Science.gov

Sample records for division protein ftsz

  1. Ftsz Ring Formation at the Chloroplast Division Site in Plants

    PubMed Central

    Vitha, Stanislav; McAndrew, Rosemary S.; Osteryoung, Katherine W.

    2001-01-01

    Among the events that accompanied the evolution of chloroplasts from their endosymbiotic ancestors was the host cell recruitment of the prokaryotic cell division protein FtsZ to function in chloroplast division. FtsZ, a structural homologue of tubulin, mediates cell division in bacteria by assembling into a ring at the midcell division site. In higher plants, two nuclear-encoded forms of FtsZ, FtsZ1 and FtsZ2, play essential and functionally distinct roles in chloroplast division, but whether this involves ring formation at the division site has not been determined previously. Using immunofluorescence microscopy and expression of green fluorescent protein fusion proteins in Arabidopsis thaliana, we demonstrate here that FtsZ1 and FtsZ2 localize to coaligned rings at the chloroplast midpoint. Antibodies specific for recognition of FtsZ1 or FtsZ2 proteins in Arabidopsis also recognize related polypeptides and detect midplastid rings in pea and tobacco, suggesting that midplastid ring formation by FtsZ1 and FtsZ2 is universal among flowering plants. Perturbation in the level of either protein in transgenic plants is accompanied by plastid division defects and assembly of FtsZ1 and FtsZ2 into filaments and filament networks not observed in wild-type, suggesting that previously described FtsZ-containing cytoskeletal-like networks in chloroplasts may be artifacts of FtsZ overexpression. PMID:11285278

  2. Targeting the Wolbachia Cell Division Protein FtsZ as a New Approach for Antifilarial Therapy

    PubMed Central

    Li, Zhiru; Garner, Amanda L.; Gloeckner, Christian; Janda, Kim D.; Carlow, Clotilde K.

    2011-01-01

    The use of antibiotics targeting the obligate bacterial endosymbiont Wolbachia of filarial parasites has been validated as an approach for controlling filarial infection in animals and humans. Availability of genomic sequences for the Wolbachia (wBm) present in the human filarial parasite Brugia malayi has enabled genome-wide searching for new potential drug targets. In the present study, we investigated the cell division machinery of wBm and determined that it possesses the essential cell division gene ftsZ which was expressed in all developmental stages of B. malayi examined. FtsZ is a GTPase thereby making the protein an attractive Wolbachia drug target. We described the molecular characterization and catalytic properties of Wolbachia FtsZ. We also demonstrated that the GTPase activity was inhibited by the natural product, berberine, and small molecule inhibitors identified from a high-throughput screen. Furthermore, berberine was also effective in reducing motility and reproduction in B. malayi parasites in vitro. Our results should facilitate the discovery of selective inhibitors of FtsZ as a novel anti-symbiotic approach for controlling filarial infection. Note The nucleotide sequences reported in this paper are available in GenBank™ Data Bank under the accession number wAlB-FtsZ (JN616286). PMID:22140592

  3. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers.

    PubMed Central

    Erickson, H P; Taylor, D W; Taylor, K A; Bramhill, D

    1996-01-01

    The bacterial cell division protein FtsZ is a homolog of tubulin, but it has not been determined whether FtsZ polymers are structurally related to the microtubule lattice. In the present study, we have obtained high-resolution electron micrographs of two FtsZ polymers that show remarkable similarity to tubulin polymers. The first is a two-dimensional sheet of protofilaments with a lattice very similar to that of the microtubule wall. The second is a miniring, consisting of a single protofilament in a sharply curved, planar conformation. FtsZ minirings are very similar to tubulin rings that are formed upon disassembly of microtubules but are about half the diameter. This suggests that the curved conformation occurs at every FtsZ subunit, but in tubulin rings the conformation occurs at either beta- or alpha-tubulin subunits but not both. We conclude that the functional polymer of FtsZ in bacterial cell division is a long thin sheet of protofilaments. There is sufficient FtsZ in Escherichia coli to form a protofilament that encircles the cell 20 times. The similarity of polymers formed by FtsZ and tubulin implies that the protofilament sheet is an ancient cytoskeletal system, originally functioning in bacterial cell division and later modified to make microtubules. Images Fig. 1 Fig. 2 Fig. 3 PMID:8552673

  4. Dynamic Interaction of the Escherichia coli Cell Division ZipA and FtsZ Proteins Evidenced in Nanodiscs*

    PubMed Central

    Hernández-Rocamora, Víctor M.; Reija, Belén; García, Concepción; Natale, Paolo; Alfonso, Carlos; Minton, Allen P.; Zorrilla, Silvia; Rivas, Germán; Vicente, Miguel

    2012-01-01

    The full-length ZipA protein from Escherichia coli, one of the essential components of the division proto-ring that provides membrane tethering to the septation FtsZ protein, has been incorporated in single copy into nanodiscs formed by a membrane scaffold protein encircling an E. coli phospholipid mixture. This is an acellular system that reproduces the assembly of part of the cell division components. ZipA contained in nanodiscs (Nd-ZipA) retains the ability to interact with FtsZ oligomers and with FtsZ polymers. Interactions with FtsZ occur at similar strengths as those involved in the binding of the soluble form of ZipA, lacking the transmembrane region, suggesting that the transmembrane region of ZipA has little influence on the formation of the ZipA·FtsZ complex. Peptides containing partial sequences of the C terminus of FtsZ compete with FtsZ polymers for binding to Nd-ZipA. The affinity of Nd-ZipA for the FtsZ polymer formed with GTP or GMPCPP (a slowly hydrolyzable analog of GTP) is moderate (micromolar range) and of similar magnitude as for FtsZ-GDP oligomers. Polymerization does not stabilize the binding of FtsZ to ZipA. This supports the role of ZipA as a passive anchoring device for the proto-ring with little implication, if any, in the regulation of its assembly. Furthermore, it indicates that the tethering of FtsZ to the membrane shows sufficient plasticity to allow for its release from noncentral regions of the cytoplasmic membrane and its subsequent relocation to midcell when demanded by the assembly of a division ring. PMID:22787144

  5. Evidence That Bacteriophage λ Kil Peptide Inhibits Bacterial Cell Division by Disrupting FtsZ Protofilaments and Sequestering Protein Subunits.

    PubMed

    Hernández-Rocamora, Víctor M; Alfonso, Carlos; Margolin, William; Zorrilla, Silvia; Rivas, Germán

    2015-08-14

    The effects of Kil peptide from bacteriophage λ on the assembly of Escherichia coli FtsZ into one subunit thick protofilaments were studied using combined biophysical and biochemical methods. Kil peptide has recently been identified as the factor from bacteriophage λ responsible for the inhibition of bacterial cell division during lytic cycle, targeting FtsZ polymerization. Here, we show that this antagonist blocks FtsZ assembly into GTP-dependent protofilaments, producing a wide distribution of smaller oligomers compared with the average size of the intact protofilaments. The shortening of FtsZ protofilaments by Kil is detectable at concentrations of the peptide in the low micromolar range, the mid-point of the inhibition being close to its apparent affinity for GDP-bound FtsZ. This antagonist not only interferes with FtsZ assembly but also reverses the polymerization reaction. The negative regulation by Kil significantly reduces the GTPase activity of FtsZ protofilaments, and FtsZ polymers assembled in guanosine-5'-[(α,β)-methyleno]triphosphate are considerably less sensitive to Kil. Our results suggest that, at high concentrations, Kil may use an inhibition mechanism involving the sequestration of FtsZ subunits, similar to that described for other inhibitors like the SOS response protein SulA or the moonlighting enzyme OpgH. This mechanism is different from those employed by the division site selection antagonists MinC and SlmA. This work provides new insight into the inhibition of FtsZ assembly by phages, considered potential tools against bacterial infection. PMID:26124275

  6. Bacterial Division Proteins FtsZ and ZipA Induce Vesicle Shrinkage and Cell Membrane Invagination*

    PubMed Central

    Cabré, Elisa J.; Sánchez-Gorostiaga, Alicia; Carrara, Paolo; Ropero, Noelia; Casanova, Mercedes; Palacios, Pilar; Stano, Pasquale; Jiménez, Mercedes; Rivas, Germán; Vicente, Miguel

    2013-01-01

    Permeable vesicles containing the proto-ring anchoring ZipA protein shrink when FtsZ, the main cell division protein, polymerizes in the presence of GTP. Shrinkage, resembling the constriction of the cytoplasmic membrane, occurs at ZipA densities higher than those found in the cell and is modulated by the dynamics of the FtsZ polymer. In vivo, an excess of ZipA generates multilayered membrane inclusions within the cytoplasm and causes the loss of the membrane function as a permeability barrier. Overproduction of ZipA at levels that block septation is accompanied by the displacement of FtsZ and two additional division proteins, FtsA and FtsN, from potential septation sites to clusters that colocalize with ZipA near the membrane. The results show that elementary constriction events mediated by defined elements involved in cell division can be evidenced both in bacteria and in vesicles. PMID:23921390

  7. [Localization of the division protein FtsZ in mycoplasma cells Mycoplasma hominis].

    PubMed

    Vishniakov, I E; Borkhsenius, S N; Basovskiĭ, Iu I; Levitskiĭ, S A; Lazarev, V N; Snigirevskaia, E S; Komissarchik, Ia Iu

    2009-01-01

    Localization of the protein FtsZ in Mycoplasma hominis cells was determined. Ultra thin sections were treated by rabbit polyclonal antibodies against FtsZ M. hominis: a conjugate of protein A with colloidal gold particles was used instead of secondary antibodies. Considerable polymorphism of cells was seen on electron microscopy pictures of M. hominis cells, which is typical for mycoplasmas. Among a wide variety of cell shapes we distinguished dumbbell-shaped dividing cells, and the cells connected with each other with the aid of thin membrane tubules (former constrictions). Dominants distribution of the label in the constriction area of dividing M. hominis cells and in the area of the thin membrane tubules was observed. We revealed the cross septum in the mycoplasma cells for the first time, as well as the gold labeling of this structure. Furthermore, in some rounded and oval cells colloidal gold particles labeled the whole plasma membrane in ring-shaped manner. Probably, the label in these cases marks a submembrane contractile ring (Z-ring). The facts mentioned above confirm that FtsZ of M. hominis plays an active role in the mycoplasma cytokinesis. In a series of cases spiral-like distribution of gold particles was observed. Probably, FtsZ protofilaments in M. hominis cells can form spiral structures similar to Z-spirals of Bacillus subtilis and Escherichia coli. Its presence in mycoplasma cells may be considered as an important argument in favour of model of Z-ring assembling through reorganization of Z-spirals. FtsZ also may participate in maintenance of mycoplasma cell shape (membrane localization). PMID:19435279

  8. The 75-kilodalton antigen of Bartonella bacilliformis is a structural homolog of the cell division protein FtsZ.

    PubMed Central

    Padmalayam, I; Anderson, B; Kron, M; Kelly, T; Baumstark, B

    1997-01-01

    A genomic library of Bartonella bacilliformis was constructed and screened with human anti-Bartonella serum from a patient with the chronic, verruga peruana phase of bartonellosis. An immunoreactive clone isolated from this library was found to code for a 591-amino-acid protein with a high degree of sequence similarity to the FtsZ family of proteins. The degree of amino acid identity between the B. bacilliformis protein (FtsZ[Bb]) and the other FtsZ proteins is especially pronounced over the N-terminal 321 amino acids (N-terminal domain) of the sequence, with values ranging from 45% identity for the homolog from Micrococcus luteus (FtsZ[Ml]) to 91% identity for the homolog from Rhizobium melliloti, (FtsZ[Rm1]). All of the functional domains required for FtsZ activity are conserved in FtsZ(Bb) and are located within the N-terminal domain of the protein. FtsZ(Bb) is approximately twice as large as most of the other FtsZ proteins previously reported, a property it shares with FtsZ(Rm1). Like the Rhizobium homolog, FtsZ(Bb) has a C-terminal region of approximately 256 amino acids that is absent in the other FtsZ proteins. Evidence is presented that implicates this region in the protein's antigenicity and suggests that, unlike most other FtsZ homologs, FtsZ(Bb) is at least partly exposed at the cell surface. PCR analysis revealed that an ftsZ gene similar in size to the B. bacilliformis gene is present in Bartonella henselae, a bacterium that is closely related to B. bacilliformis. PMID:9226264

  9. Penicillin-binding protein 2 inactivation in Escherichia coli results in cell division inhibition, which is relieved by FtsZ overexpression.

    PubMed Central

    Vinella, D; Joseleau-Petit, D; Thévenet, D; Bouloc, P; D'Ari, R

    1993-01-01

    Aminoacyl-tRNA synthetase mutants of Escherichia coli are resistant to amdinocillin (mecillinam), a beta-lactam antibiotic which specifically binds penicillin-binding protein 2 (PBP2) and prevents cell wall elongation with concomitant cell death. The leuS(Ts) strain, in which leucyl-tRNA synthetase is temperature sensitive, was resistant to amdinocillin at 37 degrees C because of an increased guanosine 5'-diphosphate 3'-diphosphate (ppGpp) pool resulting from partial induction of the stringent response, but it was sensitive to amdinocillin at 25 degrees C. We constructed a leuS(Ts) delta (rodA-pbpA)::Kmr strain, in which the PBP2 structural gene is deleted. This strain grew as spherical cells at 37 degrees C but was not viable at 25 degrees C. After a shift from 37 to 25 degrees C, the ppGpp pool decreased and cell division was inhibited; the cells slowly carried out a single division, increased considerably in volume, and gradually lost viability. The cell division inhibition was reversible when the ppGpp pool increased at high temperature, but reversion required de novo protein synthesis, possibly of septation proteins. The multicopy plasmid pZAQ, overproducing the septation proteins FtsZ, FtsA, and FtsQ, conferred amdinocillin resistance on a wild-type strain and suppressed the cell division inhibition in the leuS(Ts) delta (rodA-pbpA)::Kmr strain at 25 degrees C. The plasmid pAQ, in which the ftsZ gene is inactivated, did not confer amdinocillin resistance. These results lead us to hypothesize that the nucleotide ppGpp activates ftsZ expression and thus couples cell division to protein synthesis. PMID:8407846

  10. YeeV is an Escherichia coli Toxin that Inhibits Cell Division by Targeting the Cytoskeleton Proteins, FtsZ and MreB

    PubMed Central

    Tan, Qian; Awano, Naoki; Inouye, Masayori

    2010-01-01

    Summary Toxin-Antitoxin (TA) systems of free-living bacteria have recently, demonstrated that these toxins inhibit cell growth by targeting essential functions of cellular metabolism. Here we show that YeeV toxin inhibits cell division, leads to a change in morphology and lysis of E. coli cells. YeeV interacts with two essential cytoskeleton proteins, FtsZ and MreB. Purified YeeV inhibits both the GTPase activity and the GTP-dependent polymerization of FtsZ. YeeV also inhibits ATP-dependent polymerization of MreB. Truncated C-terminal deletions of YeeV result in elongation of cells, and a deletion of the first 15 amino acids from the N-terminus of YeeV caused lemon shaped cell formation. The YeeV toxin is distinct from other well studied toxins: it directs the binding of two cytoskeletal proteins and inhibits FtsZ and MreB simultaneously. PMID:21166897

  11. Practical Synthesis of PC190723, An Inhibitor of the Bacterial Cell Division Protein FtsZ

    PubMed Central

    Sorto, Nohemy A.; Olmstead, Marilyn M.; Shaw, Jared T.

    2010-01-01

    A high-yielding and practical synthesis of the bacterial cell division inhibitor PC190723 is described. The synthesis is completed in a longest linear sequence of five steps from commercially available starting materials and can be readily executed on a multi-gram scale. PMID:21033691

  12. Comparison of Small Molecule Inhibitors of the Bacterial Cell Division Protein FtsZ and Identification of a Reliable Cross-Species Inhibitor

    PubMed Central

    Anderson, David E.; Kim, Michelle B.; Moore, Jared T.; O’Brien, Terrence E.; Sorto, Nohemy A.; Grove, Charles I.; Lackner, Laura L.; Ames, James B.; Shaw, Jared T.

    2012-01-01

    FtsZ is a guanosine triphosphatase (GTPase) that mediates cytokinesis in bacteria. FtsZ is homologous in structure to eukaryotic tubulin and polymerizes in a similar head-to-tail fashion. The study of tubulin’s function in eukaryotic cells has benefited greatly from specific and potent small molecule inhibitors, including colchicine and taxol. Although many small molecule inhibitors of FtsZ have been reported, none has emerged as a generally useful probe for modulating bacterial cell division. With the goal of establishing a useful and reliable small molecule inhibitor of FtsZ, a broad biochemical cross-comparison of reported FtsZ inhibitors was undertaken. Several of these molecules, including phenolic natural products, are unselective inhibitors that seem to derive their activity from the formation of microscopic colloids or aggregates. Other compounds, including the natural product viriditoxin and the drug development candidate PC190723, exhibit no inhibition of GTPase activity using protocols in this work or under published conditions. Of the compounds studied, only zantrin Z3 exhibits good levels of inhibition, maintains activity under conditions that disrupt small molecule aggregates, and provides a platform for exploration of structure-activity relationships (SAR). Preliminary SAR studies have identified slight modifications to the two sidechains of this structure that modulate the inhibitory activity of zantrin Z3. Collectively these studies will help focus future investigations toward the establishment of probes for FtsZ that fill the roles of colchicine and taxol in studies of tubulin. PMID:22958099

  13. Super-resolution imaging of the bacterial cytokinetic protein FtsZ.

    PubMed

    Jennings, Phoebe C; Cox, Guy C; Monahan, Leigh G; Harry, Elizabeth J

    2011-06-01

    The idea of a bacterial cytoskeleton arose just 10 years ago with the identification of the cell division protein, FtsZ, as a tubulin homolog. FtsZ plays a pivotal role in bacterial division, and is present in virtually all prokaryotes and in some eukaryotic organelles. The earliest stage of bacterial cell division is the assembly of FtsZ into a Z ring at the division site, which subsequently constricts during cytokinesis. FtsZ also assembles into dynamic helical structures along the bacterial cell, which are thought to act as precursors to the Z ring via a cell cycle-mediated FtsZ polymer remodelling. The fine structures of the FtsZ helix and ring are unknown but crucial for identifying the molecular details of Z ring assembly and its regulation. We now reveal using STED microscopy that the FtsZ helical structure in cells of the gram positive bacterium, Bacillus subtilis, is a highly irregular and discontinuous helix of FtsZ; very different to the smooth cable-like appearance observed by conventional fluorescence optics. STED also identifies a novel FtsZ helical structure of smaller pitch that is invisible to standard optical methods, identifying a possible third intermediate in the pathway to Z ring assembly, which commits bacterial cells to divide. PMID:20933427

  14. Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ.

    PubMed Central

    Osteryoung, K W; Stokes, K D; Rutherford, S M; Percival, A L; Lee, W Y

    1998-01-01

    The division of plastids is critical for viability in photosynthetic eukaryotes, but the mechanisms associated with this process are still poorly understood. We previously identified a nuclear gene from Arabidopsis encoding a chloroplast-localized homolog of the bacterial cell division protein FtsZ, an essential cytoskeletal component of the prokaryotic cell division apparatus. Here, we report the identification of a second nuclear-encoded FtsZ-type protein from Arabidopsis that does not contain a chloroplast targeting sequence or other obvious sorting signals and is not imported into isolated chloroplasts, which strongly suggests that it is localized in the cytosol. We further demonstrate using antisense technology that inhibiting expression of either Arabidopsis FtsZ gene (AtFtsZ1-1 or AtFtsZ2-1) in transgenic plants reduces the number of chloroplasts in mature leaf cells from 100 to one, indicating that both genes are essential for division of higher plant chloroplasts but that each plays a distinct role in the process. Analysis of currently available plant FtsZ sequences further suggests that two functionally divergent FtsZ gene families encoding differentially localized products participate in chloroplast division. Our results provide evidence that both chloroplastic and cytosolic forms of FtsZ are involved in chloroplast division in higher plants and imply that important differences exist between chloroplasts and prokaryotes with regard to the roles played by FtsZ proteins in the division process. PMID:9836740

  15. ZapE Is a Novel Cell Division Protein Interacting with FtsZ and Modulating the Z-Ring Dynamics

    PubMed Central

    Marteyn, Benoit S.; Karimova, Gouzel; Fenton, Andrew K.; Gazi, Anastasia D.; West, Nicholas; Touqui, Lhousseine; Prevost, Marie-Christine; Betton, Jean-Michel; Poyraz, Oemer; Ladant, Daniel; Gerdes, Kenn; Sansonetti, Philippe J.; Tang, Christoph M.

    2014-01-01

    ABSTRACT Bacterial cell division requires the formation of a mature divisome complex positioned at the midcell. The localization of the divisome complex is determined by the correct positioning, assembly, and constriction of the FtsZ ring (Z-ring). Z-ring constriction control remains poorly understood and (to some extent) controversial, probably due to the fact that this phenomenon is transient and controlled by numerous factors. Here, we characterize ZapE, a novel ATPase found in Gram-negative bacteria, which is required for growth under conditions of low oxygen, while loss of zapE results in temperature-dependent elongation of cell shape. We found that ZapE is recruited to the Z-ring during late stages of the cell division process and correlates with constriction of the Z-ring. Overexpression or inactivation of zapE leads to elongation of Escherichia coli and affects the dynamics of the Z-ring during division. In vitro, ZapE destabilizes FtsZ polymers in an ATP-dependent manner. PMID:24595368

  16. ZipA is a MAP-Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division.

    PubMed Central

    RayChaudhuri, D

    1999-01-01

    The first visible event in prokaryotic cell division is the assembly of the soluble, tubulin-like FtsZ GTPase into a membrane-associated cytokinetic ring that defines the division plane in bacterial and archaeal cells. In the temperature-sensitive ftsZ84 mutant of Escherichia coli, this ring assembly is impaired at the restrictive temperature causing lethal cell filamentation. Here I present genetic and morphological evidence that a 2-fold higher dosage of the division gene zipA suppresses thermosensitivity of the ftsZ84 mutant by stabilizing the labile FtsZ84 ring structure in vivo. I demonstrate that purified ZipA promotes and stabilizes protofilament assembly of both FtsZ and FtsZ84 in vitro and cosediments with the protofilaments. Furthermore, ZipA organizes FtsZ protofilaments into arrays of long bundles or sheets that probably represent the physiological organization of the FtsZ ring in bacterial cells. The N-terminal cytoplasmic domain of membrane-anchored ZipA contains sequence elements that resemble the microtubule-binding signature motifs in eukaryotic Tau, MAP2 and MAP4 proteins. It is postulated that the MAP-Tau-homologous motifs in ZipA mediate its binding to FtsZ, and that FtsZ-ZipA interaction represents an ancient prototype of the protein-protein interaction that enables MAPs to suppress microtubule catastrophe and/or to promote rescue. PMID:10228152

  17. Cytoplasmic Domain of MscS Interacts with Cell Division Protein FtsZ: A Possible Non-Channel Function of the Mechanosensitive Channel in Escherichia Coli

    PubMed Central

    Koprowski, Piotr; Grajkowski, Wojciech; Balcerzak, Marcin; Filipiuk, Iwona; Fabczak, Hanna; Kubalski, Andrzej

    2015-01-01

    Bacterial mechano-sensitive (MS) channels reside in the inner membrane and are considered to act as emergency valves whose role is to lower cell turgor when bacteria enter hypo-osmotic environments. However, there is emerging evidence that members of the Mechano-sensitive channel Small (MscS) family play additional roles in bacterial and plant cell physiology. MscS has a large cytoplasmic C-terminal region that changes its shape upon activation and inactivation of the channel. Our pull-down and co-sedimentation assays show that this domain interacts with FtsZ, a bacterial tubulin-like protein. We identify point mutations in the MscS C-terminal domain that reduce binding to FtsZ and show that bacteria expressing these mutants are compromised in growth on sublethal concentrations of β-lactam antibiotics. Our results suggest that interaction between MscS and FtsZ could occur upon inactivation and/or opening of the channel and could be important for the bacterial cell response against sustained stress upon stationary phase and in the presence of β-lactam antibiotics. PMID:25996836

  18. Distinct functions of chloroplast FtsZ1 and FtsZ2 in Z-ring structure and remodeling

    PubMed Central

    TerBush, Allan D.

    2012-01-01

    FtsZ, a cytoskeletal GTPase, forms a contractile ring for cell division in bacteria and chloroplast division in plants. Whereas bacterial Z rings are composed of a single FtsZ, those in chloroplasts contain two distinct FtsZ proteins, FtsZ1 and FtsZ2, whose functional relationship is poorly understood. We expressed fluorescently tagged FtsZ1 and FtsZ2 in fission yeast to investigate their intrinsic assembly and dynamic properties. FtsZ1 and FtsZ2 formed filaments with differing morphologies when expressed separately. FRAP showed that FtsZ2 filaments were less dynamic than FtsZ1 filaments and that GTPase activity was essential for FtsZ2 filament turnover but may not be solely responsible for FtsZ1 turnover. When coexpressed, the proteins colocalized, consistent with coassembly, but exhibited an FtsZ2-like morphology. However, FtsZ1 increased FtsZ2 exchange into coassembled filaments. Our findings suggest that FtsZ2 is the primary determinant of chloroplast Z-ring structure, whereas FtsZ1 facilitates Z-ring remodeling. We also demonstrate that ARC3, a regulator of chloroplast Z-ring positioning, functions as an FtsZ1 assembly inhibitor. PMID:23128242

  19. FtsZ does not initiate membrane constriction at the onset of division

    PubMed Central

    Daley, Daniel O.; Skoglund, Ulf; Söderström, Bill

    2016-01-01

    The source of constriction required for division of a bacterial cell remains enigmatic. FtsZ is widely believed to be a key player, because in vitro experiments indicate that it can deform liposomes when membrane tethered. However in vivo evidence for such a role has remained elusive as it has been challenging to distinguish the contribution of FtsZ from that of peptidoglycan-ingrowth. To differentiate between these two possibilities we studied the early stages of division in Escherichia coli, when FtsZ is present at the division site but peptidoglycan synthesizing enzymes such as FtsI and FtsN are not. Our approach was to use correlative cryo-fluorescence and cryo-electron microscopy (cryo-CLEM) to monitor the localization of fluorescently labeled FtsZ, FtsI or FtsN correlated with the septal ultra-structural geometry in the same cell. We noted that the presence of FtsZ at the division septum is not sufficient to deform membranes. This observation suggests that, although FtsZ can provide a constrictive force, the force is not substantial at the onset of division. Conversely, the presence of FtsN always correlated with membrane invagination, indicating that allosteric activation of peptidoglycan ingrowth is the trigger for constriction of the cell envelope during cell division in E. coli. PMID:27609565

  20. FtsZ does not initiate membrane constriction at the onset of division.

    PubMed

    Daley, Daniel O; Skoglund, Ulf; Söderström, Bill

    2016-01-01

    The source of constriction required for division of a bacterial cell remains enigmatic. FtsZ is widely believed to be a key player, because in vitro experiments indicate that it can deform liposomes when membrane tethered. However in vivo evidence for such a role has remained elusive as it has been challenging to distinguish the contribution of FtsZ from that of peptidoglycan-ingrowth. To differentiate between these two possibilities we studied the early stages of division in Escherichia coli, when FtsZ is present at the division site but peptidoglycan synthesizing enzymes such as FtsI and FtsN are not. Our approach was to use correlative cryo-fluorescence and cryo-electron microscopy (cryo-CLEM) to monitor the localization of fluorescently labeled FtsZ, FtsI or FtsN correlated with the septal ultra-structural geometry in the same cell. We noted that the presence of FtsZ at the division septum is not sufficient to deform membranes. This observation suggests that, although FtsZ can provide a constrictive force, the force is not substantial at the onset of division. Conversely, the presence of FtsN always correlated with membrane invagination, indicating that allosteric activation of peptidoglycan ingrowth is the trigger for constriction of the cell envelope during cell division in E. coli. PMID:27609565

  1. FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division

    PubMed Central

    Miyagishima, Shin-ya; Nakamura, Mami; Uzuka, Akihiro; Era, Atsuko

    2014-01-01

    The chloroplast division machinery is a mixture of a stromal FtsZ-based complex descended from a cyanobacterial ancestor of chloroplasts and a cytosolic dynamin-related protein (DRP) 5B-based complex derived from the eukaryotic host. Molecular genetic studies have shown that each component of the division machinery is normally essential for normal chloroplast division. However, several exceptions have been found. In the absence of the FtsZ ring, non-photosynthetic plastids are able to proliferate, likely by elongation and budding. Depletion of DRP5B impairs, but does not stop chloroplast division. Chloroplasts in glaucophytes, which possesses a peptidoglycan (PG) layer, divide without DRP5B. Certain parasitic eukaryotes possess non-photosynthetic plastids of secondary endosymbiotic origin, but neither FtsZ nor DRP5B is encoded in their genomes. Elucidation of the FtsZ- and/or DRP5B-less chloroplast division mechanism will lead to a better understanding of the function and evolution of the chloroplast division machinery and the finding of the as-yet-unknown mechanism that is likely involved in chloroplast division. Recent studies have shown that FtsZ was lost from a variety of prokaryotes, many of which lost PG by regressive evolution. In addition, even some of the FtsZ-bearing bacteria are able to divide when FtsZ and PG are depleted experimentally. In some cases, alternative mechanisms for cell division, such as budding by an increase of the cell surface-to-volume ratio, are proposed. Although PG is believed to have been lost from chloroplasts other than in glaucophytes, there is some indirect evidence for the existence of PG in chloroplasts. Such information is also useful for understanding how non-photosynthetic plastids are able to divide in FtsZ-depleted cells and the reason for the retention of FtsZ in chloroplast division. Here we summarize information to facilitate analyses of FtsZ- and/or DRP5B-less chloroplast and non-photosynthetic plastid division. PMID

  2. The Nucleoid Occlusion SlmA Protein Accelerates the Disassembly of the FtsZ Protein Polymers without Affecting Their GTPase Activity

    PubMed Central

    Cabré, Elisa J.; Monterroso, Begoña; Alfonso, Carlos; Sánchez-Gorostiaga, Alicia; Reija, Belén; Jiménez, Mercedes

    2015-01-01

    Division site selection is achieved in bacteria by different mechanisms, one of them being nucleoid occlusion, which prevents Z-ring assembly nearby the chromosome. Nucleoid occlusion in E. coli is mediated by SlmA, a sequence specific DNA binding protein that antagonizes FtsZ assembly. Here we show that, when bound to its specific target DNA sequences (SBS), SlmA reduces the lifetime of the FtsZ protofilaments in solution and of the FtsZ bundles when located inside permeable giant vesicles. This effect appears to be essentially uncoupled from the GTPase activity of the FtsZ protofilaments, which is insensitive to the presence of SlmA·SBS. The interaction of SlmA·SBS with either FtsZ protofilaments containing GTP or FtsZ oligomers containing GDP results in the disassembly of FtsZ polymers. We propose that SlmA·SBS complexes control the polymerization state of FtsZ by accelerating the disassembly of the FtsZ polymers leading to their fragmentation into shorter species that are still able to hydrolyze GTP at the same rate. SlmA defines therefore a new class of inhibitors of the FtsZ ring different from the SOS response regulator SulA and from the moonlighting enzyme OpgH, inhibitors of the GTPase activity. SlmA also shows differences compared with MinC, the inhibitor of the division site selection Min system, which shortens FtsZ protofilaments by interacting with the GDP form of FtsZ. PMID:25950808

  3. The pH Dependence of Polymerization and Bundling by the Essential Bacterial Cytoskeltal Protein FtsZ

    PubMed Central

    Pacheco-Gómez, Raúl; Roper, David I.; Dafforn, Timothy R.; Rodger, Alison

    2011-01-01

    There is a growing body of evidence that bacterial cell division is an intricate coordinated process of comparable complexity to that seen in eukaryotic cells. The dynamic assembly of Escherichia coli FtsZ in the presence of GTP is fundamental to its activity. FtsZ polymerization is a very attractive target for novel antibiotics given its fundamental and universal function. In this study our aim was to understand further the GTP-dependent FtsZ polymerization mechanism and our main focus is on the pH dependence of its behaviour. A key feature of this work is the use of linear dichroism (LD) to follow the polymerization of FtsZ monomers into polymeric structures. LD is the differential absorption of light polarized parallel and perpendicular to an orientation direction (in this case that provided by shear flow). It thus readily distinguishes between FtsZ polymers and monomers. It also distinguishes FtsZ polymers and less well-defined aggregates, which light scattering methodologies do not. The polymerization of FtsZ over a range of pHs was studied by right-angled light scattering to probe mass of FtsZ structures, LD to probe real-time formation of linear polymeric fibres, a specially developed phosphate release assay to relate guanosine triphosphate (GTP) hydrolysis to polymer formation, and electron microscopy (EM) imaging of reaction products as a function of time and pH. We have found that lowering the pH from neutral to 6.5 does not change the nature of the FtsZ polymers in solution—it simply facilitates the polymerization so the fibres present are longer and more abundant. Conversely, lowering the pH to 6.0 has much the same effect as introducing divalent cations or the FtsZ-associated protein YgfE (a putative ZapA orthologue in E. coli)—it stablizes associations of protofilaments. PMID:21738567

  4. ROLE OF MULTIPLE FTSZ RINGS IN CHLOROPLAST DIVISION UNDER OLIGOTROPHIC AND EUTROPHIC CONDITIONS IN THE UNICELLULAR GREEN ALGA NANNOCHLORIS BACILLARIS (CHLOROPHYTA, TREBOUXIOPHYCEAE)(1).

    PubMed

    Sumiya, Nobuko; Owari, Satomi; Watanabe, Koichi; Kawano, Shigeyuki

    2012-10-01

    Chloroplasts of the unicellular green alga Nannochloris bacillaris Naumann cultured under nutrient-enriched conditions have multiple rings of FtsZ, a prokaryote-derived chloroplast division protein. We previously reported that synthesis of excess chloroplast DNA and formation of multiple FtsZ rings occur simultaneously. To clarify the role of multiple FtsZ rings in chloroplast division, we investigated chloroplast DNA synthesis and ring formation in cells cultured under various culture conditions. Cells transferred from a nutrient-enriched medium to an inorganic medium in the light showed a drop in cell division rate, a reduction in chloroplast DNA content, and changes in the shape of chloroplast nucleoids as cells divided. We then examined DNA synthesis by immunodetecting BrdU incorporated into DNA strands using the anti-BrdU antibody. BrdU-labeled nuclei were clearly observed in cells 48 h after transfer into the inorganic medium, while only weak punctate signals were visible in the chloroplasts. In parallel, the number of FtsZ rings decreased from 6 to only 1. When the cells were transferred from an inorganic medium to a nutrient-enriched medium, the number of cells increased only slightly in the first 12 h after transfer; after this time, however, they started to divide more quickly and increased exponentially. Chloroplast nucleoids changed from punctate to rod-like structures, and active chloroplast DNA synthesis and FtsZ ring formation were observed. On the basis of our results, we conclude that multiple FtsZ ring assembly and chloroplast DNA duplication under nutrient-rich conditions facilitate chloroplast division after transfer to oligotrophic conditions without further duplication of chloroplast DNA and formation of new FtsZ rings. PMID:27011278

  5. AAA+ Chaperone ClpX Regulates Dynamics of Prokaryotic Cytoskeletal Protein FtsZ*

    PubMed Central

    Sugimoto, Shinya; Yamanaka, Kunitoshi; Nishikori, Shingo; Miyagi, Atsushi; Ando, Toshio; Ogura, Teru

    2010-01-01

    AAA+ chaperone ClpX has been suggested to be a modulator of prokaryotic cytoskeletal protein FtsZ, but the details of recognition and remodeling of FtsZ by ClpX are largely unknown. In this study, we have extensively investigated the nature of FtsZ polymers and mechanisms of ClpX-regulated FtsZ polymer dynamics. We found that FtsZ polymerization is inhibited by ClpX in an ATP-independent manner and that the N-terminal domain of ClpX plays a crucial role for the inhibition of FtsZ polymerization. Single molecule analysis with high speed atomic force microscopy directly revealed that FtsZ polymer is in a dynamic equilibrium between polymerization and depolymerization on a time scale of several seconds. ClpX disassembles FtsZ polymers presumably by blocking reassembly of FtsZ. Furthermore, Escherichia coli cells overproducing ClpX and N-terminal domain of ClpX show filamentous morphology with abnormal localization of FtsZ. These data together suggest that ClpX modulates FtsZ polymer dynamics in an ATP-independent fashion, which is achieved by interaction between the N-terminal domain of ClpX and FtsZ monomers or oligomers. PMID:20022957

  6. Characterization of the ftsZ cell division gene of Neisseria gonorrhoeae: expression in Escherichia coli and N. gonorrhoeae.

    PubMed

    Salimnia, H; Radia, A; Bernatchez, S; Beveridge, T J; Dillon, J R

    2000-01-01

    We cloned the cell division gene ftsZ of the gram-negative coccus Neisseria gonorrhoeae (Ng) strain CH811, characterized it genetically and phenotypically, and studied its localization in N. gonorrhoeae and Escherichia coli (Ec). The 1,179-bp ORF of ftsZ(Ng) encodes a protein with a predicted molecular mass of 41.5 kDa. Protein sequence alignments indicate that FtsZ(Ng) is similar to other FtsZ proteins and contains the conserved GTP binding motif. FtsZ homologues were identified in several N. gonorrhoeae strains and in Neisseria lactamica, Neisseria sicca, Neisseria polysaccharae and Neisseria cinerea either by Western blot or by PCR-Southern blot analysis. Attempts to inactivate the ftsZ(Ng) on the chromosome failed, indicating that it is essential for gonococcal growth. FtsZ(Ng) was synthesized in an in vitro transcription/translation system and was shown to be 43 kDa, the same size as in Western blots. Expression of the ftsZ(Ng) gene from nongonococcal promoters resulted in a filamentous phenotype in E. coli. Under controlled expression, the FtsZ(Ng)-GFP fusion protein localized at the mid-cell division site in E. coli. E. coli expressing high levels of the FtsZ(Ng)-GFP fusion protein formed filaments and exhibited different fluorescent structures including helices, spiral tubules extending from pole to pole, and regularly spaced dots or bands that did not localize at the middle of the cell. Expression of the FtsZ(Ng)-GFP fusion protein in N. gonorrhoeae resulted in abnormal cell division as shown by electron microscopy. FtsZ(Ng)-GFP fusions were also expressed in a gonococcal background using a unique shuttle vector. PMID:10648099

  7. MinC Protein Shortens FtsZ Protofilaments by Preferentially Interacting with GDP-bound Subunits*

    PubMed Central

    Hernández-Rocamora, Víctor M.; García-Montañés, Concepción; Reija, Belén; Monterroso, Begoña; Margolin, William; Alfonso, Carlos; Zorrilla, Silvia; Rivas, Germán

    2013-01-01

    The interaction of MinC with FtsZ and its effects on FtsZ polymerization were studied under close to physiological conditions by a combination of biophysical methods. The Min system is a widely conserved mechanism in bacteria that ensures the correct placement of the division machinery at midcell. MinC is the component of this system that effectively interacts with FtsZ and inhibits the formation of the Z-ring. Here we report that MinC produces a concentration-dependent reduction in the size of GTP-induced FtsZ protofilaments (FtsZ-GTP) as demonstrated by analytical ultracentrifugation, dynamic light scattering, fluorescence correlation spectroscopy, and electron microscopy. Our experiments show that, despite being shorter, FtsZ protofilaments maintain their narrow distribution in size in the presence of MinC. The protein had the same effect regardless of its addition prior to or after FtsZ polymerization. Fluorescence anisotropy measurements indicated that MinC bound to FtsZ-GDP with a moderate affinity (apparent KD ∼10 μm at 100 mm KCl and pH 7.5) very close to the MinC concentration corresponding to the midpoint of the inhibition of FtsZ assembly. Only marginal binding of MinC to FtsZ-GTP protofilaments was observed by analytical ultracentrifugation and fluorescence correlation spectroscopy. Remarkably, MinC effects on FtsZ-GTP protofilaments and binding affinity to FtsZ-GDP were strongly dependent on ionic strength, being severely reduced at 500 mm KCl compared with 100 mm KCl. Our results support a mechanism in which MinC interacts with FtsZ-GDP, resulting in smaller protofilaments of defined size and having the same effect on both preassembled and growing FtsZ protofilaments. PMID:23853099

  8. Structures of the nucleoid occlusion protein SlmA bound to DNA and the C-terminal domain of the cytoskeletal protein FtsZ.

    PubMed

    Schumacher, Maria A; Zeng, Wenjie

    2016-05-01

    Cell division in most prokaryotes is mediated by FtsZ, which polymerizes to create the cytokinetic Z ring. Multiple FtsZ-binding proteins regulate FtsZ polymerization to ensure the proper spatiotemporal formation of the Z ring at the division site. The DNA-binding protein SlmA binds to FtsZ and prevents Z-ring formation through the nucleoid in a process called "nucleoid occlusion" (NO). As do most FtsZ-accessory proteins, SlmA interacts with the conserved C-terminal domain (CTD) that is connected to the FtsZ core by a long, flexible linker. However, SlmA is distinct from other regulatory factors in that it must be DNA-bound to interact with the FtsZ CTD. Few structures of FtsZ regulator-CTD complexes are available, but all reveal the CTD bound as a helix. To deduce the molecular basis for the unique SlmA-DNA-FtsZ CTD regulatory interaction and provide insight into FtsZ-regulator protein complex formation, we determined structures of Escherichia coli, Vibrio cholera, and Klebsiella pneumonia SlmA-DNA-FtsZ CTD ternary complexes. Strikingly, the FtsZ CTD does not interact with SlmA as a helix but binds as an extended conformation in a narrow, surface-exposed pocket formed only in the DNA-bound state of SlmA and located at the junction between the DNA-binding and C-terminal dimer domains. Binding studies are consistent with the structure and underscore key interactions in complex formation. Combined, these data reveal the molecular basis for the SlmA-DNA-FtsZ interaction with implications for SlmA's NO function and underscore the ability of the FtsZ CTD to adopt a wide range of conformations, explaining its ability to bind diverse regulatory proteins. PMID:27091999

  9. Chloroplast FtsZ assembles into a contractible ring via tubulin-like heteropolymerization.

    PubMed

    Yoshida, Yamato; Mogi, Yuko; TerBush, Allan D; Osteryoung, Katherine W

    2016-01-01

    Chloroplast division is driven by a ring containing FtsZ1 and FtsZ2 proteins, which originated from bacterial FtsZ, a tubulin-like protein; however, mechanistic details of the chloroplast FtsZ ring remain unclear. Here, we report that FtsZ1 and FtsZ2 can heteropolymerize into a contractible ring ex vivo. Fluorescently labelled FtsZ1 and/or FtsZ2 formed single rings in cells of the yeast Pichia pastoris. Photobleaching experiments indicated that co-assembly of FtsZ1 and FtsZ2 imparts polarity to polymerization. Assembly of FtsZ chimaeras revealed that the protofilaments assemble via heteropolymerization of FtsZ2 and FtsZ1. Contraction of the ring was accompanied by an increase in the filament turnover rate. Our findings suggest that the evolutionary duplication of FtsZ in plants may have increased the mobility and kinetics of FtsZ ring dynamics in chloroplast division. Thus, the gene duplication and heteropolymerization of chloroplast FtsZs may represent convergent evolution with eukaryotic tubulin. PMID:27322658

  10. Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division

    PubMed Central

    Szwedziak, Piotr; Wang, Qing; Bharat, Tanmay A M; Tsim, Matthew; Löwe, Jan

    2014-01-01

    Membrane constriction is a prerequisite for cell division. The most common membrane constriction system in prokaryotes is based on the tubulin homologue FtsZ, whose filaments in E. coli are anchored to the membrane by FtsA and enable the formation of the Z-ring and divisome. The precise architecture of the FtsZ ring has remained enigmatic. In this study, we report three-dimensional arrangements of FtsZ and FtsA filaments in C. crescentus and E. coli cells and inside constricting liposomes by means of electron cryomicroscopy and cryotomography. In vivo and in vitro, the Z-ring is composed of a small, single-layered band of filaments parallel to the membrane, creating a continuous ring through lateral filament contacts. Visualisation of the in vitro reconstituted constrictions as well as a complete tracing of the helical paths of the filaments with a molecular model favour a mechanism of FtsZ-based membrane constriction that is likely to be accompanied by filament sliding. DOI: http://dx.doi.org/10.7554/eLife.04601.001 PMID:25490152

  11. Identification and Characterization of ZapC, a Stabilizer of the FtsZ Ring in Escherichia coli▿ †

    PubMed Central

    Durand-Heredia, Jorge M.; Yu, Helen H.; De Carlo, Sacha; Lesser, Cammie F.; Janakiraman, Anuradha

    2011-01-01

    In Escherichia coli, spatiotemporal control of cell division occurs at the level of the assembly/disassembly process of the essential cytoskeletal protein FtsZ. A number of regulators interact with FtsZ and modulate the dynamics of the assembled FtsZ ring at the midcell division site. In this article, we report the identification of an FtsZ stabilizer, ZapC (Z-associated protein C), in a protein localization screen conducted with E. coli. ZapC colocalizes with FtsZ at midcell and interacts directly with FtsZ, as determined by a protein-protein interaction assay in yeast. Cells lacking or overexpressing ZapC are slightly elongated and have aberrant FtsZ ring morphologies indicative of a role for ZapC in FtsZ regulation. We also demonstrate the ability of purified ZapC to promote lateral bundling of FtsZ in a sedimentation reaction visualized by transmission electron microscopy. While ZapC lacks sequence similarity with other nonessential FtsZ regulators, ZapA and ZapB, all three Zap proteins appear to play an important role in FtsZ regulation during rapid growth. Taken together, our results suggest a key role for lateral bundling of the midcell FtsZ polymers in maintaining FtsZ ring stability during division. PMID:21216995

  12. FtsZ Polymerization Assays: Simple Protocols and Considerations

    PubMed Central

    Król, Ewa; Scheffers, Dirk-Jan

    2013-01-01

    During bacterial cell division, the essential protein FtsZ assembles in the middle of the cell to form the so-called Z-ring. FtsZ polymerizes into long filaments in the presence of GTP in vitro, and polymerization is regulated by several accessory proteins. FtsZ polymerization has been extensively studied in vitro using basic methods including light scattering, sedimentation, GTP hydrolysis assays and electron microscopy. Buffer conditions influence both the polymerization properties of FtsZ, and the ability of FtsZ to interact with regulatory proteins. Here, we describe protocols for FtsZ polymerization studies and validate conditions and controls using Escherichia coli and Bacillus subtilis FtsZ as model proteins. A low speed sedimentation assay is introduced that allows the study of the interaction of FtsZ with proteins that bundle or tubulate FtsZ polymers. An improved GTPase assay protocol is described that allows testing of GTP hydrolysis over time using various conditions in a 96-well plate setup, with standardized incubation times that abolish variation in color development in the phosphate detection reaction. The preparation of samples for light scattering studies and electron microscopy is described. Several buffers are used to establish suitable buffer pH and salt concentration for FtsZ polymerization studies. A high concentration of KCl is the best for most of the experiments. Our methods provide a starting point for the in vitro characterization of FtsZ, not only from E. coli and B. subtilis but from any other bacterium. As such, the methods can be used for studies of the interaction of FtsZ with regulatory proteins or the testing of antibacterial drugs which may affect FtsZ polymerization. PMID:24300445

  13. New insights into FtsZ rearrangements during the cell division of Escherichia coli from single-molecule localization microscopy of fixed cells.

    PubMed

    Vedyaykin, Alexey D; Vishnyakov, Innokentii E; Polinovskaya, Vasilisa S; Khodorkovskii, Mikhail A; Sabantsev, Anton V

    2016-06-01

    FtsZ - a prokaryotic tubulin homolog - is one of the central components of bacterial division machinery. At the early stage of cytokinesis FtsZ forms the so-called Z-ring at mid-cell that guides septum formation. Many approaches were used to resolve the structure of the Z-ring, however, researchers are still far from consensus on this question. We utilized single-molecule localization microscopy (SMLM) in combination with immunofluorescence staining to visualize FtsZ in Esherichia coli fixed cells that were grown under slow and fast growth conditions. This approach allowed us to obtain images of FtsZ structures at different stages of cell division and accurately measure Z-ring dimensions. Analysis of these images demonstrated that Z-ring thickness increases during constriction, starting at about 70 nm at the beginning of division and increasing by approximately 25% half-way through constriction. PMID:26840800

  14. FtsZ Ring Stability: of Bundles, Tubules, Crosslinks, and Curves

    PubMed Central

    Huang, Kuo-Hsiang; Durand-Heredia, Jorge

    2013-01-01

    The first step in bacterial cytokinesis is the assembly of a stable but dynamic cytokinetic ring made up of the essential tubulin homolog FtsZ at the future site of division. Although FtsZ and its role in cytokinesis have been studied extensively, the precise architecture of the in vivo medial FtsZ ring (Z ring) is not well understood. Recent advances in superresolution imaging suggest that the Z ring comprises short, discontinuous, and loosely bundled FtsZ polymers, some of which are tethered to the membrane. A diverse array of regulatory proteins modulate the assembly, stability, and disassembly of the Z ring via direct interactions with FtsZ. Negative regulators of FtsZ play a critical role in ensuring the accurate positioning of FtsZ at the future site of division and in maintaining Z ring dynamics by controlling FtsZ polymer assembly/disassembly processes. Positive regulators of FtsZ are essential for tethering FtsZ polymers to the membrane and promoting the formation of stabilizing lateral interactions, permitting assembly of a mature Z ring. The past decade has seen the identification of several factors that promote FtsZ assembly, presumably through a variety of distinct molecular mechanisms. While a few of these proteins are broadly conserved, many positive regulators of FtsZ assembly are limited to small groups of closely related organisms, suggesting that FtsZ assembly is differentially modulated across bacterial species. In this review, we focus on the roles of positive regulators in Z ring assembly and in maintaining the integrity of the cytokinetic ring during the early stages of division. PMID:23457247

  15. Filamentation temperature-sensitive protein Z (FtsZ) of Wolbachia, endosymbiont of Wuchereria bancrofti: a potential target for anti-filarial chemotherapy.

    PubMed

    Sharma, Rohit; Hoti, S L; Vasuki, V; Sankari, T; Meena, R L; Das, P K

    2013-03-01

    Lymphatic filariasis (LF) is a leading cause of morbidity in the tropical world. It is caused by the filarial parasites Wuchereria bancrofti, Brugia malayi and Brugia timori and transmitted by vector mosquitoes. Currently a programme for the elimination of LF, Global programme for Elimination of Lymphatic Filariasis (GPELF), is underway with the strategy of mass administration of single dose of diethylcarbamazine or ivermectin, in combination with an anthelmintic drug, albendazole. However, antifilarial drugs used in the programme are only microfilaricidal but not or only partially macrofilaricidal. Hence, there is a need to identify new targets for developing antifilarial drugs. Filarial parasites harbor rickettsial endosymbionts, Wolbachia sp., which play an important role in their biology and hence are considered as potential targets for antifilarial chemotherapy development. In this study, one of the cell division proteins of Wolbachia of the major lymphatic filarial parasite, W. bancrofti, viz., filamentation temperature-sensitive protein Z (FtsZ), was explored as a drug target. The gene coding for FtsZ protein was amplified from the genomic DNA of W. bancrofti, cloned and sequenced. The derived amino acid sequence of the gene revealed that FtsZ protein is 396 amino acids long and contained the tubulin motif (GGGTGTG) involved in GTP binding and the GTP hydrolyzing motif (NLDFAD). The FtsZ gene of endosymbiont showed limited sequence homology, but exhibited functional homology with β-tubulin of its host, W. bancrofti, as it had both the functional motifs and conserved amino acids that are critical for enzymatic activity. β-tubulin is the target for the anti-helminthic activity of albendazole and since FtsZ shares functional homology with, β-tubulin it may also be sensitive to albendazole. Therefore, the effect of albendazole was tested against Wolbachia occurring in mosquitoes instead of filarial parasites as the drug has lethal effect on the latter. Third

  16. The Kil Peptide of Bacteriophage λ Blocks Escherichia coli Cytokinesis via ZipA-Dependent Inhibition of FtsZ Assembly

    PubMed Central

    Haeusser, Daniel P.; Hoashi, Marina; Weaver, Anna; Brown, Nathan; Pan, James; Sawitzke, James A.; Thomason, Lynn C.; Court, Donald L.; Margolin, William

    2014-01-01

    Assembly of the essential, tubulin-like FtsZ protein into a ring-shaped structure at the nascent division site determines the timing and position of cytokinesis in most bacteria and serves as a scaffold for recruitment of the cell division machinery. Here we report that expression of bacteriophage λ kil, either from a resident phage or from a plasmid, induces filamentation of Escherichia coli cells by rapid inhibition of FtsZ ring formation. Mutant alleles of ftsZ resistant to the Kil protein map to the FtsZ polymer subunit interface, stabilize FtsZ ring assembly, and confer increased resistance to endogenous FtsZ inhibitors, consistent with Kil inhibiting FtsZ assembly. Cells with the normally essential cell division gene zipA deleted (in a modified background) display normal FtsZ rings after kil expression, suggesting that ZipA is required for Kil-mediated inhibition of FtsZ rings in vivo. In support of this model, point mutations in the C-terminal FtsZ-interaction domain of ZipA abrogate Kil activity without discernibly altering FtsZ-ZipA interactions. An affinity-tagged-Kil derivative interacts with both FtsZ and ZipA, and inhibits sedimentation of FtsZ filament bundles in vitro. Together, these data inspire a model in which Kil interacts with FtsZ and ZipA in the cell to prevent FtsZ assembly into a coherent, division-competent ring structure. Phage growth assays show that kil+ phage lyse ∼30% later than kil mutant phage, suggesting that Kil delays lysis, perhaps via its interaction with FtsZ and ZipA. PMID:24651041

  17. Crystal structure of the Z-ring associated cell division protein ZapC from Escherichia coli

    PubMed Central

    Ortiz, Cristina; Kureisaite-Ciziene, Danguole; Schmitz, Florian; McLaughlin, Stephen H.; Vicente, Miguel; Löwe, Jan

    2015-01-01

    Bacterial cell division involves a contractile ring that organises downstream proteins at the division site and which contains the tubulin homologue FtsZ. ZapC has been discovered as a non-essential regulator of FtsZ. It localises to the septal ring and deletion of zapC leads to a mild phenotype, while overexpression inhibits cell division. Interference with cell division is facilitated by an interaction with FtsZ. Here, we present the 2.9 Å crystal structure of ZapC from Escherichia coli. ZapC forms a dimer and comprises two domains that belong to the Royal superfamily of which many members bind methylated arginines or lysines. ZapC contains an N-terminal chromo-like domain and a Tudor-like C-terminal domain. We show by ITC that ZapC binds the C-terminal tail of FtsZ. PMID:26619764

  18. Dynamic FtsA and FtsZ localization and outer membrane alterations during polar growth and cell division in Agrobacterium tumefaciens.

    PubMed

    Zupan, John R; Cameron, Todd A; Anderson-Furgeson, James; Zambryski, Patricia C

    2013-05-28

    Growth and cell division in rod-shaped bacteria have been primarily studied in species that grow predominantly by peptidoglycan (PG) synthesis along the length of the cell. Rhizobiales species, however, predominantly grow by PG synthesis at a single pole. Here we characterize the dynamic localization of several Agrobacterium tumefaciens components during the cell cycle. First, the lipophilic dye FM 4-64 predominantly stains the outer membranes of old poles versus growing poles. In cells about to divide, however, both poles are equally labeled with FM 4-64, but the constriction site is not. Second, the cell-division protein FtsA alternates from unipolar foci in the shortest cells to unipolar and midcell localization in cells of intermediate length, to strictly midcell localization in the longest cells undergoing septation. Third, the cell division protein FtsZ localizes in a cell-cycle pattern similar to, but more complex than, FtsA. Finally, because PG synthesis is spatially and temporally regulated during the cell cycle, we treated cells with sublethal concentrations of carbenicillin (Cb) to assess the role of penicillin-binding proteins in growth and cell division. Cb-treated cells formed midcell circumferential bulges, suggesting that interrupted PG synthesis destabilizes the septum. Midcell bulges contained bands or foci of FtsA-GFP and FtsZ-GFP and no FM 4-64 label, as in untreated cells. There were no abnormal morphologies at the growth poles in Cb-treated cells, suggesting unipolar growth uses Cb-insensitive PG synthesis enzymes. PMID:23674672

  19. Transcription of ftsZ oscillates during the cell cycle of Escherichia coli.

    PubMed Central

    Garrido, T; Sánchez, M; Palacios, P; Aldea, M; Vicente, M

    1993-01-01

    The FtsZ protein is a key element controlling cell division in Escherichia coli. A powerful transcription titration assay was used to quantify the ftsZ mRNA present in synchronously dividing cells. The ftsZ mRNA levels oscillate during the cell cycle reaching a maximum at about the time DNA replication initiates. This cell cycle dependency is specifically due to the two proximal ftsZ promoters. A strain was constructed in which expression of ftsZ could be modulated by an exogenous inducer. In this strain cell size and cell division frequency were sensitive to the cellular FtsZ contents, demonstrating the rate-limiting role of this protein in cell division. Transcriptional activity of the ftsZ promoters was found to be independent of DnaA, indicating that DNA replication and cell division may be independently controlled at the time when new rounds of DNA replication are initiated. This suggests a parallelism between the prokaryotic cell cycle signals and the START point of eukaryotic cell cycles. Images PMID:8404863

  20. [Partial sequence homology of FtsZ in phylogenetics analysis of lactic acid bacteria].

    PubMed

    Zhang, Bin; Dong, Xiu-zhu

    2005-10-01

    FtsZ is a structurally conserved protein, which is universal among the prokaryotes. It plays a key role in prokaryote cell division. A partial fragment of the ftsZ gene about 800bp in length was amplified and sequenced and a partial FtsZ protein phylogenetic tree for the lactic acid bacteria was constructed. By comparing the FtsZ phylogenetic tree with the 16S rDNA tree, it was shown that the two trees were similar in topology. Both trees revealed that Pediococcus spp. were closely related with L. casei group of Lactobacillus spp. , but less related with other lactic acid cocci such as Enterococcus and Streptococcus. The results also showed that the discriminative power of FtsZ was higher than that of 16S rDNA for either inter-species or inter-genus and could be a very useful tool in species identification of lactic acid bacteria. PMID:16342751

  1. Cloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum

    NASA Technical Reports Server (NTRS)

    Yaoi, T.; Laksanalamai, P.; Jiemjit, A.; Kagawa, H. K.; Alton, T.; Trent, J. D.

    2000-01-01

    To characterize cytoskeletal components of archaea, the ftsZ gene from Thermoplasma acidophilum was cloned and sequenced. In T. acidophilum ftsZ, which is involved in cell division, was found to be in an operon with the pyrF gene, which encodes orotidine-5'-monophosphate decarboxylase (ODC), an essential enzyme in pyrimidine biosynthesis. Both ftsZ and pyrF from T. acidophilum were expressed in Escherichia coli and formed functional proteins. FtsZ expression in wild-type E. coli resulted in the filamentous phenotype characteristic of ftsZ mutants. T. acidophilum pyrF expression in an E. coli mutant lacking pyrF complemented the mutation and rescued the strain. Sequence alignments of ODCs from archaea, bacteria, and eukarya reveal five conserved regions, two of which have homology to 3-hexulose-6-phosphate synthase (HPS), suggesting a common substrate recognition and binding motif. Copyright 2000 Academic Press.

  2. Cloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum.

    PubMed

    Yaoi, T; Laksanalamai, P; Jiemjit, A; Kagawa, H K; Alton, T; Trent, J D

    2000-09-01

    To characterize cytoskeletal components of archaea, the ftsZ gene from Thermoplasma acidophilum was cloned and sequenced. In T. acidophilum ftsZ, which is involved in cell division, was found to be in an operon with the pyrF gene, which encodes orotidine-5'-monophosphate decarboxylase (ODC), an essential enzyme in pyrimidine biosynthesis. Both ftsZ and pyrF from T. acidophilum were expressed in Escherichia coli and formed functional proteins. FtsZ expression in wild-type E. coli resulted in the filamentous phenotype characteristic of ftsZ mutants. T. acidophilum pyrF expression in an E. coli mutant lacking pyrF complemented the mutation and rescued the strain. Sequence alignments of ODCs from archaea, bacteria, and eukarya reveal five conserved regions, two of which have homology to 3-hexulose-6-phosphate synthase (HPS), suggesting a common substrate recognition and binding motif. PMID:10973825

  3. An intrinsically disordered linker plays a critical role in bacterial cell division.

    PubMed

    Buske, P J; Mittal, Anuradha; Pappu, Rohit V; Levin, Petra Anne

    2015-01-01

    In bacteria, animals, fungi, and many single celled eukaryotes, division is initiated by the formation of a ring of cytoskeletal protein at the nascent division site. In bacteria, the tubulin-like GTPase FtsZ serves as the foundation for the cytokinetic ring. A conserved feature of FtsZ is an intrinsically disordered peptide known as the C-terminal linker. Chimeric experiments suggest the linker acts as a flexible boom allowing FtsZ to associate with the membrane through a conserved C-terminal domain and also modulates interactions both between FtsZ subunits and between FtsZ and modulatory proteins in the cytoplasm. PMID:25305578

  4. An intrinsically disordered linker plays a critical role in bacterial cell division

    PubMed Central

    Buske, P. J.; Mittal, Anuradha; Pappu, Rohit V.; Levin, Petra Anne

    2014-01-01

    In bacteria, animals, fungi, and many single celled eukaryotes, division is initiated by the formation of a ring of cytoskeletal protein at the nascent division site. In bacteria, the tubulin-like GTPase FtsZ serves as the foundation for the cytokinetic ring. A conserved feature of FtsZ is an intrinsically disordered peptide known as the C-terminal linker. Chimeric experiments suggest the linker acts as a flexible boom allowing FtsZ to associate with the membrane through a conserved C-terminal domain and also modulates interactions both between FtsZ subunits and between FtsZ and modulatory proteins in the cytoplasm. PMID:25305578

  5. Crystal structure of the cell division protein FtsA from Thermotoga maritima.

    PubMed

    van den Ent, F; Löwe, J

    2000-10-16

    Bacterial cell division requires formation of a septal ring. A key step in septum formation is polymerization of FtsZ. FtsA directly interacts with FtsZ and probably targets other proteins to the septum. We have solved the crystal structure of FtsA from Thermotoga maritima in the apo and ATP-bound form. FtsA consists of two domains with the nucleotide-binding site in the interdomain cleft. Both domains have a common core that is also found in the actin family of proteins. Structurally, FtsA is most homologous to actin and heat-shock cognate protein (Hsc70). An important difference between FtsA and the actin family of proteins is the insertion of a subdomain in FtsA. Movement of this subdomain partially encloses a groove, which could bind the C-terminus of FtsZ. FtsZ is the bacterial homologue of tubulin, and the FtsZ ring is functionally similar to the contractile ring in dividing eukaryotic cells. Elucidation of the crystal structure of FtsA shows that another bacterial protein involved in cytokinesis is structurally related to a eukaryotic cytoskeletal protein involved in cytokinesis. PMID:11032797

  6. The GTPase Activity of Escherichia coli FtsZ Determines the Magnitude of the FtsZ Polymer Bundling by ZapA in Vitro†

    PubMed Central

    2009-01-01

    FtsZ polymerizes in a ring-like structure at mid cell to initiate cell division in Escherichia coli. The ring is stabilized by a number of proteins among which the widely conserved ZapA protein. Using antibodies against ZapA, we found surprisingly that the cellular concentration of ZapA is approximately equal to that of FtsZ. This raised the question of how the cell can prevent their interaction and thereby the premature stabilization of FtsZ protofilaments in nondividing cells. Therefore, we studied the FtsZ−ZapA interaction at the physiological pH of 7.5 instead of pH 6.5 (the optimal pH for FtsZ polymerization), under conditions that stimulate protofilament formation (5 mM MgCl2) and under conditions that stimulate and stabilize protofilaments (10 mM MgCl2). Using pelleting, light scattering, and GTPase assays, it was found that stabilization and bundling of FtsZ polymers by ZapA was inversely correlated to the GTPase activity of FtsZ. As GTP hydrolysis is the rate-limiting factor for depolymerization of FtsZ, we propose that ZapA will only enhance the cooperativity of polymer association during the transition from helical filament to mid cell ring and will not stabilize the short single protofilaments in the cytoplasm. All thus far published in vitro data on the interaction between FtsZ and ZapA have been obtained with His-ZapA. We found that in our case the presence of a His tag fused to ZapA prevented the protein to complement a ΔzapA strain in vivo and that it affected the interaction between FtsZ and ZapA in vitro. PMID:19842714

  7. Characterization of the in vitro assembly of FtsZ in Arthrobacter strain A3 using light scattering.

    PubMed

    Yang, Fan; Zhang, Shanshan; Ding, Shenglong; Hou, Yannan; Yu, Linghui; Chen, Ximing; Xiao, Jianxi

    2016-10-01

    The self-assembly of FtsZ, the bacterial homolog of tubulin, plays an essential role in cell division. Light scattering technique is applied to real-time monitor the in vitro assembly of FtsZ in Arthrobacter strain A3, a newly isolated psychrotrophic bacterium. The critical concentration needed for the assembly is estimated as 6.7μM. The polymerization of FtsZ in Arthrobacter strain A3 requires both GTP and divalent metal ions, while salt is an unfavorable condition for the assembly. The FtsZ polymerizes under a wide range of pHs, with the fastest rate around pH 6.0. The FtsZ from Arthrobacter strain A3 resembles Mycobacterium tuberculosis FtsZ in terms of the dependence on divalent metal ions and the slow polymerization rate, while it is different from M. tuberculosis FtsZ considering the sensitivity to salt and pH. The comparison of FtsZ from different organisms will greatly advance our understanding of the biological role of the key cell division protein. PMID:27164494

  8. FtsZ in Bacterial Cytokinesis: Cytoskeleton and Force Generator All in One†

    PubMed Central

    Erickson, Harold P.; Anderson, David E.; Osawa, Masaki

    2010-01-01

    Summary: FtsZ, a bacterial homolog of tubulin, is well established as forming the cytoskeletal framework for the cytokinetic ring. Recent work has shown that purified FtsZ, in the absence of any other division proteins, can assemble Z rings when incorporated inside tubular liposomes. Moreover, these artificial Z rings can generate a constriction force, demonstrating that FtsZ is its own force generator. Here we review light microscope observations of how Z rings assemble in bacteria. Assembly begins with long-pitch helices that condense into the Z ring. Once formed, the Z ring can transition to short-pitch helices that are suggestive of its structure. FtsZ assembles in vitro into short protofilaments that are ∼30 subunits long. We present models for how these protofilaments might be further assembled into the Z ring. We discuss recent experiments on assembly dynamics of FtsZ in vitro, with particular attention to how two regulatory proteins, SulA and MinC, inhibit assembly. Recent efforts to develop antibacterial drugs that target FtsZ are reviewed. Finally, we discuss evidence of how FtsZ generates a constriction force: by protofilament bending into a curved conformation. PMID:21119015

  9. Charged Molecules Modulate the Volume Exclusion Effects Exerted by Crowders on FtsZ Polymerization

    PubMed Central

    Monterroso, Begoña; Reija, Belén; Jiménez, Mercedes; Zorrilla, Silvia; Rivas, Germán

    2016-01-01

    We have studied the influence of protein crowders, either combined or individually, on the GTP-induced FtsZ cooperative assembly, crucial for the formation of the dynamic septal ring and, hence, for bacterial division. It was earlier demonstrated that high concentrations of inert polymers like Ficoll 70, used to mimic the crowded cellular interior, favor the assembly of FtsZ into bundles with slow depolymerization. We have found, by fluorescence anisotropy together with light scattering measurements, that the presence of protein crowders increases the tendency of FtsZ to polymerize at micromolar magnesium concentration, being the effect larger with ovomucoid, a negatively charged protein. Neutral polymers and a positively charged protein also diminished the critical concentration of assembly, the extent of the effect being compatible with that expected according to pure volume exclusion models. FtsZ polymerization was also observed to be strongly promoted by a negatively charged polymer, DNA, and by some unrelated polymers like PEGs at concentrations below the crowding regime. The influence of mixed crowders mimicking the heterogeneity of the intracellular environment on the tendency of FtsZ to assemble was also studied and nonadditive effects were found to prevail. Far from exactly reproducing the bacterial cytoplasm environment, this approach serves as a simplified model illustrating how its intrinsically crowded and heterogeneous nature may modulate FtsZ assembly into a functional Z-ring. PMID:26870947

  10. Perpendicular planes of FtsZ arcs in spheroidal Escherichia coli cells.

    PubMed

    Pas, E; Einav, M; Woldringh, C L; Zaritsky, A

    2001-01-01

    Division planes in Escherichia coli, usually restricted to one dimension of the rod-shaped cell, were induced at all possible planes by transforming the cells to spheroids with mecillinam (inactivating PbpA). Such cells displayed many nucleoids and arcs of FtsZ, genetically tagged to green fluorescent protein, that developed to rings at constriction sites all around their surface. These observations are consistent with the view (Woldringh et al., J. Bacteriol. 176 (1994) 6030-6038) that nucleoids, forced during replication to segregate in the length axis of the cell by the rigid bacillary envelope, induce assembly of FtsZ to division rings in between them. PMID:11254985

  11. Backbone and side chain NMR assignments of Geobacillus stearothermophilus ZapA allow identification of residues that mediate the interaction of ZapA with FtsZ.

    PubMed

    Nogueira, Maria Luiza C; Sforça, Mauricio Luis; Chin, Yanni K-Y; Mobli, Mehdi; Handler, Aaron; Gorbatyuk, Vitaliy Y; Robson, Scott A; King, Glenn F; Gueiros-Filho, Frederico J; Zeri, Ana Carolina de Mattos

    2015-10-01

    Bacterial division begins with the formation of a contractile protein ring at midcell, which constricts the bacterial envelope to generate two daughter cells. The central component of the division ring is FtsZ, a tubulin-like protein capable of self-assembling into filaments which further associate into a higher order structure known as the Z ring. Proteins that bind to FtsZ play a crucial role in the formation and regulation of the Z ring. One such protein is ZapA, a widely conserved 21 kDa homodimeric protein that associates with FtsZ filaments and promotes their bundling. Although ZapA was discovered more than a decade ago, the structural details of its interaction with FtsZ remain unknown. In this work, backbone and side chain NMR assignments for the Geobacillus stearothermophilus ZapA homodimer are described. We titrated FtsZ into (15)N(2)H-ZapA and mapped ZapA residues whose resonances are perturbed upon FtsZ binding. This information provides a structural understanding of the interaction between FtsZ and ZapA. PMID:25967379

  12. SB-RA-2001 Inhibits Bacterial Proliferation by Targeting FtsZ Assembly

    PubMed Central

    2015-01-01

    FtsZ has been recognized as a promising antimicrobial drug target because of its vital role in bacterial cell division. In this work, we found that a taxane SB-RA-2001 inhibited the proliferation of Bacillus subtilis 168 and Mycobacterium smegmatis cells with minimal inhibitory concentrations of 38 and 60 μM, respectively. Cell lengths of these microorganisms increased remarkably in the presence of SB-RA-2001, indicating that it inhibits bacterial cytokinesis. SB-RA-2001 perturbed the formation of the FtsZ ring in B. subtilis 168 cells and also affected the localization of the late cell division protein, DivIVA, at the midcell position. Flow cytometric analysis of the SB-RA-2001-treated cells indicated that the compound did not affect the duplication of DNA in B. subtilis 168 cells. Further, SB-RA-2001 treatment did not affect the localization of the chromosomal partitioning protein, Spo0J, along the two ends of the nucleoids and also had no discernible effect on the nucleoid segregation in B. subtilis 168 cells. The agent also did not appear to perturb the membrane potential of B. subtilis 168 cells. In vitro, SB-RA-2001 bound to FtsZ with modest affinity, promoted the assembly and bundling of FtsZ protofilaments, and reduced the GTPase activity of FtsZ. GTP did not inhibit the binding of SB-RA-2001 to FtsZ, suggesting that it does not bind to the GTP binding site on FtsZ. A computational analysis indicated that SB-RA-2001 binds to FtsZ in the cleft region between the C-terminal domain and helix H7, and the binding site of SB-RA-2001 on FtsZ resembled that of PC190723, a well-characterized inhibitor of FtsZ. The findings collectively suggested that SB-RA-2001 inhibits bacterial proliferation by targeting the assembly dynamics of FtsZ, and this can be exploited further to develop potent FtsZ-targeted antimicrobials. PMID:24749867

  13. Transcriptional analysis of ftsZ within the dcw cluster in Bacillus mycoides

    PubMed Central

    2013-01-01

    Background In Bacillus mycoides, as well as in other members of the B. cereus group, the tubulin-like protein of the division septum FtsZ is encoded by the distal gene of the cluster division and cell wall (dcw). Along the cluster the genes coding for structural proteins of the division apparatus are intermingled with those coding for enzymes of peptidoglycan biosynthesis, raising the possibility that genes with this different function might be coexpressed. Transcription of ftsZ in two model bacteria had been reported to differ: in B. subtilis, the ftsZ gene was found transcribed as a bigenic mRNA in the AZ operon; in E. coli, the transcripts of ftsZ were monogenic, expressed by specific promoters. Here we analyzed the size and the initiation sites of RNAs transcribed from ftsZ and from other cluster genes in two B. mycoides strains, DX and SIN, characterized by colonies of different chirality and density, to explore the correlation of the different morphotypes with transcription of the dcw genes. Results In both strains, during vegetative growth, the ftsZ-specific RNAs were composed mainly of ftsZ, ftsA-ftsZ and ftsQ-ftsA-ftsZ transcripts. A low number of RNA molecules included the sequences of the upstream murG and murB genes, which are involved in peptidoglycan synthesis. No cotranscription was detected between ftsZ and the downstream genes of the SpoIIG cluster. The monogenic ftsZ RNA was found in both strains, with the main initiation site located inside the ftsA coding sequence. To confirm the promoter property of the site, a B. mycoides construct carrying the ftsA region in front of the shortened ftsZ gene was inserted into the AmyE locus of B. subtilis 168. The promoter site in the ftsA region was recognized in the heterologous cellular context and expressed as in B. mycoides. Conclusions The DX and SIN strains of B. mycoides display very similar RNA transcription specificity. The ftsZ messenger RNA can be found either as an independent transcript or

  14. ARC3 is a stromal Z-ring accessory protein essential for plastid division

    PubMed Central

    Maple, Jodi; Vojta, Lea; Soll, Jurgen; Møller, Simon G

    2007-01-01

    In plants, chloroplast division is an integral part of development, and these vital organelles arise by binary fission from pre-existing cytosolic plastids. Chloroplasts arose by endosymbiosis and although they have retained elements of the bacterial cell division machinery to execute plastid division, they have evolved to require two functionally distinct forms of the FtsZ protein and have lost elements of the Min machinery required for Z-ring placement. Here, we analyse the plastid division component accumulation and replication of chloroplasts 3 (ARC3) and show that ARC3 forms part of the stromal plastid division machinery. ARC3 interacts specifically with AtFtsZ1, acting as a Z-ring accessory protein and defining a unique function for this family of FtsZ proteins. ARC3 is involved in division site placement, suggesting that it might functionally replace MinC, representing an important advance in our understanding of the mechanism of chloroplast division and the evolution of the chloroplast division machinery. PMID:17304239

  15. Antibacterial activity of alkyl gallates is a combination of direct targeting of FtsZ and permeabilization of bacterial membranes

    PubMed Central

    Król, Ewa; de Sousa Borges, Anabela; da Silva, Isabel; Polaquini, Carlos R.; Regasini, Luis O.; Ferreira, Henrique; Scheffers, Dirk-Jan

    2015-01-01

    Alkyl gallates are compounds with reported antibacterial activity. One of the modes of action is binding of the alkyl gallates to the bacterial membrane and interference with membrane integrity. However, alkyl gallates also cause cell elongation and disruption of cell division in the important plant pathogen Xanthomonas citri subsp. citri, suggesting that cell division proteins may be targeted by alkyl gallates. Here, we use Bacillus subtilis and purified B. subtilis FtsZ to demonstrate that FtsZ is a direct target of alkyl gallates. Alkyl gallates disrupt the FtsZ-ring in vivo, and cause cell elongation. In vitro, alkyl gallates bind with high affinity to FtsZ, causing it to cluster and lose its capacity to polymerize. The activities of a homologous series of alkyl gallates with alkyl side chain lengths ranging from five to eight carbons (C5–C8) were compared and heptyl gallate was found to be the most potent FtsZ inhibitor. Next to the direct effect on FtsZ, alkyl gallates also target B. subtilis membrane integrity—however the observed anti-FtsZ activity is not a secondary effect of the disruption of membrane integrity. We propose that both modes of action, membrane disruption and anti-FtsZ activity, contribute to the antibacterial activity of the alkyl gallates. We propose that heptyl gallate is a promising hit for the further development of antibacterials that specifically target FtsZ. PMID:25972861

  16. Antibacterial activity of alkyl gallates is a combination of direct targeting of FtsZ and permeabilization of bacterial membranes.

    PubMed

    Król, Ewa; de Sousa Borges, Anabela; da Silva, Isabel; Polaquini, Carlos R; Regasini, Luis O; Ferreira, Henrique; Scheffers, Dirk-Jan

    2015-01-01

    Alkyl gallates are compounds with reported antibacterial activity. One of the modes of action is binding of the alkyl gallates to the bacterial membrane and interference with membrane integrity. However, alkyl gallates also cause cell elongation and disruption of cell division in the important plant pathogen Xanthomonas citri subsp. citri, suggesting that cell division proteins may be targeted by alkyl gallates. Here, we use Bacillus subtilis and purified B. subtilis FtsZ to demonstrate that FtsZ is a direct target of alkyl gallates. Alkyl gallates disrupt the FtsZ-ring in vivo, and cause cell elongation. In vitro, alkyl gallates bind with high affinity to FtsZ, causing it to cluster and lose its capacity to polymerize. The activities of a homologous series of alkyl gallates with alkyl side chain lengths ranging from five to eight carbons (C5-C8) were compared and heptyl gallate was found to be the most potent FtsZ inhibitor. Next to the direct effect on FtsZ, alkyl gallates also target B. subtilis membrane integrity-however the observed anti-FtsZ activity is not a secondary effect of the disruption of membrane integrity. We propose that both modes of action, membrane disruption and anti-FtsZ activity, contribute to the antibacterial activity of the alkyl gallates. We propose that heptyl gallate is a promising hit for the further development of antibacterials that specifically target FtsZ. PMID:25972861

  17. The bacterial tubulin FtsZ requires its intrinsically disordered linker to direct robust cell wall construction

    PubMed Central

    Sundararajan, Kousik; Miguel, Amanda; Desmarais, Samantha M.; Meier, Elizabeth L.; Huang, Kerwyn Casey; Goley, Erin D.

    2015-01-01

    The bacterial GTPase FtsZ forms a cytokinetic ring at midcell, recruits the division machinery, and orchestrates membrane and peptidoglycan cell wall invagination. However, the mechanism for FtsZ regulation of peptidoglycan metabolism is unknown. The FtsZ GTPase domain is separated from its membrane-anchoring C-terminal conserved (CTC) peptide by a disordered C-terminal linker (CTL). Here, we investigate CTL function in Caulobacter crescentus. Strikingly, production of FtsZ lacking the CTL (ΔCTL) is lethal: cells become filamentous, form envelope bulges, and lyse, resembling treatment with β-lactam antibiotics. This phenotype is produced by FtsZ polymers bearing the CTC and a CTL shorter than 14 residues. Peptidoglycan synthesis still occurs downstream of ΔCTL, however cells expressing ΔCTL exhibit reduced peptidoglycan crosslinking and longer glycan strands than wildtype. Importantly, midcell proteins are still recruited to sites of ΔCTL assembly. We propose that FtsZ regulates peptidoglycan metabolism through a CTL-dependent mechanism that extends beyond simple protein recruitment. PMID:26099469

  18. The bacterial tubulin FtsZ requires its intrinsically disordered linker to direct robust cell wall construction.

    PubMed

    Sundararajan, Kousik; Miguel, Amanda; Desmarais, Samantha M; Meier, Elizabeth L; Casey Huang, Kerwyn; Goley, Erin D

    2015-01-01

    The bacterial GTPase FtsZ forms a cytokinetic ring at midcell, recruits the division machinery and orchestrates membrane and peptidoglycan cell wall invagination. However, the mechanism for FtsZ regulation of peptidoglycan metabolism is unknown. The FtsZ GTPase domain is separated from its membrane-anchoring C-terminal conserved (CTC) peptide by a disordered C-terminal linker (CTL). Here we investigate CTL function in Caulobacter crescentus. Strikingly, production of FtsZ lacking the CTL (ΔCTL) is lethal: cells become filamentous, form envelope bulges and lyse, resembling treatment with β-lactam antibiotics. This phenotype is produced by FtsZ polymers bearing the CTC and a CTL shorter than 14 residues. Peptidoglycan synthesis still occurs downstream of ΔCTL; however, cells expressing ΔCTL exhibit reduced peptidoglycan crosslinking and longer glycan strands than wild type. Importantly, midcell proteins are still recruited to sites of ΔCTL assembly. We propose that FtsZ regulates peptidoglycan metabolism through a CTL-dependent mechanism that extends beyond simple protein recruitment. PMID:26099469

  19. A Bactericidal Guanidinomethyl Biaryl That Alters the Dynamics of Bacterial FtsZ Polymerization

    PubMed Central

    Kaul, Malvika; Parhi, Ajit K.; Zhang, Yongzheng; LaVoie, Edmond J.; Tuske, Steve; Arnold, Eddy; Kerrigan, John E.; Pilch, Daniel S.

    2014-01-01

    The prevalence of multidrug resistance among clinically significant bacterial pathogens underscores a critical need for the development of new classes of antibiotics with novel mechanisms of action. Here we describe the synthesis and evaluation of a guanidinomethyl biaryl compound {1-((4′-(tert-butyl)-[1,1′-biphenyl]-3-yl)methyl)guanidine} that targets the bacterial cell division protein FtsZ. In vitro studies with various bacterial FtsZ proteins reveal that the compound alters the dynamics of FtsZ self-polymerization via a stimulatory mechanism, while minimally impacting the polymerization of tubulin, the closest mammalian homologue of FtsZ. The FtsZ binding site of the compound is identified through a combination of computational and mutational approaches. The compound exhibits a broad spectrum of bactericidal activity, including activity against the multidrug-resistant pathogens methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE), while also exhibiting a minimal potential to induce resistance. Taken together, our results highlight the compound as a promising new FtsZ-targeting bactericidal agent. PMID:23050700

  20. Functional Analysis of the Chloroplast Division Complex Using Schizosaccharomyces pombe as a Heterologous Expression System.

    PubMed

    TerBush, Allan D; Porzondek, Chris A; Osteryoung, Katherine W

    2016-04-01

    Chloroplast division is driven by a macromolecular complex that assembles at the midplastid. The FtsZ ring (Z ring) is the central structure in this complex, and is composed of the functionally distinct cytoskeletal proteins FtsZ1 and FtsZ2. Recent studies in the heterologous Schizosaccharomyces pombe system showed that Arabidopsis FtsZ1 and FtsZ2 filaments have distinct assembly and turnover characteristics. To further analyze these FtsZs, we employed this system to compare the assembly and dynamic properties of FtsZ1 and FtsZ2 lacking their N- and/or C-termini with those of their full-length counterparts. Our data provide evidence that the N-terminus of FtsZ2 is critical for its structural dominance over FtsZ1, and that the N- and C-termini promote polymer bundling and turnover of both FtsZs and contribute to their distinct behaviors. We also assessed how ARC6 affects FtsZ2 filament dynamics, and found that it interacts with and stabilizes FtsZ2 filaments in S. pombe independent of its presumed Z-ring tethering function in planta. Finally, we generated FtsZ1-FtsZ2 coexpression constructs to facilitate reconstitution of more complex interaction networks. Our experiments yield new insight into factors influencing FtsZ behavior and highlight the utility of S. pombe for analyzing chloroplast FtsZs and their assembly regulators. PMID:26917361

  1. Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ

    NASA Astrophysics Data System (ADS)

    Pilhofer, Martin; Aistleitner, Karin; Biboy, Jacob; Gray, Joe; Kuru, Erkin; Hall, Edward; Brun, Yves V.; Vannieuwenhze, Michael S.; Vollmer, Waldemar; Horn, Matthias; Jensen, Grant J.

    2013-12-01

    Chlamydiae are important pathogens and symbionts with unique cell biological features. They lack the cell-division protein FtsZ, and the existence of peptidoglycan (PG) in their cell wall has been highly controversial. FtsZ and PG together function in orchestrating cell division and maintaining cell shape in almost all other bacteria. Using electron cryotomography, mass spectrometry and fluorescent labelling dyes, here we show that some environmental chlamydiae have cell wall sacculi consisting of a novel PG type. Treatment with fosfomycin (a PG synthesis inhibitor) leads to lower infection rates and aberrant cell shapes, suggesting that PG synthesis is crucial for the chlamydial life cycle. Our findings demonstrate for the first time the presence of PG in a member of the Chlamydiae. They also present a unique example of a bacterium with a PG sacculus but without FtsZ, challenging the current hypothesis that it is the absence of a cell wall that renders FtsZ non-essential.

  2. ZipA-Induced Bundling of FtsZ Polymers Mediated by an Interaction between C-Terminal Domains†

    PubMed Central

    Hale, Cynthia A.; Rhee, Amy C.; de Boer, Piet A. J.

    2000-01-01

    FtsZ and ZipA are essential components of the septal ring apparatus, which mediates cell division in Escherichia coli. FtsZ is a cytoplasmic tubulin-like GTPase that forms protofilament-like homopolymers in vitro. In the cell, the protein assembles into a ring structure at the prospective division site early in the division cycle, and this marks the first recognized event in the assembly of the septal ring. ZipA is an inner membrane protein which is recruited to the nascent septal ring at a very early stage through a direct interaction with FtsZ. Using affinity blotting and protein localization techniques, we have determined which domain on each protein is both sufficient and required for the interaction between the two proteins in vitro as well as in vivo. The results show that ZipA binds to residues confined to the 20 C-terminal amino acids of FtsZ. The FtsZ binding (FZB) domain of ZipA is significantly larger and encompasses the C-terminal 143 residues of ZipA. Significantly, we find that the FZB domain of ZipA is also required and sufficient to induce dramatic bundling of FtsZ protofilaments in vitro. Consistent with the notion that the ability to bind and bundle FtsZ polymers is essential to the function of ZipA, we find that ZipA derivatives lacking an intact FZB domain fail to support cell division in cells depleted for the native protein. Interestingly, ZipA derivatives which do contain an intact FZB domain but which lack the N-terminal membrane anchor or in which this anchor is replaced with the heterologous anchor of the DjlA protein also fail to rescue ZipA− cells. Thus, in addition to the C-terminal FZB domain, the N-terminal domain of ZipA is required for ZipA function. Furthermore, the essential properties of the N domain may be more specific than merely acting as a membrane anchor. PMID:10960100

  3. In Escherichia coli, MreB and FtsZ direct the synthesis of lateral cell wall via independent pathways that require PBP 2.

    PubMed

    Varma, Archana; Young, Kevin D

    2009-06-01

    In Escherichia coli, the cytoplasmic proteins MreB and FtsZ play crucial roles in ensuring that new muropeptide subunits are inserted into the cell wall in a spatially correct way during elongation and division. In particular, to retain a constant diameter and overall shape, new material must be inserted into the wall uniformly around the cell's perimeter. Current thinking is that MreB accomplishes this feat through intermediary proteins that tether peptidoglycan synthases to the outer face of the inner membrane. We tested this idea in E. coli by using a DD-carboxypeptidase mutant that accumulates pentapeptides in its peptidoglycan, allowing us to visualize new muropeptide incorporation. Surprisingly, inhibiting MreB with the antibiotic A22 did not result in uneven insertion of new wall, although the cells bulged and lost their rod shapes. Instead, uneven (clustered) incorporation occurred only if MreB and FtsZ were inactivated simultaneously, providing the first evidence in E. coli that FtsZ can direct murein incorporation into the lateral cell wall independently of MreB. Inhibiting penicillin binding protein 2 (PBP 2) alone produced the same clustered phenotype, implying that MreB and FtsZ tether peptidoglycan synthases via a common mechanism that includes PBP 2. However, cell shape was determined only by the presence or absence of MreB and not by the even distribution of new wall material as directed by FtsZ. PMID:19346310

  4. RefZ Facilitates the Switch from Medial to Polar Division during Spore Formation in Bacillus subtilis

    PubMed Central

    Bernard, Remi; Dunne, Roisin; Bisson-Filho, Alexandre W.; Kumar, Krithika; Nguyen, Trang; Mulcahy, Lawrence; Koullias, John; Gueiros-Filho, Frederico J.

    2012-01-01

    During sporulation, Bacillus subtilis redeploys the division protein FtsZ from midcell to the cell poles, ultimately generating an asymmetric septum. Here, we describe a sporulation-induced protein, RefZ, that facilitates the switch from a medial to a polar FtsZ ring placement. The artificial expression of RefZ during vegetative growth converts FtsZ rings into FtsZ spirals, arcs, and foci, leading to filamentation and lysis. Mutations in FtsZ specifically suppress RefZ-dependent division inhibition, suggesting that RefZ may target FtsZ. During sporulation, cells lacking RefZ are delayed in polar FtsZ ring formation, spending more time in the medial and transition stages of FtsZ ring assembly. A RefZ-green fluorescent protein (GFP) fusion localizes in weak polar foci at the onset of sporulation and as a brighter midcell focus at the time of polar division. RefZ has a TetR DNA binding motif, and point mutations in the putative recognition helix disrupt focus formation and abrogate cell division inhibition. Finally, chromatin immunoprecipitation assays identified sites of RefZ enrichment in the origin region and near the terminus. Collectively, these data support a model in which RefZ helps promote the switch from medial to polar division and is guided by the organization of the chromosome. Models in which RefZ acts as an activator of FtsZ ring assembly near the cell poles or as an inhibitor of the transient medial ring at midcell are discussed. PMID:22730127

  5. Antimicrobial activity of a quinuclidine-based FtsZ inhibitor and its synergistic potential with β-lactam antibiotics.

    PubMed

    Chan, Fung-Yi; Sun, Ning; Leung, Yun-Chung; Wong, Kwok-Yin

    2015-04-01

    Filamenting temperature-sensitive mutant Z (FtsZ) is an essential cell division protein that cooperates in the formation of the cytokinetic Z-ring in most bacteria and has thus been recognized as a promising antimicrobial drug target. We have recently used a structure-based virtual screening approach to identify pyrimidine-linked quinuclidines as a novel class of FtsZ inhibitors. In this study, we further investigated the antibacterial properties of one of the most potent compounds (quinuclidine 1) and its synergistic activity with β-lactam antibiotics. Susceptibility results showed that quinuclidine 1 was active against multiple antibiotic-resistant bacterial strains including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium with minimal inhibitory concentrations of 24 μg ml(-1). When quinuclidine 1 was combined with β-lactam antibiotics, synergistic antimicrobial activities against antibiotic-resistant strains of S. aureus were found. Further in vitro studies suggest that prevention of FtsZ protofilament formation by quinuclidine 1 impairs the formation of Z-ring, and thus inhibits bacterial division. These findings open a new approach for development of quinuclidine-based FtsZ inhibitors into potent antimicrobial agents. PMID:25293977

  6. Identification, cloning, and characterization of rcsF, a new regulator gene for exopolysaccharide synthesis that suppresses the division mutation ftsZ84 in Escherichia coli K-12.

    PubMed Central

    Gervais, F G; Drapeau, G R

    1992-01-01

    A new gene, designated rcsF, was located adjacent to drpA at the 5.2-min position of the genetic map of Escherichia coli. The deduced amino acid sequence encoded by the rcsF gene indicates a small protein of 133 amino acid residues with a calculated pI of 10.8 that is rich in proline, serine, alanine, and cysteine residues. When overexpressed as a result of its presence on a multicopy plasmid, rcsF confers a mucoid phenotype and restores colony formation to ftsZ84 mutant cells on L agar medium containing no added NaCl. These two phenotypes are not observed in rcsB mutant cells. Ion mutant cells harboring an rcsF mutation accumulate considerably lower levels of exopolysaccharides, whereas the presence of a multicopy rcsF plasmid not only increases capsule synthesis but also confers a mucoid phenotype at 37 degrees C, a temperature at which ion mutant cells are known not to form mucoid colonies. RcsF does not stimulate the expression of rcsB, indicating that it exerts its action through the RcsB protein, possibly by phosphorylation. It is also shown that RcsF stimulation of capsule synthesis is RcsA-dependent, whereas colony formation of ftsZ84 mutant cells can be restored by RcsF in the absence of RcsA. PMID:1459951

  7. Polarized Cell Division of Chlamydia trachomatis.

    PubMed

    Abdelrahman, Yasser; Ouellette, Scot P; Belland, Robert J; Cox, John V

    2016-08-01

    Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments. PMID:27505160

  8. Polarized Cell Division of Chlamydia trachomatis

    PubMed Central

    Abdelrahman, Yasser; Ouellette, Scot P.; Belland, Robert J.; Cox, John V.

    2016-01-01

    Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments. PMID:27505160

  9. Screening for FtsZ Dimerization Inhibitors Using Fluorescence Cross-Correlation Spectroscopy and Surface Resonance Plasmon Analysis

    PubMed Central

    Mikuni, Shintaro; Kodama, Kota; Sasaki, Akira; Kohira, Naoki; Maki, Hideki; Munetomo, Masaharu; Maenaka, Katsumi; Kinjo, Masataka

    2015-01-01

    FtsZ is an attractive target for antibiotic research because it is an essential bacterial cell division protein that polymerizes in a GTP-dependent manner. To find the seed chemical structure, we established a high-throughput, quantitative screening method combining fluorescence cross-correlation spectroscopy (FCCS) and surface plasmon resonance (SPR). As a new concept for the application of FCCS to polymerization-prone protein, Staphylococcus aureus FtsZ was fragmented into the N-terminal and C-terminal, which were fused with GFP and mCherry (red fluorescent protein), respectively. By this fragmentation, the GTP-dependent head-to-tail dimerization of each fluorescent labeled fragment of FtsZ could be observed, and the inhibitory processes of chemicals could be monitored by FCCS. In the first round of screening by FCCS, 28 candidates were quantitatively and statistically selected from 495 chemicals determined by in silico screening. Subsequently, in the second round of screening by FCCS, 71 candidates were also chosen from 888 chemicals selected via an in silico structural similarity search of the chemicals screened in the first round of screening. Moreover, the dissociation constants between the highest inhibitory chemicals and Staphylococcus aureus FtsZ were determined by SPR. Finally, by measuring the minimum inhibitory concentration, it was confirmed that the screened chemical had antibacterial activity against Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus (MRSA). PMID:26154290

  10. Effects of various kinetic rates of FtsZ filaments on bacterial cytokinesis.

    PubMed

    He, Zi; Liu, Zhuan; Guo, Kunkun; Ding, Lina

    2015-12-21

    Cell morphodynamics during bacterial cytokinesis are theoretically explored by a combination of phase field model for rod-shaped cells and a kinetic description for FtsZ ring maintenance. The division times and cell shapes have been generally decided by the competition between the constriction forces generated by FtsZ rings and the curvature elastic energy for cells. The dependences of cell morphodynamics during bacterial cytokinesis on various kinetic rates of FtsZ filaments are focused in the present study. It is found that the obtained results with the experimental parameters are well comparable to the observed results physiologically. Likewise, the quasi-steady states for FtsZ rings are found to be well consistent with the theoretical results derived from the kinetic description of FtsZ rings. In addition, morphological phase diagram is presented as functions of the membrane associate rate for both short FtsZ filaments and free FtsZ monomers, and the depolymerization rate of GDP-bound FtsZ monomers at the tip of filaments within the ring. Our results would provide a better understanding of the details of in vivo kinetics, including the kinetic rates within FtsZ rings. PMID:26567889

  11. A novel quinoline derivative that inhibits mycobacterial FtsZ.

    PubMed

    Mathew, Bini; Ross, Larry; Reynolds, Robert C

    2013-07-01

    High throughput phenotypic screening of large commercially available libraries through two NIH programs has produced thousands of potentially interesting hits for further development as antitubercular agents. Unfortunately, these screens do not supply target information, and further follow up target identification is required to allow optimal rational design and development of highly active and selective clinical candidates. Cheminformatic analysis of the quinoline and quinazoline hits from these HTS screens suggested a hypothesis that certain compounds in these two classes may target the mycobacterial tubulin homolog, FtsZ. In this brief communication, activity of a lead quinoline against the target FtsZ from Mycobacterium tuberculosis (Mtb) is confirmed as well as good in vitro whole cell antibacterial activity against Mtb H37Rv. The identification of a putative target of this highly tractable pharmacophore should help medicinal chemists interested in targeting FtsZ and cell division develop a rational design program to optimize this activity toward a novel drug candidate. PMID:23647650

  12. LocZ Is a New Cell Division Protein Involved in Proper Septum Placement in Streptococcus pneumoniae

    PubMed Central

    Holečková, Nela; Molle, Virginie; Buriánková, Karolína; Benada, Oldřich; Kofroňová, Olga; Ulrych, Aleš; Branny, Pavel

    2014-01-01

    ABSTRACT How bacteria control proper septum placement at midcell, to guarantee the generation of identical daughter cells, is still largely unknown. Although different systems involved in the selection of the division site have been described in selected species, these do not appear to be widely conserved. Here, we report that LocZ (Spr0334), a newly identified cell division protein, is involved in proper septum placement in Streptococcus pneumoniae. We show that locZ is not essential but that its deletion results in cell division defects and shape deformation, causing cells to divide asymmetrically and generate unequally sized, occasionally anucleated, daughter cells. LocZ has a unique localization profile. It arrives early at midcell, before FtsZ and FtsA, and leaves the septum early, apparently moving along with the equatorial rings that mark the future division sites. Consistently, cells lacking LocZ also show misplacement of the Z-ring, suggesting that it could act as a positive regulator to determine septum placement. LocZ was identified as a substrate of the Ser/Thr protein kinase StkP, which regulates cell division in S. pneumoniae. Interestingly, homologues of LocZ are found only in streptococci, lactococci, and enterococci, indicating that this close phylogenetically related group of bacteria evolved a specific solution to spatially regulate cell division. PMID:25550321

  13. A benzamide-dependent ftsZ mutant reveals residues crucial for Z-ring assembly.

    PubMed

    Adams, David William; Wu, Ling Juan; Errington, Jeff

    2016-03-01

    In almost all bacteria, cell division is co-ordinated by the essential tubulin homologue FtsZ and represents an attractive but as yet unexploited target for new antibiotics. The benzamides, e.g. PC190723, are potent FtsZ inhibitors that have the potential to yield an important new class of antibiotic. However, the evolution of resistance poses a challenge to their development. Here we show that a collection of PC190723-resistant and -dependent strains of Staphylococcus aureus exhibit severe growth and morphological defects, questioning whether these ftsZ mutations would be clinically relevant. Importantly, we show that the most commonly isolated substitution remains sensitive to the simplest benzamide 3-MBA and likely works by occluding compound binding. Extending this analysis to Bacillus subtilis, we isolated a novel benzamide-dependent strain that divides using unusual helical division events. The ftsZ mutation responsible encodes the substitution of a highly conserved residue, which lies outside the benzamide-binding site and forms part of an interface between the N- and C-terminal domains that we show is necessary for normal FtsZ function. Together with an intragenic suppressor mutation that mimics benzamide binding, the results provide genetic evidence that benzamides restrict conformational changes in FtsZ and also highlights their utility as tools to probe bacterial division. PMID:26601800

  14. Structure–function analysis of the extracellular domain of the pneumococcal cell division site positioning protein MapZ

    PubMed Central

    Manuse, Sylvie; Jean, Nicolas L.; Guinot, Mégane; Lavergne, Jean-Pierre; Laguri, Cédric; Bougault, Catherine M.; VanNieuwenhze, Michael S.; Grangeasse, Christophe; Simorre, Jean-Pierre

    2016-01-01

    Accurate placement of the bacterial division site is a prerequisite for the generation of two viable and identical daughter cells. In Streptococcus pneumoniae, the positive regulatory mechanism involving the membrane protein MapZ positions precisely the conserved cell division protein FtsZ at the cell centre. Here we characterize the structure of the extracellular domain of MapZ and show that it displays a bi-modular structure composed of two subdomains separated by a flexible serine-rich linker. We further demonstrate in vivo that the N-terminal subdomain serves as a pedestal for the C-terminal subdomain, which determines the ability of MapZ to mark the division site. The C-terminal subdomain displays a patch of conserved amino acids and we show that this patch defines a structural motif crucial for MapZ function. Altogether, this structure–function analysis of MapZ provides the first molecular characterization of a positive regulatory process of bacterial cell division. PMID:27346279

  15. Structure-function analysis of the extracellular domain of the pneumococcal cell division site positioning protein MapZ.

    PubMed

    Manuse, Sylvie; Jean, Nicolas L; Guinot, Mégane; Lavergne, Jean-Pierre; Laguri, Cédric; Bougault, Catherine M; VanNieuwenhze, Michael S; Grangeasse, Christophe; Simorre, Jean-Pierre

    2016-01-01

    Accurate placement of the bacterial division site is a prerequisite for the generation of two viable and identical daughter cells. In Streptococcus pneumoniae, the positive regulatory mechanism involving the membrane protein MapZ positions precisely the conserved cell division protein FtsZ at the cell centre. Here we characterize the structure of the extracellular domain of MapZ and show that it displays a bi-modular structure composed of two subdomains separated by a flexible serine-rich linker. We further demonstrate in vivo that the N-terminal subdomain serves as a pedestal for the C-terminal subdomain, which determines the ability of MapZ to mark the division site. The C-terminal subdomain displays a patch of conserved amino acids and we show that this patch defines a structural motif crucial for MapZ function. Altogether, this structure-function analysis of MapZ provides the first molecular characterization of a positive regulatory process of bacterial cell division. PMID:27346279

  16. Structure-function analysis of the extracellular domain of the pneumococcal cell division site positioning protein MapZ

    NASA Astrophysics Data System (ADS)

    Manuse, Sylvie; Jean, Nicolas L.; Guinot, Mégane; Lavergne, Jean-Pierre; Laguri, Cédric; Bougault, Catherine M.; Vannieuwenhze, Michael S.; Grangeasse, Christophe; Simorre, Jean-Pierre

    2016-06-01

    Accurate placement of the bacterial division site is a prerequisite for the generation of two viable and identical daughter cells. In Streptococcus pneumoniae, the positive regulatory mechanism involving the membrane protein MapZ positions precisely the conserved cell division protein FtsZ at the cell centre. Here we characterize the structure of the extracellular domain of MapZ and show that it displays a bi-modular structure composed of two subdomains separated by a flexible serine-rich linker. We further demonstrate in vivo that the N-terminal subdomain serves as a pedestal for the C-terminal subdomain, which determines the ability of MapZ to mark the division site. The C-terminal subdomain displays a patch of conserved amino acids and we show that this patch defines a structural motif crucial for MapZ function. Altogether, this structure-function analysis of MapZ provides the first molecular characterization of a positive regulatory process of bacterial cell division.

  17. Tubular Liposomes with Variable Permeability for Reconstitution of FtsZ Rings

    PubMed Central

    Osawa, Masaki; Erickson, Harold P.

    2012-01-01

    We have developed a system for producing tubular multilamellar liposomes that incorporate the protein FtsZ on the inside. We start with a mixture of spherical multilamellar liposomes with FtsZ initially on the outside. Shearing forces generated by applying a coverslip most likely distort some of the spherical liposomes into a tubular shape, and causes some to leak and incorporate FtsZ inside. We describe protocols for liposome preparation, and for preparing membrane-targeted FtsZ that can assemble contractile Z rings inside the tubular liposomes. We also describe the characterization of the multilamellar liposomes in terms of the permeability or leakiness for a small fluorescent dye and larger protein molecules. These liposomes may be useful for reconstitution of other biological systems. PMID:19903547

  18. Wall proficient E. coli capable of sustained growth in the absence of the Z-ring division machine.

    PubMed

    Mercier, Romain; Kawai, Yoshikazu; Errington, Jeff

    2016-01-01

    The peptidoglycan cell wall is a major protective external sheath in bacteria and a key target for antibiotics(1). Peptidoglycan is present in virtually all bacteria, suggesting that it was probably present in the last bacterial common ancestor(2). Cell wall expansion is orchestrated by cytoskeletal proteins related to actin (MreB) and tubulin (FtsZ)(3). FtsZ is a key essential player in a highly organized division machine that directs an invaginating annulus of cell wall peptidoglycan. The recent discovery that cell-wall-less bacteria (L-forms) can grow and divide independently of FtsZ(4,5), provided a means of generating an ftsZ null mutant of Escherichia coli. Remarkably, we have been able to isolate variants of E. coli that lack FtsZ but are capable of efficient growth in a walled state. Genetic analysis reveals that a combination of mutations is needed for this phenotype. Importantly, the suppressive mutations lead to a major cell shape change, from the normal cylindrical shape to a branched and bulging, ramified shape, which we call 'coli-flower'. The results highlight the versatility of bacterial cells and illustrate possible evolutionary routes leading to the emergence of specialized bacteria, such as pathogenic Chlamydia or aquatic Planctomycetes, that lack FtsZ but retain the cell wall(6-8). PMID:27573111

  19. The FtsZ-Like Protein FtsZm of Magnetospirillum gryphiswaldense Likely Interacts with Its Generic Homolog and Is Required for Biomineralization under Nitrate Deprivation

    PubMed Central

    Müller, Frank D.; Raschdorf, Oliver; Nudelman, Hila; Messerer, Maxim; Katzmann, Emanuel; Plitzko, Jürgen M.; Zarivach, Raz

    2014-01-01

    Midcell selection, septum formation, and cytokinesis in most bacteria are orchestrated by the eukaryotic tubulin homolog FtsZ. The alphaproteobacterium Magnetospirillum gryphiswaldense (MSR-1) septates asymmetrically, and cytokinesis is linked to splitting and segregation of an intracellular chain of membrane-enveloped magnetite crystals (magnetosomes). In addition to a generic, full-length ftsZ gene, MSR-1 contains a truncated ftsZ homolog (ftsZm) which is located adjacent to genes controlling biomineralization and magnetosome chain formation. We analyzed the role of FtsZm in cell division and biomineralization together with the full-length MSR-1 FtsZ protein. Our results indicate that loss of FtsZm has a strong effect on microoxic magnetite biomineralization which, however, could be rescued by the presence of nitrate in the medium. Fluorescence microscopy revealed that FtsZm-mCherry does not colocalize with the magnetosome-related proteins MamC and MamK but is confined to asymmetric spots at midcell and at the cell pole, coinciding with the FtsZ protein position. In Escherichia coli, both FtsZ homologs form distinct structures but colocalize when coexpressed, suggesting an FtsZ-dependent recruitment of FtsZm. In vitro analyses indicate that FtsZm is able to interact with the FtsZ protein. Together, our data suggest that FtsZm shares key features with its full-length homolog but is involved in redox control for magnetite crystallization. PMID:24272781

  20. Multi-color imaging of the bacterial nucleoid and division proteins with blue, orange, and near-infrared fluorescent proteins

    PubMed Central

    Wu, Fabai; Van Rijn, Erwin; Van Schie, Bas G. C.; Dekker, Cees

    2015-01-01

    Studies of the spatiotemporal protein dynamics within live bacterial cells impose a strong demand for multi-color imaging. Despite the increasingly large collection of fluorescent protein (FP) variants engineered to date, only a few of these were successfully applied in bacteria. Here, we explore the performance of recently engineered variants with the blue (TagBFP), orange (TagRFP-T, mKO2), and far-red (mKate2) spectral colors by tagging HU, LacI, MinD, and FtsZ for visualizing the nucleoid and the cell division process. We find that, these FPs outperformed previous versions in terms of brightness and photostability at their respective spectral range, both when expressed as cytosolic label and when fused to native proteins. As this indicates that their folding is sufficiently fast, these proteins thus successfully expand the applicable spectra for multi-color imaging in bacteria. A near-infrared protein (eqFP670) is found to be the most red-shifted protein applicable to bacteria so far, with brightness and photostability that are advantageous for cell-body imaging, such as in microfluidic devices. Despite the multiple advantages, we also report the alarming observation that TagBFP directly interacts with TagRFP-T, causing interference of localization patterns between their fusion proteins. Our application of diverse FPs for endogenous tagging provides guidelines for future engineering of fluorescent fusions in bacteria, specifically: (1) The performance of newly developed FPs should be quantified in vivo for their introduction into bacteria; (2) spectral crosstalk and inter-variant interactions between FPs should be carefully examined for multi-color imaging; and (3) successful genomic fusion to the 5′-end of a gene strongly depends on the translational read-through of the inserted coding sequence. PMID:26136737

  1. A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli.

    PubMed Central

    Wang, X D; de Boer, P A; Rothfield, L I

    1991-01-01

    Cell division in Escherichia coli requires the products of the ftsQ, ftsA and ftsZ genes. It is not known how the cell regulates the cellular concentrations of these essential elements of the division system. We describe here a factor that activates cell division by specifically increasing transcription from one of the two promoters that lie immediately upstream of the ftsQAZ gene cluster. The trans-acting factor is the product of the sdiA gene, which was isolated on the basis of its ability to suppress the division inhibitory effect of the MinC/MinD division inhibitor. In addition, the sdiA gene product suppressed the action of other chromosomally encoded division inhibitors, induced minicell formation in wild type cells, and restored division activity to an ftsZ temperature-sensitive mutant grown under nonpermissive conditions. All of these properties were explained by the ability of the sdiA gene product specifically to increase transcription of the ftsQAZ gene cluster, resulting in an increase in cellular concentration of the FtsZ protein. The sdiA gene product is the first factor thus far identified that specifically regulates expression of this key group of cell division genes. Images PMID:1915297

  2. Rational design of berberine-based FtsZ inhibitors with broad-spectrum antibacterial activity.

    PubMed

    Sun, Ning; Chan, Fung-Yi; Lu, Yu-Jing; Neves, Marco A C; Lui, Hok-Kiu; Wang, Yong; Chow, Ka-Yan; Chan, Kin-Fai; Yan, Siu-Cheong; Leung, Yun-Chung; Abagyan, Ruben; Chan, Tak-Hang; Wong, Kwok-Yin

    2014-01-01

    Inhibition of the functional activity of Filamenting temperature-sensitive mutant Z (FtsZ) protein, an essential and highly conserved bacterial cytokinesis protein, is a promising approach for the development of a new class of antibacterial agents. Berberine, a benzylisoquinoline alkaloid widely used in traditional Chinese and native American medicines for its antimicrobial properties, has been recently reported to inhibit FtsZ. Using a combination of in silico structure-based design and in vitro biological assays, 9-phenoxyalkyl berberine derivatives were identified as potent FtsZ inhibitors. Compared to the parent compound berberine, the derivatives showed a significant enhancement of antibacterial activity against clinically relevant bacteria, and an improved potency against the GTPase activity and polymerization of FtsZ. The most potent compound 2 strongly inhibited the proliferation of Gram-positive bacteria, including methicillin-resistant S. aureus and vancomycin-resistant E. faecium, with MIC values between 2 and 4 µg/mL, and was active against the Gram-negative E. coli and K. pneumoniae, with MIC values of 32 and 64 µg/mL respectively. The compound perturbed the formation of cytokinetic Z-ring in E. coli. Also, the compound interfered with in vitro polymerization of S. aureus FtsZ. Taken together, the chemical modification of berberine with 9-phenoxyalkyl substituent groups greatly improved the antibacterial activity via targeting FtsZ. PMID:24824618

  3. Rational Design of Berberine-Based FtsZ Inhibitors with Broad-Spectrum Antibacterial Activity

    PubMed Central

    Sun, Ning; Chan, Fung-Yi; Lu, Yu-Jing; Neves, Marco A. C.; Lui, Hok-Kiu; Wang, Yong; Chow, Ka-Yan; Chan, Kin-Fai; Yan, Siu-Cheong; Leung, Yun-Chung; Abagyan, Ruben; Chan, Tak-Hang; Wong, Kwok-Yin

    2014-01-01

    Inhibition of the functional activity of Filamenting temperature-sensitive mutant Z (FtsZ) protein, an essential and highly conserved bacterial cytokinesis protein, is a promising approach for the development of a new class of antibacterial agents. Berberine, a benzylisoquinoline alkaloid widely used in traditional Chinese and native American medicines for its antimicrobial properties, has been recently reported to inhibit FtsZ. Using a combination of in silico structure-based design and in vitro biological assays, 9-phenoxyalkyl berberine derivatives were identified as potent FtsZ inhibitors. Compared to the parent compound berberine, the derivatives showed a significant enhancement of antibacterial activity against clinically relevant bacteria, and an improved potency against the GTPase activity and polymerization of FtsZ. The most potent compound 2 strongly inhibited the proliferation of Gram-positive bacteria, including methicillin-resistant S. aureus and vancomycin-resistant E. faecium, with MIC values between 2 and 4 µg/mL, and was active against the Gram-negative E. coli and K. pneumoniae, with MIC values of 32 and 64 µg/mL respectively. The compound perturbed the formation of cytokinetic Z-ring in E. coli. Also, the compound interfered with in vitro polymerization of S. aureus FtsZ. Taken together, the chemical modification of berberine with 9-phenoxyalkyl substituent groups greatly improved the antibacterial activity via targeting FtsZ. PMID:24824618

  4. Characterization of the FtsZ C-Terminal Variable (CTV) Region in Z-Ring Assembly and Interaction with the Z-Ring Stabilizer ZapD in E. coli Cytokinesis.

    PubMed

    Huang, Kuo-Hsiang; Mychack, Aaron; Tchorzewski, Lukasz; Janakiraman, Anuradha

    2016-01-01

    Polymerization of a ring-like cytoskeletal structure, the Z-ring, at midcell is a highly conserved feature in virtually all bacteria. The Z-ring is composed of short protofilaments of the tubulin homolog FtsZ, randomly arranged and held together through lateral interactions. In vitro, lateral associations between FtsZ protofilaments are stabilized by crowding agents, high concentrations of divalent cations, or in some cases, low pH. In vivo, the last 4-10 amino acid residues at the C-terminus of FtsZ (the C-terminal variable region, CTV) have been implicated in mediating lateral associations between FtsZ protofilaments through charge shielding. Multiple Z-ring associated proteins (Zaps), also promote lateral interactions between FtsZ protofilaments to stabilize the FtsZ ring in vivo. Here we characterize the complementary role/s of the CTV of E. coli FtsZ and the FtsZ-ring stabilizing protein ZapD, in FtsZ assembly. We show that the net charge of the FtsZ CTV not only affects FtsZ protofilament bundling, confirming earlier observations, but likely also the length of the FtsZ protofilaments in vitro. The CTV residues also have important consequences for Z-ring assembly and interaction with ZapD in the cell. ZapD requires the FtsZ CTV region for interaction with FtsZ in vitro and for localization to midcell in vivo. Our data suggest a mechanism in which the CTV residues, particularly K380, facilitate a conformation for the conserved carboxy-terminal residues in FtsZ, that lie immediately N-terminal to the CTV, to enable optimal contact with ZapD. Further, phylogenetic analyses suggest a correlation between the nature of FtsZ CTV residues and the presence of ZapD in the β- γ-proteobacterial species. PMID:27088231

  5. Characterization of the FtsZ C-Terminal Variable (CTV) Region in Z-Ring Assembly and Interaction with the Z-Ring Stabilizer ZapD in E. coli Cytokinesis

    PubMed Central

    Huang, Kuo-Hsiang; Mychack, Aaron; Tchorzewski, Lukasz; Janakiraman, Anuradha

    2016-01-01

    Polymerization of a ring-like cytoskeletal structure, the Z-ring, at midcell is a highly conserved feature in virtually all bacteria. The Z-ring is composed of short protofilaments of the tubulin homolog FtsZ, randomly arranged and held together through lateral interactions. In vitro, lateral associations between FtsZ protofilaments are stabilized by crowding agents, high concentrations of divalent cations, or in some cases, low pH. In vivo, the last 4–10 amino acid residues at the C-terminus of FtsZ (the C-terminal variable region, CTV) have been implicated in mediating lateral associations between FtsZ protofilaments through charge shielding. Multiple Z-ring associated proteins (Zaps), also promote lateral interactions between FtsZ protofilaments to stabilize the FtsZ ring in vivo. Here we characterize the complementary role/s of the CTV of E. coli FtsZ and the FtsZ-ring stabilizing protein ZapD, in FtsZ assembly. We show that the net charge of the FtsZ CTV not only affects FtsZ protofilament bundling, confirming earlier observations, but likely also the length of the FtsZ protofilaments in vitro. The CTV residues also have important consequences for Z-ring assembly and interaction with ZapD in the cell. ZapD requires the FtsZ CTV region for interaction with FtsZ in vitro and for localization to midcell in vivo. Our data suggest a mechanism in which the CTV residues, particularly K380, facilitate a conformation for the conserved carboxy-terminal residues in FtsZ, that lie immediately N-terminal to the CTV, to enable optimal contact with ZapD. Further, phylogenetic analyses suggest a correlation between the nature of FtsZ CTV residues and the presence of ZapD in the β- γ-proteobacterial species. PMID:27088231

  6. Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression

    PubMed Central

    Hwang, Dahyun; Lim, Young-Hee

    2015-01-01

    Resveratrol exhibits a potent antimicrobial activity. However, the mechanism underlying its antibacterial activity has not been shown. In this study, the antibacterial mechanism of resveratrol was investigated. To investigate induction of the SOS response, a strain containing the lacZ+gene under the control of an SOS-inducible sulA promoter was constructed. DNA damage was measured by pulse-field gel electrophoresis (PFGE). After resveratrol treatment, the cells were observed by confocal microscopy. For the RNA silencing assay, ftsZ-specific antisense peptide nucleic acid (PNA) was used. Reactive oxygen species (ROS) production increased in Escherichia coli after resveratrol treatment; however, cell growth was not recovered by ROS quenching, indicating that, in this experiment, ROS formation and cell death following resveratrol treatment were not directly correlated. Resveratrol treatment increased DNA fragmentation in cells, while SOS response-related gene expression levels increased in a dose-dependent manner. Cell elongation was observed after resveratrol treatment. Elongation was induced by inhibiting FtsZ, an essential cell-division protein in prokaryotes, and resulted in significant inhibition of Z-ring the formation in E. coli. The expression of ftsZ mRNA was suppressed by resveratrol. Our results indicate that resveratrol inhibits bacterial cell growth by suppressing FtsZ expression and Z-ring formation. PMID:25942564

  7. Pbp2x Localizes Separately from Pbp2b and Other Peptidoglycan Synthesis Proteins during Later Stages of Cell Division of Streptococcus pneumoniae D39

    PubMed Central

    Vella, Stephen A.; Kocaoglu, Ozden; Kuru, Erkin; Peceny, Julia K.; Carlson, Erin E.; VanNieuwenhze, Michael S.; Brun, Yves V.; Shaw, Sidney L.; Winkler, Malcolm E.

    2014-01-01

    The relative localization patterns of class B penicillin-binding proteins Pbp2x and Pbp2b were used as positional indicators of septal and peripheral (side-wall-like) peptidoglycan (PG) synthesis, respectively, in the midcell regions of Streptococcus pneumoniae cells at different stages of division. We confirm that Pbp2x and Pbp2b are essential in the strain D39 genetic background, which differs from that of laboratory strains. We show that Pbp2b, like Pbp2x and class A Pbp1a, follows a different localization pattern than FtsZ and remains at division septa after FtsZ reappears at the equators of daughter cells. Pulse-experiments with fluorescent D-amino acids (FDAAs) were performed in wild-type cells and in cells in which Pbp2x activity was preferentially inhibited by methicillin or Pbp2x amount was depleted. These experiments show that Pbp2x activity separates from that of other PBPs to the centers of constricting septa in mid-to-late divisional cells resolved by high-resolution 3D-SIM microscopy. Dual-protein and protein-fluorescent vancomycin 2D and 3D-SIM immunofluorescence microscopy (IFM) of cells at different division stages corroborate that Pbp2x separates to the centers of septa surrounded by an adjacent constricting ring containing Pbp2b, Pbp1a, and regulators, StkP and MreC. The separate localization of Pbp2x suggests distinctive roles in completing septal PG synthesis and remodeling. PMID:25099088

  8. The ftsZ Gene of Mycobacterium smegmatis is expressed Through Multiple Transcripts

    PubMed Central

    Roy, Sougata; Anand, Deepak; Vijay, Srinivasan; Gupta, Prabuddha; Ajitkumar, Parthasarathi

    2011-01-01

    The principal essential bacterial cell division gene ftsZ is differentially expressed through multiple transcripts in diverse genera of bacteria in order to meet cell division requirements in compliance with the physiological niche of the organism under different environmental conditions. We initiated transcriptional analyses of ftsZ gene of the fast growing saprophytic mycobacterium, Mycobacterium smegmatis, as the first step towards understanding the requirements for FtsZ for cell division under different growth phases and stress conditions. Primer extension analyses identified four transcripts, T1, T2, T3, and T4. Transcriptional fusion studies using gfp showed that the respective putative promoter regions, P1, P2, P3, and P4, possessed promoter activity. T1, T2, and T3 were found to originate from the intergenic region between ftsZ and the upstream gene, ftsQ. T4 was initiated from the 3’ portion of the open reading frame of ftsQ. RT-PCR analyses indicated co-transcription of ftsQ and ftsZ. The four transcripts were present in the cells at all growth phases and at different levels in the cells exposed to a variety of stress conditions in vitro. T2 and T3 were absent under hypoxia and nutrient-depleted stationary phase conditions, while the levels of T1 and T4 remained unaffected. These studies showed that ftsZ gene expression through multiple transcripts and differential expression of the transcripts at different growth phases and under stress conditions are conserved in M. smegmatis, like in other Actinomycetes. PMID:21772930

  9. FtsZ Protofilament Curvature Is the Opposite of Tubulin Rings.

    PubMed

    Housman, Max; Milam, Sara L; Moore, Desmond A; Osawa, Masaki; Erickson, Harold P

    2016-07-26

    FtsZ protofilaments (pfs) form the bacterial cytokinetic Z ring. Previous work suggested that a conformational change from straight to curved pfs generated the constriction force. In the simplest model, the C-terminal membrane tether is on the outside of the curved pf, facing the membrane. Tubulin, a homologue of FtsZ, also forms pfs with a curved conformation. However, it is well-established that tubulin rings have the C terminus on the inside of the ring. Could FtsZ and tubulin rings have the opposite curvature? In this study, we explored the FtsZ curvature direction by fusing large protein tags to the FtsZ termini. Thin section electron microscopy showed that the C-terminal tag was on the outside, consistent with the bending pf model. This has interesting implications for the evolution of tubulin. Tubulin likely began with the curvature of FtsZ, but evolution managed to reverse direction to produce outward-curving rings, which are useful for pulling chromosomes. PMID:27368355

  10. SpyAD, a Moonlighting Protein of Group A Streptococcus Contributing to Bacterial Division and Host Cell Adhesion

    PubMed Central

    Gallotta, Marilena; Gancitano, Giovanni; Pietrocola, Giampiero; Mora, Marirosa; Pezzicoli, Alfredo; Tuscano, Giovanna; Chiarot, Emiliano; Nardi-Dei, Vincenzo; Taddei, Anna Rita; Rindi, Simonetta; Speziale, Pietro; Soriani, Marco; Bensi, Giuliano

    2014-01-01

    Group A streptococcus (GAS) is a human pathogen causing a wide repertoire of mild and severe diseases for which no vaccine is yet available. We recently reported the identification of three protein antigens that in combination conferred wide protection against GAS infection in mice. Here we focused our attention on the characterization of one of these three antigens, Spy0269, a highly conserved, surface-exposed, and immunogenic protein of unknown function. Deletion of the spy0269 gene in a GAS M1 isolate resulted in very long bacterial chains, which is indicative of an impaired capacity of the knockout mutant to properly divide. Confocal microscopy and immunoprecipitation experiments demonstrated that the protein was mainly localized at the cell septum and could interact in vitro with the cell division protein FtsZ, leading us to hypothesize that Spy0269 is a member of the GAS divisome machinery. Predicted structural domains and sequence homologies with known streptococcal adhesins suggested that this antigen could also play a role in mediating GAS interaction with host cells. This hypothesis was confirmed by showing that recombinant Spy0269 could bind to mammalian epithelial cells in vitro and that Lactococcus lactis expressing Spy0269 on its cell surface could adhere to mammalian cells in vitro and to mice nasal mucosa in vivo. On the basis of these data, we believe that Spy0269 is involved both in bacterial cell division and in adhesion to host cells and we propose to rename this multifunctional moonlighting protein as SpyAD (Streptococcus pyogenes Adhesion and Division protein). PMID:24778116

  11. Visualisation of plastids in endosperm, pollen and roots of transgenic wheat expressing modified GFP fused to transit peptides from wheat SSU RubisCO, rice FtsZ and maize ferredoxin III proteins.

    PubMed

    Primavesi, Lucia F; Wu, Huixia; Mudd, Elisabeth A; Day, Anil; Jones, Huw D

    2008-08-01

    The ability to target marker proteins to specific subcellular compartments is a powerful research tool to study the structure and development of organelles. Here transit sequences from nuclear-encoded, plastid proteins, namely rice FtsZ, maize non-photosynthetic ferredoxin III (FdIII) and the small subunit of RubisCO were used to target a modified synthetic GFP (S65G, S72A) to plastids. The localisations of the fusion proteins expressed in transgenic wheat plants and under the control of the rice actin promoter were compared to an untargeted GFP control. GFP fluorescence was localised to non-green plastids in pollen, roots and seed endosperm and detected in isolated leaf chloroplasts using a GFP-specific antibody. Transit peptides appeared to influence the relative fluorescence intensities of plastids in different tissues. This is consistent with differential targeting and/or turnover of GFP fusion proteins in different plastid types. Replacement of GFP sequences with alternative coding regions enables immediate applications of our vectors for academic research and commercial applications. PMID:17710559

  12. Design, Synthesis and Evaluation of Novel 2,5,6-Trisubstituted Benzimidazoles Targeting FtsZ as Antitubercular Agents

    PubMed Central

    Park, Bora; Awasthi, Divya; Chowdhury, Soumya R.; Melief, Eduard H.; Kumar, Kunal; Knudson, Susan E.; Slayden, Richard A.; Ojima, Iwao

    2014-01-01

    Filamenting temperature-sensitive protein Z (FtsZ), an essential cell division protein, is a promising target for the drug discovery of new-generation antibacterial agents against various bacterial pathogens. As a part of SAR studies on benzimidazoles, we have synthesized a library of 376 novel 2,5,6-trisubstituted benzimidazoles, bearing ether or thioether linkage at the 6-position. In a preliminary HTP screening against Mtb H37Rv, 108 compounds were identified as hits at a cut off concentration of 5 μg/mL. Among those hits, 10 compounds exhibited MIC values in the range of 0.63–12.5 μg/mL. Light scattering assay and TEM analysis with the most potent compound 5a clearly indicate that its molecular target is Mtb-FtsZ. Also, the Kd of 5a with Mtb-FtsZ was determined to be 1.32 μM. PMID:24726304

  13. An ancestral bacterial division system is widespread in eukaryotic mitochondria.

    PubMed

    Leger, Michelle M; Petrů, Markéta; Žárský, Vojtěch; Eme, Laura; Vlček, Čestmír; Harding, Tommy; Lang, B Franz; Eliáš, Marek; Doležal, Pavel; Roger, Andrew J

    2015-08-18

    Bacterial division initiates at the site of a contractile Z-ring composed of polymerized FtsZ. The location of the Z-ring in the cell is controlled by a system of three mutually antagonistic proteins, MinC, MinD, and MinE. Plastid division is also known to be dependent on homologs of these proteins, derived from the ancestral cyanobacterial endosymbiont that gave rise to plastids. In contrast, the mitochondria of model systems such as Saccharomyces cerevisiae, mammals, and Arabidopsis thaliana seem to have replaced the ancestral α-proteobacterial Min-based division machinery with host-derived dynamin-related proteins that form outer contractile rings. Here, we show that the mitochondrial division system of these model organisms is the exception, rather than the rule, for eukaryotes. We describe endosymbiont-derived, bacterial-like division systems comprising FtsZ and Min proteins in diverse less-studied eukaryote protistan lineages, including jakobid and heterolobosean excavates, a malawimonad, stramenopiles, amoebozoans, a breviate, and an apusomonad. For two of these taxa, the amoebozoan Dictyostelium purpureum and the jakobid Andalucia incarcerata, we confirm a mitochondrial localization of these proteins by their heterologous expression in Saccharomyces cerevisiae. The discovery of a proteobacterial-like division system in mitochondria of diverse eukaryotic lineages suggests that it was the ancestral feature of all eukaryotic mitochondria and has been supplanted by a host-derived system multiple times in distinct eukaryote lineages. PMID:25831547

  14. An ancestral bacterial division system is widespread in eukaryotic mitochondria

    PubMed Central

    Leger, Michelle M.; Petrů, Markéta; Žárský, Vojtěch; Eme, Laura; Vlček, Čestmír; Harding, Tommy; Lang, B. Franz; Eliáš, Marek; Doležal, Pavel; Roger, Andrew J.

    2015-01-01

    Bacterial division initiates at the site of a contractile Z-ring composed of polymerized FtsZ. The location of the Z-ring in the cell is controlled by a system of three mutually antagonistic proteins, MinC, MinD, and MinE. Plastid division is also known to be dependent on homologs of these proteins, derived from the ancestral cyanobacterial endosymbiont that gave rise to plastids. In contrast, the mitochondria of model systems such as Saccharomyces cerevisiae, mammals, and Arabidopsis thaliana seem to have replaced the ancestral α-proteobacterial Min-based division machinery with host-derived dynamin-related proteins that form outer contractile rings. Here, we show that the mitochondrial division system of these model organisms is the exception, rather than the rule, for eukaryotes. We describe endosymbiont-derived, bacterial-like division systems comprising FtsZ and Min proteins in diverse less-studied eukaryote protistan lineages, including jakobid and heterolobosean excavates, a malawimonad, stramenopiles, amoebozoans, a breviate, and an apusomonad. For two of these taxa, the amoebozoan Dictyostelium purpureum and the jakobid Andalucia incarcerata, we confirm a mitochondrial localization of these proteins by their heterologous expression in Saccharomyces cerevisiae. The discovery of a proteobacterial-like division system in mitochondria of diverse eukaryotic lineages suggests that it was the ancestral feature of all eukaryotic mitochondria and has been supplanted by a host-derived system multiple times in distinct eukaryote lineages. PMID:25831547

  15. FtsZ Cytoskeletal Filaments as a Template for Metallic Nanowire Fabrication.

    PubMed

    Ostrov, Nili; Fichman, Galit; Adler-Abramovich, Lihi; Gazit, Ehud

    2015-01-01

    Supramolecular protein assemblies can serve as templates for the fabrication of inorganic nanowires due to their morphological reproducibility and innate proclivity to form well-ordered structures. Amongst the variety of naturally occurring nano-scale assemblies, cytoskeletal fibers from diverse biological sources represent a unique family of scaffolds for biomimetics as they efficiently self-assemble in vitro in a controllable manner to form stable filaments. Here, we harness the bacterial FtsZ filament system as a scaffold for protein-based metal nanowires, and further demonstrate the control of wire alignment with the use of an external magnetic field. Due to the ease at which the bacterial FtsZ is overexpressed and purified, as well as the extensive studies of its ultrastructural properties and physiological significance, FtsZ filaments are an ideal substrate for large-scale production and chemical manipulation. Using a biologically compatible electroless metal deposition technique initiated by adsorption of platinum as a surface catalyst, we demonstrate the coating of assembled FtsZ filaments with iron, nickel, gold, and copper to fabricate continuous nanowires with diameters ranging from 10-50 nm. Organic-inorganic hybrid wires were analyzed using high-resolution field-emission-gun transmission and scanning electron microscopy, and confirmed by energy-dispersive elemental analysis. We also achieved alignment of ferrofluid-coated FtsZ filaments using an external magnetic field. Overall, we provide evidence for the robustness of the FtsZ filament system as a molecular scaffold, and offer an efficient, biocompatible procedure for facile bottom-up assembly of metallic wires on biological templates. We believe that bottom-up fabrication methods as reported herein significantly contribute to the expanding toolkit available for the incorporation of biological materials in nano-scale devices for electronic and electromechanical applications. PMID:26328401

  16. Chlamydia trachomatis protein CT009 is a structural and functional homolog to the key morphogenesis component RodZ and interacts with division septal plane localized MreB

    PubMed Central

    Kemege, Kyle E.; Hickey, John M.; Barta, Michael L.; Wickstrum, Jason; Balwalli, Namita; Lovell, Scott; Battaile, Kevin P.; Hefty, P. Scott

    2015-01-01

    Summary Cell division in Chlamydiae is poorly understood as apparent homologs to most conserved bacterial cell division proteins are lacking and presence of elongation (rod shape) associated proteins indicate non-canonical mechanisms may be employed. The rod-shape determining protein MreB has been proposed as playing a unique role in chlamydial cell division. In other organisms, MreB is part of an elongation complex that requires RodZ for proper function. A recent study reported that the protein encoded by ORF CT009 interacts with MreB despite low sequence similarity to RodZ. The studies herein expand on those observations through protein structure, mutagenesis, and cellular localization analyses. Structural analysis indicated that CT009 shares high level of structural similarity to RodZ, revealing the conserved orientation of two residues critical for MreB interaction. Substitutions eliminated MreB protein interaction and partial complementation provided by CT009 in RodZ deficient E. coli. Cellular localization analysis of CT009 showed uniform membrane staining in Chlamydia. This was in contrast to the localization of MreB, which was restricted to predicted septal planes. MreB localization to septal planes provides direct experimental observation for the role of MreB in cell division and supports the hypothesis that it serves as a functional replacement for FtsZ in Chlamydia. PMID:25382739

  17. The Arabidopsis minE mutation causes new plastid and FtsZ1 localization phenotypes in the leaf epidermis

    PubMed Central

    Fujiwara, Makoto T.; Kojo, Kei H.; Kazama, Yusuke; Sasaki, Shun; Abe, Tomoko; Itoh, Ryuuichi D.

    2015-01-01

    Plastids in the leaf epidermal cells of plants are regarded as immature chloroplasts that, like mesophyll chloroplasts, undergo binary fission. While mesophyll chloroplasts have generally been used to study plastid division, recent studies have suggested the presence of tissue- or plastid type-dependent regulation of plastid division. Here, we report the detailed morphology of plastids and their stromules, and the intraplastidic localization of the chloroplast division-related protein AtFtsZ1-1, in the leaf epidermis of an Arabidopsis mutant that harbors a mutation in the chloroplast division site determinant gene AtMinE1. In atminE1, the size and shape of epidermal plastids varied widely, which contrasts with the plastid phenotype observed in atminE1 mesophyll cells. In particular, atminE1 epidermal plastids occasionally displayed grape-like morphology, a novel phenotype induced by a plastid division mutation. Observation of an atminE1 transgenic line harboring an AtMinE1 promoter::AtMinE1-yellow fluorescent protein fusion gene confirmed the expression and plastidic localization of AtMinE1 in the leaf epidermis. Further examination revealed that constriction of plastids and stromules mediated by the FtsZ1 ring contributed to the plastid pleomorphism in the atminE1 epidermis. These results illustrate that a single plastid division mutation can have dramatic consequences for epidermal plastid morphology, thereby implying that plastid division and morphogenesis are differentially regulated in epidermal and mesophyll plastids. PMID:26500667

  18. SepG coordinates sporulation-specific cell division and nucleoid organization in Streptomyces coelicolor.

    PubMed

    Zhang, Le; Willemse, Joost; Claessen, Dennis; van Wezel, Gilles P

    2016-04-01

    Bacterial cell division is a highly complex process that requires tight coordination between septum formation and chromosome replication and segregation. In bacteria that divide by binary fission a single septum is formed at mid-cell, a process that is coordinated by the conserved cell division scaffold protein FtsZ. In contrast, during sporulation-specific cell division in streptomycetes, up to a hundred rings of FtsZ (Z rings) are produced almost simultaneously, dividing the multinucleoid aerial hyphae into long chains of unigenomic spores. This involves the active recruitment of FtsZ by the SsgB protein, and at the same time requires sophisticated systems to regulate chromosome dynamics. Here, we show that SepG is required for the onset of sporulation and acts by ensuring that SsgB is localized to future septum sites. Förster resonance energy transfer imaging suggests direct interaction between SepG and SsgB. The beta-lactamase reporter system showed that SepG is a transmembrane protein with its central domain oriented towards the cytoplasm. Without SepG, SsgB fails to localize properly, consistent with a crucial role for SepG in the membrane localization of the SsgB-FtsZ complex. While SsgB remains associated with FtsZ, SepG re-localizes to the (pre)spore periphery. Expanded doughnut-shaped nucleoids are formed in sepG null mutants, suggesting that SepG is required for nucleoid compaction. Taken together, our work shows that SepG, encoded by one of the last genes in the conserved dcw cluster of cell division and cell-wall-related genes in Gram-positive bacteria whose function was still largely unresolved,coordinates septum synthesis and chromosome organization in Streptomyces. PMID:27053678

  19. SepG coordinates sporulation-specific cell division and nucleoid organization in Streptomyces coelicolor

    PubMed Central

    Zhang, Le; Willemse, Joost; Claessen, Dennis; van Wezel, Gilles P.

    2016-01-01

    Bacterial cell division is a highly complex process that requires tight coordination between septum formation and chromosome replication and segregation. In bacteria that divide by binary fission a single septum is formed at mid-cell, a process that is coordinated by the conserved cell division scaffold protein FtsZ. In contrast, during sporulation-specific cell division in streptomycetes, up to a hundred rings of FtsZ (Z rings) are produced almost simultaneously, dividing the multinucleoid aerial hyphae into long chains of unigenomic spores. This involves the active recruitment of FtsZ by the SsgB protein, and at the same time requires sophisticated systems to regulate chromosome dynamics. Here, we show that SepG is required for the onset of sporulation and acts by ensuring that SsgB is localized to future septum sites. Förster resonance energy transfer imaging suggests direct interaction between SepG and SsgB. The beta-lactamase reporter system showed that SepG is a transmembrane protein with its central domain oriented towards the cytoplasm. Without SepG, SsgB fails to localize properly, consistent with a crucial role for SepG in the membrane localization of the SsgB–FtsZ complex. While SsgB remains associated with FtsZ, SepG re-localizes to the (pre)spore periphery. Expanded doughnut-shaped nucleoids are formed in sepG null mutants, suggesting that SepG is required for nucleoid compaction. Taken together, our work shows that SepG, encoded by one of the last genes in the conserved dcw cluster of cell division and cell-wall-related genes in Gram-positive bacteria whose function was still largely unresolved, coordinates septum synthesis and chromosome organization in Streptomyces. PMID:27053678

  20. A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus

    PubMed Central

    Beaufay, François; Coppine, Jérôme; Mayard, Aurélie; Laloux, Géraldine; De Bolle, Xavier; Hallez, Régis

    2015-01-01

    Coupling cell cycle with nutrient availability is a crucial process for all living cells. But how bacteria control cell division according to metabolic supplies remains poorly understood. Here, we describe a molecular mechanism that coordinates central metabolism with cell division in the α-proteobacterium Caulobacter crescentus. This mechanism involves the NAD-dependent glutamate dehydrogenase GdhZ and the oxidoreductase-like KidO. While enzymatically active GdhZ directly interferes with FtsZ polymerization by stimulating its GTPase activity, KidO bound to NADH destabilizes lateral interactions between FtsZ protofilaments. Both GdhZ and KidO share the same regulatory network to concomitantly stimulate the rapid disassembly of the Z-ring, necessary for the subsequent release of progeny cells. Thus, this mechanism illustrates how proteins initially dedicated to metabolism coordinate cell cycle progression with nutrient availability. PMID:25953831

  1. Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring

    PubMed Central

    Duman, Ramona; Ishikawa, Shu; Celik, Ilkay; Strahl, Henrik; Ogasawara, Naotake; Troc, Paulina; Löwe, Jan; Hamoen, Leendert W.

    2013-01-01

    A key step in bacterial cell division is the polymerization of the tubulin homolog FtsZ at midcell. FtsZ polymers are anchored to the cell membrane by FtsA and are required for the assembly of all other cell division proteins. In Gram-positive and cyanobacteria, FtsZ filaments are aligned by the protein SepF, which in vitro polymerizes into large rings that bundle FtsZ filaments. Here we describe the crystal structure of the only globular domain of SepF, located within the C-terminal region. Two-hybrid data revealed that this domain comprises the FtsZ binding site, and EM analyses showed that it is sufficient for ring formation, which is explained by the filaments in the crystals of SepF. Site-directed mutagenesis, gel filtration, and analytical ultracentrifugation indicated that dimers form the basic units of SepF filaments. High-resolution structured illumination microscopy suggested that SepF is membrane associated, and it turned out that purified SepF not only binds to lipid membranes, but also recruits FtsZ. Further genetic and biochemical analyses showed that an amphipathic helix at the N terminus functions as the membrane-binding domain, making SepF a unique membrane anchor for the FtsZ ring. This clarifies why Bacillus subtilis grows without FtsA or the putative membrane anchor EzrA and why bacteria lacking FtsA contain SepF homologs. Both FtsA and SepF use an amphipathic helix for membrane binding. These helices prefer positively curved membranes due to relaxed lipid density; therefore this type of membrane anchor may assist in keeping the Z ring positioned at the strongly curved leading edge of the developing septum. PMID:24218584

  2. A hypothesis to explain division site selection in Escherichia coli by combining nucleoid occlusion and Min.

    PubMed

    Norris, Vic; Woldringh, Conrad; Mileykovskaya, Eugenia

    2004-03-12

    The positioning of the site of cell division in Escherichia coli results, it is generally believed, from the operation of nucleoid occlusion in combination with the Min system. Nucleoid occlusion prevents division over the nucleoids and directs it by default to the mid-cell region between segregating nucleoids or to polar regions while the Min system prevents division in polar regions. Unresolved questions include how these systems interact to control the earliest known event in division, the assembly at the membrane of the tubulin-like protein, FtsZ, and, more importantly, what exactly constitutes a division site. Evidence exists that (1) the coupled transcription, translation and insertion of proteins into membrane (transertion), can structure the cytoplasmic membrane into phospholipid domains, (2) the MinD protein can convert vesicles into tubes and (3) a variety of membranous structures can be observed at mid-cell. These data support a model in which transertion from the segregating daughter chromosomes leads to the formation of a distinct proteolipid domain between them at mid-cell; the composition of this domain allows phospholipid tubes to extend like fingers into the cytoplasm; these tubes then become the substrate for the dynamic assembly and disassembly of FtsZ which converts them into the invaginating fold responsible for division; the Min system inhibits division at unwanted sites and times by removing these tubes especially at the cell poles. PMID:15013745

  3. Structure of CrgA, a cell division structural and regulatory protein from Mycobacterium tuberculosis, in lipid bilayers.

    PubMed

    Das, Nabanita; Dai, Jian; Hung, Ivan; Rajagopalan, Malini R; Rajagopalan, Malini R; Zhou, Huan-Xiang; Cross, Timothy A

    2015-01-13

    The 93-residue transmembrane protein CrgA in Mycobacterium tuberculosis is a central component of the divisome, a large macromolecular machine responsible for cell division. Through interactions with multiple other components including FtsZ, FtsQ, FtsI (PBPB), PBPA, and CwsA, CrgA facilitates the recruitment of the proteins essential for peptidoglycan synthesis to the divisome and stabilizes the divisome. CrgA is predicted to have two transmembrane helices. Here, the structure of CrgA was determined in a liquid-crystalline lipid bilayer environment by solid-state NMR spectroscopy. Oriented-sample data yielded orientational restraints, whereas magic-angle spinning data yielded interhelical distance restraints. These data define a complete structure for the transmembrane domain and provide rich information on the conformational ensembles of the partially disordered N-terminal region and interhelical loop. The structure of the transmembrane domain was refined using restrained molecular dynamics simulations in an all-atom representation of the same lipid bilayer environment as in the NMR samples. The two transmembrane helices form a left-handed packing arrangement with a crossing angle of 24° at the conserved Gly39 residue. This helix pair exposes other conserved glycine and alanine residues to the fatty acyl environment, which are potential sites for binding CrgA's partners such as CwsA and FtsQ. This approach combining oriented-sample and magic-angle spinning NMR spectroscopy in native-like lipid bilayers with restrained molecular dynamics simulations represents a powerful tool for structural characterization of not only isolated membrane proteins, but their complexes, such as those that form macromolecular machines. PMID:25548160

  4. Structure of CrgA, a cell division structural and regulatory protein from Mycobacterium tuberculosis, in lipid bilayers

    PubMed Central

    Das, Nabanita; Dai, Jian; Hung, Ivan; Rajagopalan, Malini; Zhou, Huan-Xiang; Cross, Timothy A.

    2015-01-01

    The 93-residue transmembrane protein CrgA in Mycobacterium tuberculosis is a central component of the divisome, a large macromolecular machine responsible for cell division. Through interactions with multiple other components including FtsZ, FtsQ, FtsI (PBPB), PBPA, and CwsA, CrgA facilitates the recruitment of the proteins essential for peptidoglycan synthesis to the divisome and stabilizes the divisome. CrgA is predicted to have two transmembrane helices. Here, the structure of CrgA was determined in a liquid–crystalline lipid bilayer environment by solid-state NMR spectroscopy. Oriented-sample data yielded orientational restraints, whereas magic-angle spinning data yielded interhelical distance restraints. These data define a complete structure for the transmembrane domain and provide rich information on the conformational ensembles of the partially disordered N-terminal region and interhelical loop. The structure of the transmembrane domain was refined using restrained molecular dynamics simulations in an all-atom representation of the same lipid bilayer environment as in the NMR samples. The two transmembrane helices form a left-handed packing arrangement with a crossing angle of 24° at the conserved Gly39 residue. This helix pair exposes other conserved glycine and alanine residues to the fatty acyl environment, which are potential sites for binding CrgA’s partners such as CwsA and FtsQ. This approach combining oriented-sample and magic-angle spinning NMR spectroscopy in native-like lipid bilayers with restrained molecular dynamics simulations represents a powerful tool for structural characterization of not only isolated membrane proteins, but their complexes, such as those that form macromolecular machines. PMID:25548160

  5. Influence of FtsZ GTPase activity and concentration on nanoscale Z-ring structure in vivo revealed by three-dimensional Superresolution imaging.

    PubMed

    Lyu, Zhixin; Coltharp, Carla; Yang, Xinxing; Xiao, Jie

    2016-10-01

    FtsZ is an essential bacterial cytoskeletal protein that assembles into a ring-like structure (Z-ring) at midcell to carry out cytokinesis. In vitro, FtsZ exhibits polymorphism in polymerizing into different forms of filaments based on its GTPase activity, concentration, and buffer condition. In vivo, the Z-ring appeared to be punctate and heterogeneously organized, although continuous, homogenous Z-ring structures have also been observed. Understanding how the Z-ring is organized in vivo is important because it provides a structural basis for the functional role of the Z-ring in cytokinesis. Here, we assess the effects of both GTPase activity and FtsZ concentration on the organization of the Z-ring in vivo using three-dimensional (3D) superresolution microscopy. We found that the Z-ring became more homogenous when assembled in the presence of a GTPase-deficient mutant, and upon overexpression of either wt or mutant FtsZ. These results suggest that the in vivo organization of the Z-ring is largely dependent on the intrinsic polymerization properties of FtsZ, which are significantly influenced by the GTPase activity and concentration of FtsZ. Our work provides a unifying theme to reconcile previous observations of different Z-ring structures, and supports a model in which the wt Z-ring comprises loosely associated, heterogeneously distributed FtsZ clusters. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 725-734, 2016. PMID:27310678

  6. Collective effects of torsion in FtsZ filaments

    NASA Astrophysics Data System (ADS)

    González de Prado Salas, Pablo; Tarazona, Pedro

    2016-04-01

    Recent evidence points to the presence of torsion in FtsZ bonds. In addition, experiments with FtsZ mutants on surfaces resulted in new aggregates that cannot be explained by older models for FtsZ dynamics. We use an interaction model for FtsZ derived from molecular dynamics simulations and expand a fine-grained lattice model used to describe FtsZ aggregates on a surface. This new model includes different anchoring angles for the monomers and allows bond twist, two ingredients that oppose each other resulting in a more dynamic and interesting system. We study the role and importance of these conflicting elements and how the aggregates are characterized by the different interaction parameters.

  7. Selected amplification of the cell division genes ftsQ-ftsA-ftsZ in Escherichia coli.

    PubMed Central

    Vinella, D; Cashel, M; D'Ari, R

    2000-01-01

    Rapidly growing Escherichia coli is unable to divide in the presence of the antibiotic mecillinam, whose direct target is penicillin-binding protein 2 (PBP2), responsible for the elongation of the cylindrical portion of the cell wall. Division can be restored in the absence of PBP2 activity by increasing the concentration of the cell division proteins FtsQ, FtsA, and FtsZ. We tried to identify regulators of the ftsQ-ftsA-ftsZ operon among mecillinam-resistant mutants, which include strains overexpressing these genes. By insertional mutagenesis with mini-Tn10 elements, we selected for insertions that conferred mecillinam resistance. Among 15 such mutants, 7 suppressed the thermosensitivity of the ftsZ84(Ts) mutant, strongly suggesting that they had increased FtsZ activity. In all 7 cases, however, the mutants resulted from a duplication of the ftsQAZ region. These duplications seemed to result from multiple events, suggesting that no simple insertional inactivation can result in a mutant with sufficiently amplified ftsQAZ expression to confer mecillinam resistance. The structure of the duplications suggests a general method for constructing directed duplications of precise sequences. PMID:11102351

  8. Toward Spatially Regulated Division of Protocells: Insights into the E. coli Min System from in Vitro Studies

    PubMed Central

    Kretschmer, Simon; Schwille, Petra

    2014-01-01

    For reconstruction of controlled cell division in a minimal cell model, or protocell, a positioning mechanism that spatially regulates division is indispensable. In Escherichia coli, the Min proteins oscillate from pole to pole to determine the division site by inhibition of the primary divisome protein FtsZ anywhere but in the cell middle. Remarkably, when reconstituted under defined conditions in vitro, the Min proteins self-organize into spatiotemporal patterns in the presence of a lipid membrane and ATP. We review recent progress made in studying the Min system in vitro, particularly focusing on the effects of various physicochemical parameters and boundary conditions on pattern formation. Furthermore, we discuss implications and challenges for utilizing the Min system for division site placement in protocells. PMID:25513760

  9. Toward Spatially Regulated Division of Protocells: Insights into the E. coli Min System from in Vitro Studies.

    PubMed

    Kretschmer, Simon; Schwille, Petra

    2014-01-01

    For reconstruction of controlled cell division in a minimal cell model, or protocell, a positioning mechanism that spatially regulates division is indispensable. In Escherichia coli, the Min proteins oscillate from pole to pole to determine the division site by inhibition of the primary divisome protein FtsZ anywhere but in the cell middle. Remarkably, when reconstituted under defined conditions in vitro, the Min proteins self-organize into spatiotemporal patterns in the presence of a lipid membrane and ATP. We review recent progress made in studying the Min system in vitro, particularly focusing on the effects of various physicochemical parameters and boundary conditions on pattern formation. Furthermore, we discuss implications and challenges for utilizing the Min system for division site placement in protocells. PMID:25513760

  10. Quantitative analysis of protein dynamics during asymmetric cell division.

    PubMed

    Mayer, Bernd; Emery, Gregory; Berdnik, Daniela; Wirtz-Peitz, Frederik; Knoblich, Juergen A

    2005-10-25

    In dividing Drosophila sensory organ precursor (SOP) cells, the fate determinant Numb and its associated adaptor protein Pon localize asymmetrically and segregate into the anterior daughter cell, where Numb influences cell fate by repressing Notch signaling. Asymmetric localization of both proteins requires the protein kinase aPKC and its substrate Lethal (2) giant larvae (Lgl). Because both Numb and Pon localization require actin and myosin, lateral transport along the cell cortex has been proposed as a possible mechanism for their asymmetric distribution. Here, we use quantitative live analysis of GFP-Pon and Numb-GFP fluorescence and fluorescence recovery after photobleaching (FRAP) to characterize the dynamics of Numb and Pon localization during SOP division. We demonstrate that Numb and Pon rapidly exchange between a cytoplasmic pool and the cell cortex and that preferential recruitment from the cytoplasm is responsible for their asymmetric distribution during mitosis. Expression of a constitutively active form of aPKC impairs membrane recruitment of GFP-Pon. This defect can be rescued by coexpression of nonphosphorylatable Lgl, indicating that Lgl is the main target of aPKC. We propose that a high-affinity binding site is asymmetrically distributed by aPKC and Lgl and is responsible for asymmetric localization of cell-fate determinants during mitosis. PMID:16243032

  11. CetZ tubulin-like proteins control archaeal cell shape

    PubMed Central

    Duggin, Iain G.; Aylett, Christopher H. S.; Walsh, James C.; Michie, Katharine A.; Wang, Qing; Turnbull, Lynne; Dawson, Emma M.; Harry, Elizabeth J.; Whitchurch, Cynthia B.; Amos, Linda A.; Löwe, Jan

    2014-01-01

    Tubulin is a major component of the eukaryotic cytoskeleton, controlling cell shape, structure and dynamics, whereas its bacterial homolog FtsZ establishes the cytokinetic ring that constricts during cell division1,2. How such different roles of tubulin and FtsZ evolved is unknown. Archaea may hold clues as these organisms share characteristics with Eukarya and Bacteria3. Here we report the structure and function of proteins from a distinct family related to tubulin and FtsZ, named CetZ, which co-exists with FtsZ in many archaea. CetZ crystal structures showed the FtsZ/tubulin superfamily fold, and one crystal form contained sheets of protofilaments, suggesting a structural role. However, inactivation of the CetZs in Haloferax volcanii did not affect cell division. Instead, CetZ1 was required for differentiation of the irregular plate-shaped cells into a rod-shaped cell type that was essential for normal swimming motility. CetZ1 formed dynamic cytoskeletal structures in vivo, relating to its capacity to remodel the cell envelope and direct rod formation. CetZ2 was also implicated in H. volcanii cell shape control. Our findings expand the known roles of the FtsZ/tubulin superfamily to include archaeal cell shape dynamics, suggesting that a cytoskeletal role might predate eukaryotic cell evolution, and they support the premise that a major function of microbial rod-shape is to facilitate swimming. PMID:25533961

  12. In Vivo Pharmacodynamic Evaluation of an FtsZ Inhibitor, TXA-709, and Its Active Metabolite, TXA-707, in a Murine Neutropenic Thigh Infection Model

    PubMed Central

    Lepak, Alexander J.; Parhi, Ajit; Madison, Michaela; Marchillo, Karen; VanHecker, Jamie

    2015-01-01

    Antibiotics with novel mechanisms of action are urgently needed. Processes of cellular division are attractive targets for new drug development. FtsZ, an integral protein involved in cell cytokinesis, is a representative example. In the present study, the pharmacodynamic (PD) activity of an FtsZ inhibitor, TXA-709, and its active metabolite, TXA-707, was evaluated in the neutropenic murine thigh infection model against 5 Staphylococcus aureus isolates, including both methicillin-susceptible and methicillin-resistant isolates. The pharmacokinetics (PK) of the TXA-707 active metabolite were examined after oral administration of the TXA-709 prodrug at 10, 40, and 160 mg/kg of body weight. The half-life ranged from 3.2 to 4.4 h, and the area under the concentration-time curve (AUC) and maximum concentration of drug in serum (Cmax) were relatively linear over the doses studied. All organisms exhibited an MIC of 1 mg/liter. Dose fractionation demonstrated the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC ratio) to be the PD index most closely linked to efficacy (R2 = 0.72). Dose-dependent activity was demonstrated against all 5 isolates, and the methicillin-resistance phenotype did not alter the pharmacokinetic/pharmacodynamic (PK/PD) targets. Net stasis was achieved against all isolates and a 1-log10 kill level against 4 isolates. PD targets included total drug 24-h AUC/MIC values of 122 for net stasis and 243 for 1-log10 killing. TXA-709 and TXA-707 are a promising novel antibacterial class and compound for S. aureus infections. These results should prove useful for design of clinical dosing regimen trials. PMID:26259789

  13. Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococcus elongatus.

    PubMed

    Dong, Guogang; Yang, Qiong; Wang, Qiang; Kim, Yong-Ick; Wood, Thammajun L; Osteryoung, Katherine W; van Oudenaarden, Alexander; Golden, Susan S

    2010-02-19

    A circadian clock coordinates physiology and behavior in diverse groups of living organisms. Another major cyclic cellular event, the cell cycle, is regulated by the circadian clock in the few cases where linkage of these cycles has been studied. In the cyanobacterium Synechococcus elongatus, the circadian clock gates cell division by an unknown mechanism. Using timelapse microscopy, we confirm the gating of cell division in the wild-type and demonstrate the regulation of cytokinesis by key clock components. Specifically, a state of the oscillator protein KaiC that is associated with elevated ATPase activity closes the gate by acting through a known clock output pathway to inhibit FtsZ ring formation at the division site. An activity that stimulates KaiC phosphorylation independently of the KaiA protein was also uncovered. We propose a model that separates the functions of KaiC ATPase and phosphorylation in cell division gating and other circadian behaviors. PMID:20178745

  14. The bypass of ZipA by overexpression of FtsN requires a previously unknown conserved FtsN motif essential for FtsA-FtsN interaction supporting a model in which FtsA monomers recruit late cell division proteins to the Z ring

    PubMed Central

    Pichoff, Sebastien; Du, Shishen; Lutkenhaus, Joe

    2015-01-01

    Summary Assembly of the divisome in E. coli occurs in two temporally distinct steps. First, FtsZ filaments attached to the membrane through interaction with FtsA and ZipA coalesce into a Z ring at midcell. After a delay, additional proteins are recruited to the Z ring in a hierarchical manner to form a complete divisome, activated by the arrival of FtsN. Recently, we proposed the interaction of FtsA with itself competes with its ability to recruit downstream division proteins (both require the same IC domain of FtsA) and that ZipA’s essential function is to promote the formation of FtsA monomers. Here, we tested whether overexpression of a downstream division protein could make ZipA dispensable, presumably by shifting the FtsA equilibrium to monomers. Only overexpression of FtsN bypassed ZipA and we identified a motif in the cytoplasmic domain of FtsN required for both the bypass of ZipA and interaction with FtsA. In addition, this cytoplasmic motif has to be linked to the periplasmic E domain of FtsN in order to bypass ZipA, suggesting that FtsN was linking FtsA to periplasmic components of the divisome. These results are used to further elaborate our model for the role of FtsA in recruiting downstream division proteins. PMID:25496259

  15. CyDiv, a Conserved and Novel Filamentous Cyanobacterial Cell Division Protein Involved in Septum Localization

    PubMed Central

    Mandakovic, Dinka; Trigo, Carla; Andrade, Derly; Riquelme, Brenda; Gómez-Lillo, Gabriela; Soto-Liebe, Katia; Díez, Beatriz; Vásquez, Mónica

    2016-01-01

    Cell division in bacteria has been studied mostly in Escherichia coli and Bacillus subtilis, model organisms for Gram-negative and Gram-positive bacteria, respectively. However, cell division in filamentous cyanobacteria is poorly understood. Here, we identified a novel protein, named CyDiv (Cyanobacterial Division), encoded by the all2320 gene in Anabaena sp. PCC 7120. We show that CyDiv plays a key role during cell division. CyDiv has been previously described only as an exclusive and conserved hypothetical protein in filamentous cyanobacteria. Using polyclonal antibodies against CyDiv, we showed that it localizes at different positions depending on cell division timing: poles, septum, in both daughter cells, but also in only one of the daughter cells. The partial deletion of CyDiv gene generates partial defects in cell division, including severe membrane instability and anomalous septum localization during late division. The inability to complete knock out CyDiv strains suggests that it is an essential gene. In silico structural protein analyses and our experimental results suggest that CyDiv is an FtsB/DivIC-like protein, and could therefore, be part of an essential late divisome complex in Anabaena sp. PCC 7120. PMID:26903973

  16. Domain folding and flexibility of Escherichia coli FtsZ determined by tryptophan site-directed mutagenesis

    PubMed Central

    Díaz-Espinoza, Rodrigo; Garcés, Andrea P.; Arbildua, José J.; Montecinos, Felipe; Brunet, Juan E.; Lagos, Rosalba; Monasterio, Octavio

    2007-01-01

    FtsZ has two domains, the amino GTPase domain with a Rossmann fold, and the carboxyl domain that resembles the chorismate mutase fold. Bioinformatics analyses suggest that the interdomain interaction is stronger than the interaction of the protofilament longitudinal interfaces. Crystal B factor analysis of FtsZ and detected conformational changes suggest a connection between these domains. The unfolding/folding characteristics of each domain of FtsZ were tested by introducing tryptophans into the flexible region of the amino (F135W) and the carboxyl (F275W and I294W) domains. As a control, the mutation F40W was introduced in a more rigid part of the amino domain. These mutants showed a native-like structure with denaturation and renaturation curves similar to wild type. However, the I294W mutant showed a strong loss of functionality, both in vivo and in vitro when compared to the other mutants. The functionality was recovered with the double mutant I294W/F275A, which showed full in vivo complementation with a slight increment of in vitro GTPase activity with respect to the single mutant. The formation of a stabilizing aromatic interaction involving a stacking between the tryptophan introduced at position 294 and phenylalanine 275 could account for these results. Folding/unfolding of these mutants induced by guanidinium chloride was compatible with a mechanism in which both domains within the protein show the same stability during FtsZ denaturation and renaturation, probably because of strong interface interactions. PMID:17656575

  17. Asymmetric Constriction of Dividing Escherichia coli Cells Induced by Expression of a Fusion between Two Min Proteins

    PubMed Central

    Rowlett, Veronica Wells

    2014-01-01

    The Min system, consisting of MinC, MinD, and MinE, plays an important role in localizing the Escherichia coli cell division machinery to midcell by preventing FtsZ ring (Z ring) formation at cell poles. MinC has two domains, MinCn and MinCc, which both bind to FtsZ and act synergistically to inhibit FtsZ polymerization. Binary fission of E. coli usually proceeds symmetrically, with daughter cells at roughly 180° to each other. In contrast, we discovered that overproduction of an artificial MinCc-MinD fusion protein in the absence of other Min proteins induced frequent and dramatic jackknife-like bending of cells at division septa, with cell constriction predominantly on the outside of the bend. Mutations in the fusion known to disrupt MinCc-FtsZ, MinCc-MinD, or MinD-membrane interactions largely suppressed bending division. Imaging of FtsZ-green fluorescent protein (GFP) showed no obvious asymmetric localization of FtsZ during MinCc-MinD overproduction, suggesting that a downstream activity of the Z ring was inhibited asymmetrically. Consistent with this, MinCc-MinD fusions localized predominantly to segments of the Z ring at the inside of developing cell bends, while FtsA (but not ZipA) tended to localize to the outside. As FtsA is required for ring constriction, we propose that this asymmetric localization pattern blocks constriction of the inside of the septal ring while permitting continued constriction of the outside portion. PMID:24682325

  18. MioC and GidA proteins promote cell division in E. coli

    PubMed Central

    Lies, Mark; Visser, Bryan J.; Joshi, Mohan C.; Magnan, David; Bates, David

    2015-01-01

    The well-conserved genes surrounding the E. coli replication origin, mioC and gidA, do not normally affect chromosome replication and have little known function. We report that mioC and gidA mutants exhibit a moderate cell division inhibition phenotype. Cell elongation is exacerbated by a fis deletion, likely owing to delayed replication and subsequent cell cycle stress. Measurements of replication initiation frequency and origin segregation indicate that mioC and gidA do not inhibit cell division through any effect on oriC function. Division inhibition is also independent of the two known replication/cell division checkpoints, SOS and nucleoid occlusion. Complementation analysis indicates that mioC and gidA affect cell division in trans, indicating their effect is at the protein level. Transcriptome analysis by RNA sequencing showed that expression of a cell division septum component, YmgF, is significantly altered in mioC and gidA mutants. Our data reveal new roles for the gene products of gidA and mioC in the division apparatus, and we propose that their expression, cyclically regulated by chromatin remodeling at oriC, is part of a cell cycle regulatory program coordinating replication initiation and cell division. PMID:26074904

  19. Divisome-dependent subcellular localization of cell-cell joining protein SepJ in the filamentous cyanobacterium Anabaena.

    PubMed

    Ramos-León, Félix; Mariscal, Vicente; Frías, José E; Flores, Enrique; Herrero, Antonia

    2015-05-01

    Heterocyst-forming cyanobacteria are multicellular organisms that grow as filaments that can be hundreds of cells long. Septal junction complexes, of which SepJ is a possible component, appear to join the cells in the filament. SepJ is a cytoplasmic membrane protein that contains a long predicted periplasmic section and localizes not only to the cell poles in the intercellular septa but also to a position similar to a Z ring when cell division starts suggesting a relation with the divisome. Here, we created a mutant of Anabaena sp. strain PCC 7120 in which the essential divisome gene ftsZ is expressed from a synthetic NtcA-dependent promoter, whose activity depends on the nitrogen source. In the presence of ammonium, low levels of FtsZ were produced, and the subcellular localization of SepJ, which was investigated by immunofluorescence, was impaired. Possible interactions of SepJ with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated using the bacterial two-hybrid system. We found SepJ self-interaction and a specific interaction with FtsQ, confirmed by co-purification and involving parts of the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers, and in Anabaena, the divisome has a role beyond cell division, localizing a septal protein essential for multicellularity. PMID:25644579

  20. Mechanisms of organelle division and inheritance and their implications regarding the origin of eukaryotic cells

    PubMed Central

    KUROIWA, Tsuneyoshi

    2010-01-01

    Mitochondria and plastids have their own DNAs and are regarded as descendants of endosymbiotic prokaryotes. Organellar DNAs are not naked in vivo but are associated with basic proteins to form DNA-protein complexes (called organelle nuclei). The concept of organelle nuclei provides a new approach to explain the origin, division, and inheritance of organelles. Organelles divide using organelle division rings (machineries) after organelle-nuclear division. Organelle division machineries are a chimera of the FtsZ (filamentous temperature sensitive Z) ring of bacterial origin and the eukaryotic mechanochemical dynamin ring. Thus, organelle division machineries contain a key to solve the origin of organelles (eukaryotes). The maternal inheritance of organelles developed during sexual reproduction and it is also probably intimately related to the origin of organelles. The aims of this review are to describe the strategies used to reveal the dynamics of organelle division machineries, and the significance of the division machineries and maternal inheritance in the origin and evolution of eukaryotes. PMID:20467212

  1. Protein tyrosine phosphorylation during meiotic divisions of starfish oocytes

    SciTech Connect

    Peaucellier, G.; Andersen, A.C.; Kinsey, W.H. )

    1990-04-01

    We have used an antibody specific for phosphotyrosine to investigate protein phosphorylation on tyrosine during hormone-induced maturation of starfish oocytes. Analysis of immunoprecipitates from cortices of in vivo labeled Marthasterias glacialis oocytes revealed the presence of labeled phosphotyrosine-containing proteins only after hormone addition. Six major phosphoproteins of 195, 155, 100, 85, 45, and 35 kDa were detected. Total activity in immunoprecipitates increased until first polar body emission and was greatly reduced upon completion of meiosis but some proteins exhibited different kinetics. The labeling of the 155-kDa protein reached a maximum at germinal vesicle breakdown, while the 35-kDa appeared later and disappeared after polar body emission. Similar results were obtained with Asterias rubens oocytes. In vitro phosphorylation of cortices showed that tyrosine kinase activity is a major protein kinase activity in this fraction, the main endogenous substrate being a 68-kDa protein. The proteins phosphorylated on tyrosine in vitro were almost similar in extracts from oocytes treated or not with the hormone.

  2. Universal protein distributions in a model of cell growth and division

    NASA Astrophysics Data System (ADS)

    Brenner, Naama; Newman, C. M.; Osmanović, Dino; Rabin, Yitzhak; Salman, Hanna; Stein, D. L.

    2015-10-01

    Protein distributions measured under a broad set of conditions in bacteria and yeast were shown to exhibit a common skewed shape, with variances depending quadratically on means. For bacteria these properties were reproduced by temporal measurements of protein content, showing accumulation and division across generations. Here we present a stochastic growth-and-division model with feedback which captures these observed properties. The limiting copy number distribution is calculated exactly, and a single parameter is found to determine the distribution shape and the variance-to-mean relation. Estimating this parameter from bacterial temporal data reproduces the measured distribution shape with high accuracy and leads to predictions for future experiments.

  3. Cortical PAR polarity proteins promote robust cytokinesis during asymmetric cell division.

    PubMed

    Jordan, Shawn N; Davies, Tim; Zhuravlev, Yelena; Dumont, Julien; Shirasu-Hiza, Mimi; Canman, Julie C

    2016-01-01

    Cytokinesis, the physical division of one cell into two, is thought to be fundamentally similar in most animal cell divisions and driven by the constriction of a contractile ring positioned and controlled solely by the mitotic spindle. During asymmetric cell divisions, the core polarity machinery (partitioning defective [PAR] proteins) controls the unequal inheritance of key cell fate determinants. Here, we show that in asymmetrically dividing Caenorhabditis elegans embryos, the cortical PAR proteins (including the small guanosine triphosphatase CDC-42) have an active role in regulating recruitment of a critical component of the contractile ring, filamentous actin (F-actin). We found that the cortical PAR proteins are required for the retention of anillin and septin in the anterior pole, which are cytokinesis proteins that our genetic data suggest act as inhibitors of F-actin at the contractile ring. Collectively, our results suggest that the cortical PAR proteins coordinate the establishment of cell polarity with the physical process of cytokinesis during asymmetric cell division to ensure the fidelity of daughter cell formation. PMID:26728855

  4. Cortical PAR polarity proteins promote robust cytokinesis during asymmetric cell division

    PubMed Central

    Jordan, Shawn N.; Davies, Tim; Zhuravlev, Yelena; Dumont, Julien; Shirasu-Hiza, Mimi

    2016-01-01

    Cytokinesis, the physical division of one cell into two, is thought to be fundamentally similar in most animal cell divisions and driven by the constriction of a contractile ring positioned and controlled solely by the mitotic spindle. During asymmetric cell divisions, the core polarity machinery (partitioning defective [PAR] proteins) controls the unequal inheritance of key cell fate determinants. Here, we show that in asymmetrically dividing Caenorhabditis elegans embryos, the cortical PAR proteins (including the small guanosine triphosphatase CDC-42) have an active role in regulating recruitment of a critical component of the contractile ring, filamentous actin (F-actin). We found that the cortical PAR proteins are required for the retention of anillin and septin in the anterior pole, which are cytokinesis proteins that our genetic data suggest act as inhibitors of F-actin at the contractile ring. Collectively, our results suggest that the cortical PAR proteins coordinate the establishment of cell polarity with the physical process of cytokinesis during asymmetric cell division to ensure the fidelity of daughter cell formation. PMID:26728855

  5. The D,D-carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae.

    PubMed

    Morlot, Cécile; Noirclerc-Savoye, Marjolaine; Zapun, André; Dideberg, Otto; Vernet, Thierry

    2004-03-01

    Bacterial division requires the co-ordination of membrane invagination, driven by the constriction of the FtsZ-ring, and concomitant cell wall synthesis, performed by the high-molecular-weight penicillin-binding proteins (HMW PBPs). Using immunofluorescence techniques, we show in Streptococcus pneumoniae that this co-ordination requires PBP3, a D,D-carboxypeptidase that degrades the substrate of the HMW PBPs. In a mutant deprived of PBP3, the apparent rings of HMW PBPs and that of FtsZ are no longer co-localized. In wild-type cells, PBP3 is absent at the future division site and present over the rest of the cell surface, implying that the localization of the HMW PBPs at mid-cell depends on the availability of their substrate. FtsW, a putative translocase of the substrate of the PBPs, forms an apparent ring that is co-localized with the septal HMW PBPs throughout the cell cycle of wild-type cells. In particular, the constriction of the FtsW-ring occurs after that of the FtsZ-ring, with the same delay as the constriction of the septal PBP-rings. However, in the absence of PBP3, FtsW remains co-localized with FtsZ in contrast to the HMW PBPs. Our work reveals an unexpected complexity in the relationships between the division proteins. The consequences of the absence of PBP3 indicate that the peptidoglycan composition is central to the co-ordination of the division process. PMID:15009891

  6. The GoLoco motif: heralding a new tango between G protein signaling and cell division.

    PubMed

    Kimple, Randall J; Willard, Francis S; Siderovski, David P

    2002-04-01

    The Galpha and Gbetagamma components of heterotrimeric G proteins, typically associated with cell-surface receptor signaling, also partake in the macromolecular interactions that underlie cell polarity and cell division. Proteins with Galpha-binding GoLoco motifs, such as Drosophila melanogaster Pins (for Partner of Inscuteable) and its mammalian counterpart LGN, participate in multi-protein complexes that maintain cellular asymmetry and orderly segregation of chromosomal content and daughter cell bodies. The GoLoco motif was recently identified as a selective Galpha-binding partner: the GoLoco-Galpha interaction can displace Gbetagamma and inhibit guanine nucleotide release from the bound Galpha subunit. Recent x-ray crystallographic studies suggest ways in which GoLoco-motif peptides may modulate heterotrimeric G protein signaling. Such peptides could be exploited to help dissect the signals that underpin cell polarity and cell division processes. PMID:14993354

  7. The TORMOZ Gene Encodes a Nucleolar Protein Required for Regulated Division Planes and Embryo Development in Arabidopsis[W

    PubMed Central

    Griffith, Megan E.; Mayer, Ulrike; Capron, Arnaud; Ngo, Quy A.; Surendrarao, Anandkumar; McClinton, Regina; Jürgens, Gerd; Sundaresan, Venkatesan

    2007-01-01

    Embryogenesis in Arabidopsis thaliana is marked by a predictable sequence of oriented cell divisions, which precede cell fate determination. We show that mutation of the TORMOZ (TOZ) gene yields embryos with aberrant cell division planes and arrested embryos that appear not to have established normal patterning. The defects in toz mutants differ from previously described mutations that affect embryonic cell division patterns. Longitudinal division planes of the proembryo are frequently replaced by transverse divisions and less frequently by oblique divisions, while divisions of the suspensor cells, which divide only transversely, appear generally unaffected. Expression patterns of selected embryo patterning genes are altered in the mutant embryos, implying that the positional cues required for their proper expression are perturbed by the misoriented divisions. The TOZ gene encodes a nucleolar protein containing WD repeats. Putative TOZ orthologs exist in other eukaryotes including Saccharomyces cerevisiae, where the protein is predicted to function in 18S rRNA biogenesis. We find that disruption of the Sp TOZ gene results in cell division defects in Schizosaccharomyces pombe. Previous studies in yeast and animal cells have identified nucleolar proteins that regulate the exit from M phase and cytokinesis, including factors involved in pre-rRNA processing. Our study suggests that in plant cells, nucleolar functions might interact with the processes of regulated cell divisions and influence the selection of longitudinal division planes during embryogenesis. PMID:17616738

  8. The BASL Polarity Protein Controls a MAPK Signaling Feedback Loop in Asymmetric Cell Division

    PubMed Central

    Zhang, Ying; Wang, Pengcheng; Shao, Wanchen; Zhu, Jian-Kang; Dong, Juan

    2015-01-01

    SUMMARY Cell polarization is linked to fate determination during asymmetric division of plant stem cells, but the underlying molecular mechanisms remain unknown. In Arabidopsis, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) is polarized to control stomatal asymmetric division. A MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade determines terminal stomatal fate by promoting the degradation of the lineage determinant SPEECHLESS (SPCH). Here we demonstrate that a positive feedback loop between BASL and the MAPK pathway constitutes a polarity module at the cortex. Cortical localization of BASL requires phosphorylation mediated by MPK3/6. Phosphorylated BASL functions as a scaffold and recruits the MAPKKK YODA and MPK3/6 to spatially concentrate signaling at the cortex. Activated MPK3/6 reinforces the feedback loop by phosphorylating BASL, and inhibits stomatal fate by phosphorylating SPCH. Polarization of the BASL-MAPK signaling feedback module represents a mechanism connecting cell polarity to fate differentiation during asymmetric stem cell division in plants. PMID:25843888

  9. Going vertical: functional role and working principles of the protein Inscuteable in asymmetric cell divisions.

    PubMed

    Culurgioni, Simone; Mapelli, Marina

    2013-11-01

    Coordinating mitotic spindle dynamics with cortical polarity is essential for stem cell asymmetric divisions. Over the years, the protein Inscuteable (Insc) has emerged as a key element determining the spindle orientation in asymmetric mitoses. Its overexpression increases differentiative divisions in systems as diverse as mouse keratinocytes and radial glial cells. To date, the molecular explanation to account for this phenotype envisioned Insc as an adaptor molecule bridging between the polarity proteins Par3:Par6:aPKC and the spindle pulling machines assembled on NuMA:LGN:Gαi. However, recent biochemical and structural data revealed that Insc and NuMA are competitive interactors of LGN, challenging the simplistic idea of a single apical macromolecular complex, and demanding a revision of the actual working principles of Insc. PMID:23516018

  10. A Multi-layered Protein Network Stabilizes the Escherichia coli FtsZ-ring and Modulates Constriction Dynamics

    PubMed Central

    Buss, Jackson; Coltharp, Carla; Shtengel, Gleb; Yang, Xinxing; Hess, Harald; Xiao, Jie

    2015-01-01

    The prokaryotic tubulin homolog, FtsZ, forms a ring-like structure (FtsZ-ring) at midcell. The FtsZ-ring establishes the division plane and enables the assembly of the macromolecular division machinery (divisome). Although many molecular components of the divisome have been identified and their interactions extensively characterized, the spatial organization of these proteins within the divisome is unclear. Consequently, the physical mechanisms that drive divisome assembly, maintenance, and constriction remain elusive. Here we applied single-molecule based superresolution imaging, combined with genetic and biophysical investigations, to reveal the spatial organization of cellular structures formed by four important divisome proteins in E. coli: FtsZ, ZapA, ZapB and MatP. We show that these interacting proteins are arranged into a multi-layered protein network extending from the cell membrane to the chromosome, each with unique structural and dynamic properties. Further, we find that this protein network stabilizes the FtsZ-ring, and unexpectedly, slows down cell constriction, suggesting a new, unrecognized role for this network in bacterial cell division. Our results provide new insight into the structure and function of the divisome, and highlight the importance of coordinated cell constriction and chromosome segregation. PMID:25848771

  11. Nucleus-Specific Importin Alpha Proteins and Nucleoporins Regulate Protein Import and Nuclear Division in the Binucleate Tetrahymena thermophila▿ †

    PubMed Central

    Malone, Colin D.; Falkowska, Katarzyna A.; Li, Alanna Y.; Galanti, Sarah E.; Kanuru, Reshi C.; LaMont, Elizabeth G.; Mazzarella, Kate C.; Micev, Alan J.; Osman, Morwan M.; Piotrowski, Nicholas K.; Suszko, Jason W.; Timm, Adam C.; Xu, Ming-Ming; Liu, Lucy; Chalker, Douglas L.

    2008-01-01

    The ciliate Tetrahymena thermophila, having both germ line micronuclei and somatic macronuclei, must possess a specialized nucleocytoplasmic transport system to import proteins into the correct nucleus. To understand how Tetrahymena can target proteins to distinct nuclei, we first characterized FG repeat-containing nucleoporins and found that micro- and macronuclei utilize unique subsets of these proteins. This finding implicates these proteins in the differential permeability of the two nuclei and implies that nuclear pores with discrete specificities are assembled within a single cell. To identify the import machineries that interact with these different pores, we characterized the large families of karyopherin homologs encoded within the genome. Localization studies of 13 putative importin (imp) α- and 11 imp β-like proteins revealed that imp α-like proteins are nucleus specific—nine localized to the germ line micronucleus—but that most imp β-like proteins localized to both types of nuclei. These data suggest that micronucleus-specific proteins are transported by specific imp α adapters. The different imp α proteins exhibit substantial sequence divergence and do not appear to be simply redundant in function. Disruption of the IMA10 gene encoding an imp α-like protein that accumulates in dividing micronuclei results in nuclear division defects and lethality. Thus, nucleus-specific protein import and nuclear function in Tetrahymena are regulated by diverse, specialized karyopherins. PMID:18676955

  12. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division

    PubMed Central

    Manor, Uri; Bartholomew, Sadie; Golani, Gonen; Christenson, Eric; Kozlov, Michael; Higgs, Henry; Spudich, James; Lippincott-Schwartz, Jennifer

    2015-01-01

    Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division. DOI: http://dx.doi.org/10.7554/eLife.08828.001 PMID:26305500

  13. Fine-scale dissection of the subdomains of polarity protein BASL in stomatal asymmetric cell division

    PubMed Central

    Zhang, Ying; Bergmann, Dominique C.; Dong, Juan

    2016-01-01

    Cell polarity is a prerequisite for asymmetric cell divisions (ACDs) that generate cell type diversity during development of multicellular organisms. In Arabidopsis, stomatal lineage ACDs are regulated by the plant-specific protein BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL). BASL exhibits dynamic subcellular localization, accumulating initially in the nucleus, but then additionally in a highly polarized crescent at the cell cortex before division. BASL polarization requires a phosphorylation-mediated activation process, but how this is achieved remains unknown. In this study, we performed a fine-scale dissection of BASL protein subdomains and elucidated a nuclear localization sequence for nuclear import and a critical FxFP motif for cortical polarity formation, respectively. Artificially tethering BASL subdomains to the plasma membrane suggests that novel protein partner/s might exist and bind to an internal region of BASL. In addition, we suspect the existence of a protein degradation mechanism associated with the amino terminal domain of BASL that accounts for restricting its predominant expression to the stomatal lineage cells of the epidermis. Taken together, our results revealed that BASL, through its distinct subdomains, integrates multiple regulatory inputs to provide a mechanism that promotes difference during stomatal lineage ACDs. PMID:27422992

  14. Growing protein crystals in microgravity - The NASA Microgravity Science and Applications Division (MSAD) Protein Crystal Growth (PCG) program

    NASA Technical Reports Server (NTRS)

    Herren, B.

    1992-01-01

    In collaboration with a medical researcher at the University of Alabama at Birmingham, NASA's Marshall Space Flight Center in Huntsville, Alabama, under the sponsorship of the Microgravity Science and Applications Division (MSAD) at NASA Headquarters, is continuing a series of space experiments in protein crystal growth which could lead to innovative new drugs as well as basic science data on protein molecular structures. From 1985 through 1992, Protein Crystal Growth (PCG) experiments will have been flown on the Space Shuttle a total of 14 times. The first four hand-held experiments were used to test hardware concepts; later flights incorporated these concepts for vapor diffusion protein crystal growth with temperature control. This article provides an overview of the PCG program: its evolution, objectives, and plans for future experiments on NASA's Space Shuttle and Space Station Freedom.

  15. Cyclin B synthesis and rapamycin-sensitive regulation of protein synthesis during starfish oocyte meiotic divisions.

    PubMed

    Lapasset, Laure; Pradet-Balade, Bérengère; Vergé, Valérie; Lozano, Jean-Claude; Oulhen, Nathalie; Cormier, Patrick; Peaucellier, Gérard

    2008-11-01

    Translation of cyclin mRNAs represents an important event for proper meiotic maturation and post-fertilization mitoses in many species. Translational control of cyclin B mRNA has been described to be achieved through two separate but related mechanisms: translational repression and polyadenylation. In this paper, we evaluated the contribution of global translational regulation by the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-binding protein) on the cyclin B protein synthesis during meiotic maturation of the starfish oocytes. We used the immunosupressant drug rapamycin, a strong inhibitor of cap-dependent translation, to check for the involvement of this protein synthesis during this physiological process. Rapamycin was found to prevent dissociation of 4E-BP from the initiation factor eIF4E and to suppress correlatively a burst of global protein synthesis occurring at the G2/M transition. The drug had no effect on first meiotic division but defects in meiotic spindle formation prevented second polar body emission, demonstrating that a rapamycin-sensitive pathway is involved in this mechanism. While rapamycin affected the global protein synthesis, the drug altered neither the specific translation of cyclin B mRNA nor the expression of the Mos protein. The expression of these two proteins was correlated with the phosphorylation and the dissociation of the cytoplasmic polyadenylation element-binding protein from eIF4E. PMID:18361417

  16. Analyzing the Functions of Rab11-Effector Proteins During Cell Division

    PubMed Central

    Prekeris, Rytis

    2015-01-01

    Recycling endosomes recently have emerged as major regulators of cytokinesis and abscission steps of cell division. Rab11-endosomes in particular were shown to transport proteins to the mitotic ingression furrow and play a key role in establishing the abscission site. Rab11 GTPase function by binding and activations various effector proteins, such as Rab11 family interacting proteins (FIPs). FIPs appear to be at the core of many Rab11 functions, with FIP3 playing a role in targeting of the Rab11-endosomes during mitosis. Here we summarize the newest finding regarding the roles and regulation of FIP3 and Rab11 complex, as well as describe the methods developed to analyze membrane and cytoskeleton dynamics during abscission step of cytokinesis. PMID:26360025

  17. Analyzing the functions of Rab11-effector proteins during cell division.

    PubMed

    Prekeris, Rytis

    2015-01-01

    Recycling endosomes recently have emerged as major regulators of cytokinesis and abscission steps of cell division. Rab11-endosomes in particular were shown to transport proteins to the mitotic ingression furrow and play a key role in establishing the abscission site. Rab11 GTPase functions by binding and activating various effector proteins, such as Rab11 family interacting proteins (FIPs). FIPs appear to be at the core of many Rab11 functions, with FIP3 playing a role in targeting of the Rab11-endosomes during mitosis. Here we summarize the newest finding regarding the roles and regulation of FIP3 and Rab11 complex, as well as describe the methods developed to analyze membrane and cytoskeleton dynamics during abscission step of cytokinesis. PMID:26360025

  18. Spatial coordination between chromosomes and cell division proteins in Escherichia coli.

    PubMed

    Männik, Jaan; Bailey, Matthew W

    2015-01-01

    To successfully propagate, cells need to coordinate chromosomal replication and segregation with cell division to prevent formation of DNA-less cells and cells with damaged DNA. Here, we review molecular systems in Escherichia coli that are known to be involved in positioning the divisome and chromosome relative to each other. Interestingly, this well-studied micro-organism has several partially redundant mechanisms to achieve this task; none of which are essential. Some of these systems determine the localization of the divisome relative to chromosomes such as SlmA-dependent nucleoid occlusion, some localize the chromosome relative to the divisome such as DNA translocation by FtsK, and some are likely to act on both systems such as the Min system and newly described Ter linkage. Moreover, there is evidence that E. coli harbors other divisome-chromosome coordination systems in addition to those known. The review also discusses the minimal requirements of coordination between chromosomes and cell division proteins needed for cell viability. Arguments are presented that cells can propagate without any dedicated coordination between their chromosomes and cell division machinery at the expense of lowered fitness. PMID:25926826

  19. Spatial coordination between chromosomes and cell division proteins in Escherichia coli

    PubMed Central

    Männik, Jaan; Bailey, Matthew W.

    2015-01-01

    To successfully propagate, cells need to coordinate chromosomal replication and segregation with cell division to prevent formation of DNA-less cells and cells with damaged DNA. Here, we review molecular systems in Escherichia coli that are known to be involved in positioning the divisome and chromosome relative to each other. Interestingly, this well-studied micro-organism has several partially redundant mechanisms to achieve this task; none of which are essential. Some of these systems determine the localization of the divisome relative to chromosomes such as SlmA-dependent nucleoid occlusion, some localize the chromosome relative to the divisome such as DNA translocation by FtsK, and some are likely to act on both systems such as the Min system and newly described Ter linkage. Moreover, there is evidence that E. coli harbors other divisome-chromosome coordination systems in addition to those known. The review also discusses the minimal requirements of coordination between chromosomes and cell division proteins needed for cell viability. Arguments are presented that cells can propagate without any dedicated coordination between their chromosomes and cell division machinery at the expense of lowered fitness. PMID:25926826

  20. Role of FtsEX in cell division of Escherichia coli: viability of ftsEX mutants is dependent on functional SufI or high osmotic strength.

    PubMed

    Reddy, Manjula

    2007-01-01

    In Escherichia coli, at least 12 proteins, FtsZ, ZipA, FtsA, FtsE/X, FtsK, FtsQ, FtsL, FtsB, FtsW, FtsI, FtsN, and AmiC, are known to localize to the septal ring in an interdependent and sequential pathway to coordinate the septum formation at the midcell. The FtsEX complex is the latest recruit of this pathway, and unlike other division proteins, it is shown to be essential only on low-salt media. In this study, it is shown that ftsEX null mutations are not only salt remedial but also osmoremedial, which suggests that FtsEX may not be involved in salt transport as previously thought. Increased coexpression of cell division proteins FtsQ-FtsA-FtsZ or FtsN alone restored the growth defects of ftsEX mutants. ftsEX deletion exacerbated the defects of most of the mutants affected in Z ring localization and septal assembly; however, the ftsZ84 allele was a weak suppressor of ftsEX. The viability of ftsEX mutants in high-osmolarity conditions was shown to be dependent on the presence of a periplasmic protein, SufI, a substrate of twin-arginine translocase. In addition, SufI in multiple copies could substitute for the functions of FtsEX. Taken together, these results suggest that FtsE and FtsX are absolutely required for the process of cell division in conditions of low osmotic strength for the stability of the septal ring assembly and that, during high-osmolarity conditions, the FtsEX and SufI functions are redundant for this essential process. PMID:17071757

  1. Interplay of the Serine/Threonine-Kinase StkP and the Paralogs DivIVA and GpsB in Pneumococcal Cell Elongation and Division

    PubMed Central

    Campo, Nathalie; Cluzel, Caroline; Lavergne, Jean-Pierre; Freton, Céline; Combet, Christophe; Guiral, Sébastien; Soufi, Boumediene; Macek, Boris; Kuru, Erkin; VanNieuwenhze, Michael S.; Brun, Yves V.; Di Guilmi, Anne-Marie; Claverys, Jean-Pierre; Galinier, Anne; Grangeasse, Christophe

    2014-01-01

    Despite years of intensive research, much remains to be discovered to understand the regulatory networks coordinating bacterial cell growth and division. The mechanisms by which Streptococcus pneumoniae achieves its characteristic ellipsoid-cell shape remain largely unknown. In this study, we analyzed the interplay of the cell division paralogs DivIVA and GpsB with the ser/thr kinase StkP. We observed that the deletion of divIVA hindered cell elongation and resulted in cell shortening and rounding. By contrast, the absence of GpsB resulted in hampered cell division and triggered cell elongation. Remarkably, ΔgpsB elongated cells exhibited a helical FtsZ pattern instead of a Z-ring, accompanied by helical patterns for DivIVA and peptidoglycan synthesis. Strikingly, divIVA deletion suppressed the elongated phenotype of ΔgpsB cells. These data suggest that DivIVA promotes cell elongation and that GpsB counteracts it. Analysis of protein-protein interactions revealed that GpsB and DivIVA do not interact with FtsZ but with the cell division protein EzrA, which itself interacts with FtsZ. In addition, GpsB interacts directly with DivIVA. These results are consistent with DivIVA and GpsB acting as a molecular switch to orchestrate peripheral and septal PG synthesis and connecting them with the Z-ring via EzrA. The cellular co-localization of the transpeptidases PBP2x and PBP2b as well as the lipid-flippases FtsW and RodA in ΔgpsB cells further suggest the existence of a single large PG assembly complex. Finally, we show that GpsB is required for septal localization and kinase activity of StkP, and therefore for StkP-dependent phosphorylation of DivIVA. Altogether, we propose that the StkP/DivIVA/GpsB triad finely tunes the two modes of peptidoglycan (peripheral and septal) synthesis responsible for the pneumococcal ellipsoid cell shape. PMID:24722178

  2. Cell Division by Longitudinal Scission in the Insect Endosymbiont Spiroplasma poulsonii

    PubMed Central

    Maclachlan, Catherine; Clerc-Rosset, Stéphanie; Knott, Graham W.

    2016-01-01

    ABSTRACT Spiroplasma bacteria are highly motile bacteria with no cell wall and a helical morphology. This clade includes many vertically transmitted insect endosymbionts, including Spiroplasma poulsonii, a natural endosymbiont of Drosophila melanogaster. S. poulsonii bacteria are mainly found in the hemolymph of infected female flies and exhibit efficient vertical transmission from mother to offspring. As is the case for many facultative endosymbionts, S. poulsonii can manipulate the reproduction of its host; in particular, S. poulsonii induces male killing in Drosophila melanogaster. Here, we analyze the morphology of S. poulsonii obtained from the hemolymph of infected Drosophila. This endosymbiont was not only found as long helical filaments, as previously described, but was also found in a Y-shaped form. The use of electron microscopy, immunogold staining of the FtsZ protein, and antibiotic treatment unambiguously linked the Y shape of S. poulsonii to cell division. Observation of the Y shape in another Spiroplasma, S. citri, and anecdotic observations from the literature suggest that cell division by longitudinal scission might be prevalent in the Spiroplasma clade. Our study is the first to report the Y-shape mode of cell division in an endosymbiotic bacterium and adds Spiroplasma to the so far limited group of bacteria known to utilize this cell division mode. PMID:27460796

  3. Regulation of transcription of cell division genes in the Escherichia coli dcw cluster.

    PubMed

    Vicente, M; Gomez, M J; Ayala, J A

    1998-04-01

    The Escherichia coli dcw cluster contains cell division genes, such as the phylogenetically ubiquitous ftsZ, and genes involved in peptidoglycan synthesis. Transcription in the cluster proceeds in the same direction as the progress of the replication fork along the chromosome. Regulation is exerted at the transcriptional and post-transcriptional levels. The absence of transcriptional termination signals may, in principle, allow extension of the transcripts initiated at the up-stream promoter (mraZ1p) even to the furthest down-stream gene (envA). Complementation tests suggest that they extend into ftsW in the central part of the cluster. In addition, the cluster contains other promoters individually regulated by cis- and trans-acting signals. Dissociation of the expression of the ftsZ gene, located after ftsQ and A near the 3' end of the cluster, from its natural regulatory signals leads to an alteration in the physiology of cell division. The complexities observed in the regulation of gene expression in the cluster may then have an important biological role. Among them, LexA-binding SOS boxes have been found at the 5' end of the cluster, preceding promoters which direct the expression of ftsI (coding for PBP3, the penicillin-binding protein involved in septum formation). A gearbox promoter, ftsQ1p, forms part of the signals regulating the transcription of ftsQ, A and Z. It is an inversely growth-dependent mechanism driven by RNA polymerase containing sigma s, the factor involved in the expression of stationary phase-specific genes. Although the dcw cluster is conserved to a different extent in a variety of bacteria, the regulation of gene expression, the presence or absence of individual genes, and even the essentiality of some of them, show variations in the phylogenetic scale which may reflect adaptation to specific life cycles. PMID:9614967

  4. Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins.

    PubMed

    Pogliano, Joe; Pogliano, Nicolas; Silverman, Jared A

    2012-09-01

    Daptomycin is a lipopeptide antibiotic used clinically for the treatment of certain types of Gram-positive infections, including those caused by methicillin-resistant Staphylococcus aureus (MRSA). Details of the mechanism of action of daptomycin continue to be elucidated, particularly the question of whether daptomycin acts on the cell membrane, the cell wall, or both. Here, we use fluorescence microscopy to directly visualize the interaction of daptomycin with the model Gram-positive bacterium Bacillus subtilis. We show that the first observable cellular effects are the formation of membrane distortions (patches of membrane) that precede cell death by more than 30 min. Membrane patches are able to recruit the essential cell division protein DivIVA. Recruitment of DivIVA correlates with membrane defects and changes in cell morphology, suggesting a localized alteration in the activity of enzymes involved in cell wall synthesis that could account for previously described effects of daptomycin on cell wall morphology and septation. Membrane defects colocalize with fluorescently labeled daptomycin, DivIVA, and fluorescent reporters of peptidoglycan biogenesis (Bocillin FL and BODIPY FL-vancomycin), suggesting that daptomycin plays a direct role in these events. Our results support a mechanism for daptomycin with a primary effect on cell membranes that in turn redirects the localization of proteins involved in cell division and cell wall synthesis, causing dramatic cell wall and membrane defects, which may ultimately lead to a breach in the cell membrane and cell death. These results help resolve the longstanding questions regarding the mechanism of action of this important class of antibiotics. PMID:22661688

  5. Daptomycin-Mediated Reorganization of Membrane Architecture Causes Mislocalization of Essential Cell Division Proteins

    PubMed Central

    Pogliano, Nicolas; Silverman, Jared A.

    2012-01-01

    Daptomycin is a lipopeptide antibiotic used clinically for the treatment of certain types of Gram-positive infections, including those caused by methicillin-resistant Staphylococcus aureus (MRSA). Details of the mechanism of action of daptomycin continue to be elucidated, particularly the question of whether daptomycin acts on the cell membrane, the cell wall, or both. Here, we use fluorescence microscopy to directly visualize the interaction of daptomycin with the model Gram-positive bacterium Bacillus subtilis. We show that the first observable cellular effects are the formation of membrane distortions (patches of membrane) that precede cell death by more than 30 min. Membrane patches are able to recruit the essential cell division protein DivIVA. Recruitment of DivIVA correlates with membrane defects and changes in cell morphology, suggesting a localized alteration in the activity of enzymes involved in cell wall synthesis that could account for previously described effects of daptomycin on cell wall morphology and septation. Membrane defects colocalize with fluorescently labeled daptomycin, DivIVA, and fluorescent reporters of peptidoglycan biogenesis (Bocillin FL and BODIPY FL-vancomycin), suggesting that daptomycin plays a direct role in these events. Our results support a mechanism for daptomycin with a primary effect on cell membranes that in turn redirects the localization of proteins involved in cell division and cell wall synthesis, causing dramatic cell wall and membrane defects, which may ultimately lead to a breach in the cell membrane and cell death. These results help resolve the longstanding questions regarding the mechanism of action of this important class of antibiotics. PMID:22661688

  6. A role for the FtsQLB complex in cytokinetic ring activation revealed by an ftsL allele that accelerates division

    PubMed Central

    Tsang, Mary-Jane; Bernhardt, Thomas G.

    2015-01-01

    SUMMARY The cytokinetic apparatus of bacteria is initially formed by the polymerization of the tubulin-like FtsZ protein into a ring structure at midcell. This so-called Z-ring facilitates the recruitment of many additional proteins to the division site to form the mature divisome machine. Although the assembly pathway leading to divisome formation has been well characterized, the mechanisms that trigger cell constriction remain unclear. In this report, we study a “forgotten” allele of ftsL from Escherichia coli, which encodes a conserved division gene of unknown function. We discovered that this allele promotes the premature initiation of cell division. Further analysis also revealed that the mutant bypasses the requirement for the essential division proteins ZipA, FtsK, and FtsN and partially bypasses the need for FtsA. These findings suggest that rather than serving simply as a protein scaffold within the divisome, FtsL may play a more active role in the activation of the machine. Our results support a model in which FtsL, along with its partners FtsB and FtsQ, function as part of a sensing mechanism that promotes the onset of cell wall remodeling processes needed for the initiation of cell constriction once assembly of the divisome complex is deemed complete. PMID:25496050

  7. Transcriptional analysis of the cell division-related ssg genes in Streptomyces coelicolor reveals direct control of ssgR by AtrA.

    PubMed

    Kim, Songhee H; Traag, Bjørn A; Hasan, Ayad H; McDowall, Kenneth J; Kim, Byung-Gee; van Wezel, Gilles P

    2015-07-01

    SsgA-like proteins are a family of actinomycete-specific regulatory proteins that control cell division and spore maturation in streptomycetes. SsgA and SsgB together activate sporulation-specific cell division by controlling the localization of FtsZ. Here we report the identification of novel regulators that control the transcription of the ssgA-like genes. Transcriptional regulators controlling ssg gene expression were identified using a DNA-affinity capture assay. Supporting transcriptional and DNA binding studies showed that the ssgA activator gene ssgR is controlled by the TetR-family regulator AtrA, while the γ-butyrolactone-responsive AdpA (SCO2792) and SlbR (SCO0608) and the metabolic regulator Rok7B7 (SCO6008) were identified as candidate regulators for the cell division genes ssgA, ssgB and ssgG. Transcription of the cell division gene ssgB depended on the sporulation genes whiA and whiH, while ssgR, ssgA and ssgD were transcribed independently of the whi genes. Our work sheds new light on the mechanisms by which sporulation-specific cell division is controlled in Streptomyces. PMID:26002075

  8. ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation.

    PubMed

    Donczew, Magdalena; Mackiewicz, Paweł; Wróbel, Agnieszka; Flärdh, Klas; Zakrzewska-Czerwińska, Jolanta; Jakimowicz, Dagmara

    2016-04-01

    In unicellular bacteria, the ParA and ParB proteins segregate chromosomes and coordinate this process with cell division and chromosome replication. During sporulation of mycelial Streptomyces, ParA and ParB uniformly distribute multiple chromosomes along the filamentous sporogenic hyphal compartment, which then differentiates into a chain of unigenomic spores. However, chromosome segregation must be coordinated with cell elongation and multiple divisions. Here, we addressed the question of whether ParA and ParB are involved in the synchronization of cell-cycle processes during sporulation in Streptomyces To answer this question, we used time-lapse microscopy, which allows the monitoring of growth and division of single sporogenic hyphae. We showed that sporogenic hyphae stop extending at the time of ParA accumulation and Z-ring formation. We demonstrated that both ParA and ParB affect the rate of hyphal extension. Additionally, we showed that ParA promotes the formation of massive nucleoprotein complexes by ParB. We also showed that FtsZ ring assembly is affected by the ParB protein and/or unsegregated DNA. Our results indicate the existence of a checkpoint between the extension and septation of sporogenic hyphae that involves the ParA and ParB proteins. PMID:27248800

  9. ParA and ParB coordinate chromosome segregation with cell elongation and division during Streptomyces sporulation

    PubMed Central

    Donczew, Magdalena; Mackiewicz, Paweł; Wróbel, Agnieszka; Flärdh, Klas; Zakrzewska-Czerwińska, Jolanta

    2016-01-01

    In unicellular bacteria, the ParA and ParB proteins segregate chromosomes and coordinate this process with cell division and chromosome replication. During sporulation of mycelial Streptomyces, ParA and ParB uniformly distribute multiple chromosomes along the filamentous sporogenic hyphal compartment, which then differentiates into a chain of unigenomic spores. However, chromosome segregation must be coordinated with cell elongation and multiple divisions. Here, we addressed the question of whether ParA and ParB are involved in the synchronization of cell-cycle processes during sporulation in Streptomyces. To answer this question, we used time-lapse microscopy, which allows the monitoring of growth and division of single sporogenic hyphae. We showed that sporogenic hyphae stop extending at the time of ParA accumulation and Z-ring formation. We demonstrated that both ParA and ParB affect the rate of hyphal extension. Additionally, we showed that ParA promotes the formation of massive nucleoprotein complexes by ParB. We also showed that FtsZ ring assembly is affected by the ParB protein and/or unsegregated DNA. Our results indicate the existence of a checkpoint between the extension and septation of sporogenic hyphae that involves the ParA and ParB proteins. PMID:27248800

  10. The Snail protein family regulates neuroblast expression of inscuteable and string, genes involved in asymmetry and cell division in Drosophila.

    PubMed

    Ashraf, S I; Ip, Y T

    2001-12-01

    Delaminated neuroblasts in Drosophila function as stem cells during embryonic central nervous system development. They go through repeated asymmetric divisions to generate multiple ganglion mother cells, which divide only once more to produce postmitotic neurons. Snail, a zinc-finger transcriptional repressor, is a pan-neural protein, based on its extensive expression in neuroblasts. Previous results have demonstrated that Snail and related proteins, Worniu and Escargot, have redundant and essential functions in the nervous system. We show that the Snail family of proteins control central nervous system development by regulating genes involved in asymmetry and cell division of neuroblasts. In mutant embryos that have the three genes deleted, the expression of inscuteable is significantly lowered, while the expression of other genes that participate in asymmetric division, including miranda, staufen and prospero, appears normal. The deletion mutants also have much reduced expression of string, suggesting that a key component that drives neuroblast cell division is abnormal. Consistent with the gene expression defects, the mutant embryos lose the asymmetric localization of prospero RNA in neuroblasts and lose the staining of Prospero protein that is normally present in ganglion mother cells. Simultaneous expression of inscuteable and string in the snail family deletion mutant efficiently restores Prospero expression in ganglion mother cells, demonstrating that the two genes are key targets of Snail in neuroblasts. Mutation of the dCtBP co-repressor interaction motifs in the Snail protein leads to reduction of the Snail function in central nervous system. These results suggest that the Snail family of proteins control both asymmetry and cell division of neuroblasts by activating, probably indirectly, the expression of inscuteable and string. PMID:11731456

  11. Localization of Cell Division Protein FtsQ by Immunofluorescence Microscopy in Dividing and Nondividing Cells of Escherichia coli

    PubMed Central

    Buddelmeijer, Nienke; Aarsman, Mirjam E. G.; Kolk, Arend H. J.; Vicente, Miguel; Nanninga, Nanne

    1998-01-01

    The localization of cell division protein FtsQ in Escherichia coli wild-type cells was studied by immunofluorescence microscopy with specific monoclonal antibodies. FtsQ could be localized to the division site in constricting cells. FtsQ could also localize to the division site in ftsQ1(Ts) cells grown at the permissive temperature. A hybrid protein in which the cytoplasmic domain and the transmembrane domain were derived from the γ form of penicillin-binding protein 1B and the periplasmic domain was derived from FtsQ was also able to localize to the division site. This result indicates that the periplasmic domain of FtsQ determines the localization of FtsQ, as has also been concluded by others for the periplasmic domain of FtsN. Noncentral FtsQ foci were found in the area of the cell where the nucleoid resides and were therefore assumed to represent sites where the FtsQ protein is synthesized and simultaneously inserted into the cytoplasmic membrane. PMID:9829918

  12. Genetic Dissection of the Sporulation Protein SpoIIE and Its Role in Asymmetric Division in Bacillus subtilis†

    PubMed Central

    Carniol, Karen; Ben-Yehuda, Sigal; King, Nicole; Losick, Richard

    2005-01-01

    SpoIIE is a dual-function protein in Bacillus subtilis that contributes to the switch from medial to polar cell division during sporulation and is responsible for activating the cell-specific transcription factor σF. SpoIIE consists of an N-terminal domain with 10 membrane-spanning segments (region I), a C-terminal phosphatase domain (region III), and a central domain (region II) of uncertain function. To investigate the role of SpoIIE in polar division, we took advantage of a system for efficiently producing polar septa during growth in a SpoIIE-dependent manner using cells engineered to produce the sporulation protein in response to an inducer. The results show that regions II and III play a critical role in polar septum formation and that specific amino acid substitutions in those regions affect the abilities of SpoIIE both to promote polar division and to localize to the division machinery. Additionally, we show that neither the phosphatase function of SpoIIE nor the N-terminal, membrane-spanning region is needed for the switch to asymmetric division. PMID:15866939

  13. Regulation of embryonic cell division by a Xenopus gastrula-specific protein kinase.

    PubMed Central

    Snape, A M; Smith, J C

    1996-01-01

    We describe a novel protein kinase, Pk9.7, and its role in cell division in the Xenopus embryo. Pk9.7 is transcribed only during blastula and gastrula stages. Expression of Pk9.7 in Xenopus oocytes induces meiotic maturation, while overexpression in embryos blocks blastomere cleavage in a MAP kinase-independent fashion. In both Pk9.7-injected oocytes and mitotic cells of cleavage-blocked embryos, chromosomes appear detached from abnormal spindles, and in oocytes additional microtubule structures are formed, suggesting that one function of Pk9.7 is to regulate formation of, and chromosome attachment to, the spindle. Consistent with this, Pk9.7 co-immunoprecipitates tubulin and phosphorylates it in vitro. Pk9.7 expression coincides with the switch from maternal to zygotic control of the cell cycle, and with the switch from microtubule independence to microtubule dependence. Our results suggest that Pk9.7 plays a role in these processes. Images PMID:8887547

  14. The Nuclear Matrix Protein Megator Regulates Stem Cell Asymmetric Division through the Mitotic Checkpoint Complex in Drosophila Testes.

    PubMed

    Liu, Ying; Singh, Shree Ram; Zeng, Xiankun; Zhao, Jiangsha; Hou, Steven X

    2015-12-01

    In adult Drosophila testis, asymmetric division of germline stem cells (GSCs) is specified by an oriented spindle and cortically localized adenomatous coli tumor suppressor homolog 2 (Apc2). However, the molecular mechanism underlying these events remains unclear. Here we identified Megator (Mtor), a nuclear matrix protein, which regulates GSC maintenance and asymmetric division through the spindle assembly checkpoint (SAC) complex. Loss of Mtor function results in Apc2 mis-localization, incorrect centrosome orientation, defective mitotic spindle formation, and abnormal chromosome segregation that lead to the eventual GSC loss. Expression of mitotic arrest-deficient-2 (Mad2) and monopolar spindle 1 (Mps1) of the SAC complex effectively rescued the GSC loss phenotype associated with loss of Mtor function. Collectively our results define a new role of the nuclear matrix-SAC axis in regulating stem cell maintenance and asymmetric division. PMID:26714316

  15. The Nuclear Matrix Protein Megator Regulates Stem Cell Asymmetric Division through the Mitotic Checkpoint Complex in Drosophila Testes

    PubMed Central

    Zeng, Xiankun; Zhao, Jiangsha; Hou, Steven X.

    2015-01-01

    In adult Drosophila testis, asymmetric division of germline stem cells (GSCs) is specified by an oriented spindle and cortically localized adenomatous coli tumor suppressor homolog 2 (Apc2). However, the molecular mechanism underlying these events remains unclear. Here we identified Megator (Mtor), a nuclear matrix protein, which regulates GSC maintenance and asymmetric division through the spindle assembly checkpoint (SAC) complex. Loss of Mtor function results in Apc2 mis-localization, incorrect centrosome orientation, defective mitotic spindle formation, and abnormal chromosome segregation that lead to the eventual GSC loss. Expression of mitotic arrest-deficient-2 (Mad2) and monopolar spindle 1 (Mps1) of the SAC complex effectively rescued the GSC loss phenotype associated with loss of Mtor function. Collectively our results define a new role of the nuclear matrix-SAC axis in regulating stem cell maintenance and asymmetric division. PMID:26714316

  16. Peptidoglycan Synthesis Machinery in Agrobacterium tumefaciens During Unipolar Growth and Cell Division

    PubMed Central

    Cameron, Todd A.; Anderson-Furgeson, James; Zupan, John R.; Zik, Justin J.

    2014-01-01

    ABSTRACT The synthesis of peptidoglycan (PG) in bacteria is a crucial process controlling cell shape and vitality. In contrast to bacteria such as Escherichia coli that grow by dispersed lateral insertion of PG, little is known of the processes that direct polar PG synthesis in other bacteria such as the Rhizobiales. To better understand polar growth in the Rhizobiales Agrobacterium tumefaciens, we first surveyed its genome to identify homologs of (~70) well-known PG synthesis components. Since most of the canonical cell elongation components are absent from A. tumefaciens, we made fluorescent protein fusions to other putative PG synthesis components to assay their subcellular localization patterns. The cell division scaffolds FtsZ and FtsA, PBP1a, and a Rhizobiales- and Rhodobacterales-specific l,d-transpeptidase (LDT) all associate with the elongating cell pole. All four proteins also localize to the septum during cell division. Examination of the dimensions of growing cells revealed that new cell compartments gradually increase in width as they grow in length. This increase in cell width is coincident with an expanded region of LDT-mediated PG synthesis activity, as measured directly through incorporation of exogenous d-amino acids. Thus, unipolar growth in the Rhizobiales is surprisingly dynamic and represents a significant departure from the canonical growth mechanism of E. coli and other well-studied bacilli. PMID:24865559

  17. Structure of the bacterial cell division determinant GpsB and its interaction with penicillin-binding proteins.

    PubMed

    Rismondo, Jeanine; Cleverley, Robert M; Lane, Harriet V; Großhennig, Stephanie; Steglich, Anne; Möller, Lars; Mannala, Gopala Krishna; Hain, Torsten; Lewis, Richard J; Halbedel, Sven

    2016-03-01

    Each bacterium has to co-ordinate its growth with division to ensure genetic stability of the population. Consequently, cell division and growth are tightly regulated phenomena, albeit different bacteria utilise one of several alternative regulatory mechanisms to maintain control. Here we consider GpsB, which is linked to cell growth and division in Gram-positive bacteria. ΔgpsB mutants of the human pathogen Listeria monocytogenes show severe lysis, division and growth defects due to distortions of cell wall biosynthesis. Consistent with this premise, GpsB interacts both in vitro and in vivo with the major bi-functional penicillin-binding protein. We solved the crystal structure of GpsB and the interaction interfaces in both proteins are identified and validated. The inactivation of gpsB results in strongly attenuated virulence in animal experiments, comparable in degree to classical listerial virulence factor mutants. Therefore, GpsB is essential for in vitro and in vivo growth of a highly virulent food-borne pathogen, suggesting that GpsB could be a target for the future design of novel antibacterials. PMID:26575090

  18. The human small glutamine-rich TPR-containing protein is required for progress through cell division.

    PubMed

    Winnefeld, Marc; Rommelaere, Jean; Cziepluch, Celina

    2004-02-01

    Eukaryotic organisms from yeast to human harbor genes encoding the small glutamine-rich tetratricopeptide repeat-containing (SGT) protein. Work presented here demonstrated the presence of human SGT (hSGT) protein in a panel of human cell lines and throughout the cell cycle. To identify cellular processes in which hSGT is involved, knock down populations were analyzed which were generated through transfection of hsgt-specific small interfering RNA. Most strikingly, depletion of hSGT led to reduced proliferation of the affected cell populations while the mitotic index was increased. Time-lapse video microscopy revealed that cells from hSGT-depleted populations were unable to complete cell division due to mitotic arrest which was frequently followed by cell death. Further evidence for a role in cell division was given by the accumulation of hSGT in the midzone and the midbody, and by a mitosis-specific migration pattern of hSGT as detected by Western blotting after SDS-PAGE or two-dimensional gel electrophoresis. In conclusion, results obtained in this study demonstrate that hSGT protein is a constitutive component of all human cell lines tested and that this protein is essential for successful completion of cell division. PMID:14729056

  19. The endocytic protein alpha-Adaptin is required for numb-mediated asymmetric cell division in Drosophila.

    PubMed

    Berdnik, Daniela; Török, Tibor; González-Gaitán, Marcos; Knoblich, Juergen A

    2002-08-01

    During asymmetric cell division in Drosophila sensory organ precursor cells, the Numb protein localizes asymmetrically and segregates into one daughter cell, where it influences cell fate by repressing signal transduction via the Notch receptor. We show here that Numb acts by polarizing the distribution of alpha-Adaptin, a protein involved in receptor-mediated endocytosis. alpha-Adaptin binds to Numb and localizes asymmetrically in a Numb-dependent fashion. Mutant forms of alpha-Adaptin that no longer bind to Numb fail to localize asymmetrically and cause numb-like defects in asymmetric cell division. Our results suggest a model in which Numb influences cell fate by downregulating Notch through polarized receptor-mediated endocytosis, since Numb also binds to the intracellular domain of Notch. PMID:12194853

  20. Role of SufI (FtsP) in cell division of Escherichia coli: evidence for its involvement in stabilizing the assembly of the divisome.

    PubMed

    Samaluru, Harish; SaiSree, L; Reddy, Manjula

    2007-11-01

    The function of SufI, a well-studied substrate of the TatABC translocase in Escherichia coli, is not known. It was earlier implicated in cell division, based on the finding that multiple copies of sufI suppressed the phenotypes of cells with mutations in ftsI (ftsI23), which encodes a divisomal transpeptidase. Recently, sufI was identified as both a multicopy suppressor gene and a synthetic lethal mutant of ftsEX, which codes for a division-specific putative ABC transporter. In this study, we show that sufI is essential for the viability of E. coli cells subjected to various forms of stress, including oxidative stress and DNA damage. The sufI mutant also exhibits sulA-independent filamentation, indicating a role in cell division. The phenotypes of the sufI mutant are suppressed by factors that stabilize FtsZ ring assembly, such as increased expression of cell division proteins FtsQAZ or FtsN or the presence of the gain-of-function ftsA* (FtsA R286W) mutation, suggesting that SufI is a divisomal protein required during stress conditions. In support of this, multicopy sufI suppressed the divisional defects of mutants carrying the ftsA12, ftsQ1, or ftsK44 allele but not those of mutants carrying ftsZ84. Most of the division-defective mutants, in particular those carrying a DeltaftsEX or ftsI23 allele, exhibited sensitivity to oxidative stress or DNA damage, and this sensitivity was also abolished by multiple copies of SufI. All of these data suggest that SufI is a division component involved in protecting or stabilizing the divisomal assembly under conditions of stress. Since sufI fulfils the requirements to be designated an fts gene, we propose that it be renamed ftsP. PMID:17766410

  1. The YlmG protein has a conserved function related to the distribution of nucleoids in chloroplasts and cyanobacteria

    PubMed Central

    2010-01-01

    Background Reminiscent of their free-living cyanobacterial ancestor, chloroplasts proliferate by division coupled with the partition of nucleoids (DNA-protein complexes). Division of the chloroplast envelope membrane is performed by constriction of the ring structures at the division site. During division, nucleoids also change their shape and are distributed essentially equally to the daughter chloroplasts. Although several components of the envelope division machinery have been identified and characterized, little is known about the molecular components/mechanisms underlying the change of the nucleoid structure. Results In order to identify new factors that are involved in the chloroplast division, we isolated Arabidopsis thaliana chloroplast division mutants from a pool of random cDNA-overexpressed lines. We found that the overexpression of a previously uncharacterized gene (AtYLMG1-1) of cyanobacterial origin results in the formation of an irregular network of chloroplast nucleoids, along with a defect in chloroplast division. In contrast, knockdown of AtYLMG1-1 resulted in a concentration of the nucleoids into a few large structures, but did not affect chloroplast division. Immunofluorescence microscopy showed that AtYLMG1-1 localizes in small puncta on thylakoid membranes, to which a subset of nucleoids colocalize. In addition, in the cyanobacterium Synechococcus elongates, overexpression and deletion of ylmG also displayed defects in nucleoid structure and cell division. Conclusions These results suggest that the proper distribution of nucleoids requires the YlmG protein, and the mechanism is conserved between cyanobacteria and chloroplasts. Given that ylmG exists in a cell division gene cluster downstream of ftsZ in gram-positive bacteria and that ylmG overexpression impaired the chloroplast division, the nucleoid partitioning by YlmG might be related to chloroplast and cyanobacterial division processes. PMID:20359373

  2. Regulation of Asymmetric Division by Atypical Protein Kinase C Influences Early Specification of CD8+ T Lymphocyte Fates

    PubMed Central

    Metz, Patrick J.; Lopez, Justine; Kim, Stephanie H.; Akimoto, Kazunori; Ohno, Shigeo; Chang, John T.

    2016-01-01

    Naïve CD8+ T lymphocytes responding to microbial pathogens give rise to effector T cells that provide acute defense and memory T cells that provide long-lived immunity. Upon activation, CD8+ T lymphocytes can undergo asymmetric division, unequally distributing factors to the nascent daughter cells that influence their eventual fate towards the effector or memory lineages. Individual loss of either atypical protein kinase C (aPKC) isoform, PKCζ or PKCλ/ι, partially impairs asymmetric divisions and increases CD8+ T lymphocyte differentiation toward a long-lived effector fate at the expense of memory T cell formation. Here, we show that deletion of both aPKC isoforms resulted in a deficit in asymmetric divisions, increasing the proportion of daughter cells that inherit high amounts of effector fate-associated molecules, IL-2Rα, T-bet, IFNγR, and interferon regulatory factor 4 (IRF4). However, unlike CD8+ T cells deficient in only one aPKC isoform, complete loss of aPKC unexpectedly increased CD8+ T cell differentiation toward a short-lived, terminal effector fate, as evidenced by increased rates of apoptosis and decreased expression of Eomes and Bcl2 early during the immune response. Together, these results provide evidence for an important role for asymmetric division in CD8+ T lymphocyte fate specification by regulating the balance between effector and memory precursors at the initiation of the adaptive immune response. PMID:26765121

  3. Delivery of endocytosed proteins to the cell–division plane requires change of pathway from recycling to secretion

    PubMed Central

    Richter, Sandra; Kientz, Marika; Brumm, Sabine; Nielsen, Mads Eggert; Park, Misoon; Gavidia, Richard; Krause, Cornelia; Voss, Ute; Beckmann, Hauke; Mayer, Ulrike; Stierhof, York-Dieter; Jürgens, Gerd

    2014-01-01

    Membrane trafficking is essential to fundamental processes in eukaryotic life, including cell growth and division. In plant cytokinesis, post-Golgi trafficking mediates a massive flow of vesicles that form the partitioning membrane but its regulation remains poorly understood. Here, we identify functionally redundant Arabidopsis ARF guanine-nucleotide exchange factors (ARF-GEFs) BIG1–BIG4 as regulators of post-Golgi trafficking, mediating late secretion from the trans-Golgi network but not recycling of endocytosed proteins to the plasma membrane, although the TGN also functions as an early endosome in plants. In contrast, BIG1-4 are absolutely required for trafficking of both endocytosed and newly synthesized proteins to the cell–division plane during cytokinesis, counteracting recycling to the plasma membrane. This change from recycling to secretory trafficking pathway mediated by ARF-GEFs confers specificity of cargo delivery to the division plane and might thus ensure that the partitioning membrane is completed on time in the absence of a cytokinesis-interphase checkpoint. DOI: http://dx.doi.org/10.7554/eLife.02131.001 PMID:24714496

  4. In silico analysis of division times of Escherichia coli populations as a function of the partitioning scheme of non-functional proteins

    PubMed Central

    Gupta, Abhishekh; Lloyd-Price, Jason; Ribeiro, Andre S.

    2015-01-01

    Abstract Recent evidence suggests that cells employ functionally asymmetric partitioning schemes in division to cope with aging. We explore various schemes in silico, with a stochastic model of Escherichia coli that includes gene expression, non-functional proteins generation, aggregation and polar retention, and molecule partitioning in division. The model is implemented in SGNS2, which allows stochastic, multi-delayed reactions within hierarchical, transient, interlinked compartments. After setting parameter values of non-functional proteins’ generation and effects that reproduce realistic intracellular and population dynamics, we investigate how the spatial organization of non-functional proteins affects mean division times of cell populations in lineages and, thus, mean cell numbers over time. We find that division times decrease for increasingly asymmetric partitioning. Also, increasing the clustering of non-functional proteins decreases division times. Increasing the bias in polar segregation further decreases division times, particularly if the bias favors the older pole and aggregates’ polar retention is robust. Finally, we show that the non-energy consuming retention of inherited non-functional proteins at the older pole via nucleoid occlusion is a source of functional asymmetries and, thus, is advantageous. Our results suggest that the mechanisms of intracellular organization of non-functional proteins, including clustering and polar retention, affect the vitality of E. coli populations. PMID:25318468

  5. Reconstitution of self-organizing protein gradients as spatial cues in cell-free systems

    PubMed Central

    Zieske, Katja; Schwille, Petra

    2014-01-01

    Intracellular protein gradients are significant determinants of spatial organization. However, little is known about how protein patterns are established, and how their positional information directs downstream processes. We have accomplished the reconstitution of a protein concentration gradient that directs the assembly of the cell division machinery in E.coli from the bottom-up. Reconstituting self-organized oscillations of MinCDE proteins in membrane-clad soft-polymer compartments, we demonstrate that distinct time-averaged protein concentration gradients are established. Our minimal system allows to study complex organizational principles, such as spatial control of division site placement by intracellular protein gradients, under simplified conditions. In particular, we demonstrate that FtsZ, which marks the cell division site in many bacteria, can be targeted to the middle of a cell-like compartment. Moreover, we show that compartment geometry plays a major role in Min gradient establishment, and provide evidence for a geometry-mediated mechanism to partition Min proteins during bacterial development. DOI: http://dx.doi.org/10.7554/eLife.03949.001 PMID:25271375

  6. Expression of soluble, active fragments of the morphogenetic protein SpoIIE from Bacillus subtilis using a library-based construct screen.

    PubMed

    Rawlings, Andrea E; Levdikov, Vladimir M; Blagova, Elena; Colledge, Vicki L; Mas, Philippe J; Tunaley, James; Vavrova, Ludmila; Wilson, Keith S; Barak, Imrich; Hart, Darren J; Wilkinson, Anthony J

    2010-11-01

    SpoIIE is a dual function protein that plays important roles during sporulation in Bacillus subtilis. It binds to the tubulin-like protein FtsZ causing the cell division septum to relocate from mid-cell to the cell pole, and it dephosphorylates SpoIIAA phosphate leading to establishment of differential gene expression in the two compartments following the asymmetric septation. Its 872 residue polypeptide contains a multiple-membrane spanning sequence at the N-terminus and a PP2C phosphatase domain at the C-terminus. The central segment that binds to FtsZ is unlike domains of known structure or function, moreover the domain boundaries are poorly defined and this has hampered the expression of soluble fragments of SpoIIE at the levels required for structural studies. Here we have screened over 9000 genetic constructs of spoIIE using a random incremental truncation library approach, ESPRIT, to identify a number of soluble C-terminal fragments of SpoIIE that were aligned with the protein sequence to map putative domains and domain boundaries. The expression and purification of three fragments were optimised, yielding multimilligram quantities of the PP2C phosphatase domain, the putative FtsZ-binding domain and a larger fragment encompassing both these domains. All three fragments are monomeric and the PP2C domain-containing fragments have phosphatase activity. PMID:20817757

  7. Actin related protein complex subunit 1b controls sperm release, barrier integrity and cell division during adult rat spermatogenesis.

    PubMed

    Kumar, Anita; Dumasia, Kushaan; Deshpande, Sharvari; Gaonkar, Reshma; Balasinor, N H

    2016-08-01

    Actin remodeling is a vital process for signaling, movement and survival in all cells. In the testes, extensive actin reorganization occurs at spermatid-Sertoli cell junctions during sperm release (spermiation) and at inter Sertoli cell junctions during restructuring of the blood testis barrier (BTB). During spermiation, tubulobulbar complexes (TBCs), rich in branched actin networks, ensure recycling of spermatid-Sertoli cell junctional molecules. Similar recycling occurs during BTB restructuring around the same time as spermiation occurs. Actin related protein 2/3 complex is an essential actin nucleation and branching protein. One of its subunits, Arpc1b, was earlier found to be down-regulated in an estrogen-induced rat model of spermiation failure. Also, Arpc1b was found to be estrogen responsive through estrogen receptor beta in seminiferous tubule culture. Here, knockdown of Arpc1b by siRNA in adult rat testis led to defects in spermiation caused by failure in TBC formation. Knockdown also compromised BTB integrity and caused polarity defects of mature spermatids. Apart from these effects pertaining to Sertoli cells, Arpc1b reduction perturbed ability of germ cells to enter G2/M phase thus hindering cell division. In summary, Arpc1b, an estrogen responsive gene, is a regulator of spermiation, mature spermatid polarity, BTB integrity and cell division during adult spermatogenesis. PMID:27113856

  8. Oriented Cell Division in the C. elegans Embryo Is Coordinated by G-Protein Signaling Dependent on the Adhesion GPCR LAT-1

    PubMed Central

    Fiedler, Franziska; Sastradihardja, Tania; Binder, Claudia; Schnabel, Ralf; Kungel, Jana; Rothemund, Sven; Hennig, Christian; Schöneberg, Torsten; Prömel, Simone

    2015-01-01

    Orientation of spindles and cell division planes during development of many species ensures that correct cell-cell contacts are established, which is vital for proper tissue formation. This is a tightly regulated process involving a complex interplay of various signals. The molecular mechanisms underlying several of these pathways are still incompletely understood. Here, we identify the signaling cascade of the C. elegans latrophilin homolog LAT-1, an essential player in the coordination of anterior-posterior spindle orientation during the fourth round of embryonic cell division. We show that the receptor mediates a G protein-signaling pathway revealing that G-protein signaling in oriented cell division is not solely GPCR-independent. Genetic analyses showed that through the interaction with a Gs protein LAT-1 elevates intracellular cyclic AMP (cAMP) levels in the C. elegans embryo. Stimulation of this G-protein cascade in lat-1 null mutant nematodes is sufficient to orient spindles and cell division planes in the embryo in the correct direction. Finally, we demonstrate that LAT-1 is activated by an intramolecular agonist to trigger this cascade. Our data support a model in which a novel, GPCR-dependent G protein-signaling cascade mediated by LAT-1 controls alignment of cell division planes in an anterior-posterior direction via a metabotropic Gs-protein/adenylyl cyclase pathway by regulating intracellular cAMP levels. PMID:26505631

  9. 77 FR 11560 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... inhibition of bacterial cytoskeletal protein FtsZ, an enzyme necessary for the replication of bacteria. FtsZ is responsible for Z-ring assembly in bacteria, which leads to bacterial cell division. Highly conserved among all bacteria, FtsZ is a very attractive antimicrobial target. The chrysophaetin...

  10. Carolacton Treatment Causes Delocalization of the Cell Division Proteins PknB and DivIVa in Streptococcus mutans in vivo

    PubMed Central

    Reck, Michael; Wagner-Döbler, Irene

    2016-01-01

    The small inhibitory molecule Carolacton has been shown to cause chain formation and bulging in Streptococci, suggesting a defect in cell division, but it is not known how cell division is impaired on a molecular level. Fluorescent fusion proteins have successfully been applied to visualize protein localization and dynamics in vivo and have revolutionized our understanding of cell wall growth, cell division, chromosome replication and segregation. However, in Streptococci the required vectors are largely lacking. We constructed vectors for chromosomal integration and inducible expression of fluorescent fusion proteins based on GFP+ in S. mutans. Their applicability was verified using four proteins with known localization in the cell. We then determined the effect of Carolacton on the subcellular localization of GFP+ fusions of the cell division protein DivIVa and the serine-threonine protein kinase PknB. Carolacton caused a significant delocalization of these proteins from midcell, in accordance with a previous study demonstrating the Carolacton insensitive phenotype of a pknB deletion strain. Carolacton treated cells displayed an elongated phenotype, increased septum formation and a severe defect in daughter cell separation. GFP+ fusions of two hypothetical proteins (SMU_503 and SMU_609), that had previously been shown to be the most strongly upregulated genes after Carolacton treatment, were found to be localized at the septum in midcell, indicating their role in cell division. These findings highlight the importance of PknB as a key regulator of cell division in streptococci and indicate a profound impact of Carolacton on the coordination between peripheral and septal cell wall growth. The established vector system represents a novel tool to study essential steps of cellular metabolism. PMID:27242711

  11. The RNA binding protein Larp1 regulates cell division, apoptosis and cell migration.

    PubMed

    Burrows, Carla; Abd Latip, Normala; Lam, Sarah-Jane; Carpenter, Lee; Sawicka, Kirsty; Tzolovsky, George; Gabra, Hani; Bushell, Martin; Glover, David M; Willis, Anne E; Blagden, Sarah P

    2010-09-01

    The RNA binding protein Larp1 was originally shown to be involved in spermatogenesis, embryogenesis and cell-cycle progression in Drosophila. Our data show that mammalian Larp1 is found in a complex with poly A binding protein and eukaryote initiation factor 4E and is associated with 60S and 80S ribosomal subunits. A reduction in Larp1 expression by siRNA inhibits global protein synthesis rates and results in mitotic arrest and delayed cell migration. Consistent with these data we show that Larp1 protein is present at the leading edge of migrating cells and interacts directly with cytoskeletal components. Taken together, these data suggest a role for Larp1 in facilitating the synthesis of proteins required for cellular remodelling and migration. PMID:20430826

  12. Size-independent symmetric division in extraordinarily long cells

    PubMed Central

    Pende, Nika; Leisch, Nikolaus; Gruber-Vodicka, Harald R.; Heindl, Niels R.; Ott, Jörg; den Blaauwen, Tanneke; Bulgheresi, Silvia

    2014-01-01

    Two long-standing paradigms in biology are that cells belonging to the same population exhibit little deviation from their average size and that symmetric cell division is size limited. Here, ultrastructural, morphometric and immunocytochemical analyses reveal that two Gammaproteobacteria attached to the cuticle of the marine nematodes Eubostrichus fertilis and E. dianeae reproduce by constricting a single FtsZ ring at midcell despite being 45 μm and 120 μm long, respectively. In the crescent-shaped bacteria coating E. fertilis, symmetric FtsZ-based fission occurs in cells with lengths spanning one order of magnitude. In the E. dianeae symbiont, formation of a single functional FtsZ ring makes this the longest unicellular organism in which symmetric division has ever been observed. In conclusion, the reproduction modes of two extraordinarily long bacterial cells indicate that size is not the primary trigger of division and that yet unknown mechanisms time the localization of both DNA and the septum. PMID:25221974

  13. Kinesin and dynein superfamily proteins in organelle transport and cell division.

    PubMed

    Hirokawa, N; Noda, Y; Okada, Y

    1998-02-01

    Microtubule-associated motor proteins of the kinesin and dynein superfamilies play important roles in cellular mechanisms such as organelle transport and mitosis. Identification and characterization of new family members (in particular KIFC2, 16 new KIFs, XKlp2 and XKCM1 of the kinesin superfamily, and DHC2 and DHC3 of the dynein superfamily) and further characterization of known family members have improved our understanding of these cellular mechanisms. Sophisticated biophysical and structural analyses of monomeric and dimeric motor proteins have contributed to elucidating the mechanisms behind motor protein motility and polarity. PMID:9484596

  14. Differential Regulation of ftsZ Transcription during Septation of Streptomyces griseus

    PubMed Central

    Kwak, Jangyul; Dharmatilake, Amitha J.; Jiang, Hao; Kendrick, Kathleen E.

    2001-01-01

    Streptomyces has been known to form two types of septa. The data in this research demonstrated that Streptomyces griseus forms another type of septum near the base of sporogenic hyphae (basal septum). To understand the regulation of the septation machinery in S. griseus, we investigated the expression of the ftsZ gene. S1 nuclease protection assays revealed that four ftsZ transcripts were differentially expressed during morphological differentiation. The vegetative transcript (emanating from Pveg) is present at a moderate level during vegetative growth, but is switched off within the first 2 h of sporulation. Two sporulation-specific transcripts predominantly accumulated, and the levels increased by approximately fivefold together shortly before sporulation septa begin to form. Consistently, the sporulation-specific transcripts were expressed much earlier and more abundantly in a group of nonsporulating mutants that form their sporulation septa prematurely. Promoter-probe studies with two different reporter systems confirmed the activities of the putative promoters identified from the 5′ end point of the transcripts. The levels and expression timing of promoter activities were consistent with the results of nuclease protection assays. The aseptate phenotype of the Pspo mutant indicated that the increased transcription from Pspo is required for sporulation septation, but not for vegetative or basal septum formation. PMID:11489862

  15. RGS14 is a mitotic spindle protein essential from the first division of the mammalian zygote.

    PubMed

    Martin-McCaffrey, Luke; Willard, Francis S; Oliveira-dos-Santos, Antonio J; Natale, David R C; Snow, Bryan E; Kimple, Randall J; Pajak, Agnieszka; Watson, Andrew J; Dagnino, Lina; Penninger, Josef M; Siderovski, David P; D'Souza, Sudhir J A

    2004-11-01

    Heterotrimeric G protein alpha subunits, RGS proteins, and GoLoco motif proteins have been recently implicated in the control of mitotic spindle dynamics in C. elegans and D. melanogaster. Here we show that "regulator of G protein signaling-14" (RGS14) is expressed by the mouse embryonic genome immediately prior to the first mitosis, where it colocalizes with the anastral mitotic apparatus of the mouse zygote. Loss of Rgs14 expression in the mouse zygote results in cytofragmentation and failure to progress to the 2-cell stage. RGS14 is found in all tissues and segregates to the nucleus in interphase and to the mitotic spindle and centrioles during mitosis. Alteration of RGS14 levels in exponentially proliferating cells leads to cell growth arrest. Our results indicate that RGS14 is one of the earliest essential product of the mammalian embryonic genome yet described and has a general role in mitosis. PMID:15525537

  16. Evolution and tinkering: what do a protein kinase, a transcriptional regulator and chromosome segregation/cell division proteins have in common?

    PubMed

    Derouiche, Abderahmane; Shi, Lei; Kalantari, Aida; Mijakovic, Ivan

    2016-02-01

    In this study, we focus on functional interactions among multi-domain proteins which share a common evolutionary origin. The examples we develop are four Bacillus subtilis proteins, which all possess an ATP-binding Walker motif: the bacterial tyrosine kinase (BY-kinase) PtkA, the chromosome segregation protein Soj (ParA), the cell division protein MinD and a transcription regulator SalA. These proteins have arisen via duplication of the ancestral ATP-binding domain, which has undergone fusions with other functional domains in the process of divergent evolution. We point out that these four proteins, despite having very different physiological roles, engage in an unusually high number of binary functional interactions. Namely, MinD attracts Soj and PtkA to the cell pole, and in addition, activates the kinase function of PtkA. SalA also activates the kinase function of PtkA, and it gets phosphorylated by PtkA as well. The consequence of this phosphorylation is the activation of SalA as a transcriptional repressor. We hypothesize that these functional interactions remain preserved during divergent evolution and represent a constraint on the process of evolutionary "tinkering", brought about by fusions of different functional domains. PMID:26286503

  17. Dynamin-related Protein 1 (Drp1) Promotes Structural Intermediates of Membrane Division*

    PubMed Central

    Ugarte-Uribe, Begoña; Müller, Hans-Michael; Otsuki, Miki; Nickel, Walter; García-Sáez, Ana J.

    2014-01-01

    Drp1 is a dynamin-like GTPase that mediates mitochondrial and peroxisomal division in a process dependent on self-assembly and coupled to GTP hydrolysis. Despite the link between Drp1 malfunction and human disease, the molecular details of its membrane activity remain poorly understood. Here we reconstituted and directly visualized Drp1 activity in giant unilamellar vesicles. We quantified the effect of lipid composition and GTP on membrane binding and remodeling activity by fluorescence confocal microscopy and flow cytometry. In contrast to other dynamin relatives, Drp1 bound to both curved and flat membranes even in the absence of nucleotides. We also found that Drp1 induced membrane tubulation that was stimulated by cardiolipin. Moreover, Drp1 promoted membrane tethering dependent on the intrinsic curvature of the membrane lipids and on GTP. Interestingly, Drp1 concentrated at membrane contact surfaces and, in the presence of GTP, formed discrete clusters on the vesicles. Our findings support a role of Drp1 not only in the formation of lipid tubes but also on the stabilization of tightly apposed membranes, which are intermediate states in the process of mitochondrial fission. PMID:25237193

  18. The WD40 repeat protein NEDD1 functions in microtubule organization during cell division in Arabidopsis thaliana.

    PubMed

    Zeng, C J Tracy; Lee, Y-R Julie; Liu, Bo

    2009-04-01

    Although cells of flowering plants lack a structurally defined microtubule-organizing center like the centrosome, organization of the spindles and phragmoplasts in mitosis is known to involve the evolutionarily conserved gamma-tubulin complex. We have investigated the function of Arabidopsis thaliana NEDD1, a WD40 repeat protein related to the animal NEDD1/GCP-WD protein, which interacts with the gamma-tubulin complex. The NEDD1 protein decorates spindle microtubules (MTs) preferentially toward spindle poles and phragmoplast MTs toward their minus ends. A T-DNA insertional allele of the single NEDD1 gene was isolated and maintained in heterozygous sporophytes, and NEDD1's function in cell division was analyzed in haploid microspores produced by the heterozygote. In approximately half of the dividing microspores exhibiting aberrant MT organization, spindles were no longer restricted to the cell periphery and became abnormally elongated. After mitosis, MTs aggregated between reforming nuclei but failed to appear in a bipolar configuration. Consequently, defective microspores did not form a continuous cell plate, and two identical nuclei were produced with no differentiation into generative and vegetative cells. Our results support the notion that the plant NEDD1 homolog plays a critical role in MT organization during mitosis, and its function is likely linked to that of the gamma-tubulin complex. PMID:19383896

  19. Agouti signaling protein stimulates cell division in "viable yellow" (A vy/a) mouse liver

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhanced linear growth, hyperplasia, and tumorigenesis are well-known characteristics of "viable yellow" agouti Avy/- mice (1); however, the functional basis for this aspect of the phenotype is unknown. In the present study, we ascertained whether agouti signaling protein (ASIP) levels in Avy/a or a...

  20. (1) The Relationship of Protein Expression and Cell Division, (2) 3D Imaging of Cells Using Digital Holography, and (3) General Chemistry Enrollment at University of Michigan

    ERIC Educational Resources Information Center

    Matz, Rebecca L.

    2012-01-01

    Chapter 1: The role of cell division in protein expression is important to understand in order to guide the development of better nonviral gene delivery materials that can transport DNA to the nucleus with high efficiency for a variety of cell types, particularly when nondividing cells are targets of gene therapy. We evaluated the relationship…

  1. Localized Dimerization and Nucleoid Binding Drive Gradient Formation by the Bacterial Cell Division Inhibitor MipZ

    PubMed Central

    Kiekebusch, Daniela; Michie, Katharine A.; Essen, Lars-Oliver; Löwe, Jan; Thanbichler, Martin

    2012-01-01

    Summary Protein gradients play a central role in the spatial organization of cells, but the mechanisms of their formation are incompletely understood. This study analyzes the determinants responsible for establishing bipolar gradients of the ATPase MipZ, a key regulator of division site placement in Caulobacter crescentus. We have solved the crystal structure of MipZ in different nucleotide states, dissected its ATPase cycle, and investigated its interaction with FtsZ, ParB, and the nucleoid. Our results suggest that the polar ParB complexes locally stimulate the formation of ATP-bound MipZ dimers, which are then retained near the cell poles through association with chromosomal DNA. Due to their intrinsic ATPase activity, dimers eventually dissociate into freely diffusible monomers that undergo spontaneous nucleotide exchange and are recaptured by ParB. These findings clarify the molecular function of a conserved gradient-forming system and reveal mechanistic principles that might be commonly used to sustain protein gradients within cells. PMID:22483621

  2. Design, synthesis and antibacterial activity of isatin derivatives as FtsZ inhibitors

    NASA Astrophysics Data System (ADS)

    Lian, Zhi-Min; Sun, Juan; Zhu, Hai-Liang

    2016-08-01

    Seven isatin derivatives have been designed, and their chemical structures were characterized by single crystal X-ray diffraction studies, 1H NMR, MS, and elemental analysis. Structural stabilization followed by intramolecular as well as intermolecular H-bonds makes these molecules as perfect examples in molecular recognition with self-complementary donor and acceptor units within a single molecule. These compounds were evaluated for antimicrobial activities. Docking simulations have been performed to position compounds into the FtsZ active site to determine their probable binding models. All of the compounds exhibited better antibacterial activities. Interestingly, compound 5c and 5d exhibited better antibacterial activities with IC50 values of 0.03 and 0.05 μmol/mL against Staphylococcus aureus, respectively. Compound 5g displays antibacterial activity with IC50 values of 0.672 and 0.830 μmol/mL against Escherichia coli and Pseudomonas aeruginosa, respectively.

  3. Asymmetric segregation of the double-stranded RNA binding protein Staufen2 during mammalian neural stem cell divisions promotes lineage progression.

    PubMed

    Kusek, Gretchen; Campbell, Melissa; Doyle, Frank; Tenenbaum, Scott A; Kiebler, Michael; Temple, Sally

    2012-10-01

    Asymmetric cell divisions are a fundamental feature of neural development, and misregulation can lead to brain abnormalities or tumor formation. During an asymmetric cell division, molecular determinants are segregated preferentially into one daughter cell to specify its fate. An important goal is to identify the asymmetric determinants in neural progenitor cells, which could be tumor suppressors or inducers of specific neural fates. Here, we show that the double-stranded RNA-binding protein Stau2 is distributed asymmetrically during progenitor divisions in the developing mouse cortex, preferentially segregating into the Tbr2(+) neuroblast daughter, taking with it a subset of RNAs. Knockdown of Stau2 stimulates differentiation and overexpression produces periventricular neuronal masses, demonstrating its functional importance for normal cortical development. We immunoprecipitated Stau2 to examine its cargo mRNAs, and found enrichment for known asymmetric and basal cell determinants, such as Trim32, and identified candidates, including a subset involved in primary cilium function. PMID:22902295

  4. Morphological adaptation and inhibition of cell division during stationary phase in Caulobacter crescentus.

    PubMed

    Wortinger, M A; Quardokus, E M; Brun, Y V

    1998-08-01

    During exponential growth, each cell cycle of the alpha-purple bacterium Caulobacter crescentus gives rise to two different cell types: a motile swarmer cell and a sessile stalked cell. When cultures of C. crescentus are grown for extended periods in complex (PYE) medium, cells undergo dramatic morphological changes and display increased resistance to stress. After cultures enter stationary phase, most cells are arrested at the predivisional stage. For the first 6-8 days after inoculation, the colony-forming units (cfu) steadily decrease from 10(9) cfu ml(-1) to a minimum of 3x10(7) cfu ml(-1) after which cells gradually adopt an elongated helical morphology. For days 9-12, the cfu of the culture increase and stabilize around 2 x 10(8) cfu ml(-1). The viable cells have an elongated helical morphology with no constrictions and an average length of 20 microm, which is 15-20 times longer than exponentially growing cells. The level of the cell division initiation protein FtsZ decreases during the first week in stationary phase and remains at a low constant level consistent with the lack of cell division. When resuspended in fresh medium, the elongated cells return to normal size and morphology within 12 h. Cells that have returned from stationary phase proceed through the same developmental changes when they are again grown for an extended period and have not acquired a heritable growth advantage in stationary phase (GASP) compared with overnight cultures. We conclude that the changes observed in prolonged cultures are the result of entry into a new developmental pathway and are not due to mutation. PMID:9767565

  5. Site-directed Fluorescence Labeling Reveals a Revised N-terminal Membrane Topology and Functional Periplasmic Residues in the Escherichia coli Cell Division Protein FtsK*

    PubMed Central

    Berezuk, Alison M.; Goodyear, Mara; Khursigara, Cezar M.

    2014-01-01

    In Escherichia coli, FtsK is a large integral membrane protein that coordinates chromosome segregation and cell division. The N-terminal domain of FtsK (FtsKN) is essential for division, and the C terminus (FtsKC) is a well characterized DNA translocase. Although the function of FtsKN is unknown, it is suggested that FtsK acts as a checkpoint to ensure DNA is properly segregated before septation. This may occur through modulation of protein interactions between FtsKN and other division proteins in both the periplasm and cytoplasm; thus, a clear understanding of how FtsKN is positioned in the membrane is required to characterize these interactions. The membrane topology of FtsKN was initially determined using site-directed reporter fusions; however, questions regarding this topology persist. Here, we report a revised membrane topology generated by site-directed fluorescence labeling. The revised topology confirms the presence of four transmembrane segments and reveals a newly identified periplasmic loop between the third and fourth transmembrane domains. Within this loop, four residues were identified that, when mutated, resulted in the appearance of cellular voids. High resolution transmission electron microscopy of these voids showed asymmetric division of the cytoplasm in the absence of outer membrane invagination or visible cell wall ingrowth. This uncoupling reveals a novel role for FtsK in linking cell envelope septation events and yields further evidence for FtsK as a critical checkpoint of cell division. The revised topology of FtsKN also provides an important platform for future studies on essential interactions required for this process. PMID:25002583

  6. Cell division licensing in the multi-chromosomal Vibrio cholerae bacterium.

    PubMed

    Galli, Elisa; Poidevin, Mickaël; Le Bars, Romain; Desfontaines, Jean-Michel; Muresan, Leila; Paly, Evelyne; Yamaichi, Yoshiharu; Barre, François-Xavier

    2016-01-01

    Cell division must be coordinated with chromosome replication and segregation to ensure the faithful transmission of genetic information during proliferation. In most bacteria, assembly of the division apparatus, the divisome, starts with the polymerization of a tubulin homologue, FtsZ, into a ring-like structure at mid-cell, the Z-ring(1). It typically occurs at half of the cell cycle when most of the replication and segregation cycle of the unique chromosome they generally harbour is achieved(2). The chromosome itself participates in the regulation of cell division, at least in part because it serves as a scaffold to position FtsZ polymerization antagonists(3). However, about 10% of bacteria have more than one chromosome(4), which raises questions about the way they license cell division(3). For instance, the genome of Vibrio cholerae, the agent of cholera, is divided between a 3 Mbp replicon that originates from the chromosome of its mono-chromosomal ancestor, Chr1, and a 1 Mbp plasmid-derived replicon, Chr2 (ref. 5). Here, we show that Chr2 harbours binding motifs for an inhibitor of Z-ring formation, which helps accurately position the V. cholerae divisome at mid-cell and postpones its assembly to the very end of the cell cycle. PMID:27562255

  7. Dephosphorylation of F-BAR protein Cdc15 modulates its conformation and stimulates its scaffolding activity at the cell division site

    PubMed Central

    Roberts-Galbraith, Rachel H.; Ohi, Melanie D.; Ballif, Bryan A.; Chen, Jun-Song; McLeod, Ian; McDonald, W. Hayes; Gygi, Steven P.; Yates, John R.; Gould, Kathleen L.

    2010-01-01

    Summary Cytokinesis in Schizosaccharomyces pombe requires the function of Cdc15, founding member of the pombe cdc15 homology (PCH) family of proteins. As an early, abundant contractile ring component with multiple binding partners, Cdc15 plays a key role in organizing the ring. We demonstrate that Cdc15 phosphorylation at many sites generates a closed conformation, inhibits Cdc15 assembly at the division site in interphase, and precludes interaction of Cdc15 with its binding partners. Cdc15 dephosphorylation induces an open conformation, oligomerization, and scaffolding activity during mitosis. Cdc15 mutants with reduced phosphorylation precociously appear at the division site in filament-like structures and display increased association with protein partners and the membrane. Our results indicate that Cdc15 phosphoregulation impels both assembly and disassembly of the contractile apparatus and suggest a regulatory strategy that PCH family and BAR superfamily members might broadly employ to achieve temporal specificity in their roles as linkers between membrane and cytoskeleton. PMID:20603077

  8. Disruption of an M. tuberculosis Membrane Protein Causes a Magnesium-dependent Cell Division Defect and Failure to Persist in Mice

    PubMed Central

    Goodsmith, Nichole; Guo, Xinzheng V.; Vandal, Omar H.; Vaubourgeix, Julien; Wang, Ruojun; Botella, Hélène; Song, Shuang; Bhatt, Kamlesh; Liba, Amir; Salgame, Padmini; Schnappinger, Dirk; Ehrt, Sabine

    2015-01-01

    The identification of Mycobacterium tuberculosis genes necessary for persistence in vivo provides insight into bacterial biology as well as host defense strategies. We show that disruption of M. tuberculosis membrane protein PerM (Rv0955) resulted in an IFN-γ-dependent persistence defect in chronic mouse infection despite the mutant’s near normal growth during acute infection. The perM mutant required increased magnesium for replication and survival; incubation in low magnesium media resulted in cell elongation and lysis. Transcriptome analysis of the perM mutant grown in reduced magnesium revealed upregulation of cell division and cell wall biosynthesis genes, and live cell imaging showed PerM accumulation at the division septa in M. smegmatis. The mutant was acutely sensitive to β-lactam antibiotics, including specific inhibitors of cell division-associated peptidoglycan transpeptidase FtsI. Together, these data implicate PerM as a novel player in mycobacterial cell division and pathogenesis, and are consistent with the hypothesis that immune activation deprives M. tuberculosis of magnesium. PMID:25658098

  9. The DYRK-family kinase Pom1 phosphorylates the F-BAR protein Cdc15 to prevent division at cell poles

    PubMed Central

    Ullal, Pranav; McDonald, Nathan A.; Chen, Jun-Song; Lo Presti, Libera; Roberts-Galbraith, Rachel H.; Gould, Kathleen L.

    2015-01-01

    Division site positioning is critical for both symmetric and asymmetric cell divisions. In many organisms, positive and negative signals cooperate to position the contractile actin ring for cytokinesis. In rod-shaped fission yeast Schizosaccharomyces pombe cells, division at midcell is achieved through positive Mid1/anillin-dependent signaling emanating from the central nucleus and negative signals from the dual-specificity tyrosine phosphorylation-regulated kinase family kinase Pom1 at the cell poles. In this study, we show that Pom1 directly phosphorylates the F-BAR protein Cdc15, a central component of the cytokinetic ring. Pom1-dependent phosphorylation blocks Cdc15 binding to paxillin Pxl1 and C2 domain protein Fic1 and enhances Cdc15 dynamics. This promotes ring sliding from cell poles, which prevents septum assembly at the ends of cells with a displaced nucleus or lacking Mid1. Pom1 also slows down ring constriction. These results indicate that a strong negative signal from the Pom1 kinase at cell poles converts Cdc15 to its closed state, destabilizes the actomyosin ring, and thus promotes medial septation. PMID:26553932

  10. Effects of Polyhydroxybutyrate Production on Cell Division

    NASA Technical Reports Server (NTRS)

    Miller, Kathleen; Rahman, Asif; Hadi, Masood Z.

    2015-01-01

    Synthetic biological engineering can be utilized to aide the advancement of improved long-term space flight. The potential to use synthetic biology as a platform to biomanufacture desired equipment on demand using the three dimensional (3D) printer on the International Space Station (ISS) gives long-term NASA missions the flexibility to produce materials as needed on site. Polyhydroxybutyrates (PHBs) are biodegradable, have properties similar to plastics, and can be produced in Escherichia coli using genetic engineering. Using PHBs during space flight could assist mission success by providing a valuable source of biomaterials that can have many potential applications, particularly through 3D printing. It is well documented that during PHB production E. coli cells can become significantly elongated. The elongation of cells reduces the ability of the cells to divide and thus to produce PHB. I aim to better understand cell division during PHB production, through the design, building, and testing of synthetic biological circuits, and identify how to potentially increase yields of PHB with FtsZ overexpression, the gene responsible for cell division. Ultimately, an increase in the yield will allow more products to be created using the 3D printer on the ISS and beyond, thus aiding astronauts in their missions.

  11. The Toxoplasma gondii Calcium Dependent Protein Kinase 7 is involved in early steps of parasite division and is crucial for parasite survival

    PubMed Central

    Morlon-Guyot, Juliette; Berry, Laurence; Chen, Chun-Ti; Gubbels, Marc-Jan; Lebrun, Maryse; Daher, Wassim

    2014-01-01

    Apicomplexan parasites express various Calcium-Dependent Protein Kinases (CDPKs), and some of them play essential roles in invasion and egress. Five of the six CDPKs conserved in most Apicomplexa have been studied at the molecular and cellular levels in Plasmodium species and/or in Toxoplasma gondii parasites, but the function of CDPK7 was so far uncharacterized. In T. gondii, during intracellular replication, two parasites are formed within a mother cell through a unique process called endodyogeny. Here we demonstrate that the knock-down of CDPK7 protein in T. gondii results in pronounced defects in parasite division and a major growth deficiency, while it is dispensable for motility, egress and microneme exocytosis. In cdpk7-depleted parasites, the overall DNA content was not impaired, but the polarity of daughter cells budding and the fate of several sub-cellular structures or proteins involved in cell division were affected, such as the centrosomes and the kinetochore. Overall, our data suggest that CDPK7 is crucial for proper maintenance of centrosome integrity required for the initiation of endodyogeny. Our findings provide a first insight into the probable role of calcium-dependent signalling in parasite multiplication, in addition to its more widely explored role in invasion and egress. PMID:24011186

  12. Fluorescence Recovery After Photo-Bleaching (FRAP) and Fluorescence Loss in Photo-Bleaching (FLIP) Experiments to Study Protein Dynamics During Budding Yeast Cell Division.

    PubMed

    Bolognesi, Alessio; Sliwa-Gonzalez, Andrzej; Prasad, Rupali; Barral, Yves

    2016-01-01

    The easiness of tagging any protein of interest with a fluorescent marker together with the advance of fluorescence microscopy techniques enable researchers to study in great detail the dynamic behavior of proteins both in time and space in living cells. Two commonly used techniques are FRAP (Fluorescent Recovery After Photo-bleaching) and FLIP (Fluorescence Loss In Photo-bleaching). Upon single bleaching (FRAP) or constant bleaching (FLIP) of the fluorescent signal in a specific area of the cell, the intensity of the fluorophore is monitored over time in the bleached area and in surrounding regions; information is then derived about the diffusion speed of the tagged molecule, the amount of mobile versus immobile molecules as well as the kinetics with which they exchange between different parts of the cell. Thereby, FRAP and FLIP are very informative about the kinetics with which the different organelles of the cell separate into mother- and daughter-specific compartments during cell division. Here, we describe protocols for both FRAP and FLIP and explain how they can be used to study protein dynamics during cell division in the budding yeast Saccharomyces cerevisiae. These techniques are easily adaptable to other model organisms. PMID:26519303

  13. N terminus determinants of MinC from Neisseria gonorrhoeae mediate interaction with FtsZ but do not affect interaction with MinD or homodimerization.

    PubMed

    Greco-Stewart, V; Ramirez-Arcos, S; Liao, M; Dillon, J R

    2007-06-01

    While bacterial cell division has been widely studied in rod-shaped bacteria, the mechanism of cell division in round (coccal) bacteria remains largely enigmatic. In the present study, interaction between the cell division inhibitor MinC from Neisseria gonorrhoeae (MinC(Ng)) and the gonococcal cell division proteins MinD(Ng) and FtsZ(Ng) are demonstrated. Protein truncation and site-directed mutagenic approaches determined which N-terminal residues were essential for cell division inhibition by MinC(Ng) using cell morphology as an indicator of protein functionality. Truncation from or mutation at the 13th amino acid of the N terminus of MinC(Ng) resulted in loss of protein function. Bioinformatic analyses predicted that point mutations of L35P and L68P would affect the alpha-helical conformation of the protein and we experimentally showed that these mutations alter the functionality of MinC(Ng). The bacterial two-hybrid system showed that interaction of MinC(Ng) with FtsZ(Ng) is abrogated upon truncation of 13 N-terminal residues while MinC(Ng)-MinD(Ng) interaction or MinC(Ng) homodimerization is unaffected. These data confirm interactions among gonococcal cell division proteins and determine the necessity of the 13th amino acid for MinC(Ng) function. PMID:17287984

  14. The Min system as a general cell geometry detection mechanism: branch lengths in Y-shaped Escherichia coli cells affect Min oscillation patterns and division dynamics.

    PubMed

    Varma, Archana; Huang, Kerwyn Casey; Young, Kevin D

    2008-03-01

    In Escherichia coli, division site placement is regulated by the dynamic behavior of the MinCDE proteins, which oscillate from pole to pole and confine septation to the centers of normal rod-shaped cells. Some current mathematical models explain these oscillations by considering interactions among the Min proteins without recourse to additional localization signals. So far, such models have been applied only to regularly shaped bacteria, but here we test these models further by employing aberrantly shaped E. coli cells as miniature reactors. The locations of MinCDE proteins fused to derivatives of green fluorescent protein were monitored in branched cells with at least three conspicuous poles. MinCDE most often moved from one branch to another in an invariant order, following a nonreversing clockwise or counterclockwise direction over the time periods observed. In cells with two short branches or nubs, the proteins oscillated symmetrically from one end to the other. The locations of FtsZ rings were consistent with a broad MinC-free zone near the branch junctions, and Min rings exhibited the surprising behavior of moving quickly from one possible position to another. Using a reaction-diffusion model that reproduces the observed MinCD oscillations in rod-shaped and round E. coli, we predict that the oscillation patterns in branched cells are a natural response of Min behavior in cellular geometries having different relative branch lengths. The results provide further evidence that Min protein oscillations act as a general cell geometry detection mechanism that can locate poles even in branched cells. PMID:18178745

  15. An essential cell division gene of Drosophila, absent from Saccharomyces, encodes an unusual protein with tubulin-like and myosin-like peptide motifs

    PubMed Central

    Miklos, George L. Gabor; Yamamoto, M.-T.; Burns, R. G.; Maleszka, R.

    1997-01-01

    Null mutations at the misato locus of Drosophila melanogaster are associated with irregular chromosomal segregation at cell division. The consequences for morphogenesis are that mutant larvae are almost devoid of imaginal disk tissue, have a reduction in brain size, and die before the late third-instar larval stage. To analyze these findings, we isolated cDNAs in and around the misato locus, mapped the breakpoints of chromosomal deficiencies, determined which transcript corresponded to the misato gene, rescued the cell division defects in transgenic organisms, and sequenced the genomic DNA. Database searches revealed that misato codes for a novel protein, the N-terminal half of which contains a mixture of peptide motifs found in α-, β-, and γ-tubulins, as well as a motif related to part of the myosin heavy chain proteins. The sequence characteristics of misato indicate either that it arose from an ancestral tubulin-like gene, different parts of which underwent convergent evolution to resemble motifs in the conventional tubulins, or that it arose by the capture of motifs from different tubulin genes. The Saccharomyces cerevisiae genome lacks a true homolog of the misato gene, and this finding highlights the emerging problem of assigning functional attributes to orphan genes that occur only in some evolutionary lineages. PMID:9144213

  16. DIVISIBILITY TESTS.

    ERIC Educational Resources Information Center

    FOLEY, JACK L.

    THIS BOOKLET, ONE OF A SERIES, HAS BEEN DEVELOPED FOR THE PROJECT, A PROGRAM FOR MATHEMATICALLY UNDERDEVELOPED PUPILS. A PROJECT TEAM, INCLUDING INSERVICE TEACHERS, IS BEING USED TO WRITE AND DEVELOP THE MATERIALS FOR THIS PROGRAM. THE MATERIALS DEVELOPED IN THIS BOOKLET INCLUDE SUCH CONCEPTS AS (1) DIVISIBILITY TESTS, (2) CHECKING THE FUNDAMENTAL…

  17. Involvement of YODA and mitogen activated protein kinase 6 in Arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation.

    PubMed

    Smékalová, Veronika; Luptovčiak, Ivan; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Doskočilová, Anna; Takáč, Tomáš; Vadovič, Pavol; Novák, Ondřej; Pechan, Tibor; Ziemann, Anja; Košútová, Petra; Šamaj, Jozef

    2014-09-01

    The role of YODA MITOGEN ACTIVATED PROTEIN KINASE KINASE KINASE 4 (MAPKKK4) upstream of MITOGEN ACTIVATED PROTEIN KINASE 6 (MPK6) was studied during post-embryonic root development of Arabidopsis thaliana. Loss- and gain-of-function mutants of YODA (yda1 and ΔNyda1) were characterized in terms of root patterning, endogenous auxin content and global proteomes. We surveyed morphological and cellular phenotypes of yda1 and ΔNyda1 mutants suggesting possible involvement of auxin. Endogenous indole-3-acetic acid (IAA) levels were up-regulated in both mutants. Proteomic analysis revealed up-regulation of auxin biosynthetic enzymes tryptophan synthase and nitrilases in these mutants. The expression, abundance and phosphorylation of MPK3, MPK6 and MICROTUBULE ASSOCIATED PROTEIN 65-1 (MAP65-1) were characterized by quantitative polymerase chain reaction (PCR) and western blot analyses and interactions between MAP65-1, microtubules and MPK6 were resolved by quantitative co-localization studies and co-immunoprecipitations. yda1 and ΔNyda1 mutants showed disoriented cell divisions in primary and lateral roots, abortive cytokinesis, and differential subcellular localization of MPK6 and MAP65-1. They also showed deregulated expression of TANGLED1 (TAN1), PHRAGMOPLAST ORIENTING KINESIN 1 (POK1), and GAMMA TUBULIN COMPLEX PROTEIN 4 (GCP4). The findings that MPK6 localized to preprophase bands (PPBs) and phragmoplasts while the mpk6-4 mutant transformed with MPK6AEF (alanine (A)-glutamic acid (E)-phenylanine (F)) showed a root phenotype similar to that of yda1 demonstrated that MPK6 is an important player downstream of YODA. These data indicate that YODA and MPK6 are involved in post-embryonic root development through an auxin-dependent mechanism regulating cell division and mitotic microtubule (PPB and phragmoplast) organization. PMID:24923680

  18. Alfalfa Mob1-like proteins are involved in cell proliferation and are localized in the cell division plane during cytokinesis

    SciTech Connect

    Citterio, Sandra; Piatti, Simonetta; Albertini, Emidio; Aina, Roberta; Varotto, Serena; Barcaccia, Gianni . E-mail: gianni.barcaccia@unipd.it

    2006-04-15

    Mps-one-binder (Mob) proteins play a crucial role in yeast cytokinesis. After cloning two Mob1-like genes, MsMob1-A and MsMob1-B from alfalfa (Medicago sativa L.) we show that, although they are constitutively expressed in roots, stems, leaves, flowers and pods, their transcripts and proteins are mostly produced in actively proliferating tissues. A polyclonal antibody specifically raised against MsMob1 proteins was used for immunolocalization studies in synchronized root tip cells. The subcellular localization of MsMob1-like proteins is demonstrated to be cell cycle-regulated. Cytoplasmic localization is faint and diffused during G{sub 1} and S. It becomes concentrated in punctuate and fibrillar structures in G{sub 2} as well as M phase. At the stage of cytokinesis, the protein is found at the emerging cell plate marking the progressive formation of the septum. Mob1 proteins partially co-localize with microtubules structures functionally related to the spindles and important for cytokinesis in eukaryotic cells. The MsMob1 expression cannot rescue the lethality of the yeast mob1 mutant, suggesting that interaction of Mob1 proteins with their effectors may be species-specific. Localization of Mob1 proteins in the inner layer of the root cap indicates an additional function for this class of proteins in plants, which is likely related to the onset of programmed cell death.

  19. The Drosophila CPEB Protein Orb2 Has a Novel Expression Pattern and Is Important for Asymmetric Cell Division and Nervous System Function

    PubMed Central

    Hafer, Nathaniel; Xu, Shuwa; Bhat, Krishna Moorthi; Schedl, Paul

    2011-01-01

    Cytoplasmic polyadenylation element binding (CPEB) proteins bind mRNAs to regulate their localization and translation. While the first CPEBs discovered were germline specific, subsequent studies indicate that CPEBs also function in many somatic tissues including the nervous system. Drosophila has two CPEB family members. One of these, orb, plays a key role in the establishment of polarity axes in the developing egg and early embryo, but has no known somatic functions or expression outside of the germline. Here we characterize the other Drosophila CPEB, orb2. Unlike orb, orb2 mRNA and protein are found throughout development in many different somatic tissues. While orb2 mRNA and protein of maternal origin are distributed uniformly in early embryos, this pattern changes as development proceeds and by midembryogenesis the highest levels are found in the CNS and PNS. In the embryonic CNS, Orb2 appears to be concentrated in cell bodies and mostly absent from the longitudinal and commissural axon tracts. In contrast, in the adult brain, the protein is seen in axonal and dendritic terminals. Lethal effects are observed for both RNAi knockdowns and orb2 mutant alleles while surviving adults display locomotion and behavioral defects. We also show that orb2 funtions in asymmetric division of stem cells and precursor cells during the development of the embryonic nervous system and mesoderm. PMID:21900268

  20. Functional dissection of a cell-division inhibitor, SulA, of Escherichia coli and its negative regulation by Lon.

    PubMed

    Higashitani, A; Ishii, Y; Kato, Y; Koriuchi, K

    1997-04-28

    SulA is induced in Escherichia coli by the SOS response and inhibits cell division through interaction with FtsZ. To determine which region of SulA is essential for the inhibition of cell division, we constructed a series of N-terminal and C-terminal deletions of SulA and a series of alanine substitution mutants. Arginine at position 62, leucine at 67, tryptophan at 77 and lysine at 87, in the central region of SulA, were all essential for the inhibitory activity. Residues 3-27 and the C-terminal 21 residues were dispensable for the activity. The mutant protein lacking N-terminal residues 3-47 was inactive, as was that lacking the C-terminal 34 residues. C-terminal deletions of 8 and 21 residues increased the growth-inhibiting activity in lon+ cells, but not in lon- cells. The wild-type and mutant SulA proteins were isolated in a form fused to E. coli maltose-binding protein, and tested in vitro for sensitivity to Lon protease. Lon degraded wild-type SulA and a deletion mutant lacking the N-terminal 93 amino acids, but did not degrade the derivative lacking 21 residues at the C-terminus. Furthermore, the wild-type SulA and the N-terminal deletion mutant formed a stable complex with Lon, while the C-terminal deletion did not. MBP fused to the C-terminal 20 residues of SulA formed a stable complex with, but was not degraded by Lon. When LacZ protein was fused at its C-terminus to 8 or 20 amin acid residues from the C-terminal region of SulA the protein was stable in lon+ cells. These results indicate that the C-terminal 20 residues of SulA permit recognition by, and complex formation with, Lon, and are necessary, but not sufficient, for degradation by Lon. PMID:9180687

  1. Emerging facets of plastid division regulation.

    PubMed

    Basak, Indranil; Møller, Simon Geir

    2013-02-01

    Plastids are complex organelles that are integrated into the plant host cell where they differentiate and divide in tune with plant differentiation and development. In line with their prokaryotic origin, plastid division involves both evolutionary conserved proteins and proteins of eukaryotic origin where the host has acquired control over the process. The plastid division apparatus is spatially separated between the stromal and the cytosolic space but where clear coordination mechanisms exist between the two machineries. Our knowledge of the plastid division process has increased dramatically during the past decade and recent findings have not only shed light on plastid division enzymology and the formation of plastid division complexes but also on the integration of the division process into a multicellular context. This review summarises our current knowledge of plastid division with an emphasis on biochemical features, the functional assembly of protein complexes and regulatory features of the overall process. PMID:22965912

  2. Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: characterization of stages of the division cycle of centrosomes.

    PubMed

    Schatten, H; Walter, M; Mazia, D; Biessmann, H; Paweletz, N; Coffe, G; Schatten, G

    1987-12-01

    A mouse monoclonal antibody generated against Drosophila intermediate filament proteins (designated Ah6/5/9 and referred to herein as Ah6) is found to cross-react specifically with centrosomes in sea urchin eggs and with a 68-kDa antigen in eggs and isolated mitotic apparatus. When preparations stained with Ah6 are counterstained with a human autoimmune serum whose anti-centrosome activity has been established, the immunofluorescence images superimpose exactly. A more severe test of the specificity of the antibody demands that it display all of the stages of the centrosome cycle in the cell cycle: the flattening and spreading of the compact centrosomes followed by their division and the establishment of two compact poles. The test was made by an experimental design that uses a period of exposure of the eggs to 2-mercaptoethanol. This treatment allows observation of the stages of the centrosome cycle--separation, division, and bipolarization--while the chromosomes are arrested in metaphase. Mitosis is arrested in the presence of 0.1 M 2-mercaptoethanol. Chromosomes remain in a metaphase configuration while the centrosomes divide, producing four poles perpendicular to the original spindle axis. Microtubules are still present in the mitotic apparatus, as indicated by immunofluorescence and transmission electron microscopy. When 2-mercaptoethanol is removed, the chromosomes reorient to the poles of a tetrapolar (sometimes tripolar) mitotic apparatus. During the following cycle, the blastomeres form a monopolar mitotic apparatus. The observations of the centrosome cycle with the Ah6 antibody display very clearly all the stages that have been seen or deduced from work with other probes. The 68-kDa antigen that reacts with the Ah6 monoclonal antibody to Drosophila intermediate filament proteins must be a constant component of sea urchin centrosomes because it is present at all stages of the centrosome cycle. PMID:3120191

  3. Diacylglycerol stimulates DNA synthesis and cell division in mouse 3T3 cells: role of Ca2+-sensitive phospholipid-dependent protein kinase.

    PubMed Central

    Rozengurt, E; Rodriguez-Pena, A; Coombs, M; Sinnett-Smith, J

    1984-01-01

    The synthetic diacylglycerol 1-oleoyl-2-acetylglycerol competes directly with [3H]phorbol 12,13-dibutyrate for common binding sites in monolayer cultures of Swiss 3T3 cells and rapidly stimulates the phosphorylation of a Mr 80,000 cellular protein that has recently been shown to reflect the activation of protein kinase C in intact cells. Thus, this diacylglycerol provided a useful tool to determine whether exogenously added diacylglycerols can mimic the potent tumor promoter phorbol ester in eliciting DNA synthesis and cell division in quiescent cells. We found that OAG acts synergistically with insulin and other growth factors to stimulate reinitiation of cell proliferation, and several lines of evidence indicate that OAG shares with phorbol esters a common pathway of mitogenic action via stimulation of protein kinase C activity in intact 3T3 cells. The findings support the hypothesis that diacylglycerols represent endogenous analogs of phorbol esters and raise the possibility that diacylglycerols generated in the plasma membrane could act as a mitogenic signal for quiescent cells. Images PMID:6237364

  4. Cbf11 and Cbf12, the fission yeast CSL proteins, play opposing roles in cell adhesion and coordination of cell and nuclear division

    SciTech Connect

    Prevorovsky, Martin; Grousl, Tomas; Stanurova, Jana; Rynes, Jan; Nellen, Wolfgang; Puta, Frantisek; Folk, Petr

    2009-05-01

    The CSL (CBF1/RBP-J{kappa}/Suppressor of Hairless/LAG-1) family is comprised of transcription factors essential for metazoan development, mostly due to their involvement in the Notch receptor signaling pathway. Recently, we identified two novel classes of CSL genes in the genomes of several fungal species, organisms lacking the Notch pathway. In this study, we characterized experimentally cbf11{sup +} and cbf12{sup +}, the two CSL genes of Schizosaccharomyces pombe, in order to elucidate the CSL function in fungi. We provide evidence supporting their identity as genuine CSL genes. Both cbf11{sup +} and cbf12{sup +} are non-essential; they have distinct expression profiles and code for nuclear proteins with transcription activation potential. Significantly, we demonstrated that Cbf11 recognizes specifically the canonical CSL response element GTG{sup A}/{sub G}GAA in vitro. The deletion of cbf11{sup +} is associated with growth phenotypes and altered colony morphology. Furthermore, we found that Cbf11 and Cbf12 play opposite roles in cell adhesion, nuclear and cell division and their coordination. Disturbed balance of the two CSL proteins leads to cell separation defects (sep phenotype), cut phenotype, and high-frequency diploidization in heterothallic strains. Our data show that CSL proteins operate in an organism predating the Notch pathway, which should be of relevance to the understanding of (Notch-independent) CSL functions in metazoans.

  5. Identification of the Lymantria dispar Nucleopolyhedrovirus Envelope Fusion Protein Provides Evidence for a Phylogenetic Division of the Baculoviridae†

    PubMed Central

    Pearson, Margot N.; Groten, Christoph; Rohrmann, George F.

    2000-01-01

    The complete genome sequences of a number of diverse members of the Baculoviridae including both nucleopolyhedroviruses (NPVs) and granuloviruses (GVs) revealed that they lack a homolog of GP64, the envelope fusion protein of the budded form of Autographa californica multinucleocapsid NPV (AcMNPV) and its close relatives. Computer-assisted analyses of the genome of one of these viruses, Lymantria dispar MNPV (LdMNPV), revealed a single open reading frame (ld130) whose product had the predicted properties of a membrane protein. Characterization of the localization of the products of the full-length ld130 gene and of an ld130-enhanced green fluorescent protein gene (egfp) fusion using both immunofluorescence and fluorescence microscopy revealed that LD130 accumulates at the plasma membranes of cells infected with LdMNPV or transfected with ld130-egfp. In addition, cells transfected with either ld130 or ld130-egfp or infected with wild-type virus undergo membrane fusion at pH 5. Western blot analyses indicate that LD130 is present in infected cells as an 83-kDa protein and is also present in budded virions as a protein doublet containing bands of 81 and 83 kDa. Tunicamycin treatment of infected cells resulted in an immunoreactive band of about 72 kDa, indicating that LD130 is N-glycosylated. Whereas the distribution of gp64 appears to be confined to a relatively closely related group of NPVs, homologs of ld130 are present in a diverse number of both NPVs and GVs. This suggests that LD130 may be the primordial baculovirus envelope fusion protein. PMID:10846096

  6. Structures Division

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1995 are presented.

  7. Mitochondrial division in Caenorhabditis elegans.

    PubMed

    Gandre, Shilpa; van der Bliek, Alexander M

    2007-01-01

    The study of mitochondrial division proteins has largely focused on yeast and mammalian cells. We describe methods to use Caenorhabditis elegans as an alternative model for studying mitochondrial division, taking advantage of the many wonderful resources provided by the C. elegans community. Our methods are largely based on manipulation of gene expression using classic and molecular genetic techniques combined with fluorescence microscopy. Some biochemical methods are also included. As antibodies become available, these biochemical methods are likely to become more sophisticated. PMID:18314747

  8. Yeast-based screening to identify modulators of G-protein signaling using uncontrolled cell division cycle by overexpression of Stm1.

    PubMed

    Chung, Kyung-Sook; Won, Misun; Lee, Jung-Joon; Ahn, Jiwon; Hoe, Kwang-Lae; Kim, Dong-Uk; Song, Kyung-Bin; Yoo, Hyang-Sook

    2007-05-01

    Stm1, a G-protein coupled receptor, which senses nutritional state drives cells to stop the proliferative cell cycle and enter meiosis under nutritionally deficient conditions in Schizosaccharomyces pombe. It was shown that overexpression of Stm1 led growth inhibition and uncontrolled mitotic haploidization presumably by the premature initiation of mitosis. Sty1 and Gpa2 seem to play important roles for Stm1 to deliver starvation signal to induce downstream function. Based on the observation that conversion of diploid to haploid by overexpression of Stm1 can be easily detected as pink or red colonies in the media containing low adenine, HTS drug screening system to identify modulators of GPCR was established and tested using 413 compounds. Four very potent modulators of GPCR including Biochanin A, which possess strong inhibitory activity against uncontrolled cell division, were identified in this screening. This study provides the yeast-based platform that allows robust cellular assays to identify novel modulators of G-protein signaling and MAP kinase pathway. PMID:17346842

  9. The cytological changes of tobacco zygote and proembryo cells induced by beta-glucosyl Yariv reagent suggest the involvement of arabinogalactan proteins in cell division and cell plate formation

    PubMed Central

    2012-01-01

    Background In dicotyledonous plant, the first asymmetric zygotic division and subsequent several cell divisions are crucial for proembryo pattern formation and later embryo development. Arabinogalactan proteins (AGPs) are a family of extensively glycosylated cell surface proteins that are thought to have important roles in various aspects of plant growth and development, including embryogenesis. Previous results from our laboratory show that AGPs are concerned with tobacco egg cell fertilization and zygotic division. However, how AGPs interact with other factors involved in zygotic division and proembryo development remains unknown. Results In this study, we used the tobacco in vitro zygote culture system and series of meticulous cell biology techniques to investigate the roles of AGPs in zygote and proembryo cell division. For the first time, we examined tobacco proembryo division patterns detailed to every cell division. The bright-field images and statistical results both revealed that with the addition of an exogenous AGPs inhibitor, beta-glucosyl Yariv (beta-GlcY) reagent, the frequency of aberrant division increased remarkably in cultured tobacco zygotes and proembryos, and the cell plate specific locations of AGPs were greatly reduced after beta-GlcY treatment. In addition, the accumulations of new cell wall materials were also significantly affected by treating with beta-GlcY. Detection of cellulose components by Calcofluor white stain showed that strong fluorescence was located in the newly formed wall of daughter cells after the zygotic division of in vivo samples and the control samples from in vitro culture without beta-GlcY treatment; while there was only weak fluorescence in the newly formed cell walls with beta-GlcY treatment. Immunocytochemistry examination with JIM5 and JIM7 respectively against the low- and high-esterified pectins displayed that these two pectins located in opposite positions of zygotes and proembryos in vivo and the polarity was

  10. AtPPR2, an Arabidopsis pentatricopeptide repeat protein, binds to plastid 23S rRNA and plays an important role in the first mitotic division during gametogenesis and in cell proliferation during embryogenesis

    PubMed Central

    Lu, Yuqing; Li, Cong; Wang, Hai; Chen, Hao; Berg, Howard; Xia, Yiji

    2011-01-01

    SUMMARY Pentatricopeptide repeat (PPR) proteins are mainly involved in regulating post-transcriptional processes in mitochondria and plastids, including chloroplasts. Mutations in the Arabidopsis PPR2 gene have previously been found to cause defects in seed development and reduced transmission through male and female gametophytes. However, the exact function of AtPPR2 has not been defined. We found that a loss-of-function mutation of AtPPR2 leads to arrest of the first mitotic division during both male and female gametogenesis. In addition, the Atppr2 mutation causes delayed embryogenesis, leading to embryonic lethality. Mutation in emb2750, which appears to be a weak mutant allele of the AtPPR2 locus, also results in defective seeds. However, a majority of emb2750 seeds were able to germinate, but their cotyledons were albino and often deformed, and growth of the emb2750 seedlings were arrested after germination. AtPPR2 is mainly expressed in plant parts that undergo cell division, and AtPPR2 protein was localized to chloroplasts. RNA immunoprecipitation and protein gel mobility shift assays showed that AtPPR2 binds to plastid 23S rRNA. Our study adds to a growing body of evidence that plastids and/or chloroplasts play a key role in cell division. AtPPR2 may modulate the translational process to fine-tune plastid function, thereby regulating cell division. PMID:21435048

  11. Reorganization of the cortical actin cytoskeleton during maturation division in the Tubifex egg: possible involvement of protein kinase C.

    PubMed

    Shimizu, T

    1997-08-01

    Tubifex eggs undergo a drastic reorganization of the cortical actin cytoskeleton during metaphase of the second meiosis. At the end of the first meiosis, the egg cortex displays only scattered actin filaments and tiny dots of F-actin; during the following 90 min, cortical F-actin gradually increases in amount, becomes organized into foci that are interlinked by actin bundles, and generates a geodesic dome-like organization. In this study, we have characterized this reorganization of the cortical actin cytoskeleton. In living eggs injected with rhodamine-phalloidin at the beginning of the second meiosis, cortical actin assembly (i.e., formation of actin foci and bundles) proceeds normally, but labeled F-actin is not found to be included significantly in the formed cortical actin network, suggesting that the increase in cortical F-actin is not simply ascribable to the recruitment of preexisting actin filaments. Cortical actin assembly can be induced precociously not only by calcium ionophore A23187 but also by a phorbol ester PMA, an agonist of protein kinase C (PKC). Conversely, the formation of actin foci and bundles is inhibited by PKC antagonists, although cortical F-actin increases to some extent in the presence of these inhibitors. Similar inhibition of the cortical reorganization is elicited in eggs whose intracellular free calcium level ([Ca2+]i) has been clamped low by microinjection of a calcium chelator BAPTA. The treatment of BAPTA-injected eggs with PMA results in the formation of actin foci and bundles. An experiment with eggs injected with fluo-3 shows that [Ca2+]i increases during metaphase of the second meiosis. These results suggest that the reorganization of cortical actin during metaphase of the second meiosis requires activation of PKC, which depends on increases in [Ca2+]i. PMID:9245516

  12. Monitoring structural changes in intrinsically disordered proteins using QCM-D: application to the bacterial cell division protein ZipA.

    PubMed

    Mateos-Gil, Pablo; Tsortos, Achilleas; Vélez, Marisela; Gizeli, Electra

    2016-05-01

    The sensitivity of QCM-D to molecular hydrodynamic properties is applied in this work to study conformational changes of the intrinsically disordered protein ZipA. Acoustic measurements can clearly follow ZipA's unstructured domain expansion and contraction with salt content and be correlated with changes in the hydrodynamic radius of 1.8 nm or less. PMID:27109863

  13. The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure.

    PubMed

    Tarry, Michael; Arends, S J Ryan; Roversi, Pietro; Piette, Evan; Sargent, Frank; Berks, Ben C; Weiss, David S; Lea, Susan M

    2009-02-20

    The Escherichia coli protein SufI (FtsP) has recently been proposed to be a component of the cell division apparatus. The SufI protein is also in widespread experimental use as a model substrate in studies of the Tat (twin arginine translocation) protein transport system. We have used SufI-GFP (green fluorescent protein) fusions to show that SufI localizes to the septal ring in the dividing cell. We have also determined the structure of SufI by X-ray crystallography to a resolution of 1.9 A. SufI is structurally related to the multicopper oxidase superfamily but lacks metal cofactors. The structure of SufI suggests it serves a scaffolding rather than an enzymatic role in the septal ring and reveals regions of the protein likely to be involved in the protein-protein interactions required to assemble SufI at the septal ring. PMID:19135451

  14. Eight weeks of pre- and postexercise whey protein supplementation increases lean body mass and improves performance in Division III collegiate female basketball players.

    PubMed

    Taylor, Lemuel W; Wilborn, Colin; Roberts, Michael D; White, Andrew; Dugan, Kristen

    2016-03-01

    We examined if 8 weeks of whey protein (WP) supplementation improved body composition and performance measures in NCAA Division III female basketball players. Subjects were assigned to consume 24 g WP (n = 8; age, 20 ± 2 years; height, 170 ± 6 cm; weight, 66.0 ± 3.1 kg) or 24 g of maltodextrin (MD) (n = 6; age, 21 ± 3 years; height, 169 ± 6 cm; weight, 68.2 ± 7.6 kg) immediately prior to and following training (4 days/week anaerobic and resistance training) for 8 weeks. Prior to (T1) and 8 weeks following supplementation (T2), subjects underwent dual X-ray absorptiometry body composition assessment as well as performance tests. The WP group gained lean mass from T1 to T2 (+1.4 kg, p = 0.003) whereas the MD group trended to gain lean mass (+0.4 kg, p = 0.095). The WP group also lost fat mass from T1 to T2 (-1.0 kg, p = 0.003) whereas the MD group did not (-0.5 kg, p = 0.41). The WP group presented greater gains in 1-repetition maximum (1RM) bench press (+4.9 kg) compared with the MD group (+2.3 kg) (p < 0.05). Moreover, the WP group improved agility from T1 to T2 (p = 0.001) whereas the MD group did not (p = 0.38). Both groups equally increased leg press 1RM, vertical jump, and broad jump performances. This study demonstrates that 8 weeks of WP supplementation improves body composition and select performance variables in previously trained female athletes. PMID:26842665

  15. The ASH1-RELATED3 SET-Domain Protein Controls Cell Division Competence of the Meristem and the Quiescent Center of the Arabidopsis Primary Root1[W][OPEN

    PubMed Central

    Kumpf, Robert; Thorstensen, Tage; Rahman, Mohummad Aminur; Heyman, Jefri; Nenseth, H. Zeynep; Lammens, Tim; Herrmann, Ullrich; Swarup, Ranjan; Veiseth, Silje Veie; Emberland, Gitika; Bennett, Malcolm J.; De Veylder, Lieven; Aalen, Reidunn B.

    2014-01-01

    The stem cell niche of the Arabidopsis (Arabidopsis thaliana) primary root apical meristem is composed of the quiescent (or organizing) center surrounded by stem (initial) cells for the different tissues. Initial cells generate a population of transit-amplifying cells that undergo a limited number of cell divisions before elongating and differentiating. It is unclear whether these divisions occur stochastically or in an orderly manner. Using the thymidine analog 5-ethynyl-2′-deoxyuridine to monitor DNA replication of cells of Arabidopsis root meristems, we identified a pattern of two, four, and eight neighboring cells with synchronized replication along the cortical, epidermal, and endodermal cell files, suggested to be daughters, granddaughters, and great-granddaughters of the direct progeny of each stem cell. Markers of mitosis and cytokinesis were not present in the region closest to the transition zone where the cells start to elongate, suggesting that great-granddaughter cells switch synchronously from the mitotic cell cycle to endoreduplication. Mutations in the stem cell niche-expressed ASH1-RELATED3 (ASHR3) gene, encoding a SET-domain protein conferring histone H3 lysine-36 methylation, disrupted this pattern of coordinated DNA replication and cell division and increased the cell division rate in the quiescent center. E2Fa/E2Fb transcription factors controlling the G1-to-S-phase transition regulate ASHR3 expression and bind to the ASHR3 promoter, substantiating a role for ASHR3 in cell division control. The reduced length of the root apical meristem and primary root of the mutant ashr3-1 indicate that synchronization of replication and cell divisions is required for normal root growth and development. PMID:25034019

  16. Nanoengineering: Super symmetry in cell division

    NASA Astrophysics Data System (ADS)

    Huang, Kerwyn Casey

    2015-08-01

    Bacterial cells can be sculpted into different shapes using nanofabricated chambers and then used to explore the spatial adaptation of protein oscillations that play an important role in cell division.

  17. Divisibility--Another Route.

    ERIC Educational Resources Information Center

    Gardella, Francis J.

    1984-01-01

    Given is an alternative to individual divisibility rules by generating a general process that can be applied to establish divisibility by any number. The process relies on modular arithmetic and the concept of congruence. (MNS)

  18. 3-(Benzodioxan-2-ylmethoxy)-2,6-difluorobenzamides bearing hydrophobic substituents at the 7-position of the benzodioxane nucleus potently inhibit methicillin-resistant Sa and Mtb cell division.

    PubMed

    Straniero, Valentina; Pallavicini, Marco; Chiodini, Giuseppe; Zanotto, Carlo; Volontè, Luca; Radaelli, Antonia; Bolchi, Cristiano; Fumagalli, Laura; Sanguinetti, Maurizio; Menchinelli, Giulia; Delogu, Giovanni; Battah, Basem; De Giuli Morghen, Carlo; Valoti, Ermanno

    2016-09-14

    Lipophilic substituents at benzodioxane C (7) of 3-(benzodioxan-2-ylmethoxy)-2,6-difluorobenzamide improve the antibacterial activity against methicillin-resistant Staphylococcus aureus strains to MIC values in the range of 0.2-2.5 μg/mL, whereas hydrophilic substituents at the same position and modifications at the benzodioxane substructure, excepting for replacement with 2-cromanyl, are deleterious. Some of the lead compounds also exhibit good activity against Mtb. Parallel SARs to those of 3-(2-benzothiazol-2-ylmethoxy)-2,6-difluorobenzamide, well known FtsZ inhibitor, and cells alterations typical of FtsZ inhibition indicate such a protein as the target of these potent antibacterial benzodioxane-benzamides. PMID:27191617

  19. The PLASTID DIVISION1 and 2 Components of the Chloroplast Division Machinery Determine the Rate of Chloroplast Division in Land Plant Cell Differentiation[C][W

    PubMed Central

    Okazaki, Kumiko; Kabeya, Yukihiro; Suzuki, Kenji; Mori, Toshiyuki; Ichikawa, Takanari; Matsui, Minami; Nakanishi, Hiromitsu; Miyagishima, Shin-ya

    2009-01-01

    In most algae, the chloroplast division rate is held constant to maintain the proper number of chloroplasts per cell. By contrast, land plants evolved cell and chloroplast differentiation systems in which the size and number of chloroplasts change along with their respective cellular function by regulation of the division rate. Here, we show that PLASTID DIVISION (PDV) proteins, land plant–specific components of the division apparatus, determine the rate of chloroplast division. Overexpression of PDV proteins in the angiosperm Arabidopsis thaliana and the moss Physcomitrella patens increased the number but decreased the size of chloroplasts; reduction of PDV levels resulted in the opposite effect. The level of PDV proteins, but not other division components, decreased during leaf development, during which the chloroplast division rate also decreased. Exogenous cytokinins or overexpression of the cytokinin-responsive transcription factor CYTOKININ RESPONSE FACTOR2 increased the chloroplast division rate, where PDV proteins, but not other components of the division apparatus, were upregulated. These results suggest that the integration of PDV proteins into the division machinery enabled land plant cells to change chloroplast size and number in accord with the fate of cell differentiation. PMID:19567705

  20. Involvement of FtsE ATPase and FtsX Extracellular Loops 1 and 2 in FtsEX-PcsB Complex Function in Cell Division of Streptococcus pneumoniae D39

    PubMed Central

    Sham, Lok-To; Jensen, Katelyn R.; Bruce, Kevin E.; Winkler, Malcolm E.

    2013-01-01

    ABSTRACT The FtsEX protein complex has recently been proposed to play a major role in coordinating peptidoglycan (PG) remodeling by hydrolases with the division of bacterial cells. According to this model, cytoplasmic FtsE ATPase interacts with the FtsZ divisome and FtsX integral membrane protein and powers allosteric activation of an extracellular hydrolase interacting with FtsX. In the major human respiratory pathogen Streptococcus pneumoniae (pneumococcus), a large extracellular-loop domain of FtsX (ECL1FtsX) is thought to interact with the coiled-coil domain of the PcsB protein, which likely functions as a PG amidase or endopeptidase required for normal cell division. This paper provides evidence for two key tenets of this model. First, we show that FtsE protein is essential, that depletion of FtsE phenocopies cell defects caused by depletion of FtsX or PcsB, and that changes of conserved amino acids in the FtsE ATPase active site are not tolerated. Second, we show that temperature-sensitive (Ts) pcsB mutations resulting in amino acid changes in the PcsB coiled-coil domain (CCPcsB) are suppressed by ftsX mutations resulting in amino acid changes in the distal part of ECL1FtsX or in a second, small extracellular-loop domain (ECL2FtsX). Some FtsX suppressors are allele specific for changes in CCPcsB, and no FtsX suppressors were found for amino acid changes in the catalytic PcsB CHAP domain (CHAPPcsB). These results strongly support roles for both ECL1FtsX and ECL2FtsX in signal transduction to the coiled-coil domain of PcsB. Finally, we found that pcsBCC(Ts) mutants (Ts mutants carrying mutations in the region of pcsB corresponding to the coiled-coil domain) unexpectedly exhibit delayed stationary-phase autolysis at a permissive growth temperature. PMID:23860769

  1. The polarity protein Baz forms a platform for the centrosome orientation during asymmetric stem cell division in the Drosophila male germline

    PubMed Central

    Inaba, Mayu; Venkei, Zsolt G; Yamashita, Yukiko M

    2015-01-01

    Many stem cells divide asymmetrically in order to balance self-renewal with differentiation. The essence of asymmetric cell division (ACD) is the polarization of cells and subsequent division, leading to unequal compartmentalization of cellular/extracellular components that confer distinct cell fates to daughter cells. Because precocious cell division before establishing cell polarity would lead to failure in ACD, these two processes must be tightly coupled; however, the underlying mechanism is poorly understood. In Drosophila male germline stem cells, ACD is prepared by stereotypical centrosome positioning. The centrosome orientation checkpoint (COC) further serves to ensure ACD by preventing mitosis upon centrosome misorientation. In this study, we show that Bazooka (Baz) provides a platform for the correct centrosome orientation and that Baz-centrosome association is the key event that is monitored by the COC. Our work provides a foundation for understanding how the correct cell polarity may be recognized by the cell to ensure productive ACD. DOI: http://dx.doi.org/10.7554/eLife.04960.001 PMID:25793442

  2. Combined protein construct and synthetic gene engineering for heterologous protein expression and crystallization using Gene Composer

    SciTech Connect

    Raymond, Amy; Lovell, Scott; Lorimer, Don; Walchli, John; Mixon, Mark; Wallace, Ellen; Thompkins, Kaitlin; Archer, Kimberly; Burgin, Alex; Stewart, Lance

    2009-12-01

    With the goal of improving yield and success rates of heterologous protein production for structural studies we have developed the database and algorithm software package Gene Composer. This freely available electronic tool facilitates the information-rich design of protein constructs and their engineered synthetic gene sequences, as detailed in the accompanying manuscript. In this report, we compare heterologous protein expression levels from native sequences to that of codon engineered synthetic gene constructs designed by Gene Composer. A test set of proteins including a human kinase (P38{alpha}), viral polymerase (HCV NS5B), and bacterial structural protein (FtsZ) were expressed in both E. coli and a cell-free wheat germ translation system. We also compare the protein expression levels in E. coli for a set of 11 different proteins with greatly varied G:C content and codon bias. The results consistently demonstrate that protein yields from codon engineered Gene Composer designs are as good as or better than those achieved from the synonymous native genes. Moreover, structure guided N- and C-terminal deletion constructs designed with the aid of Gene Composer can lead to greater success in gene to structure work as exemplified by the X-ray crystallographic structure determination of FtsZ from Bacillus subtilis. These results validate the Gene Composer algorithms, and suggest that using a combination of synthetic gene and protein construct engineering tools can improve the economics of gene to structure research.

  3. Division: The Sleeping Dragon

    ERIC Educational Resources Information Center

    Watson, Anne

    2012-01-01

    Of the four mathematical operators, division seems to not sit easily for many learners. Division is often described as "the odd one out". Pupils develop coping strategies that enable them to "get away with it". So, problems, misunderstandings, and misconceptions go unresolved perhaps for a lifetime. Why is this? Is it a case of "out of sight out…

  4. Antibacterial activity of substituted dibenzo[a,g]quinolizin-7-ium derivatives

    PubMed Central

    Parhi, Ajit; Lu, Songfeng; Kelley, Cody; Kaul, Malvika; Pilch, Daniel S.; LaVoie, Edmond J.

    2014-01-01

    Berberine is a substituted dibenzo[a,g]quinolizin-7-ium derivative whose modest antibiotic activity is derived from its disruptive impact on the function of the essential bacterial cell division protein FtsZ. The present study reveals that the presence of a biphenyl substituent at either the 2- or 12-position of structurally-related dibenzo[a,g]quinolizin-7-ium derivatives significantly enhances antibacterial potency versus Staphylococcus aureus and Enterococcus faecalis. Studies with purified S. aureus FtsZ demonstrate that both 2- and 12-biphenyl dibenzo[a,g]quinolizin-7-ium derivatives act as enhancers of FtsZ self-polymerization. PMID:23058886

  5. Chemical Engineering Division Activities

    ERIC Educational Resources Information Center

    Chemical Engineering Education, 1978

    1978-01-01

    The 1978 ASEE Chemical Engineering Division Lecturer was Theodore Vermeulen of the University of California at Berkeley. Other chemical engineers who received awards or special recognition at a recent ASEE annual conference are mentioned. (BB)

  6. Bring Back Short Division.

    ERIC Educational Resources Information Center

    Thornton, Chich

    1985-01-01

    Some benefits of helping learners think in prime numbers are detailed. Reasons for the decay of this ability are described, with short division presented as one activity which should be reintroduced in schools. (MNS)

  7. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    1999-01-01

    The Structures and Acoustics Division of NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported are a synopsis of the work and accomplishments reported by the Division during the 1996 calendar year. A bibliography containing 42 citations is provided.

  8. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    2001-01-01

    The Structures and Acoustics Division of the NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included in this report are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported is a synopsis of the work and accomplishments completed by the Division during the 1997, 1998, and 1999 calendar years. A bibliography containing 93 citations is provided.

  9. A family of snail-related zinc finger proteins regulates two distinct and parallel mechanisms that mediate Drosophila neuroblast asymmetric divisions.

    PubMed

    Cai, Y; Chia, W; Yang, X

    2001-04-01

    Three snail family genes snail, escargot and worniu, encode related zinc finger transcription factors that mediate Drosophila central nervous system (CNS) development. We show that simultaneous removal of all three genes causes defective neuroblast asymmetric divisions; inscuteable transcription/translation is delayed/suppressed in the segmented CNS. Further more, defects in localization of cell fate determinants and orientation of the mitotic spindle in dividing neuroblasts are much stronger than those associated with inscuteable loss of function. In inscuteable neuroblasts, cell fate determinants are mislocalized during prophase and metaphase, yet during anaphase and telophase the great majority of mutant neuroblasts localize these determinants as cortical crescents overlying one of the spindle poles. This phenomenon, known as 'telophase rescue', does not occur in the absence of the snail family genes; moreover, in contrast to inscuteable mutants, mitotic spindle orientation is completely randomized. Our data provide further evidence for the existence of two distinct asymmetry-controlling mechanisms in neuroblasts both of which require snail family gene function: an inscuteable-dependent mechanism that functions throughout mitosis and an inscuteable-independent mechanism that acts during anaphase/telophase. PMID:11285234

  10. Lipopolysaccharide induces inducible nitric oxide synthase-dependent podocyte dysfunction via a hypoxia-inducible factor 1α and cell division control protein 42 and Ras-related C3 botulinum toxin substrate 1 pathway

    PubMed Central

    Mashmoushi, Ahmad K.; Oates, Jim C.

    2015-01-01

    Urine protein loss in immune complex-mediated diseases such as lupus nephritis is associated with podocyte foot process effacement (podocytopathy) but is not always dependent on glomerular immune complex deposition. Several murine and human studies have associated lupus nephritis with inducible nitric oxide synthase (iNOS) expression in what appear to be podocytes. This study was conducted to determine mechanisms of immune-complex-independent and iNOS-dependent podocyte dysfunction. Conditionally immortalized podocytes were cultured with lipopolysaccharide (LPS) and nitric oxide (NO), superoxide (SO), or peroxynitrite donors in the presence or absence of inhibitors of iNOS, reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase or monocyte chemotactic protein 1 (MCP-1), or with sepiapterin to increase coupling of iNOS homodimers. Podocyte NO, SO, and MCP-1 production and nitrotyrosine modifications were determined. The podocytopathy phenotype was determined by measuring cell motility and membrane permeability to albumin. This study determined that NO produced by iNOS is sufficient and necessary to induce podocytopathy. NO probably induces this phenotype via hypoxia-inducible factor 1α and cell division control protein 42 and Ras-related C3 botulinum toxin substrate 1 pathways. With LPS stimulation, neither SO nor peroxynitrite produced by uncoupled iNOS or NADPH oxidase nor MCP-1 was sufficient to induce the full phenotype. This study supports the notion that iNOS may induce autocrine podocyte dysfunction. Thus, targeting iNOS or the pathways of its induction may have therapeutic benefit. PMID:25765888

  11. Parkin suppresses Drp1-independent mitochondrial division.

    PubMed

    Roy, Madhuparna; Itoh, Kie; Iijima, Miho; Sesaki, Hiromi

    2016-07-01

    The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson's disease-associated protein-parkin, which biochemically and genetically interacts with Drp1-in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division. PMID:27181353

  12. Control of apoptosis by asymmetric cell division.

    PubMed

    Hatzold, Julia; Conradt, Barbara

    2008-04-01

    Asymmetric cell division and apoptosis (programmed cell death) are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well. PMID:18399720

  13. Structural and functional division into two domains of the large (100- to 115-kDa) chains of the clathrin-associated protein complex AP-2.

    PubMed Central

    Kirchhausen, T; Nathanson, K L; Matsui, W; Vaisberg, A; Chow, E P; Burne, C; Keen, J H; Davis, A E

    1989-01-01

    The clathrin-associated protein complex 2 (AP-2 complex) is a group of proteins associated with clathrin-coated vesicles and believed to interact with cytoplasmic domains of receptors found in the plasma membrane. AP-2 was purified as an assembly of several polypeptide chains (alpha, beta, AP50, and AP17), of which only the alpha and beta chains (100-115 kDa) show significant heterogeneity. We have obtained cDNA clones for two distinct rat brain beta chains. We have also studied the domain organization of bovine brain AP-2 complexes by selective proteolysis. Results of these studies show that the alpha and beta chains have a similar two-domain organization. Their amino-terminal domains are relatively invariant whereas their carboxyl-terminal domains are variable in both sequence and length. We propose that the variable domains select receptors for inclusion in coated vesicles. Images PMID:2495531

  14. SulA-independent filamentation of Escherichia coli during growth after release from high hydrostatic pressure treatment.

    PubMed

    Kawarai, T; Wachi, M; Ogino, H; Furukawa, S; Suzuki, K; Ogihara, H; Yamasaki, M

    2004-04-01

    To improve the efficiency of sterilization by high hydrostatic pressure treatment (HPT), it is desirable to know the biochemical process of bacteria most sensitive to the treatment. We investigated growth properties after release from HPT of exponentially growing Escherichia coli K-12 cells. We observed growth retardation after treatment (30 min at 37 degrees C) above 75 MPa. Long filamentous cells of about eight times normal cell length were observed at 90 min growth after treatment at 75 MPa. In the subsequent period the filamentous cells divided into normal-sized cells. recA and sulA mutant strains also formed filamentous cells, indicating that filamentation was SulA-independent. Nucleoids segregated normally in the filamentous cells. Only one FtsZ ring (or none) was detected at possible division sites in the elongated cells. Western blotting analysis demonstrated that the amount of FtsZ protein was not affected by the treatment. GTP-dependent in vitro polymerization of either FtsZ protein in E. coli crude extract or purified FtsZ protein, however, was sensitive to HPT. These facts suggest that HPT at 75 MPa denatures a fraction of FtsZ molecules, and that these denatured molecules interfere with the polymerization of functional FtsZ, resulting in the significantly reduced number of FtsZ rings. PMID:14566433

  15. A Hypomorphic Mutation Reveals a Stringent Requirement for the ATM Checkpoint Protein in Telomere Protection During Early Cell Division in Drosophila

    PubMed Central

    Morciano, Patrizia; Zhang, Yi; Cenci, Giovanni; Rong, Yikang S.

    2013-01-01

    Using Drosophila as a model system, we identified a stringent requirement for the conserved function of Ataxia Telangiectasia Mutated (ATM) in telomere protection during early embryonic development. Animals homozygous for a hypomorphic mutation in atm develop normally with minimal telomere dysfunction. However, mutant females produce inviable embryos that succumb to mitotic failure caused by covalent fusions of telomeric DNA. Interestingly, although the atm mutation encodes a premature stop codon, it must not have eliminated the production of the mutant protein, and the mutant protein retains kinase activity upon DNA damage. Moreover, although the embryonic phenotype of this mutation resembles that of hypomorphic mutations in the MRN complex, the function of MRN appears normal in the atm embryos. In contrast, there is a prominent reduction of the level of HipHop, an essential member of the Drosophila capping complex. How ATM functions in telomere protection remains poorly understood. The amenability of Drosophila embryos to molecular and biochemical investigations ensures that this newly identified mutation will facilitate future studies of ATM in telomere maintenance. PMID:23604076

  16. A hypomorphic mutation reveals a stringent requirement for the ATM checkpoint protein in telomere protection during early cell division in Drosophila.

    PubMed

    Morciano, Patrizia; Zhang, Yi; Cenci, Giovanni; Rong, Yikang S

    2013-06-01

    Using Drosophila as a model system, we identified a stringent requirement for the conserved function of Ataxia Telangiectasia Mutated (ATM) in telomere protection during early embryonic development. Animals homozygous for a hypomorphic mutation in atm develop normally with minimal telomere dysfunction. However, mutant females produce inviable embryos that succumb to mitotic failure caused by covalent fusions of telomeric DNA. Interestingly, although the atm mutation encodes a premature stop codon, it must not have eliminated the production of the mutant protein, and the mutant protein retains kinase activity upon DNA damage. Moreover, although the embryonic phenotype of this mutation resembles that of hypomorphic mutations in the MRN complex, the function of MRN appears normal in the atm embryos. In contrast, there is a prominent reduction of the level of HipHop, an essential member of the Drosophila capping complex. How ATM functions in telomere protection remains poorly understood. The amenability of Drosophila embryos to molecular and biochemical investigations ensures that this newly identified mutation will facilitate future studies of ATM in telomere maintenance. PMID:23604076

  17. The Biofilm Inhibitor Carolacton Disturbs Membrane Integrity and Cell Division of Streptococcus mutans through the Serine/Threonine Protein Kinase PknB ▿ †

    PubMed Central

    Reck, Michael; Rutz, Katrin; Kunze, Brigitte; Tomasch, Jürgen; Surapaneni, Subhash Kumar; Schulz, Stefan; Wagner-Döbler, Irene

    2011-01-01

    Carolacton, a secondary metabolite isolated from the myxobacterium Sorangium cellulosum, disturbs Streptococcus mutans biofilm viability at nanomolar concentrations. Here we show that carolacton causes leakage of cytoplasmic content (DNA and proteins) in growing cells at low pH and provide quantitative data on the membrane damage. Furthermore, we demonstrate that the biofilm-specific activity of carolacton is due to the strong acidification occurring during biofilm growth. The chemical conversion of the ketocarbonic function of the molecule to a carolacton methylester did not impact its activity, indicating that carolacton is not functionally activated at low pH by a change of its net charge. A comparative time series microarray analysis identified the VicKRX and ComDE two-component signal transduction systems and genes involved in cell wall metabolism as playing essential roles in the response to carolacton treatment. A sensitivity testing of mutants with deletions of all 13 viable histidine kinases and the serine/threonine protein kinase PknB of S. mutans identified only the ΔpknB deletion mutant as being insensitive to carolacton treatment. A strong overlap between the regulon of PknB in S. mutans and the genes affected by carolacton treatment was found. The data suggest that carolacton acts by interfering with PknB-mediated signaling in growing cells. The resulting altered cell wall morphology causes membrane damage and cell death at low pH. PMID:21840978

  18. | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Solid State Division

    SciTech Connect

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  20. The Problem with Division

    ERIC Educational Resources Information Center

    Pope, Sue

    2012-01-01

    Of the "big four", division is likely to regarded by many learners as "the odd one out", "the difficult one", "the one that is complicated", or "the scary one". It seems to have been that way "for ever", in the perception of many who have trodden the learning pathways through the world of number. But, does it have to be like this? Clearly the…

  1. Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Anticrossproducts and cross divisions.

    PubMed

    de Leva, Paolo

    2008-01-01

    This paper defines, in the context of conventional vector algebra, the concept of anticrossproduct and a family of simple operations called cross or vector divisions. It is impossible to solve for a or b the equation axb=c, where a and b are three-dimensional space vectors, and axb is their cross product. However, the problem becomes solvable if some "knowledge about the unknown" (a or b) is available, consisting of one of its components, or the angle it forms with the other operand of the cross product. Independently of the selected reference frame orientation, the known component of a may be parallel to b, or vice versa. The cross divisions provide a compact and insightful symbolic representation of a family of algorithms specifically designed to solve problems of such kind. A generalized algorithm was also defined, incorporating the rules for selecting the appropriate kind of cross division, based on the type of input data. Four examples of practical application were provided, including the computation of the point of application of a force and the angular velocity of a rigid body. The definition and geometrical interpretation of the cross divisions stemmed from the concept of anticrossproduct. The "anticrossproducts of axb" were defined as the infinitely many vectors x(i) such that x(i)xb=axb. PMID:18423647

  3. Division XII Business Meetings

    NASA Astrophysics Data System (ADS)

    Smith, Malcolm G.; Genova, Francoise; Anderson, Johannes; Federman, Steven R.; Gilmore, Alan C.; Nha, Il-Seong; Norris, Raymond P.; Robson, Ian E.; Stavinschi, Magda G.; Trimble, Virginia L.; Wainscoat, Richard J.

    2010-05-01

    Brief meetings were held to confirm the elections of the incoming Division President, Francoise Genova and Vice President, Ray Norris along with the Organizing Committee which will consist of the incoming Presidents of the 7 Commissions (5,6,14,41,46,50 and 55) plus additional nominated members. The incoming Organizing Committee will thus consist of:

  4. Appropriation of the MinD protein-interaction motif by the dimeric interface of the bacterial cell division regulator MinE

    PubMed Central

    Ghasriani, Houman; Ducat, Thierry; Hart, Chris T.; Hafizi, Fatima; Chang, Nina; Al-Baldawi, Ali; Ayed, Saud H.; Lundström, Patrik; Dillon, Jo-Anne R.; Goto, Natalie K.

    2010-01-01

    MinE is required for the dynamic oscillation of Min proteins that restricts formation of the cytokinetic septum to the midpoint of the cell in gram negative bacteria. Critical for this oscillation is MinD-binding by MinE to stimulate MinD ATP hydrolysis, a function that had been assigned to the first ∼30 residues in MinE. Previous models based on the structure of an autonomously folded dimeric C-terminal fragment suggested that the N-terminal domain is freely accessible for interactions with MinD. We report here the solution NMR structure of the full-length MinE dimer from Neisseria gonorrhoeae, with two parts of the N-terminal domain forming an integral part of the dimerization interface. Unexpectedly, solvent accessibility is highly restricted for residues that were previously hypothesized to directly interact with MinD. To delineate the true MinD-binding region, in vitro assays for MinE-stimulated MinD activity were performed. The relative MinD-binding affinities obtained for full-length and N-terminal peptides from MinE demonstrated that residues that are buried in the dimeric interface nonetheless participate in direct interactions with MinD. According to results from NMR spin relaxation experiments, access to these buried residues may be facilitated by the presence of conformational exchange. We suggest that this concealment of MinD-binding residues by the MinE dimeric interface provides a mechanism for prevention of nonspecific interactions, particularly with the lipid membrane, to allow the free diffusion of MinE that is critical for Min protein oscillation. PMID:20937912

  5. Appropriation of the MinD protein-interaction motif by the dimeric interface of the bacterial cell division regulator MinE.

    PubMed

    Ghasriani, Houman; Ducat, Thierry; Hart, Chris T; Hafizi, Fatima; Chang, Nina; Al-Baldawi, Ali; Ayed, Saud H; Lundström, Patrik; Dillon, Jo-Anne R; Goto, Natalie K

    2010-10-26

    MinE is required for the dynamic oscillation of Min proteins that restricts formation of the cytokinetic septum to the midpoint of the cell in gram negative bacteria. Critical for this oscillation is MinD-binding by MinE to stimulate MinD ATP hydrolysis, a function that had been assigned to the first ∼30 residues in MinE. Previous models based on the structure of an autonomously folded dimeric C-terminal fragment suggested that the N-terminal domain is freely accessible for interactions with MinD. We report here the solution NMR structure of the full-length MinE dimer from Neisseria gonorrhoeae, with two parts of the N-terminal domain forming an integral part of the dimerization interface. Unexpectedly, solvent accessibility is highly restricted for residues that were previously hypothesized to directly interact with MinD. To delineate the true MinD-binding region, in vitro assays for MinE-stimulated MinD activity were performed. The relative MinD-binding affinities obtained for full-length and N-terminal peptides from MinE demonstrated that residues that are buried in the dimeric interface nonetheless participate in direct interactions with MinD. According to results from NMR spin relaxation experiments, access to these buried residues may be facilitated by the presence of conformational exchange. We suggest that this concealment of MinD-binding residues by the MinE dimeric interface provides a mechanism for prevention of nonspecific interactions, particularly with the lipid membrane, to allow the free diffusion of MinE that is critical for Min protein oscillation. PMID:20937912

  6. Mammalian Orc1 protein is selectively released from chromatin and ubiquitinated during the S-to-M transition in the cell division cycle.

    PubMed

    Li, Cong-Jun; DePamphilis, Melvin L

    2002-01-01

    Previous studies have shown that changes in the affinity of the hamster Orc1 protein for chromatin during the M-to-G(1) transition correlate with the activity of hamster origin recognition complexes (ORCs) and the appearance of prereplication complexes at specific sites. Here we show that Orc1 is selectively released from chromatin as cells enter S phase, converted into a mono- or diubiquitinated form, and then deubiquitinated and re-bound to chromatin during the M-to-G(1) transition. Orc1 is degraded by the 26S proteasome only when released into the cytosol, and peptide additions to Orc1 make it hypersensitive to polyubiquitination. In contrast, Orc2 remains tightly bound to chromatin throughout the cell cycle and is not a substrate for ubiquitination. Since the concentration of Orc1 remains constant throughout the cell cycle, and its half-life in vivo is the same as that of Orc2, ubiquitination of non-chromatin-bound Orc1 presumably facilitates the inactivation of ORCs by sequestering Orc1 during S phase. Thus, in contrast to yeast (Saccharomyces cerevisiae and Schizosaccharomyces pombe), mammalian ORC activity appears to be regulated during each cell cycle through selective dissociation and reassociation of Orc1 from chromatin-bound ORCs. PMID:11739726

  7. SUSTAINABLE TECHNOLOGY DIVISION - HOME PAGE

    EPA Science Inventory

    The mission of the Sustainable Technology Division is to advance the scientific understanding, development and application of technologies and methods for prevention, removal and control of environmental risks to human health and ecology. The Division is organized into four bra...

  8. Division X: Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Nan, Ren-Dong; Taylor, Russ; Rodriguez, Luis F.; Chapman, Jessica; Dubner, Gloria; Garrett, Michael; Goss, W. Miller; Torrelles, Jose M.; Hirabayashi, Hisashi; Carilli, Chris; Hills, Richard; Shastri, Prajval

    2010-05-01

    The business meeting of Division X in the IAU 2009GA took place in three sessions during the day of August 6, 2009. The meeting, being well attended, started with the approval for the meeting agenda. Then the triennium reports were made in the first session by the president of Division X, Ren-Dong Nan, and by the chairs of three working groups: “Historic Radio Astronomy WG” by Wayne Orchiston, “Astrophysically Important Lines WG” by Masatoshi Ohishi, and “Global VLBI WG” by Tasso Tzioumis (proxy chair appointed by Steven Tingay). Afterwards, a dozen reports from observatories and worldwide significant projects have been presented in the second session. Business meeting of “Interference Mitigation WG” was located in the third session.

  9. Energy Systems Divisions

    NASA Technical Reports Server (NTRS)

    Applewhite, John

    2011-01-01

    This slide presentation reviews the JSC Energy Systems Divisions work in propulsion. Specific work in LO2/CH4 propulsion, cryogenic propulsion, low thrust propulsion for Free Flyer, robotic and Extra Vehicular Activities, and work on the Morpheus terrestrial free flyer test bed is reviewed. The back-up slides contain a chart with comparisons of LO2/LCH4 with other propellants, and reviewing the advantages especially for spacecraft propulsion.

  10. Earth Sciences Division

    NASA Astrophysics Data System (ADS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  11. Biorepositories | Division of Cancer Prevention

    Cancer.gov

    Carefully collected and controlled high-quality human biospecimens, annotated with clinical data and properly consented for investigational use, are available through the Division of Cancer Prevention Biorepositories listed in the charts below. Biorepositories Managed by the Division of Cancer Prevention Biorepositories Supported by the Division of Cancer Prevention Related Biorepositories | Information about accessing biospecimens collected from DCP-supported clinical trials and projects.

  12. Division Quilts: A Measurement Model

    ERIC Educational Resources Information Center

    Pratt, Sarah S.; Lupton, Tina M.; Richardson, Kerri

    2015-01-01

    As teachers seek activities to assist students in understanding division as more than just the algorithm, they find many examples of division as fair sharing. However, teachers have few activities to engage students in a quotative (measurement) model of division. Efraim Fischbein and his colleagues (1985) defined two types of whole-number…

  13. USACE DIVISION AND DISTRICT BOUNDARIES

    EPA Science Inventory

    The USACE Division and District Boundary data contains the delination of Corps Division and District boundaries. District and Division Boundaries are based on the US political and watershed boundaries. In the mid 1990's, WES created the file by digitizing the 1984 Civil Wor...

  14. Impact of the cell division cycle on gene circuits

    NASA Astrophysics Data System (ADS)

    Bierbaum, Veronika; Klumpp, Stefan

    2015-12-01

    In growing cells, protein synthesis and cell growth are typically not synchronous, and, thus, protein concentrations vary over the cell division cycle. We have developed a theoretical description of genetic regulatory systems in bacteria that explicitly considers the cell division cycle to investigate its impact on gene expression. We calculate the cell-to-cell variations arising from cells being at different stages in the division cycle for unregulated genes and for basic regulatory mechanisms. These variations contribute to the extrinsic noise observed in single-cell experiments, and are most significant for proteins with short lifetimes. Negative autoregulation buffers against variation of protein concentration over the division cycle, but the effect is found to be relatively weak. Stronger buffering is achieved by an increased protein lifetime. Positive autoregulation can strongly amplify such variation if the parameters are set to values that lead to resonance-like behaviour. For cooperative positive autoregulation, the concentration variation over the division cycle diminishes the parameter region of bistability and modulates the switching times between the two stable states. The same effects are seen for a two-gene mutual-repression toggle switch. By contrast, an oscillatory circuit, the repressilator, is only weakly affected by the division cycle.

  15. Regulation of cell division in higher plants

    SciTech Connect

    Jacobs, T.W.

    1992-01-01

    Cell division is arguably the most fundamental of all developmental processes. In higher plants, mitotic activity is largely confined to foci of patterned cell divisions called meristems. From these perpetually embryonic tissues arise the plant's essential organs of light capture, support, protection and reproduction. Once an adequate understanding of plant cell mitotic regulation is attained, unprecedented opportunities will ensue for analyzing and genetically controlling diverse aspects of development, including plant architecture, leaf shape, plant height, and root depth. The mitotic cycle in a variety of model eukaryotic systems in under the control of a regulatory network of striking evolutionary conservation. Homologues of the yeast cdc2 gene, its catalytic product, p34, and the cyclin regulatory subunits of the MPF complex have emerged as ubiquitous mitotic regulators. We have cloned cdc2-like and cyclin genes from pea. As in other eukaryotic model systems, p34 of Pisum sativum is a subunit of a high molecular weight complex which binds the fission yeast p13 protein and displays histone H1 kinase activity in vitro. Our primary objective in this study is to gain baseline information about the regulation of this higher plant cell division control complex in non-dividing, differentiated cells as well as in synchronous and asynchronous mitotic cells. We are investigating cdc2 and cyclin expression at the levels of protein abundance, protein phosphorylation and quaternary associations.

  16. DipM is required for peptidoglycan hydrolysis during chloroplast division

    PubMed Central

    2014-01-01

    Background Chloroplasts have evolved from a cyanobacterial endosymbiont and their continuity has been maintained over time by chloroplast division, a process which is performed by the constriction of a ring-like division complex at the division site. The division complex has retained certain components of the cyanobacterial division complex, which function inside the chloroplast. It also contains components developed by the host cell, which function outside of the chloroplast and are believed to generate constrictive force from the cytosolic side, at least in red algae and Viridiplantae. In contrast to the chloroplasts in these lineages, those in glaucophyte algae possess a peptidoglycan layer between the two envelope membranes, as do cyanobacteria. Results In this study, we show that chloroplast division in the glaucophyte C. paradoxa does not involve any known chloroplast division proteins of the host eukaryotic origin, but rather, peptidoglycan spitting and probably the outer envelope division process rely on peptidoglycan hydrolyzing activity at the division site by the DipM protein, as in cyanobacterial cell division. In addition, we found that DipM is required for normal chloroplast division in the moss Physcomitrella patens. Conclusions These results suggest that the regulation of peptidoglycan splitting was essential for chloroplast division in the early evolution of chloroplasts and this activity is likely still involved in chloroplast division in Viridiplantae. PMID:24602296

  17. Coracoacromial ligament division.

    PubMed

    Johansson, J E; Barrington, T W

    1984-01-01

    The object of this paper is to report on the findings of a retrospective study of 40 patients with 41 shoulders with persistent painful arc syndrome secondary to a chronic coracoacromial ligament inflammation who underwent simple coracoacromial ligament division at the Toronto East General and Orthopaedic Hospital between January 1973 and June 1979. Initial therapy was always nonoperative. Surgical intervention was reserved for patients who did not respond to conservative management and who had a painful arc with tenderness of the coracoacromial ligament. The aim of the coracoacromial ligament division was to relieve impingement by releasing the coracoacromial arch. Patients were carefully examined to rule out associated neck pathology, rotator cuff problems, and lesions of the acromioclavicular joint. Any patients with significantly large osteophytes under the anterior acromion were excluded. Forty patients (41 shoulders) were questioned and examined in followup. There were 29 males and 11 females. The ages ranged from 21 to 72 years (average 43.5 years). In 21 shoulders (51%), there was a history of trauma as the initiating factor. The follow-up ranged from 8 to 76 months (average 36.3 months). According to a described rating system, the results were satisfactory to excellent in 39 of 41 shoulders (95%) and unsatisfactory in two of 41 shoulders (5%). The back to work time ranged from 1 to 16 weeks (average 5.7 weeks).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6742288

  18. A unique cell division machinery in the Archaea

    PubMed Central

    Lindås, Ann-Christin; Karlsson, Erik A.; Lindgren, Maria T.; Ettema, Thijs J. G.; Bernander, Rolf

    2008-01-01

    In contrast to the cell division machineries of bacteria, euryarchaea, and eukaryotes, no division components have been identified in the second main archaeal phylum, Crenarchaeota. Here, we demonstrate that a three-gene operon, cdv, in the crenarchaeon Sulfolobus acidocaldarius, forms part of a unique cell division machinery. The operon is induced at the onset of genome segregation and division, and the Cdv proteins then polymerize between segregating nucleoids and persist throughout cell division, forming a successively smaller structure during constriction. The cdv operon is dramatically down-regulated after UV irradiation, indicating division inhibition in response to DNA damage, reminiscent of eukaryotic checkpoint systems. The cdv genes exhibit a complementary phylogenetic range relative to FtsZ-based archaeal division systems such that, in most archaeal lineages, either one or the other system is present. Two of the Cdv proteins, CdvB and CdvC, display homology to components of the eukaryotic ESCRT-III sorting complex involved in budding of luminal vesicles and HIV-1 virion release, suggesting mechanistic similarities and a common evolutionary origin. PMID:18987308

  19. Small GTPases as regulators of cell division

    PubMed Central

    Militello, Rodrigo; Colombo, María I.

    2013-01-01

    The superfamily of small GTPases serves as a signal transducer to regulate a diverse array of cellular functions. The members of this superfamily are structurally and functionally classified into at least 5 groups (Ras, Rho/Rac, Rab, Arf, and Ran) and they are involved in the control of cell proliferation and differentiation, regulation of the actin cytoskeleton, membrane trafficking, and nuclear transport. It is widely reported that members of the Rab family participate in the control of intracellular membrane trafficking through the interaction with specific effector molecules. However, many Rabs and other small GTPases have also been shown to function in cell division. In this review, we discuss current knowledge about Rab proteins regulating different stages of the cell cycle, such as the congregation and segregation of chromosomes (during metaphase) and the final stage of cell division known as cytokinesis, in which a cell is cleaved originating 2 daughter cells. PMID:24265858

  20. Activities: Understanding Division of Fractions.

    ERIC Educational Resources Information Center

    Bezuk, Nadine S.; Armstrong, Barbara E.

    1993-01-01

    Presents a series of five activities that introduce division of fractions through real-world situations. Discusses problems related to resurfacing a highway, painting dividing stripes on a highway, covering one area A with another area B, looking for patterns, and maximizing the result of a division problem. Includes reproducible worksheets. (MDH)

  1. Lightning Talks 2015: Theoretical Division

    SciTech Connect

    Shlachter, Jack S.

    2015-11-25

    This document is a compilation of slides from a number of student presentations given to LANL Theoretical Division members. The subjects cover the range of activities of the Division, including plasma physics, environmental issues, materials research, bacterial resistance to antibiotics, and computational methods.

  2. The Division of Family Roles.

    ERIC Educational Resources Information Center

    Ericksen, Julia A.; And Others

    1979-01-01

    Analyzes the marital role division between couples, in the Philadelphia area, concentrating on the division of household tasks, child care, and paid employment. Data support a marital power model with husband's income negatively related and wife's education positively related to shared roles. Blacks are more likely to share roles. (Author)

  3. Two-Step Assembly Dynamics of the Bacillus subtilis Divisome▿ †

    PubMed Central

    Gamba, Pamela; Veening, Jan-Willem; Saunders, Nigel J.; Hamoen, Leendert W.; Daniel, Richard A.

    2009-01-01

    Cell division in bacteria is carried out by about a dozen proteins which assemble at midcell and form a complex known as the divisome. To study the dynamics and temporal hierarchy of divisome assembly in Bacillus subtilis, we have examined the in vivo localization pattern of a set of division proteins fused to green fluorescent protein in germinating spores and vegetative cells. Using time series and time-lapse microscopy, we show that the FtsZ ring assembles early and concomitantly with FtsA, ZapA, and EzrA. After a time delay of at least 20% of the cell cycle, a second set of division proteins, including GpsB, FtsL, DivIB, FtsW, Pbp2B, and DivIVA, are recruited to midcell. Together, our data provide in vivo evidence for two-step assembly of the divisome. Interestingly, overproduction of FtsZ advances the temporal assembly of EzrA but not of DivIVA, suggesting that a signal different from that of FtsZ polymerization drives the assembly of late divisome proteins. Microarray analysis shows that FtsZ depletion or overexpression does not significantly alter the transcription of division genes, supporting the hypothesis that cell division in B. subtilis is mainly regulated at the posttranscriptional level. PMID:19429628

  4. DNA adenine methyltransferase (Dam) controls the expression of the cytotoxic enterotoxin (act) gene of Aeromonas hydrophila via tRNA modifying enzyme-glucose-inhibited division protein (GidA)

    PubMed Central

    Erova, Tatiana E.; Kosykh, Valeri G.; Sha, Jian; Chopra, Ashok K.

    2013-01-01

    Aeromonas hydrophila is both a human and animal pathogen, and the cytotoxic enterotoxin (Act) is a crucial virulence factor of this bacterium because of its associated hemolytic, cytotoxic, and enterotoxic activities. Previously, to define the role of some regulatory genes in modulating Act production, we showed that deletion of a glucose-inhibited division gene (gidA) encoding tRNA methylase reduced Act levels, while overproduction of DNA adenine methyltransferase (Dam) led to a concomitant increase in Act-associated biological activities of a diarrheal isolate SSU of A. hydrophila. Importantly, there are multiple GATC binding sites for Dam within an upstream sequence of the gidA gene and one such target site in the act gene upstream region. We showed the dam gene to be essential for the viability of A. hydrophila SSU, and, therefore, to better understand the interaction of the encoding genes, Dam and GidA, in act gene regulation, we constructed a gidA in-frame deletion mutant of Escherichia coli GM28 (dam+) and GM33 (Δdam) strains. We then tested the expressional activity of the act and gidA genes by using a promoterless pGlow-TOPO vector containing a reporter green fluorescent protein (GFP). Our data indicated that in GidA+ strains of E. coli, constitutive methylation of the GATC site(s) by Dam negatively regulated act and gidA gene expression as measured by GFP production. However, in the ΔgidA strains, irrespective of the presence or absence of constitutively active Dam, we did not observe any alteration in the expression of the act gene signifying the role of GidA in positively regulating Act production. To determine the exact mechanism of how Dam and GidA influence Act, a real-time quantitative PCR (RT-qPCR) assay was performed. The analysis indicated an increase in gidA and act gene expression in the A. hydrophila Dam-overproducing strain, and these data matched with Act production in the E. coli GM28 strain. Thus, the extent of DNA methylation caused by

  5. Physics Division computer facilities

    SciTech Connect

    Cyborski, D.R.; Teh, K.M.

    1995-08-01

    The Physics Division maintains several computer systems for data analysis, general-purpose computing, and word processing. While the VMS VAX clusters are still used, this past year saw a greater shift to the Unix Cluster with the addition of more RISC-based Unix workstations. The main Divisional VAX cluster which consists of two VAX 3300s configured as a dual-host system serves as boot nodes and disk servers to seven other satellite nodes consisting of two VAXstation 3200s, three VAXstation 3100 machines, a VAX-11/750, and a MicroVAX II. There are three 6250/1600 bpi 9-track tape drives, six 8-mm tapes and about 9.1 GB of disk storage served to the cluster by the various satellites. Also, two of the satellites (the MicroVAX and VAX-11/750) have DAPHNE front-end interfaces for data acquisition. Since the tape drives are accessible cluster-wide via a software package, they are, in addition to replay, used for tape-to-tape copies. There is however, a satellite node outfitted with two 8 mm drives available for this purpose. Although not part of the main cluster, a DEC 3000 Alpha machine obtained for data acquisition is also available for data replay. In one case, users reported a performance increase by a factor of 10 when using this machine.

  6. Time-division SQUID multiplexers

    NASA Astrophysics Data System (ADS)

    Irwin, K. D.; Vale, L. R.; Bergren, N. E.; Deiker, S.; Grossman, E. N.; Hilton, G. C.; Nam, S. W.; Reintsema, C. D.; Rudman, D. A.; Huber, M. E.

    2002-02-01

    SQUID multiplexers make it possible to build arrays of thousands of low-temperature bolometers and microcalorimeters based on superconducting transition-edge sensors with a manageable number of readout channels. We discuss the technical tradeoffs between proposed time-division multiplexer and frequency-division multiplexer schemes and motivate our choice of time division. Our first-generation SQUID multiplexer is now in use in an astronomical instrument. We describe our second-generation SQUID multiplexer, which is based on a new architecture that significantly reduces the dissipation of power at the first stage, allowing thousands of SQUIDs to be operated at the base temperature of a cryostat. .

  7. Physics division annual report 2006.

    SciTech Connect

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  8. Genetic and Biochemical Characterization of the MinC-FtsZ Interaction in Bacillus subtilis

    PubMed Central

    Castellen, Patricia; Nogueira, Maria Luiza C.; Bettini, Jefferson; Portugal, Rodrigo V.; Zeri, Ana Carolina M.; Gueiros-Filho, Frederico J.

    2013-01-01

    Cell division in bacteria is regulated by proteins that interact with FtsZ and modulate its ability to polymerize into the Z ring structure. The best studied of these regulators is MinC, an inhibitor of FtsZ polymerization that plays a crucial role in the spatial control of Z ring formation. Recent work established that E. coli MinC interacts with two regions of FtsZ, the bottom face of the H10 helix and the extreme C-terminal peptide (CTP). Here we determined the binding site for MinC on Bacillus subtilis FtsZ. Selection of a library of FtsZ mutants for survival in the presence of Min overexpression resulted in the isolation of 13 Min-resistant mutants. Most of the substitutions that gave rise to Min resistance clustered around the H9 and H10 helices in the C-terminal domain of FtsZ. In addition, a mutation in the CTP of B. subtilis FtsZ also produced MinC resistance. Biochemical characterization of some of the mutant proteins showed that they exhibited normal polymerization properties but reduced interaction with MinC, as expected for binding site mutations. Thus, our study shows that the overall architecture of the MinC-FtsZ interaction is conserved in E. coli and B. subtilis. Nevertheless, there was a clear difference in the mutations that conferred Min resistance, with those in B. subtilis FtsZ pointing to the side of the molecule rather than to its polymerization interface. This observation suggests that the mechanism of Z ring inhibition by MinC differs in both species. PMID:23577149

  9. Division II: Sun and Heliosphere

    NASA Astrophysics Data System (ADS)

    Melrose, Donald B.; Martinez Pillet, Valentin; Webb, David F.; Bougeret, Jean-Louis; Klimchuk, James A.; Kosovichev, Alexander; van Driel-Gesztelyi, Lidia; von Steiger, Rudolf

    2010-05-01

    This report is on activities of the Division at the General Assembly in Rio de Janeiro. Summaries of scientific activities over the past triennium have been published in Transactions A, see Melrose et al. (2008), Klimchuk et al. (2008), Martinez Pillet et al. (2008) and Bougeret et al. (2008). The business meeting of the three Commissions were incorporated into the business meeting of the Division. This report is based in part on minutes of the business meeting, provided by the Secretary of the Division, Lidia van Driel-Gesztelyi, and it also includes reports provided by the Presidents of the Commissions (C10, C12, C49) and of the Working Groups (WGs) in the Division.

  10. Division 1137 property control system

    SciTech Connect

    Pastor, D.J.

    1982-01-01

    An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.

  11. E-Division activities report

    SciTech Connect

    Barschall, H.H.

    1984-07-01

    E (Experimental Physics) Division carries out basic and applied research in atomic and nuclear physics, in materials science, and in other areas related to the missions of the Laboratory. Some of the activities are cooperative efforts with other divisions of the Laboratory, and, in a few cases, with other laboratories. Many of the experiments are directly applicable to problems in weapons and energy, some have only potential applied uses, and others are in pure physics. This report presents abstracts of papers published by E (Experimental Physics) Division staff members between July 1983 and June 1984. In addition, it lists the members of the scientific staff of the division, including visitors and students, and some of the assignments of staff members on scientific committees. A brief summary of the budget is included.

  12. E-Division activities report

    SciTech Connect

    Barschall, H.H.

    1981-07-01

    This report describes some of the activities in E (Experimental Physics) Division during the past year. E-Division carries out research and development in areas related to the missions of the Laboratory. Many of the activities are in pure and applied atomic and nuclear physics and in material science. In addition this report describes work on accelerators, microwaves, plasma diagnostics, determination of atmospheric oxygen and of nitrogen in tissue.

  13. E-Division activities report

    SciTech Connect

    Barschall, H.H.

    1983-07-01

    This report describes some of the activities in E (Experimental Physics) Division during the past year. E-division carries out research and development in areas related to the missions of the Laboratory. Many of the activities are in pure and applied atomic and nuclear physics and in materials science. In addition, this report describes development work on accelerators and on instrumentation for plasma diagnostics, nitrogen exchange rates in tissue, and breakdown in gases by microwave pulses.

  14. Beyond Cookies: Understanding Various Division Models

    ERIC Educational Resources Information Center

    Jong, Cindy; Magruder, Robin

    2014-01-01

    Having a deeper understanding of division derived from multiple models is of great importance for teachers and students. For example, students will benefit from a greater understanding of division contexts as they study long division, fractions, and division of fractions. The purpose of this article is to build on teachers' and students'…

  15. A mechanistic stochastic framework for regulating bacterial cell division

    PubMed Central

    Ghusinga, Khem Raj; Vargas-Garcia, Cesar A.; Singh, Abhyudai

    2016-01-01

    How exponentially growing cells maintain size homeostasis is an important fundamental problem. Recent single-cell studies in prokaryotes have uncovered the adder principle, where cells add a fixed size (volume) from birth to division, irrespective of their size at birth. To mechanistically explain the adder principle, we consider a timekeeper protein that begins to get stochastically expressed after cell birth at a rate proportional to the volume. Cell-division time is formulated as the first-passage time for protein copy numbers to hit a fixed threshold. Consistent with data, the model predicts that the noise in division timing increases with size at birth. Intriguingly, our results show that the distribution of the volume added between successive cell-division events is independent of the newborn cell size. This was dramatically seen in experimental studies, where histograms of the added volume corresponding to different newborn sizes collapsed on top of each other. The model provides further insights consistent with experimental observations: the distribution of the added volume when scaled by its mean becomes invariant of the growth rate. In summary, our simple yet elegant model explains key experimental findings and suggests a mechanism for regulating both the mean and fluctuations in cell-division timing for controlling size. PMID:27456660

  16. A mechanistic stochastic framework for regulating bacterial cell division.

    PubMed

    Ghusinga, Khem Raj; Vargas-Garcia, Cesar A; Singh, Abhyudai

    2016-01-01

    How exponentially growing cells maintain size homeostasis is an important fundamental problem. Recent single-cell studies in prokaryotes have uncovered the adder principle, where cells add a fixed size (volume) from birth to division, irrespective of their size at birth. To mechanistically explain the adder principle, we consider a timekeeper protein that begins to get stochastically expressed after cell birth at a rate proportional to the volume. Cell-division time is formulated as the first-passage time for protein copy numbers to hit a fixed threshold. Consistent with data, the model predicts that the noise in division timing increases with size at birth. Intriguingly, our results show that the distribution of the volume added between successive cell-division events is independent of the newborn cell size. This was dramatically seen in experimental studies, where histograms of the added volume corresponding to different newborn sizes collapsed on top of each other. The model provides further insights consistent with experimental observations: the distribution of the added volume when scaled by its mean becomes invariant of the growth rate. In summary, our simple yet elegant model explains key experimental findings and suggests a mechanism for regulating both the mean and fluctuations in cell-division timing for controlling size. PMID:27456660

  17. Bacterial cell division: a moving MinE sweeper boggles the MinD.

    PubMed

    Margolin, W

    2001-05-15

    Placement of the division site in Escherichia coli is determined in part by three Min proteins. Recent studies have shown that MinE, previously thought to form a static ring near the division site at the midcell position, actually joins MinC and MinD in their rapid oscillation between the cell poles. PMID:11378404

  18. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  19. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  20. Building an academic colorectal division.

    PubMed

    Koltun, Walter A

    2014-06-01

    Colon and rectal surgery is fully justified as a valid subspecialty within academic university health centers, but such formal recognition at the organizational level is not the norm. Creating a colon and rectal division within a greater department of surgery requires an unfailing commitment to academic concepts while promulgating the improvements that come in patient care, research, and teaching from a specialty service perspective. The creation of divisional identity then opens the door for a strategic process that will grow the division even more as well as provide benefits to the institution within which it resides. The fundamentals of core values, academic commitment, and shared success reinforced by receptive leadership are critical. Attention to culture, commitment, collaboration, control, cost, and compensation leads to a successful academic division of colon and rectal surgery. PMID:25067922

  1. Building an Academic Colorectal Division

    PubMed Central

    Koltun, Walter A.

    2014-01-01

    Colon and rectal surgery is fully justified as a valid subspecialty within academic university health centers, but such formal recognition at the organizational level is not the norm. Creating a colon and rectal division within a greater department of surgery requires an unfailing commitment to academic concepts while promulgating the improvements that come in patient care, research, and teaching from a specialty service perspective. The creation of divisional identity then opens the door for a strategic process that will grow the division even more as well as provide benefits to the institution within which it resides. The fundamentals of core values, academic commitment, and shared success reinforced by receptive leadership are critical. Attention to culture, commitment, collaboration, control, cost, and compensation leads to a successful academic division of colon and rectal surgery. PMID:25067922

  2. 49 CFR 177.841 - Division 6.1 and Division 2.3 materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Division 6.1 and Division 2.3 materials. 177.841... PUBLIC HIGHWAY Loading and Unloading § 177.841 Division 6.1 and Division 2.3 materials. (See also § 177... by other appropriate method, and the marking removed. (b) (c) Division 2.3 (poisonous gas)...

  3. The Escherichia coli Cryptic Prophage Protein YfdR Binds to DnaA and Initiation of Chromosomal Replication Is Inhibited by Overexpression of the Gene Cluster yfdQ-yfdR-yfdS-yfdT

    PubMed Central

    Noguchi, Yasunori; Katayama, Tsutomu

    2016-01-01

    The initiation of bacterial chromosomal replication is regulated by multiple pathways. To explore novel regulators, we isolated multicopy suppressors for the cold-sensitive hda-185 ΔsfiA(sulA) mutant. Hda is crucial for the negative regulation of the initiator DnaA and the hda-185 mutation causes severe replication overinitiation at the replication origin oriC. The SOS-associated division inhibitor SfiA inhibits FtsZ ring formation, an essential step for cell division regulation during the SOS response, and ΔsfiA enhances the cold sensitivity of hda-185 cells in colony formation. One of the suppressors comprised the yfdQ-yfdR-yfdS-yfdT gene cluster carried on a cryptic prophage. Increased copy numbers of yfdQRT or yfdQRS inhibited not only hda-185-dependent overinitiation, but also replication overinitiation in a hyperactive dnaA mutant, and in a mutant lacking an oriC-binding initiation-inhibitor SeqA. In addition, increasing the copy number of the gene set inhibited the growth of cells bearing specific, initiation-impairing dnaA mutations. In wild-type cells, multicopy supply of yfdQRT or yfdQRS also inhibited replication initiation and increased hydroxyurea (HU)-resistance, as seen in cells lacking DiaA, a stimulator of DnaA assembly on oriC. Deletion of the yfdQ-yfdR-yfdS-yfdT genes did not affect either HU resistance or initiation regulation. Furthermore, we found that DnaA bound specifically to YfdR in soluble protein extracts oversupplied with YfdQRST. Purified YfdR also bound to DnaA, and DnaA Phe46, an amino acid residue crucial for DnaA interactions with DiaA and DnaB replicative helicase was important for this interaction. Consistently, YfdR moderately inhibited DiaA-DnaA and DnaB-DnaA interactions. In addition, protein extracts oversupplied with YfdQRST inhibited replication initiation in vitro. Given the roles of yfdQ and yfdS in cell tolerance to specific environmental stresses, the yfdQ-yfdR-yfdS-yfdT genes might downregulate the initiator Dna

  4. Antigenic role of the endosymbionts of filarial nematodes: IgG response against the Wolbachia surface protein in cats infected with Dirofilaria immitis.

    PubMed Central

    Bazzocchi, C; Ceciliani, F; McCall, J W; Ricci, I; Genchi, C; Bandi, C

    2000-01-01

    Filarial nematodes harbour intracellular endosymbiotic bacteria, which have been assigned to the genus Wolbachia. These bacteria appear to play an important role in the pathogenesis of filarial diseases through their lipopolysaccharides. In view of the presence of Wolbachia endosymbionts in the body of filarial nematodes, one might also expect that proteins from these bacteria play an antigenic role in humans and animals affected by filariases. To test this hypothesis, we produced in recombinant form the surface protein WSP and a portion of the cell-cycle protein FTSZ from the Wolbachia of Dirofilaria immitis. Western immunoblot assays were then performed using cat sera to test the immunogenicity of these proteins. Sera were collected from owners' cats, which were either sero-negative or sero-positive for D. immitis and from cats before and after experimental infection with D. immitis. FTSZ was recognized in Western blots by sera from both positive and negative cats and from both uninfected and experimentally infected cats. WSP was recognized only by sera from positive cats and from cats experimentally infected with D. immitis; this protein was not recognized by sera from negative cats and from cats before experimental infection with D. immitis. The results of Western blot assays on WSP thus support the hypothesis that infection with filarial nematodes induces the production of antibodies against Wolbachia proteins. PMID:11197127

  5. Cell Division Resets Polarity and Motility for the Bacterium Myxococcus xanthus

    PubMed Central

    Harvey, Cameron W.; Madukoma, Chinedu S.; Mahserejian, Shant; Alber, Mark S.

    2014-01-01

    Links between cell division and other cellular processes are poorly understood. It is difficult to simultaneously examine division and function in most cell types. Most of the research probing aspects of cell division has experimented with stationary or immobilized cells or distinctly asymmetrical cells. Here we took an alternative approach by examining cell division events within motile groups of cells growing on solid medium by time-lapse microscopy. A total of 558 cell divisions were identified among approximately 12,000 cells. We found an interconnection of division, motility, and polarity in the bacterium Myxococcus xanthus. For every division event, motile cells stop moving to divide. Progeny cells of binary fission subsequently move in opposing directions. This behavior involves M. xanthus Frz proteins that regulate M. xanthus motility reversals but is independent of type IV pilus “S motility.” The inheritance of opposing polarity is correlated with the distribution of the G protein RomR within these dividing cells. The constriction at the point of division limits the intracellular distribution of RomR. Thus, the asymmetric distribution of RomR at the parent cell poles becomes mirrored at new poles initiated at the site of division. PMID:25157084

  6. Home | Division of Cancer Prevention

    Cancer.gov

    Our Research The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into cancer. |

  7. Environmental Transport Division: 1979 report

    SciTech Connect

    Murphy, C.E. Jr.; Schubert, J.F.; Bowman, W.W.; Adams, S.E.

    1980-03-01

    During 1979, the Environmental Transport Division (ETD) of the Savannah River Laboratory conducted atmospheric, terrestrial, aquatic, and marine studies, which are described in a series of articles. Separate abstracts were prepared for each. Publications written about the 1979 research are listed at the end of the report.

  8. Synthetic Division and Matrix Factorization

    ERIC Educational Resources Information Center

    Barabe, Samuel; Dubeau, Franc

    2007-01-01

    Synthetic division is viewed as a change of basis for polynomials written under the Newton form. Then, the transition matrices obtained from a sequence of changes of basis are used to factorize the inverse of a bidiagonal matrix or a block bidiagonal matrix.

  9. Psychological Sciences Division: 1985 Programs.

    ERIC Educational Resources Information Center

    Office of Naval Research, Washington, DC. Psychological Sciences Div.

    This booklet describes research carried out under sponsorship of the Psychological Sciences Division of the U.S. Office of Naval Research during Fiscal Year 1985. The booklet is divided into three programmatic research areas: (1) Engineering Psychology; (2) Personnel and Training; and (3) Group Psychology. Each program is described by an overview…

  10. Manpower Division Looks at CETA

    ERIC Educational Resources Information Center

    American Vocational Journal, 1977

    1977-01-01

    The Manpower Division at the American Vocational Association (AVA) convention in Houston was concerned about youth unemployment and about the Comprehensive Employment and Training Act (CETA)--its problems and possibilities. The panel discussion reported here reveals some differing perspectives and a general consensus--that to improve their role in…

  11. 78 FR 17431 - Antitrust Division

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ...) of the Act on July 30, 2001 (66 FR 39336). The last notification was filed with the Department on... January 2, 2013 (78 FR 117). Patricia A. Brink, Director of Civil Enforcement, Antitrust Division. BILLING...--Interchangeable Virtual Instruments Foundation, Inc. Notice is hereby given that, on February 22, 2013,...

  12. Preschool Children's Informal Division Concepts.

    ERIC Educational Resources Information Center

    Blevins-Knabe, Belinda

    The purpose of this study was to examine the division procedures of preschool children to determine whether such procedures involved one-to-one correspondence. Large and small numerosity trials were included so that the amount of effort and ease of using other procedures would vary. Odd and even number trials were included to determine whether…

  13. 77 FR 54611 - Antitrust Division

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ... Section 6(b) of the Act on June 30, 2000 (65 FR 40693). The last notification was filed with the... on June 8, 2012 (77 FR 34067). Patricia A. Brink, Director of Civil Enforcement, Antitrust Division...; Tiburon Associates, Inc., Alexandria, VA; Streamline Automation, LLC (dba C3 Propulsion), Huntsville,...

  14. International Division Regional Advisers' Reports

    ERIC Educational Resources Information Center

    Johnson, Jenny

    2006-01-01

    An Advisers primary job is to nominate candidates for the five annual ID awards; this involves working with the five International Division award coordinators. Advisers also submit an annual report on activities in their country/ region to their Area Coordinators who, in turn, report on educational technology activities in their Areas. In the…

  15. 75 FR 70031 - Antitrust Division

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Open... National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), Open Axis... branding program based upon distinctive trademarks to create high customer awareness of, demand for,...

  16. Physics division annual report 2000.

    SciTech Connect

    Thayer, K., ed.

    2001-10-04

    This report summarizes the research performed in 2000 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory and medium energy physics research, and accelerator research and development. As the Nuclear Science Advisory Committee and the nuclear science community create a new long range plan for the field in 2001, it is clear that the research of the Division is closely aligned with and continues to help define the national goals of our field. The NSAC 2001 Long Range Plan recommends as the highest priority for major new construction the Rare Isotope Accelerator (RIA), a bold step forward for nuclear structure and nuclear astrophysics. The accelerator R&D in the Physics Division has made major contributions to almost all aspects of the RIA design concept and the community was convinced that this project is ready to move forward. 2000 saw the end of the first Gammasphere epoch at ATLAS, One hundred Gammasphere experiments were completed between January 1998 and March 2000, 60% of which used the Fragment Mass Analyzer to provide mass identification in the reaction. The experimental program at ATLAS then shifted to other important research avenues including proton radioactivity, mass measurements with the Canadian Penning Trap and measurements of high energy gamma-rays in nuclear reactions with the MSU/ORNL/Texas A&M BaF{sub 2} array. ATLAS provided 5460 beam-research hours for user experiments and maintained an operational reliability of 95%. Radioactive beams accounted for 7% of the beam time. ATLAS also provided a crucial test of a key RIA concept, the ability to accelerate multiple charge states in a superconducting heavy-ion linac. This new capability was immediately used to increase the performance for a scheduled experiment. The medium energy program continued to make strides in examining how the quark-gluon structure of matter

  17. Phosphatidylinositol 4-Phosphate Negatively Regulates Chloroplast Division in Arabidopsis[OPEN

    PubMed Central

    Okazaki, Kumiko; Miyagishima, Shin-ya; Wada, Hajime

    2015-01-01

    Chloroplast division is performed by the constriction of envelope membranes at the division site. Although constriction of a ring-like protein complex has been shown to be involved in chloroplast division, it remains unknown how membrane lipids participate in the process. Here, we show that phosphoinositides with unknown function in envelope membranes are involved in the regulation of chloroplast division in Arabidopsis thaliana. PLASTID DIVISION1 (PDV1) and PDV2 proteins interacted specifically with phosphatidylinositol 4-phosphate (PI4P). Inhibition of phosphatidylinositol 4-kinase (PI4K) decreased the level of PI4P in chloroplasts and accelerated chloroplast division. Knockout of PI4Kβ2 expression or downregulation of PI4Kα1 expression resulted in decreased levels of PI4P in chloroplasts and increased chloroplast numbers. PI4Kα1 is the main contributor to PI4P synthesis in chloroplasts, and the effect of PI4K inhibition was largely abolished in the pdv1 mutant. Overexpression of DYNAMIN-RELATED PROTEIN5B (DRP5B), another component of the chloroplast division machinery, which is recruited to chloroplasts by PDV1 and PDV2, enhanced the effect of PI4K inhibition, whereas overexpression of PDV1 and PDV2 had additive effects. The amount of DRP5B that associated with chloroplasts increased upon PI4K inhibition. These findings suggest that PI4P is a regulator of chloroplast division in a PDV1- and DRP5B-dependent manner. PMID:25736058

  18. Effect of the Min System on Timing of Cell Division in Escherichia coli

    PubMed Central

    Jia, Shuxin; Keilberg, Daniela; Hot, Edina; Thanbichler, Martin; Søgaard-Andersen, Lotte; Lenz, Peter

    2014-01-01

    In Escherichia coli the Min protein system plays an important role in positioning the division site. We show that this system also has an effect on timing of cell division. We do this in a quantitative way by measuring the cell division waiting time (defined as time difference between appearance of a division site and the division event) and the Z-ring existence time. Both quantities are found to be different in WT and cells without functional Min system. We develop a series of theoretical models whose predictions are compared with the experimental findings. Continuous improvement leads to a final model that is able to explain all relevant experimental observations. In particular, it shows that the chromosome segregation defect caused by the absence of Min proteins has an important influence on timing of cell division. Our results indicate that the Min system affects the septum formation rate. In the absence of the Min proteins this rate is reduced, leading to the observed strongly randomized cell division events and the longer division waiting times. PMID:25090009

  19. Circadian clocks and cell division

    PubMed Central

    2010-01-01

    Evolution has selected a system of two intertwined cell cycles: the cell division cycle (CDC) and the daily (circadian) biological clock. The circadian clock keeps track of solar time and programs biological processes to occur at environmentally appropriate times. One of these processes is the CDC, which is often gated by the circadian clock. The intermeshing of these two cell cycles is probably responsible for the observation that disruption of the circadian system enhances susceptibility to some kinds of cancer. The core mechanism underlying the circadian clockwork has been thought to be a transcription and translation feedback loop (TTFL), but recent evidence from studies with cyanobacteria, synthetic oscillators and immortalized cell lines suggests that the core circadian pacemaking mechanism that gates cell division in mammalian cells could be a post-translational oscillator (PTO). PMID:20890114

  20. Health, Safety, and Environment Division

    SciTech Connect

    Wade, C

    1992-01-01

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.

  1. Water Resources Division training catalog

    USGS Publications Warehouse

    Hotchkiss, W.R.; Foxhoven, L.A.

    1984-01-01

    The National Training Center provides technical and management sessions nesessary for the conductance of the U.S. Geological Survey 's training programs. This catalog describes the facilities and staff at the Lakewood Training Center and describes Water Resources Division training courses available through the center. In addition, the catalog describes the procedures for gaining admission, formulas for calculating fees, and discussion of course evaluations. (USGS)

  2. The Arabidopsis Cell Division Cycle

    PubMed Central

    Gutierrez, Crisanto

    2009-01-01

    Plant cells have evolved a complex circuitry to regulate cell division. In many aspects, the plant cell cycle follows a basic strategy similar to other eukaryotes. However, several key issues are unique to plant cells. In this chapter, both the conserved and unique cellular and molecular properties of the plant cell cycle are reviewed. In addition to division of individual cells, the specific characteristic of plant organogenesis and development make that cell proliferation control is of primary importance during development. Therefore, special attention should be given to consider plant cell division control in a developmental context. Proper organogenesis depends on the formation of different cell types. In plants, many of the processes leading to cell differentiation rely on the occurrence of a different cycle, termed the endoreplication cycle, whereby cells undergo repeated full genome duplication events in the absence of mitosis and increase their ploidy. Recent findings are focusing on the relevance of changes in chromatin organization for a correct cell cycle progression and, conversely, in the relevance of a correct functioning of chromatin remodelling complexes to prevent alterations in both the cell cycle and the endocycle. PMID:22303246

  3. Analytical Chemistry Division's sample transaction system

    SciTech Connect

    Stanton, J.S.; Tilson, P.A.

    1980-10-01

    The Analytical Chemistry Division uses the DECsystem-10 computer for a wide range of tasks: sample management, timekeeping, quality assurance, and data calculation. This document describes the features and operating characteristics of many of the computer programs used by the Division. The descriptions are divided into chapters which cover all of the information about one aspect of the Analytical Chemistry Division's computer processing.

  4. Arabidopsis  SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity

    PubMed Central

    Pietra, Stefano; Gustavsson, Anna; Kiefer, Christian; Kalmbach, Lothar; Hörstedt, Per; Ikeda, Yoshihisa; Stepanova, Anna N.; Alonso, Jose M.; Grebe, Markus

    2013-01-01

    The orientation of cell division and the coordination of cell polarity within the plane of the tissue layer (planar polarity) contribute to shape diverse multicellular organisms. The root of Arabidopsis thaliana displays regularly oriented cell divisions, cell elongation and planar polarity providing a plant model system to study these processes. Here we report that the SABRE protein, which shares similarity with proteins of unknown function throughout eukaryotes, has important roles in orienting cell division and planar polarity. SABRE localizes at the plasma membrane, endomembranes, mitotic spindle and cell plate. SABRE stabilizes the orientation of CLASP-labelled preprophase band microtubules predicting the cell division plane, and of cortical microtubules driving cell elongation. During planar polarity establishment, sabre is epistatic to clasp at directing polar membrane domains of Rho-of-plant GTPases. Our findings mechanistically link SABRE to CLASP-dependent microtubule organization, shedding new light on the function of SABRE-related proteins in eukaryotes. PMID:24240534

  5. A DNA Damage-Induced, SOS-Independent Checkpoint Regulates Cell Division in Caulobacter crescentus

    PubMed Central

    Modell, Joshua W.; Kambara, Tracy K.; Perchuk, Barrett S.; Laub, Michael T.

    2014-01-01

    Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage. PMID:25350732

  6. A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus.

    PubMed

    Modell, Joshua W; Kambara, Tracy K; Perchuk, Barrett S; Laub, Michael T

    2014-10-01

    Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage. PMID:25350732

  7. Signaling to stomatal initiation and cell division

    PubMed Central

    Le, Jie; Zou, Junjie; Yang, Kezhen; Wang, Ming

    2014-01-01

    Stomata are two-celled valves that control epidermal pores whose opening and spacing optimizes shoot-atmosphere gas exchange. Arabidopsis stomatal formation involves at least one asymmetric division and one symmetric division. Stomatal formation and patterning are regulated by the frequency and placement of asymmetric divisions. This model system has already led to significant advances in developmental biology, such as the regulation of cell fate, division, differentiation, and patterning. Over the last 30 years, stomatal development has been found to be controlled by numerous intrinsic genetic and environmental factors. This mini review focuses on the signaling involved in stomatal initiation and in divisions in the cell lineage. PMID:25002867

  8. Signaling to stomatal initiation and cell division.

    PubMed

    Le, Jie; Zou, Junjie; Yang, Kezhen; Wang, Ming

    2014-01-01

    Stomata are two-celled valves that control epidermal pores whose opening and spacing optimizes shoot-atmosphere gas exchange. Arabidopsis stomatal formation involves at least one asymmetric division and one symmetric division. Stomatal formation and patterning are regulated by the frequency and placement of asymmetric divisions. This model system has already led to significant advances in developmental biology, such as the regulation of cell fate, division, differentiation, and patterning. Over the last 30 years, stomatal development has been found to be controlled by numerous intrinsic genetic and environmental factors. This mini review focuses on the signaling involved in stomatal initiation and in divisions in the cell lineage. PMID:25002867

  9. The Phosphatase PP4c Controls Spindle Orientation to Maintain Proliferative Symmetric Divisions in the Developing Neocortex

    PubMed Central

    Xie, Yunli; Jüschke, Christoph; Esk, Christopher; Hirotsune, Shinji; Knoblich, Juergen A.

    2013-01-01

    Summary In the developing neocortex, progenitor cells expand through symmetric division before they generate cortical neurons through multiple rounds of asymmetric cell division. Here, we show that the orientation of the mitotic spindle plays a crucial role in regulating the transition between those two division modes. We demonstrate that the protein phosphatase PP4c regulates spindle orientation in early cortical progenitor cells. Upon removing PP4c, mitotic spindles fail to orient in parallel to the neuroepithelial surface and progenitors divide with random orientation. As a result, their divisions become asymmetric and neurogenesis starts prematurely. Biochemical and genetic experiments show that PP4c acts by dephosphorylating the microtubule binding protein Ndel1, thereby enabling complex formation with Lis1 to form a functional spindle orientation complex. Our results identify a key regulator of cortical development and demonstrate that changes in the orientation of progenitor division are responsible for the transition between symmetric and asymmetric cell division. PMID:23830831

  10. A Diguanylate Cyclase Acts as a Cell Division Inhibitor in a Two-Step Response to Reductive and Envelope Stresses

    PubMed Central

    Kim, Hyo Kyung

    2016-01-01

    ABSTRACT Cell division arrest is a universal checkpoint in response to environmental assaults that generate cellular stress. In bacteria, the cyclic di-GMP (c-di-GMP) signaling network is one of several signal transduction systems that regulate key processes in response to extra-/intracellular stimuli. Here, we find that the diguanylate cyclase YfiN acts as a bifunctional protein that produces c-di-GMP in response to reductive stress and then dynamically relocates to the division site to arrest cell division in response to envelope stress in Escherichia coli. YfiN localizes to the Z ring by interacting with early division proteins and stalls cell division by preventing the initiation of septal peptidoglycan synthesis. These studies reveal a new role for a diguanylate cyclase in responding to environmental change, as well as a novel mechanism for arresting cell division. PMID:27507823

  11. Regulation of cell division in higher plants. Progress report

    SciTech Connect

    Jacobs, T.W.

    1992-07-01

    Cell division is arguably the most fundamental of all developmental processes. In higher plants, mitotic activity is largely confined to foci of patterned cell divisions called meristems. From these perpetually embryonic tissues arise the plant`s essential organs of light capture, support, protection and reproduction. Once an adequate understanding of plant cell mitotic regulation is attained, unprecedented opportunities will ensue for analyzing and genetically controlling diverse aspects of development, including plant architecture, leaf shape, plant height, and root depth. The mitotic cycle in a variety of model eukaryotic systems in under the control of a regulatory network of striking evolutionary conservation. Homologues of the yeast cdc2 gene, its catalytic product, p34, and the cyclin regulatory subunits of the MPF complex have emerged as ubiquitous mitotic regulators. We have cloned cdc2-like and cyclin genes from pea. As in other eukaryotic model systems, p34 of Pisum sativum is a subunit of a high molecular weight complex which binds the fission yeast p13 protein and displays histone H1 kinase activity in vitro. Our primary objective in this study is to gain baseline information about the regulation of this higher plant cell division control complex in non-dividing, differentiated cells as well as in synchronous and asynchronous mitotic cells. We are investigating cdc2 and cyclin expression at the levels of protein abundance, protein phosphorylation and quaternary associations.

  12. 1. Oblique view of 215 Division Street, looking southwest, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Oblique view of 215 Division Street, looking southwest, showing front (east) facade and north side, 213 Division Street is visible at left and 217 Division Street appears at right - 215 Division Street (House), Rome, Floyd County, GA

  13. NEN Division Funding Gap Analysis

    SciTech Connect

    Esch, Ernst I.; Goettee, Jeffrey D.; Desimone, David J.; Lakis, Rollin E.; Miko, David K.

    2012-09-05

    The work in NEN Division revolves around proliferation detection. The sponsor funding model seems to have shifted over the last decades. For the past three lustra, sponsors are mainly interested in funding ideas and detection systems that are already at a technical readiness level 6 (TRL 6 -- one step below an industrial prototype) or higher. Once this level is reached, the sponsoring agency is willing to fund the commercialization, implementation, and training for the systems (TRL 8, 9). These sponsors are looking for a fast turnaround (1-2 years) technology development efforts to implement technology. To support the critical national and international needs for nonprolifertion solutions, we have to maintain a fluent stream of subject matter expertise from the fundamental principals of radiation detection through prototype development all the way to the implementation and training of others. NEN Division has large funding gaps in the Valley of Death region. In the current competitive climate for nuclear nonproliferation projects, it is imminent to increase our lead in this field.

  14. Stochastic models for cell division

    NASA Astrophysics Data System (ADS)

    Stukalin, Evgeny; Sun, Sean

    2013-03-01

    The probability of cell division per unit time strongly depends of age of cells, i.e., time elapsed since their birth. The theory of cell populations in the age-time representation is systematically applied for modeling cell division for different spreads in generation times. We use stochastic simulations to address the same issue at the level of individual cells. Our approach unlike deterministic theory enables to analyze the size fluctuations of cell colonies at different growth conditions (in the absence and in the presence of cell death, for initially synchronized and asynchronous cell populations, for conditions of restricted growth). We find the simple quantitative relation between the asymptotic values of relative size fluctuations around mean values for initially synchronized cell populations under growth and the coefficients of variation of generation times. Effect of initial age distribution for asynchronous growth of cell cultures is also studied by simulations. The influence of constant cell death on fluctuations of sizes of cell populations is found to be essential even for small cell death rates, i.e., for realistic growth conditions. The stochastic model is generalized for biologically relevant case that involves both cell reproduction and cell differentiation.

  15. Structures Division 1994 Annual Report

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1994 are presented.

  16. Snapping magnetosome chains by asymmetric cell division in magnetotactic bacteria.

    PubMed

    Lin, Wei; Pan, Yongxin

    2011-12-01

    The mechanism by which prokaryotic cells organize and segregate their intracellular organelles during cell division has recently been the subject of substantial interest. Unlike other microorganisms, magnetotactic bacteria (MTB) form internal magnets (known as magnetosome chain) for magnetic orientation, and thus face an additional challenge of dividing and equipartitioning this magnetic receptor to their daughter cells. Although MTB have been investigated more than four decades, it is only recently that the basic mechanism of how MTB divide and segregate their magnetic organelles has been addressed. In this issue of Molecular Microbiology, the cell cycle of the model magnetotactic bacterium, Magnetospirillum gryphiswaldense is characterized by Katzmann and co-workers. The authors have found that M. gryphiswaldense undergoes an asymmetric cell division along two planes. A novel wedge-like type of cellular constriction is observed before separation of daughter cells and magnetosome chains, which is assumed to help cell cope with the magnetic force within the magnetosome chain. The data shows that the magnetosome chain becomes actively recruited to the cellular division site, in agreement with the previous suggestions described by Staniland et al. (2010), and the actin-like protein MamK is likely involved in this fast polar-to-midcell translocalization. With the use of cryo-electron tomography, an arc-shaped Z ring is observed near the division site, which is assumed to trigger the asymmetric septation of cell and magnetosome chain. PMID:22066928

  17. Operational Characterization of Divisibility of Dynamical Maps.

    PubMed

    Bae, Joonwoo; Chruściński, Dariusz

    2016-07-29

    In this work, we show the operational characterization to the divisibility of dynamical maps in terms of the distinguishability of quantum channels. It is proven that the distinguishability of any pair of quantum channels does not increase under divisible maps, in which the full hierarchy of divisibility is isomorphic to the structure of entanglement between system and environment. This shows that (i) channel distinguishability is the operational quantity signifying (detecting) divisibility (indivisibility) of dynamical maps and (ii) the decision problem for the divisibility of maps is as hard as the separability problem in entanglement theory. We also provide the information-theoretic characterization to the divisibility of maps with conditional min-entropy. PMID:27517760

  18. Chemical Technology Division annual technical report 1997

    SciTech Connect

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  19. Mammalian aPKC/Par polarity complex mediated regulation of epithelial division orientation and cell fate

    SciTech Connect

    Vorhagen, Susanne; Niessen, Carien M.

    2014-11-01

    Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Loss of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.

  20. Asymmetrical division of Saccharomyces cerevisiae.

    PubMed Central

    Lord, P G; Wheals, A E

    1980-01-01

    The unequal division model proposed for budding yeast (L. H. Hartwell and M. W. Unger, J. Cell Biol. 75:422-435, 1977) was tested by bud scar analyses of steady-state exponential batch cultures of Saccharomyces cerevisiae growing at 30 degrees C at 19 different rates, which were obtained by altering the carbon source. The analyses involved counting the number of bud scars, determining the presence or absence of buds on at least 1,000 cells, and independently measuring the doubling times (gamma) by cell number increase. A number of assumptions in the model were tested and found to be in good agreement with the model. Maximum likelihood estimates of daughter cycle time (D), parent cycle time (P), and the budded phase (B) were obtained, and we concluded that asymmetrical division occurred at all growth rates tested (gamma, 75 to 250 min). D, P, and B are all linearly related to gamma, and D, P, and gamma converge to equality (symmetrical division) at gamma = 65 min. Expressions for the genealogical age distribution for asymmetrically dividing yeast cells were derived. The fraction of daughter cells in steady-state populations is e-alpha P, and the fraction of parent cells of age n (where n is the number of buds that a cell has produced) is (e-alpha P)n-1(1-e-alpha P)2, where alpha = IN2/gamma; thus, the distribution changes with growth rate. The frequency of cells with different numbers of bud scars (i.e., different genealogical ages) was determined for all growth rates, and the observed distribution changed with the growth rate in the manner predicted. In this haploid strain new buds formed adjacent to the previous buds in a regular pattern, but at slower growth rates the pattern was more irregular. The median volume of the cells and the volume at start in the cell cycle both increased at faster growth rates. The implications of these findings for the control of the cell cycle are discussed. PMID:6991494

  1. The Materials Division: A case study

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.; Lowell, Carl E.

    1989-01-01

    The Materials Division at NASA's Lewis Research Center has been engaged in a program to improve the quality of its output. The division, its work, and its customers are described as well as the methodologies developed to assess and improve the quality of the Division's staff and output. Examples of these methodologies are presented and evaluated. An assessment of current progress is also presented along with a summary of future plans.

  2. Physics division annual report 2005.

    SciTech Connect

    Glover, J.; Physics

    2007-03-12

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were

  3. Major Programs | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention supports major scientific collaborations, research networks, investigator-initiated grants, postdoctoral training, and specialized resources across the United States. |

  4. Children's Inventions for Multidigit Multiplication and Division.

    ERIC Educational Resources Information Center

    Caliandro, Christine Koller

    2000-01-01

    Describes an informal research activity in which third grade students invent their own algorithms for multidigit multiplication and division. Discusses teaching implications and action research ideas. (ASK)

  5. Deletion of mitochondrial associated ubiquitin fold modifier protein Ufm1 in Leishmania donovani results in loss of β-oxidation of fatty acids and blocks cell division in the amastigote stage

    PubMed Central

    Gannavaram, Sreenivas; Connelly, Patricia S; Daniels, Mathew P; Duncan, Robert; Salotra, Poonam; Nakhasi, Hira L

    2014-01-01

    Summary Recently, we described the existence of the ubiquitin fold modifier1 (Ufm1) and its conjugation pathway in Leishmania donovani. We demonstrated the conjugation of Ufm1 to proteins such as mitochondrial trifunctional protein (MTP) that catalyzes β-oxidation of fatty acids in L. donovani. To elucidate the biological roles of the Ufm1-mediated modifications, we made an L. donovani Ufm1 null mutant (Ufm1−/−). Loss of Ufm1 and consequently absence of Ufm1 conjugation with MTP resulted in diminished acetyl-CoA, the end product of the β-oxidation in the Ufm1−/− amastigote stage. The Ufm1−/− mutants showed reduced survival in the amastigote stage in vitro and ex vivo in human macrophages. This survival was restored by re-expression of wild type Ufm1 with concomitant induction of acetyl-CoA but not by re-expressing the non-conjugatable Ufm1, indicating the essential nature of Ufm1 conjugation and β-oxidation. Both cell cycle analysis and ultrastructural studies of Ufm1−/− parasites confirmed the role of Ufm1 in amastigote growth. The defect in vitro growth of amstigotes in human macrophages was further substantiated by reduced survival. Therefore, these studies suggest the importance of Ufm1 in Leishmania pathogenesis with larger impact on other organisms and further provide an opportunity to test Ufm1−/− parasites as drug and vaccine targets. PMID:22897198

  6. Photobase generator assisted pitch division

    NASA Astrophysics Data System (ADS)

    Gu, Xinyu; Bates, Christopher M.; Cho, Younjin; Kawakami, Takanori; Nagai, Tomoki; Ogata, Toshiyuki; Sundaresan, Arunkumar K.; Turro, Nicholas J.; Bristol, Robert; Zimmerman, Paul; Willson, C. Grant

    2010-04-01

    The drive to sustain the improvements in productivity that derive from following Moore's law has led the semiconductor industry to explore new technologies that enable production of smaller and smaller features on semiconductor device. Pitch division techniques and double exposure lithography are approaches that print features beyond the fundamental resolution limit of state-of-art lenses by modifying the lithographic process. This paper presents a new technique that enables pitch division in the printing of gratings using only a single exposure that is fully compatible with the current manufacturing tools. This technique employs a classical photoresist polymer together with a photoactive system that incorporates both a photoacid generator (PAG) and a photobase generator (PBG). The PBG is added to the resist formulation in higher molar concentration than the PAG, but has a base production rate that is slower than the acid production rate of the PAG. The PBG functions as a dose-dependent base quencher, which neutralizes the acid in high dose exposure regions but not in the low dose regions. This photoactive system can be exploited in the design of both positive tone and negative tone resist formulations that provide a developed image of a grating that is twice the frequency of the grating on the mask. A simulation of this process was performed for a 52 nm line and space pattern using PROLITH and customized codes. The results showed generation of a 26 nm half pitch relief image after development. Through this new technique, a 45 nm half pitch line and space pattern was experimentally achieved with a mask that produces a 90 nm half pitch aerial image. This corresponds to a k1 factor of 0.13. The principles, the materials design and the first lithographic evaluations of this system are reported.

  7. Genome-wide gene expression profiles in response to plastid division perturbations.

    PubMed

    Maple, Jodi; Winge, Per; Tveitaskog, Astrid Elisabeth; Gargano, Daniela; Bones, Atle M; Møller, Simon Geir

    2011-11-01

    Plastids are vital organelles involved in important metabolic functions that directly affect plant growth and development. Plastids divide by binary fission involving the coordination of numerous protein components. A tight control of the plastid division process ensures that: there is a full plastid complement during and after cell division, specialized cell types have optimal plastid numbers; the division rate is modulated in response to stress, metabolic fluxes and developmental status. However, how this control is exerted by the host nucleus is unclear. Here, we report a genome-wide microarray analysis of three accumulation and replication of chloroplasts (arc) mutants that show a spectrum of altered plastid division characteristics. To ensure a comprehensive data set, we selected arc3, arc5 and arc11 because they harbour mutations in protein components of both the stromal and cytosolic division machinery, are of different evolutionary origin and display different phenotypic severities in terms of chloroplast number, size and volume. We show that a surprisingly low number of genes are affected by altered plastid division status, but that the affected genes encode proteins important for a variety of fundamental plant processes. PMID:21713643

  8. Accurate Cell Division in Bacteria: How Does a Bacterium Know Where its Middle Is?

    NASA Astrophysics Data System (ADS)

    Howard, Martin; Rutenberg, Andrew

    2004-03-01

    I will discuss the physical principles lying behind the acquisition of accurate positional information in bacteria. A good application of these ideas is to the rod-shaped bacterium E. coli which divides precisely at its cellular midplane. This positioning is controlled by the Min system of proteins. These proteins coherently oscillate from end to end of the bacterium. I will present a reaction-diffusion model that describes the diffusion of the Min proteins, and their binding/unbinding from the cell membrane. The system possesses an instability that spontaneously generates the Min oscillations, which control accurate placement of the midcell division site. I will then discuss the role of fluctuations in protein dynamics, and investigate whether fluctuations set optimal protein concentration levels. Finally I will examine cell division in a different bacteria, B. subtilis. where different physical principles are used to regulate accurate cell division. See: Howard, Rutenberg, de Vet: Dynamic compartmentalization of bacteria: accurate division in E. coli. Phys. Rev. Lett. 87 278102 (2001). Howard, Rutenberg: Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. Phys. Rev. Lett. 90 128102 (2003). Howard: A mechanism for polar protein localization in bacteria. J. Mol. Biol. 335 655-663 (2004).

  9. Deepening Students' Understanding of Multiplication and Division by Exploring Divisibility by Nine

    ERIC Educational Resources Information Center

    Young-Loveridge, Jenny; Mills, Judith

    2012-01-01

    This article explores how a focus on understanding divisibility rules can be used to help deepen students' understanding of multiplication and division with whole numbers. It is based on research with seven Year 7-8 teachers who were observed teaching a group of students a rule for divisibility by nine. As part of the lesson, students were shown a…

  10. Moral Reasoning of Division III and Division I Athletes: Is There a Difference?

    ERIC Educational Resources Information Center

    Stoll, Sharon Kay; And Others

    This study sought to examine the potentially corrupting influences of media attention, money, and the accompanying stress on the moral reasoning of student athletes at both Division I and Division III National College Athletics Association (NCAA) schools. Subjects were 718 nonathletes and 277 randomly selected athletes at a Division I school and…

  11. 76 FR 4724 - Emerson Transportation Division, a Division of Emerson Electric, Including Workers Located...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... Transportation Division, a division of Emerson Electric, Bridgeton, Missouri. The notice was published in the Federal Register on December 16, 2010 (75 FR 75701). At the request of a State of Arkansas agent, the... Division lived throughout the United States, including Arkansas, but report to the Bridgeton,...

  12. Use of abnormal preprophase bands to decipher division plane determination

    NASA Technical Reports Server (NTRS)

    Granger, C.; Cyr, R.

    2001-01-01

    Many premitotic plant cells possess a cortical preprophase band of microtubules and actin filaments that encircles the nucleus. In vacuolated cells, the preprophase band is visibly connected to the nucleus by a cytoplasmic raft of actin filaments and microtubules termed the phragmosome. Typically, the location of the preprophase band and phragmosome corresponds to, and thus is thought to influence, the location of the cell division plane. To better understand the function of the preprophase band and phragmosome in orienting division, we used a green fluorescent protein-based microtubule reporter protein to observe mitosis in living tobacco bright yellow 2 cells possessing unusual preprophase bands. Observations of mitosis in these unusual cells support the involvement of the preprophase band/phragmosome in properly positioning the preprophase nucleus, influencing spindle orientation such that the cytokinetic phragmoplast initially grows in an appropriate direction, and delineating a region in the cell cortex that attracts microtubules and directs later stages of phragmoplast growth. Thus, the preprophase band/phragmosome appears to perform several interrelated functions to orient the division plane. However, functional information associated with the preprophase band is not always used or needed and there appears to be an age or distance-dependent character to the information. Cells treated with the anti-actin drug, latrunculin B, are still able to position the preprophase nucleus suggesting that microtubules may play a dominant role in premitotic positioning. Furthermore, in treated cells, spindle location and phragmoplast insertion are frequently abnormal suggesting that actin plays a significant role in nuclear anchoring and phragmoplast guidance. Thus, the microtubule and actin components of the preprophase band/phragmosome execute complementary activities to ensure proper orientation of the division plane.

  13. Physics Division annual report 2004.

    SciTech Connect

    Glover, J.

    2006-04-06

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne continues to

  14. 25 CFR 213.29 - Division orders.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Division orders. 213.29 Section 213.29 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF RESTRICTED LANDS OF MEMBERS OF FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING Rents and Royalties § 213.29 Division orders. (a)...

  15. Teaching Cell Division: Basics and Recommendations.

    ERIC Educational Resources Information Center

    Smith, Mike U.; Kindfield, Ann C. H.

    1999-01-01

    Presents a concise overview of cell division that includes only the essential concepts necessary for understanding genetics and evolution. Makes recommendations based on published research and teaching experiences that can be used to judge the merits of potential activities and materials for teaching cell division. Makes suggestions regarding the…

  16. "American Gothic" and the Division of Labor.

    ERIC Educational Resources Information Center

    Saunders, Robert J.

    1987-01-01

    Provides historical review of gender-based division of labor. Argues that gender-based division of labor served a purpose in survival of tribal communities but has lost meaning today and may be a handicap to full use of human talent and ability in the arts. There is nothing in various art forms which make them more appropriate for males or…

  17. Friday's Agenda | Division of Cancer Prevention

    Cancer.gov

    TimeAgenda8:00 am - 8:10 amWelcome and Opening RemarksLeslie Ford, MDAssociate Director for Clinical ResearchDivision of Cancer Prevention, NCIEva Szabo, MD Chief, Lung and Upper Aerodigestive Cancer Research GroupDivision of Cancer Prevention, NCI8:10 am - 8:40 amClinical Trials Statistical Concepts for Non-Statisticians |

  18. Materials Sciences Division 1990 annual report

    SciTech Connect

    Not Available

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  19. Research Networks Map | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention supports major scientific collaborations and research networks at more than 100 sites across the United States.  Five Major Programs' sites are shown on this map. | The Division of Cancer Prevention supports major scientific collaborations and research networks at more than 100 sites across the United States.

  20. New Study Designs | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention is expanding clinical research beyond standard trial designs to find interventions that may play a role in more than one prevalent disease. | The Division of Cancer Prevention is expanding clinical research beyond standard trial designs to find interventions that may play a role in more than one prevalent disease.

  1. Guide to the Division of Research Programs.

    ERIC Educational Resources Information Center

    National Endowment for the Humanities (NFAH), Washington, DC.

    This brief guide to the Research Programs Division of the National Endowment for the Humanities covers basic information, describes programs, and summarizes policies and procedures. An introductory section describes the division and its mission to encourage the development and dissemination of significant knowledge and scholarship in the…

  2. Cognitive and Neural Sciences Division, 1991 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    This report documents research and development performed under the sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research in fiscal year 1991. It provides abstracts (title, principal investigator, project code, objective, approach, progress, and related reports) of projects of three program divisions (cognitive…

  3. The Changing Nature of Division III Athletics

    ERIC Educational Resources Information Center

    Beaver, William

    2014-01-01

    Non-selective Division III institutions often face challenges in meeting their enrollment goals. To ensure their continued viability, these schools recruit large numbers of student athletes. As a result, when compared to FBS (Football Bowl Division) institutions these schools have a much higher percentage of student athletes on campus and a…

  4. Cognitive and Neural Sciences Division 1990 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Jr., Ed.

    Research and development efforts carried out under sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research during fiscal year 1990 are described in this compilation of project description summaries. The Division's research is organized in three types of programs: (1) Cognitive Science (the human learner--cognitive…

  5. Identification of two factors which bind to the upstream sequences of a number of nuclear genes coding for mitochondrial proteins and to genetic elements important for cell division in yeast.

    PubMed Central

    Dorsman, J C; van Heeswijk, W C; Grivell, L A

    1988-01-01

    Two abundant factors, GFI and GFII which interact with the 5' flanking regions of nuclear genes coding for proteins of the mitochondrial respiratory chain have been identified. In one case (subunit VIII of QH2: cytochrome c oxidoreductase) the binding sites for both factors overlap completely and their binding is mutually exclusive. For the other 5' regions tested the GFI and GFII binding sites do not coincide. Interestingly, binding sites for GFI and GFII are also present in or at the 3' ends of the coding regions of two genes of the PHO gene family and in DNA elements important for optimal ARS and CEN function respectively. The sites recognized by GFI conform to the consensus RTCRNNNNNNACGNR, while those recognized by GFII contain the element RTCACGTG. We speculate that GFI and GFII may play a role in different cellular processes, dependent on the context of their binding sites and that one of these processes may be the coordination of the expression of genes involved in mitochondrial biogenesis with the progress of the cell cycle. Images PMID:3045755

  6. Gravity and the orientation of cell division

    NASA Technical Reports Server (NTRS)

    Helmstetter, C. E.

    1997-01-01

    A novel culture system for mammalian cells was used to investigate division orientations in populations of Chinese hamster ovary cells and the influence of gravity on the positioning of division axes. The cells were tethered to adhesive sites, smaller in diameter than a newborn cell, distributed over a nonadhesive substrate positioned vertically. The cells grew and divided while attached to the sites, and the angles and directions of elongation during anaphase, projected in the vertical plane, were found to be random with respect to gravity. However, consecutive divisions of individual cells were generally along the same axis or at 90 degrees to the previous division, with equal probability. Thus, successive divisions were restricted to orthogonal planes, but the choice of plane appeared to be random, unlike the ordered sequence of cleavage orientations seen during early embryo development.

  7. 1998 Chemical Technology Division Annual Technical Report.

    SciTech Connect

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  8. Characterizing Septum Inhibition in Mycobacterium tuberculosis for Novel Drug Discovery

    SciTech Connect

    Respicio,L.; Nair, P.; Huang, Q.; Anil, B.; Tracz, S.; Truglio, J.; Kisker, C.; Raleigh, D.; Ojima, I.; et al

    2008-01-01

    A temperature sensitive mutation in the cell division protein FtsZ was used in combination with transcriptional analysis to identify biomarkers for inhibition of septum formation. Crystallography and modeling revealed that the glycine for aspartate substitution at amino acid 210 was located in helix 8 of the protein, adjacent to the T7 synergy loop. To verify the molecular behavior of FtsZD210G, the in vitro activity and structural stability were evaluated as a function of temperature. These analyses confirmed that the FtsZD210G mutant had reduced GTPase and polymerization activity compared to wild-type FtsZ, and CD spectroscopy demonstrated that both FtsZD210G and wild-type FtsZ had similar structure and stability. Significantly, the FtsZD210G merodiploid strain of M. tuberculosis had compromised growth at 37 C, substantiating the suitability of FtsZD210G as a molecular tool for global analysis in response to improper FtsZ polymerization and septum inhibition. Advanced model-based bioinformatics and transcriptional mapping were used to identify high-content multiple features that provide biomarkers for the development of a rational drug screening platform for discovering novel chemotherapeutics that target cell division.

  9. Remodeling of the Z-Ring Nanostructure during the Streptococcus pneumoniae Cell Cycle Revealed by Photoactivated Localization Microscopy

    PubMed Central

    Jacq, Maxime; Bourgeois, Dominique; Moriscot, Christine; Di Guilmi, Anne-Marie; Vernet, Thierry

    2015-01-01

    ABSTRACT Ovococci form a morphological group that includes several human pathogens (enterococci and streptococci). Their shape results from two modes of cell wall insertion, one allowing division and one allowing elongation. Both cell wall synthesis modes rely on a single cytoskeletal protein, FtsZ. Despite the central role of FtsZ in ovococci, a detailed view of the in vivo nanostructure of ovococcal Z-rings has been lacking thus far, limiting our understanding of their assembly and architecture. We have developed the use of photoactivated localization microscopy (PALM) in the ovococcus human pathogen Streptococcus pneumoniae by engineering spDendra2, a photoconvertible fluorescent protein optimized for this bacterium. Labeling of endogenously expressed FtsZ with spDendra2 revealed the remodeling of the Z-ring’s morphology during the division cycle at the nanoscale level. We show that changes in the ring’s axial thickness and in the clustering propensity of FtsZ correlate with the advancement of the cell cycle. In addition, we observe double-ring substructures suggestive of short-lived intermediates that may form upon initiation of septal cell wall synthesis. These data are integrated into a model describing the architecture and the remodeling of the Z-ring during the cell cycle of ovococci. PMID:26286692

  10. Physics division annual report 1999

    SciTech Connect

    Thayer, K., ed.; Physics

    2000-12-06

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (WA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design. The heavy-ion research program focused on GammaSphere, the premier facility for nuclear structure gamma-ray studies. One example of the

  11. 49 CFR 1242.03 - Made by accounting divisions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Made by accounting divisions. 1242.03 Section 1242... accounting divisions. The separation shall be made by accounting divisions, where such divisions are maintained, and the aggregate of the accounting divisions reported for the quarter and for the year....

  12. 49 CFR 1242.03 - Made by accounting divisions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Made by accounting divisions. 1242.03 Section 1242... accounting divisions. The separation shall be made by accounting divisions, where such divisions are maintained, and the aggregate of the accounting divisions reported for the quarter and for the year....

  13. The Actomyosin Ring Recruits Early Secretory Compartments to the Division Site in Fission Yeast

    PubMed Central

    Vjestica, Aleksandar; Tang, Xin-Zi

    2008-01-01

    The ultimate goal of cytokinesis is to establish a membrane barrier between daughter cells. The fission yeast Schizosaccharomyces pombe utilizes an actomyosin-based division ring that is thought to provide physical force for the plasma membrane invagination. Ring constriction occurs concomitantly with the assembly of a division septum that is eventually cleaved. Membrane trafficking events such as targeting of secretory vesicles to the division site require a functional actomyosin ring suggesting that it serves as a spatial landmark. However, the extent of polarization of the secretion apparatus to the division site is presently unknown. We performed a survey of dynamics of several fluorophore-tagged proteins that served as markers for various compartments of the secretory pathway. These included markers for the endoplasmic reticulum, the COPII sites, and the early and late Golgi. The secretion machinery exhibited a marked polarization to the division site. Specifically, we observed an enrichment of the transitional endoplasmic reticulum (tER) accompanied by Golgi cisternae biogenesis. These processes required actomyosin ring assembly and the function of the EFC-domain protein Cdc15p. Cdc15p overexpression was sufficient to induce tER polarization in interphase. Thus, fission yeast polarizes its entire secretory machinery to the cell division site by utilizing molecular cues provided by the actomyosin ring. PMID:18184749

  14. Chromosome replication, cell growth, division and shape: a personal perspective

    PubMed Central

    Zaritsky, Arieh; Woldringh, Conrad L.

    2015-01-01

    The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the bacterial cell division cycle (BCD), described as “The Central Dogma in Bacteriology,” is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion) is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that the total amount of DNA associated with the replication terminus, so called “nucleoid complexity,” is directly related to cell size and shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation) to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, e.g., stress in the plasma membrane, relieving nucleoid occlusion in the cell’s center hence enabling the divisome to assemble and function between segregated daughter nucleoids. PMID:26284044

  15. Chromosome replication, cell growth, division and shape: a personal perspective.

    PubMed

    Zaritsky, Arieh; Woldringh, Conrad L

    2015-01-01

    The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the bacterial cell division cycle (BCD), described as "The Central Dogma in Bacteriology," is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion) is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that the total amount of DNA associated with the replication terminus, so called "nucleoid complexity," is directly related to cell size and shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation) to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, e.g., stress in the plasma membrane, relieving nucleoid occlusion in the cell's center hence enabling the divisome to assemble and function between segregated daughter nucleoids. PMID:26284044

  16. Earth Sciences Division collected abstracts: 1979

    SciTech Connect

    Henry, A.L.; Schwartz, L.L.

    1980-04-30

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.

  17. Overview of the Applied Aerodynamics Division

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A major reorganization of the Aeronautics Directorate of the Langley Research Center occurred in early 1989. As a result of this reorganization, the scope of research in the Applied Aeronautics Division is now quite different than that in the past. An overview of the current organization, mission, and facilities of this division is presented. A summary of current research programs and sample highlights of recent research are also presented. This is intended to provide a general view of the scope and capabilities of the division.

  18. Chemical Sciences Division annual report 1994

    SciTech Connect

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  19. Asymmetric cell division in plant development.

    PubMed

    Heidstra, Renze

    2007-01-01

    Plant embryogenesis creates a seedling with a basic body plan. Post-embryonically the seedling elaborates with a lifelong ability to develop new tissues and organs. As a result asymmetric cell divisions serve essential roles during embryonic and postembryonic development to generate cell diversity. This review highlights selective cases of asymmetric division in the model plant Arabidopsis thaliana and describes the current knowledge on fate determinants and mechanisms involved. Common themes that emerge are: 1. role of the plant hormone auxin and its polar transport machinery; 2. a MAP kinase signaling cascade and; 3. asymmetric segregating transcription factors that are involved in several asymmetric cell divisions. PMID:17585494

  20. Biology and Medicine Division: Annual report 1986

    SciTech Connect

    Not Available

    1987-04-01

    The Biology and Medicine Division continues to make important contributions in scientific areas in which it has a long-established leadership role. For 50 years the Division has pioneered in the application of radioisotopes and charged particles to biology and medicine. There is a growing emphasis on cellular and molecular applications in the work of all the Division's research groups. The powerful tools of genetic engineering, the use of recombinant products, the analytical application of DNA probes, and the use of restriction fragment length polymorphic DNA are described and proposed for increasing use in the future.

  1. 2. JL photographer, summer 1978. View from south of Division ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. JL photographer, summer 1978. View from south of Division Avenue Punting and Filtration plant. - Division Avenue Pumping Station & Filtration Plant, West 45th Street and Division Avenue, Cleveland, Cuyahoga County, OH

  2. Chemical and Laser Sciences Division annual report 1989

    SciTech Connect

    Haines, N.

    1990-06-01

    The Chemical and Laser Sciences Division Annual Report includes articles describing representative research and development activities within the Division, as well as major programs to which the Division makes significant contributions.

  3. 3. Oblique view of 215 Division Street, looking southeast, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Oblique view of 215 Division Street, looking southeast, showing rear (west) facade and north side, Fairbanks Company appears at left and 215 Division Street is visible at right - 215 Division Street (House), Rome, Floyd County, GA

  4. 2. Oblique view of 215 Division Street, looking northeast, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Oblique view of 215 Division Street, looking northeast, showing rear (west) facade and south side, 217 Division Street is visible at left and Fairbanks Company appears at right - 215 Division Street (House), Rome, Floyd County, GA

  5. 3. Oblique view of 213 Division Street, looking northeast, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Oblique view of 213 Division Street, looking northeast, showing rear (west) facade and south side, 215 Division Street is visible at left and Fairbanks Company appears at right - 213 Division Street (House), Rome, Floyd County, GA

  6. 6. Contextual view of Fairbanks Company, looking south along Division ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Contextual view of Fairbanks Company, looking south along Division Street, showing relationship of factory to surrounding area, 213, 215, & 217 Division Street appear on right side of street - Fairbanks Company, 202 Division Street, Rome, Floyd County, GA

  7. Control of cell division and the spatial localization of assembled gene products in Caulobacter crescentus

    SciTech Connect

    Nathan, P.D.

    1988-01-01

    Experiments are described that examine the role of penicillin-binding proteins (PBPs) in the regulation of cell division in Caulobacter crescentus; and the spatial localization of methyl-accepting chemotaxis proteins (MCPs) in C. crescentus swarmer and predivisional cells. In the analysis of PBP function, in vivo and in vitro assays are used to directly label C. crescentus PBPs with (/sup 3/H) penicillin G in wild type strain CB15, in a series of conditional cell division mutants and in new temperature sensitive cephalosporin C resistant mutants PC8002 and PC8003. 14 PBPs are characterized and a high molecular weight PBP (PBP 1B) that is required for cell division is identified. PBP 1B competes for ..beta..-lactams that induce filament formation and may be a high affinity binding protein. A second high molecular weight PBP (PBP 1C) is also associated with defective cell division. The examination of PBP patterns in synchronous swarmer cells reveals that the in vivo activity of PBP 1B and PBP 1C increases at the time that the cell division pathway is initiated. None of the PBPs, however, appear to be differentially localized in the C. crescentus cell. In the analysis of MCP localization, in vivo and in vitro assays are used to directly label C. crescentus MCPs with methyl-/sup 3/H. MCPs are examined in flagellated and non-flagellated vesicles prepared from cells by immunoaffinity chromatography.

  8. The Significance of Microspore Division and Division Symmetry for Vegetative Cell-Specific Transcription and Generative Cell Differentiation.

    PubMed Central

    Eady, C.; Lindsey, K.; Twell, D.

    1995-01-01

    The significance of the onset and symmetry of pollen mitosis I (PMI) for the subsequent differentiation of the vegetative and generative cells was investigated by the in vitro maturation of isolated microspores of transgenic tobacco. Free uninucleate microspores of transgenic plants harboring the vegetative cell (VC)-specific late anther tomato lat52 promoter fused to the [beta]-glucuronidase (gus) gene showed normal asymmetric cell division at PMI and activated the lat52 promoter specifically in the nascent VC during in vitro maturation. In vitro maturation in the presence of high levels of colchicine effectively blocked PMI, resulting in the formation of uninucleate pollen grains in which the lat52 promoter was activated. Furthermore, matured uninucleate pollen grains were capable of germination and pollen tube growth despite the absence of a functional generative cell (GC). Lower levels of colchicine induced symmetric division at PMI, producing two similar daughter cells in which typical GC chromatin condensation was prevented. Similar cultures of transgenic microspores harboring the lat52 promoter driving the expression of a nuclear-targeted GUS fusion protein showed that lat52 promoter activation occurred in both symmetric daughter cells. These results directly demonstrate that division asymmetry at PMI is essential for correct GC differentiation and that activation of VC-specific transcription and functional VC maturation may be uncoupled from cytokinesis at PMI. These results are discussed in relation to models proposed to account for the role and distribution of factors controlling the differing fates of the vegetative and generative cells. PMID:12242352

  9. About DCP | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) is the primary unit of the National Cancer Institute devoted to cancer prevention research. DCP provides funding and administrative support to clinical and laboratory researchers, community and multidisciplinary teams, and collaborative scientific networks. |

  10. Chemical Sciences Division: Annual report 1992

    SciTech Connect

    Not Available

    1993-10-01

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences).

  11. Division Xii: Union-Wide Activities

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia L.; Andersen, Johannes; Aksnes, Kaare; Genova, Françoise; Gurshtein, Alexander A.; Johansson, Sveneric; Pasachoff, Jay M.; Smith, Malcolm G.

    2007-12-01

    Division XII consists of Commissions that formerly were organized under the Executive Committee, that concern astronomers across a wide range of scientific sub-disciplines and provide interactions with scientists in a wider community, including governmental organizations, outside the IAU.

  12. Division XII: Union-Wide Activities

    NASA Astrophysics Data System (ADS)

    Smith, Malcolm G.; Genova, Françoise; Andersen, Johannes; Federman, Steven R.; Gilmore, Alan C.; Nha, Il-Seong; Norris, Raymond P.; Robson, Ian E.; Stavinschi, Magda G.; Trimble, Virginia L.; Wainscoat, Richard J.; Christensen, Lars Lindberg

    Division XII consists of Commissions that formerly were organized under the Executive Committee, that concern astronomers across a wide range of scientific sub-disciplines and provide interactions with scientists in a wider community, including governmental organizations, outside the IAU.

  13. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...., weather forecasting) have been satisfied. The division also provides photographs collected during NASA's... to: Satellite Data Services Division, World Weather Building, Room 606, Washington, DC 20233,...

  14. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...., weather forecasting) have been satisfied. The division also provides photographs collected during NASA's... to: Satellite Data Services Division, World Weather Building, Room 606, Washington, DC 20233,...

  15. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...., weather forecasting) have been satisfied. The division also provides photographs collected during NASA's... to: Satellite Data Services Division, World Weather Building, Room 606, Washington, DC 20233,...

  16. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...., weather forecasting) have been satisfied. The division also provides photographs collected during NASA's... to: Satellite Data Services Division, World Weather Building, Room 606, Washington, DC 20233,...

  17. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...., weather forecasting) have been satisfied. The division also provides photographs collected during NASA's... to: Satellite Data Services Division, World Weather Building, Room 606, Washington, DC 20233,...

  18. 3. Perspective view of Express Building looking northeast, with Division ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Perspective view of Express Building looking northeast, with Division Street in foreground - American Railway Express Company Freight Building, 1060 Northeast Division Street, Bend, Deschutes County, OR

  19. Nuclear Science Division: 1993 Annual report

    SciTech Connect

    Myers, W.D.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

  20. Earth Sciences Division annual report 1989

    SciTech Connect

    Not Available

    1990-06-01

    This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

  1. Multivariate linear recurrences and power series division

    PubMed Central

    Hauser, Herwig; Koutschan, Christoph

    2012-01-01

    Bousquet-Mélou and Petkovšek investigated the generating functions of multivariate linear recurrences with constant coefficients. We will give a reinterpretation of their results by means of division theorems for formal power series, which clarifies the structural background and provides short, conceptual proofs. In addition, extending the division to the context of differential operators, the case of recurrences with polynomial coefficients can be treated in an analogous way. PMID:23482936

  2. Division II: Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Scrijver, Karel J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2015-08-01

    The Business Meeting of Commission 10 was held as part of the Business Meeting of Division II (Sun and Heliosphere), chaired by Valentin Martínez-Pillet, the President of the Division. The President of Commission 10 (C10; Solar activity), Lidia van Driel-Gesztelyi, took the chair for the business meeting of C10. She summarised the activities of C10 over the triennium and the election of the incoming OC.

  3. Earth Sciences Division collected abstracts: 1980

    SciTech Connect

    Henry, A.L.; Hornady, B.F.

    1981-10-15

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author.

  4. Weapons Experiments Division Explosives Operations Overview

    SciTech Connect

    Laintz, Kenneth E.

    2012-06-19

    Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

  5. Medical Sciences Division report for 1993

    SciTech Connect

    Not Available

    1993-12-31

    This year`s Medical Sciences Division (MSD) Report is organized to show how programs in our division contribute to the core competencies of Oak Ridge Institute for Science and Education (ORISE). ORISE`s core competencies in education and training, environmental and safety evaluation and analysis, occupational and environmental health, and enabling research support the overall mission of the US Department of Energy (DOE).

  6. Contribution of the FtsQ Transmembrane Segment to Localization to the Cell Division Site▿

    PubMed Central

    Scheffers, Dirk-Jan; Robichon, Carine; Haan, Gert Jan; den Blaauwen, Tanneke; Koningstein, Gregory; van Bloois, Edwin; Beckwith, Jon; Luirink, Joen

    2007-01-01

    The Escherichia coli cell division protein FtsQ is a central component of the divisome. FtsQ is a bitopic membrane protein with a large C-terminal periplasmic domain. In this work we investigated the role of the transmembrane segment (TMS) that anchors FtsQ in the cytoplasmic membrane. A set of TMS mutants was made and analyzed for the ability to complement an ftsQ mutant. Study of the various steps involved in FtsQ biogenesis revealed that one mutant (L29/32R;V38P) failed to functionally insert into the membrane, whereas another mutant (L29/32R) was correctly assembled and interacted with FtsB and FtsL but failed to localize efficiently to the cell division site. Our results indicate that the FtsQ TMS plays a role in FtsQ localization to the division site. PMID:17693520

  7. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells.

    PubMed

    Lewis, Samantha C; Uchiyama, Lauren F; Nunnari, Jodi

    2016-07-15

    Mitochondrial DNA (mtDNA) encodes RNAs and proteins critical for cell function. In human cells, hundreds to thousands of mtDNA copies are replicated asynchronously, packaged into protein-DNA nucleoids, and distributed within a dynamic mitochondrial network. The mechanisms that govern how nucleoids are chosen for replication and distribution are not understood. Mitochondrial distribution depends on division, which occurs at endoplasmic reticulum (ER)-mitochondria contact sites. These sites were spatially linked to a subset of nucleoids selectively marked by mtDNA polymerase and engaged in mtDNA synthesis--events that occurred upstream of mitochondrial constriction and division machine assembly. Our data suggest that ER tubules proximal to nucleoids are necessary but not sufficient for mtDNA synthesis. Thus, ER-mitochondria contacts coordinate licensing of mtDNA synthesis with division to distribute newly replicated nucleoids to daughter mitochondria. PMID:27418514

  8. A genome-scale proteomic screen identifies a role for DnaK in chaperoning of polar autotransporters in Shigella.

    PubMed

    Janakiraman, Anuradha; Fixen, Kathryn R; Gray, Andrew N; Niki, Hironori; Goldberg, Marcia B

    2009-10-01

    Autotransporters are outer membrane proteins that are widely distributed among gram-negative bacteria. Like other autotransporters, the Shigella autotransporter IcsA, which is required for actin assembly during infection, is secreted at the bacterial pole. In the bacterial cytoplasm, IcsA localizes to poles and potential cell division sites independent of the cell division protein FtsZ. To identify bacterial proteins involved in the targeting of IcsA to the pole in the bacterial cytoplasm, we screened a genome-scale library of Escherichia coli proteins tagged with green fluorescent protein (GFP) for those that displayed a localization pattern similar to that of IcsA-GFP in cells that lack functional FtsZ using a strain carrying a temperature-sensitive ftsZ allele. For each protein that mimicked the localization of IcsA-GFP, we tested whether IcsA localization was dependent on the presence of the protein. Although these approaches did not identify a polar receptor for IcsA, the cytoplasmic chaperone DnaK both mimicked IcsA localization at elevated temperatures as a GFP fusion and was required for the localization of IcsA to the pole in the cytoplasm of E. coli. DnaK was also required for IcsA secretion at the pole in Shigella flexneri. The localization of DnaK-GFP to poles and potential cell division sites was dependent on elevated growth temperature and independent of the presence of IcsA or functional FtsZ; native DnaK was found to be enhanced at midcell and the poles. A second Shigella autotransporter, SepA, also required DnaK for secretion, consistent with a role of DnaK more generally in the chaperoning of autotransporter proteins in the bacterial cytoplasm. PMID:19684128

  9. How PI3K-derived lipids control cell division

    PubMed Central

    Campa, Carlo C.; Martini, Miriam; De Santis, Maria C.; Hirsch, Emilio

    2015-01-01

    To succeed in cell division, intense cytoskeletal and membrane remodeling are required to allow accurate chromosome segregation and cytoplasm partitioning. Spatial restriction of the actin dynamics and vesicle trafficking define the cell symmetry and equivalent membrane scission events, respectively. Protein complexes coordinating mitosis are recruited to membrane microdomains characterized by the presence of the phosphatidylinositol lipid members (PtdIns), like PtdIns(3,4,5)P3,PtdIns(4,5)P2, and PtdIns(3)P. These PtdIns represent a minor component of cell membranes, defining membrane domain identity, ultimately controlling cytoskeleton and membrane dynamics during mitosis. The coordinated presence of PtdIns(3,4,5)P3 at the cell poles and PtdIns(4,5)P2 at the cleavage furrow controls the polarity of the actin cytoskeleton leading to symmetrical cell division. In the endosomal compartment, the trafficking of PtdIns(3)P positive vesicles allows the recruitment of the protein machinery required for the abscission. PMID:26484344

  10. Formation of a cylindrical bridge in cell division

    NASA Astrophysics Data System (ADS)

    Citron, Daniel; Schmidt, Laura E.; Reichl, Elizabeth; Ren, Yixin; Robinson, Douglas; Zhang, Wendy W.

    2007-11-01

    In nature, the shape transition associated with the division of a mother cell into two daughter cells proceeds via a variety of routes. In the cylinder-thinning route, which has been observed in Dictyostelium and most animal cells, the mother cell first forms a broad bridge-like region, also known as a furrow, between two daughter cells. The furrow then rapidly evolves into a cylindrical bridge, which thins and eventually severs the mother cell into two. The fundamental mechanism underlying this division route is not understood. Recent experiments on Dictyostelium found that, while the cylinder-thinning route persists even when key actin cross-linking proteins are missing, it is disrupted by the removal of force-generating myosin-II proteins. Other measurements revealed that mutant cells lacking myosin-II have a much more uniform tension over the cell surface than wild-type cells. This suggests that tension variation may be important. Here we use a fluid model, previously shown to reproduce the thinning dynamics [Zhang & Robinson, PNAS 102, 7186 (2005)], to test this idea. Consistent with the experiments, the model shows that the cylinder formation process occurs regardless of the exact viscoelastic properties of the cell. In contrast to the experiments, a tension variation in the model hinders, rather then expedites, the cylinder formation.

  11. A novel cell division factor from tobacco 2B-13 cells that induced cell division in auxin-starved tobacco BY-2 cells

    NASA Astrophysics Data System (ADS)

    Shimizu, Takashi; Eguchi, Kentaro; Nishida, Ikuo; Laukens, Kris; Witters, Erwin; van Onckelen, Harry; Nagata, Toshiyuki

    2006-06-01

    Effects of auxin as plant hormones are widespread; in fact in almost all aspects of plant growth and development auxin plays a pivotal role. Although auxin is required for propagating cell division in plant cells, its effect upon cell division is least understood. If auxin is depleted from the culture medium, cultured cells cease to divide. It has been demonstrated in this context that the addition of auxin to auxin-starved nondividing tobacco BY-2 cells induced semisynchronous cell division. On the other hand, there are some cell lines, named habituated cells, that can grow without auxin. The cause and reason for the habituated cells have not been clarified. A habituated cell line named 2B-13 is derived from the tobacco BY-2 cell line, which has been most intensively studied among plant cell lines. When we tried to find the difference between two cell lines of BY-2 and 2B-13 cells, we found that the addition of culture filtrated from the auxin-habituated 2B-13 cells induced semisynchronous cell division in auxin-starved BY-2 cells. The cell division factor (CDF) that is responsible for inducing cell division in auxin-starved BY-2 cells was purified to near-homogeneity by sequential passage through a hydroxyapatite column, a ConA Sepharose column and a Sephadex gel filtration column. The resulting purified fraction appeared as a single band of high molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels by silver staining and was able to induce cell division in auxin-starved BY-2 cells. Identification of the protein by MALD-TOF-MS/MS revealed that it is structurally related to P-glycoprotein from Gossypioides kirkii, which belongs to ATP-binding cassette (ABC)-transporters. The significance of CDF as a possible ABC-transporter is discussed in relationship to auxin-autotrophic growth and auxin-signaling pathway.

  12. Bacterial actin and tubulin homologs in cell growth and division.

    PubMed

    Busiek, Kimberly K; Margolin, William

    2015-03-16

    In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review. PMID:25784047

  13. Chromokinesin: Kinesin superfamily regulating cell division through chromosome and spindle.

    PubMed

    Zhong, Ai; Tan, Fu-Qing; Yang, Wan-Xi

    2016-09-01

    Material transportation is essential for appropriate cellular morphology and functions, especially during cell division. As a motor protein moving along microtubules, kinesin has several intracellular functions. Many kinesins play important roles in chromosome condensation and separation and spindle organization during the cell cycle. Some of them even can directly bind to chromosomes, as a result, these proteins are called chromokinesins. Kinesin-4 and kinesin-10 family are two major families of chromokinesin and many members can regulate some processes, both in mitosis and meiosis. Their functions have been widely studied. Here, we summarize current knowledge about known chromokinesins and introduce their intracellular features in accordance with different families. Furthermore, we have also introduced some new-found but unconfirmed kinesins which may have a relationship with chromosomes or the cell cycle. PMID:27196062

  14. Correlation between cationic lipid-based transfection and cell division.

    PubMed

    Kirchenbuechler, Inka; Kirchenbuechler, David; Elbaum, Michael

    2016-07-01

    We evaluate the temporal relation between protein expression by cationic lipid-mediated transfection and cell division using time lapse fluorescence microscopy. Detailed image analysis provides new insights on the single cell level while simultaneously achieving appropriate statistics. Earlier evidence by less direct methods such as flow cytometry indicates a primary route for transfection involving nuclear envelope breakdown, but also suggests the existence of a pathway independent of mitosis. We confirm and quantify both mechanisms. We found the timing for successful transfection to be unexpectedly flexible, contrary to assertions of a narrow time window. Specifically, cells dividing more than 24h after exposure to the transfection medium express the probed protein at a comparable level to cells in a mitotic state during or shortly after transfection. This finding can have a profound impact on the guidance and development of non-viral gene delivery materials. PMID:25556666

  15. HOW is required for stem cell maintenance in the Drosophila testis and for the onset of transit-amplifying divisions.

    PubMed

    Monk, Adrian C; Siddall, Nicole A; Volk, Talila; Fraser, Barbara; Quinn, Leonie M; McLaughlin, Eileen A; Hime, Gary R

    2010-04-01

    The mechanisms by which germline stem cells (GSCs) in the Drosophila testis undergo asymmetric division to regenerate a stem cell as well as a daughter (gonialblast) that will only undergo a further four mitotic divisions prior to entering premeiotic S phase and differentiating into a cyst of spermatocytes are not fully resolved. Here we demonstrate that the HOW RNA-binding protein is required for maintenance of CycB and therefore mitotic progression in GSCs and gonialblasts as well as determining the timing of the spermatogonial divisions. HOW is normally expressed in a complementary pattern to Bam in the germline and bam mRNA is bound by HOW in vivo. Ectopic expression of the HOW(L) isoform is associated with a delay in accumulation of Bam to the level required for differentiation, resulting in extra mitotic divisions. Spatiotemporal regulation of HOW expression is therefore required to specify the four spermatogonial transit-amplifying divisions. PMID:20362539

  16. Energy Technology Division research summary - 1999.

    SciTech Connect

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  17. 2002 Chemical Engineering Division annual report.

    SciTech Connect

    Lewis, D.; Graziano, D.; Miller, J. F.

    2003-05-22

    The Chemical Engineering Division is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory; Environment, Safety, and Health Analytical Chemistry services; and Dosimetry and Radioprotection services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors. Our wide-ranging expertise finds ready application in solving energy and environmental problems. Division personnel are frequently called on by

  18. The History of Metals and Ceramics Division

    SciTech Connect

    Craig, D.F.

    1999-01-01

    The division was formed in 1946 at the suggestion of Dr. Eugene P. Wigner to attack the problem of the distortion of graphite in the early reactors due to exposure to reactor neutrons, and the consequent radiation damage. It was called the Metallurgy Division and assembled the metallurgical and solid state physics activities of the time which were not directly related to nuclear weapons production. William A. Johnson, a Westinghouse employee, was named Division Director in 1946. In 1949 he was replaced by John H Frye Jr. when the Division consisted of 45 people. He was director during most of what is called the Reactor Project Years until 1973 and his retirement. During this period the Division evolved into three organizational areas: basic research, applied research in nuclear reactor materials, and reactor programs directly related to a specific reactor(s) being designed or built. The Division (Metals and Ceramics) consisted of 204 staff members in 1973 when James R. Weir, Jr., became Director. This was the period of the oil embargo, the formation of the Energy Research and Development Administration (ERDA) by combining the Atomic Energy Commission (AEC) with the Office of Coal Research, and subsequent formation of the Department of Energy (DOE). The diversification process continued when James O. Stiegler became Director in 1984, partially as a result of the pressure of legislation encouraging the national laboratories to work with U.S. industries on their problems. During that time the Division staff grew from 265 to 330. Douglas F. Craig became Director in 1992.

  19. Putative RopGAPs impact division plane selection and interact with kinesin-12 POK1.

    PubMed

    Stöckle, Dorothee; Herrmann, Arvid; Lipka, Elisabeth; Lauster, Theresa; Gavidia, Richard; Zimmermann, Steffi; Müller, Sabine

    2016-01-01

    Cell shape is defined by the surrounding cell walls in plants. Thus, spatial control over cell division planes and cell expansion polarity are essential to maintain cell morphology. In eukaryotes, cell polarity and expansion are controlled by Rho GTPase signalling, regulating cytoskeletal reorganization and vesicle trafficking(1). However, until now, Rho signalling was not implicated in mitotic events in plants. Here, we report a pair of putative Rho GTPase activating proteins (RhoGAPs) that interact with the mitosis-specific kinesin-12 POK1, a core component of the cortical division zone/site (CDZ/CDS) that is required for division plane maintenance in Arabidopsis(2-4). The designated pleckstrin homology GAPs (PHGAPs) are cytoplasmic and plasma membrane associated in interphase, but during mitosis they additionally localize to the CDZ/CDS in a POK-dependent manner. In contrast to pok1 pok2 mutants, phgap1 phgap2 double mutants show moderate cell wall positioning defects as a consequence of inaccurate positioning of the cortical division zone marker POK1. We conclude that loss of PHGAP function interferes with division plane selection in proliferative cell divisions. PMID:27501519

  20. Coordinated disassembly of the divisome complex in Escherichia coli.

    PubMed

    Söderström, Bill; Mirzadeh, Kiavash; Toddo, Stephen; von Heijne, Gunnar; Skoglund, Ulf; Daley, Daniel O

    2016-08-01

    The divisome is the macromolecular complex that carries out cell division in Escherichia coli. Every generation it must be assembled, and then disassembled so that the sequestered proteins can be recycled. Whilst the assembly process has been well studied, virtually nothing is known about the disassembly process. In this study, we have used super-resolution SIM imaging to monitor pairs of fluorescently tagged divisome proteins as they depart from the division septum. These simple binary comparisons indicated that disassembly occurs in a coordinated process that consists of at least five steps: [FtsZ, ZapA] ⇒ [ZipA, FtsA] ⇒ [FtsL, FtsQ] ⇒ [FtsI, FtsN] ⇒ [FtsN]. This sequence of events is remarkably similar to the assembly process, indicating that disassembly follows a first-in, first-out principle. A secondary observation from these binary comparisons was that FtsZ and FtsN formed division rings that were spatially separated throughout the division process. Thus the data indicate that the divisome structure can be visualized as two concentric rings; a proto-ring containing FtsZ and an FtsN-ring. PMID:27096604

  1. Peroxisome homeostasis: Mechanisms of division and selective degradation of peroxisomes in mammals.

    PubMed

    Honsho, Masanori; Yamashita, Shun-ichi; Fujiki, Yukio

    2016-05-01

    Peroxisome number and quality are maintained by its biogenesis and turnover and are important for the homeostasis of peroxisomes. Peroxisomes are increased in number by division with dynamic morphological changes including elongation, constriction, and fission. In the course of peroxisomal division, peroxisomal morphogenesis is orchestrated by Pex11β, dynamin-like protein 1 (DLP1), and mitochondrial fission factor (Mff). Conversely, peroxisome number is reduced by its degradation. Peroxisomes are mainly degraded by pexophagy, a type of autophagy specific for peroxisomes. Upon pexophagy, an adaptor protein translocates on peroxisomal membrane and connects peroxisomes to autophagic machineries. Molecular mechanisms of pexophagy are well studied in yeast systems where several specific adaptor proteins are identified. Pexophagy in mammals also proceeds in a manner dependent on adaptor proteins. In this review, we address the recent progress in studies on peroxisome morphogenesis and pexophagy. PMID:26434997

  2. Lin-28 promotes symmetric stem cell division and drives adaptive growth in the adult Drosophila intestine.

    PubMed

    Chen, Ching-Huan; Luhur, Arthur; Sokol, Nicholas

    2015-10-15

    Stem cells switch between asymmetric and symmetric division to expand in number as tissues grow during development and in response to environmental changes. The stem cell intrinsic proteins controlling this switch are largely unknown, but one candidate is the Lin-28 pluripotency factor. A conserved RNA-binding protein that is downregulated in most animals as they develop from embryos to adults, Lin-28 persists in populations of adult stem cells. Its function in these cells has not been previously characterized. Here, we report that Lin-28 is highly enriched in adult intestinal stem cells in the Drosophila intestine. lin-28 null mutants are homozygous viable but display defects in this population of cells, which fail to undergo a characteristic food-triggered expansion in number and have reduced rates of symmetric division as well as reduced insulin signaling. Immunoprecipitation of Lin-28-bound mRNAs identified Insulin-like Receptor (InR), forced expression of which completely rescues lin-28-associated defects in intestinal stem cell number and division pattern. Furthermore, this stem cell activity of lin-28 is independent of one well-known lin-28 target, the microRNA let-7, which has limited expression in the intestinal epithelium. These results identify Lin-28 as a stem cell intrinsic factor that boosts insulin signaling in intestinal progenitor cells and promotes their symmetric division in response to nutrients, defining a mechanism through which Lin-28 controls the adult stem cell division patterns that underlie tissue homeostasis and regeneration. PMID:26487778

  3. Nuclear Chemistry Division annual report FY83

    SciTech Connect

    Struble, G.

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2).

  4. Energy Technology Division research summary -- 1994

    SciTech Connect

    Not Available

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

  5. 75 FR 16843 - Core Manufacturing, Multi-Plastics, Inc., Division, Sipco, Inc., Division, Including Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... Notice was published in the Federal Register on January 25, 2010 (75 FR 3935). After the certification... Employment and Training Administration Core Manufacturing, Multi-Plastics, Inc., Division, Sipco, Inc..., 2009, applicable to workers of Core Manufacturing, Multi-Plastics, Inc., Division and Sipco,...

  6. Section III, Division 5 - Development And Future Directions

    SciTech Connect

    Morton, Dana K.; Jetter, Robert I; Nestell, James E.; Burchell, Timothy D; Sham, Sam

    2012-01-01

    This paper provides commentary on a new division under Section III of the ASME Boiler and Pressure Vessel (BPV) Code. This new Division 5 has an issuance date of November 1, 2011 and is part of the 2011 Addenda to the 2010 Edition of the BPV Code. The new Division covers the rules for the design, fabrication, inspection and testing of components for high temperature nuclear reactors. Information is provided on the scope and need for Division 5, the structure of Division 5, where the rules originated, the various changes made in finalizing Division 5, and the future near-term and long-term expectations for Division 5 development.

  7. Synthetic cell division system: Controlling equal vs. unequal divisions by design

    PubMed Central

    Sato, Yoichi; Yasuhara, Kazuma; Kikuchi, Jun-ichi; Sato, Thomas N.

    2013-01-01

    Cell division is one of the most fundamental and evolutionarily conserved biological processes. Here, we report a synthetic system where we can control by design equal vs. unequal divisions. We synthesized a micro-scale inverse amphipathic droplet of which division is triggered by the increase of surface to volume ratio. Using this system, we succeeded in selectively inducing equal vs. unequal divisions of the droplet cells by adjusting the temperature or the viscosity of the solvent outside the droplet cell accordingly. Our synthetic division system may provide a platform for further development to a system where intracellular contents of the parent droplet cell could be divided into various ratios between the two daughter droplet cells to control their functions and fates. PMID:24327069

  8. Chemical Technology Division annual technical report, 1996

    SciTech Connect

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

  9. On-chip multiplexing conversion between wavelength division multiplexing-polarization division multiplexing and wavelength division multiplexing-mode division multiplexing.

    PubMed

    Ye, Mengyuan; Yu, Yu; Zou, Jinghui; Yang, Weili; Zhang, Xinliang

    2014-02-15

    A compact silicon-on-insulator device used for conversions between polarization division multiplexing (PDM) and mode division multiplexing (MDM) signals is proposed and experimentally demonstrated by utilizing a structure combining the improved two-dimensional grating coupler and two-mode multiplexer. The detailed design of the proposed device is presented and the results show the extinction ratio of 16 and 20 dB for X- and Y-pol input, respectively. The processing of 40  Gb/s signal is achieved within the C-band with good performance. The proposed converter is capable of handling multiple wavelengths in wavelength division multiplexing (WDM) networks, enabling the conversions between WDM-PDM and WDM-MDM, which is promising to further increase the throughput at the network interface. PMID:24562199

  10. The Astrophysics Science Division Annual Report 2008

    NASA Technical Reports Server (NTRS)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  11. Division V: Commission 42: Close Binaries

    NASA Astrophysics Data System (ADS)

    Ribas, Ignasi; Richards, Mercedes T.; Rucinski, Slavek; Bradstreet, David H.; Harmanec, Petr; Kaluzny, Janusz; Mikolajewska, Joanna; Munari, Ulisse; Niarchos, Panagiotis; Olah, Katalin; Pribulla, Theodor; Scarfe, Colin D.; Torres, Guillermo

    2015-08-01

    Commission 42 (C42) co-organized, together with Commission 27 (C27) and Division V (Div V) as a whole, a full day of science and business sessions that were held on 24 August 2012. The program included time slots for discussion of business matters related to Div V, C27 and C42, and two sessions of 2 hours each devoted to science talks of interest to both C42 and C27. In addition, we had a joint session between Div IV and Div V motivated by the proposal to reformulate the division structure of the IAU and the possible merger of the two divisions into a new Div G. The current report gives an account of the matters discussed during the business session of C42.

  12. Biology Division progress report, October 1, 1991--September 30, 1993

    SciTech Connect

    Hartman, F.C.; Cook, J.S.

    1993-10-01

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1991, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report.

  13. 49 CFR 173.152 - Exceptions for Division 5.1 (oxidizers) and Division 5.2 (organic peroxides).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Division 5.2 (organic peroxides). 173.152 Section 173.152 Transportation Other Regulations Relating to... Exceptions for Division 5.1 (oxidizers) and Division 5.2 (organic peroxides). (a) General. Exceptions for.... Limited quantities of oxidizers (Division 5.1) in Packing Group II and III and organic peroxides...

  14. 49 CFR 173.152 - Exceptions for Division 5.1 (oxidizers) and Division 5.2 (organic peroxides).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Division 5.2 (organic peroxides). 173.152 Section 173.152 Transportation Other Regulations Relating to... Exceptions for Division 5.1 (oxidizers) and Division 5.2 (organic peroxides). (a) General. Exceptions for.... Limited quantities of oxidizers (Division 5.1) in Packing Group II and III and organic peroxides...

  15. Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis.

    PubMed

    Manuse, Sylvie; Fleurie, Aurore; Zucchini, Laure; Lesterlin, Christian; Grangeasse, Christophe

    2016-01-01

    Bacteria possess a repertoire of versatile protein kinases modulating diverse aspects of their physiology by phosphorylating proteins on various amino acids including histidine, cysteine, aspartic acid, arginine, serine, threonine and tyrosine. One class of membrane serine/threonine protein kinases possesses a catalytic domain sharing a common fold with eukaryotic protein kinases and an extracellular mosaic domain found in bacteria only, named PASTA for 'Penicillin binding proteins And Serine/Threonine kinase Associated'. Over the last decade, evidence has been accumulating that these protein kinases are involved in cell division, morphogenesis and developmental processes in Firmicutes and Actinobacteria. However, observations differ from one species to another suggesting that a general mechanism of activation of their kinase activity is unlikely and that species-specific regulation of cell division is at play. In this review, we survey the latest research on the structural aspects and the cellular functions of bacterial serine/threonine kinases with PASTA motifs to illustrate the diversity of the regulatory mechanisms controlling bacterial cell division and morphogenesis. PMID:26429880

  16. Hyperspectral imaging camera using wavefront division interference.

    PubMed

    Bahalul, Eran; Bronfeld, Asaf; Epshtein, Shlomi; Saban, Yoram; Karsenty, Avi; Arieli, Yoel

    2016-03-01

    An approach for performing hyperspectral imaging is introduced. The hyperspectral imaging is based on Fourier transform spectroscopy, where the interference is performed by wavefront division interference rather than amplitude division interference. A variable phase delay between two parts of the wavefront emanating from each point of an object is created by a spatial light modulator (SLM) to obtain variable interference patterns. The SLM is placed in the exit pupil of an imaging system, thus enabling conversion of a general imaging optical system into an imaging hyperspectral optical system. The physical basis of the new approach is introduced, and an optical apparatus is built. PMID:26974085

  17. Division XII: Commission 6: Astronomical Telegrams

    NASA Astrophysics Data System (ADS)

    Samus, N. N.; Yamaoka, H.; Gilmore, A. C.; Aksnes, K.; Green, D. W. E.; Marsden, B. G.; Nakano, S.; Lara, Martin; Pitjeva, Elena V.; Sphar, T.; Ticha, J.; Williams, G.

    2015-08-01

    IAU Commission 6 ``Astronomical Telegrams'' had a single business meeting during the Beijing General Assembly of the IAU. It took place on Friday, August 24, 2012. The meeting was attended by five C6 members (N. N. Samus; D. W. E. Green; S. Nakano; J. Ticha; and H. Yamaoka). Also present was Prof. F. Genova as a representative of the IAU Division B. She told the audience about the current restructuring of IAU Commissions and Divisions and consequences for the future of C6.

  18. Mitochondrial Division and Fusion in Metabolism

    PubMed Central

    Roy, Madhuparna; Reddy, P. Hemachandra; Iijima, Miho; Sesaki, Hiromi

    2015-01-01

    Mitochondria govern many metabolic processes. In addition, mitochondria sense the status of metabolism and change their functions to regulate energy production, cell death, and thermogenesis. Recent studies have revealed that mitochondrial structural remodeling through division and fusion is critical to the organelle’s function. It has also become clear that abnormalities in mitochondrial division and fusion are linked to the pathophysiology of metabolic diseases such as diabetes and obesity. Here, we discuss the current understanding of the mechanisms of mitochondrial dynamics and their role in cellular and organismal metabolism. PMID:25703628

  19. Life Sciences Division annual report, 1988

    SciTech Connect

    Marrone, B.L.; Cram, L.S.

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  20. Quantum internet using code division multiple access.

    PubMed

    Zhang, Jing; Liu, Yu-xi; Ozdemir, Sahin Kaya; Wu, Re-Bing; Gao, Feifei; Wang, Xiang-Bin; Yang, Lan; Nori, Franco

    2013-01-01

    A crucial open problem inS large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels. PMID:23860488

  1. Quantum internet using code division multiple access

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Liu, Yu-Xi; Özdemir, Şahin Kaya; Wu, Re-Bing; Gao, Feifei; Wang, Xiang-Bin; Yang, Lan; Nori, Franco

    2013-07-01

    A crucial open problem inS large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels.

  2. Focus issue introduction: space-division multiplexing.

    PubMed

    Li, Guifang; Karlsson, Magnus; Liu, Xiang; Quiquempois, Yves

    2014-12-29

    Since the publication of the first focus issue [Opt. Express 19(11), 2011], single-fiber transmission capacity has eclipsed the 1 Pb/s mark. All aspects related to space-division multiplexing including fiber, passive components [(de)multiplexer, couplers], active components (EDFA and Raman amplifiers), switching and routing elements (ROADM and WSS), as well as transmission and networking have progressed rapidly. This focus issue is intended to bring together the most up-to-date research in space-division multiplexing, including fibers, passive and active components, transmission systems and networking. PMID:25607215

  3. Website for the Space Science Division

    NASA Astrophysics Data System (ADS)

    Schilling, James

    2002-01-01

    The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.

  4. Phosphorus Deficiency Inhibits Cell Division But Not Growth in the Dinoflagellate Amphidinium carterae.

    PubMed

    Li, Meizhen; Shi, Xinguo; Guo, Chentao; Lin, Senjie

    2016-01-01

    Phosphorus (P) is an essential nutrient element for the growth of phytoplankton. How P deficiency affects population growth and the cell division cycle in dinoflagellates has only been studied in some species, and how it affects photosynthesis and cell growth remains poorly understood. In the present study, we investigated the impact of P deficiency on the cell division cycle, the abundance of the carbon-fixing enzyme Rubisco, and other cellular characteristics in the Gymnodiniales peridinin-plastid species Amphidinium carterae. We found that under P-replete condition, the cell cycle actively progressed in the culture in a 24-h diel cycle with daily growth rates markedly higher than the P-deficient cultures, in which cells were arrested in the G1 phase and cell size significantly enlarged. The results suggest that, as in previously studied dinoflagellates, P deficiency likely disenables A. carterae to complete DNA duplication or check-point protein phosphorylation. We further found that under P-deficient condition, overall photosystem II quantum efficiency (Fv/Fm ratio) and Rubisco abundance decreased but not significantly, while cellular contents of carbon, nitrogen, and proteins increased significantly. These observations indicated that under P-deficiency, this dinoflagellate was able to continue photosynthesis and carbon fixation, such that proteins and photosynthetically fixed carbon could accumulate resulting in continued cell growth in the absence of division. This is likely an adaptive strategy thereby P-limited cells can be ready to resume the cell division cycle upon resupply of phosphorus. PMID:27313570

  5. Phosphorus Deficiency Inhibits Cell Division But Not Growth in the Dinoflagellate Amphidinium carterae

    PubMed Central

    Li, Meizhen; Shi, Xinguo; Guo, Chentao; Lin, Senjie

    2016-01-01

    Phosphorus (P) is an essential nutrient element for the growth of phytoplankton. How P deficiency affects population growth and the cell division cycle in dinoflagellates has only been studied in some species, and how it affects photosynthesis and cell growth remains poorly understood. In the present study, we investigated the impact of P deficiency on the cell division cycle, the abundance of the carbon-fixing enzyme Rubisco, and other cellular characteristics in the Gymnodiniales peridinin-plastid species Amphidinium carterae. We found that under P-replete condition, the cell cycle actively progressed in the culture in a 24-h diel cycle with daily growth rates markedly higher than the P-deficient cultures, in which cells were arrested in the G1 phase and cell size significantly enlarged. The results suggest that, as in previously studied dinoflagellates, P deficiency likely disenables A. carterae to complete DNA duplication or check-point protein phosphorylation. We further found that under P-deficient condition, overall photosystem II quantum efficiency (Fv/Fm ratio) and Rubisco abundance decreased but not significantly, while cellular contents of carbon, nitrogen, and proteins increased significantly. These observations indicated that under P-deficiency, this dinoflagellate was able to continue photosynthesis and carbon fixation, such that proteins and photosynthetically fixed carbon could accumulate resulting in continued cell growth in the absence of division. This is likely an adaptive strategy thereby P-limited cells can be ready to resume the cell division cycle upon resupply of phosphorus. PMID:27313570

  6. Meetings and Events | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Trial NCT01382082 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Trial NCT02237183 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Trial NCT01950403 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Trial NCT01849250 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Trial NCT01968798 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Trial NCT02116530 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Trial NCT01824836 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Trial NCT01141231 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Trial NCT02273362 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Earth Sciences Division annual report 1990

    SciTech Connect

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  17. 25 CFR 227.19 - Division orders.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... operating regulations of the Geological Survey, see 30 CFR part 221. Operations ... 25 Indians 1 2010-04-01 2010-04-01 false Division orders. 227.19 Section 227.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND...

  18. Cancer Biomarkers Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Problems on Divisibility of Binomial Coefficients

    ERIC Educational Resources Information Center

    Osler, Thomas J.; Smoak, James

    2004-01-01

    Twelve unusual problems involving divisibility of the binomial coefficients are represented in this article. The problems are listed in "The Problems" section. All twelve problems have short solutions which are listed in "The Solutions" section. These problems could be assigned to students in any course in which the binomial theorem and Pascal's…

  20. Mark Sherman, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Academic Achievement of NCAA Division III Athletes

    ERIC Educational Resources Information Center

    Barlow, Kathy A.; Hickey, Ann

    2014-01-01

    A study of 215 athletes at a small private liberal arts Division III college revealed that athletes (a) begin their college experience with SATs no different from non-athletes; (b) attain GPAs that do not significantly differ from those of nonathletes; (c) achieve GPAs that do not significantly differ between their "in-season" semester…

  2. Trial NCT01169259 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Trial NCT01661764 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Thursday's Agenda | Division of Cancer Prevention

    Cancer.gov

    TimeAgenda8:30 am - 8:50 amRegistration - Networking8:50 am - 8:55 amWelcome and Opening RemarksLeslie Ford, MDAssociate Director for Clinical ResearchDivision of Cancer Prevention, NCIEva Szabo, MD Chief, Lung and Upper Aerodigestive Cancer Research Group |

  5. Trial NCT01238172 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Trial NCT02314156 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Trial NCT01935960 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Trial NCT02155777 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Materials Sciences Division 1990 annual report

    SciTech Connect

    Not Available

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  10. Trial NCT01728571 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Trial NCT02112188 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Clinical Trials Management | Division of Cancer Prevention

    Cancer.gov

    Information for researchers about developing, reporting, and managing NCI-funded cancer prevention clinical trials. Protocol Information Office The central clearinghouse for clinical trials management within the Division of Cancer Prevention.Read more about the Protocol Information Office. | Information for researchers about developing, reporting, and managing NCI-funded cancer prevention clinical trials.

  13. Administrative Resource Center | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Nutritional Science Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Funded Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Physics Division activities report, 1986--1987

    SciTech Connect

    Not Available

    1987-01-01

    This report summarizes the research activities of the Physics Division for the years 1986 and 1987. Areas of research discussed in this paper are: research on e/sup +/e/sup /minus// interactions; research on p/bar p/ interactions; experiment at TRIUMF; double beta decay; high energy astrophysics; interdisciplinary research; and advanced technology development and the SSC.

  17. Trial NCT02095145 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Active Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Verification of IEEE Compliant Subtractive Division Algorithms

    NASA Technical Reports Server (NTRS)

    Miner, Paul S.; Leathrum, James F., Jr.

    1996-01-01

    A parameterized definition of subtractive floating point division algorithms is presented and verified using PVS. The general algorithm is proven to satisfy a formal definition of an IEEE standard for floating point arithmetic. The utility of the general specification is illustrated using a number of different instances of the general algorithm.

  20. Eva Szabo, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Sarah Temkin, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Origins of the Sexual Division of Labor.

    ERIC Educational Resources Information Center

    Leibowitz, Lila

    An interactive, biosocial model of early hominids presents evidence that physical sex differences are not the basis for the sexual division of labor as is commonly believed. Production (the deliberate collection and distribution of food) developed among early hominids as a prerequisite for survival. Although the population appears to have had…

  3. Trial NCT01550783 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. OVERVIEW -- SUBSURFACE PROTECTION AND REMEDIATION DIVISION

    EPA Science Inventory

    NRMRL's Subsurface Protection and Remediation Division located in Ada, Oklahoma, conducts EPA-investigator led laboratory and field research to provide the scientific basis to support the development of strategies and technologies to protect and restore ground and surface water q...

  5. Kara Smigel Croker | Division of Cancer Prevention

    Cancer.gov

    Kara Smigel Croker is the Communications Manager for the National Cancer Institute Division of Cancer Prevention. She coordinates and supports all aspects of communication, including media contacts, writing and editing of reports and responses, divisional websites, and social media. |

  6. Leslie Ford, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. 25 CFR 227.19 - Division orders.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Division orders. 227.19 Section 227.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND RIVER... operating regulations of the Geological Survey, see 30 CFR part 221. Operations...

  8. 25 CFR 227.19 - Division orders.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Division orders. 227.19 Section 227.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND RIVER... operating regulations of the Geological Survey, see 30 CFR part 221. Operations...

  9. 25 CFR 227.19 - Division orders.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Division orders. 227.19 Section 227.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND RIVER... operating regulations of the Geological Survey, see 30 CFR part 221. Operations...

  10. 25 CFR 227.19 - Division orders.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Division orders. 227.19 Section 227.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND RIVER... operating regulations of the Geological Survey, see 30 CFR part 221. Operations...

  11. Trial NCT02123849 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Trial NCT02169271 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Trial NCT00983580 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Trial NCT02348203 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Trial NCT02002533 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Acoustics Division recent accomplishments and research plans

    NASA Technical Reports Server (NTRS)

    Clark, L. R.; Morgan, H. G.

    1986-01-01

    The research program currently being implemented by the Acoustics Division of NASA Langley Research Center is described. The scope, focus, and thrusts of the research are discussed and illustrated for each technical area by examples of recent technical accomplishments. Included is a list of publications for the last two calendar years. The organization, staff, and facilities are also briefly described.

  17. 2014 News Articles | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Trial NCT01594502 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Ultrasociality and the sexual divisions of labor.

    PubMed

    Lyon, Pamela; Caporael, Linnda R

    2016-01-01

    The ultrasociality thesis proposes that the same "mechanistic evolutionary forces" may be at work in the evolution of insect eusociality and human ultrasociality in relation to agriculture. Wide variation in the reproductive division of labor among differing highly social phyla points to a resemblance of outcomes arising from very different selective environments and possibly different forces. PMID:27561830

  20. Trial NCT02052908 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Clinical Trials Node | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Trial NCT02169284 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Trial NCT02134925 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Staff Directory | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Trial NCT02326805 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Trial NCT01391689 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Chemical Biodynamics Division. Annual report 1979

    SciTech Connect

    Not Available

    1980-08-01

    The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.

  9. Raising Literacy Standards in the Primary Division.

    ERIC Educational Resources Information Center

    Waiser, Marlene

    A research project undertaken in York, Ontario, Canada aimed to raise literacy standards in the primary division and to ensure that all children in Grade 1 read to the Grade 1 standard (as determined by Reading Recovery levels, the school board, and the Ontario Ministry of Education). Focus was placed on acquiring high quality leveled literature…

  10. Trial NCT02028221 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Trial NCT00641147 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Trial NCT00917735 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Howard Parnes, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. News Archives | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Trial NCT00392561 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Early Detection Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Understanding the Concept of "Division": Assessment Considerations.

    ERIC Educational Resources Information Center

    Parmar, Rene S.

    2003-01-01

    This article presents a summary of considerations for teachers when assessing a student's understanding of division concepts. It discusses student products, student procedures and strategies, and student concepts and explanations at the preschool, elementary, and middle school levels. Examples of assessment activities and possible misconceptions…

  18. Biometry Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Trial NCT02063698 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Trial NCT01503632 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.