrasts in mean

  10. Miniaturized Wilkinson Power Dividers Utilizing Capacitive Loading

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Ponchak, George E.; Weller, Thomas M.

    2001-01-01

    This letter reports the miniaturization of a planar Wilkinson power divider by capacitive loading of the quarter wave transmission lines employed in conventional Wilkinson power dividers. Reduction of the transmission line segments from lambda/4 to between lambda/5 and lambda/12 are reported here. The input and output lines at the three ports and the lines comprising the divider itself are coplanar waveguide (CPW) and asymmetric coplanar stripline (ACPS), respectively. The 10 GHZ power dividers are fabricated on high resistivity silicon (HRS) and alumina wafers. These miniaturized dividers are 74% smaller than conventional Wilkinson power dividers, and have a return loss better than +30 dB and an insertion loss less than 0.55 dB. Design equations and a discussion about the effect of parasitic reactance on the isolation are presented for the first time.

  11. Breaking symmetry: the zebrafish as a model for understanding left-right asymmetry in the developing brain.

    PubMed

    Roussigne, Myriam; Blader, Patrick; Wilson, Stephen W

    2012-03-01

    How does left-right asymmetry develop in the brain and how does the resultant asymmetric circuitry impact on brain function and lateralized behaviors? By enabling scientists to address these questions at the levels of genes, neurons, circuitry and behavior,the zebrafish model system provides a route to resolve the complexity of brain lateralization. In this review, we present the progress made towards characterizing the nature of the gene networks and the sequence of morphogenetic events involved in the asymmetric development of zebrafish epithalamus. In an attempt to integrate the recent extensive knowledge into a working model and to identify the future challenges,we discuss how insights gained at a cellular/developmental level can be linked to the data obtained at a molecular/genetic level. Finally, we present some evolutionary thoughts and discuss how significant discoveries made in zebrafish should provide entry points to better understand the evolutionary origins of brain lateralization.

  12. Arm swing magnitude and asymmetry during gait in the early stages of Parkinson's disease.

    PubMed

    Lewek, Michael D; Poole, Roxanne; Johnson, Julia; Halawa, Omar; Huang, Xuemei

    2010-02-01

    The later stages of Parkinson's disease (PD) are characterized by altered gait patterns. Although decreased arm swing during gait is the most frequently reported motor dysfunction in individuals with PD, quantitative descriptions of gait in early PD have largely ignored upper extremity movements. This study was designed to perform a quantitative analysis of arm swing magnitude and asymmetry that might be useful in the assessment of early PD. Twelve individuals with early PD (in "off" state) and eight controls underwent gait analysis using an optically-based motion capture system. Participants were instructed to walk at normal and fast velocities, and then on heels (to minimize push-off). Arm swing was measured as the excursion of the wrist with respect to the pelvis. Arm swing magnitude for each arm, and inter-arm asymmetry, were compared between groups. Both groups had comparable gait velocities (p = 0.61), and there was no significant difference between the groups in the magnitude of arm swing in all walking conditions for the arm that swung more (p = 0.907) or less (p = 0.080). Strikingly, the PD group showed significantly greater arm swing asymmetry (asymmetry angle: 13.9 + or - 7.9%) compared to the control group (asymmetry angle: 5.1 + or - 4.0%; p = 0.003). Unlike arm swing magnitude, arm swing asymmetry unequivocally differs between people with early PD and controls. Such quantitative evaluation of arm swing, especially its asymmetry, may have utility for early and differential diagnosis, and for tracking disease progression in patients with later PD. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Arm Swing Magnitude and Asymmetry During Gait in the Early Stages of Parkinson's Disease

    PubMed Central

    Lewek, Michael D.; Poole, Roxanne; Johnson, Julia; Halawa, Omar; Huang, Xuemei

    2009-01-01

    The later stages of Parkinson's disease (PD) are characterized by altered gait patterns. Although decreased arm swing during gait is the most frequently reported motor dysfunction in individuals with PD, quantitative descriptions of gait in early PD have largely ignored upper extremity movements. This study was designed to perform a quantitative analysis of arm swing magnitude and asymmetry that might be useful in the assessment of early PD. Twelve individuals with early PD (in “off” state) and eight controls underwent gait analysis using an optically-based motion capture system. Participants were instructed to walk at normal and fast velocities, and then on heels (to minimize push-off). Arm swing was measured as the excursion of the wrist with respect to the pelvis. Arm swing magnitude for each arm, and inter-arm asymmetry, were compared between groups. Both groups had comparable gait velocities (p=0.61), and there was no significant difference between the groups in the magnitude of arm swing in all walking conditions for the arm that swung more (p=0.907) or less (p=0.080). Strikingly, the PD group showed significantly greater arm swing asymmetry (asymmetry angle: 13.9±7.9%) compared to the control group (asymmetry angle: 5.1±4.0%; p=0.003). Unlike arm swing magnitude, arm swing asymmetry unequivocally differs between people with early PD and controls. Such quantitative evaluation of arm swing, especially its asymmetry, may have utility for early and differential diagnosis, and for tracking disease progression in patients with later PD. PMID:19945285

  14. Characterizing visual asymmetries in contrast perception using shaded stimuli.

    PubMed

    Chacón, José; Castellanos, Miguel Ángel; Serrano-Pedraza, Ignacio

    2015-01-01

    Previous research has shown a visual asymmetry in shaded stimuli where the perceived contrast depended on the polarity of their dark and light areas (Chacón, 2004). In particular, circles filled out with a top-dark luminance ramp were perceived with higher contrast than top-light ones although both types of stimuli had the same physical contrast. Here, using shaded stimuli, we conducted four experiments in order to find out if the perceived contrast depends on: (a) the contrast level, (b) the type of shading (continuous vs. discrete) and its degree of perceived three-dimensionality, (c) the orientation of the shading, and (d) the sign of the perceived contrast alterations. In all experiments the observers' tasks were to equate the perceived contrast of two sets of elements (usually shaded with opposite luminance polarity), in order to determine the subjective equality point. Results showed that (a) there is a strong difference in perceived contrast between circles filled out with luminance ramp top-dark and top-light that is similar for different contrast levels; (b) we also found asymmetries in contrast perception with different shaded stimuli, and this asymmetry was not related with the perceived three-dimensionality but with the type of shading, being greater for continuous-shading stimuli; (c) differences in perceived contrast varied with stimulus orientation, showing the maximum difference on vertical axis with a left bias consistent with the bias found in previous studies that used visual-search tasks; and (d) asymmetries are consistent with an attenuation in perceived contrast that is selective for top-light vertically-shaded stimuli.

  15. Manual asymmetries in bimanual isochronous tapping tasks in children.

    PubMed

    Faria, Inês; Diniz, Ana; Barreiros, João

    2017-01-01

    Tapping tasks have been investigated throughout the years, with variations in features such as the complexity of the task, the use of one or both hands, the employ of auditory or visual stimuli, and the characteristics of the subjects. The evaluation of lateral asymmetries in tapping tasks in children offers an insight into the structure of rhythmic movements and handedness at early stages of development. The current study aims to investigate the ability of children (aged six and seven years-old) to maintain a rhythm, in a bimanual tapping task at two different target frequencies, as well as the manual asymmetries displayed while doing so. The analyzed data in this work are the series of the time intervals between successive taps. We suggest several profiles of behavior, regarding the overall performance of children in both tempo conditions. We also propose a new method of quantifying the variability of the performance and the asymmetry of the hands, based on ellipses placed on scatter plots of the non-dominant-dominant series versus the dominant-non-dominant series. We then use running correlations to identify changes of coordination tendencies over time. The main results show that variability is larger in the task with the longer target interval. Furthermore, most children evidence lateral asymmetries, but in general they show the capacity to maintain the mean of consecutive intertap intervals of both hands close to the target interval. Finally, we try to interpret our findings in the light of existing models and timing modes. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Cone Beam Computed Tomographic Evaluation of Mandibular Asymmetry in Patients with Cleft Lip and Palate.

    PubMed

    Paknahad, Maryam; Shahidi, Shoaleh; Bahrampour, Ehsan; Beladi, Amir Saied; Khojastepour, Leila

    2018-01-01

    Objective The purpose of the present study was to compare mandibular vertical asymmetry in patients with unilateral and bilateral cleft lip and palate and subjects with normal occlusion. Materials and Methods Cone beam computed tomography scans of three groups consisting of 20 patients with unilateral cleft lip and palate, 20 patients affected by bilateral cleft lip and palate, and a control group of 20 subjects with normal occlusion were analyzed for this study. Condylar, ramal, and condylar plus ramal asymmetry indices were measured for all subjects using the method of Habets et al. Kruskal-Wallis and Mann-Whitney tests were used to determine any significant differences between the groups for all indices at the 95% level of confidence. Results There were no significant differences regarding sex for all mandibular asymmetry indices in all three groups. All Asymmetry indices (condylar, ramal, and condylar plus ramal asymmetry) were significantly higher in the unilateral cleft group compared with the other two groups. Conclusion Cone beam computed tomography images showed that patients with cleft lip and palate suffered from mandibular asymmetry. Subjects with unilateral cleft lip and palate had a more asymmetric mandible compared with the bilateral cleft lip and palate and control groups. Therefore, the mandible appears to be the leading factor in facial asymmetry in subjects with unilateral cleft lip and palate.

  17. Speech processing: from peripheral to hemispheric asymmetry of the auditory system.

    PubMed

    Lazard, Diane S; Collette, Jean-Louis; Perrot, Xavier

    2012-01-01

    Language processing from the cochlea to auditory association cortices shows side-dependent specificities with an apparent left hemispheric dominance. The aim of this article was to propose to nonspeech specialists a didactic review of two complementary theories about hemispheric asymmetry in speech processing. Starting from anatomico-physiological and clinical observations of auditory asymmetry and interhemispheric connections, this review then exposes behavioral (dichotic listening paradigm) as well as functional (functional magnetic resonance imaging and positron emission tomography) experiments that assessed hemispheric specialization for speech processing. Even though speech at an early phonological level is regarded as being processed bilaterally, a left-hemispheric dominance exists for higher-level processing. This asymmetry may arise from a segregation of the speech signal, broken apart within nonprimary auditory areas in two distinct temporal integration windows--a fast one on the left and a slower one on the right--modeled through the asymmetric sampling in time theory or a spectro-temporal trade-off, with a higher temporal resolution in the left hemisphere and a higher spectral resolution in the right hemisphere, modeled through the spectral/temporal resolution trade-off theory. Both theories deal with the concept that lower-order tuning principles for acoustic signal might drive higher-order organization for speech processing. However, the precise nature, mechanisms, and origin of speech processing asymmetry are still being debated. Finally, an example of hemispheric asymmetry alteration, which has direct clinical implications, is given through the case of auditory aging that mixes peripheral disorder and modifications of central processing. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  18. Study of Double Spin Asymmetries in Inclusive ep Scattering at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Hoyoung

    2014-08-01

    The spin structure of the proton has been investigated in the high Bjorken x and low momentum transfer Q 2 region. We used Jefferson Lab's polarized electron beam, a polarized target, and a spectrometer to get both the parallel and perpendicular spin asymmetries Apar and Aperp. These asymmetries produced the physics asymmetries A_1 and A_2 and spin structure functions g_1 and g_2. We found Q 2 dependences of the asymmetries at resonance region and higher-twist effects. Our result increases the available data on the proton spin structure, especially at resonance region with low Q 2. Moreover, A_2 and g_2 datamore » show clear Q 2 evolution, comparing with RSS and SANE-BETA. Negative resonance in A_2 data needs to be examined by theory. It can be an indication of very negative transverse-longitudinal interference contribution at W ~ 1.3 GeV. Higher twist effect appears at the low Q 2 of 1.9 GeV 2, although it is less significant than lower Q 2 data of RSS. Twist03 matrix element d_2 was calculated using our asymmetry fits evaluation at Q 2 – 1.9 GeV 2. D-bar_2 = -0.0087±0.0014 was obtained by integrating 0.47 ≤ x ≤ 0.87.« less

  19. Nodal signalling determines biradial asymmetry in Hydra.

    PubMed

    Watanabe, Hiroshi; Schmidt, Heiko A; Kuhn, Anne; Höger, Stefanie K; Kocagöz, Yigit; Laumann-Lipp, Nico; Ozbek, Suat; Holstein, Thomas W

    2014-11-06

    In bilaterians, three orthogonal body axes define the animal form, with distinct anterior-posterior, dorsal-ventral and left-right asymmetries. The key signalling factors are Wnt family proteins for the anterior-posterior axis, Bmp family proteins for the dorsal-ventral axis and Nodal for the left-right axis. Cnidarians, the sister group to bilaterians, are characterized by one oral-aboral body axis, which exhibits a distinct biradiality of unknown molecular nature. Here we analysed the biradial growth pattern in the radially symmetrical cnidarian polyp Hydra, and we report evidence of Nodal in a pre-bilaterian clade. We identified a Nodal-related gene (Ndr) in Hydra magnipapillata, and this gene is essential for setting up an axial asymmetry along the main body axis. This asymmetry defines a lateral signalling centre, inducing a new body axis of a budding polyp orthogonal to the mother polyp's axis. Ndr is expressed exclusively in the lateral bud anlage and induces Pitx, which encodes an evolutionarily conserved transcription factor that functions downstream of Nodal. Reminiscent of its function in vertebrates, Nodal acts downstream of β-Catenin signalling. Our data support an evolutionary scenario in which a 'core-signalling cassette' consisting of β-Catenin, Nodal and Pitx pre-dated the cnidarian-bilaterian split. We presume that this cassette was co-opted for various modes of axial patterning: for example, for lateral branching in cnidarians and left-right patterning in bilaterians.

  20. Disruption of Epithalamic Left-Right Asymmetry Increases Anxiety in Zebrafish.

    PubMed

    Facchin, Lucilla; Duboué, Erik R; Halpern, Marnie E

    2015-12-02

    Differences between the left and right sides of the brain are found throughout the animal kingdom, but the consequences of altered neural asymmetry are not well understood. In the zebrafish epithalamus, the parapineal is located on the left side of the brain where it influences development of the adjacent dorsal habenular (dHb) nucleus, causing the left and right dHb to differ in their organization, gene expression, and connectivity. Left-right (L-R) reversal of parapineal position and dHb asymmetry occurs spontaneously in a small percentage of the population, whereas the dHb develop symmetrically following experimental ablation of the parapineal. The habenular region was previously implicated in modulating fear in both mice and zebrafish, but the relevance of its L-R asymmetry is unclear. We now demonstrate that disrupting directionality of the zebrafish epithalamus causes reduced exploratory behavior and increased cortisol levels, indicative of enhanced anxiety. Accordingly, exposure to buspirone, an anxiolytic agent, significantly suppresses atypical behavior. Axonal projections from the parapineal to the dHb are more variable when it is located on the right side of the brain, revealing that L-R reversals do not necessarily represent a neuroanatomical mirror image. The results highlight the importance of directional asymmetry of the epithalamus in the regulation of stress responses in zebrafish. Copyright © 2015 the authors 0270-6474/15/3515847-13$15.00/0.

  1. Giant electron-hole transport asymmetry in ultra-short quantum transistors.

    PubMed

    McRae, A C; Tayari, V; Porter, J M; Champagne, A R

    2017-05-31

    Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e-h charging energy asymmetry). We parameterize the e-h transport asymmetry by the ratio of the hole and electron charging energies η e-h . This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, η e-h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV.

  2. Giant electron-hole transport asymmetry in ultra-short quantum transistors

    PubMed Central

    McRae, A. C.; Tayari, V.; Porter, J. M.; Champagne, A. R.

    2017-01-01

    Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e−h charging energy asymmetry). We parameterize the e−h transport asymmetry by the ratio of the hole and electron charging energies ηe−h. This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, ηe−h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV. PMID:28561024

  3. Dawn-dusk asymmetries in rotating magnetospheres: Lessons from modeling Saturn

    NASA Astrophysics Data System (ADS)

    Jia, Xianzhe; Kivelson, Margaret G.

    2016-02-01

    Spacecraft measurements reveal perplexing dawn-dusk asymmetries of field and plasma properties in the magnetospheres of Saturn and Jupiter. Here we describe a previously unrecognized source of dawn-dusk asymmetry in a rapidly rotating magnetosphere. We analyze two magnetohydrodynamic simulations, focusing on how flows along and across the field vary with local time in Saturn's dayside magnetosphere. As plasma rotates from dawn to noon on a dipolarizing flux tube, it flows away from the equator along the flux tube at roughly half of the sound speed (Cs), the maximum speed at which a bulk plasma can flow along a flux tube into a lower pressure region. As plasma rotates from noon to dusk on a stretching flux tube, the field-aligned component of its centripetal acceleration decreases and it flows back toward the equator at speeds typically smaller than 1/2 Cs. Correspondingly, the plasma sheet remains far thicker and the field less stretched in the afternoon than in the morning. Different radial force balance in the morning and afternoon sectors produce asymmetry in the plasma sheet thickness and a net dusk-to-dawn flow inside of L = 15 or equivalently, a large-scale electric field (E) oriented from postnoon to premidnight, as reported from observations. Morning-afternoon asymmetry analogous to that found at Saturn has been observed at Jupiter, and a noon-midnight component of E cannot be ruled out.

  4. Comparison of X-31 Flight and Ground-Based Yawing Moment Asymmetries at High Angles of Attack

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.; Croom, Mark A.

    2001-01-01

    Significant yawing moment asymmetries were encountered during the high-angle-of-attack envelope expansion of the two X-31 aircraft. These asymmetries caused position saturations of the thrust-vectoring vanes and trailing-edge flaps during some stability-axis rolling maneuvers at high angles of attack. The two test aircraft had different asymmetry characteristics, and ship two has asymmetries that vary as a function of Reynolds number. Several aerodynamic modifications have been made to the X-31 forebody with the goal of minimizing the asymmetry. These modifications include adding transition strips on the forebody and noseboom, using two different length strakes, and increasing nose bluntness. Ultimately, a combination of forebody strakes, nose blunting, and noseboom transition strips reduced the yawing moment asymmetry enough to fully expand the high-angle-of-attack envelope. Analysis of the X-31 flight data is reviewed and compared to wind-tunnel and water-tunnel measurements. Several lessons learned are outlined regarding high-angle-of-attack configuration design and ground testing.

  5. Bridging the Health Data Divide

    PubMed Central

    2016-01-01

    Fundamental quality, safety, and cost problems have not been resolved by the increasing digitization of health care. This digitization has progressed alongside the presence of a persistent divide between clinicians, the domain experts, and the technical experts, such as data scientists. The disconnect between clinicians and data scientists translates into a waste of research and health care resources, slow uptake of innovations, and poorer outcomes than are desirable and achievable. The divide can be narrowed by creating a culture of collaboration between these two disciplines, exemplified by events such as datathons. However, in order to more fully and meaningfully bridge the divide, the infrastructure of medical education, publication, and funding processes must evolve to support and enhance a learning health care system. PMID:27998877

  6. Top quark forward-backward asymmetry and same-sign top quark pairs.

    PubMed

    Berger, Edmond L; Cao, Qing-Hong; Chen, Chuan-Ren; Li, Chong Sheng; Zhang, Hao

    2011-05-20

    The top quark forward-backward asymmetry measured at the Tevatron collider shows a large deviation from standard model expectations. Among possible interpretations, a nonuniversal Z' model is of particular interest as it naturally predicts a top quark in the forward region of large rapidity. To reproduce the size of the asymmetry, the couplings of the Z' to standard model quarks must be large, inevitably leading to copious production of same-sign top quark pairs at the energies of the Large Hadron Collider (LHC). We explore the discovery potential for tt and ttj production in early LHC experiments at 7-8 TeV and conclude that if no tt signal is observed with 1 fb⁻¹ of integrated luminosity, then a nonuniversal Z' alone cannot explain the Tevatron forward-backward asymmetry.

  7. Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors.

    PubMed

    Liu, Hesheng; Stufflebeam, Steven M; Sepulcre, Jorge; Hedden, Trey; Buckner, Randy L

    2009-12-01

    Cerebral lateralization is a fundamental property of the human brain and a marker of successful development. Here we provide evidence that multiple mechanisms control asymmetry for distinct brain systems. Using intrinsic activity to measure asymmetry in 300 adults, we mapped the most strongly lateralized brain regions. Both men and women showed strong asymmetries with a significant, but small, group difference. Factor analysis on the asymmetric regions revealed 4 separate factors that each accounted for significant variation across subjects. The factors were associated with brain systems involved in vision, internal thought (the default network), attention, and language. An independent sample of right- and left-handed individuals showed that hand dominance affects brain asymmetry but differentially across the 4 factors supporting their independence. These findings show the feasibility of measuring brain asymmetry using intrinsic activity fluctuations and suggest that multiple genetic or environmental mechanisms control cerebral lateralization.

  8. Effects of memory load on hemispheric asymmetries of colour memory.

    PubMed

    Clapp, Wes; Kirk, Ian J; Hausmann, Markus

    2007-03-01

    Hemispheric asymmetries in colour perception have been a matter of debate for some time. Recent evidence suggests that lateralisation of colour processing may be largely task specific. Here we investigated hemispheric asymmetries during different types and phases of a delayed colour-matching (recognition) memory task. A total of 11 male and 12 female right-handed participants performed colour-memory tasks. The task involved presentation of a set of colour stimuli (encoding), and subsequent indication (forced choice) of which colours in a larger set had previously appeared at the retrieval or recognition phase. The effect of memory load (set size), and the effect of lateralisation at the encoding or retrieval phases were investigated. Overall, the results indicate a right hemisphere advantage in colour processing, which was particularly pronounced in high memory load conditions, and was seen in males rather than female participants. The results suggest that verbal (mnemonic) strategies can significantly affect the magnitude of hemispheric asymmetries in a non-verbal task.

  9. The Atypical Cadherin Dachsous Controls Left-Right Asymmetry in Drosophila.

    PubMed

    González-Morales, Nicanor; Géminard, Charles; Lebreton, Gaëlle; Cerezo, Delphine; Coutelis, Jean-Baptiste; Noselli, Stéphane

    2015-06-22

    Left-right (LR) asymmetry is essential for organ development and function in metazoans, but how initial LR cue is relayed to tissues still remains unclear. Here, we propose a mechanism by which the Drosophila LR determinant Myosin ID (MyoID) transfers LR information to neighboring cells through the planar cell polarity (PCP) atypical cadherin Dachsous (Ds). Molecular interaction between MyoID and Ds in a specific LR organizer controls dextral cell polarity of adjoining hindgut progenitors and is required for organ looping in adults. Loss of Ds blocks hindgut tissue polarization and looping, indicating that Ds is a crucial factor for both LR cue transmission and asymmetric morphogenesis. We further show that the Ds/Fat and Frizzled PCP pathways are required for the spreading of LR asymmetry throughout the hindgut progenitor tissue. These results identify a direct functional coupling between the LR determinant MyoID and PCP, essential for non-autonomous propagation of early LR asymmetry. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Postinflationary Higgs relaxation and the origin of matter-antimatter asymmetry.

    PubMed

    Kusenko, Alexander; Pearce, Lauren; Yang, Louis

    2015-02-13

    The recent measurement of the Higgs boson mass implies a relatively slow rise of the standard model Higgs potential at large scales, and a possible second minimum at even larger scales. Consequently, the Higgs field may develop a large vacuum expectation value during inflation. The relaxation of the Higgs field from its large postinflationary value to the minimum of the effective potential represents an important stage in the evolution of the Universe. During this epoch, the time-dependent Higgs condensate can create an effective chemical potential for the lepton number, leading to a generation of the lepton asymmetry in the presence of some large right-handed Majorana neutrino masses. The electroweak sphalerons redistribute this asymmetry between leptons and baryons. This Higgs relaxation leptogenesis can explain the observed matter-antimatter asymmetry of the Universe even if the standard model is valid up to the scale of inflation, and any new physics is suppressed by that high scale.

  11. Rift migration explains continental margin asymmetry and crustal hyper-extension

    PubMed Central

    Brune, Sascha; Heine, Christian; Pérez-Gussinyé, Marta; Sobolev, Stephan V.

    2014-01-01

    When continents break apart, continental crust and lithosphere are thinned until break-up is achieved and an oceanic basin is formed. The most remarkable and least understood structures associated with this process are up to 200 km wide areas of hyper-extended continental crust, which are partitioned between conjugate margins with pronounced asymmetry. Here we show, using high-resolution thermo-mechanical modelling, that hyper-extended crust and margin asymmetry are produced by steady state rift migration. We demonstrate that rift migration is accomplished by sequential, oceanward-younging, upper crustal faults, and is balanced through lower crustal flow. Constraining our model with a new South Atlantic plate reconstruction, we demonstrate that larger extension velocities may account for southward increasing width and asymmetry of these conjugate magma-poor margins. Our model challenges conventional ideas of rifted margin evolution, as it implies that during rift migration large amounts of material are transferred from one side of the rift zone to the other. PMID:24905463

  12. Alterations of grey matter asymmetries in adolescents with prelingual deafness: a combined VBM and cortical thickness analysis.

    PubMed

    Li, Wenjing; Li, Jianhong; Xian, Junfang; Lv, Bin; Li, Meng; Wang, Chunheng; Li, Yong; Liu, Zhaohui; Liu, Sha; Wang, Zhenchang; He, Huiguang; Sabel, Bernhard A

    2013-01-01

    Prelingual deafness has been shown to lead to brain reorganization as demonstrated by functional parameters, but anatomical evidences still remain controversial. The present study investigated hemispheric asymmetry changes in deaf subjects using MRI, hypothesizing auditory-, language- or visual-related regions after early deafness. Prelingually deaf adolescents (n = 16) and age- and gender-matched normal controls (n = 16) were recruited and hemispheric asymmetry was evaluated with voxel-based morphometry (VBM) from MRI combined with analysis of cortical thickness (CTh). Deaf adolescents showed more rightward asymmetries (L < R) of grey matter volume (GMV) in the cerebellum and more leftward CTh asymmetries (L > R) in the posterior cingulate gyrus and gyrus rectus. More rightward CTh asymmetries were observed in the precuneus, middle and superior frontal gyri, and middle occipital gyrus. The duration of hearing aid use was correlated with asymmetry of GMV in the cerebellum and CTh in the gyrus rectus. Interestingly, the asymmetry of the auditory cortex was preserved in deaf subjects. When the brain is deprived of auditory input early in life there are signs of both irreversible morphological asymmetry changes in different brain regions but also signs of reorganization and plasticity which are dependent on hearing aid use, i.e. use-dependent.

  13. Sex differences and bilateral asymmetry in dermatoglyphic pattern elements on the fingertips.

    PubMed

    Bener, A

    1979-01-01

    In the present paper, 539 Polish families and 999 individuals (515 males and 484 females) were analysed to determine whether asymmetry of dermatoglyphic patter elements on the fingertips of ulnar and radial loops in genetically controlled. And we enquire whether the body is bilaterally asymmetrical. We have found the asymmetry between right and left hand fingertips for ulnar and radial loops, for each digit and between the two sexes. The differences between the sexes is small. The bimanual difference in dermatoglyphic pattern elements between hands, right minus left, has been used as a measure of asymmetry. The mean and variance difference for males is not significantly different from the mean and variance for females. An investigation was also made of correlations between relatives for bimanual differences, right minus left. We may conclude from these results that the asymmetry of dermatoglphic pattern elements on fingertips of ulnar and radial loops has little hereditary component. Finally, the results of this work show that the dermatoglyphic pattern elements on fingertips of ulnar and radial loops on each side of the body are inherited.

  14. Fast frequency divider circuit using combinational logic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helinski, Ryan

    The various technologies presented herein relate to performing on-chip frequency division of an operating frequency of a ring oscillator (RO). Per the various embodiments herein, a conflict between RO size versus operational frequency can be addressed by dividing the output frequency of the RO to a frequency that can be measured on-chip. A frequency divider circuit (comprising NOR gates and latches, for example) can be utilized in conjunction with the RO on the chip. In an embodiment, the frequency divider circuit can include a pair of latches coupled to the RO to facilitate dividing the oscillating frequency of the ROmore » by 2. In another embodiment, the frequency divider circuit can include four latches (operating in pairs) coupled to the RO to facilitate dividing the oscillating frequency of the RO by 4. A plurality of ROs can be MUXed to the plurality of ROs by a single oscillation-counting circuit.« less

  15. Leptogenesis in the E{sub 6}SSM: Flavour Dependent Lepton Asymmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, S. F.; Luo, R.; Miller, D. J.

    2008-11-23

    We discuss flavour dependent lepton asymmetries in the Exceptional Supersymmetric Standard Model (E{sub 6}SSM). In the E{sub 6}SSM, the right-handed neutrinos do not participate in gauge interactions, and they decay into leptons and leptoquarks. Their Majorana nature allows violation of lepton number. New particles and interactions can result in substantial lepton asymmetries, even for scales as low as 10{sup 6} GeV.

  16. Forward-Backward Asymmetries in Top-Antitop Quark Production at the Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, Timo, A.

    2016-09-21

    We present the combined results on inclusive forward-backward asymmetries in the production of top-antitop quark pairs and their decay leptons. The analysis is based on measurements by the CDF and D0 experiments at the Fermilabmore » $$p\\bar{p}$$ Tevatron collider using all the data collected at $$\\sqrt{s}$$ = 1:96 TeV. The measured asymmetries are in agreement with standard model predictions.« less

  17. An investigation of lower-extremity functional asymmetry for non-preferred able-bodied walking speeds

    PubMed Central

    RICE, JOHN; SEELEY, MATTHEW K.

    2010-01-01

    Functional asymmetry is an idea that is often used to explain documented bilateral asymmetries during able-bodied gait. Within this context, this idea suggests that the non-dominant and dominant legs, considered as whole entities, contribute asymmetrically to support and propulsion during walking. The degree of functional asymmetry may depend upon walking speed. The purpose of this study was to better understand the potential relationship between functional asymmetry and walking speed. Bilateral ground reaction forces (GRF) were measured for 20 healthy subjects who walked at nine different speeds: preferred, +10%, +20%, +30%, +40, −10%, −20%, −30%, and −40%. Contribution to support was determined to be the support impulse: the time integral of the vertical GRF during stance. Contribution to propulsion was determined to be the propulsion impulse: the time integral of the anterior-posterior GRF, while this force was directed forward. Repeated measures ANOVA (α = 0.05) revealed leg × speed interactions for normalized support (p = 0.001) and propulsion (p = 0.001) impulse, indicating that speed does affect the degree of functional asymmetry during gait. Post hoc comparisons (α = 0.05) showed that support impulse was approximately 2% greater for the dominant leg, relative to the non-dominant leg, for the −10%, −20%, and −40% speeds. Propulsion impulse was 12% greater for the dominant leg than for the non-dominant leg at the +20% speed. Speed does appear to affect the magnitude of bilateral asymmetry during walking, however, only the bilateral difference for propulsion impulse at one fast speed (+20%) was supportive of the functional asymmetry idea. PMID:27182346

  18. Measurement of the beam asymmetry Σ and the target asymmetry T in the photoproduction of ω mesons off the proton using CLAS at Jefferson Laboratory

    NASA Astrophysics Data System (ADS)

    Roy, P.; Akbar, Z.; Park, S.; Crede, V.; Anisovich, A. V.; Denisenko, I.; Klempt, E.; Nikonov, V. A.; Sarantsev, A. V.; Adhikari, K. P.; Adhikari, S.; Anefalos Pereira, S.; Ball, J.; Balossino, I.; Bashkanov, M.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brock, J.; Brooks, W. K.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clary, B. A.; Cole, P. L.; Contalbrigo, M.; D'Angelo, A.; Dashyan, N.; De Vita, R.; Deur, A.; Djalali, C.; Dugger, M.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fradi, A.; Gavalian, G.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Joo, K.; Joosten, S.; Keith, C. D.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McCracken, M. E.; McKinnon, B.; Meekins, D. G.; Meyer, C. A.; Meziani, Z. E.; Mineeva, T.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, E.; Phelps, W.; Pierce, J. J.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ripani, M.; Riser, D.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tan, J. A.; Torayev, B.; Ungaro, M.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zhao, Z. W.; CLAS Collaboration

    2018-05-01

    The photoproduction of ω mesons off the proton has been studied in the reaction γ p →p ω using the CEBAF Large Acceptance Spectrometer (CLAS) and the frozen-spin target in Hall B at the Thomas Jefferson National Accelerator Facility. For the first time, the target asymmetry T has been measured in photoproduction from the decay ω →π+π-π0 , using a transversely polarized target with energies ranging from just above the reaction threshold up to 2.8 GeV. Significant nonzero values are observed for these asymmetries, reaching about 30-40% in the third-resonance region. New measurements for the photon-beam asymmetry Σ are also presented, which agree well with previous CLAS results and extend the world database up to 2.1 GeV. These data and additional ω photoproduction observables from CLAS were included in a partial-wave analysis within the Bonn-Gatchina framework. Significant contributions from s -channel resonance production were found in addition to t -channel exchange processes.

  19. Collins azimuthal asymmetries of hadron production inside jets

    DOE PAGES

    Kang, Zhong -Bo; Prokudin, Alexei; Ringer, Felix; ...

    2017-10-18

    Here, we investigate the Collins azimuthal asymmetry of hadrons produced inside jets in transversely polarized proton-proton collisions. Recently, the quark transversity distributions and the Collins fragmentation functions have been extracted within global analyses from data of the processes semi-inclusive deep inelastic scattering and electron-positron annihilation. We calculate the Collins azimuthal asymmetry for charged pions inside jets using these extractions for RHIC kinematics at center-of-mass energies of 200 and 500 GeV. We compare our results with recent data from the STAR Collaboration at RHIC and find good agreement, which confirms the universality of the Collins fragmentation functions. In addition, we furthermore » explore the impact of transverse momentum dependent evolution effects.« less

  20. Collins azimuthal asymmetries of hadron production inside jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhong -Bo; Prokudin, Alexei; Ringer, Felix

    Here, we investigate the Collins azimuthal asymmetry of hadrons produced inside jets in transversely polarized proton-proton collisions. Recently, the quark transversity distributions and the Collins fragmentation functions have been extracted within global analyses from data of the processes semi-inclusive deep inelastic scattering and electron-positron annihilation. We calculate the Collins azimuthal asymmetry for charged pions inside jets using these extractions for RHIC kinematics at center-of-mass energies of 200 and 500 GeV. We compare our results with recent data from the STAR Collaboration at RHIC and find good agreement, which confirms the universality of the Collins fragmentation functions. In addition, we furthermore » explore the impact of transverse momentum dependent evolution effects.« less

  1. Prediction of near-term breast cancer risk using local region-based bilateral asymmetry features in mammography

    NASA Astrophysics Data System (ADS)

    Li, Yane; Fan, Ming; Li, Lihua; Zheng, Bin

    2017-03-01

    This study proposed a near-term breast cancer risk assessment model based on local region bilateral asymmetry features in Mammography. The database includes 566 cases who underwent at least two sequential FFDM examinations. The `prior' examination in the two series all interpreted as negative (not recalled). In the "current" examination, 283 women were diagnosed cancers and 283 remained negative. Age of cancers and negative cases completely matched. These cases were divided into three subgroups according to age: 152 cases among the 37-49 age-bracket, 220 cases in the age-bracket 50- 60, and 194 cases with the 61-86 age-bracket. For each image, two local regions including strip-based regions and difference-of-Gaussian basic element regions were segmented. After that, structural variation features among pixel values and structural similarity features were computed for strip regions. Meanwhile, positional features were extracted for basic element regions. The absolute subtraction value was computed between each feature of the left and right local-regions. Next, a multi-layer perception classifier was implemented to assess performance of features for prediction. Features were then selected according stepwise regression analysis. The AUC achieved 0.72, 0.75 and 0.71 for these 3 age-based subgroups, respectively. The maximum adjustable odds ratios were 12.4, 20.56 and 4.91 for these three groups, respectively. This study demonstrate that the local region-based bilateral asymmetry features extracted from CC-view mammography could provide useful information to predict near-term breast cancer risk.

  2. Rubber friction directional asymmetry

    NASA Astrophysics Data System (ADS)

    Tiwari, A.; Dorogin, L.; Steenwyk, B.; Warhadpande, A.; Motamedi, M.; Fortunato, G.; Ciaravola, V.; Persson, B. N. J.

    2016-12-01

    In rubber friction studies it is usually assumed that the friction force does not depend on the sliding direction, unless the substrate has anisotropic properties, like a steel surface grinded in one direction. Here we will present experimental results for rubber friction, where we observe a strong asymmetry between forward and backward sliding, where forward and backward refer to the run-in direction of the rubber block. The observed effect could be very important in tire applications, where directional properties of the rubber friction could be induced during braking.

  3. Spin asymmetries for vector boson production in polarized p + p collisions

    DOE PAGES

    Huang, Jin; Kang, Zhong-Bo; Vitev, Ivan; ...

    2016-01-28

    We study the cross section for vector boson (W ±/Z 0/γ more » $$\\star$$) production in polarized nucleon-nucleon collisions for low transverse momentum of the observed vector boson. For the case where one measures the transverse momentum and azimuthal angle of the vector bosons, we present the cross sections and the associated spin asymmetries in terms of transverse momentum dependent parton distribution functions (TMDs) at tree level within the TMD factorization formalism. To assess the feasibility of experimental measurements, we estimate the spin asymmetries forW ±/Z 0 boson production in polarized proton-proton collisions at the Relativistic Heavy Ion Collider by using current knowledge of the relevant TMDs. Here, we find that some of these asymmetries can be sizable if the suppression effect from TMD evolution is not too strong. The W program at RHIC can, thus, test and constrain spin theory by providing unique information on the universality properties of TMDs, TMD evolution, and the nucleon structure. For example, the single transverse spin asymmetries could be used to probe the well-known Sivers function f$$⊥q\\atop{1T}$$, as well as the transversal helicity distribution g$$q\\atop{1T}$$ via the parity-violating nature of W production.« less

  4. Variability of gait, bilateral coordination, and asymmetry in women with fibromyalgia.

    PubMed

    Heredia-Jimenez, J; Orantes-Gonzalez, E; Soto-Hermoso, V M

    2016-03-01

    To analyze how fibromyalgia affected the variability, asymmetry, and bilateral coordination of gait walking at comfortable and fast speeds. 65 fibromyalgia (FM) patients and 50 healthy women were analyzed. Gait analysis was performed using an instrumented walkway (GAITRite system). Average walking speed, coefficient of variation (CV) of stride length, swing time, and step width data were obtained and bilateral coordination and gait asymmetry were analyzed. FM patients presented significantly lower speeds than the healthy group. FM patients obtained significantly higher values of CV_StrideLength (p=0.04; p<0.001), CV_SwingTime (p<0.001; p<0.001), CV_StepWidth (p=0.004; p<0.001), phase coordination index (p=0.01; p=0.03), and p_CV (p<0.001; p=0.001) than the control group, walking at comfortable or fast speeds. Gait asymmetry only showed significant differences in the fast condition. FM patients walked more slowly and presented a greater variability of gait and worse bilateral coordination than healthy subjects. Gait asymmetry only showed differences in the fast condition. The variability and the bilateral coordination were particularly affected by FM in women. Therefore, variability and bilateral coordination of gait could be analyzed to complement the gait evaluation of FM patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. North-south asymmetry of solar activity as a superposition of two realizations - the sign and absolute value

    NASA Astrophysics Data System (ADS)

    Badalyan, O. G.; Obridko, V. N.

    2017-07-01

    Context. Since the occurrence of north-south asymmetry (NSA) of alternating sign may be determined by different mechanisms, the frequency and amplitude characteristics of this phenomenon should be considered separately. Aims: We propose a new approach to the description of the NSA of solar activity. Methods: The asymmetry defined as A = (N-S)/(N + S) (where N and S are, respectively, the indices of activity of the northern and southern hemispheres) is treated as a superposition of two functions: the sign of asymmetry (signature) and its absolute value (modulus). This approach is applied to the analysis of the NSA of sunspot group areas for the period 1874-2013. Results: We show that the sign of asymmetry provides information on the behavior of the asymmetry. In particular, it displays quasi-periodic variation with a period of 12 yr and quasi-biennial oscillations as the asymmetry itself. The statistics of the so-called monochrome intervals (long periods of positive or negative asymmetry) are considered and it is shown that the distribution of these intervals is described by the random distribution law. This means that the dynamo mechanisms governing the cyclic variation of solar activity must involve random processes. At the same time, the asymmetry modulus has completely different statistical properties and is probably associated with processes that determine the amplitude of the cycle. One can reliably isolate an 11-yr cycle in the behavior of the asymmetry absolute value shifted by half a period with respect to the Wolf numbers. It is shown that the asymmetry modulus has a significant prognostic value: the higher the maximum of the asymmetry modulus, the lower the following Wolf number maximum. Conclusions: A fundamental nature of this concept of NSA is discussed in the context of the general methodology of cognizing the world. It is supposed that the proposed description of the NSA will help clarify the nature of this phenomenon.

  6. Quantifying Muscle Asymmetries in Cervical Dystonia with Electrical Impedance: A Preliminary Assessment

    PubMed Central

    Lungu, Codrin; Tarulli, Andrew W; Tarsy, Daniel; Mongiovi, Phillip; Vanderhorst, Veronique G; Rutkove, Seward B

    2010-01-01

    Objective Cervical Dystonia (CD) lacks an objective quantitative measure. Electrical impedance myography (EIM) is a non-invasive assessment method sensitive to changes in muscle structure and physiology. We evaluate the potential role of EIM in quantifying CD, hypothesizing that patients would demonstrate differences in the symmetry of muscle electrical resistance compared to controls, and that this asymmetry would decrease after botulinum neurotoxin (BoNT) treatment. Methods EIM was performed on the sternocleidomastoid (SCM) and cervical paraspinal (PS) muscles of CD patients and age-matched controls. 50kHz Resistance was analyzed, comparing side-to-side asymmetry in patients and controls, and, in patients, before and after BoNT treatment. Results 16 patients and 10 controls were included. Resistance asymmetry was on average 3-5 times higher in patients than controls. Receiver operating characteristic analysis demonstrated 91% accuracy of discriminating CD from normal. From pre-treatment to maximum BoNT effect, asymmetry decreased from 20.8 (13.9-26.1)% to 6.2 (3.1-9.9)% (SCM), and from 16.0(14.3-16.0)% to 8.4(7.0-9.2)% (PS), p<0.05 (median, interquartile range). Conclusions EIM effectively differentiates normal subjects from CD patients by revealing asymmetries in resistance values and detects improvement in muscle symmetry after treatment. Significance These results suggest that EIM, a painless, non-invasive measure, can provide a useful quantitative metric in CD evaluation and deserves further study. PMID:20943436

  7. Quantifying muscle asymmetries in cervical dystonia with electrical impedance: a preliminary assessment.

    PubMed

    Lungu, Codrin; Tarulli, Andrew W; Tarsy, Daniel; Mongiovi, Phillip; Vanderhorst, Veronique G; Rutkove, Seward B

    2011-05-01

    Cervical dystonia (CD) lacks an objective quantitative measure. Electrical impedance myography (EIM) is a non-invasive assessment method sensitive to changes in muscle structure and physiology. We evaluate the potential role of EIM in quantifying CD, hypothesizing that patients would demonstrate differences in the symmetry of muscle electrical resistance compared to controls, and that this asymmetry would decrease after botulinum neurotoxin (BoNT) treatment. EIM was performed on the sternocleidomastoid (SCM) and cervical paraspinal (PS) muscles of CD patients and age-matched controls. 50 kHz resistance was analyzed, comparing side-to-side asymmetry in patients and controls, and, in patients, before and after BoNT treatment. Sixteen patients and 10 controls were included. Resistance asymmetry was on average 3-5 times higher in patients than controls. Receiver operating characteristic analysis demonstrated 91% accuracy of discriminating CD from normal. From pre-treatment to maximum BoNT effect, asymmetry decreased from 20.8(13.9-26.1)% to 6.2(3.1-9.9)% (SCM), and from 16.0(14.3-16.0)% to 8.4(7.0-9.2)% (PS), p<0.05 (median, interquartile range). EIM effectively differentiates normal subjects from CD patients by revealing asymmetries in resistance values and detects improvement in muscle symmetry after treatment. These results suggest that EIM, a painless, non-invasive measure, can provide a useful quantitative metric in CD evaluation and deserves further study. Published by Elsevier Ireland Ltd.

  8. Cellular Automata

    NASA Astrophysics Data System (ADS)

    Gutowitz, Howard

    1991-08-01

    Cellular automata, dynamic systems in which space and time are discrete, are yielding interesting applications in both the physical and natural sciences. The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Chapters cover mathematical analysis, the structure of the space of cellular automata, learning rules with specified properties: cellular automata in biology, physics, chemistry, and computation theory; and generalizations of cellular automata in neural nets, Boolean nets, and coupled map lattices. Current work on cellular automata may be viewed as revolving around two central and closely related problems: the forward problem and the inverse problem. The forward problem concerns the description of properties of given cellular automata. Properties considered include reversibility, invariants, criticality, fractal dimension, and computational power. The role of cellular automata in computation theory is seen as a particularly exciting venue for exploring parallel computers as theoretical and practical tools in mathematical physics. The inverse problem, an area of study gaining prominence particularly in the natural sciences, involves designing rules that possess specified properties or perform specified task. A long-term goal is to develop a set of techniques that can find a rule or set of rules that can reproduce quantitative observations of a physical system. Studies of the inverse problem take up the organization and structure of the set of automata, in particular the parameterization of the space of cellular automata. Optimization and learning techniques, like the genetic algorithm and adaptive stochastic cellular automata are applied to find cellular automaton rules that model such physical phenomena as crystal growth or perform such adaptive-learning tasks as balancing an inverted pole. Howard Gutowitz is

  9. Frontal alpha asymmetry as a pathway to behavioural withdrawal in depression: Research findings and issues.

    PubMed

    Jesulola, Emmanuel; Sharpley, Christopher F; Bitsika, Vicki; Agnew, Linda L; Wilson, Peter

    2015-10-01

    Depression has been described as a process of behavioural withdrawal from overwhelming aversive stressors, and which manifests itself in the diagnostic symptomatology for Major Depressive Disorder (MDD). The underlying neurobiological pathways to that behavioural withdrawal are suggested to include greater activation in the right vs the left frontal lobes, described as frontal EEG asymmetry. However, despite a previous meta-analysis that provided overall support for this EEG asymmetry hypothesis, inconsistencies and several methodological confounds exist. The current review examines the literature on this issue, identifies inconsistencies in findings and discusses several key research issues that require addressing for this field to move towards a defensible theoretical model of depression and EEG asymmetry. In particular, the position of EEG asymmetry in the brain, measurement of severity and symptoms profiles of depression, and the effects of gender are considered as potential avenues to more accurately define the specific nature of the depression-EEG asymmetry association. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Asymmetry of radiation damage properties in Al-Ti nanolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Gerboth, Matthew D.; Yao, Bo

    2014-02-01

    Molecular dynamics (MD) simulations were employed with empirical potentials to study the effects of multilayer interfaces and interface spacing in Al-Ti nanolayers. Several model interfaces derived from stacking of close-packed layers or face-centered cubic \\{100\\} layers were investigated. The simulations reveal significant and important asymmetries in defect production withmore » $$\\sim$$60\\% of vacancies created in Al layers compared to Ti layers within the Al-Ti multilayer system. The asymmetry in the creation of interstitials is even more pronounced. The asymmetries cause an imbalance in the ratio of vacancies and interstitials in films of dissimilar materials leading to $>$$90\\% of the surviving interstitials located in the Al layers. While in the close-packed nanolayers the interstitials migrate to the atomic layers adjacent to the interface of the Al layers, in the \\{100\\} nanolayers the interstitials migrate to the center of the Al layers and away from the interfaces. The degree of asymmetry and defect ratio imbalance increases as the layer spacing decreases in the multilayer films. Underlying physical processes are discussed including the interfacial strain fields and the individual elemental layer stopping power in nanolayered systems. In addition, experimental work was performed on low-dose (10$$^{16}$ atoms/cm$^2$) helium (He) irradiation on Al/Ti nanolayers (5 nm per film), resulting in He bubble formation $$\\sim$$1 nm in diameter in the Ti film near the interface. The correlation between the preferential flux of displaced atoms from Ti films to Al films during the defect production that is revealed in the simulations and the morphology and location of He bubbles from the experiments is discussed.« less

  11. Nonconservation of lepton current and asymmetry of relic neutrinos

    NASA Astrophysics Data System (ADS)

    Dvornikov, M. S.; Semikoz, V. B.

    2017-05-01

    The neutrino asymmetry, {n_v} - {n_{\\bar v}} , in the plasma of the early Universe generated both before and after the electroweak phase transition (EWPT) is calculated. It is well known that in the Standard Model the leptogenesis before the EWPT, in particular, for neutrinos, owes to the Abelian anomaly in a massless hypercharge field. At the same time, the generation of neutrino asymmetry in the Higgs phase after the EWPT has not been considered previously due to the absence of any quantum anomaly in an external electromagnetic field for such electroneutral particles as neutrinos, in contrast to the Adler anomaly for charged left- and right-handed massless electrons in the same electromagnetic field. Using the Boltzmann equation for neutrinos modified to include the Berry curvature term in momentum space, we establish a violation of the macroscopic neutrino current in the plasma after the EWPT and exactly reproduce the non-conservation of the lepton current in the symmetric phase before the EWPT that owes to the contribution of the triangle anomaly in an external hypercharge field but already without computing the corresponding Feynman diagrams. We apply the new kinetic equation to calculate the neutrino asymmetry by taking into account the Berry curvature and the electroweak interaction with plasma particles in the Higgs phase, including that after the neutrino decoupling in the absence of their collisions in the plasma. We find that this asymmetry is too small for observations. Thus, a difference between the relic neutrino and antineutrino densities, if it exists, must appear already in the symmetric phase of the early Universe before the EWPT.

  12. Asymmetry in Time Evolution of Magnetization in Magnetic Nanostructures

    DOE PAGES

    Tóbik, Jaroslav; Cambel, Vladimir; Karapetrov, Goran

    2015-07-22

    Strong interest in nanomagnetism stems from the promise of high storage densities of information through control of ever smaller and smaller ensembles of spins. There is a broad consensus that the Landau-Lifshitz-Gilbert equation reliably describes the magnetization dynamics on classical phenomenological level. On the other hand, it is not so evident that the magnetization dynamics governed by this equation contains built-in asymmetry in the case of broad topology sets of symmetric total energy functional surfaces. The magnetization dynamics in such cases shows preference for one particular state from many energetically equivalent available minima. Here, we demonstrate this behavior on amore » simple one-spin model which can be treated analytically. Depending on the ferromagnet geometry and material parameters, this asymmetric behavior can be robust enough to survive even at high temperatures opening simplified venues for controlling magnetic states of nanodevices in practical applications. Using micromagnetic simulations we demonstrate the asymmetry in magnetization dynamics in a real system with reduced symmetry such as Pacman-like nanodot. Finally, exploiting the built-in asymmetry in the dynamics could lead to practical methods of preparing desired spin configurations on nanoscale. Introduction« less

  13. Return of grand unified theory baryogenesis: Source of helical hypermagnetic fields for the baryon asymmetry of the universe

    NASA Astrophysics Data System (ADS)

    Kamada, Kohei

    2018-05-01

    It has been considered that baryogenesis models without a generation of B -L asymmetry such as the GUT baryogenesis do not work since the asymmetry is washed out by the electroweak sphalerons. Here, we point out that helical hypermagnetic fields can be generated through the chiral magnetic effect with a chiral asymmetry generated in such baryogenesis models. The helical hypermagnetic fields then produce baryon asymmetry mainly at the electroweak symmetry breaking, which remains until today. Therefore, the baryogenesis models without B -L asymmetry can still be the origin of the present baryon asymmetry. In particular, if it can produce chiral asymmetry mainly carried by right-handed electrons of order of 10-3 in terms of the chemical potential to temperature ratio, the resultant present-day baryon asymmetry can be consistent with our Universe, although simple realizations of the GUT baryogenesis are hard to satisfy the condition. We also argue the way to overcome the difficulty in the GUT baryogenesis. The intergalactic magnetic fields with B0˜10-16 - 17 G and λ0˜10-2 - 3 pc are the smoking gun of the baryogenesis scenario as discussed before.

  14. Beam normal spin asymmetry for the e p →e Δ (1232 ) process

    NASA Astrophysics Data System (ADS)

    Carlson, Carl E.; Pasquini, Barbara; Pauk, Vladyslav; Vanderhaeghen, Marc

    2017-12-01

    We calculate the single spin asymmetry for the e p →e Δ (1232 ) process, for an electron beam polarized normal to the scattering plane. Such single spin asymmetries vanish in the one-photon exchange approximation and are directly proportional to the absorptive part of a two-photon exchange amplitude. As the intermediate state in such a two-photon exchange process is on its mass shell, the asymmetry allows one to access for the first time the on-shell Δ →Δ as well as N*→Δ electromagnetic transitions. We present the general formalism to describe the e p →e Δ beam normal spin asymmetry, and we provide a numerical estimate of its value using the nucleon, Δ (1232 ), S11(1535 ), and D13(1520 ) intermediate states. We compare our results with the first data from the Qweak@JLab experiment and give predictions for the A4@MAMI experiment.

  15. Beam normal spin asymmetry for the e p → e Δ ( 1232 ) process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Carl E.; Pasquini, Barbara; Pauk, Vladyslav

    Here, we calculate the single spin asymmetry for themore » $$e p \\to e \\Delta(1232)$$ process, for an electron beam polarized normal to the scattering plane. Such single spin asymmetries vanish in the one-photon exchange approximation, and are directly proportional to the absorptive part of a two-photon exchange amplitude. As the intermediate state in such two-photon exchange process is on its mass shell, the asymmetry allows one to access for the first time the on-shell $$\\Delta \\to \\Delta$$ as well as $$N^\\ast \\to \\Delta$$ electromagnetic transitions. We present the general formalism to describe the $$e p \\to e \\Delta$$ beam normal spin asymmetry, and provide a numerical estimate of its value using the nucleon, $$\\Delta(1232)$$, $$S_{11}(1535)$$, and $$D_{13}(1520)$$ intermediate states. We compare our results with the first data from the Qweak@JLab experiment and give predictions for the A4@MAMI experiment.« less

  16. Beam normal spin asymmetry for the e p → e Δ ( 1232 ) process

    DOE PAGES

    Carlson, Carl E.; Pasquini, Barbara; Pauk, Vladyslav; ...

    2017-12-26

    Here, we calculate the single spin asymmetry for themore » $$e p \\to e \\Delta(1232)$$ process, for an electron beam polarized normal to the scattering plane. Such single spin asymmetries vanish in the one-photon exchange approximation, and are directly proportional to the absorptive part of a two-photon exchange amplitude. As the intermediate state in such two-photon exchange process is on its mass shell, the asymmetry allows one to access for the first time the on-shell $$\\Delta \\to \\Delta$$ as well as $$N^\\ast \\to \\Delta$$ electromagnetic transitions. We present the general formalism to describe the $$e p \\to e \\Delta$$ beam normal spin asymmetry, and provide a numerical estimate of its value using the nucleon, $$\\Delta(1232)$$, $$S_{11}(1535)$$, and $$D_{13}(1520)$$ intermediate states. We compare our results with the first data from the Qweak@JLab experiment and give predictions for the A4@MAMI experiment.« less

  17. Parallel Processing in Visual Search Asymmetry

    ERIC Educational Resources Information Center

    Dosher, Barbara Anne; Han, Songmei; Lu, Zhong-Lin

    2004-01-01

    The difficulty of visual search may depend on assignment of the same visual elements as targets and distractors-search asymmetry. Easy C-in-O searches and difficult O-in-C searches are often associated with parallel and serial search, respectively. Here, the time course of visual search was measured for both tasks with speed-accuracy methods. The…

  18. Left-right asymmetry in the level of active Nodal protein produced in the node is translated into left-right asymmetry in the lateral plate of mouse embryos.

    PubMed

    Kawasumi, Aiko; Nakamura, Tetsuya; Iwai, Naomi; Yashiro, Kenta; Saijoh, Yukio; Belo, Jose Antonio; Shiratori, Hidetaka; Hamada, Hiroshi

    2011-05-15

    Left-right (L-R) asymmetry in the mouse embryo is generated in the node and is dependent on cilia-driven fluid flow, but how the initial asymmetry is transmitted from the node to the lateral plate has remained unknown. We have now identified a transcriptional enhancer (ANE) in the human LEFTY1 gene that exhibits marked L>R asymmetric activity in perinodal cells of the mouse embryo. Dissection of ANE revealed that it is activated in the perinodal cells on the left side by Nodal signaling, suggesting that Nodal activity in the node is asymmetric at a time when Nodal expression is symmetric. Phosphorylated Smad2/3 (pSmad2) indeed manifested an L-R asymmetric distribution at the node, being detected in perinodal cells preferentially on the left side. This asymmetry in pSmad2 distribution was found to be generated not by unidirectional transport of Nodal but rather as a result of Lasymmetry in pSmad2 distribution among the perinodal cells closely matched that in lateral plate mesoderm (LPM). However, autocrine-paracrine Nodal signaling in perinodal cells is dispensable for L-R patterning of LPM, given that its inhibition by expression of dominant negative forms of Smad3 or ALK4 was still associated with normal (left-sided) Nodal expression in LPM. Our results suggest that LPM is the direct target of Nodal secreted by the perinodal cells, and that an L>R distribution of active Nodal in the node is translated into the asymmetry in LPM. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions

    DOE PAGES

    Shah, Rahul C.; Haines, Brian Michael; Wysocki, Frederick Joseph; ...

    2017-03-30

    Here, we present narrow-band self-emission x-ray images from a titanium tracer layer placed at the fuel-shell interface in 60-laser-beam implosion experiments at the OMEGA facility. The images are acquired during deceleration with inferred convergences of ~9-14. Novel here is that a systematically observed asymmetry of the emission is linked, using full sphere 3D implosion modeling, to performance-limiting low mode asymmetry of the drive.

  20. Interaction between postural asymmetry and visual feedback effects in undisturbed upright stance control in healthy adults.

    PubMed

    Rougier, Patrice R; Boudrahem, Samir

    2017-09-01

    The technique of additional visual feedback has been shown to significantly decrease the center of pressure (CP) displacements of a standing subject. Body-weight asymmetry is known to increase postural instability due to difficulties in coordinating the reaction forces exerted under each foot and is often a cardinal feature of various neurological and traumatic diseases. To examine the possible interactions between additional visual feedback and body-weight asymmetry effects, healthy adults were recruited in a protocol with and without additional visual feedback, with different levels of body-weight asymmetry. CP displacements under each foot were recorded and used to compute the resultant CP displacements (CP Res ) and to estimate vertically projected center of gravity (CG v ) and CP Res -CG v displacements. Overall, six conditions were randomly proposed combining two factors: asymmetry with three BW percentage distributions (50/50, 35/65 and 20/80; left/right leg) and feedback (with or without additional VFB). The additional visual feedback technique principally reduces CG v displacements, whereas asymmetry increases CP Res -CG v displacements along the mediolateral axis. Some effects on plantar CP displacements were also observed, but only under the unloaded foot. Interestingly, no interaction between additional visual feedback and body-weight asymmetry was reported. These results suggest that the various postural effects that ensue from manipulating additional visual feedback parameters, shown previously in healthy subjects in various studies, could also apply independently of the level of asymmetry. Visual feedback effects could be observed in patients presenting weight-bearing asymmetries. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Balance Asymmetry in Parkinson’s Disease and Its Contribution to Freezing of Gait

    PubMed Central

    Boonstra, Tjitske A.; van Vugt, Jeroen P. P.; van der Kooij, Herman; Bloem, Bastiaan R.

    2014-01-01

    Balance control (the ability to maintain an upright posture) is asymmetrically controlled in a proportion of patients with Parkinson’s disease. Gait asymmetries have been linked to the pathophysiology of freezing of gait. We speculate that asymmetries in balance could contribute to freezing by a) hampering the unloading of the stepping leg and/or b) leading to a preferred stance leg during gait, which then results in asymmetric gait. To investigate this, we examined the relationship between balance control and weight-bearing asymmetries and freezing. We included 20 human patients with Parkinson (tested OFF medication; nine freezers) and nine healthy controls. Balance was perturbed in the sagittal plane, using continuous multi-sine perturbations, applied by a motion platform and by a force at the sacrum. Applying closed-loop system identification techniques, relating the body sway angle to the joint torques of each leg separately, determined the relative contribution of each ankle and hip joint to the total amount of joint torque. We also calculated weight-bearing asymmetries. We determined the 99-percent confidence interval of weight-bearing and balance-control asymmetry using the responses of the healthy controls. Freezers did not have larger asymmetries in weight bearing (p = 0.85) nor more asymmetrical balance control compared to non-freezers (p = 0.25). The healthy linear one-to-one relationship between weight bearing and balance control was significantly different for freezers and non-freezers (p = 0.01). Specifically, non-freezers had a significant relationship between weight bearing and balance control (p = 0.02), whereas this relation was not significant for freezers (p = 0.15). Balance control is asymmetrical in most patients (about 75 percent) with Parkinson’s disease, but this asymmetry is not related to freezing. The relationship between weight bearing and balance control seems to be less pronounced in freezers, compared to

  2. Baryon asymmetry from hypermagnetic helicity in dilaton hypercharge electromagnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamba, Kazuharu

    2006-12-15

    The generation of the baryon asymmetry of the Universe from the hypermagnetic helicity, the physical interpretation of which is given in terms of hypermagnetic knots, is studied in inflationary cosmology, taking into account the breaking of the conformal invariance of hypercharge electromagnetic fields through both a coupling with the dilaton and with a pseudoscalar field. It is shown that, if the electroweak phase transition is strongly first order and the present amplitude of the generated magnetic fields on the horizon scale is sufficiently large, a baryon asymmetry with a sufficient magnitude to account for the observed baryon-to-entropy ratio can bemore » generated.« less

  3. Left–right asymmetry in integral spectra of γ-quanta in the interaction of nuclei with polarized thermal neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesna, V. A.; Gledenov, Yu. M.; Nesvizhevsky, V. V., E-mail: nesvizhevsky@ill.eu

    The paper presents results of preliminarymeasurements of the left–right asymmetry in integral spectra of γ-quanta emitted in the interaction of polarized thermal neutrons with nuclei. These results indicate that for all cases of measured statistically significant P-odd asymmetry, the left–right asymmetry coefficient is much smaller than the P-odd asymmetry coefficient. This observation is not consistent with the predictions of theoretical calculations.

  4. PULSE RATE DIVIDER

    DOEpatents

    McDonald, H.C. Jr.

    1962-12-18

    A compact pulse-rate divider circuit affording low impedance output and high input pulse repetition rates is described. The circuit features a single secondary emission tube having a capacitor interposed between its dynode and its control grid. An output pulse is produced at the anode of the tube each time an incoming pulse at the control grid drives the tube above cutoff and the duration of each output pulse corresponds to the charging time of the capacitor. Pulses incoming during the time the grid bias established by the discharging capacitor is sufficiently negative that the pulses are unable to drive the tube above cutoff do not produce output pulses at the anode; these pulses are lost and a dividing action is thus produced by the circuit. The time constant of the discharge path may be vanied to vary in turn the division ratio of the circuit; the time constant of the charging circuit may be varied to vary the width of the output pulses. (AEC)

  5. Divided loyalties and ambiguous relationships.

    PubMed

    Toulmin, S

    1986-01-01

    The author argues that conflicts of obligation may, but need not, give rise to issues of divided loyalties. Given this, the question then becomes under what circumstances and conditions a simple internal conflict may escalate into the problem of divided loyalties or fiduciary ambiguities. After discussing conflicts of obligation, it is asserted that loyalties are divided only when the demands of the various relationships involved are irreconcilable. As this is an extreme, the major problematic issues fall, then, in between, on multiple loyalties and ambiguous loyalties. How and where multiple loyalties arise, and under what conditions they may become ambiguous loyalties lead to the recognition that moral problems are created by leaving in ambiguity things about the relationships involved that would be better sorted out. Finally the author looks at situations in which physicians are systematically exposed to irresoluble ambiguity.

  6. Radial/axial power divider/combiner

    NASA Technical Reports Server (NTRS)

    Vaddiparty, Yerriah P. (Inventor)

    1987-01-01

    An electromagnetic power divider/combiner comprises N radial outputs (31) having equal powers and preferably equal phases, and a single axial output (20). A divider structure (1) and a preferably identical combiner structure (2) are broadside coupled across a dielectric substrate (30) containing on one side the network of N radial outputs (31) and on its other side a set of N equispaced stubs (42) which are capacitively coupled through the dielectric substrate (30) to the N radial outputs (31). The divider structure (1) and the combiner structure (2) each comprise a dielectric disk (12, 22, respectively) on which is mounted a set of N radial impedance transformers (14, 24, respectively). Gross axial coupling is determined by the thickness of the dielectric layer (30). Rotating the disks (12, 22) with respect to each other effectuates fine adjustment in the degree of axial coupling.

  7. Directional asymmetries in human smooth pursuit eye movements.

    PubMed

    Ke, Sally R; Lam, Jessica; Pai, Dinesh K; Spering, Miriam

    2013-06-27

    Humans make smooth pursuit eye movements to bring the image of a moving object onto the fovea. Although pursuit accuracy is critical to prevent motion blur, the eye often falls behind the target. Previous studies suggest that pursuit accuracy differs between motion directions. Here, we systematically assess asymmetries in smooth pursuit. In experiment 1, binocular eye movements were recorded while observers (n = 20) tracked a small spot of light moving along one of four cardinal or diagonal axes across a featureless background. We analyzed pursuit latency, acceleration, peak velocity, gain, and catch-up saccade latency, number, and amplitude. In experiment 2 (n = 22), we examined the effects of spatial location and constrained stimulus motion within the upper or lower visual field. Pursuit was significantly faster (higher acceleration, peak velocity, and gain) and smoother (fewer and later catch-up saccades) in response to downward versus upward motion in both the upper and the lower visual fields. Pursuit was also more accurate and smoother in response to horizontal versus vertical motion. CONCLUSIONS. Our study is the first to report a consistent up-down asymmetry in human adults, regardless of visual field. Our findings suggest that pursuit asymmetries are adaptive responses to the requirements of the visual context: preferred motion directions (horizontal and downward) are more critical to our survival than nonpreferred ones.

  8. Asymmetry in electrical coupling between neurons alters multistable firing behavior

    NASA Astrophysics Data System (ADS)

    Pisarchik, A. N.; Jaimes-Reátegui, R.; García-Vellisca, M. A.

    2018-03-01

    The role of asymmetry in electrical synaptic connection between two neuronal oscillators is studied in the Hindmarsh-Rose model. We demonstrate that the asymmetry induces multistability in spiking dynamics of the coupled neuronal oscillators. The coexistence of at least three attractors, one chaotic and two periodic orbits, for certain coupling strengths is demonstrated with time series, phase portraits, bifurcation diagrams, basins of attraction of the coexisting states, Lyapunov exponents, and standard deviations of peak amplitudes and interspike intervals. The experimental results with analog electronic circuits are in good agreement with the results of numerical simulations.

  9. Individual differences in degree of handedness and somesthetic asymmetry predict individual differences in left-right confusion.

    PubMed

    Vingerhoets, Guy; Sarrechia, Iemke

    2009-12-01

    Confusion or frustration connected with daily demands involving left-right discrimination is a common observation even in neurologically intact adults. We aimed to test the hypothesis that the degree of left-right confusion is associated with bodily asymmetry. Sixty-two female volunteers performed a left-right decision task that required fast responses to visually presented directional words (left, right, up, down) or pictograms (<--, -->, upward arrow, downward arrow). Participants also performed several tests that measured asymmetry of handedness, grip strength, and tactile sensitivity, and completed self-reports on left-right confusion and perceived bodily asymmetry. Results showed significant correlations between left-right confusion and the degree of handedness and asymmetry in tactile sensitivity. These results suggest that individuals who reveal a stronger internal bias between both sides of the body show less left-right confusion than people with less salient bodily asymmetry.

  10. Diversity and convergence in the mechanisms establishing L/R asymmetry in metazoa

    PubMed Central

    Coutelis, Jean-Baptiste; González-Morales, Nicanor; Géminard, Charles; Noselli, Stéphane

    2014-01-01

    Differentiating left and right hand sides during embryogenesis represents a major event in body patterning. Left–Right (L/R) asymmetry in bilateria is essential for handed positioning, morphogenesis and ultimately the function of organs (including the brain), with defective L/R asymmetry leading to severe pathologies in human. How and when symmetry is initially broken during embryogenesis remains debated and is a major focus in the field. Work done over the past 20 years, in both vertebrate and invertebrate models, has revealed a number of distinct pathways and mechanisms important for establishing L/R asymmetry and for spreading it to tissues and organs. In this review, we summarize our current knowledge and discuss the diversity of L/R patterning from cells to organs during evolution. PMID:25150102

  11. Directional Asymmetry in the Limbs, Skull and Pelvis of the Silver Fox (V. vulpes)

    PubMed Central

    Kharlamova, Anastasia V.; Trut, Lyudmila N.; Chase, Kevin; Kukekova, Anna V.; Lark, Karl G.

    2011-01-01

    Directional asymmetry (DA) is a characteristic of most vertebrates, most strikingly exhibited by the placement of various organs (heart, lungs, liver, etc.) but also noted in small differences in the metrics of skeletal structures such as the pelvis of certain fish or sauropsids. We have analyzed DA in the skeleton of the fox (V. vulpes), using ~1,000 radiographs of foxes from populations used in the genetic analysis of behavior and morphology. Careful measurements from this robust data base demonstrate that: 1) DA occurs in the limb bones, the ileum, and ischium and in the mandible; 2) regardless of the direction of the length asymmetry vector of a particular skeletal unit, the vectorial direction of length is always opposite to that of width; 3) with the exception of the humerus and radius, there is no correlation or inverse correlation between vectorial amplitudes or magnitudes of bone asymmetries. 4) Postnatal measurements on foxes demonstrate that the asymmetry increases after birth and continues to change (increasing or decreasing) during postnatal growth. 5) A behavior test for preferential use of a specific forelimb exhibited fluctuating asymmetry but not DA. None of the skeletal asymmetries were significantly correlated with a preferential use of a specific forelimb. We suggest that for the majority of fox skeletal parameters, growth on the right and left side of the fox are differentially biased resulting in fixed differences between the two sides in either the rate of growth or the length of the period during which growth occurs. Random effects around these fixed differences perturb the magnitude of the effects such that the magnitudes of length and width asymmetries are not inversely correlated at the level of individual animals. PMID:20862692

  12. Directional asymmetry in the limbs, skull and pelvis of the silver fox (V. vulpes).

    PubMed

    Kharlamova, Anastasia V; Trut, Lyudmila N; Chase, Kevin; Kukekova, Anna V; Lark, Karl G

    2010-12-01

    Directional asymmetry (DA) is a characteristic of most vertebrates, most strikingly exhibited by the placement of various organs (heart, lungs, liver, etc.) but also noted in small differences in the metrics of skeletal structures such as the pelvis of certain fish or sauropsids. We have analyzed DA in the skeleton of the fox (V. vulpes), using ∼1,000 radiographs of foxes from populations used in the genetic analysis of behavior and morphology. Careful measurements from this robust data base demonstrate that: 1) DA occurs in the limb bones, the ileum, and ischium and in the mandible; 2) regardless of the direction of the length asymmetry vector of a particular skeletal unit, the vectorial direction of length is always opposite to that of width; 3) with the exception of the humerus and radius, there is no correlation or inverse correlation between vectorial amplitudes or magnitudes of bone asymmetries. 4) Postnatal measurements on foxes demonstrate that the asymmetry increases after birth and continues to change (increasing or decreasing) during postnatal growth. 5) A behavior test for preferential use of a specific forelimb exhibited fluctuating asymmetry but not DA. None of the skeletal asymmetries were significantly correlated with a preferential use of a specific forelimb. We suggest that for the majority of fox skeletal parameters, growth on the right and left side of the fox are differentially biased resulting in fixed differences between the two sides in either the rate of growth or the length of the period during which growth occurs. Random effects around these fixed differences perturb the magnitude of the effects such that the magnitudes of length and width asymmetries are not inversely correlated at the level of individual animals. © 2010 Wiley-Liss, Inc.

  13. Comparison of different methods of inter-eye asymmetry of rim area and disc area analysis

    PubMed Central

    Fansi, A A K; Boisjoly, H; Chagnon, M; Harasymowycz, P J

    2011-01-01

    Purpose To describe different methods of inter-eye asymmetry of rim area (RA) to disc area (DA) asymmetry ratio (RADAAR) analysis. Methods This was an observational, descriptive, and cross-sectional study. Both the eyes of all participants underwent confocal scanning laser ophthalmoscopy (Heidelberg retina tomograph (HRT 3)), frequency-doubling technology perimetry (FDT), and complete ophthalmological examination. Based on ophthalmological clinical examination and FDT results of the worse eye, subjects were classified as either normal, possible glaucoma, and probable glaucoma or definitive glaucoma. RADAAR values were calculated based on stereometric HRT 3 values using different mathematical formulae. RADAAR-1 was calculated as a relative difference of rim and DAs between the eyes. RADAAR-2 was calculated by subtracting the value of rim to DA ratio of the smaller disc from the value of rim to DA ratio of the larger disc. RADAAR-3 was calculated by dividing the previous two values. Statistical analyses included ANOVA as well as Student t-tests. Results Data of 334 participants were analysed, 78 of which were classified as definitive glaucoma. RADAAR-1 values were significantly different between the four different groups of diagnosis (F=5.82; P<0.001). The 1st and 99th percentile limits of normality for RADAAR-1, RADAAR-2, and RADAAR-3 in normal group were, respectively, −10.64 and 8.4; −0.32 and 0.22; and 0.58 and 1.32. Conclusions RADAAR-1 seems to best distinguish between the diagnostic groups. Knowledge of RADAAR distribution in various diagnostic groups may aid in clinical diagnosis of asymmetric glaucomatous damage. PMID:21921945

  14. Poloidal radiation asymmetries during disruption mitigation by massive gas injection on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Eidietis, N. W.

    2016-10-01

    Measurements of poloidal asymmetry in the radiated power during thermal quench (TQ) mitigation by massive gas injection (MGI) on DIII-D show poloidal peaking in the radiated heat flux at the wall generally consistent with 3D resistive MHD modeling, that indicates a large n=1 tearing mode causes these asymmetries. Radiation asymmetries are a concern to ITER because they can cause localized melting of the first wall even if globally the mitigation successfully radiates 100% of the plasma thermal energy. Toroidal radiation asymmetries have been well-studied, but until now the equally important poloidal asymmetries were not well constrained. Radiation emissivity profiles are reconstructed by tomographic inversion of AXUV photodiode arrays, from which the peaking measurements are derived. The poloidal peaking measurements are compared to NIMROD 3D resistive MHD simulations. Qualitatively, the measured and modeled peaking evolve similarly. In both cases, peaking during the TQ changes little with toroidal phase, consistent with predictions of n=1 MHD during the TQ producing the asymmetry. Quantitatively, the measured TQ peaking amplitudes are comparable to but consistently higher than the modeled values. This is a result of the measured radiation exhibiting high emissivity lobes at larger minor radius (and outside the separatrix) than the modeled cases, which may indicate incomplete treatment of the plasma-neutral interaction at the plasma edge in the model. This work, combined with previous measurement and modeling and toroidal radiation asymmetries, provides a basis for constraining localized mitigation radiation heat flux in ITER. Work supported by US DOE under DE-FC02-04ER54698.

  15. Splicing the Divide: A Review of Research on the Evolving Digital Divide among K-12 Students

    ERIC Educational Resources Information Center

    Dolan, Jennifer E.

    2016-01-01

    The digital divide has narrowed with regard to one definition of access to technology--the binary view of the "haves" and "have-nots." However, use of technology at home and in school is not equitable for all students. According to recent literature, a broader and more nuanced definition of the technological divide is necessary…

  16. Annual asymmetry in thermospheric density: Observations and simulations

    NASA Astrophysics Data System (ADS)

    Lei, Jiuhou; Dou, Xiankang; Burns, Alan; Wang, Wenbin; Luan, Xiaoli; Zeng, Zhen; Xu, Jiyao

    2013-05-01

    In this paper, the Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) observations during 2002-2010 are utilized to study the variation of the annual asymmetry in thermospheric density at 400 km under low solar activity condition (F10.7 = 80) based on the method of empirical orthogonal functions (EOFs). The derived asymmetry index (AI) in thermospheric density from the EOF analysis shows a strong latitudinal variation at night but varies a little with latitudes in daytime. Moreover, it exhibits a terdiurnal tidal signature at low to middle latitudes. The global mean value of the AI is 0.191, indicating that a 47% difference in thermosphere between the December and June solstices in the global average. In addition, the NCAR Thermosphere-Ionosphere Electrodynamics Global Circulation Model (TIEGCM) is used to explore the possible mechanisms responsible for the observed annual asymmetry in thermospheric density. It is found that the standard simulations give a lower AI and also a weaker day-to-night difference. The simulated AI shows a semidiurnal pattern in the equatorial and low-latitude regions in contrast with the terdiurnal tide signature seen in the observed AI. The daily mean AI obtained from the simulation is 0.125, corresponding to a 29% December-to-June difference in thermospheric density at 400 km. Further sensitivity simulations demonstrated that the effect of the varying Sun-Earth distance between the December and June solstices is the main process responsible for the annual asymmetry in thermospheric density, while the magnetic field configuration and tides from the lower atmosphere contribute to the temporal and spatial variations of the AI. Specifically, the simulations show that the Sun-Earth distance effect explains 93% of the difference in thermospheric density between December and June, which is mainly associated with the corresponding changes in neutral temperature. However, our calculation from the

  17. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    PubMed

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more

  18. Modeling Integrated Cellular Machinery Using Hybrid Petri-Boolean Networks

    PubMed Central

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more

  19. Asymmetri Distribution of Metals in the Xenopus Laevis Oocyte: a Synchrotron X-Ray Fluorescence Microprobe Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, B.F.G.; Belak, Z.R.; Ignatyev, K.

    2009-04-29

    The asymmetric distribution of many components of the Xenopus oocyte, including RNA, proteins, and pigment, provides a framework for cellular specialization during development. During maturation, Xenopus oocytes also acquire metals needed for development, but apart from zinc, little is known about their distribution. Synchrotron X-ray fluorescence microprobe was used to map iron, copper, and zinc and the metalloid selenium in a whole oocyte. Iron, zinc, and copper were asymmetrically distributed in the cytoplasm, while selenium and copper were more abundant in the nucleus. A zone of high copper and zinc was seen in the animal pole cytoplasm. Iron was alsomore » concentrated in the animal pole but did not colocalize with zinc, copper, or pigment accumulations. This asymmetry of metal deposition may be important for normal development. Synchrotron X-ray fluorescence microprobe will be a useful tool to examine how metals accumulate and redistribute during fertilization and embryonic development.« less

  20. Stability in Infant Frontal Asymmetry as a Predictor of Toddlerhood Internalizing and Externalizing Behaviors

    PubMed Central

    Smith, Cynthia L.; Bell, Martha Ann

    2013-01-01

    Stability in frontal brain electrical activity (i.e., electroencephalographic or EEG) asymmetry at 10 and 24 months was examined with respect to maternal ratings of internalizing and externalizing behaviors at 30 months in a sample of 48 children. Children with stable left frontal EEG asymmetry during infancy were rated higher in externalizing behaviors by their mothers, whereas children with stable right frontal EEG asymmetry were rated higher in internalizing behaviors. These findings highlight the need to focus on the early stability in physiological measures that may be implicated later in developing behavioral problems. PMID:20175143