Science.gov

Sample records for dna cleavage studies

  1. Comparative studies of UV-induced DNA cleavage by structural isomers of an iodinated DNA ligand

    SciTech Connect

    Martin, R.F.; Green, A.; Denison, L.; Pardee, M.; Kelly, D.P.; Roberts, M.; Rose, M.; Reum, M.

    1994-06-15

    The purpose was to evaluate the importance of the position of the halogen atom in iodinated DNA-binding bibenzimidazoles, with respect to sensitization of UV-A-induced DNA breakage. Three analogues of iodoHoechst 33258, denoted ortho-, meta- and paraiodoHoechst, according to the site of iodine substitution, were synthesized. Plasmid DNA (pBR322) was used to assay UV-A-induced DNA single-strand breaks (ssbs). The location of the sites of strand breakage was determined by DNA sequencing gel analysis, using a [sup 32]P-endlabelled oligoDNA with a single binding site for the ligands. A clear trend in decreasing activity of sensitization of UV-induced DNA ssbs was established: Ortho- > meta-, para- > iodoHoechst 33258. The sequencing gel studies showed that orthoiodoHoechst was distinct from the other three compounds, with respect to the sites of DNA strand breakage and the chemistry of the cleavage reaction. The position of iodine substitution in iodinated bibenzimidazoles determines the location of the carbon-centered radical on the ligand in the minor groove of DNA. DNA strand cleavage is mediated by abstraction of a nearby deoxyribosyl H-atom. Hence, the position of the radical species determines: which deoxyribosyl group is attacked (i.e., site of cleavage relative to the ligand binding site); which H-atom is abstracted, more specifically which of the five deoxyribosyl carbons is involved (i.e., the chemistry of the cleavage reaction), and the stereochemistry of the transition state for the H-atom abstraction (and hence the efficiency or extent of strand breakage). The ortho-compound represents the best example to date of iodinated DNA ligands designed as potential radiation sensitizers, as an extension of the well-established sensitization by halogenated DNA precursors. 30 refs., 3 figs.

  2. DNA binding, photo-induced DNA cleavage and cytotoxicity studies of lomefloxacin and its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Ragheb, Mohamed A.; Eldesouki, Mohamed A.; Mohamed, Mervat S.

    2015-03-01

    This work was focused on a study of the DNA binding and cleavage properties of lomefloxacin (LMF) and its ternary transition metal complexes with glycine. The nature of the binding interactions between compounds and calf thymus DNA (CT-DNA) was studied by electronic absorption spectra, fluorescence spectra and thermal denaturation experiments. The obtained results revealed that LMF and its complexes could interact with CT-DNA via partial/moderate intercalative mode. Furthermore, the DNA cleavage activities of the compounds were investigated by gel electrophoresis. Mechanistic studies of DNA cleavage suggest that singlet oxygen (1O2) is likely to be the cleaving agent via an oxidative pathway, except for Cu(II) complex which proceeds via both oxidative and hydrolytic pathways. Antimicrobial and antitumor activities of the compounds were also studied against some kinds of bacteria, fungi and human cell lines.

  3. Synthesis, characterization, DNA binding and cleavage studies of chiral Ru(II) salen complexes

    NASA Astrophysics Data System (ADS)

    Khan, Noor-ul H.; Pandya, Nirali; Kureshy, Rukhsana I.; Abdi, Sayed H. R.; Agrawal, Santosh; Bajaj, Hari C.; Pandya, Jagruti; Gupte, Akashya

    2009-09-01

    Interaction of chiral Ru(II) salen complexes (S)-1 and (R)-1 with Calf Thymus DNA (CT-DNA) was studied by absorption spectroscopy, competitive binding study, viscosity measurements, CD measurements, thermal denaturation study and cleavage studies by agarose gel electrophoresis. The DNA binding affinity of (S)-1 (6.25 × 10 3 M -1) was found to be greater than (R)-1 (3.0 × 10 3 M -1). The antimicrobial studies of these complexes on five different gram (+)/(-) bacteria and three different fungal organisms showed selective inhibition of the growth of gram (+) bacteria and were not affective against gram (-) and fungal organisms. Further, the (S)-1 enantiomer inhibited the growth of organisms to a greater extent as compared to (R)-1 enantiomer.

  4. DNA binding, DNA cleavage, antioxidant and cytotoxicity studies on ruthenium(II) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Sampath, Krishnan; Sathiyaraj, Subbaiyan; Jayabalakrishnan, Chinnasamy

    2013-03-01

    Four new ruthenium(II) complexes with N(4)-methyl thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-methylhydrazinecarbothioamide (HL1) and (E)-N-methyl-2-(2-nitrobenzylidene)hydrazinecarbothioamide (HL2), were prepared and fully characterized by various spectro-analytical techniques. The Schiff bases act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the compounds was investigated by absorption spectroscopy which indicated that the complexes bind to DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant studies of the ligands and complexes showed the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes against MCF-7 cell line was assayed which showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  5. Synthesis, DNA recognition and cleavage studies of novel tetrapeptide complexes, Cu(II)/Zn(II)-Ala-Pro-Ala-Pro

    NASA Astrophysics Data System (ADS)

    Arjmand, Farukh; Jamsheera, A.; Mohapatra, D. K.

    2013-05-01

    New tetrapeptide complexes Cu(II)·Ala-Pro-Ala-Pro (1) and Zn(II)·Ala-Pro-Ala-Pro (2) were synthesized from the reaction of tetrapeptide, Ala-Pro-Ala-Pro and CuCl2/ZnCl2 and were thoroughly characterized by elemental analysis, IR,1H and 13C NMR (in case of 2), ESI-MS, UV and molar conductance measurements. The solution stability study was carried out employing UV-vis absorption titrations over a broad range of pH which suggested the stability of the complexes in solution. In vitro interaction of complexes 1 and 2 with CT-DNA was studied employing UV-vis, fluorescence, circular dichroic and viscometry studies. To throw insight into molecular binding event at the target site, UV-vis titrations of 1 and 2 with mononucleotides of interest viz.; 5'-GMP and 5'-TMP were carried out. Cleavage activity of the complexes with pBR322 plasmid DNA was evaluated by agarose gel electrophoresis and, the electrophoresis pattern demonstrated that both the complexes 1 and 2 are efficient cleavage agents. Further, the Cu(II) complex displayed efficient oxidative cleavage of supercoiled DNA while various reactive oxygen species are responsible for the cleavage in Zn(II) complex.

  6. Synthesis, characterization, DNA binding and cleavage studies of Ru(II) complexes containing oxime ligands

    NASA Astrophysics Data System (ADS)

    Chitrapriya, Nataraj; Mahalingam, Viswanathan; Zeller, Matthias; Lee, Hyosun; Natarajan, Karuppannan

    2010-12-01

    The Ru(II) precursors, [RuHCl(CO)(EPh 3) 3] (E = P or As) when reacted with some well known monoxime and dioxime ligands in ethanolic solution afforded the new complexes of the types [RuCl(CO)(EPh 3) 2L1], [RuH(CO)(EPh 3) 2L2] and [RuCl(CO)(EPh 3) 2L3] ((H 1L1) = diacetylmonoxime, (H 1L2) = dimethylglyoxime and (H 2L3) = benzoiloxime). The ligands coordinated in a bidentate chelate mode forming a five membered chelate ring. The molecular structures of two of the complexes have been determined by single crystal X-ray diffraction study. The structural determination confirms the deprotonation of the oxime function. Examination of all the complexes by cyclic voltammetry showed the occurrence of some quasi-reversible redox reactions owing to changes in the oxidation state of the central metal atoms. Structural assignments are supported by combination of IR, UV-Vis, 1H NMR and elemental analyses. In addition, the DNA binding properties and cleavage efficiency of new complexes have been tested.

  7. Spectroscopy: The study of DNA cleavage by newly synthesized polydentate macrocyclic ligand and its copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Gupta, Lokesh Kumar; Chandra, Sulekh

    2008-11-01

    A novel hexadentate nitrogen donor [N 6] macrocyclic ligand, i.e. 2,6,12,16,21,22-hexaaza-3,5,13,15-tetramethyl-4,14-diethyl-tricyclo-[15.3.1.1(7-11)]docosane-1(21),2,5,7(22),8,10,12,15,17,19-decaene ( L), has been synthesized. Copper(II) complexes with this ligand have been prepared and subjected to elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR (ligand), IR, electronic, and EPR spectral studies. On the basis of molar conductance the complexes may be formulated as [Cu(L)X 2] [X = Cl -, Br -, NO 3- and CH 3COO -] due to their nonelectrolytic nature in N, N'-dimethylformamide (DMF). All the complexes are of the high spin type and are six coordinated. On the basis of IR, electronic and EPR spectral studies tetragonal geometry has been assigned to the Cu(II) complexes. The interaction of these complexes with calf thymus DNA has been explored by using absorption, emission, viscosity measurements, electrochemical studies and DNA cleavage. All the experimental results suggest that the complexes bind to DNA and also promote the cleavage plasmid pBR 322, in the presence of H 2O 2 and ascorbic acid.

  8. DNA binding, DNA cleavage and cytotoxicity studies of a new water soluble copper(II) complex: The effect of ligand shape on the mode of binding

    NASA Astrophysics Data System (ADS)

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Roshanfekr, Hamideh; Shahabadi, Nahid; Mansouri, Ghobad

    2012-02-01

    The interaction of native calf thymus DNA (CT-DNA) with [Cu(ph 2phen)(phen-dione)Cl]Cl was studied at physiological pH by spectrophotometric, spectrofluorometric, circular dichroism, and viscometric techniques. Considerable hypochromicity and red shift are observed in the UV absorption band of the Cu complex. Binding constants ( Kb) of DNA with the complex were calculated at different temperatures. Thermodynamic parameters, enthalpy and entropy changes were calculated according to Van't Hoff equation, which indicated that reaction is predominantly enthalpically driven. All these results indicate that Cu(II) complex interacts with CT-DNA via intercalative mode. Also, this new complex induced cleavage in pUC18 plasmid DNA as indicated in gel electrophoresis and showed excellent antitumor activity against K562 (human chronic myeloid leukemia) and human T lymphocyte carcinoma-Jurkat cell lines.

  9. Synthesis, characterization, DNA-binding and cleavage studies of polypyridyl copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Gubendran, Ammavasi; Rajesh, Jegathalaprathaban; Anitha, Kandasamy; Athappan, Periyakaruppan

    2014-10-01

    Six new mixed-ligand copper(II) complexes were synthesized namely [Cu(phen)2OAc]ClO4ṡH2O(1), [Cu(bpy)2OAc]ClO4ṡH2O(2), [Cu(o-ampacac)(phen)]ClO4(3), [Cu(o-ampbzac)(phen)]ClO4(4), [Cu(o-ampacac)(bpy)]ClO4(5), and [Cu(o-ampbzac)(bpy)]ClO4(6) (phen = 1,10-phenanthroline, bpy = 2, 2‧-bipyridine, o-ampacac = (Z)-4-(2-hydroxylamino)pent-3-ene-2-one,o-ampbzac = (Z)-4-(2-hydroxylamino)-4-phenylbut-3-ene-2-one)and characterized by UV-Vis, IR, EPR and cyclic voltammetry. Ligands were characterized by NMR spectra. Single crystal X-ray studies of the complex 1 shows Cu(II) ions are located in a highly distorted octahedral environment. Absorption spectral studies reveal that the complexes 1-6 exhibit hypochromicity during the interaction with DNA and binding constant values derived from spectral and electrochemical studies indicate that complexes 1, 2 and 3 bind strongly with DNA possibly by an intercalative mode. Electrochemical studies reveal that the complexes 1-4 prefer to bind with DNA in Cu(I) rather than Cu(II) form. The shift in the formal potentials E1/2 and CD spectral studies suggest groove or electrostatic binding mode for the complexes 4-6. Complex 1 can cleave supercoiled (SC) pUC18 DNA efficiently into nicked form II under photolytic conditions and into an open circular form (form II) and linear form (form III) in the presence of H2O2 at pH 8.0 and 37 °C, while the complex 2 does not cleave DNA under similar conditions.

  10. Synthesis, DNA-binding, cytotoxicity, photo cleavage, antimicrobial and docking studies of Ru(II) polypyridyl complexes.

    PubMed

    Srishailam, A; Kumar, Yata Praveen; Gabra, Nazar M D; Reddy, P Venkat; Deepika, N; Veerababu, Nageti; Satyanarayana, S

    2013-09-01

    Three Ruthenium(II) polypyridine complexes, [Ru(phen)2(mipc)](2+)(1), [Ru(bpy)2(mipc)](2+) (2) and [Ru(dmb)2(mipc)](2+)(3) [mipc = 2-(6-methyl-3-(1H-imidazo[4, 5-f][1,10]-phenanthroline-2-yl)-4H-chromene-4-one, phen = 1,10-phenanthroline,bpy = 2, 2'bipyridine,dmb = 4, 4'-dimethyl-2, 2'-bipyridine] have been synthesized and characterized by elemental analysis, IR, UV-Vis, (1)H& (13)C NMR and mass spectra. The DNA-binding properties of the Ruthenium(II) complexes were investigated by spectrophotometric methods, viscosity measurements and light switch studies. These three complexes have been focused on photo activated cleavage studies with pBR-322 and antimicrobial studies. Experimental results indicate that the three complexes intercalate into DNA base pairs and follows the order of 1 > 2 > 3 respectively. Molecular docking studies also support the DNA interactions with complexes through hydrogen bonding and vander Waal's interactions. Cytotoxicity studies with Hela cell lines has been revealing about anti tumor activity of these complexes. PMID:23553642

  11. Sequence specificity of DNA cleavage by Micrococcus luteus. gamma. endonuclease

    SciTech Connect

    Hentosh, P.; Henner, W.D.; Reynolds, R.J.

    1985-04-01

    DNA fragments of defined sequence have been used to determine the sites of cleavage by ..gamma..-endonuclease activity in extracts prepared from Micrococcus luteus. End-labeled DNA restriction fragments of pBR322 DNA that had been irradiated under nitrogen in the presence of potassium iodide or t-butanol were treated with M. luteus ..gamma.. endonuclease and analyzed on irradiated DNA preferentially at the positions of cytosines and thymines. DNA cleavage occurred immediately to the 3' side of pyrimidines in irradiated DNA and resulted in fragments that terminate in a 5'-phosphoryl group. These studies indicate that both altered cytosines and thymines may be important DNA lesions requiring repair after exposure to ..gamma.. radiation.

  12. DNA Interaction and DNA Cleavage Studies of a New Platinum(II) Complex Containing Aliphatic and Aromatic Dinitrogen Ligands

    PubMed Central

    Shahabadi, Nahid; Kashanian, Soheila; Mahdavi, Maryam; Sourinejad, Noorkaram

    2011-01-01

    A new Pt(II) complex, [Pt(DIP)(LL)](NO3)2 (in which DIP is 4,7-diphenyl-1,10-phenanthroline and LL is the aliphatic dinitrogen ligand, N,N-dimethyl-trimethylenediamine), was synthesized and characterized using different physico-chemical methods. The interaction of this complex with calf thymus DNA (CT-DNA) was investigated by absorption, emission, circular dichroism (CD), and viscosity measurements. The complex binds to CT-DNA in an intercalative mode. The calculated binding constant, Kb, was 6.6 × 104 M−1. The enthalpy and entropy changes of the reaction between the complex and CT-DNA showed that the van der Waals interactions and hydrogen bonds are the main forces in the interaction with CT-DNA. In addition, CD study showed that phenanthroline ligand insert between the base pair stack of double helical structure of DNA. It is remarkable that this complex has the ability to cleave the supercoiled plasmid. PMID:22235195

  13. Synthesis, characterization, DNA interactions, DNA cleavage, radical scavenging activity, antibacterial, anti-proliferative and docking studies of new transition metal complexes.

    PubMed

    Chennam, Kishan Prasad; Ravi, Mudavath; Ushaiah, B; Srinu, V; Eslavath, Ravi Kumar; Devi, Ch Sarala

    2016-01-01

    The compound N-(2-hydroxybenzylidene)-1-ethyl-1, 4-dihydro-7-methyl-4-oxo-1, 8 naphthyridine-3-carbohydrazide (LH) and its Cu (II), Co (II) and Zn (II) complexes were synthesized and characterized. The absorption spectral titrations and competitive DNA binding studies depicted those complexes of title compound bind to CT-DNA through intercalation. Interestingly [Cu (II)-(L2)] showed relatively high binding constant value (6.61 x 10(5) M(-1)) compared to [Co (II)-(L2)] (4.378× 10(5) M(-1)) and [Zn (II)-(L2)] (3.1x10(5) M(-1)). Ligand and its complexes were also examined for DNA nuclease activity against pBR-322 plasmid DNA, which showed that [Cu (II)-(L2)] had the best hydrolytic cleavage property displaying prominent double-strand DNA cleavage. In addition, antioxidant activities of the ligand and its metal complexes investigated through scavenging effects for DPPH radical in- vitro, indicated their potentiality as good antioxidants. The in vitro anti-bacterial study inferred the better anti-bacterial activity of [Cu (II)-(L2)] and this was also correlated theoretically by employing docking studies wherein [Cu (II)-(L2)] displayed good Gold score and Chem score. Finally the in vitro anti- proliferative activity of studied compounds was tested against HeLa and MCF-7 cell lines. Interestingly [Cu (II)-(L2)] displayed lower IC50 value and lower percentage of viability in both HeLa and MCF-7 cell lines. PMID:26545354

  14. DNA Cleavage, Cytotoxic Activities, and Antimicrobial Studies of Ternary Copper(II) Complexes of Isoxazole Schiff Base and Heterocyclic Compounds.

    PubMed

    Chityala, Vijay Kumar; Sathish Kumar, K; Macha, Ramesh; Tigulla, Parthasarathy; Shivaraj

    2014-01-01

    Novel mixed ligand bivalent copper complexes [Cu. L. A. ClO 4 ] and [Cu. L. A] where "L" is Schiff bases, namely 2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-bromophenol (DMIIMBP)/2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-chlorophenol (DMIIMCP), and "A" is heterocyclic compound, such as 1,10-phenanthroline (phen)/2,2(1)-bipyridyl (bipy)/8-hydroxyquinoline (oxine)/5-chloro-8-hydroxyquinoline (5-Cl-oxine), have been synthesized. These complexes have been characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, TG, and DTA. On the basis of spectral studies and analytical data, five-coordinated square pyramidal/four-coordinated square planar geometry is assigned to all complexes. The ligands and their ternary complexes with Cu(II) have been screened for antimicrobial activity against bacteria and fungi by paper disc method. The antimicrobial studies of Schiff bases and their metal complexes showed significant activity and further it is observed that the metal complexes showed more activity than corresponding Schiff bases. In vitro antitumor activity of Cu(II) complexes was assayed against human cervical carcinoma (HeLa) cancer cells and it was observed that few complexes exhibit good antitumor activity on HeLa cell lines. The DNA cleavage studies have also been carried out on pBR 322 and it is observed that these Cu(II) complexes are capable of cleaving supercoiled plasmid DNA in the presence of H2O2 and UV light. PMID:24895493

  15. Synthesis, structural characterization, fluorescence, antimicrobial, antioxidant and DNA cleavage studies of Cu(II) complexes of formyl chromone Schiff bases

    NASA Astrophysics Data System (ADS)

    Kavitha, P.; Saritha, M.; Laxma Reddy, K.

    2013-02-01

    Cu(II) complexes have been synthesized from different Schiff bases, such as 3-((2-hydroxy phenylimino)methyl)-4H-chromen-4-one (HL1), 2-((4-oxo-4H-chromen-3-yl)methylneamino) benzoicacid (HL2), 3-((3-hydroxypyridin-2-ylimino)methyl)-4H-chromen-4-one (HL3) and 3-((2-mercaptophenylimino)methyl)-4H-chromen-4-one (HL4). The complexes were characterized by analytical, molar conductance, IR, electronic, magnetic, ESR, thermal, powder XRD and SEM studies. The analytical data reveal that metal to ligand molar ratio is 1:2 in all the complexes. Molar conductivity data indicates that all the Cu(II) complexes are neutral. On the basis of magnetic and electronic spectral data, distorted octahedral geometry is proposed for all the Cu(II) complexes. Thermal behaviour of the synthesized complexes illustrates the presence of lattice water molecules in the complexes. X-ray diffraction studies reveal that all the ligands and their Cu(II) complexes have triclinic system with different unit cell parameters. Antimicrobial, antioxidant and DNA cleavage activities indicate that metal complexes exhibited greater activity as compared with ligands.

  16. Microwave assisted synthesis, spectroscopic, electrochemical and DNA cleavage studies of lanthanide(III) complexes with coumarin based imines

    NASA Astrophysics Data System (ADS)

    Kapoor, Puja; Fahmi, Nighat; Singh, R. V.

    2011-12-01

    The present work stems from our interest in the synthesis, characterization and biological evaluation of lanthanide(III) complexes of a class of coumarin based imines which have been prepared by the interaction of hydrated lanthanide(III) chloride with the sodium salts of 3-acetylcoumarin thiosemicarbazone (ACTSZH) and 3-acetylcoumarin semicarbazone (ACSZH) in 1:3 molar ratio using thermal as well as microwave method. Characterization of the ligands as well as the metal complexes have been carried out by elemental analysis, melting point determinations, molecular weight determinations, magnetic moment, molar conductance, IR, 1H NMR, 13C NMR, electronic, EPR, X-ray powder diffraction and mass spectral studies. Spectral studies confirm ligands to be monofunctional bidentate and octahedral environment around metal ions. The redox behavior of one of the synthesized metal complex was investigated by cyclic voltammetry. Further, free ligands and their metal complexes have been screened for their antimicrobial as well as DNA cleavage activity. The results of these findings have been presented and discussed.

  17. DNA Cleavage, Cytotoxic Activities, and Antimicrobial Studies of Ternary Copper(II) Complexes of Isoxazole Schiff Base and Heterocyclic Compounds

    PubMed Central

    Chityala, Vijay Kumar; Sathish Kumar, K.; Macha, Ramesh; Tigulla, Parthasarathy; Shivaraj

    2014-01-01

    Novel mixed ligand bivalent copper complexes [Cu. L. A. ClO4] and [Cu. L. A] where “L” is Schiff bases, namely 2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-bromophenol (DMIIMBP)/2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-chlorophenol (DMIIMCP), and “A” is heterocyclic compound, such as 1,10-phenanthroline (phen)/2,21-bipyridyl (bipy)/8-hydroxyquinoline (oxine)/5-chloro-8-hydroxyquinoline (5-Cl-oxine), have been synthesized. These complexes have been characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, TG, and DTA. On the basis of spectral studies and analytical data, five-coordinated square pyramidal/four-coordinated square planar geometry is assigned to all complexes. The ligands and their ternary complexes with Cu(II) have been screened for antimicrobial activity against bacteria and fungi by paper disc method. The antimicrobial studies of Schiff bases and their metal complexes showed significant activity and further it is observed that the metal complexes showed more activity than corresponding Schiff bases. In vitro antitumor activity of Cu(II) complexes was assayed against human cervical carcinoma (HeLa) cancer cells and it was observed that few complexes exhibit good antitumor activity on HeLa cell lines. The DNA cleavage studies have also been carried out on pBR 322 and it is observed that these Cu(II) complexes are capable of cleaving supercoiled plasmid DNA in the presence of H2O2 and UV light. PMID:24895493

  18. Synthesis and characterization, antimicrobial activity, DNA binding and DNA cleavage studies of new 5-chloro-2-[4-phenylthiazol-2-yl-iminomethyl]phenol metal complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.

    2015-02-01

    New Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) complexes derived from bidentate Schiff base ligand, 5-chloro-2-[4-phenylthiazol-2-yl-iminomethyl]phenol (HL) have been synthesized. The molar ratio for all synthesized complexes is M: L = 1:2 which was established from the results of chemical analysis. The complexes have been characterized by elemental analysis, spectral (IR, UV-Vis, (1H and 13C) NMR, mass, ESR, XRD, CV, fluorescence, and magnetic as well as thermal analysis measurements. The IR spectra of the prepared complexes were suggested that the Schiff base ligand behaves as a bi-dentate ligand through the azomethine nitrogen atom and phenolic oxygen atom. The crystal field splitting, Racah repulsion and nepheloauxetic parameters and determined from the electronic spectra of the complexes. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. From the modeling studies, the bond length, bond angle, core-core interaction, heat of formation, electronic energy, binding energy, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligand and their investigated complexes. Also, the thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern, Horowitz-Metzger and Piloyan-Novikova methods. Moreover, the in vitro antibacterial studies of all compounds screened against pathogenic bacteria (two Gram +ve and three Gram -ve) and three antifungal to assess their inhibiting potential. The assay indicated that the inhibition potential is metal ion dependent. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption method, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed.

  19. Detailed study of sequence-specific DNA cleavage of triplex-forming oligonucleotides linked to 1,10-phenanthroline.

    PubMed

    Shimizu, M; Inoue, H; Ohtsuka, E

    1994-01-18

    We introduced eight bases, including four base analogs, into 15-mer triplex-forming oligonucleotides (TFOs) [d-psTTTCTTTNTTTTCTT; ps = thiophosphate; N = A, G, C, T, 2'-deoxyinosine (I), 2'-deoxyxanthosine (X), 5-methyl-2'-deoxycytidine (m5C), or 5-bromo-2'-deoxyuridine(br5U)] to investigate the Hoogsteen-like hydrogen bonding to the base in the target 34-mer strand (d-TGAGTGAGTAAAGAAARAAAAGAATGAGTGCCAA.d-TTGGCACTCATTCTTTTYTTTCT TTACTCACTCA; RY = AT, GC, TA, or CG). We examined the thermal stability of 15-mer triplexes in buffer containing 100 mM sodium acetate and 1 M NaCl at pH 5.0. The triplexes with typical triplets of T.AT (51.3 degrees C), br5U.AT (52.4 degrees C), C+.GC (66.7 degrees C), and m5C+.GC (66.8 degrees C) at the central position showed relatively higher Tm values, as expected. The relatively high stability of the X.AT triplex (39.8 degrees C) was observed. Among the N.TA triplets, G.TA (44.8 degrees C) was thermally the most stable, and moreover, the data showed that the N.TA triplet was also stabilized by I in the N position (40.7 degrees C). Furthermore, the TFOs were converted to DNA-cleaving molecules by introducing a newly synthesized 1,10-phenanthroline (OP) derivative on the thiophosphate group at the 5' end. Cleavage reactions of the 32P-labeled DNA (34-mer) were carried out. The cleavage efficiencies were compared to the Tm values of triplexes with or without an OP derivative. Results showed that the increased cleavage yields reflect the higher thermal stability of the triplex formed in most cases, but a few exceptional cases existed. Especially, the G-containing TFO did not show the above correlation between thermal stability and cleavage yield.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8286392

  20. Drosophila topoisomerase II double-strand DNA cleavage: analysis of DNA sequence homology at the cleavage site.

    PubMed Central

    Sander, M; Hsieh, T S

    1985-01-01

    In order to study the sequence specificity of double-strand DNA cleavage by Drosophila topoisomerase II, we have mapped and sequenced 16 strong and 47 weak cleavage sites in the recombinant plasmid p pi 25.1. Analysis of the nucleotide and dinucleotide frequencies in the region near the site of phosphodiester bond breakage revealed a nonrandom distribution. The nucleotide frequencies observed would occur by chance with a probability less than 0.05. The consensus sequence we derived is 5'GT.A/TAY decrease ATT.AT..G 3', where a dot means no preferred nucleotide, Y is for pyrimidine, and the arrow shows the point of bond cleavage. On average, strong sites match the consensus better than weak sites. Images PMID:2987816

  1. DNA-binding and cleavage studies of a novel two-dimensional manganese(II) azide complex with N-methylimidazole.

    PubMed

    Chen, Fengjuan; Xu, Zhihong; Xi, Pinxian; Liu, Xiaohui; Zeng, Zhengzhi

    2009-03-01

    A new complex, manganese(II) azide complex with N-methylimidazole, has been synthesized and characterized by elemental analysis, IR spectra and single crystal X-ray studies. Absorption spectroscopy, emission spectroscopy, viscosity measurements and CD spectroscopy have been used to investigate the binding of the complex with calf thymus DNA (CTDNA). The intrinsic binding constant K(b) of the complex with DNA was obtained by electronic absorption titration; the value is consistent with the result by fluorescence titration method. The spectroscopic studies together with viscosity measurements support the claim that the title complex bonds to CT-DNA by a groove mode. Control cleavage experiments using pBR 322 plasmid DNA which suggest minor groove binding for the complex. PMID:19276591

  2. Synthesis, Characterization, Antimicrobial, DNA Cleavage, and Antioxidant Studies of Some Metal Complexes Derived from Schiff Base Containing Indole and Quinoline Moieties

    PubMed Central

    Karekal, Mahendra Raj; Biradar, Vivekanand; Bennikallu Hire Mathada, Mruthyunjayaswamy

    2013-01-01

    A new Schiff base of 5-chloro-3-phenyl-1H-indole-2-carboxyhydrazide and 3-formyl-2-hydroxy-1H-quinoline (HL), and its Cu(II), Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) complexes have been synthesized and characterized in the light of microanalytical, IR, H1 NMR, UV-Vis, FAB-mass, ESR, XRD, and TGA spectral studies. The magnetic susceptibility measurements and low conductivity data provide evidence for monomeric and neutral nature of the complexes. On the basis of spectral studies and analytical data, it is evident that the Schiff base acts as tridentate ligand. The Cu(II), Co(II), and Ni(II) complexes were octahedral, whereas Zn(II), Cd(II), and Hg(II) complexes were tetrahedral in nature. The redox behavior of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage experiment performed using agarose gel electrophoresis method showed the cleavage of DNA by all the metal complexes. The free radical scavenging activity of newly synthesized compounds has been determined at a different concentration range by means of their interaction with the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). PMID:24194692

  3. DNA cleavage during ethanol metabolism: Role of superoxide radicals and catalytic iron

    SciTech Connect

    Rajasinghe, H.; Jayatilleke, E.; Shaw, S. )

    1990-01-01

    The generation of superoxide and related free radicals and the mobilization of catalytic iron due to ethanol metabolism have been suggested as mechanisms of alcohol-induced liver injury as well as of the increased risk of cancer observed in alcoholics. Cleavage of double stranded DNA is produced by both free radicals as well as by catalytic iron. The effects of ethanol metabolism on DNA cleavage were therefore studied in vitro as well as in vivo in isolated hepatocytes. Intactness of double stranded DNA was studied by measuring ethidium bromide fluorescence after DNA electrophoresis. In vitro, the metabolism of acetaldehyde by aldehyde oxidase caused cleavage of lambda phage DNA. Cleavage was inhibited by both superoxide dismutase and desferrioxamine indicating the role of superoxide radicals and catalytic iron respectively. Studies with HIND III digests of the lambda phage indicate a lack of specificity in the breaks with respect to nucleotide sequences. Addition of EDTA greatly enhanced cleavage. In vivo, ethanol metabolism caused minimal breakage in hepatocyte DNA and addition of acetaldehyde markedly enhanced cleavage; all cleavage was inhibited by desferrioxamine.

  4. Synthesis, Characterization, and Biological Activities of Pendant Arm-Pyridyltetrazole Copper(II) Complexes: DNA Binding/Cleavage Activity and Cytotoxic Studies.

    PubMed

    Mustafa, Shaik; Rao, Bommuluri Umamaheswara; Surendrababu, Manubolu Surya; Raju, Kalidindi Krishnam; Rao, Gollapalli Nageswara

    2015-10-01

    2-(1H-Tetrazol-5-yl)pyridine (L) has been reacted separately with Me2NCH2CH2Cl⋅HCl and ClCH2CH2OH to yield two regioisomers in each case, N,N-dimethyl-2-[5-(pyridin-2-yl)-1H-tetrazol-1-yl]ethanamine (L1)/N,N-dimethyl-2-[5-(pyridin-2-yl)-2H-tetrazol-2-yl]ethanamine (L2) and 2-[5-(pyridin-2-yl)-1H-tetrazol-1-yl]ethanol (L3)/2-[5-(pyridin-2-yl)-2H-tetrazol-2-yl]ethanol (L4), respectively. These ligands, L1-L4, have been coordinated with CuCl2 ⋅H2O in 1 : 1 composition to furnish the corresponding complexes 1-4. EPR Spectra of Cu complexes 1 and 3 were characteristic of square planar geometry, with nuclear hyperfine spin 3/2. Single X-ray crystallographic studies of 3 revealed that the Cu center has a square planar structure. DNA binding studies were carried out by UV/VIS absorption; viscosity and thermal denaturation studies revealed that each of these complexes are avid binders of calf thymus DNA. Investigation of nucleolytic cleavage activities of the complexes was carried out on double-stranded pBR322 circular plasmid DNA by using a gel electrophoresis experiment under various conditions, where cleavage of DNA takes place by oxidative free-radical mechanism (OH(⋅)). In vitro anticancer activities of the complexes against MCF-7 (human breast adenocarcinoma) cells revealed that the complexes inhibit the growth of cancer cells. The IC50 values of the complexes showed that Cu complexes exhibit comparable cytotoxic activities compared to the standard drug cisplatin. PMID:26460557

  5. Quantification of DNA cleavage specificity in Hi-C experiments

    PubMed Central

    Meluzzi, Dario; Arya, Gaurav

    2016-01-01

    Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered. PMID:26264668

  6. Irreversible and reversible topoisomerase II DNA cleavage stimulated by clerocidin: sequence specificity and structural drug determinants.

    PubMed

    Binaschi, M; Zagotto, G; Palumbo, M; Zunino, F; Farinosi, R; Capranico, G

    1997-05-01

    In contrast to other topoisomerase II poisons, the microbial terpenoid clerocidin was shown to stimulate irreversible topoisomerase II-mediated DNA cleavage. To establish the structural determinants for drug activity, in this study we have investigated intensity patterns and sequence specificity of clerocidin-stimulated DNA cleavage using 5'-end 32P-labeled DNA fragments. At a majority of the sites, clerocidin-stimulated cleavage did not revert upon NaCl addition; nevertheless, at some sites, cleavage completely reverted. Statistical analyses showed that drug-preferred bases were different in the two cases: guanine and cytosine were highly preferred at position -1 at irreversible and reversible sites, respectively. These results demonstrated that cleavage irreversibility was site selective and required a guanine at the 3' end of the cut. Further experiments revealed that some irreversible sites showed an abnormal electrophoretic mobility in sequencing gels with respect to cleaved bands generated by 4-(9-acridinylamino)methanesulfon-m-anisidide, suggesting a chemical alteration of the DNA strand. Interestingly, the ability to stimulate irreversible cleavage progressively decreased over time when clerocidin was stored in ethanol. Under these conditions, nuclear magnetic resonance measurements demonstrated that the drug underwent structural modifications that involved the C-12-C-15 side chain. Thus, the results indicate that a specific moiety of clerocidin may react with the DNA (guanine at -1) in the ternary complex, resulting in cleavage irreversibility and in altered DNA mobility in sequencing gels. PMID:9135013

  7. Synthesis, characterization, in vitro antimicrobial and DNA cleavage studies of Co(II), Ni(II) and Cu(II) complexes with ONOO donor coumarin Schiff bases

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Unki, Shrishila N.; Kulkarni, Ajaykumar D.; Naik, Vinod H.; Badami, Prema S.

    2011-01-01

    A series of Co(II), Ni(II) and Cu(II) complexes have been synthesized with Schiff bases derived from 2-hydroxy-1-naphthaldehyde and 2-oxo-2H-chromene-3-carbohydrazide/6-bromo-2-oxo-2H-chromene-3-carbohydrazide. The chelation of the complexes has been proposed in the light of analytical, spectral (IR, UV-Vis, 1H NMR, ESR, FAB-mass and fluorescence), magnetic and thermal studies. The measured molar conductance values indicate that, the complexes are non-electrolytic in nature. The redox behavior of the complexes was investigated with electrochemical method by using cyclic voltammetry. The Schiff bases and their metal complexes have been screened for their in vitro antibacterial ( Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Salmonella typhi) and antifungal activities ( Candida albicans, Cladosporium and Aspergillus niger) by MIC method. The DNA cleavage is studied by agarose gel electrophoresis method.

  8. Conventional and microwave-assisted synthesis, characterization, DFT calculations, in vitro DNA binding and cleavage studies of potential chemotherapeutic diorganotin(IV) mandelates.

    PubMed

    Mridula; Nath, Mala

    2016-09-01

    Diorganotin(IV) complexes of the general formulae {[R2Sn(L)]2O}(R=Me (1), n-Bu (2), and n-Oct (3); L=anion of mandelic acid) and {[R2Sn(L)]2Cl2}(R=Ph (4)) have been synthesized by conventional thermal method (1a-3a), except 4a and by microwave-assisted reactions (1b-4b). The elemental analysis, IR, NMR ((1)H, (13)C and (119)Sn) and ESI-MS/DART-mass spectral studies revealed that dimeric 1:1 complexes with SnOSn bridges (1-3) are formed possessing distorted trigonal bipyramidal geometry around the Sn atoms, except 4b which exhibits octahedral geometry with SnClSn bridges. The proposed geometries have been validated by density functional theory calculations. Thermal behavior of 1b-4b, studied by using thermogravimetry (TG), differential thermal analysis (DTA) and derivative thermogravimetric (DTG) techniques, indicated that all except 4b are stable up to 200°C. In vitro interaction studies of 1b-4b with CT-DNA were performed by UV-Vis, fluorescence titrations and results suggest that the complexes are binding to DNA via an intercalative mode. The binding affinity and quenching ability were quantified in terms of intrinsic binding constant (Kb) (3.74×10(4)M(-1), 2b; >3.67×10(4)M(-1), 4b; >3.03×10(4)M(-1), 3b; >0.72×10(4)M(-1), 1b) and Stern-Volmer quenching constant (Ksv) (2.16×10(5), 2b; >1.73×10(5), 4b; >1.66×10(5)3b; >1.51×10(5), 1b) which showed high binding affinity of 2b with CT-DNA. The cleavage studies of 1b-4b with pBR322 plasmid DNA was ascertained by agarose gel electrophoresis. They exhibited effective cleavage of supercoiled plasmid DNA into its nicked form (1b, 3b, 4b) and even into its linear form in presence of 2b. PMID:27423117

  9. In vitro DNA binding, pBR322 plasmid cleavage and molecular modeling study of chiral benzothiazole Schiff-base-valine Cu(II) and Zn(II) complexes to evaluate their enantiomeric biological disposition for molecular target DNA

    NASA Astrophysics Data System (ADS)

    Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh

    2014-10-01

    Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer.

  10. Synthesis, Characterization, Antimicrobial, DNA Cleavage, and In Vitro Cytotoxic Studies of Some Metal Complexes of Schiff Base Ligand Derived from Thiazole and Quinoline Moiety

    PubMed Central

    Yernale, Nagesh Gunvanthrao; Bennikallu Hire Mathada, Mruthyunjayaswamy

    2014-01-01

    A novel Schiff base ligand N-(4-phenylthiazol-2yl)-2-((2-thiaxo-1,2-dihydroquinolin-3-yl)methylene)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-thioxo-1,2-dihydroquinoline-3-carbaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), and Zn(II) complexes have been characterized by elemental analysis and various spectral studies like FT-IR, 1H NMR, ESI mass, UV-Visible, ESR, TGA/DTA, and powder X-ray diffraction studies. The Schiff base ligand (L) behaves as tridentate ONS donor and forms the complexes of type [ML(Cl)2] with square pyramidal geometry. The Schiff base ligand (L) and its metal complexes have been screened in vitro for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage activity of ligand and its metal complexes were studied using plasmid DNA pBR322 as a target molecule by gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties for the ligand and its metal complexes against Artemia salina. The results showed that the biological activities of the ligand were found to be increased on complexation. PMID:24729778

  11. Distinct mechanisms for DNA cleavage by myoglobin with a designed heme active center.

    PubMed

    Zhao, Yuan; Du, Ke-Jie; Gao, Shu-Qin; He, Bo; Wen, Ge-Bo; Tan, Xiangshi; Lin, Ying-Wu

    2016-03-01

    Heme proteins perform diverse biological functions, of which myoglobin (Mb) is a representative protein. In this study, the O2 carrier Mb was shown to cleave double stranded DNA upon aerobic dithiothreitol-induced reduction, which is fine-tuned by an additional distal histidine, His29 or His43, engineered in the heme active center. Spectroscopic (UV-vis and EPR) and inhibition studies suggested that free radicals including singlet oxygen and hydroxyl radical are responsible for efficient DNA cleavage via an oxidative cleavage mechanism. On the other hand, L29E Mb, with a distinct heme active center involving three water molecules in the met form, was found to exhibit an excellent DNA cleavage activity that was not depending on O2. Inhibition and ligation studies demonstrated for the first time that L29E Mb cleaves double stranded DNA into both the nicked circular and linear forms via a hydrolytic cleavage mechanism, which resembles native endonucleases. This study provides valuable insights into the distinct mechanisms for DNA cleavage by heme proteins, and lays down a base for creating artificial DNA endonucleases by rational design of heme proteins. Moreover, this study suggests that the diverse functions of heme proteins can be fine-tuned by rational design of the heme active center with a hydrogen-bonding network. PMID:26775281

  12. DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: Synthesis and spectral approach

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Prabhakara, Chetan T.; Halasangi, Bhimashankar M.; Toragalmath, Shivakumar S.; Badami, Prema S.

    2015-02-01

    The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, 1H NMR, 13C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity.

  13. SODs, DNA binding and cleavage studies of new Mn(III) complexes with 2-((3-(benzyloxy)pyridin-2-ylimino)methyl)phenol

    NASA Astrophysics Data System (ADS)

    Shivakumar, L.; Shivaprasad, K.; Revanasiddappa, Hosakere D.

    2013-04-01

    Newly synthesized ligand [2-((3-(benzyloxy)pyridin-2-ylimino)methyl)phenol] (Bpmp) react with manganese(II) to form mononuclear complexes [Mn(phen)(Bpmp)(CH3COO)(H2O)]·4H2O (1), (phen = 1,10-phenanthroline) and [Mn(Bpmp)2(CH3COO)(H2O)]·5H2O (2). These complexes were characterized by elemental analysis, IR, 1H NMR, Mass, UV-vis spectral studies. Molar conductance and thermogravimetric analysis of these complexes were also recorded. The in vitro SOD mimic activity of Mn(III) complexes were carried out and obtained with good result. The DNA-binding properties of the complexes 1 and 2 were investigated by UV-spectroscopy, fluorescence spectroscopy and viscosity measurements. The spectral results suggest that the complexes 1 and 2 can bind to Calf thymus DNA by intercalation mode. The cleavage properties of these complexes with super coiled pUC19 have been studied using the gel electrophoresis method, wherein both complexes 1 and 2 displayed chemical nuclease activity in the absence and presence of H2O2via an oxidative mechanism. All the complexes inhibit the growth of both Gram positive and Gram negative bacteria to competent level. The MIC was determined by microtiter method.

  14. SODs, DNA binding and cleavage studies of new Mn(III) complexes with 2-((3-(benzyloxy)pyridin-2-ylimino)methyl)phenol.

    PubMed

    Shivakumar, L; Shivaprasad, K; Revanasiddappa, Hosakere D

    2013-04-15

    Newly synthesized ligand [2-((3-(benzyloxy)pyridin-2-ylimino)methyl)phenol] (Bpmp) react with manganese(II) to form mononuclear complexes [Mn(phen)(Bpmp)(CH3COO)(H2O)]·4H2O (1), (phen=1,10-phenanthroline) and [Mn(Bpmp)2(CH3COO)(H2O)]·5H2O (2). These complexes were characterized by elemental analysis, IR, (1)H NMR, Mass, UV-vis spectral studies. Molar conductance and thermogravimetric analysis of these complexes were also recorded. The in vitro SOD mimic activity of Mn(III) complexes were carried out and obtained with good result. The DNA-binding properties of the complexes 1 and 2 were investigated by UV-spectroscopy, fluorescence spectroscopy and viscosity measurements. The spectral results suggest that the complexes 1 and 2 can bind to Calf thymus DNA by intercalation mode. The cleavage properties of these complexes with super coiled pUC19 have been studied using the gel electrophoresis method, wherein both complexes 1 and 2 displayed chemical nuclease activity in the absence and presence of H2O2 via an oxidative mechanism. All the complexes inhibit the growth of both Gram positive and Gram negative bacteria to competent level. The MIC was determined by microtiter method. PMID:23429055

  15. DNA cleavage, antimicrobial studies and a DFT-based QSAR study of new antimony(III) complexes as glutathione reductase inhibitor

    NASA Astrophysics Data System (ADS)

    Tunç, Turgay; Koç, Yasemin; Açık, Leyla; Karacan, Mehmet Sayım; Karacan, Nurcan

    2015-02-01

    New antimony(III) complexes, [Sb(2-aminopyridine)2Cl3] (1a), [Sb(2-aminopyridine)2Br3] (1b), [Sb(5-methyl-2-aminopyridine)2Cl3] (2a), [Sb(5-methyl-2-aminopyridine)2Br3] (2b), [Sb(2-aminopyrimidine)2Cl3] (3a), [Sb(2-aminopyrimidine)2Br3] (3b), [Sb(4,6-dimethoxy-2-aminopyrimidine)2Cl3] (4a), [Sb(4,6-dimethoxy-2-aminopyrimidine)2Br3] (4b), [Sb(2-amino-1,3,5-triazine)2Cl3] (5a), [Sb(2-amino-1,3,5-triazine)2Br3] (5b), [Sb(2-guanidinobenzimidazole) Cl3] (6a), [Sb(2-guanidinobenzimidazole)Br3] (6b) [Sb(2- benzyl-2-thiopseudeourea)2Cl3] (7a) and [Sb(2- benzyl-2-thiopseudeourea)2Br3] (7b) were synthesized. Their structures were characterized by elemental analysis, molecular conductivity, FT-IR, 1H NMR, LC-MS techniques. Glutathione reductase inhibitor activity, antimicrobial activity and DNA cleavage studies of the complexes were determined. The geometrical structures of the complexes were optimized by DFT/B3LYP method with LANL2DZ as basis set. Calculation results indicated that the equilibrium geometries of all complexes have square pyramidal shape. About 350 molecular descriptors (constitutional, topological, geometrical, electrostatic and quantum chemical parameters) of the complexes were calculated by DFT/B3LYP/LANL2DZ method with CODESSA software. Calculated molecular parameters were correlated to glutathione reductase inhibitory activity values (pIC50) of all complexes by Best Multi-Linear Regression (BMLR) method. Obtained two-parameter QSAR equation shows that increase in "maximum partial charge for a H atom" and decrease in HOMO-LUMO gap would be favorable for the glutathione reductase inhibitory activity.

  16. DNA cleavage, antimicrobial studies and a DFT-based QSAR study of new antimony(III) complexes as glutathione reductase inhibitor.

    PubMed

    Tunç, Turgay; Koç, Yasemin; Açık, Leyla; Karacan, Mehmet Sayım; Karacan, Nurcan

    2015-02-01

    New antimony(III) complexes, [Sb(2-aminopyridine)2Cl3] (1a), [Sb(2-aminopyridine)2Br3] (1b), [Sb(5-methyl-2-aminopyridine)2Cl3] (2a), [Sb(5-methyl-2-aminopyridine)2Br3] (2b), [Sb(2-aminopyrimidine)2Cl3] (3a), [Sb(2-aminopyrimidine)2Br3] (3b), [Sb(4,6-dimethoxy-2-aminopyrimidine)2Cl3] (4a), [Sb(4,6-dimethoxy-2-aminopyrimidine)2Br3] (4b), [Sb(2-amino-1,3,5-triazine)2Cl3] (5a), [Sb(2-amino-1,3,5-triazine)2Br3] (5b), [Sb(2-guanidinobenzimidazole) Cl3] (6a), [Sb(2-guanidinobenzimidazole)Br3] (6b) [Sb(2- benzyl-2-thiopseudeourea)2Cl3] (7a) and [Sb(2- benzyl-2-thiopseudeourea)2Br3] (7b) were synthesized. Their structures were characterized by elemental analysis, molecular conductivity, FT-IR, (1)H NMR, LC-MS techniques. Glutathione reductase inhibitor activity, antimicrobial activity and DNA cleavage studies of the complexes were determined. The geometrical structures of the complexes were optimized by DFT/B3LYP method with LANL2DZ as basis set. Calculation results indicated that the equilibrium geometries of all complexes have square pyramidal shape. About 350 molecular descriptors (constitutional, topological, geometrical, electrostatic and quantum chemical parameters) of the complexes were calculated by DFT/B3LYP/LANL2DZ method with CODESSA software. Calculated molecular parameters were correlated to glutathione reductase inhibitory activity values (pIC50) of all complexes by Best Multi-Linear Regression (BMLR) method. Obtained two-parameter QSAR equation shows that increase in "maximum partial charge for a H atom" and decrease in HOMO-LUMO gap would be favorable for the glutathione reductase inhibitory activity. PMID:25459701

  17. Synthesis, characterization, optical band gap, in vitro antimicrobial activity and DNA cleavage studies of some metal complexes of pyridyl thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; El-Gammal, O. A.; Bedier, R. A.

    2013-03-01

    A new series of Cr(III), Mn(II), Ni(II), Zn(II) and Hg(II) complexes of Schiff-bases derived from the condensation of 4-(2-pyridyl)-3-thiosemicarbazide and pyruvic acid (H2PTP) have been synthesized and characterized by spectroscopic studies. Schiff-base exhibit thiol-thione tautomerism wherein sulfur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analysis, spectral (IR, UV-vis, 1H NMR and 13C NMR), magnetic and thermal studies. IR spectra show that H2PTP is coordinated to the metal ions in a mononegative tridentate manner except in Cr(III) complex in which the ligand exhibits mononegative bidentate manner. The parameters total energy, binding energy, isolated atomic energy, electronic energy, heat of formation, dipole moment, HOMO and LUMO were calculated for the ligand and its complexes. Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Also, the optical band gap (Eg) of the metal complexes has been calculated. The optical transition energy (Eg) is direct and equals 3.20, 3.27 and 3.26 eV for Cr, Mn and Ni complexes, respectively. The synthesized ligand, in comparison to its metal complexes is screened for its antibacterial activity against the bacterial species, Bacillus thuringiensis, Staphylococcus aureus, Pseudomonas aeuroginosa and Escherichia coli. The results show that the metal complexes be more potent in activity antibacterial than the parent Shciff base ligand towards one or more bacterial species. Finally, the biochemical studies showed that, Mn complex have powerful and complete degradation effect on DNA.

  18. The pattern of DNA cleavage intensity around indels.

    PubMed

    Chen, Wei; Zhang, Liqing

    2015-01-01

    Indels (insertions and deletions) are the second most common form of genetic variations in the eukaryotic genomes and are responsible for a multitude of genetic diseases. Despite its significance, detailed molecular mechanisms for indel generation are still unclear. Here we examined 2,656,597 small human and mouse germline indels, 16,742 human somatic indels, 10,599 large human insertions, and 5,822 large chimpanzee insertions and systematically analyzed the patterns of DNA cleavage intensities in the 200 base pair regions surrounding these indels. Our results show that DNA cleavage intensities close to the start and end points of indels are significantly lower than other regions, for both small human germline and somatic indels and also for mouse small indels. Compared to small indels, the patterns of DNA cleavage intensity around large indels are more complex, and there are two low intensity regions near each end of the indels that are approximately 13 bp apart from each other. Detailed analyses of a subset of indels show that there is slight difference in cleavage intensity distribution between insertion indels and deletion indels that could be contributed by their respective enrichment of different repetitive elements. These results will provide new insight into indel generation mechanisms. PMID:25660536

  19. Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites.

    PubMed

    Minko, Irina G; Jacobs, Aaron C; de Leon, Arnie R; Gruppi, Francesca; Donley, Nathan; Harris, Thomas M; Rizzo, Carmelo J; McCullough, Amanda K; Lloyd, R Stephen

    2016-01-01

    Apurinic/apyrimidinic (AP) sites are constantly formed in cellular DNA due to instability of the glycosidic bond, particularly at purines and various oxidized, alkylated, or otherwise damaged nucleobases. AP sites are also generated by DNA glycosylases that initiate DNA base excision repair. These lesions represent a significant block to DNA replication and are extremely mutagenic. Some DNA glycosylases possess AP lyase activities that nick the DNA strand at the deoxyribose moiety via a β- or β,δ-elimination reaction. Various amines can incise AP sites via a similar mechanism, but this non-enzymatic cleavage typically requires high reagent concentrations. Herein, we describe a new class of small molecules that function at low micromolar concentrations as both β- and β,δ-elimination catalysts at AP sites. Structure-activity relationships have established several characteristics that appear to be necessary for the formation of an iminium ion intermediate that self-catalyzes the elimination at the deoxyribose ring. PMID:27363485

  20. Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites

    PubMed Central

    Minko, Irina G.; Jacobs, Aaron C.; de Leon, Arnie R.; Gruppi, Francesca; Donley, Nathan; Harris, Thomas M.; Rizzo, Carmelo J.; McCullough, Amanda K.; Lloyd, R. Stephen

    2016-01-01

    Apurinic/apyrimidinic (AP) sites are constantly formed in cellular DNA due to instability of the glycosidic bond, particularly at purines and various oxidized, alkylated, or otherwise damaged nucleobases. AP sites are also generated by DNA glycosylases that initiate DNA base excision repair. These lesions represent a significant block to DNA replication and are extremely mutagenic. Some DNA glycosylases possess AP lyase activities that nick the DNA strand at the deoxyribose moiety via a β- or β,δ-elimination reaction. Various amines can incise AP sites via a similar mechanism, but this non-enzymatic cleavage typically requires high reagent concentrations. Herein, we describe a new class of small molecules that function at low micromolar concentrations as both β- and β,δ-elimination catalysts at AP sites. Structure-activity relationships have established several characteristics that appear to be necessary for the formation of an iminium ion intermediate that self-catalyzes the elimination at the deoxyribose ring. PMID:27363485

  1. Half-sandwich RuCl2(η(6)-p-cymene) core complexes containing sulfur donor aroylthiourea ligands: DNA and protein binding, DNA cleavage and cytotoxic studies.

    PubMed

    Jeyalakshmi, Kumaramangalam; Haribabu, Jebiti; Bhuvanesh, Nattamai S P; Karvembu, Ramasamy

    2016-08-01

    A series of Ru(ii)(η(6)-p-cymene) complexes (1-4) bearing the general formula [RuCl2(η(6)-p-cymene)L] (L = monodentate aroylthiourea ligand) has been synthesized and characterized by analytical and various spectroscopic techniques. The neutral monodentate coordination of aroylthiourea with Ru via an S atom was confirmed by single crystal X-ray diffraction study. The complexes were tested for their ability to interact with DNA and protein. The complexes bound with calf thymus DNA (CT DNA) with the intrinsic binding constant value in the order of 10(4) M(-1). The intercalative mode of binding was confirmed by the ethidium bromide (EB) displacement study. The interaction of the complexes with CT DNA was further supported by viscosity measurements and circular dichroic (CD) spectra. The Ru(ii) complexes cleaved the supercoiled DNA without the need of any external agent. The spectroscopic evidence showed good binding efficacy of the complexes with BSA (Bovine Serum Albumin). The alterations in the secondary structure of BSA by the Ru(ii) complexes were confirmed by synchronous fluorescence spectra. Cytotoxicity examination by MTT assay was carried out in two cancer cell lines (MCF7 and A549) and one non-cancerous cell line (L929). Complex 4 showed significant activity [IC50 = 52.3 (MCF7) and 54.6 (A549) μM] which was comparable with that of similar known complexes. The morphological changes assessed by Hoechst staining revealed that the cell death occurred by apoptosis. PMID:27435011

  2. DNA cleavage, antimicrobial, spectroscopic and fluorescence studies of Co(II), Ni(II) and Cu(II) complexes with SNO donor coumarin Schiff bases

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Naik, Vinod H.; Kulkarni, Ajaykumar D.; Badami, Prema S.

    2010-01-01

    A series of Co(II), Ni(II) and Cu(II) complexes of the type ML 2 have been synthesized with Schiff bases derived from methylthiosemicarbazone and 5-formyl-6-hydroxy coumarin/8-formyl-7-Hydroxy-4-methylcoumarin. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMF indicate that, the complexes are non-electrolytes in nature. In view of analytical, spectral (IR, UV-vis, ESR, FAB-mass and fluorescence), magnetic and thermal studies, it has been concluded that, all the metal complexes possess octahedral geometry in which ligand is coordinated to metal ion through azomethine nitrogen, thione sulphur and phenolic oxygen atom via deprotonation. The redox behavior of the metal complexes was investigated by using cyclic voltammetry. The Schiff bases and their complexes have been screened for their antibacterial ( Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi) and antifungal activities ( Aspergillus niger, Aspergillus flavus and Cladosporium) by Minimum Inhibitory Concentration method. The DNA cleavage is studied by agarose gel electrophoresis method.

  3. Cleavage of supercoiled plasmid DNA by autoantibody Fab fragment: application of the flow linear dichroism technique.

    PubMed Central

    Gololobov, G V; Chernova, E A; Schourov, D V; Smirnov, I V; Kudelina, I A; Gabibov, A G

    1995-01-01

    A highly effective method consisting of two affinity chromatography steps and ion-exchange and gel-filtration chromatography steps was developed for purification of autoantibodies from human sera with DNA-hydrolyzing activity. Antibody Fab fragment, which had been purified 130-fold, was shown to catalyze plasmid DNA cleavage. The flow linear dichroism technique was used for quantitative and qualitative studying of supercoiled plasmid DNA cleavage by these autoantibodies in comparison with DNase I and EcoRI restriction endonuclease. The DNA autoantibody Fab fragment was shown to hydrolyze plasmid DNA by Mg(2+)-dependent single-strand multiple nicking of the substrate. Kinetic properties of the DNA autoantibody Fab fragment were evaluated from the flow linear dichroism and agarose gel electrophoresis data and revealed a high affinity (Kobsm = 43 nM) and considerable catalytic efficiency (kappcat/Kobsm = 0.32 min-1.nM-1) of the reaction. Images Fig. 2 PMID:7816827

  4. DNA cleavage enzymes for treatment of persistent viral infections: Recent advances and the pathway forward

    SciTech Connect

    Weber, Nicholas D.; Aubert, Martine; Dang, Chung H.; Stone, Daniel; Jerome, Keith R.

    2014-04-15

    Treatment for most persistent viral infections consists of palliative drug options rather than curative approaches. This is often because long-lasting viral DNA in infected cells is not affected by current antivirals, providing a source for viral persistence and reactivation. Targeting latent viral DNA itself could therefore provide a basis for novel curative strategies. DNA cleavage enzymes can be used to induce targeted mutagenesis of specific genes, including those of exogenous viruses. Although initial in vitro and even in vivo studies have been carried out using DNA cleavage enzymes targeting various viruses, many questions still remain concerning the feasibility of these strategies as they transition into preclinical research. Here, we review the most recent findings on DNA cleavage enzymes for human viral infections, consider the most relevant animal models for several human viral infections, and address issues regarding safety and enzyme delivery. Results from well-designed in vivo studies will ideally provide answers to the most urgent remaining questions, and allow continued progress toward clinical application. - Highlights: • Recent in vitro and in vivo results for DNA cleavage enzymes targeting persistent viral infections. • Analysis of the best animal models for testing enzymes for HBV, HSV, HIV and HPV. • Challenges facing in vivo delivery of therapeutic enzymes for persistent viral infections. • Safety issues to be addressed with proper animal studies.

  5. Synthesis, spectroscopic, molecular orbital calculation, cytotoxic, molecular docking of DNA binding and DNA cleavage studies of transition metal complexes with N-benzylidene-N'-salicylidene-1,1-diaminopropane

    NASA Astrophysics Data System (ADS)

    Al-Mogren, Muneerah M.; Alaghaz, Abdel-Nasser M. A.; Elbohy, Salwa A. H.

    2013-10-01

    Eight mononuclear chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes of Schiff's base ligand were synthesized and determined by different physical techniques. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the eight metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff base is found to act as tridentate ligand using N2O donor set of atoms leading to an octahedral geometry for the complexes around all the metal ions. Quantum chemical calculations were performed with semi-empirical method to find the optimum geometry of the ligand and its complexes. Additionally in silico, the docking studies and the calculated pharmacokinetic parameters show promising futures for application of the ligand and complexes as high potency agents for DNA binding activity. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption method, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed. The Schiff base and their complexes have been screened for their antibacterial activity against bacterial strains [Staphylococcus aureus (RCMB010027), Staphylococcus epidermidis (RCMB010024), Bacillis subtilis (RCMB010063), Proteous vulgaris (RCMB 010085), Klebsiella pneumonia (RCMB 010093) and Shigella flexneri (RCMB 0100542)] and fungi [(Aspergillus fumigates (RCMB 02564), Aspergillus clavatus (RCMB 02593) and Candida albicans (RCMB05035)] by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligand.

  6. DNA CLEAVAGE AND DETECTION OF DNA RADICALS FORMED FROM HYDRALAZINE AND COPPER (II) BY ESR AND IMMUNO-SPIN TRAPPING

    PubMed Central

    Sinha, Birandra K.; Leinisch, Fabian; Bhattacharjee, Suchandra; Mason, Ronald P.

    2014-01-01

    Metal ion-catalyzed oxidation of hydrazine and its derivatives leads to the formation of the hydrazyl radical and subsequently to oxy-radicals in the presence of molecular oxygen. Here we have examined the role of Cu2+-catalyzed oxidation of hydralazine in the induction of DNA damage. Neither 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) nor dimethyl sulfoxide (DMSO) were effective in inhibiting hydralazine-Cu2+-induced DNA damage. Singlet oxygen did not appear to participate in this DNA cleavage. The one-electron oxidation of hydralazine also leads to the formation of DNA radicals as confirmed by immuno-spin trapping with 5, 5-dimethyl-1-pyrroline-N-oxide. Electron spin resonance (ESR) and spin trapping studies further confirmed the formation of DNA radicals; predominantly 2′-deoxyadenosine radical adducts were detected, while some radicals were also detected with other nucleosides. Our results suggest that free hydroxyl radicals may not be the main damaging species causing DNA cleavage, and possibly, Cu-peroxide complexes, formed from Cu+-H2O2, areresponsible for this hydralazine-Cu2+-induced DNA cleavage. PMID:24502259

  7. Dynamics of Bleomycin Interaction with a Strongly Bound Hairpin DNA Substrate, and Implications for Cleavage of the Bound DNA

    PubMed Central

    Bozeman, Trevor C.; Nanjunda, Rupesh; Tang, Chenhong; Liu, Yang; Segerman, Zachary J.; Zaleski, Paul A.; Wilson, W. David; Hecht, Sidney M.

    2013-01-01

    Recent studies involving DNAs bound strongly by bleomycins have documented that such DNAs are degraded by the antitumor antibiotic with characteristics different from those observed when studying the cleavage of randomly chosen DNAs in the presence of excess Fe•BLM. In the present study, surface plasmon resonance has been used to characterize the dynamics of BLM B2 binding to a strongly bound hairpin DNA, to define the effects of Fe3+, salt and temperature on BLM–DNA interaction. One strong primary DNA binding site, and at least one much weaker site was documented. In contrast, more than one strong cleavage site was found, an observation also made for two other hairpin DNAs. Evidence is presented for BLM equilibration between the stronger and weaker binding sites in a way that renders BLM unavailable to other, less strongly bound DNAs. Thus enhanced binding to a given site does not necessarily result in increased DNA degradation at that site, i.e. for strongly bound DNAs, the facility of DNA cleavage must involve parameters in addition to the intrinsic rate of C-4′ H atom abstraction from DNA sugars. PMID:23072568

  8. Structural basis for DNA cleavage by the potent antiproliferative agent (-)-lomaiviticin A.

    PubMed

    Woo, Christina M; Li, Zhenwu; Paulson, Eric K; Herzon, Seth B

    2016-03-15

    (-)-Lomaiviticin A (1) is a complex antiproliferative metabolite that inhibits the growth of many cultured cancer cell lines at low nanomolar-picomolar concentrations. (-)-Lomaiviticin A (1) possesses a C2-symmetric structure that contains two unusual diazotetrahydrobenzo[b]fluorene (diazofluorene) functional groups. Nucleophilic activation of each diazofluorene within 1 produces vinyl radical intermediates that affect hydrogen atom abstraction from DNA, leading to the formation of DNA double-strand breaks (DSBs). Certain DNA DSB repair-deficient cell lines are sensitized toward 1, and 1 is under evaluation in preclinical models of these tumor types. However, the mode of binding of 1 to DNA had not been determined. Here we elucidate the structure of a 1:1 complex between 1 and the duplex d(GCTATAGC)2 by NMR spectroscopy and computational modeling. Unexpectedly, we show that both diazofluorene residues of 1 penetrate the duplex. This binding disrupts base pairing leading to ejection of the central AT bases, while placing the proreactive centers of 1 in close proximity to each strand. DNA binding may also enhance the reactivity of 1 toward nucleophilic activation through steric compression and conformational restriction (an example of shape-dependent catalysis). This study provides a structural basis for the DNA cleavage activity of 1, will guide the design of synthetic DNA-activated DNA cleavage agents, and underscores the utility of natural products to reveal novel modes of small molecule-DNA association. PMID:26929332

  9. Synthesis, spectroscopic, antimicrobial, DNA binding and cleavage studies of some metal complexes involving symmetrical bidentate N, N donor Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Arish, D.; Nair, M. Sivasankaran

    2011-11-01

    The Schiff base ligand, N, N'-bis-(4-isopropylbenzaldimine)-1,2-diaminoethane (L), obtained by the condensation of 4-isopropylbenzaldehyde and 1,2-diaminoethane, has been used to synthesize the complexes of the type [ML 2X 2] [M = Co(II), Ni(II) and Zn(II); X = Cl and OAc]. The newly synthesized ligand (L) and its complexes have been characterized on the basis of elemental analyses, mass, 1H and 13C-NMR, molar conductance, IR, UV-vis, magnetic moment, CV and thermal analyses, powder XRD and SEM. IR spectral data show that the ligand is coordinated to the metal ions in a bidentate manner. The geometrical structures of these complexes are found to be octahedral. Interestingly, reaction with Cu(II) ion with this ligand undergoes hydrolytic cleavage to form ethylenediamine copper(II) complex and the corresponding aldehyde. The antimicrobial results indicate that the chloro complexes exhibit more activity than the acetato complexes. The complexes bind to CT-DNA by intercalation modes. Novel chloroform soluble ZnL 2Cl 2 complex exhibits tremendous antimicrobial, DNA binding and cleaving properties.

  10. Alkyl and aryl sulfonyl p-pyridine ethanone oximes are efficient DNA photo-cleavage agents.

    PubMed

    Andreou, Nicolaos-Panagiotis; Dafnopoulos, Konstantinos; Tortopidis, Christos; Koumbis, Alexandros E; Koffa, Maria; Psomas, George; Fylaktakidou, Konstantina C

    2016-05-01

    Sulfonyloxyl radicals, readily generated upon UV irradiation of p-pyridine sulfonyl ethanone oxime derivatives, effectively cleave DNA, in a pH independent manner, and under either aerobic or anaerobic conditions. p-Pyridine sulfonyl ethanone oxime derivatives were synthesized from the reaction of p-pyridine ethanone oxime with the corresponding sulfonyl chlorides in good to excellent yields. All compounds, at a concentration of 100μM, were irradiated at 312nm for 15min, after incubation with supercoiled circular pBluescript KS II DNA and resulted in extended single- and double- strand cleavages. The cleavage ability was found to be concentration dependent, with some derivatives exhibiting activity even at nanomolar levels. Besides that, p-pyridine sulfonyl ethanone oxime derivatives showed good affinity to DNA, as it was observed with UV interaction and viscosity experiments with CT DNA and competitive studies with ethidium bromide. The compounds interact to CT DNA probably by non-classical intercalation (i.e. groove-binding) and at a second step they may intercalate within the DNA base pairs. The fluorescence emission spectra of pre-treated EB-DNA exhibited a significant or moderate quenching. Comparing with the known aryl carbonyloxyl radicals the sulfonyloxyl ones are more powerful, with both aryl and alkyl sulfonyl substituted derivatives to exhibit DNA photo-cleaving ability, in significantly lower concentrations. These properties may serve in the discovery of new leads for "on demand" biotechnological and medical applications. PMID:26945644

  11. Dimeric Fe (II, III) complex of quinoneoxime as functional model of PAP enzyme: Mössbauer, magneto-structural and DNA cleavage studies

    NASA Astrophysics Data System (ADS)

    Salunke-Gawali, Sunita; Ahmed, Khursheed; Varret, François; Linares, Jorge; Zaware, Santosh; Date, Sadgopal; Rane, Sandhya

    2008-07-01

    value of antiferromagnetic exchange leads to Fe+3μ-(OH) Fe + 2 bridging in Fe-1 dimer instead of μ-oxo bridge. The intermolecular association through H-bonds may lead to weakly coupled antiferromagnetic interaction between two Fe-2 molecules having Fe + 3(h.s.) centers. Using S = 5/2, 5/2 spin pair model we obtained best-fitted parameters such as J = -12.4 cm - 1, g = 2.3 with R = 3.58 × 10 - 5. Synthetic strategy results in non-equivalent iron sites in Fe-1 dimer analogues to PAP enzyme hence its reconstitution results in pUC-19 DNA cleavage activity, as physiological functionality of APase. It is compared with nuclease activity of Fe-2 RAPase.

  12. Effects of Olive Metabolites on DNA Cleavage Mediated by Human Type II Topoisomerases

    PubMed Central

    2016-01-01

    Several naturally occurring dietary polyphenols with chemopreventive or anticancer properties are topoisomerase II poisons. To identify additional phytochemicals that enhance topoisomerase II-mediated DNA cleavage, a library of 341 Mediterranean plant extracts was screened for activity against human topoisomerase IIα. An extract from Phillyrea latifolia L., a member of the olive tree family, displayed high activity against the human enzyme. On the basis of previous metabolomics studies, we identified several polyphenols (hydroxytyrosol, oleuropein, verbascoside, tyrosol, and caffeic acid) as potential candidates for topoisomerase II poisons. Of these, hydroxytyrosol, oleuropein, and verbascoside enhanced topoisomerase II-mediated DNA cleavage. The potency of these olive metabolites increased 10–100-fold in the presence of an oxidant. Hydroxytyrosol, oleuropein, and verbascoside displayed hallmark characteristics of covalent topoisomerase II poisons. (1) The activity of the metabolites was abrogated by a reducing agent. (2) Compounds inhibited topoisomerase II activity when they were incubated with the enzyme prior to the addition of DNA. (3) Compounds were unable to poison a topoisomerase IIα construct that lacked the N-terminal domain. Because hydroxytyrosol, oleuropein, and verbascoside are broadly distributed across the olive family, extracts from the leaves, bark, and fruit of 11 olive tree species were tested for activity against human topoisomerase IIα. Several of the extracts enhanced enzyme-mediated DNA cleavage. Finally, a commercial olive leaf supplement and extra virgin olive oils pressed from a variety of Olea europea subspecies enhanced DNA cleavage mediated by topoisomerase IIα. Thus, olive metabolites appear to act as topoisomerase II poisons in complex formulations intended for human dietary consumption. PMID:26132160

  13. Effects of Olive Metabolites on DNA Cleavage Mediated by Human Type II Topoisomerases.

    PubMed

    Vann, Kendra R; Sedgeman, Carl A; Gopas, Jacob; Golan-Goldhirsh, Avi; Osheroff, Neil

    2015-07-28

    Several naturally occurring dietary polyphenols with chemopreventive or anticancer properties are topoisomerase II poisons. To identify additional phytochemicals that enhance topoisomerase II-mediated DNA cleavage, a library of 341 Mediterranean plant extracts was screened for activity against human topoisomerase IIα. An extract from Phillyrea latifolia L., a member of the olive tree family, displayed high activity against the human enzyme. On the basis of previous metabolomics studies, we identified several polyphenols (hydroxytyrosol, oleuropein, verbascoside, tyrosol, and caffeic acid) as potential candidates for topoisomerase II poisons. Of these, hydroxytyrosol, oleuropein, and verbascoside enhanced topoisomerase II-mediated DNA cleavage. The potency of these olive metabolites increased 10-100-fold in the presence of an oxidant. Hydroxytyrosol, oleuropein, and verbascoside displayed hallmark characteristics of covalent topoisomerase II poisons. (1) The activity of the metabolites was abrogated by a reducing agent. (2) Compounds inhibited topoisomerase II activity when they were incubated with the enzyme prior to the addition of DNA. (3) Compounds were unable to poison a topoisomerase IIα construct that lacked the N-terminal domain. Because hydroxytyrosol, oleuropein, and verbascoside are broadly distributed across the olive family, extracts from the leaves, bark, and fruit of 11 olive tree species were tested for activity against human topoisomerase IIα. Several of the extracts enhanced enzyme-mediated DNA cleavage. Finally, a commercial olive leaf supplement and extra virgin olive oils pressed from a variety of Olea europea subspecies enhanced DNA cleavage mediated by topoisomerase IIα. Thus, olive metabolites appear to act as topoisomerase II poisons in complex formulations intended for human dietary consumption. PMID:26132160

  14. Computational redesign of endonuclease DNA binding and cleavage specificity

    NASA Astrophysics Data System (ADS)

    Ashworth, Justin; Havranek, James J.; Duarte, Carlos M.; Sussman, Django; Monnat, Raymond J.; Stoddard, Barry L.; Baker, David

    2006-06-01

    The reprogramming of DNA-binding specificity is an important challenge for computational protein design that tests current understanding of protein-DNA recognition, and has considerable practical relevance for biotechnology and medicine. Here we describe the computational redesign of the cleavage specificity of the intron-encoded homing endonuclease I-MsoI using a physically realistic atomic-level forcefield. Using an in silico screen, we identified single base-pair substitutions predicted to disrupt binding by the wild-type enzyme, and then optimized the identities and conformations of clusters of amino acids around each of these unfavourable substitutions using Monte Carlo sampling. A redesigned enzyme that was predicted to display altered target site specificity, while maintaining wild-type binding affinity, was experimentally characterized. The redesigned enzyme binds and cleaves the redesigned recognition site ~10,000 times more effectively than does the wild-type enzyme, with a level of target discrimination comparable to the original endonuclease. Determination of the structure of the redesigned nuclease-recognition site complex by X-ray crystallography confirms the accuracy of the computationally predicted interface. These results suggest that computational protein design methods can have an important role in the creation of novel highly specific endonucleases for gene therapy and other applications.

  15. Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes.

    PubMed

    Chand, Mahesh K; Nirwan, Neha; Diffin, Fiona M; van Aelst, Kara; Kulkarni, Manasi; Pernstich, Christian; Szczelkun, Mark D; Saikrishnan, Kayarat

    2015-11-01

    Production of endonucleolytic double-strand DNA breaks requires separate strand cleavage events. Although catalytic mechanisms for simple, dimeric endonucleases are known, there are many complex nuclease machines that are poorly understood. Here we studied the single polypeptide Type ISP restriction-modification (RM) enzymes, which cleave random DNA between distant target sites when two enzymes collide after convergent ATP-driven translocation. We report the 2.7-Å resolution X-ray crystal structure of a Type ISP enzyme-DNA complex, revealing that both the helicase-like ATPase and nuclease are located upstream of the direction of translocation, an observation inconsistent with simple nuclease-domain dimerization. Using single-molecule and biochemical techniques, we demonstrate that each ATPase remodels its DNA-protein complex and translocates along DNA without looping it, leading to a collision complex in which the nuclease domains are distal. Sequencing of the products of single cleavage events suggests a previously undescribed endonuclease model, where multiple, stochastic strand-nicking events combine to produce DNA scission. PMID:26389736

  16. Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes

    PubMed Central

    Chand, Mahesh Kumar; Nirwan, Neha; Diffin, Fiona M.; van Aelst, Kara; Kulkarni, Manasi; Pernstich, Christian; Szczelkun, Mark D.; Saikrishnan, Kayarat

    2015-01-01

    Endonucleolytic double-strand DNA break production requires separate strand cleavage events. Although catalytic mechanisms for simple dimeric endonucleases are available, there are many complex nuclease machines which are poorly understood in comparison. Here we studied the single polypeptide Type ISP restriction-modification (RM) enzymes, which cleave random DNA between distant target sites when two enzymes collide following convergent ATP-driven translocation. We report the 2.7 Angstroms resolution X-ray crystal structure of a Type ISP enzyme-DNA complex, revealing that both the helicase-like ATPase and nuclease are unexpectedly located upstream of the direction of translocation, inconsistent with simple nuclease domain-dimerization. Using single-molecule and biochemical techniques, we demonstrate that each ATPase remodels its DNA-protein complex and translocates along DNA without looping it, leading to a collision complex where the nuclease domains are distal. Sequencing of single cleavage events suggests a previously undescribed endonuclease model, where multiple, stochastic strand nicking events combine to produce DNA scission. PMID:26389736

  17. Photo-induced DNA cleavage and cytotoxicity of a ruthenium(II) arene anticancer complex.

    PubMed

    Brabec, Viktor; Pracharova, Jitka; Stepankova, Jana; Sadler, Peter J; Kasparkova, Jana

    2016-07-01

    We report DNA cleavage by ruthenium(II) arene anticancer complex [(η(6)-p-terp)Ru(II)(en)Cl](+) (p-terp=para-terphenyl, en=1,2-diaminoethane, complex 1) after its photoactivation by UVA and visible light, and the toxic effects of photoactivated 1 in cancer cells. It was shown in our previous work (T. Bugarcic et al., J. Med. Chem. 51 (2008) 5310-5319) that this complex exhibits promising toxic effects in several human tumor cell lines and concomitantly its DNA binding mode involves combined intercalative and monofunctional (coordination) binding modes. We demonstrate in the present work that when photoactivated by UVA or visible light, 1 efficiently photocleaves DNA, also in hypoxic media. Studies of the mechanism underlying DNA cleavage by photoactivated 1 reveal that the photocleavage reaction does not involve generation of reactive oxygen species (ROS), although contribution of singlet oxygen ((1)O2) to the DNA photocleavage process cannot be entirely excluded. Notably, the mechanism of DNA photocleavage by 1 appears to involve a direct modification of mainly those guanine residues to which 1 is coordinatively bound. As some tumors are oxygen-deficient and cytotoxic effects of photoactivated ruthenium compounds containing {Ru(η(6)-arene)}(2+) do not require the presence of oxygen, this class of ruthenium complexes may be considered potential candidate agents for improved photodynamic anticancer chemotherapy. PMID:26778426

  18. Rates of Chemical Cleavage of DNA and RNA Oligomers Containing Guanine Oxidation Products

    PubMed Central

    2016-01-01

    The nucleobase guanine in DNA (dG) and RNA (rG) has the lowest standard reduction potential of the bases, rendering it a major site of oxidative damage in these polymers. Mapping the sites at which oxidation occurs in an oligomer via chemical reagents utilizes hot piperidine for cleaving oxidized DNA and aniline (pH 4.5) for cleaving oxidized RNA. In the present studies, a series of time-dependent cleavages of DNA and RNA strands containing various guanine lesions were examined to determine the strand scission rate constants. The guanine base lesions 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin (Sp), 5-guanidinohydantoin (Gh), 2,2,4-triamino-2H-oxazol-5-one (Z), and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) were evaluated in piperidine-treated DNA and aniline-treated RNA. These data identified wide variability in the chemical lability of the lesions studied in both DNA and RNA. Further, the rate constants for cleaving lesions in RNA were generally found to be significantly smaller than for lesions in DNA. The OG nucleotides were poorly cleaved in DNA and RNA; Sp nucleotides were slowly cleaved in DNA and did not cleave significantly in RNA; Gh and Z nucleotides cleaved in both DNA and RNA at intermediate rates; and 2Ih oligonucleotides cleaved relatively quickly in both DNA and RNA. The data are compared and contrasted with respect to future experimental design. PMID:25853314

  19. Cleavage patterns of Drosophila melanogaster satellite DNA by restriction enzymes.

    PubMed Central

    Shen, C J; Wiesehahn, G; Hearst, J E

    1976-01-01

    The five satellite DNAs of Drosophila melanogaster have been isolated by the combined use of different equilibrium density gradients and hydrolyzed by seven different restriction enzymes; Hae III, Hind II + Hind III, Hinf, Hpa II, EcoR I and EcoR II. The 1.705 satellite is not hydrolyzed by any of the enzymes tested. Hae III is the only restriction enzyme that cuts the 1.672 and 1.686 satellites. The cleavage products from either of these reactions has a heterogeneous size distribution. Part of the 1.688 satellite is cut by Hae III and by Hinf into three discrete fragments with M.W. that are multiples of 2.3 X 10(5) daltons (approximately 350 base pairs). In addition, two minor bands are detected in the 1.688-Hinf products. The mole ratios of the trimer, dimer and monomer are: 1:6.30 : 63.6 for 1.688-Hae III and 1 : 22.0 : 403 for 1.688-Hinf. Circular mitochondrial DNA (rho = 1.680) is cut into discrete fragments by all of the enzymes tested and molecular weights of these fragments have been determined. Images PMID:818625

  20. Methylene blue photosensitised strand cleavage of DNA: effects of dye binding and oxygen.

    PubMed Central

    OhUigin, C; McConnell, D J; Kelly, J M; van der Putten, W J

    1987-01-01

    It is shown that methylene blue (MB+) photosensitises DNA in either aerated or deaerated solutions, causing direct cleavage of phosphodiester bonds and rendering additional bonds labile to alkali. Evidence from unwinding and fluorimetric studies indicates that MB+ binds to DNA in at least 2 ways. Intercalation, which optimally induces helical unwinding of 24 degrees +/- 2 degrees per MB+, is markedly reduced upon neutralisation by Mg2+ of the DNA phosphates, while significant non-intercalative binding persists as shown by substantial fluorescence quenching at Mg2+ concentrations where there is little unwinding. MB+ induces photolysis at both low and high Mg2+ concentration - intercalation is apparently not required for photolysis. The quantum yield for strand breakage varies from 1-3 X 10(-7) under different conditions and is oxygen enhanced. The DNA cleavage is guanine specific. The 3' termini of the primary MB+-induced DNA photoproducts, unlike those generated by chemical sequencing retain an alkali labile adduct on the terminal phosphate. Images PMID:2821508

  1. Studies of viomycin, an anti-tuberculosis antibiotic: copper(ii) coordination, DNA degradation and the impact on delta ribozyme cleavage activity.

    PubMed

    Stokowa-Sołtys, K; Barbosa, N A; Kasprowicz, A; Wieczorek, R; Gaggelli, N; Gaggelli, E; Valensin, G; Wrzesiński, J; Ciesiołka, J; Kuliński, T; Szczepanik, W; Jeżowska-Bojczuk, M

    2016-05-17

    Viomycin is a basic peptide antibiotic, which is among the most effective agents against multidrug-resistant tuberculosis. In this paper we provide the characteristics of its acid base properties, coordination preferences towards the Cu(ii) ions, as well as the reactivity of the resulting complexes against plasmid DNA and HDV ribozyme. Careful coordination studies throughout the wide pH range allow for the characterisation of all the Cu(ii)-viomycin complex species. The assignment of proton chemical shifts was achieved by NMR experiments, while the DTF level of theory was applied to support molecular structures of the studied complexes. The experiments with the plasmid DNA reveal that at the physiological levels of hydrogen peroxide the Cu(ii)-viomycin complex is more aggressive against DNA than uncomplexed metal ions. Moreover, the degradation of DNA by viomycin can be carried out without the presence of transition metal ions. In the studies of antigenomic delta ribozyme catalytic activity, viomycin and its complex are shown to modulate the ribozyme functioning. The molecular modelling approach allows the indication of two different locations of viomycin binding sites to the ribozyme. PMID:27143296

  2. Site-specific DNA cleavage by artificial zinc finger-type nuclease with cerium-binding peptide

    SciTech Connect

    Nakatsukasa, Takako; Shiraishi, Yasuhisa; Negi, Shigeru; Imanishi, Miki; Futaki, Shiroh; Sugiura, Yukio . E-mail: sugiura@scl.kyoto-u.ac.jp

    2005-04-29

    The addition of a new function to native proteins is one of the most attractive protein-based designs. In this study, we have converted a C{sub 2}H{sub 2}-type zinc finger as a DNA-binding motif into a novel zinc finger-type nuclease by connecting two distinct zinc finger proteins (Sp1 and GLI) with a functional linker possessing DNA cleavage activity. As a DNA cleavage domain, we chose an analogue of the metal-binding loop (12 amino acid residues), peptide P1, which has been reported to exhibit a strong binding affinity for a lanthanide ion and DNA cleavage ability in the presence of Ce(IV). Our newly designed nucleases, Sp1(P1)GLI and Sp1(P1G)GLI, can strongly bind to a lanthanide ion and show a unique DNA cleavage pattern, in which certain positions between the two DNA-binding sites are specifically cleaved. The present result provides useful information for expanding the design strategy for artificial nucleases.

  3. A zinc site in the C-terminal domain of RAG1 is essential for DNA cleavage activity

    PubMed Central

    Gwyn, Lori M.; Peak, Mandy M.; De, Pallabi; Rahman, Negar S.; Rodgers, Karla K.

    2009-01-01

    The recombination activating protein, RAG1, a key component of the V(D)J recombinase, binds multiple Zn2+ ions in its catalytically-required core region. However, the role of zinc in the DNA cleavage activity of RAG1 is not well-resolved. To address this issue, we determined the stoichiometry of Zn2+ ions bound to the catalytically active core region of RAG1 under various conditions. Using metal quantitation methods, we determined that core RAG1 can bind up to four Zn2+ ions. Stripping the full complement of bound Zn2+ ions to produce apo-protein abrogated DNA cleavage activity. Moreover, even partial removal of zinc-binding equivalents resulted in a significant diminishment of DNA cleavage activity, as compared to holo-Zn2+ core RAG1. Mutants of the intact core RAG1 and the isolated core RAG1 domains were studied to identify the location of zinc-binding sites. Significantly, the C-terminal domain in core RAG1 binds at least two Zn2+ ions, with one zinc-binding site containing C902 and C907 as ligands (termed the CC zinc site) and H937 and H942 coordinating a Zn2+ ion in a separate site (HH zinc site). The latter zinc-binding site is essential for DNA cleavage activity, given that the H937A and H942A mutants were defective in both in vitro DNA cleavage assays and cellular recombination assays. Furthermore, as mutation of the active site residue E962 reduces Zn2+ coordination, we propose that the HH zinc site is located in close proximity to the DDE active site. Overall, these results demonstrate that Zn2+ serves an important auxiliary role for RAG1 DNA cleavage activity. Furthermore, we propose that one of the zinc-binding sites is linked to the active site of core RAG1 directly or indirectly by E962. PMID:19500590

  4. Synthesis, spectroscopic characterization and structural investigation of a new charge transfer complex of 2,6-diaminopyridine with 4-nitrophenylacetic acid: Antimicrobial, DNA binding/cleavage and antioxidant studies

    NASA Astrophysics Data System (ADS)

    Murugesan, Venkatesan; Saravanabhavan, Munusamy; Sekar, Marimuthu

    2015-08-01

    A new hydrogen-bonded charge-transfer complex (CT) formed by the reaction between donor, 2,6-diaminopyridine and acceptor, 4-nitrophenylacetic acid in methanol at room temperature. The crystal was characterized by elemental analysis, IR, NMR spectroscopic studies and thermal studies. The elemental analysis of CT complex, obtained data revealed that the formation of 1:1 ratio CT complex was proposed. Infrared and NMR studies confirm the chemical constituents and molecular structure of the synthesized complex crystal. The high thermal stability is due to the molecular frame work through H-bonding interactions. Structural investigation indicates that cation and anion are linked through strong N+-H⋯O- type of hydrogen bond. The hydrogen bonded charge transfer crystal was screened for its pharmacology, such as antimicrobial, DNA binding/cleavage and antioxidant studies. The CT complex was screened for its antibacterial and antifungal activity against various bacterial and fungal species, which shows good antimicrobial activity. The DNA binding results indicated that the compound could interact with DNA through intercalation. It should have weak to moderate capacity of scavenging with DPPH.

  5. Substitution of conserved residues within the active site alters the cleavage religation equilibrium of DNA topoisomerase I.

    PubMed

    Colley, William C; van der Merwe, Marie; Vance, John R; Burgin, Alex B; Bjornsti, Mary-Ann

    2004-12-24

    Eukaryotic DNA topoisomerase I (Top1p) catalyzes the relaxation of supercoiled DNA and constitutes the cellular target of camptothecin (CPT). Mutation of conserved residues in close proximity to the active site tyrosine (Tyr(727) of yeast Top1p) alters the DNA cleavage religation equilibrium, inducing drug-independent cell lethality. Previous studies indicates that yeast Top1T722Ap and Top1N726Hp cytotoxicity results from elevated levels of covalent enzyme-DNA intermediates. Here we show that Top1T722Ap acts as a CPT mimetic by exhibiting reduced rates of DNA religation, whereas increased Top1N726Hp.DNA complexes result from elevated DNA binding and cleavage. We also report that the combination of the T722A and N726H mutations in a single protein potentiates the cytotoxic action of the enzyme beyond that induced by co-expression of the single mutants. Moreover, the addition of CPT to cells expressing the double top1T722A/N726H mutant did not enhance cell lethality. Thus, independent alterations in DNA cleavage and religation contribute to the lethal phenotype. The formation of distinct cytotoxic lesions was also evidenced by the different responses induced by low levels of these self-poisoning enzymes in isogenic strains defective for the Rad9 DNA damage checkpoint, processive DNA replication, or ubiquitin-mediated proteolysis. Substitution of Asn(726) with Phe or Tyr also produces self-poisoning enzymes, implicating stacking interactions in the increased kinetics of DNA cleavage by Top1N726Hp and Top1N726Fp. In contrast, replacing the amide side chain of Asn(726) with Gln renders Top1N726Qp resistant to CPT, suggesting that the orientation of the amide within the active site is critical for effective CPT binding. PMID:15489506

  6. Site-specific cleavage/packaging of herpes simplex virus DNA and the selective maturation of nucleocapsids containing full-length viral DNA

    PubMed Central

    Vlazny, Donald A.; Kwong, Ann; Frenkel, Niza

    1982-01-01

    Defective genomes present in serially passaged herpes simplex virus (HSV) stocks have been shown to consist of tandemly arranged repeat units containing limited sets of the standard virus DNA sequences. Invariably, the HSV defective genomes terminate with the right (S component) terminus of HSV DNA. Because the oligomeric forms can arise from a single repeat unit, it has been concluded that the defective genomes arise by a rolling circle mechanism of replication. We now report on our studies of defective genomes packaged in viral capsids accumulating in the nuclei and in mature virions (enveloped capsids) translocated into the cytoplasm of cells infected with serially passaged virus. These studies have revealed that, upon electrophoresis in agarose gels, the defective genomes prepared from cytoplasmic virions comigrated with nondefective standard virus DNA (Mr 100 × 106). In contrast, DNA prepared from capsids accumulating in nuclei consisted of both full-length defective virus DNA molecules and smaller DNA molecules of discrete sizes, ranging in Mr from 5.5 to 100 × 106. These smaller DNA species were shown to consist of different integral numbers (from 1 to approximately 18) of defective genome repeat units and to terminate with sequences corresponding to the right terminal sequences of HSV DNA. We conclude on the basis of these studies that (i) sequences from the right end of standard virus DNA contain a recognition signal for the cleavage and packaging of concatemeric viral DNA, (ii) the sequence-specific cleavage is either a prerequisite for or occurs during the entry of viral DNA into capsid structures, and (iii) DNA molecules significantly shorter than full-length standard viral DNA can become encapsidated within nuclear capsids provided they contain the cleavage/packaging signal. However, capsids containing DNA molecules significantly shorter than standard virus DNA are not translocated into the cytoplasm. Images PMID:6280181

  7. Specific detection of the cleavage activity of mycobacterial enzymes using a quantum dot based DNA nanosensor

    NASA Astrophysics Data System (ADS)

    Jepsen, Morten Leth; Harmsen, Charlotte; Godbole, Adwait Anand; Nagaraja, Valakunja; Knudsen, Birgitta R.; Ho, Yi-Ping

    2015-12-01

    We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes.We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes. Electronic supplementary information (ESI) available: Characterization of the QD-based DNA Nanosensor. See DOI: 10.1039/c5nr06326d

  8. Herpes simplex virus amplicon: cleavage of concatemeric DNA is linked to packaging and involves amplification of the terminally reiterated a sequence.

    PubMed Central

    Deiss, L P; Frenkel, N

    1986-01-01

    Herpes simplex virus-infected cells contain large concatemeric DNA molecules arising from replication of the viral genome. The large concatemers are cleaved to generate unit-length molecules terminating at both ends with the a sequence. We have used constructed defective virus vectors (amplicons) derived from herpes simplex virus to study the mechanism of cleavage of viral DNA concatemers and the packaging of viral DNA into nucleocapsids. These studies revealed that (i) a 248-base-pair a sequence contained the signal(s) required for cleavage-packaging, (ii) the cleavage of viral DNA concatemers was coupled to packaging, (iii) the a sequence contained the information required for its own amplification, and (iv) cleavage-packaging occurred by a novel process involving the amplification of the a sequence. Images PMID:3005637

  9. Detection of Strand Cleavage And Oxidation Damage Using Model DNA Molecules Captured in a Nanoscale Pore

    NASA Technical Reports Server (NTRS)

    Vercoutere, W.; Solbrig, A.; DeGuzman, V.; Deamer, D.; Akeson, M.

    2003-01-01

    We use a biological nano-scale pore to distinguish among individual DNA hairpins that differ by a single site of oxidation or a nick in the sugar-phosphate backbone. In earlier work we showed that the protein ion channel alpha-hemolysin can be used as a detector to distinguish single-stranded from double-stranded DNA, single base pair and single nucleotide differences. This resolution is in part a result of sensitivity to structural changes that influence the molecular dynamics of nucleotides within DNA. The strand cleavage products we examined here included a 5-base-pair (5-bp) hairpin with a 5-prime five-nucleotide overhang, and a complementary five-nucleotide oligomer. These produced predictable shoulder-spike and rapid near-full blockade signatures, respectively. When combined, strand annealing was monitored in real time. The residual current level dropped to a lower discrete level in the shoulder-spike blockade signatures, and the duration lengthened. However, these blockade signatures had a shorter duration than the unmodified l0bp hairpin. To test the pore sensitivity to nucleotide oxidation, we examined a 9-bp hairpin with a terminal 8-oxo-deoxyguanosine (8-oxo-dG), or a penultimate 8-oxo-dG. Each produced blockade signatures that differed from the otherwise identical control 9bp hairpins. This study showed that DNA structure is modified sufficiently by strand cleavage or oxidation damage at a single site to alter in a predictable manner the ionic current blockade signatures produced. This technique improves the ability to assess damage to DNA, and can provide a simple means to help characterize the risks of radiation exposure. It may also provide a method to test radiation protection.

  10. Mapping small DNA ligand hydroxyl radical footprinting and affinity cleavage products for capillary electrophoresis.

    PubMed

    He, Gaofei; Vasilieva, Elena; Bashkin, James K; Dupureur, Cynthia M

    2013-08-15

    The mapping of DNA footprints and affinity cleavage sites for small DNA ligands is affected by the choice of sequencing chemistry and end label, and the potential for indexing errors can be significant when mapping small ligand-DNA interactions. Described here is a mechanism for avoiding such errors based on a summary of standard labeling, cleavage, and indexing chemistries and a comparison among them for analysis of these interactions by capillary electrophoresis. The length dependence of the difference between Sanger and Maxam-Gilbert indexing is examined for a number of duplexes of mixed sequence. PMID:23608054

  11. Mapping Small DNA Ligand Hydroxyl Radical Footprinting and Affinity Cleavage Products for Capillary Electrophoresis

    PubMed Central

    He, Gaofei; Vasilieva, Elena; Bashkin, James K.; Dupureur, Cynthia M.

    2013-01-01

    The mapping of DNA footprints and affinity cleavage sites for small DNA ligands is affected by the choice of sequencing chemistry and end label, and the potential for indexing errors can be significant when mapping small ligand-DNA interactions. Described here is a mechanism for avoiding such errors based on a summary of standard labeling, cleavage and indexing chemistries and a comparison among them for analysis of these interactions by capillary electrophoresis. The length dependence of the difference between Sanger and Maxam-Gilbert indexing is examined for a number of duplexes of mixed sequence. PMID:23608054

  12. Copper(II) complexes with 4-hydroxyacetophenone-derived acylhydrazones: Synthesis, characterization, DNA binding and cleavage properties

    NASA Astrophysics Data System (ADS)

    Gup, Ramazan; Gökçe, Cansu; Aktürk, Selçuk

    2015-01-01

    Two new Cu(II) complexes of Schiff base-hydrazone ligands, hydroxy-N‧-[(1Z)-1-(4-hydroxyphenyl)ethylidene]benzohydrazide [H3L1] and ethyl 2-(4-(1-(2-(4-(2-ethoxy-2-oxoethoxy)benzoyl)hydrazono)ethyl)phenoxy)acetate (HL2) have been synthesized and then characterized by microcopy and spectral studies. X-ray powder diffraction illustrates that [Cu(L2)2] complex is crystalline in nature whereas [Cu(H2L1)2]·2H2O has an amorphous structure. Binding of the copper complexes with Calf thymus DNA (CT-DNA) has been investigated by UV-visible spectra, exhibiting non-covalent binding to CT-DNA. DNA cleavage experiments have been also investigated by agarose gel electrophoresis in the presence and absence of an oxidative agent (H2O2). The effect of complex concentration on the DNA cleavage reaction has been also studied. Both copper complexes show nuclease activity, which significantly depends on concentrations of the complexes, in the presence of H2O2 through oxidative mechanism whereas they slightly cleavage DNA in the absence an oxidative agent.

  13. Enzymatic cleavage of type II restriction endonucleases on the 2'-O-methyl nucleotide and phosphorothioate substituted DNA.

    PubMed

    Zhao, Guojie; Li, Jun; Tong, Zhaoxue; Zhao, Bin; Mu, Runqing; Guan, Yifu

    2013-01-01

    The effects of nucleotide analogue substitution on the cleavage efficiencies of type II restriction endonucleases have been investigated. Six restriction endonucleases (EcoRV, SpeI, XbaI, XhoI, PstI and SphI) were investigated respectively regarding their cleavage when substrates were substituted by 2'-O-methyl nucleotide (2'-OMeN) and phosphorothioate (PS). Substitutions were made in the recognition sequence and the two nucleotides flanking the recognition sequence for each endonuclease. The endonuclease cleavage efficiencies were determined using FRET-based assay. Results demonstrated a position-dependent inhibitory effect of substitution on the cleavage efficiency for all the six endonucleases. In general, the 2'-OMeN substitutions had greater impact than the PS substitutions on the enzymatic activities. Nucleotides of optimal substitutions for protection against RE cleavage were identified. Experimental results and conclusions in this study facilitate our insight into the DNA-protein interactions and the enzymatic cleavage mechanism, particularly for those whose detailed structure information is not available. In addition, the information could benefit the development of bioengineering and synthetic biology. PMID:24260216

  14. Synthesis of isatin thiosemicarbazones derivatives: In vitro anti-cancer, DNA binding and cleavage activities

    NASA Astrophysics Data System (ADS)

    Ali, Amna Qasem; Teoh, Siang Guan; Salhin, Abdussalam; Eltayeb, Naser Eltaher; Khadeer Ahamed, Mohamed B.; Majid, A. M. S. Abdul

    New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (kb = 5.03-33.00 × 105 M-1) for L1-L3 and L5 and (6.14-9.47 × 104 M-1) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency.

  15. Sequence-specific cleavage of single-stranded DNA: oligodeoxynucleotide-EDTA X Fe(II).

    PubMed Central

    Dreyer, G B; Dervan, P B

    1985-01-01

    The synthesis of a DNA hybridization probe 19 nucleotides in length, equipped with the metal chelator EDTA at C-5 of thymidine in position 10 (indicated by T*) is described. DNA-EDTA 1 has the sequence 5'-T-A-A-C-G-C-A-G-T*-C-A-G-G-C-A-C-C-G-T-3', which is complementary to a 19-nucleotide sequence in the plasmid pBR322. In the presence of Fe(II), O2, and dithiothreitol, DNA-EDTA 1 affords specific cleavage (25 degrees C, pH 7.4, 60 min) at its complementary sequence in a heat-denatured 167-base-pair restriction fragment. Cleavage occurs over a range of 16 nucleotides at the site of hybridization of 1, presumably due to a diffusible reactive species. No other cleavage sites are observed in the 167-base-pair restriction fragment. The procedure used to synthesize DNA-EDTA probes is based on the incorporation of a thymidine modified at C-5 with the triethyl ester of EDTA. By using routine phosphoramidite procedures, thymidine-EDTA can be incorporated into oligodeoxynucleotides of any desired length and sequence. Because the efficiency of the DNA cleavage reaction is dependent on the addition of both Fe(II) and reducing agent (dithiothreitol), the initiation of the cleavage reaction can be controlled. These DNA-EDTA X Fe(II) probes should be useful for the sequence-specific cleavage of single-stranded DNA (and most likely RNA) under mild conditions. Images PMID:3919391

  16. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.

    PubMed

    Komor, Alexis C; Kim, Yongjoo B; Packer, Michael S; Zuris, John A; Liu, David R

    2016-05-19

    Current genome-editing technologies introduce double-stranded (ds) DNA breaks at a target locus as the first step to gene correction. Although most genetic diseases arise from point mutations, current approaches to point mutation correction are inefficient and typically induce an abundance of random insertions and deletions (indels) at the target locus resulting from the cellular response to dsDNA breaks. Here we report the development of 'base editing', a new approach to genome editing that enables the direct, irreversible conversion of one target DNA base into another in a programmable manner, without requiring dsDNA backbone cleavage or a donor template. We engineered fusions of CRISPR/Cas9 and a cytidine deaminase enzyme that retain the ability to be programmed with a guide RNA, do not induce dsDNA breaks, and mediate the direct conversion of cytidine to uridine, thereby effecting a C→T (or G→A) substitution. The resulting 'base editors' convert cytidines within a window of approximately five nucleotides, and can efficiently correct a variety of point mutations relevant to human disease. In four transformed human and murine cell lines, second- and third-generation base editors that fuse uracil glycosylase inhibitor, and that use a Cas9 nickase targeting the non-edited strand, manipulate the cellular DNA repair response to favour desired base-editing outcomes, resulting in permanent correction of ~15-75% of total cellular DNA with minimal (typically ≤1%) indel formation. Base editing expands the scope and efficiency of genome editing of point mutations. PMID:27096365

  17. Shape Transformation Following Reduction-Sensitive PEG Cleavage of Polymer/DNA Nanoparticles

    PubMed Central

    Williford, John-Michael; Ren, Yong; Huang, Kevin; Pan, Deng; Mao, Hai-Quan

    2014-01-01

    PEGylated polycation/DNA micellar nanoparticles have been developed that can undergo shape transformation upon cleavage of the PEG grafts in response to an environmental cue. As a proof-of-principle, DNA nanoparticles with higher PEG grafting density adopting long, worm- and rod-like morphologies, transition to more condensed nanoparticles with spherical and short-rod morphologies upon cleavage of a fraction of the PEG grafts from the copolymer. This shape transformation leads to increased surface charges, correlating with improved transfection efficiency. PMID:25530853

  18. Synthesis, spectroscopic, antimicrobial and DNA cleavage studies of new Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes with naphthofuran-2-carbohydrazide Schiff base

    NASA Astrophysics Data System (ADS)

    Halli, Madappa B.; Sumathi, R. B.

    2012-08-01

    A series of Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes have been synthesized with newly synthesized Schiff base derived from naphthofuran-2-carbohydrazide and cinnamaldehyde. The elemental analyses of the complexes are confined to the stoichiometry of the type MLCl2 [M = Co(II) and Cu(II)], ML2Cl2 [M = Ni(II), Cd(II), Zn(II) and Hg(II)] respectively, where L is Schiff base ligand. Structures have been proposed from elemental analyses, IR, electronic, mass, 1H NMR, ESR spectral data, magnetic, and thermal studies. The measured low molar conductance values in DMF indicate that the complexes are non-electrolytes. Spectroscopic studies suggest coordination occurs through azomethine nitrogen and carbonyl oxygen of the ligand with the metal ions. The Schiff base and its complexes have been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Salmonella typhi) and antifungal (Aspergillus niger, Aspergillus flavus, Cladosporium and Candida albicans) activities by minimum inhibitory concentration (MIC) method. The DNA cleavage studies by agarose gel electrophoresis method was studied for all the complexes.

  19. Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA.

    PubMed Central

    Ferris, S D; Wilson, A C; Brown, W M

    1981-01-01

    The high rate of evolution of mitochondrial DNA makes this molecule suitable for genealogical research on such closely related species as humans and apes. Because previous approaches failed to establish the branching order of the lineages leading to humans, gorillas, and chimpanzees, we compared human mitochondrial DNA to mitochondrial DNA from five species of ape (common chimpanzee, pygmy chimpanzee, gorilla, orangutan, and gibbon). About 50 restriction endonuclease cleavage sites were mapped in each mitochondrial DNA, and the six maps were aligned with respect to 11 invariant positions. Differences among the maps were evident at 121 positions. Both conserved and variable sites are widely dispersed in the mitochondrial genome. Besides site differences, ascribed to point mutations, there is evidence for one rearrangement: the gorilla map is shorter than the other owing to the deletion of 95 base pairs near the origin of replication. The parsimony method of deriving all six maps from a common ancestor produced a genealogical tree in which the common and pygmy chimpanzee maps are the most closely related pair; the closest relative of this pair is the gorilla map; most closely related to this trio is the human map. This tree is only slightly more parsimonious than some alternative trees. Although this study has given a magnified view of the genetic differences among humans and apes, the possibility of a three-way split among the lineages leading to humans, gorillas, and chimpanzees still deserves serious consideration. Images PMID:6264476

  20. Groove binding mediated structural modulation and DNA cleavage by quinoline appended chalcone derivative.

    PubMed

    Kumar, Himank; Devaraji, Vinod; Prasath, Rangaraj; Jadhao, Manojkumar; Joshi, Ritika; Bhavana, Purushothaman; Ghosh, Sujit Kumar

    2015-12-01

    The present study embodies the detail DNA binding interaction of a potential bioactive quinoline appended chalcone derivative (E)-3-(anthracen-10-yl)-1-(6,8-dibromo-2-methylquinolin-3-yl)prop-2-en-1-one (ADMQ) with calf thymus DNA (ctDNA) and its consequences by UV-Vis absorption, steady state fluorescence spectroscopy, fluorescence anisotropy, circular dichromism, helix melting, agarose gel electrophoresis, molecular docking, Induced Fit Docking (IFD) and molecular dynamics (MD) simulation. The UV-Vis absorption and fluorescence study reveal that the molecule undergoes considerable interaction with the nucleic acid. The control KI quenching experiment shows the lesser accessibility of ADMQ molecule to the ionic quencher (I(-)) in presence of ctDNA as compared to the bulk aqueous phase. Insignificant change in helix melting temperature as well as in circular dichromism (CD) spectra points toward non-covalent groove binding interaction. The moderate rotational confinement of this chalcone derivative (anisotropy=0.106) trapped in the nucleic acid environment, the comparative displacement assay with well-known minor groove binder Hoechst 33258 and intercalator Ethidium Bromide establishes the minor groove binding interactions of the probe molecule. Molecular docking, IFD and MD simulation reveal that the DNA undergoes prominent morphological changes in terms of helix unwinding and bending to accommodate ADMQ in a crescent shape at an angle of 110° in a sequence specific manner. During interaction, ADMQ rigidifies and bends the sugar phosphate backbone of the nucleic acid and thereby shortens its overall length by 3.02Å. Agarose gel electrophoresis experiment with plasmid pBR 322 reveals that the groove binded ADMQ result in a concentration dependent cleavage of plasmid DNA into its supercoiled and nicked circular form. The consolidated spectroscopic research described herein provides quantitative insight into the interaction of a heterocyclic chalcone derivative

  1. Efficient plasmid DNA cleavage by a mononuclear copper(II) complex.

    PubMed

    Sissi, Claudia; Mancin, Fabrizio; Gatos, Maddalena; Palumbo, Manlio; Tecilla, Paolo; Tonellato, Umberto

    2005-04-01

    The Cu(II) complex of the ligand all-cis-2,4,6-triamino-1,3,5-trihydroxycyclohexane (TACI) is a very efficient catalyst of the cleavage of plasmid DNA in the absence of any added cofactor. The maximum rate of degradation of the supercoiled plasmid DNA form, obtained at pH 8.1 and 37 degrees C, in the presence of 48 microM TACI.Cu(II), is 2.3 x 10(-3) s(-1), corresponding to a half-life time of only 5 min for the cleavage of form I (supercoiled) to form II (relaxed circular). The dependence of the rate of plasmid DNA cleavage from the TACI.Cu(II) complex concentration follows an unusual and very narrow bell-like profile, which suggests an high DNA affinity of the complexes but also a great tendency to form unreactive dimers. The reactivity of the TACI.Cu(II) complexes is not affected by the presence of several scavengers for reactive oxygen species or when measured under anaerobic conditions. Moreover, no degradation of the radical reporter Rhodamine B is observed in the presence of such complexes. These results are consistent with the operation of a prevailing hydrolytic pathway under the normal conditions used, although the failure to obtain enzymatic religation of the linearized DNA does not allow one to rule out the occurrence of a nonhydrolytic oxygen-independent cleavage. A concurrent oxidative mechanism becomes competitive upon addition of reductants or in the presence of high levels of molecular oxygen: under such conditions, in fact, a remarkable increase in the rate of DNA cleavage is observed. PMID:15792466

  2. Topoisomerase I-Mediated DNA Cleavage Induced by the Minor Groove-Directed Binding of Bibenzimidazoles to a Distal Site

    PubMed Central

    Khan, Qasim A.; Pilch, Daniel S.

    2007-01-01

    Summary Many agents (e.g., camptothecins, indolocarbazoles, indenoisoquinolines, and dibenzonaphthyridines) stimulate topoisomerase I-mediated DNA cleavage (a behavior termed topoisomerase I poisoning) by interacting with both the DNA and the enzyme at the site of cleavage (typically by intercalation between the −1 and +1 base pairs). The bibenzimidazoles, which include Hoechst 33258 and 33342, are a family of DNA minor groove-directed agents that also stimulate topoisomerase I-mediated DNA cleavage. However, the molecular mechanism by which these ligands poison TOP1 is poorly understood. Toward this goal, we have used a combination of mutational, footprinting, and DNA binding affinity analyses to define the DNA binding site for Hoechst 33258 and a related derivative that results in optimal induction of TOP1-mediated DNA cleavage. We show that this DNA binding site is located downstream from the site of DNA cleavage, encompassing the base pairs from position +4 to +8. The distal nature of this binding site relative to the site of DNA cleavage suggests that minor groove-directed agents like the bibenzimidazoles poison TOP1 via a mechanism distinct from compounds like the camptothecins, which interact at the site of cleavage. PMID:17095016

  3. Photocytotoxic oxovanadium(IV) complexes showing light-induced DNA and protein cleavage activity.

    PubMed

    Sasmal, Pijus K; Saha, Sounik; Majumdar, Ritankar; Dighe, Rajan R; Chakravarty, Akhil R

    2010-02-01

    Oxovanadium(IV) complexes [VO(L)(B)]Cl(2) (1-3), where L is bis(2-benzimidazolylmethyl)amine and B is 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) or dipyrido[3,2-a:2',3'-c]phenazine (dppz), have been prepared, characterized, and their photo-induced DNA and protein cleavage activity studied. The photocytotoxicity of complex 3 has been studied using adenocarcinoma A549 cells. The phen complex 1, structurally characterized by single-crystal X-ray crystallography, shows the presence of a vanadyl group in six-coordinate VON(5) coordination geometry. The ligands L and phen display tridentate and bidentate N-donor chelating binding modes, respectively. The complexes exhibit a d-d band near 740 nm in 15% DMF-Tris-HCl buffer (pH 7.2). The phen and dpq complexes display an irreversible cathodic cyclic voltammetric response near -0.8 V in 20% DMF-Tris-HCl buffer having 0.1 M KCl as supporting electrolyte. The dppz complex 3 exhibits a quasi-reversible voltammogram near -0.6 V (vs SCE) that is assignable to the V(IV)-V(III) couple. The complexes bind to calf thymus DNA giving binding constant values in the range of 6.6 x 10(4)-2.9 x 10(5) M(-1). The binding site size, thermal melting and viscosity binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor "chemical nuclease" activity in dark in the presence of 3-mercaptopropionic acid or hydrogen peroxide. The dpq and dppz complexes are efficient photocleavers of plasmid DNA in UV-A light of 365 nm via a mechanistic pathway that involves formation of both singlet oxygen and hydroxyl radicals. The complexes show significant photocleavage of DNA in near-IR light (>750 nm) via hydroxyl radical pathway. Among the three complexes, the dppz complex 3 shows significant BSA and lysozyme protein cleavage activity in UV-A light of 365 nm via hydroxyl radical pathway. The dppz complex 3 also exhibits photocytotoxicity in non-small cell lung carcinoma/human lung

  4. Conversion of Topoisomerase I Cleavage Complexes on the Leading Strand of Ribosomal DNA into 5′-Phosphorylated DNA Double-Strand Breaks by Replication Runoff

    PubMed Central

    Strumberg, Dirk; Pilon, André A.; Smith, Melanie; Hickey, Robert; Malkas, Linda; Pommier, Yves

    2000-01-01

    Topoisomerase I cleavage complexes can be induced by a variety of DNA damages and by the anticancer drug camptothecin. We have developed a ligation-mediated PCR (LM-PCR) assay to analyze replication-mediated DNA double-strand breaks induced by topoisomerase I cleavage complexes in human colon carcinoma HT29 cells at the nucleotide level. We found that conversion of topoisomerase I cleavage complexes into replication-mediated DNA double-strand breaks was only detectable on the leading strand for DNA synthesis, which suggests an asymmetry in the way that topoisomerase I cleavage complexes are metabolized on the two arms of a replication fork. Extension by Taq DNA polymerase was not required for ligation to the LM-PCR primer, indicating that the 3′ DNA ends are extended by DNA polymerase in vivo closely to the 5′ ends of the topoisomerase I cleavage complexes. These findings suggest that the replication-mediated DNA double-strand breaks generated at topoisomerase I cleavage sites are produced by replication runoff. We also found that the 5′ ends of these DNA double-strand breaks are phosphorylated in vivo, which suggests that a DNA 5′ kinase activity acts on the double-strand ends generated by replication runoff. The replication-mediated DNA double-strand breaks were rapidly reversible after cessation of the topoisomerase I cleavage complexes, suggesting the existence of efficient repair pathways for removal of topoisomerase I-DNA covalent adducts in ribosomal DNA. PMID:10805740

  5. DNA cleavage by oxymyoglobin and cysteine-introduced metmyoglobin.

    PubMed

    Deshpande, Megha Subhash; Junedi, Sendy; Prakash, Halan; Nagao, Satoshi; Yamanaka, Masaru; Hirota, Shun

    2014-12-11

    Double stranded DNA was cleaved oxidatively by incubation with oxygenated myoglobin, and Lys96Cys sperm whale myoglobin in its stable ferric form functioned as an artificial nuclease under air by formation of an oxygenated species, owing to electron transfer from the SH group of the introduced cysteine to the heme. PMID:25327831

  6. DNA Cleavage and Condensation Activities of Mono- and Binuclear Hybrid Complexes and Regulation by Graphene Oxide.

    PubMed

    Li, Shuo; Dai, Mingxing; Zhang, Chunping; Jiang, Bingying; Xu, Junqiang; Zhou, Dewen; Gu, Zhongwei

    2016-01-01

    Hybrid complexes with N,N'-bis(2-benzimidazolylmethyl)amine and cyclen moieties are novel enzyme mimics and controlled DNA release materials, which could interact with DNA through three models under different conditions. In this paper, the interactions between plasmid DNA and seven different complexes were investigated, and the methods to change the interaction patterns by graphene oxide (GO) or concentrations were also investigated. The cleavage of pUC19 DNA promoted by target complexes were via hydrolytic or oxidative mechanisms at low concentrations ranging from 3.13 × 10(-7) to 6.25 × 10(-5) mol/L. Dinuclear complexes 2a and 2b can promote the cleavage of plasmid pUC19 DNA to a linear form at pH values below 7.0. Furthermore, binuclear hybrid complexes could condense DNA as nanoparticles above 3.13 × 10(-5) mol/L and partly release DNA by graphene oxide with π-π stacking. Meanwhile, the results also reflected that graphene oxide could prevent DNA from breaking down. Cell viability assays showed dinuclear complexes were safe to normal human hepatic cells at relative high concentrations. The present work might help to develop novel strategies for the design and synthesis of DNA controllable releasing agents, which may be applied to gene delivery and also to exploit the new application for GO. PMID:27428945

  7. Effect of Maternal Age on the Ratio of Cleavage and Mitochondrial DNA Copy Number in Early Developmental Stage Bovine Embryos

    PubMed Central

    TAKEO, Shun; GOTO, Hiroya; KUWAYAMA, Takehito; MONJI, Yasunori; IWATA, Hisataka

    2012-01-01

    Abstract Age-associated deterioration in both the quality and quantity of mitochondria occurs in older women. The main aim of this study was to examine the effect of age on mitochondrial DNA copy number (mtDNA number) in early developmental stage bovine embryos as well as the dynamics of mtDNA number during early embryo development. Real-time PCR was used to determine mtDNA number. In vitro-produced embryos 48 h after insemination derived from Japanese black cows, ranging in age from 25 to 209 months were categorized based on their cleavage status. There was an overall negative relationship between the age of the cow and cleavage status, to the extent that the ratio of embryos cleaved over the 4-cell stage was greater in younger cows. The mtDNA number did not differ among the cleaved status of embryos. In the next experiment, oocytes collected from each donor cow were divided into 2 groups containing 10 oocytes each, in order to compare the mtDNA number of mature oocytes and early developmental stage embryos within individuals. Upon comparing the mtDNA number between oocytes at the M2 stage and early developmental stage 48 h post insemination, mtDNA number was found to decrease in most cows, but was found to increase in some cows. In conclusion, age affects the cleaving ability of oocytes, and very old cows (> 180 months) tend to have lower mtDNA numbers in their oocytes. The change in mtDNA number during early development varied among individual cows, although overall, it showed a tendency to decrease. PMID:23269452

  8. Functional domains within the a sequence involved in the cleavage-packaging of herpes simplex virus DNA.

    PubMed Central

    Deiss, L P; Chou, J; Frenkel, N

    1986-01-01

    Newly replicated herpes simplex virus (HSV) DNA consists of head-to-tail concatemers which are cleaved to generate unit-length genomes bounded by the terminally reiterated a sequence. Constructed defective HSV vectors (amplicons) containing a viral DNA replication origin and the a sequence are similarly replicated into large concatemers which are cleaved at a sequences punctuating the junctions between adjacent repeat units, concurrent with the packaging of viral DNA into nucleocapsids. In the present study we tested the ability of seed amplicons containing specific deletions in the a sequence to become cleaved and packaged and hence be propagated in virus stocks. These studies revealed that two separate signals, located within the Ub and Uc elements of the a sequence, were essential for amplicon propagation. No derivative defective genomes were recovered from seed constructs which lacked the Uc signal. In contrast, propagation of seed constructs lacking the Ub signal resulted in the selection of defective genomes with novel junctions, containing specific insertions of a sequences derived from the helper virus DNA. Comparison of published sequences of concatemeric junctions of several herpesviruses supported a uniform mechanism for the cleavage-packaging process, involving the measurement from two highly conserved blocks of sequences (pac-1 and pac-2) which were homologous to the required Uc and Ub sequences. These results form the basis for general models for the mechanism of cleavage-packaging of herpesvirus DNA. Images PMID:3016323

  9. FOB1 affects DNA topoisomerase I in vivo cleavages in the enhancer region of the Saccharomyces cerevisiae ribosomal DNA locus

    PubMed Central

    Di Felice, Francesca; Cioci, Francesco; Camilloni, Giorgio

    2005-01-01

    In Saccharomyces cerevisiae the FOB1 gene affects replication fork blocking activity at the replication fork block (RFB) sequences and promotes recombination events within the rDNA cluster. Using in vivo footprinting assays we mapped two in vivo Fob1p-binding sites, RFB1 and RFB3, located in the rDNA enhancer region and coincident with those previously reported to be in vitro binding sites. We previously provided evidences that DNA topoisomerase I is able to cleave two sites within this region. The results reported in this paper, indicate that the DNA topoisomerase I cleavage specific activity at the enhancer region is affected by the presence of Fob1p and independent of replication and transcription activities. We thus hypothesize that the binding to DNA of Fob1p itself may be the cause of the DNA topoisomerase I activity in the rDNA enhancer. PMID:16269824

  10. The Structure of DNA-Bound Human Topoisomerase II Alpha: Conformational Mechanisms for Coordinating Inter-Subunit Interactions with DNA Cleavage

    PubMed Central

    Wendorff, Timothy J.; Schmidt, Bryan H.; Heslop, Pauline; Austin, Caroline A.; Berger, James M.

    2012-01-01

    Type II topoisomerases are required for the management of DNA superhelicity and chromosome segregation, and serve as frontline targets for a variety of small-molecule therapeutics. To better understand how these enzymes act in both contexts, we determined the 2.9-Å-resolution structure of the DNA cleavage core of human topoisomerase IIα (TOP2A) bound to a doubly nicked, 30-bp duplex oligonucleotide. In accord with prior biochemical and structural studies, TOP2A significantly bends its DNA substrate using a bipartite, nucleolytic center formed at an N-terminal dimerization interface of the cleavage core. However, the protein also adopts a global conformation in which the second of its two inter-protomer contact points, one at the C-terminus, has separated. This finding, together with comparative structural analyses, reveals that the principal site of DNA engagement undergoes highly quantized conformational transitions between distinct binding, cleavage, and drug-inhibited states that correlate with the control of subunit–subunit interactions. Additional consideration of our TOP2A model in light of an etoposide-inhibited complex of human topoisomerase IIβ (TOP2B) suggests possible modification points for developing paralog-specific inhibitors to overcome the tendency of topoisomerase II-targeting chemotherapeutics to generate secondary malignancies. PMID:22841979

  11. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus

    PubMed Central

    Ramanan, Vyas; Shlomai, Amir; Cox, David B.T.; Schwartz, Robert E.; Michailidis, Eleftherios; Bhatta, Ankit; Scott, David A.; Zhang, Feng; Rice, Charles M.; Bhatia, Sangeeta N.

    2015-01-01

    Chronic hepatitis B virus (HBV) infection is prevalent, deadly, and seldom cured due to the persistence of viral episomal DNA (cccDNA) in infected cells. Newly developed genome engineering tools may offer the ability to directly cleave viral DNA, thereby promoting viral clearance. Here, we show that the CRISPR/Cas9 system can specifically target and cleave conserved regions in the HBV genome, resulting in robust suppression of viral gene expression and replication. Upon sustained expression of Cas9 and appropriately chosen guide RNAs, we demonstrate cleavage of cccDNA by Cas9 and a dramatic reduction in both cccDNA and other parameters of viral gene expression and replication. Thus, we show that directly targeting viral episomal DNA is a novel therapeutic approach to control the virus and possibly cure patients. PMID:26035283

  12. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

    PubMed Central

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D.

    2015-01-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1–2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp. PMID:26507855

  13. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations.

    PubMed

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D

    2015-12-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1-2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp. PMID:26507855

  14. Functional Coupling of Duplex Translocation to DNA Cleavage in a Type I Restriction Enzyme

    PubMed Central

    Csefalvay, Eva; Lapkouski, Mikalai; Guzanova, Alena; Csefalvay, Ladislav; Baikova, Tatsiana; Bialevich, Vitali; Shamayeva, Katsiaryna; Janscak, Pavel; Kuta Smatanova, Ivana; Panjikar, Santosh; Carey, Jannette; Weiserova, Marie; Ettrich, Rüdiger

    2015-01-01

    Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA cleavage and ATP-dependent DNA translocation activities located on motor subunit HsdR. Functional coupling of DNA cleavage and translocation is a hallmark of the Type I restriction systems that is consistent with their proposed role in horizontal gene transfer. DNA cleavage occurs at nonspecific sites distant from the cognate recognition sequence, apparently triggered by stalled translocation. The X-ray crystal structure of the complete HsdR subunit from E. coli plasmid R124 suggested that the triggering mechanism involves interdomain contacts mediated by ATP. In the present work, in vivo and in vitro activity assays and crystal structures of three mutants of EcoR124I HsdR designed to probe this mechanism are reported. The results indicate that interdomain engagement via ATP is indeed responsible for signal transmission between the endonuclease and helicase domains of the motor subunit. A previously identified sequence motif that is shared by the RecB nucleases and some Type I endonucleases is implicated in signaling. PMID:26039067

  15. Synthesis, crystal structure, DNA binding and photo-induced DNA cleavage activity of (S-methyl-L-cysteine)copper(II) complexes of heterocyclic bases.

    PubMed

    Patra, Ashis K; Nethaji, Munirathinam; Chakravarty, Akhil R

    2007-02-01

    Ternary S-methyl-L-cysteine (SMe-l-cys) copper(II) complexes [Cu(SMe-L-cys)(B)(H(2)O)](X) (1-4), where the heterocyclic base B is 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyridoquinoxaline (dpq, 3) and dipyridophenazine (dppz, 4), and X is ClO(4)(-) (1-3) or NO(3)(-) (4), are prepared and their DNA binding and cleavage properties studied. Complexes 2 and 4 are structurally characterized by X-ray crystallography. Both the crystal structures show distorted square-pyramidal (4+1) CuN(3)O(2) coordination geometry of the complexes in which the N,O-donor S-methyl-L-cysteine and N,N-donor heterocyclic base bind at the basal plane with a water molecule as the axial ligand. In addition, the dppz structure shows the presence of a 1D-chain formed due to covalent linkage of the carboxylate oxygen atom belonging to another molecule at the elongated axial site. The crystal structures show chemically significant non-covalent interactions like hydrogen bonding involving the axial aqua ligand and pi-pi interactions between dppz ligands. The complexes display a d-d band in the range of 605-654 nm in aqueous dimethylformamide (DMF) solution (9:1 v/v). The redox active complexes show quasireversible cyclic voltammetric response near 0.1 V in DMF assignable to the Cu(II)/Cu(I) couple. The complexes show good binding affinity to calf thymus (CT) DNA giving the order: 4 (dppz)>3 (dpq)>2 (phen)>1 (bpy). The intrinsic binding constants, obtained from UV-visible spectroscopic studies, are 1.3x10(4) and 2.15 x 10(4) M(-1) for 3 and 4, respectively. Control DNA cleavage experiments using pUC19 supercoiled (SC) DNA and minor groove binder distamycin suggest major groove binding propensity for the dppz complex, while the phen and dpq complexes bind at the minor groove of DNA. Complexes 2-4 show DNA cleavage activity in dark in the presence of a reducing agent 3-mercaptopropionic acid (MPA) via a mechanistic pathway involving formation of hydroxyl radical as the reactive

  16. The activation of DNA damage detection and repair responses in cleavage-stage rat embryos by a damaged paternal genome.

    PubMed

    Grenier, Lisanne; Robaire, Bernard; Hales, Barbara F

    2012-06-01

    Male germ cell DNA damage, after exposure to radiation, exogenous chemicals, or chemotherapeutic agents, is a major cause of male infertility. DNA-damaged spermatozoa can fertilize oocytes; this is of concern because there is limited information on the capacity of early embryos to repair a damaged male genome or on the fate of these embryos if repair is inadequate. We hypothesized that the early activation of DNA damage response in the early embryo is a critical determinant of its fate. The objective of this study was to assess the DNA damage response and mitochondrial function as a measure of the energy supply for DNA repair and general health in cleavage-stage embryos sired by males chronically exposed to an anticancer alkylating agent, cyclophosphamide. Male rats were treated with saline or cyclophosphamide (6 mg/kg/day) for 4 weeks and mated to naturally cycling females. Pronuclear two- and eight-cell embryos were collected for immunofluorescence analysis of mitochondrial function and biomarkers of the DNA damage response: γH2AX foci, 53BP1 reactivity, and poly(ADP-ribose) polymer formation. Mitochondrial activities did not differ between embryos sired by control- and cyclophosphamide-exposed males. At the two-cell stage, there was no treatment-related increase in DNA double-strand breaks; by the eight-cell stage, a significant increase was noted, as indicated by increased medium and large γH2AX foci. This was accompanied by a dampened DNA repair response, detected as a decrease in the nuclear intensity of poly(ADP-ribose) polymers. The micronuclei formed in cyclophosphamide-sired embryos contained large γH2AX foci and enhanced poly(ADP-ribose) polymer and 53BP1 reactivity compared with their nuclear counterparts. Thus, paternal cyclophosphamide exposure activated a DNA damage response in cleavage-stage embryos. Furthermore, this damage response may be useful in assessing embryo quality and developmental competence. PMID:22454429

  17. Predictors of Hepatitis B Cure Using Gene Therapy to Deliver DNA Cleavage Enzymes: A Mathematical Modeling Approach

    PubMed Central

    Schiffer, Joshua T.; Swan, Dave A.; Stone, Daniel; Jerome, Keith R.

    2013-01-01

    Most chronic viral infections are managed with small molecule therapies that inhibit replication but are not curative because non-replicating viral forms can persist despite decades of suppressive treatment. There are therefore numerous strategies in development to eradicate all non-replicating viruses from the body. We are currently engineering DNA cleavage enzymes that specifically target hepatitis B virus covalently closed circular DNA (HBV cccDNA), the episomal form of the virus that persists despite potent antiviral therapies. DNA cleavage enzymes, including homing endonucleases or meganucleases, zinc-finger nucleases (ZFNs), TAL effector nucleases (TALENs), and CRISPR-associated system 9 (Cas9) proteins, can disrupt specific regions of viral DNA. Because DNA repair is error prone, the virus can be neutralized after repeated cleavage events when a target sequence becomes mutated. DNA cleavage enzymes will be delivered as genes within viral vectors that enter hepatocytes. Here we develop mathematical models that describe the delivery and intracellular activity of DNA cleavage enzymes. Model simulations predict that high vector to target cell ratio, limited removal of delivery vectors by humoral immunity, and avid binding between enzyme and its DNA target will promote the highest level of cccDNA disruption. Development of de novo resistance to cleavage enzymes may occur if DNA cleavage and error prone repair does not render the viral episome replication incompetent: our model predicts that concurrent delivery of multiple enzymes which target different vital cccDNA regions, or sequential delivery of different enzymes, are both potentially useful strategies for avoiding multi-enzyme resistance. The underlying dynamics of cccDNA persistence are unlikely to impact the probability of cure provided that antiviral therapy is given concurrently during eradication trials. We conclude by describing experiments that can be used to validate the model, which will in turn

  18. Efficient DNA cleavage mediated by mononuclear mixed ligand copper(II) phenolate complexes: the role of co-ligand planarity on DNA binding and cleavage and anticancer activity.

    PubMed

    Jaividhya, Paramasivam; Dhivya, Rajkumar; Akbarsha, Mohamad Abdulkadhar; Palaniandavar, Mallayan

    2012-09-01

    The new mononuclear copper(II) complexes [Cu(L)(H(2)O)(2)](+)1 and [Cu(L)(diimine)](+)2-6, where LH=2-[(2-dimethylaminoethylimino)methyl]phenol and diimine=2,2'-bipyridine (bpy) (2), or 1,10-phenanthroline (phen) (3), or dipyrido[3,2-f:2',3'-h]quinoxaline (dpq) (4) or dipyrido[3,2-a:2',3'-c]phenazine (dppz) (5) or 11,12-dimethyldipyrido[3,2-a:2',3'-c]phenazine (dmdppz) (6), have been isolated and characterized. The X-ray crystal structures of 2 contains the monomeric complex molecule with a trigonal bipyramidal distorted square pyramidal (TBPDSP) coordination geometry, while 4 and 6 with square pyramidal distorted trigonal bipyramidal (SPDTBP) coordination geometry. The amine nitrogen of -NMe(2) group of the tridentate primary ligand is located at one of the corners of the square plane in 2 and 6 but in the axial position in 4. The interaction of the complexes with calf thymus DNA has been investigated using UV-visible and fluorescence spectroscopy, and viscosity measurements to understand the effect of diimine co-ligands on the mode and extent of DNA binding. The complexes 4 and 5 interact with calf thymus DNA more strongly than the other complexes through partial intercalation of the extended planar ring of the dpq (4) and dppz (5) co-ligands with the DNA base stack. All the complexes, except 1, effect the double strand DNA cleavage of plasmid DNA and 5 cleaves plasmid DNA in the absence of a reductant at a concentration (40 μM) lower than 4. It is remarkable that all the complexes display cytotoxicity against human breast cancer cell lines (MCF-7) and human cervical epidermoid carcinoma cell lines (ME 180) with potency higher than the currently used chemotherapeutic agent cisplatin and that 5 exhibits cytotoxicity higher than the other complexes. PMID:22841366

  19. Recognition and cleavage of 5-methylcytosine DNA by bacterial SRA-HNH proteins

    PubMed Central

    Han, Tiesheng; Yamada-Mabuchi, Megumu; Zhao, Gong; Li, Li; liu, Guang; Ou, Hong-Yu; Deng, Zixin; Zheng, Yu; He, Xinyi

    2015-01-01

    SET and RING-finger-associated (SRA) domain is involved in establishment and maintenance of DNA methylation in eukaryotes. Proteins containing SRA domains exist in mammals, plants, even microorganisms. It has been established that mammalian SRA domain recognizes 5-methylcytosine (5mC) through a base-flipping mechanism. Here, we identified and characterized two SRA domain-containing proteins with the common domain architecture of N-terminal SRA domain and C-terminal HNH nuclease domain, Sco5333 from Streptomyces coelicolor and Tbis1 from Thermobispora bispora. Both sco5333 and tbis1 cannot establish in methylated Escherichia coli hosts (dcm+), and this in vivo toxicity requires both SRA and HNH domain. Purified Sco5333 and Tbis1 displayed weak DNA cleavage activity in the presence of Mg2+, Mn2+ and Co2+ and the cleavage activity was suppressed by Zn2+. Both Sco5333 and Tbis1 bind to 5mC-containing DNA in all sequence contexts and have at least a preference of 100 folds in binding affinity for methylated DNA over non-methylated one. We suggest that linkage of methyl-specific SRA domain and weakly active HNH domain may represent a universal mechanism in competing alien methylated DNA but to maximum extent minimizing damage to its own chromosome. PMID:25564526

  20. Metal-based netropsin mimics showing AT-selective DNA binding and DNA cleavage activity at red light.

    PubMed

    Patra, Ashis K; Bhowmick, Tuhin; Ramakumar, Suryanarayanarao; Chakravarty, Akhil R

    2007-10-29

    Copper(II) bis-arginate [Cu(l-arg)2](NO3)2 (1) and [Cu(l-arg)(phen)Cl]Cl (2) as mimics of the minor-groove-binding natural antibiotic netropsin show preferential binding to the AT-rich region of double-stranded DNA. The complexes with a d-d band near 600 nm display oxidative DNA cleavage activity on photoirradiation at UV-A light of 365 nm and at red light of 647.1 nm (Ar-Kr laser) in a metal-assisted photoexcitation process forming singlet oxygen (1O2) species in a type-2 pathway. PMID:17880211

  1. Selective enzymatic cleavage and labeling for sensitive capillary electrophoresis laser-induced fluorescence analysis of oxidized DNA bases.

    PubMed

    Li, Cuiping; Wang, Hailin

    2015-08-01

    Oxidatively generated DNA damage is considered to be a significant contributing factor to cancer, aging, and age-related human diseases. It is important to detect oxidatively generated DNA damage to understand and clinically diagnosis diseases caused by oxidative damage. In this study, using selective enzymatic cleavage and quantum dot (QD) labeling, we developed a novel capillary electrophoresis-laser induced fluorescence method for the sensitive detection of oxidized DNA bases. First, oxidized DNA bases are recognized and removed by one DNA base excision repair glycosylase, leaving apurinic and apyrimidinic sites (AP sites) at the oxidized positions. The AP sites are further excised by the AP nicking activity of the chosen glycosylase, generating a nucleotide gap with 5'- and 3'- phosphate groups. After dephosphorylation with one alkaline phosphatase, a biotinylated ddNTP is introduced into the nucleotide space within the DNA strand by DNA polymerase I. The biotin-tagged DNA is further labeled with a QD-streptavidin conjugate via non-covalent interactions. The DNA-bound QD is well-separated from excess DNA-unbound QD by highly efficient capillary electrophoresis and is sensitively detected by online coupled laser-induced fluorescence analysis. Using this method, we can assess the trace levels of oxidized DNA bases induced by the Fenton reaction and UV irradiation. Interestingly, the use of the formamidopyrimidine glycosylase (FPG) protein and endonuclease VIII enables the detection of oxidized purine and pyrimidine bases, respectively. Using the synthesized standard DNA, the approach has low limits of detection of 1.1×10(-19)mol in mass and 2.9pM in concentration. PMID:26105778

  2. Diastereoselective DNA Cleavage Recognition by Ni(II)•Gly-Gly-His Derived Metallopeptides

    PubMed Central

    Fang, Ya-Yin; Claussen, Craig A.; Lipkowitz, Kenny B.; Long, Eric C.

    2008-01-01

    Site-selective DNA cleavage by diastereoisomers of Ni(II)•Gly-Gly-His-derived metallopeptides was investigated through high-resolution gel analyses and molecular dynamics simulations. Ni(II)•L-Arg-Gly-His and Ni(II)•D-Arg-Gly-His (and their respective Lys analogues) targeted A/T-rich regions; however, the L-isomers consistently modified a sub-set of available nucleotides within a given minor groove site while the D-isomers differed in both their sites of preference and ability to target individual nucleotides within some sites. In comparison, Ni(II)•L-Pro-Gly-His and Ni(II)•D-Pro-Gly-His were unable to exhibit a similar diastereoselectivity. Simulations of the above systems, along with Ni(II)•Gly-Gly-His, indicated that the stereochemistry of the amino-terminal amino acid produces either an isohelical metallopeptide that associates stably at individual DNA sites (L-Arg or L-Lys) or, with D-Arg and D-Lys, a non-complementary metallopeptide structure that cannot fully employ its side chain nor amino-terminal amine as a positional stabilizing moiety. In contrast, amino-terminal Pro-containing metallopeptides of either stereochemistry, lacking an extended side chain directed toward the minor groove, did not exhibit a similar diastereoselectivity. While the identity and stereochemistry of amino acids located in the amino-terminal peptide position influenced DNA cleavage, metallopeptide diastereoisomers containing L- and D-Arg (or Lys) within the second peptide position did not exhibit diastereoselective DNA cleavage patterns; simulations indicated that a positively-charged amino acid in this location alters the interaction of the metallopeptide equatorial plane and the minor groove leading to an interaction similar to Ni(II)•Gly-Gly-His. PMID:16522100

  3. Intronic cleavage and polyadenylation regulates gene expression during DNA damage response through U1 snRNA

    PubMed Central

    Devany, Emral; Park, Ji Yeon; Murphy, Michael R; Zakusilo, George; Baquero, Jorge; Zhang, Xiaokan; Hoque, Mainul; Tian, Bin; Kleiman, Frida E

    2016-01-01

    The DNA damage response involves coordinated control of gene expression and DNA repair. Using deep sequencing, we found widespread changes of alternative cleavage and polyadenylation site usage on ultraviolet-treatment in mammalian cells. Alternative cleavage and polyadenylation regulation in the 3ʹ untranslated region is substantial, leading to both shortening and lengthening of 3ʹ untranslated regions of genes. Interestingly, a strong activation of intronic alternative cleavage and polyadenylation sites is detected, resulting in widespread expression of truncated transcripts. Intronic alternative cleavage and polyadenylation events are biased to the 5ʹ end of genes and affect gene groups with important functions in DNA damage response and cancer. Moreover, intronic alternative cleavage and polyadenylation site activation during DNA damage response correlates with a decrease in U1 snRNA levels, and is reversible by U1 snRNA overexpression. Importantly, U1 snRNA overexpression mitigates ultraviolet-induced apoptosis. Together, these data reveal a significant gene regulatory scheme in DNA damage response where U1 snRNA impacts gene expression via the U1-alternative cleavage and polyadenylation axis. PMID:27462460

  4. Sequence-specific interactions of drugs interfering with the topoisomerase-DNA cleavage complex.

    PubMed

    Palumbo, Manlio; Gatto, Barbara; Moro, Stefano; Sissi, Claudia; Zagotto, Giuseppe

    2002-07-18

    DNA-processing enzymes, such as the topoisomerases (tops), represent major targets for potent anticancer (and antibacterial) agents. The drugs kill cells by poisoning the enzymes' catalytic cycle. Understanding the molecular details of top poisoning is a fundamental requisite for the rational development of novel, more effective antineoplastic drugs. In this connection, sequence-specific recognition of the top-DNA complex is a key step to preferentially direct the action of the drugs onto selected genomic sequences. In fact, the (reversible) interference of drugs with the top-DNA complex exhibits well-defined preferences for DNA bases in the proximity of the cleavage site, each drug showing peculiarities connected to its structural features. A second level of selectivity can be observed when chemically reactive groups are present in the structure of the top-directed drug. In this case, the enzyme recognizes or generates a unique site for covalent drug-DNA binding. This will further subtly modulate the drug's efficiency in stimulating DNA damage at selected sites. Finally, drugs can discriminate not only among different types of tops, but also among different isoenzymes, providing an additional level of specific selection. Once the molecular basis for DNA sequence-dependent recognition has been established, the above-mentioned modes to generate selectivity in drug poisoning can be rationally exploited, alone or in combination, to develop tailor-made drugs targeted at defined loci in cancer cells. PMID:12084456

  5. Preferential sites of early DNA cleavage in apoptosis and the pathway of nuclear damage.

    PubMed

    Krystosek, A

    1999-04-01

    We have tested the specific hypothesis that the pathway of nuclear collapse in apoptosis is governed by the early attack on active chromatin at spatially restricted nuclear sites. Cell death in PC12 pheochromocytoma cells deprived of serum growth factors, in HL-60 leukemic cells treated with inhibitors of protein or RNA biosynthesis, and in U937 histiocytic lymphoma cells exposed to the cytokine tumor necrosis factor alpha showed a common mechanism in the targeting of DNA for degradation. An incorporation assay with labeled nucleotide revealed an early selective nicking in peripheral nuclear chromatin with concomitant diminution in the amount of immunoreactive lamin B protein. This was followed by a phase of more extensive cleavages, continued nuclear protein loss, chromatin collapse, and fragmentation of nuclei. The spatial restriction of early cleavages is similar to the nicking obtained by the application of exogenous DNase I to fixed nuclei of normal cells and to that obtained in the activation of the endogenous endonuclease of liver nuclei by Ca2+. These similarities suggest that, in apoptosis, activation of an endonuclease preferentially recognizing a specific chromatin configuration, such as that of active (DNase I-sensitive) genes, underlies the early spatial demarcation of cleavages. PMID:10219626

  6. Red-light photosensitized cleavage of DNA by (l-lysine)(phenanthroline base)copper(II) complexes.

    PubMed

    Patra, Ashis K; Nethaji, Munirathinam; Chakravarty, Akhil R

    2005-08-21

    Ternary copper(II) complexes [Cu(l-lys)B(ClO4)](ClO4)(1-4), where B is a heterocyclic base, viz. 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2',3'-c]phenazene (dppz, 4), are prepared and their DNA binding and photo-induced DNA cleavage activity studied (l-lys =l-lysine). Complex 2, structurally characterized by X-ray crystallography, shows a square-pyramidal (4 + 1) coordination geometry in which the N,O-donor l-lysine and N,N-donor heterocyclic base bind at the basal plane and the perchlorate ligand is bonded at the elongated axial site. The crystal structure shows the presence of a pendant cationic amine moiety -(CH2)4NH3+ of l-lysine. The one-electron paramagnetic complexes display a d-d band in the range of 598-762 nm in DMF and exhibit cyclic voltammetric response due to Cu(II)/Cu(I) couple in the range of 0.07 to -0.20 V vs. SCE in DMF-Tris-HCl buffer. The complexes having phenanthroline bases display good binding propensity to the calf thymus DNA giving an order: 4 (dppz) > 3 (dpq) > 2 (phen)> 1 (bpy). Control cleavage experiments using pUC19 supercoiled DNA and distamycin suggest major groove binding for the dppz and minor groove binding for the other complexes. Complexes 2-4 show efficient DNA cleavage activity on UV (365 nm) or visible light (694 nm ruby laser) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. The amino acid l-lysine bound to the metal shows photosensitizing effect at red light, while the heterocyclic bases are primarily DNA groove binders. The dpq and dppz ligands display red light-induced photosensitizing effects in copper-bound form. PMID:16075123

  7. Chromium(VI) reduction by catechol(amine)s results in DNA cleavage in vitro: relevance to chromium genotoxicity.

    PubMed

    Pattison, D I; Davies, M J; Levina, A; Dixon, N E; Lay, P A

    2001-05-01

    Catechols are found extensively in nature both as essential biomolecules and as the byproducts of normal oxidative damage of amino acids and proteins. They are also present in cigarette smoke and other atmospheric pollutants. Here, the interactions of reactive species generated in Cr(VI)/catechol(amine) mixtures with plasmid DNA have been investigated to model a potential route to Cr(VI)-induced genotoxicity. Reduction of Cr(VI) by 3,4-dihydroxyphenylalanine (DOPA) (1), dopamine (2), or adrenaline (3) produces species that cause extensive DNA damage, but the products of similar reactions with catechol (4) or 4-tert-butylcatechol (5) do not damage DNA. The Cr(VI)/catechol(amine) reactions have been studied at low added H(2)O(2) concentrations, which lead to enhanced DNA cleavage with 1 and induce DNA cleavage with 4. The Cr(V) and organic intermediates generated by the reactions of Cr(VI) with 1 or 4 in the presence of H(2)O(2) were characterized by EPR spectroscopy. The detected signals were assigned to Cr(V)-catechol, Cr(V)-peroxo, and mixed Cr(V)-catechol-peroxo complexes. Oxygen consumption during the reactions of Cr(VI) with 1, 2, 4, and 5 was studied, and H(2)O(2) production was quantified. Reactions of Cr(VI) with 1 and 2, but not 4 and 5, consume considerable amounts of dissolved O(2), and give extensive H(2)O(2) production. Extents of oxygen consumption and H(2)O(2) production during the reaction of Cr(VI) with enzymatically generated 1 and N-acetyl-DOPA (from the reaction of Tyr and N-acetyl-Tyr with tyrosinase, respectively) were correlated with the DNA cleaving abilities of the products of these reactions. The reaction of Cr(VI) with enzymatically generated 1 produced significant amounts of H(2)O(2) and caused significant DNA damage, but the N-acetyl-DOPA did not. The extent of in vitro DNA damage is reduced considerably by treatment of the Cr(VI)/catechol(amine) mixtures with catalase, which shows that the DNA damage is H(2)O(2)-dependent and that the

  8. HMGB1/2 can target DNA for illegitimate cleavage by the RAG1/2 complex

    PubMed Central

    Zhang, Ming; Swanson, Patrick C

    2009-01-01

    Background V(D)J recombination is initiated in antigen receptor loci by the pairwise cleavage of recombination signal sequences (RSSs) by the RAG1 and RAG2 proteins via a nick-hairpin mechanism. The RSS contains highly conserved heptamer (consensus: 5'-CACAGTG) and nonamer (consensus: 5'-ACAAAAACC) motifs separated by either 12- or 23-base pairs of poorly conserved sequence. The high mobility group proteins HMGB1 and HMGB2 (HMGB1/2) are highly abundant architectural DNA binding proteins known to promote RAG-mediated synapsis and cleavage of consensus recombination signals in vitro by facilitating RSS binding and bending by the RAG1/2 complex. HMGB1/2 are known to recognize distorted DNA structures such as four-way junctions, and damaged or modified DNA. Whether HMGB1/2 can promote RAG-mediated DNA cleavage at sites lacking a canonical RSS by targeting or stabilizing structural distortions is unclear, but is important for understanding the etiology of chromosomal translocations involving antigen receptor genes and proto-oncogene sequences that do not contain an obvious RSS-like element. Results Here we identify a novel DNA breakpoint site in the plasmid V(D)J recombination substrate pGG49 (bps6197) that is cleaved by the RAG proteins via a nick-hairpin mechanism. The bps6197 sequence lacks a recognizable heptamer at the breakpoint (5'-CCTGACG-3') but contains a nonamer-like element (5'-ACATTAACC-3') 30 base pairs from the cleavage site. We find that RAG-mediated bps6197 cleavage is promoted by HMGB1/2, requiring both HMG-box domains to be intact to facilitate RAG-mediated cleavage, and is stimulated by synapsis with a 12-RSS. A dyad-symmetric inverted repeat sequence lying 5' to the breakpoint is implicated as a target for HMGB1/2 activity. Conclusion We have identified a novel DNA sequence, called bps6197, that supports standard V(D)J-type cleavage despite the absence of an apparent heptamer motif. Efficient RAG-mediated bps6197 cleavage requires the presence of

  9. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage

    SciTech Connect

    Yuan,Y.; Pei, Y.; Ma, J.; Kuryavyi, V.; Zhadina, M.; Meister, G.; Chen, H.; Dauter, Z.; Tuschi, T.; Patel, D.

    2005-01-01

    Argonaute (Ago) proteins constitute a key component of the RNA-induced silencing complex (RISC). We report the crystal structure of Aquifex aeolicus Ago (Aa-Ago) together with binding and cleavage studies, which establish this eubacterial Ago as a bona fide guide DNA strand-mediated site-specific RNA endonuclease. We have generated a stereochemically robust model of the complex, where the guide DNA-mRNA duplex is positioned within a basic channel spanning the bilobal interface, such that the 5' phosphate of the guide strand can be anchored in a basic pocket, and the mRNA can be positioned for site-specific cleavage by RNase H-type divalent cation-coordinated catalytic Asp residues of the PIWI domain. Domain swap experiments involving chimeras of human Ago (hAgo1) and cleavage-competent hAgo2 reinforce the role of the PIWI domain in 'slicer' activity. We propose a four-step Ago-mediated catalytic cleavage cycle model, which provides distinct perspectives into the mechanism of guide strand-mediated mRNA cleavage within the RISC.

  10. Mixed ligand ruthenium(III) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones with triphenylphosphine/triphenylarsine co-ligands: Synthesis, DNA binding, DNA cleavage, antioxidative and cytotoxic activity

    NASA Astrophysics Data System (ADS)

    Sampath, K.; Sathiyaraj, S.; Raja, G.; Jayabalakrishnan, C.

    2013-08-01

    The new ruthenium(III) complexes with 4-methyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-methylhydrazinecarbothioamide (HL1) and (E)-2-(2-nitrobenzylidene)-N-methylhydrazinecarbothioamide (HL2), were prepared and characterized by various physico-chemical and spectroscopic methods. The title compounds act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the ligands and complexes were investigated by absorption spectroscopy and IR spectroscopy. It reveals that the compounds bind to nitrogenous bases of DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes against MCF-7 cell line was assayed which showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  11. Evaluation of DNA-binding, DNA cleavage, antioxidant and cytotoxic activity of mononuclear ruthenium(II) carbonyl complexes of benzaldehyde 4-phenyl-3-thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Sampath, Krishnan; Sathiyaraj, Subbaiyan; Jayabalakrishnan, Chinnasamy

    2013-11-01

    Two 4-phenyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-phenylhydrazinecarbothioamide (HL1) and (E)-2-(2-nitrobenzylidene)-N-phenylhydrazinecarbothioamide (HL2), and its ruthenium(II) complexes were synthesized and characterized by physico-chemical and spectroscopic methods. The Schiff bases act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the compounds was investigated by absorption spectroscopy which indicated that the compounds bind to DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes assayed against HeLa and MCF-7 cell lines showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  12. Evaluation of DNA-binding, DNA cleavage, antioxidant and cytotoxic activity of mononuclear ruthenium(II) carbonyl complexes of benzaldehyde 4-phenyl-3-thiosemicarbazones.

    PubMed

    Sampath, Krishnan; Sathiyaraj, Subbaiyan; Jayabalakrishnan, Chinnasamy

    2013-11-01

    Two 4-phenyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-phenylhydrazinecarbothioamide (HL(1)) and (E)-2-(2-nitrobenzylidene)-N-phenylhydrazinecarbothioamide (HL(2)), and its ruthenium(II) complexes were synthesized and characterized by physico-chemical and spectroscopic methods. The Schiff bases act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL(1) and HL(2) were determined by single crystal X-ray diffraction method. DNA binding of the compounds was investigated by absorption spectroscopy which indicated that the compounds bind to DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes assayed against HeLa and MCF-7 cell lines showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations. PMID:23845986

  13. Cleavage of supercoiled circular double-stranded DNA induced by a eukaryotic cambialistic superoxide dismutase from Cinnamomum camphora.

    PubMed

    Wang, Bao-Zhong; Wei, Xu-Bin; Liu, Wang-Yi

    2004-09-01

    A eukaryotic cambialistic superoxide dismutase (SOD) has been purified to homogeneity from mature seeds of the disease- and insect-resistant camphor tree (Cinnamomum camphora). Besides the known role of this SOD in protecting cells against oxidative stress, it can induce the cleavage of supercoiled double-stranded DNA into nicked and linear DNA. It can not cleave linear DNA or RNA, demonstrating there is no DNase or RNase in the purified cambialistic SOD. Furthermore, the SOD can linearize circular pGEM-4Z DNA that is relaxed by topoisomerase I. This result indicates that the DNA-cleaving activity requires substrates being topologically constrained. The supercoiled DNA-cleaving activity of the cambialistic SOD can be inhibited by either SOD inhibitor (azide) or catalase and hydroxyl radical scavengers (ethanol and mannitol). The chelator of iron, diethylenetriaminepentaacetic acid (DTPA), also inhibits the supercoiled DNA-cleaving activity. These results show that the dismutation activity is crucial for the supercoiled DNA cleavage. The modification of tryptophan residue of the cambialistic SOD with N-bromosuccinimide (NBS) shows that these two activities are structurally correlative. The reaction mechanism is proposed that the hydroxyl radical formed in a transition-metal-catalyzing Fenton-type reaction contributes to the DNA-cleaving activity. In addition, the cleavage sites in supercoiled pGEM-4Z DNA are random. PMID:15346198

  14. Use of Plasmon Coupling to Reveal the Dynamics of DNA Bending andCleavage by Single EcoRV Restriction Enzymes

    SciTech Connect

    Reinhard, Bjorn; Sheikholeslami, Sassan; Mastroianni, Alexander; Alivisatos, A. Paul; Liphardt, Jan

    2006-09-06

    Pairs of Au nanoparticles have recently been proposed asplasmon rulers based on the dependence of their light scattering on theinterparticle distance. Preliminary work has suggested that plasmonrulers can be used to measure and monitor dynamic distance changes overthe 1 to 100nm length scale in biology. Here, we substantiate thatplasmon rulers can be used to effectively measure dynamical biophysicalprocesses by applying the ruler to a system that has been investigatedextensively using ensemble kinetic measurements: the cleavage of DNA bythe restriction enzyme EcoRV. Temporal resolutions of up to 240 Hz wereobtained, and the end-to-end extension of up to 1000 individual dsDNAenzyme substrates could be monitored in parallel for hours. The singlemolecule cleavage trajectories acquired here agree well with valuesobtained in bulk through other methods, and confirm well-known featuresof the cleavage process, such as the fact that the DNA is bent prior tocleavage. New dynamical information is revealed as well, for instance,the degree of softening of the DNA just prior to cleavage. The unlimitedlife time, high temporal resolution, and high signal/noise make theplasmon ruler an excellent tool for studying macromolecular assembliesand conformational changes at the single molecule level.

  15. DNA cleavage by new oxovanadium(IV) complexes of N-salicylidene alpha-amino acids and phenanthroline bases in the photodynamic therapy window.

    PubMed

    Sasmal, Pijus K; Patra, Ashis K; Nethaji, Munirathinam; Chakravarty, Akhil R

    2007-12-24

    Oxovanadium(IV) complexes [VO(salmet)(B)] (1-3) and [VO(saltrp)(B)] (4-6), where salmet and saltrp are N-salicylidene-l-methionate and N-salicylidene-l-tryptophanate, respectively, and B is a N,N-donor heterocyclic base (viz. 1,10-phenanthroline (phen, 1, 4), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 2, 5), and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 3, 6)) are prepared and characterized and their DNA binding and photoinduced DNA cleavage activity studied. Complexes 1, 2, and 4 are structurally characterized by single-crystal X-ray crystallography. The molecular structure shows the presence of a vanadyl group in the VO3N3 coordination geometry. The dianionic alpha-amino acid Schiff base acts as a tridentate O,N,O-donor ligand in a meridional binding mode. The N,N-donor heterocyclic base displays a chelating mode of bonding with a N-donor site trans to the oxo group. The complexes show a d-d band in the range of 680-710 nm in DMF with a shoulder near 840 nm. They exhibit an irreversible oxidative cyclic voltammetric response near 0.8 V assignable to the V(V)/V(IV) couple and a quasi-reversible V(IV)/V(III) redox couple near -1.1 V vs SCE in DMF-0.1 M TBAP. The complexes show good binding propensity to calf thymus DNA giving binding constant values in the range from 5.2 x 10(4) to 7.2 x 10(5) M(-1). The binding site size, thermal melting, and viscosity data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor "chemical nuclease" activity in the dark in the presence of 3-mercaptopropionic acid or hydrogen peroxide. The dpq and dppz complexes show efficient DNA cleavage activity on irradiation with UV-A light of 365 nm via a mechanistic pathway involving formation of singlet oxygen as the reactive species. They also show significant DNA cleavage activity on photoexcitation in red light (>750 nm) by (1)O2 species. Observation of red-light-induced cleavage of DNA is unprecedented in the vanadium chemistry. The DNA cleavage activity is

  16. Cleavage of Nuclear DNA into Oligonucleosomal Fragments during Cell Death Induced by Fungal Infection or by Abiotic Treatments.

    PubMed Central

    Ryerson, DE; Heath, MC

    1996-01-01

    It is often claimed that programmed cell death (pcd) exists in plants and that a form of pcd known as the hypersensitive response is triggered as a defense mechanism by microbial pathogens. However, in contrast to animals, no feature in plants universally identifies or defines pcd. We have looked for a hallmark of pcd in animal cells, namely, DNA cleavage, in plant cells killed by infection with incompatible fungi or by abiotic means. We found that cell death triggered in intact leaves of two resistant cowpea cultivars by the cowpea rust fungus is accompanied by the cleavage of nuclear DNA into oligonucleosomal fragments (DNA laddering). Terminal deoxynucleotidyl transferase-mediated dUTP nick end in situ labeling of leaf sections showed that fungus-induced DNA cleavage occurred only in haustorium-containing cells and was detectable early in the degeneration process. Such cytologically detectable DNA cleavage was also observed in vascular tissue of infected and uninfected plants, but no DNA laddering was detected in the latter. DNA laddering was triggered by [greater than or equal to]100 mM KCN, regardless of cowpea cultivar, but not by physical cell disruption or by concentrations of H2O2, NaN3, CuSO4, or ZnCl2 that killed cowpea cells at a rate similar to that of ladder-inducing KCN concentrations. These and other results suggest that the hypersensitive response to microbial pathogens may involve a pcd with some of the characteristics of animal apoptosis and that DNA cleavage is a potential indicator of pcd in plants. PMID:12239388

  17. Synthesis, structure, DNA binding and DNA cleavage activity of oxovanadium(IV) N-salicylidene-S-methyldithiocarbazate complexes of phenanthroline bases.

    PubMed

    Sasmal, Pijus K; Patra, Ashis K; Chakravarty, Akhil R

    2008-07-01

    Ternary oxovanadium(IV) complexes [VO(salmdtc)(B)] (1-3), where salmdtc is dianionic N-salicylidene-S-methyldithiocarbazate and B is N,N-donor phenanthroline bases like 1,10-phenanthroline (phen, 1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 2) and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 3), are prepared, characterized and their DNA binding and DNA cleavage activity studied. Complex 3 is structurally characterized by single-crystal X-ray crystallography. The molecular structure shows the presence of a vanadyl group in six-coordinate VN(3)O(2)S coordination geometry. The S-methyldithiocarbazate Schiff base acts as a tridentate NSO-donor ligand in a meridional binding mode. The N,N-donor heterocyclic base displays a chelating mode of binding with an N-donor site trans to the vanadyl oxo-group. The complexes show a d-d band in the range of 675-707 nm in DMF. They exhibit an irreversible oxidative cyclic voltammetric response near 0.9 V due to the V(V)/V(IV) couple and a quasi-reversible reductive V(IV)/V(III) redox couple near -1.0 V vs. SCE in DMF-0.1M TBAP. The complexes show good binding propensity to calf thymus DNA giving binding constant values in the range of 7.4 x 10(4)-2.3 x 10(5)M(-1). The thermal denaturation and viscosity binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor chemical nuclease activity in dark in the presence of 3-mercaptopropionic acid (MPA) or hydrogen peroxide. The dpq and dppz complexes show efficient DNA cleavage activity in UV-A light of 365 nm via a type-II mechanistic pathway involving formation of singlet oxygen ((1)O(2)) as the reactive species. PMID:18279964

  18. Peptide Nucleic Acid with a Lysine Side Chain at the β-Position: Synthesis and Application for DNA Cleavage.

    PubMed

    Sugiyama, Toru; Kuwata, Keiko; Imamura, Yasutada; Demizu, Yosuke; Kurihara, Masaaki; Takano, Masashi; Kittaka, Atsushi

    2016-01-01

    This paper reports the synthesis of new β-Lys peptide nucleic acid (PNA) monomers and their incorporation into a 10-residue PNA sequence. PNA containing β-Lys PNA units formed a stable hybrid duplex with DNA. However, incorporation of β-Lys PNA units caused destabilization of PNA-DNA duplexes to some extent. Electrostatic attractions between β-PNA and DNA could reduce this destabilization effect. Subsequently, bipyridine-conjugated β-Lys PNA was prepared and exhibited sequence selective cleavage of DNA. Based on the structures of the cleavage products and molecular modeling, we reasoned that bipyridine moiety locates within the minor groove of the PNA-DNA duplexes. The lysine side chain of β-PNA is a versatile handle for attaching various functional molecules. PMID:27373637

  19. Metal-assisted red light-induced DNA cleavage by ternary L-methionine copper(II) complexes of planar heterocyclic bases.

    PubMed

    Patra, Ashis K; Dhar, Shanta; Nethaji, Munirathinam; Chakravarty, Akhil R

    2005-03-01

    Ternary copper(II) complexes [Cu(l-met)B(Solv)](ClO4) (1-4), where B is a N,N-donor heterocyclic base like 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2'],3'-c]phenazene (dppz, 4), are prepared and their DNA binding and photo-induced DNA cleavage activity studied (L-Hmet =L-methionine). Complex 2, structurally characterized by X-ray crystallography, shows a square pyramidal (4 + 1) coordination geometry in which the N,O-donor L-methionine and N,N-donor heterocyclic base bind at the basal plane and a solvent molecule is coordinated at the axial site. The complexes display a d-d band at approximately 600 nm in DMF and exhibit a cyclic voltammetric response due to the Cu(II)/Cu(I) couple near -0.1 V in DMF-Tris-HCl buffer. The complexes display significant binding propensity to the calf thymus DNA in the order: 4(dppz) > 3(dpq) > 2(phen> 1(bpy). Control cleavage experiments using pUC19 supercoiled DNA and distamycin suggest major groove binding for the dppz and minor groove binding for the other complexes. Complexes 2-4 show efficient DNA cleavage activity on UV (365 nm) or red light (632.8 nm) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. The DNA cleavage activity of the dpq complex is found to be significantly more than its dppz and phen analogues. PMID:15726142

  20. The tertiary structure of the four-way DNA junction affords protection against DNase I cleavage.

    PubMed Central

    Murchie, A I; Carter, W A; Portugal, J; Lilley, D M

    1990-01-01

    The accessibility of phosphodiester bonds in the DNA of four-way helical junctions has been probed with the nuclease DNase I. Regions of protection were observed on all four strands of the junctions, that tended to be longer on the strands that are exchanged between the coaxially stacked pairs of helices. The protected regions on the continuous strands of the stacked helices were not located exactly at the junction, but were displaced towards the 3' side of the strand. This is the region of backbone that becomes located in the major groove of the opposed helix in the non-crossed, right-handed structure for the junction, and might therefore be predicted to be protected against cleavage by an enzyme. However, the major grooves of the structure remain accessible to the much smaller probe dimethyl sulphate. Images PMID:2339051

  1. Evaluation of DNA binding, DNA cleavage, protein binding, radical scavenging and in vitro cytotoxic activities of ruthenium(II) complexes containing 2,4-dihydroxy benzylidene ligands.

    PubMed

    Mohanraj, Maruthachalam; Ayyannan, Ganesan; Raja, Gunasekaran; Jayabalakrishnan, Chinnasamy

    2016-12-01

    The new ruthenium(II) complexes with hydrazone ligands, 4-Methyl-benzoic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL(1)), 4-Methoxy-benzoic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL(2)), 4-Bromo-benzoic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL(3)), were synthesized and characterized by various spectro analytical techniques. The molecular structures of the ligands were confirmed by single crystal X-ray diffraction technique. The DNA binding studies of the ligands and complexes were examined by absorption, fluorescence, viscosity and cyclic voltammetry methods. The results indicated that the ligands and complexes could interact with calf thymus DNA (CT-DNA) through intercalation. The DNA cleavage activity of the complexes was evaluated by gel electrophoresis assay, which revealed that the complexes are good DNA cleaving agents. The binding interaction of the ligands and complexes with bovine serum albumin (BSA) was investigated using fluorescence spectroscopic method. Antioxidant studies showed that the complexes have a strong radical scavenging properties. Further, the cytotoxic effect of the complexes examined on cancerous cell lines showed that the complexes exhibit significant anticancer activity. PMID:27612830

  2. DNA cleavage by Type ISP Restriction–Modification enzymes is initially targeted to the 3′-5′ strand

    PubMed Central

    van Aelst, Kara; Šišáková, Eva; Szczelkun, Mark D.

    2013-01-01

    The mechanism by which a double-stranded DNA break is produced following collision of two translocating Type I Restriction–Modification enzymes is not fully understood. Here, we demonstrate that the related Type ISP Restriction–Modification enzymes LlaGI and LlaBIII can cooperate to cleave DNA following convergent translocation and collision. When one of these enzymes is a mutant protein that lacks endonuclease activity, DNA cleavage of the 3′-5′ strand relative to the wild-type enzyme still occurs, with the same kinetics and at the same collision loci as for a reaction between two wild-type enzymes. The DNA nicking activity of the wild-type enzyme is still activated by a protein variant entirely lacking the Mrr nuclease domain and by a helicase mutant that cannot translocate. However, the helicase mutant cannot cleave the DNA despite the presence of an intact nuclease domain. Cleavage by the wild-type enzyme is not activated by unrelated protein roadblocks. We suggest that the nuclease activity of the Type ISP enzymes is activated following collision with another Type ISP enzyme and requires adenosine triphosphate binding/hydrolysis but, surprisingly, does not require interaction between the nuclease domains. Following the initial rapid endonuclease activity, additional DNA cleavage events then occur more slowly, leading to further processing of the initial double-stranded DNA break. PMID:23221632

  3. Salicylate, a catalytic inhibitor of topoisomerase II, inhibits DNA cleavage and is selective for the α isoform.

    PubMed

    Bau, Jason T; Kang, Zhili; Austin, Caroline A; Kurz, Ebba U

    2014-02-01

    Topoisomerase II (topo II) is a ubiquitous enzyme that is essential for cell survival through its role in regulating DNA topology and chromatid separation. Topo II can be poisoned by common chemotherapeutics (such as doxorubicin and etoposide), leading to the accumulation of cytotoxic enzyme-linked DNA double-stranded breaks. In contrast, nonbreak-inducing topo II catalytic inhibitors have also been described and have more limited use in clinical chemotherapy. These agents, however, may alter the efficacy of regimens incorporating topo II poisons. We previously identified salicylate, the primary metabolite of aspirin, as a novel catalytic inhibitor of topo II. We have now determined the mechanism by which salicylate inhibits topo II. As catalytic inhibitors can act at a number of steps in the topo II catalytic cycle, we used multiple independent, biochemical approaches to interrogate the catalytic cycle. Furthermore, as mammalian cells express two isoforms of topo II (α and β), we examined whether salicylate was isoform selective. Our results demonstrate that salicylate is unable to intercalate DNA, and does not prevent enzyme-DNA interaction, nor does it promote stabilization of topo IIα in closed clamps on DNA. Although salicylate decreased topo IIα ATPase activity in a dose-dependent noncompetitive manner, this was secondary to salicylate-mediated inhibition of DNA cleavage. Surprisingly, comparison of salicylate's effects using purified human topo IIα and topo IIβ revealed that salicylate selectively inhibits the α isoform. These findings provide a definitive mechanism for salicylate-mediated inhibition of topo IIα and provide support for further studies determining the basis for its isoform selectivity. PMID:24220011

  4. Effects of Secondary Metabolites from the Fungus Septofusidium berolinense on DNA Cleavage Mediated by Human Topoisomerase IIα

    PubMed Central

    Vann, Kendra R.; Ekiz, Güner; Zencir, Sevil; Bedir, Erdal; Topcu, Zeki; Osheroff, Neil

    2016-01-01

    Two metabolites from the ascomycete fungus Septofusidium berolinense were recently identified as having antineoplastic activity [Ekiz, et al. (2015) J. Antibiot. (Tokyo)]. However, the basis for this activity is not known. One of the compounds [3,6-dihydroxy-2-propylbenzaldehyde (GE-1)] is a hydroquinone and the other [2-hydroxymethyl-3-propylcyclohexa-2,5-diene-1,4-dione (GE-2)] is a quinone. Because some hydroquinones and quinones act as topoisomerase II poisons, the effects of GE-1 and GE-2 on DNA cleavage mediated by human topoisomerase IIα were assessed. GE-2 enhanced DNA cleavage ~4–fold and induced scission with a site specificity similar to that of the anticancer drug etoposide. Similar to other quinone-based topoisomerase II poisons, GE-2 displayed several hallmark characteristics of covalent topoisomerase II poisons, including: 1) the inability to poison a topoisomerase IIα construct that lacks the N-terminal domain; 2) the inhibition of DNA cleavage when the compound was incubated with the enzyme prior to the addition of plasmid, and 3) the loss of poisoning activity in the presence of a reducing agent. In contrast to GE-2, GE-1 did not enhance DNA cleavage mediated by topoisomerase IIα except at very high concentrations. However, the activity and potency of the metabolite were dramatically enhanced under oxidizing conditions. Results suggest that topoisomerase IIα may play a role in mediating the cytotoxic effects of these fungal metabolites. PMID:26894873

  5. Tunable DNA cleavage activity promoted by copper(ii) ternary complexes with N-donor heterocyclic ligands.

    PubMed

    Bortolotto, T; Silva-Caldeira, P P; Pich, C T; Pereira-Maia, E C; Terenzi, H

    2016-06-01

    Several small molecules have the capacity to cleave DNA promptly at high yields, even under mild conditions. Usually, this activity has no constraints, occurring without external or user control. Here, we demonstrate that UV-light exposure can greatly enhance the DNA cleavage activity promoted by four ternary copper(ii) complexes. A remarkable photocontrolled activity was achieved, which may be interesting for chemical and biochemical applications. PMID:27168172

  6. Kinetics of substrate recognition and cleavage by human 8-oxoguanine-DNA glycosylase

    PubMed Central

    Kuznetsov, Nikita A.; Koval, Vladimir V.; Zharkov, Dmitry O.; Nevinsky, Georgy A.; Douglas, Kenneth T.; Fedorova, Olga S.

    2005-01-01

    Human 8-oxoguanine-DNA glycosylase (hOgg1) excises 8-oxo-7,8-dihydroguanine (8-oxoG) from damaged DNA. We report a pre-steady-state kinetic analysis of hOgg1 mechanism using stopped-flow and enzyme fluorescence monitoring. The kinetic scheme for hOgg1 processing an 8-oxoG:C-containing substrate was found to include at least three fast equilibrium steps followed by two slow, irreversible steps and another equilibrium step. The second irreversible step was rate-limiting overall. By comparing data from Ogg1 intrinsic fluorescence traces and from accumulation of products of different types, the irreversible steps were attributed to two main chemical steps of the Ogg1-catalyzed reaction: cleavage of the N-glycosidic bond of the damaged nucleotide and β-elimination of its 3′-phosphate. The fast equilibrium steps were attributed to enzyme conformational changes during the recognition of 8-oxoG, and the final equilibrium, to binding of the reaction product by the enzyme. hOgg1 interacted with a substrate containing an aldehydic AP site very slowly, but the addition of 8-bromoguanine (8-BrG) greatly accelerated the reaction, which was best described by two initial equilibrium steps followed by one irreversible chemical step and a final product release equilibrium step. The irreversible step may correspond to β-elimination since it is the very step facilitated by 8-BrG. PMID:16024742

  7. Implications of caspase-dependent proteolytic cleavage of cyclin A1 in DNA damage-induced cell death

    SciTech Connect

    Woo, Sang Hyeok; Seo, Sung-Keum; An, Sungkwan; Choe, Tae-Boo; Hong, Seok-Il; Lee, Yun-Han; Park, In-Chul

    2014-10-24

    Highlights: • Caspase-1 mediates doxorubicin-induced downregulation of cyclin A1. • Active caspase-1 effectively cleaved cyclin A1 at D165. • Cyclin A1 expression is involved in DNA damage-induced cell death. - Abstract: Cyclin A1 is an A-type cyclin that directly binds to CDK2 to regulate cell-cycle progression. In the present study, we found that doxorubicin decreased the expression of cyclin A1 at the protein level in A549 lung cancer cells, while markedly downregulating its mRNA levels. Interestingly, doxorubicin upregulated caspase-1 in a concentration-dependent manner, and z-YAVD-fmk, a specific inhibitor of caspase-1, reversed the doxorubicin-induced decrease in cyclin A1 in A549 lung cancer and MCF7 breast cancer cells. Active caspase-1 effectively cleaved cyclin A1 at D165 into two fragments, which in vitro cleavage assays showed were further cleaved by caspase-3. Finally, we found that overexpression of cyclin A1 significantly reduced the cytotoxicity of doxorubicin, and knockdown of cyclin A1 by RNA interference enhanced the sensitivity of cells to ionizing radiation. Our data suggest a new mechanism for the downregulation of cyclin A1 by DNA-damaging stimuli that could be intimately involved in the cell death induced by DNA damage-inducing stimuli, including doxorubicin and ionizing radiation.

  8. DNA interactions and photocatalytic strand cleavage by artificial nucleases based on water-soluble gold(III) porphyrins.

    PubMed

    Haeubl, Martin; Reith, Lorenz Michael; Gruber, Bernadette; Karner, Uwe; Müller, Norbert; Knör, Günther; Schoefberger, Wolfgang

    2009-09-01

    The novel gold porphyrin complex (5,10,15-tris(N-methylpyridinium-4-yl)-20-(1-pyrenyl)-porphyrinato)gold(III) chloride, [Au(III)(TMPy3Pyr1P)]Cl4, was prepared and characterized by optical spectroscopy, high-resolution nuclear magnetic resonance (NMR), and electrospray mass spectrometry. This cationic multichromophore compound exhibits excellent water solubility and does not form aggregates under physiological conditions. Binding interactions of this complex and related model compounds with nucleic acid substrates have been studied and characterized by NMR and circular dichroism spectroscopy. The photoreactivity of [Au(III)(TMPy3Pyr1P)]Cl4 was investigated under anaerobic and aerobic conditions in the presence of an excess of purine nucleoside, guanosine, and plasmid DNA. Photocatalytic oxidative degradation of guanosine and the change from supercoiled to circular plasmid DNA upon monochromatic irradiation and polychromatic blue-light exposure with a maximum at 420 nm was explored. The potential of the novel water-soluble cationic metallointercalator complex [Au(III)(TMPy3Pyr1P)]Cl4 to serve as a catalytic photonuclease for the cleavage of DNA has been demonstrated. PMID:19471974

  9. AgNP-DNA@GQDs hybrid: new approach for sensitive detection of H2O2 and glucose via simultaneous AgNP etching and DNA cleavage.

    PubMed

    Wang, Lili; Zheng, Jing; Li, Yinhui; Yang, Sheng; Liu, Changhui; Xiao, Yue; Li, Jishan; Cao, Zhong; Yang, Ronghua

    2014-12-16

    A growing body of evidence suggests that hydrogen peroxide (H2O2) plays an active role in the regulation of various physiological processes. Development of sensitive probes for H2O2 is an urgent work. In this study, we proposed a DNA-mediated silver nanoparticle and graphene quantum dot hybrid nanocomposite (AgNP-DNA@GQDs) for sensitive fluorescent detection of H2O2. The sensing mechanism is based on the etching effect of H2O2 to AgNPs and the cleavage of DNA by as-generated hydroxyl radicals (•OH). The formation of AgNP-DNA@GQDs nanocomposite can result in fluorescence quenching of GQDs by AgNPs through the resonance energy transfer. Upon H2O2 addition, the energy transfer between AgNPs and GQDs mediated by DNA was weakened and obvious fluorescence recovery of GQDs could be observed. It is worth noting that the reaction product •OH between H2O2 and AgNPs could cleave the DNA-bridge and result in the disassembly of AgNP-DNA@GQDs to achieve further signal enhancement. With optimal conditions, the approach achieves a low detection limit of 0.10 μM for H2O2. Moreover, this nanocomposite is further extended to the glucose sensing in human urine combining with glucose oxidase (GOx) for the oxidation of glucose and formation of H2O2. The glucose concentrations in human urine are detected with satisfactory recoveries of 94.6-98.8% which holds potential for ultrasensitive quantitative analysis of glucose and supplies valuable information for diabetes mellitus research and clinical diagnosis. PMID:25390796

  10. Evolutionary Relationships among Five Subspecies of MUS MUSCULUS Based on Restriction Enzyme Cleavage Patterns of Mitochondrial DNA

    PubMed Central

    Yonekawa, Hiromichi; Moriwaki, Kazuo; Gotoh, Osamu; Hayashi, Jun-Ichi; Watanabe, Junko; Miyashita, Nobumoto; Petras, Michael L.; Tagashira, Yusaku

    1981-01-01

    The intra- and intersubspecific genetic distances between five subspecies of Mus musculus were estimated from restriction enzyme cleavage patterns or maps of mitochondrial DNA (mtDNA). The European subspecies, M. m. domesticus and Asian subspecies, M. m. bactrianus, M. m. castaneus, M. m. molossinus and M. m. urbanus were examined. For each subspecies, except M. m. urbanus, at least two local races from widely separated localities were examined. Intrasubspecific heterogeneity was found in the mtDNA cleavage patterns of M. m. bactrianus and M. m. castaneus. M. m. molossinus and M. m. domesticus, however, revealed no intrasubspecific heterogeneity. Four of the subspecies had distinct cleavage patterns. The fifth, M. m. urbanus, had cleavage patterns identical to those of M. m. castaneus with several enzymes. Estimates of genetic distances between the various races and subspecies were obtained by comparing cleavage maps of the mtDNAs with various restriction enzymes. Nucleotide sequence divergences of mtDNA between local races were estimated to be less than 0.4% in M. m. bactrianus and less than 0.3% in M. m. castaneus. The times of divergence of both subspecies were calculated to be 0.1–0.2 x 106 years. These values suggest that the intrasubspecific divergence began some 0.1–0.2 x 106 years ago. On the other hand, nucleotide sequence divergences between European subspecies M. m. domesticus and Asian subspecies M. m. bactrianus and M. m. castaneus were 7.1% and 5.8%, respectively. The times of divergence were calculated to be 2.1–2.6 x 106 years. Further, the nucleotide sequence divergence and time of divergence between M. m. molossinus and the other two Asian subspecies were comparable to those between M. m. molossinus and M. m. domesticus (about 3% and 1 x 106 years, respectively). These results suggest that M. m. molossinus is situated in a unique evolutionary position among Asian subspecies. PMID:6277733

  11. Cleavage of a four-way DNA junction by a restriction enzyme spanning the point of strand exchange.

    PubMed Central

    Murchie, A I; Portugal, J; Lilley, D M

    1991-01-01

    The four-way DNA junction is believed to fold in the presence of metal ions into an X-shaped structure, in which there is pairwise coaxial stacking of helical arms. A restriction enzyme MboII has been used to probe this structure. A junction was constructed containing a recognition site for MboII in one helical arm, positioned such that stacking of arms would result in cleavage in a neighbouring arm. Strong cleavage was observed, at the sites expected on the basis of coaxial stacking. An additional cleavage was seen corresponding to the formation of an alternative stacking isomer, suggesting that the two isomeric forms are in dynamic equilibrium in solution. Images PMID:2001684

  12. Activation of an Mg2+-dependent DNA endonuclease of avian myeloblastosis virus alpha beta DNA polymerase by in vitro proteolytic cleavage.

    PubMed Central

    Grandgenett, D P; Golomb, M; Vora, A C

    1980-01-01

    Partial chymotryptic digestion of purified avian myeloblastosis virus alpha beta DNA polymerase resulted in the activation of a Mg2+-dependent DNA endonuclease activity. Incubation of the polymerase-protease mixture in the presence of super-coiled DNA and Mg2+ permitted detection of the cleaved polymerase fragment possessing DNA nicking activity. Protease digestion conditions were established permitting selective cleavage of beta to alpha, which contained DNA polymerase and RNase H activity and to a family of polypeptides ranging in size from 30,000 to 34,000 daltons. These latter beta-unique fragments were purified by polyuridylate-Sepharose 4B chromatography and were shown to contain both DNA binding and DNA endonuclease activities. We have demonstrated that this group of polymerase fragments derived by chymotryptic digestion of alpha beta DNA polymerase is similar to the in vivo-isolated avian myeloblastosis virus p32pol in size, sequence, and DNA endonuclease activity. Images PMID:6154149

  13. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells.

    PubMed

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-08-15

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair. PMID:27342729

  14. Spectroscopic evaluation for VO(II), Ni(II), Pd(II) and Cu(II) complexes derived from thiosemicarbazide: A special emphasis on EPR study and DNA cleavage

    NASA Astrophysics Data System (ADS)

    El-Metwally, Nashwa M.; Al-Hazmi, Gamil A. A.

    2013-04-01

    Some thiosemicarbazide complexes were prepared and deliberately investigated by all allowed tools. The ligand coordinates as a mono negative bidentate towards VO(II) and Ni(II) as well as a neutral bidentate towards Pd(II) and Cu(II) ions. Electronic spectral data beside the magnetic measurements facilitate the structural geometry proposal. EPR spectra of Cu(II) and VO(II) complexes were recorded in their solid state. Spin Hamiltonian parameters and molecular orbital coefficient for Cu(II) and VO(II) complexes were calculated and supporting the octahedral geometry of Cu(II) complex and a square pyramidal for VO(II) one. The biological activity investigation was studied by the use of all prepared compounds. The VO(II) and Cu(II) complexes display the susceptible biotoxicity against a gram-positive bacterium. Also, Cu(II) complex displays the same toxicity against gram-negative bacteria used. The effect of all compounds on DNA were photographed. A successive degradation for the DNA target was observed with Pd(II) and Ni(II) complexes beside their original ligand.

  15. The modulation of topoisomerase I-mediated DNA cleavage and the induction of DNA–topoisomerase I crosslinks by crotonaldehyde-derived DNA adducts

    PubMed Central

    Dexheimer, Thomas S.; Kozekova, Albena; Rizzo, Carmelo J.; Stone, Michael P.; Pommier, Yves

    2008-01-01

    Crotonaldehyde is a representative α,β-unsaturated aldehyde endowed of mutagenic and carcinogenic properties related to its propensity to react with DNA. Cyclic crotonaldehyde-derived deoxyguanosine (CrA-PdG) adducts can undergo ring opening in duplex DNA to yield a highly reactive aldehydic moiety. Here, we demonstrate that site-specifically modified DNA oligonucleotides containing a single CrA-PdG adduct can form crosslinks with topoisomerase I (Top1), both directly and indirectly. Direct covalent complex formation between the CrA-PdG adduct and Top1 is detectable after reduction with sodium cyanoborohydride, which is consistent with the formation of a Schiff base between Top1 and the ring open aldehyde form of the adduct. In addition, we show that the CrA-PdG adduct alters the cleavage and religation activities of Top1. It suppresses Top1 cleavage complexes at the adduct site and induces both reversible and irreversible cleavage complexes adjacent to the CrA-PdG adduct. The formation of stable DNA–Top1 crosslinks and the induction of Top1 cleavage complexes by CrA-PdG are mutually exclusive. Lastly, we found that crotonaldehyde induces the formation of DNA–Top1 complexes in mammalian cells, which suggests a potential relationship between formation of DNA–Top1 crosslinks and the mutagenic and carcinogenic properties of crotonaldehyde. PMID:18550580

  16. Mixed ligand copper(II) complexes of 2,9-dimethyl-1,10-phenanthroline: tridentate 3N primary ligands determine DNA binding and cleavage and cytotoxicity.

    PubMed

    Ganeshpandian, Mani; Ramakrishnan, Sethu; Palaniandavar, Mallayan; Suresh, Eringathodi; Riyasdeen, Anvarbatcha; Akbarsha, Mohammad Abdulkadher

    2014-11-01

    A series of mononuclear mixed ligand copper(II) complexes of the type [Cu(L)(2,9-dmp)](ClO4)21-4, where L is a tridentate 3N ligand such as diethylenetriamine (L1) (1) or N-methyl-N'-(pyrid-2-yl-methyl)ethylenediamine (L2) (2) or di(2-picolyl)amine (L3) (3) or bis(pyrid-2-ylmethyl)-N-methylamine (L4) (4) and 2,9-dmp is 2,9-dimethyl-1,10-phenanthroline, has been isolated and characterized. The complexes 1 and 3 possess square-based pyramidal coordination geometry. Absorption spectral studies reveal that the intrinsic DNA binding affinity varies as 1>2>3>4. The higher DNA binding affinity of 1 arises from L1, which offers lower steric hindrance toward intercalation of 2,9-dmp co-ligand into DNA base pairs and is involved in hydrogen bonding interaction with DNA. Interestingly, all the complexes cleave pUC19 supercoiled DNA in the absence of an activating agent. They also exhibit oxidative (H2O2) DNA cleavage ability, which varies as 1>2>3>4, the highest cleavage efficiency of 1 being due to the largest amount of ROS it generates. The tryptophan emission-quenching experiment reveals that the stronger binding of 3 and 4 with bovine serum albumin (BSA) in the hydrophobic region, which is in line with DNA viscosity measurements. The IC50 values of 1-4 for MCF-7 breast cancer cell line are lower than that of cisplatin. Flow cytometry analysis reveals that 1 mediates the arrest of S and G2/M phases in the cell cycle progression at 24h harvesting time, which progresses into apoptosis. Hoechst 33258 staining studies indicate the higher potency of 1 to induce apoptosis. PMID:25151036

  17. Phosphodiester and N-glycosidic bond cleavage in DNA induced by 4-15 eV electrons

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Cloutier, Pierre; Hunting, Darel J.; Wagner, J. Richard; Sanche, Léon

    2006-02-01

    Thin molecular films of the short single strand of DNA, GCAT, were bombarded under vacuum by electrons with energies between 4 and 15 eV. Ex vacuo analysis by high-pressure liquid chromatography of the samples exposed to the electron beam revealed the formation of a multitude of products. Among these, 12 fragments of GCAT were identified by comparison with reference compounds and their yields were measured as a function of electron energy. For all energies, scission of the backbone gave nonmodified fragments containing a terminal phosphate, with negligible amounts of fragments without the phosphate group. This indicates that phosphodiester bond cleavage by 4-15 eV electrons involves cleavage of the C-O bond rather than the P-O bond. The yield functions exhibit maxima at 6 and 10-12 eV, which are interpreted as due to the formation of transient anions leading to fragmentation. Below 15 eV, these resonances dominate bond dissociation processes. All four nonmodified bases are released from the tetramer, by cleavage of the N-glycosidic bond, which occurs principally via the formation of core-excited resonances located around 6 and 10 eV. The formation of the other nonmodified products leading to cleavage of the phosphodiester bond is suggested to occur principally via two different mechanisms: (1) the formation of a core-excited resonance on the phosphate unit followed by dissociation of the transient anion and (2) dissociation of the CO bond of the phosphate group formed by resonance electron transfer from the bases. In each case, phosphodiester bond cleavage leads chiefly to the formation of stable phosphate anions and sugar radicals with minimal amounts of alkoxyl anions and phosphoryl radicals.

  18. In vitro cytotoxicity, DNA cleavage and SOD-mimic activity of copper(II) mixed-ligand quinolinonato complexes.

    PubMed

    Buchtík, Roman; Trávníček, Zdeněk; Vančo, Ján

    2012-11-01

    Six mixed-ligand copper(II) complexes with the composition [Cu(qui)(L)]BF(4)·xH(2)O (1-6), where Hqui=2-phenyl-3-hydroxy-4(1H)-quinolinone, L=2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), bis(2-pyridyl)amine (ambpy) (3), 5-methyl-1,10-phenanthroline (mphen) (4), 5-nitro-1,10-phenanthroline (nphen) (5) and bathophenanthroline (bphen) (6), were prepared, fully characterized and studied for their in vitro cytotoxicity on human osteosarcoma (HOS) and human breast adenocarcinoma (MCF7) cancer cell lines. The overall promising results of the cytotoxicity were found for all the complexes, while the best results were achieved for complex 6, with IC(50)=2.6 ± 0.8 μM (HOS), and 1.3 ± 0.5 μM (MCF7). The interactions of the Cu(II) complexes 1-6 with calf thymus DNA were investigated by the UV-visible spectral titration. An agarose-gel electrophoretic method of oxidative damage determination to circular plasmid pUC19 was used to assess the ability of the complexes to act as chemical nucleases. A high effectiveness of DNA cleavage was observed for 2, 4 and 5. In vitro antioxidative activity of the complexes was studied by the superoxide dismutase-mimic (SOD-mimic) method. The best result was afforded by complex 1 with IC(50)=4.7 ± 1.0 μM, which corresponds to 10.2% of the native Cu,Zn-SOD enzyme activity. The ability of the tested complexes to interact with sulfur-containing biomolecules (cysteine and reduced glutathione) at physiological levels was proved by electrospray-ionization mass spectrometry (ESI-MS). PMID:23022693

  19. Stimulation of topoisomerase II-mediated DNA cleavage by three DNA-intercalating plant alkaloids: cryptolepine, matadine, and serpentine.

    PubMed

    Dassonneville, L; Bonjean, K; De Pauw-Gillet, M C; Colson, P; Houssier, C; Quetin-Leclercq, J; Angenot, L; Bailly, C

    1999-06-15

    Cryptolepine, matadine, and serpentine are three indoloquinoline alkaloids isolated from the roots of African plants: Cryptolepis sanguinolenta, Strychnos gossweileri, and Rauwolfia serpentina, respectively. For a long time, these alkaloids have been used in African folk medicine in the form of plant extracts for the treatment of multiple diseases, in particular as antimalarial drugs. To date, the molecular basis for their diverse biological effects remains poorly understood. To elucidate their mechanism of action, we studied their interaction with DNA and their effects on topoisomerase II. The strength and mode of binding to DNA of the three alkaloids were investigated by spectroscopy. The alkaloids bind tightly to DNA and behave as typical intercalating agents. All three compounds stabilize the topoisomerase II-DNA covalent complex and stimulate the cutting of DNA by topoisomerase II. The poisoning effect is more pronounced with cryptolepine than with matadine and serpentine, but none of the drugs exhibit a preference for cutting at a specific base. Cryptolepine which binds 10-fold more tightly to DNA than the two related alkaloids proves to be much more cytotoxic toward B16 melanoma cells than matadine and serpentine. The cellular consequences of the inhibition of topoisomerase II by cryptolepine were investigated using the HL60 leukemia cell line. The flow cytometry analysis shows that the drug alters the cell cycle distribution, but no sign of drug-induced apoptosis was detected when evaluating the internucleosomal fragmentation of DNA in cells. Cryptolepine-treated cells probably die via necrosis rather than via apoptosis. The results provide evidence that DNA and topoisomerase II are the primary targets of cryptolepine, matadine, and serpentine. PMID:10387011

  20. Induction of cell death by ternary copper(II) complexes of L-tyrosine and diimines: role of coligands on DNA binding and cleavage and anticancer activity.

    PubMed

    Ramakrishnan, Sethu; Rajendiran, Venugopal; Palaniandavar, Mallayan; Periasamy, Vaiyapuri Subbarayan; Srinag, Bangalore Suresh; Krishnamurthy, Hanumanthappa; Akbarsha, Mohammad Abdulkader

    2009-02-16

    viscosity of DNA bound to 1 decreases, indicating the shortening of the DNA chain length by means of the formation of kinks or bends. All complexes exhibit effective DNA (pUC19 DNA) cleavage at 100 microM complex concentrations, and the order of DNA cleavage ability varies as 3 > 2 > 4 > 1. Interestingly, 3 exhibits a DNA cleavage rate constant that is higher than that of the other complexes only at 100 microM concentration, whereas 4 exhibits the highest cleavage rate constant at 80 microM complex concentration. The oxidative DNA cleavage follows the order 4 > 3 > 2 > 1. Mechanistic studies reveal that the DNA cleavage pathway involves hydroxyl radicals. Interestingly, only 4 displays efficient photonuclease activity upon irradiation with 365 nm light, which occurs through double-strand DNA breaks involving hydroxyl radicals. Furthermore, cytotoxicity studies on the nonsmall lung cancer (H-460) cell line show that the IC(50) values of 2-4 are more or less equal to cisplatin for the same cell line, indicating that they have the potential to act as very effective anticancer drugs in a time-dependent manner. The study of cytological changes reveals the higher induction of apoptosis and mitotic catastrophe for 4 and 3, respectively. The alkaline single-cell gel electrophoresis (comet assay), DNA laddering, and AO/EB and Hoechst 33258 staining assays have also been employed in finding the extent of DNA damage. Flow cytometry analysis shows an increase in the percentage of cells with apoptotic morphological features in the sub-G(0)/G(1) phase for 4, whereas it shows mitotic catastrophe for 3. PMID:19140687

  1. Structure, DNA binding and cleavage of a new Zn(II)Mn(II) macrocyclic complex

    NASA Astrophysics Data System (ADS)

    Zhou, Jing-Jing; Mei, Yu; Pan, Zhiquan; Zhou, Hong

    2012-12-01

    A new heterodinuclear complex of an unsymmetrical macrocycle [ZnMnL(CH3O)2]·H2O has been synthesized by the cyclocondensation between N,N'-bis(3-formyl-5-chlorosalicylidene)ethylenediimine and 2-hydroxyl-1,3-propanediamine in the presence of the metal ions, and characterized by elemental analyses, IR spectra and X-ray determination. The interactions of the complex with DNA have been investigated by UV absorption, fluorescence spectroscopy, viscosity measurements and electrochemical studies. Absorption spectroscopic investigation reveals that the complex has good binding propensity to calf thymus DNA by intercalation with a binding constant of 2.52 × 105 M-1. Fluorescence spectroscopy shows that the complex can displace ethidium bromide and bind to DNA, with a quenching constant of 4.37 × 103 M-1. The agarose gel electrophoresis studies show that pBR322 plasmid DNA can be transformed to nicked form and linear form in air by the complex.

  2. Co(II), Cu(II), Cd(II), Fe(III) and U(VI) complexes containing a NSNO donor ligand: Synthesis, characterization, optical band gap, in vitro antimicrobial and DNA cleavage studies

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; El-Gammal, O. A.; Bedier, R. A.

    2012-12-01

    A new series of [Co(HPTP)Cl(H2O)2], [Cu(HPTP)Cl], [Cd(HPTP)Cl](H2O)4, [Fe(PTP)Cl(H2O)2](H2O), [UO2(HPTP)(OAc)(H2O)2] complexes of Schiff-bases derived from 4-(2-pyridyl)-3-thiosemicarbazide and pyruvic acid (H2PTP) have been synthesized and characterized by spectroscopic studies. Schiff-base exhibit thiol-thione tautomerism wherein sulfur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analyses, spectral (IR, UV-vis, 1H NMR, 13C NMR and ESR), magnetic and thermal studies. IR spectra show that H2PTP is coordinated to the metal ions in a mono or binegative tridentate manner. The electronic spectra of the complexes and their magnetic moments provide information about geometries. The room temperature solid state ESR spectra of the Cu(II) complexes show dx2-y2 as a ground state, suggesting square-planar geometry around Cu(II) center. The molecular parameters: total energy, binding energy, isolated atomic energy, electronic energy, heat of formation, dipole moment, HOMO and LUMO were calculated for the ligand and its complexes. Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Also, the optical band gap (Eg) of the metal complexes has been calculated. The optical transition energy (Eg) is direct and equals 3.25, 3.26, 3.34 and 3.27 eV for Co, Cu, Fe and U complexes, respectively. The synthesized ligand, in comparison to its metal complexes is screened for its antibacterial activity against bacterial species, Bacillus thuringiensis, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species. Finally, the biochemical studies showed that, Cu, Cd and Fe complexes have powerful and complete

  3. Bacteriophage T4 Mutants Hypersensitive to an Antitumor Agent That Induces Topoisomerase-DNA Cleavage Complexes

    PubMed Central

    Woodworth, D. L.; Kreuzer, K. N.

    1996-01-01

    Many antitumor agents and antibiotics affect cells by interacting with type II topoisomerases, stabilizing a covalent enzyme-DNA complex. A pathway of recombination can apparently repair this DNA damage. In this study, transposon mutagenesis was used to identify possible components of the repair pathway in bacteriophage T4. Substantial increases in sensitivity to the antitumor agent m-AMSA [4'-(9-acridinyl-amino) methanesulfon-m-anisidide] were found with transposon insertion mutations that inactivate any of six T4-encoded proteins: UvsY (DNA synaptase accessory protein), UvsW (unknown function), Rnh (RNase H and 5' to 3' DNA exonuclease), α-gt (α-glucosyl transferase), gp47.1 (uncharacterized), and NrdB (β subunit of ribonucleotide reductase). The role of the rnh gene in drug sensitivity was further characterized. First, an in-frame rnh deletion mutation was constructed and analyzed, providing evidence that the absence of Rnh protein causes hypersensitivity to m-AMSA. Second, the m-AMSA sensitivity of the rnh-deletion mutant was shown to require a drug-sensitive T4 topoisomerase. Third, analysis of double mutants suggested that uvsW and rnh mutations impair a common step in the recombinational repair pathway for m-AMSA-induced damage. Finally, the rnh-deletion mutant was found to be hypersensitive to UV, implicating Rnh in recombinational repair of UV-induced damage. PMID:8807283

  4. The cleavage of nuclear DNA into high molecular weight DNA fragments occurs not only during apoptosis but also accompanies changes in functional activity of the nonapoptotic cells.

    PubMed

    Solov'yan, V T; Andreev, I O; Kolotova, T Y; Pogribniy, P V; Tarnavsky, D T; Kunakh, V A

    1997-08-25

    In this paper we demonstrate that apoptosis in primary culture of murine thymocytes and in continuously growing human cells is associated with the progressive disintegration of nuclear DNA into high molecular weight (HMW)-DNA fragments of about 50-150 kb. We also show that the formation of similarly sized HMW-DNA fragments takes place in the same cells in the absence of apoptotic inducers. Unlike an apoptotic fragmentation of nuclear DNA, the formation of HMW-DNA fragments in nonapoptotic cells is rapidly induced, has no correlation with the cell death, and is not associated with the development of oligonucleosomal "ladder" or apoptotic changes in nuclear morphology. The disintegration of DNA into HMW-fragments is also observed in nuclei isolated from healthy, nonapoptosizing tissues of various eukaryotes. We show that the formation of HMW-DNA fragments in the absence of apoptotic inducers is strongly dependent on the ionic detergents, is responsive to the topoisomerase II-specific poison, teniposide, and is completely reversible under conditions that favor topoisomerase II-dependent rejoining reaction. Also, we demonstrate that the formation of HMW-DNA fragments in continuously growing cell lines caused either by serum deprivation or monolayer establishment is of a transient nature and rapidly reverses to the control level following serum addition or dilution of monolayer. The results suggest that the cleavage of nuclear DNA into HMW-DNA fragments is associated not only with apoptosis but also accompanies changes in functional activity of nonapoptotic cells. PMID:9281361

  5. A mechanistic approach for the DNA binding of chiral enantiomeric L- and D-tryptophan-derived metal complexes of 1,2-DACH: cleavage and antitumor activity.

    PubMed

    Arjmand, Farukh; Muddassir, Mohd

    2011-03-01

    A new chiral series of potential antitumor metal-based complexes 1-3(a and b) of L- and D-tryptophan have been synthesized and thoroughly characterized. Both enantiomers of 1-3 bind DNA noncovalently via phosphate interaction with slight preference of metal center for covalent coordination to nucleobases. The K(b) values of L-enantiomer, however, possess higher propensity for DNA binding in comparison with the D-enantiomeric analogs. The relative trend in K(b) values is as follows: 2(a) > 2(b) > 3(a) > 1(a) > 3(b) > 1(b). These observations together with the findings of circular dichoric and fluorescence studies reveal maximal potential of L-enantiomeric form of copper complex to bind DNA, thereby exerting its therapeutic effect. The complex 2a exhibits a remarkable DNA cleavage activity with pBR322DNA in the presence of different activators such as H(2) O(2) , ascorbic acid, 3-mercaptopropionic acid, and glutathione, suggesting the involvement of active oxygen species for the DNA scission. In vitro anticancer activity of complexes 1-3(a) were screened against 14 different human carcinoma cell lines of different histological origin, and the results reveal that 2a shows significant antitumor activity in comparison with both 1a and 3a and is particularly selective for MIAPACA2 (pancreatic cancer cell line). PMID:20928895

  6. Synthesis and crystal structure elucidation of new copper(II)-based chemotherapeutic agent coupled with 1,2-DACH and orthovanillin: Validated by in vitro DNA/HSA binding profile and pBR322 cleavage pathway.

    PubMed

    Zaki, Mehvash; Afzal, Mohd; Ahmad, Musheer; Tabassum, Sartaj

    2016-08-01

    New copper(II)-based complex (1) was synthesized and characterized by analytical, spectroscopic and single crystal X-ray diffraction. The in vitro binding studies of complex 1 with CT DNA and HSA have been investigated by employing biophysical techniques to examine the binding propensity of 1 towards DNA and HSA. The results showed that 1 avidly binds to CT DNA via electrostatic mode along with the hydrogen bonding interaction of NH2 and CN groups of Schiff base ligand with the base pairs of DNA helix, leads to partial unwinding and destabilization of the DNA double helix. Moreover, the CD spectral studies revealed that complex 1 binds through groove binding interaction that stabilizes the right-handed B-form of DNA. Complex 1 showed an impressive photoinduced nuclease activity generating single-strand breaks in comparison with the DNA cleavage activity in presence of visible light. The mechanistic investigation revealed the efficiency of 1 to cleave DNA strands by involving the generation of reactive oxygen species. Furthermore, the time dependent DNA cleavage activity showed that there was gradual increase in the amount of NC DNA on increasing the photoexposure time. However, the interaction of 1 and HSA showed that the change of intrinsic fluorescence intensity of HSA was induced by the microenvironment of Trp residue. PMID:27289445

  7. Genomic DNA breakpoints in AML1/RUNX1 and ETO cluster with topoisomerase II DNA cleavage and DNase I hypersensitive sites in t(8;21) leukemia

    PubMed Central

    Zhang, Yanming; Strissel, Pamela; Strick, Reiner; Chen, Jianjun; Nucifora, Giuseppina; Le Beau, Michelle M.; Larson, Richard A.; Rowley, Janet D.

    2002-01-01

    The translocation t(8;21)(q22;q22) is one of the most frequent chromosome translocations in acute myeloid leukemia (AML). AML1/RUNX1 at 21q22 is involved in t(8;21), t(3;21), and t(16;21) in de novo and therapy-related AML and myelodysplastic syndrome as well as in t(12;21) in childhood B cell acute lymphoblastic leukemia. Although DNA breakpoints in AML1 and ETO (at 8q22) cluster in a few introns, the mechanisms of DNA recombination resulting in t(8;21) are unknown. The correlation of specific chromatin structural elements, i.e., topoisomerase II (topo II) DNA cleavage sites, DNase I hypersensitive sites, and scaffold-associated regions, which have been implicated in chromosome recombination with genomic DNA breakpoints in AML1 and ETO in t(8;21) is unknown. The breakpoints in AML1 and ETO were clustered in the Kasumi 1 cell line and in 31 leukemia patients with t(8;21); all except one had de novo AML. Sequencing of the breakpoint junctions revealed no common DNA motif; however, deletions, duplications, microhomologies, and nontemplate DNA were found. Ten in vivo topo II DNA cleavage sites were mapped in AML1, including three in intron 5 and seven in intron 7a, and two were in intron 1b of ETO. All strong topo II sites colocalized with DNase I hypersensitive sites and thus represent open chromatin regions. These sites correlated with genomic DNA breakpoints in both AML1 and ETO, thus implicating them in the de novo 8;21 translocation. PMID:11867721

  8. Study of mechanism of cleavage fracture at low temperature

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Wang, G. Z.

    1992-02-01

    In this investigation, a series of crack opening displacement (COD) tests were carried out at several low temperatures for C-Mn weld steel. Some of the specimens were loaded until fracture, and the mechanical properties and microscopic parameters on fracture surfaces were measured. Other specimens were unloaded before fracture at different applied loads. The distributions of the elongated cavities and the cleavage microcracks ahead of fatigue crack tips were observed in detail. Based on the experimental results, the combined criterion of a critical strain ɛ p ≥ ɛc) for initiating a crack nucleus, a critical stress triaxiality (σ m/σ ≥ tc) for preventing it from blunting, and a critical normal stress (σ yy/σf) for the cleavage extension was proposed again, and the critical values of ɛp and σm/-σ for the C-Mn weld steel were measured. The reason why the minimum COD value could not be zero is explained. The mechanism of generation of the lower limit COD value on the lower shelf of the toughness transition curve is proposed.

  9. Synthesis of mononuclear copper(II) complexes of acyclic Schiff's base ligands: Spectral, structural, electrochemical, antibacterial, DNA binding and cleavage activity

    NASA Astrophysics Data System (ADS)

    Jayamani, Arumugam; Thamilarasan, Vijayan; Sengottuvelan, Nallathambi; Manisankar, Paramasivam; Kang, Sung Kwon; Kim, Young-Inn; Ganesan, Vengatesan

    2014-03-01

    The mononuclear copper(II) complexes (1&2) of ligands L1 [N,N";-bis(2-hydroxy-5-methylbenzyl)-1,4-bis(3-iminopropyl)piperazine] or L2 [N,N";-bis(2-hydroxy-5-bromobenzyl)-1,4-bis(3-iminopropyl) piperazine] have been synthesized and characterised. The single crystal X-ray study had shown that ligands L1 and L2 crystallize in a monoclinic crystal system with P21/c space group. The mononuclear copper(II) complexes show one quasireversible cyclic voltammetric response near cathodic region (-0.77 to -0.85 V) in DMF assignable to the Cu(II)/Cu(I) couple. Binding interaction of the complexes with calf thymus DNA (CT DNA) investigated by absorption studies and fluorescence spectral studies show good binding affinity to CT DNA, which imply both the copper(II) complexes can strongly interact with DNA efficiently. The copper(II) complexes showed efficient oxidative cleavage of plasmid pBR322 DNA in the presence of 3-mercaptopropionic acid as reducing agent through a mechanistic pathway involving formation of singlet oxygen as the reactive species. The Schiff bases and their Cu(II) complexes have been screened for antibacterial activities which indicates that the complexes exhibited higher antimicrobial activity than the free ligands.

  10. Synthesis, spectral, crystal structure, thermal behavior, antimicrobial and DNA cleavage potential of two octahedral cadmium complexes: A supramolecular structure

    NASA Astrophysics Data System (ADS)

    Montazerozohori, M.; Musavi, S. A.; Masoudiasl, A.; Naghiha, A.; Dusek, M.; Kucerakova, M.

    2015-02-01

    Two new cadmium(II) complexes with the formula of CdL2(NCS)2 and CdL2(N3)2 (in which L is 2,2-dimethyl-N,N‧-bis-(3-phenyl-allylidene)-propane-1,3-diamine) have been synthesized and characterized by elemental analysis, molar conductivity measurements, FT/IR, UV-Visible, 1H and 13C NMR spectra and X-ray studies. The crystal structure analysis of CdL2(NCS)2 indicated that it crystallizes in orthorhombic system with space group of Pbca. Two Schiff base ligands are bonded to cadmium(II) ion as N2-donor chelate. Coordination geometry around the cadmium ion was found to be partially distorted octahedron. The Cd-Nimine bond distances are found in the range of 2.363(2)-2.427(2) Å while the Cd-Nisothiocyanate bond distances are 2.287(2) Å and 2.310(2) Å. The existence of C-H⋯π and C-H⋯S interactions in the CdL2(NCS)2 crystal leads to a supramolecular structure in its network. Then cadmium complexes were screened in vitro for their antibacterial and antifungal activities against two Gram-negative and two Gram-positive bacteria and also against Candida albicans as a fungus. Moreover, the compounds were subjected for DNA-cleavage potential by gel electrophoresis method. Finally thermo-gravimetric analysis of the complexes was applied for thermal behavior studies and then some thermo-kinetics activation parameters were evaluated.

  11. Inhibition of peroxynitrite-mediated DNA strand cleavage and hydroxyl radical formation by aspirin at pharmacologically relevant concentrations: Implications for cancer intervention

    SciTech Connect

    Chen, Wei; Zhu, Hong; Jia, Zhenquan; Li, Jianrong; Misra, Hara P.; Zhou, Kequan; Li, Yunbo

    2009-12-04

    Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in {phi}X-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1. Moreover, the consumption of oxygen caused by 250 {mu}M SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25-2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin.

  12. Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage

    PubMed Central

    Josephs, Eric A.; Kocak, D. Dewran; Fitzgibbon, Christopher J.; McMenemy, Joshua; Gersbach, Charles A.; Marszalek, Piotr E.

    2015-01-01

    CRISPR-associated endonuclease Cas9 cuts DNA at variable target sites designated by a Cas9-bound RNA molecule. Cas9's ability to be directed by single ‘guide RNA’ molecules to target nearly any sequence has been recently exploited for a number of emerging biological and medical applications. Therefore, understanding the nature of Cas9's off-target activity is of paramount importance for its practical use. Using atomic force microscopy (AFM), we directly resolve individual Cas9 and nuclease-inactive dCas9 proteins as they bind along engineered DNA substrates. High-resolution imaging allows us to determine their relative propensities to bind with different guide RNA variants to targeted or off-target sequences. Mapping the structural properties of Cas9 and dCas9 to their respective binding sites reveals a progressive conformational transformation at DNA sites with increasing sequence similarity to its target. With kinetic Monte Carlo (KMC) simulations, these results provide evidence of a ‘conformational gating’ mechanism driven by the interactions between the guide RNA and the 14th–17th nucleotide region of the targeted DNA, the stabilities of which we find correlate significantly with reported off-target cleavage rates. KMC simulations also reveal potential methodologies to engineer guide RNA sequences with improved specificity by considering the invasion of guide RNAs into targeted DNA duplex. PMID:26384421

  13. Establishment of a non-radioactive cleavage assay to assess the DNA repair capacity towards oxidatively damaged DNA in subcellular and cellular systems and the impact of copper.

    PubMed

    Hamann, Ingrit; Schwerdtle, Tanja; Hartwig, Andrea

    2009-10-01

    Oxidative stress is involved in many diseases, and the search for appropriate biomarkers is one major focus in molecular epidemiology. 8-Oxoguanine (8-oxoG), a potentially mutagenic DNA lesion, is considered to be a sensitive biomarker for oxidative stress. Another approach consists in assessing the repair capacity towards 8-oxoG, mediated predominantly by the human 8-oxoguanine DNA glycosylase 1 (hOGG1). With respect to the latter, during the last few years so-called cleavage assays have been described, investigating the incision of (32)P-labelled and 8-oxoG damaged oligonucleotides by cell extracts. Within the present study, a sensitive non-radioactive test system based on a Cy5-labelled oligonucleotide has been established. Sources of incision activity are isolated proteins or extracts prepared from cultured cells and peripheral blood mononuclear cells (PBMC). After comparing different oligonucleotide structures, a hairpin-like structure was selected which was not degraded by cell extracts. Applying this test system the impact of copper on the activity of isolated hOGG1 and on hOGG activity in A549 cells was examined, showing a distinct inhibition of the isolated protein at low copper concentration as compared to a modest inhibition of hOGG activity in cells at beginning cytotoxic concentrations. For investigating PBMC, all reaction conditions, including the amounts of oligonucleotide and cell extract as well as the reaction time have been optimized. The incision activities of PBMC protein extracts obtained from different donors have been investigated, and inter-individual differences have been observed. In summary, the established method is as sensitive and even faster than the radioactive technique, and additionally, offers the advantage of reduced costs and low health risk. PMID:19505484

  14. DNA cleavage within the MLL breakpoint cluster region is a specific event which occurs as part of higher-order chromatin fragmentation during the initial stages of apoptosis.

    PubMed Central

    Stanulla, M; Wang, J; Chervinsky, D S; Thandla, S; Aplan, P D

    1997-01-01

    A distinct population of therapy-related acute myeloid leukemia (t-AML) is strongly associated with prior administration of topoisomerase II (topo II) inhibitors. These t-AMLs display distinct cytogenetic alterations, most often disrupting the MLL gene on chromosome 11q23 within a breakpoint cluster region (bcr) of 8.3 kb. We recently identified a unique site within the MLL bcr that is highly susceptible to DNA double-strand cleavage by classic topo II inhibitors (e.g., etoposide and doxorubicin). Here, we report that site-specific cleavage within the MLL bcr can be induced by either catalytic topo II inhibitors, genotoxic chemotherapeutic agents which do not target topo II, or nongenotoxic stimuli of apoptotic cell death, suggesting that this site-specific cleavage is part of a generalized cellular response to an apoptotic stimulus. We also show that site-specific cleavage within the MLL bcr can be linked to the higher-order chromatin fragmentation that occurs during the initial stages of apoptosis, possibly through cleavage of DNA loops at their anchorage sites to the nuclear matrix. In addition, we show that site-specific cleavage is conserved between species, as specific DNA cleavage can also be demonstrated within the murine MLL locus. Lastly, site-specific cleavage during apoptosis can also be identified at the AML1 locus, a locus which is also frequently involved in chromosomal rearrangements present in t-AML patients. In conclusion, these results suggest the potential involvement of higher-order chromatin fragmentation which occurs as a part of a generalized apoptotic response in a mechanism leading to chromosomal translocation of the MLL and AML1 genes and subsequent t-AML. PMID:9199342

  15. The Varicella-Zoster Virus Portal Protein Is Essential for Cleavage and Packaging of Viral DNA

    PubMed Central

    Visalli, Melissa A.; House, Brittany L.; Selariu, Anca; Zhu, Hua

    2014-01-01

    . Previously, we described a series of N-α-methylbenzyl-N′-aryl thiourea analogs that target the VZV portal protein (pORF54) and prevent viral replication in vitro. To better understand the mechanism of action of these compounds, it is important to define the structural and functional characteristics of the VZV portal protein. In contrast to HSV, no VZV mutants have been described for any of the seven essential DNA encapsidation genes. The VZV ORF54 deletion mutant described in this study represents the first VZV encapsidation mutant reported to date. We demonstrate that the deletion mutant can serve as a platform for the isolation of portal mutants via recombineering and provide a strategy for more in-depth studies of VZV portal structure and function. PMID:24807720

  16. Copper complexes based on chiral Schiff-base ligands: DNA/BSA binding ability, DNA cleavage activity, cytotoxicity and mechanism of apoptosis.

    PubMed

    Zhou, Xue-Quan; Li, Yang; Zhang, Dong-Yan; Nie, Yan; Li, Zong-Jin; Gu, Wen; Liu, Xin; Tian, Jin-Lei; Yan, Shi-Ping

    2016-05-23

    Four copper(II) complexes with chiral Schiff-base ligands, [Cu(R-L(1))2]·EtOAc (1) and [Cu(S-L(1))2]·EtOAc (2), [Cu(R-L(2))2]·EtOAc (3) and [Cu(S-L(2))2]·EtOAc (4), (R/S-HL(1) = (R/S)-(1-naththyl)-salicylaldimine, R/S-HL(2) = (R/S)-(1-naththyl)-3-methoxysalicylaldimine, EtOAc = ethyl acetate) were synthesized to serve as artificial nucleases and anticancer drugs. All complexes and R/S-HL(1) ligands were structurally characterized by X-ray crystallography. The interaction of these complexes with CT-DNA was researched via several spectroscopy methods, which indicates that complexes bind to CT-DNA by moderate intercalation binding mode. Moreover, DNA cleavage experiments revealed that the complexes exhibited remarkable DNA cleavage activities in the presence of H2O2via the generation of hydroxyl radical. Particularly, complex 4 also could nick DNA with the production of (1)O2. And all complexes exhibited excellent cytotoxicity to MDA-MB-231, A549 and Hela human cancer cells in micromole magnitude. Furthermore, complex 4 exhibited comparable cytotoxic effect to cisplatin against the proliferation of MDA-MB-231 and A549 cancer cells, as well as showed better anticancer ability to the three cancer cells than the other complexes. The results of cell cycle analysis indicated that complexes 3-4 could induce G2/M phase cell cycle arrest. Furthermore, MDA-MB-231 cells treated with 3 and 4 were subjected to apoptosis and death by generation of ROS and the activation of caspase-3. Interestingly, the chiral complexes 3 and 4 may induce cell apoptosis through extrinsic and mitochondrial intrinsic pathway, respectively. PMID:26994692

  17. The beyond 12/23 restriction is imposed at the nicking and pairing steps of DNA cleavage during V(D)J recombination.

    PubMed

    Drejer-Teel, Anna H; Fugmann, Sebastian D; Schatz, David G

    2007-09-01

    The beyond 12/23 (B12/23) rule ensures inclusion of a Dbeta gene segment in the assembled T-cell receptor (TCR) beta variable region exon and is manifest by a failure of direct Vbeta-to-Jbeta gene segment joining. The restriction is enforced during the DNA cleavage step of V(D)J recombination by the recombination-activating gene 1 and 2 (RAG1/2) proteins and the recombination signal sequences (RSSs) flanking the TCRbeta gene segments. Nothing is known about the step(s) at which DNA cleavage is defective or how TCRbeta locus sequences contribute to these defects. To address this, we examined the steps of DNA cleavage by the RAG proteins using TCRbeta locus V, D, and J RSS oligonucleotide substrates. The results demonstrate that the B12/23 rule is enforced through slow nicking of Jbeta substrates and to some extent through poor synapsis of Vbeta and Jbeta substrates. Nicking is controlled largely by the coding flank and, unexpectedly, the RSS spacer, while synapsis is controlled primarily by the RSS nonamer. The results demonstrate that different Jbeta substrates are crippled at different steps of cleavage by distinct combinations of defects in the various DNA elements and strongly suggest that the DNA nicking step of V(D)J recombination can be rate limiting in vivo. PMID:17636023

  18. The Beyond 12/23 Restriction Is Imposed at the Nicking and Pairing Steps of DNA Cleavage during V(D)J Recombination▿

    PubMed Central

    Drejer-Teel, Anna H.; Fugmann, Sebastian D.; Schatz, David G.

    2007-01-01

    The beyond 12/23 (B12/23) rule ensures inclusion of a Dβ gene segment in the assembled T-cell receptor (TCR) β variable region exon and is manifest by a failure of direct Vβ-to-Jβ gene segment joining. The restriction is enforced during the DNA cleavage step of V(D)J recombination by the recombination-activating gene 1 and 2 (RAG1/2) proteins and the recombination signal sequences (RSSs) flanking the TCRβ gene segments. Nothing is known about the step(s) at which DNA cleavage is defective or how TCRβ locus sequences contribute to these defects. To address this, we examined the steps of DNA cleavage by the RAG proteins using TCRβ locus V, D, and J RSS oligonucleotide substrates. The results demonstrate that the B12/23 rule is enforced through slow nicking of Jβ substrates and to some extent through poor synapsis of Vβ and Jβ substrates. Nicking is controlled largely by the coding flank and, unexpectedly, the RSS spacer, while synapsis is controlled primarily by the RSS nonamer. The results demonstrate that different Jβ substrates are crippled at different steps of cleavage by distinct combinations of defects in the various DNA elements and strongly suggest that the DNA nicking step of V(D)J recombination can be rate limiting in vivo. PMID:17636023

  19. Enhancing Cell Nucleus Accumulation and DNA Cleavage Activity of Anti-Cancer Drug via Graphene Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Wu, Congyu; Zhou, Xuejiao; Han, Ting; Xin, Xiaozhen; Wu, Jiaying; Zhang, Jingyan; Guo, Shouwu

    2013-10-01

    Graphene quantum dots (GQDs) maintain the intrinsic layered structural motif of graphene but with smaller lateral size and abundant periphery carboxylic groups, and are more compatible with biological system, thus are promising nanomaterials for therapeutic applications. Here we show that GQDs have a superb ability in drug delivery and anti-cancer activity boost without any pre-modification due to their unique structural properties. They could efficiently deliver doxorubicin (DOX) to the nucleus through DOX/GQD conjugates, because the conjugates assume different cellular and nuclear internalization pathways comparing to free DOX. Also, the conjugates could enhance DNA cleavage activity of DOX markedly. This enhancement combining with efficient nuclear delivery improved cytotoxicity of DOX dramatically. Furthermore, the DOX/GQD conjugates could also increase the nuclear uptake and cytotoxicity of DOX to drug-resistant cancer cells indicating that the conjugates may be capable to increase chemotherapy efficacy of anti-cancer drugs that are suboptimal due to the drug resistance.

  20. An integrated system for enzymatic cleavage and electrostretching of freely-suspended single DNA molecules.

    PubMed

    Lam, Liza; Sakakihara, Shouichi; Ishizuka, Koji; Takeuchi, Shoji; Noji, Hiroyuki

    2007-12-01

    A novel polyacrylamide gel-based femtolitre microchamber system for performing single-molecule restriction enzyme assay on freely-suspended DNA molecules and subsequent DNA electrostretching by applying an alternating electric field has been developed. We attempted the integration by firstly initiating restriction enzyme reaction on a fluorescent-stained lambdaDNA molecule, encapsulated in a microchamber, using magnesium as an external trigger. Upon complete digestion, the cleaved DNA fragments were electrostretched to analyze the DNA lengths optically. The critical parameters for electrostretching of encapsulated DNA were investigated and optimum stretching was achieved by using 1.5 kHz pulses with electric field strength in the order of 10(3) V cm(-1) in 7% linear polyacrylamide (LPA) solution. LPA was adopted to minimize the adverse effects of ionic thermal agitation on molecular dielectrophoretic elongation in the microchamber. In our experiments, as the fragments were not immobilized throughout the entire protocol, it was found from repeated tests that digestion always occurred, producing the expected number of cleaved fragments. This versatile microchamber approach realized direct observation of these biological reactions on real-time basis at a single-molecule level. Furthermore, with the employment of porous polyacrylamide gel, the effective manipulation of DNA assays and the ability to combine conventionally independent bioanalytical processes have been demonstrated. PMID:18030395

  1. Tyrosyl-DNA phosphodiesterase I catalytic mutants reveal an alternative nucleophile that can catalyze substrate cleavage.

    PubMed

    Comeaux, Evan Q; Cuya, Selma M; Kojima, Kyoko; Jafari, Nauzanene; Wanzeck, Keith C; Mobley, James A; Bjornsti, Mary-Ann; van Waardenburg, Robert C A M

    2015-03-01

    Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the repair of 3'-DNA adducts, such as the 3'-phosphotyrosyl linkage of DNA topoisomerase I to DNA. Tdp1 contains two conserved catalytic histidines: a nucleophilic His (His(nuc)) that attacks DNA adducts to form a covalent 3'-phosphohistidyl intermediate and a general acid/base His (His(gab)), which resolves the Tdp1-DNA linkage. A His(nuc) to Ala mutant protein is reportedly inactive, whereas the autosomal recessive neurodegenerative disease SCAN1 has been attributed to the enhanced stability of the Tdp1-DNA intermediate induced by mutation of His(gab) to Arg. However, here we report that expression of the yeast His(nuc)Ala (H182A) mutant actually induced topoisomerase I-dependent cytotoxicity and further enhanced the cytotoxicity of Tdp1 His(gab) mutants, including H432N and the SCAN1-related H432R. Moreover, the His(nuc)Ala mutant was catalytically active in vitro, albeit at levels 85-fold less than that observed with wild type Tdp1. In contrast, the His(nuc)Phe mutant was catalytically inactive and suppressed His(gab) mutant-induced toxicity. These data suggest that the activity of another nucleophile when His(nuc) is replaced with residues containing a small side chain (Ala, Asn, and Gln), but not with a bulky side chain. Indeed, genetic, biochemical, and mass spectrometry analyses show that a highly conserved His, immediately N-terminal to His(nuc), can act as a nucleophile to catalyze the formation of a covalent Tdp1-DNA intermediate. These findings suggest that the flexibility of Tdp1 active site residues may impair the resolution of mutant Tdp1 covalent phosphohistidyl intermediates and provide the rationale for developing chemotherapeutics that stabilize the covalent Tdp1-DNA intermediate. PMID:25609251

  2. Anticancer potential of a photoactivated transplatin derivative containing the methylazaindole ligand mediated by ROS generation and DNA cleavage.

    PubMed

    Pracharova, Jitka; Radosova Muchova, Tereza; Dvorak Tomastikova, Eva; Intini, Francesco P; Pacifico, Concetta; Natile, Giovanni; Kasparkova, Jana; Brabec, Viktor

    2016-08-16

    The limitations associated with the clinical utility of conventional platinum anticancer drugs have stimulated research leading to the design of new metallodrugs with improved pharmacological properties, particularly with increased selectivity for cancer cells. Very recent research has demonstrated that photoactivation or photopotentiation of platinum drugs can be one of the promising approaches to tackle this challenge. This is so because the application of irradiation can be targeted exclusively to the tumor tissue so that the resulting effects could be much more selective and targeted to the tumor. We show in this work that the presence of 1-methyl-7-azaindole in trans-[PtCl2(NH3)(L)] (L = 1-methyl-7-azaindole, compound 1) markedly potentiated the DNA binding ability of 1 when irradiated by UVA light in a cell-free medium. Concomitantly, the formation of cytotoxic bifunctional cross-links was markedly enhanced. In addition, 1, when irradiated with UVA, was able to effectively cleave the DNA backbone also in living cells. The incorporation of 1-methyl-7-azaindole moiety had also a profound effect on the photophysical properties of 1, which can generate singlet oxygen responsible for the DNA cleavage reaction. Finally, we found that 1, upon irradiation with UVA light, exhibited a pronounced dose-dependent decrease in viability of A2780 cells whereas it was markedly less cytotoxic if the cells were treated in the absence of light. Hence, it is possible to conclude that 1 is amenable to photodynamic therapy. PMID:27396365

  3. Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema

    PubMed Central

    You, Ran; Lu, Wen; Shan, Ming; Berlin, Jacob M; Samuel, Errol LG; Marcano, Daniela C; Sun, Zhengzong; Sikkema, William KA; Yuan, Xiaoyi; Song, Lizhen; Hendrix, Amanda Y; Tour, James M; Corry, David B; Kheradmand, Farrah

    2015-01-01

    Chronic inhalation of cigarette smoke is the major cause of sterile inflammation and pulmonary emphysema. The effect of carbon black (CB), a universal constituent of smoke derived from the incomplete combustion of organic material, in smokers and non-smokers is less known. In this study, we show that insoluble nanoparticulate carbon black (nCB) accumulates in human myeloid dendritic cells (mDCs) from emphysematous lung and in CD11c+ lung antigen presenting cells (APC) of mice exposed to smoke. Likewise, nCB intranasal administration induced emphysema in mouse lungs. Delivered by smoking or intranasally, nCB persisted indefinitely in mouse lung, activated lung APCs, and promoted T helper 17 cell differentiation through double-stranded DNA break (DSB) and ASC-mediated inflammasome assembly in phagocytes. Increasing the polarity or size of CB mitigated many adverse effects. Thus, nCB causes sterile inflammation, DSB, and emphysema and explains adverse health outcomes seen in smokers while implicating the dangers of nCB exposure in non-smokers. DOI: http://dx.doi.org/10.7554/eLife.09623.001 PMID:26437452

  4. A novel method for detecting apoptosis shows that hepatocytes undergo a time dependent increase in DNA cleavage and chromatin condensation which is augmented after TGF-beta 1 treatment.

    PubMed

    Cain, K; Inayat-Hussain, S H; Couet, C; Qin, H M; Oberhammer, F A

    1996-04-01

    This study describes a new method for quantitating apoptosis in hepatocyte monolayers in which nuclei were isolated from the cells and DNA strand breaks detected by in situ end-labeling and flow cytometry. Most (97%) nuclei from untreated hepatocytes had low end-labelling and were derived from non-apoptotic cells. Approximately 2-3% of the nuclei had high end-labelling and originated from apoptotic hepatocytes. The numbers of these nuclei increased linearly from 3 to 85% between 0 and 48 h after treatment with transforming growth factor-beta 1 (TGF-beta 1). However, a morphological assessment of apoptosis with Hoechst H33258 showed that the proportion of apoptotic nuclei plateaued at 18-19% between 24 and 48 h after TGF-beta 1 treatment. Thus, the in situ end-labeling technique also detected DNA cleavage in nuclei which did not have an obvious apoptotic morphology. Confocal microscopy of low and high end-labelled nuclei which had been separated by fluorescent cell sorting showed that nuclei with high levels of end-labeling exhibited a wide diversity of morphologies. These included nuclei with little or no chromatin condensation and nuclei with characteristic apoptotic morphology. In addition, nuclei from untreated hepatocytes contained low levels of DNA cleavage, which were localized in areas of condensed chromatin and increased according to the time in culture. Thus, hepatocytes undergo a progressive and cumulative process of DNA cleavage/chromatin condensation which is markedly enhanced by TGF-beta 1. PMID:8900474

  5. RNA-activated DNA cleavage by the Type III-B CRISPR-Cas effector complex.

    PubMed

    Estrella, Michael A; Kuo, Fang-Ting; Bailey, Scott

    2016-02-15

    The CRISPR (clustered regularly interspaced short palindromic repeat) system is an RNA-guided immune system that protects prokaryotes from invading genetic elements. This system represents an inheritable and adaptable immune system that is mediated by multisubunit effector complexes. In the Type III-B system, the Cmr effector complex has been found to cleave ssRNA in vitro. However, in vivo, it has been implicated in transcription-dependent DNA targeting. We show here that the Cmr complex from Thermotoga maritima can cleave an ssRNA target that is complementary to the CRISPR RNA. We also show that binding of a complementary ssRNA target activates an ssDNA-specific nuclease activity in the histidine-aspartate (HD) domain of the Cmr2 subunit of the complex. These data suggest a mechanism for transcription-coupled DNA targeting by the Cmr complex and provide a unifying mechanism for all Type III systems. PMID:26848046

  6. DNA cleavage and methylation specificity of the single polypeptide restriction–modification enzyme LlaGI

    PubMed Central

    Smith, Rachel M.; Diffin, Fiona M.; Savery, Nigel J.; Josephsen, Jytte; Szczelkun, Mark D.

    2009-01-01

    LlaGI is a single polypeptide restriction–modification enzyme encoded on the naturally-occurring plasmid pEW104 isolated from Lactococcus lactis ssp. cremoris W10. Bioinformatics analysis suggests that the enzyme contains domains characteristic of an mrr endonuclease, a superfamily 2 DNA helicase and a γ-family adenine methyltransferase. LlaGI was expressed and purified from a recombinant clone and its properties characterised. An asymmetric recognition sequence was identified, 5′-CTnGAyG-3′ (where n is A, G, C or T and y is C or T). Methylation of the recognition site occurred on only one strand (the non-degenerate dA residue of 5′-CrTCnAG-3′ being methylated at the N6 position). Double strand DNA breaks at distant, random sites were only observed when two head-to-head oriented, unmethylated copies of the site were present; single sites or pairs in tail-to-tail or head-to-tail repeat only supported a DNA nicking activity. dsDNA nuclease activity was dependent upon the presence of ATP or dATP. Our results are consistent with a directional long-range communication mechanism that is necessitated by the partial site methylation. In the accompanying manuscript [Smith et al. (2009) The single polypeptide restriction–modification enzyme LlaGI is a self-contained molecular motor that translocates DNA loops], we demonstrate that this communication is via 1-dimensional DNA loop translocation. On the basis of this data and that in the third accompanying manuscript [Smith et al. (2009) An Mrr-family nuclease motif in the single polypeptide restriction–modification enzyme LlaGI], we propose that LlaGI is the prototype of a new sub-classification of Restriction-Modification enzymes, named Type I SP (for Single Polypeptide). PMID:19808936

  7. Oxidative cleavage of DNA by pentamethine carbocyanine dyes irradiated with long-wavelength visible light.

    PubMed

    Mapp, Carla T; Owens, Eric A; Henary, Maged; Grant, Kathryn B

    2014-01-01

    Here we report the synthesis of seven symmetrical carbocyanine dyes in which two nitrogen-substituted benz[e]indolium rings are joined by a pentamethine bridge that is meso-substituted with chlorine or bromine versus hydrogen. The heteroatom of benz[e]indolium is modified with a phenylpropyl, methyl, or cationic quaternary ammonium group. In reactions containing micro molar concentrations of halogenated dye, irradiation at 575, 588, 623, or 700nm produces good photocleavage of plasmid DNA. UV-visible spectra show that the carbocyanines are in their H-aggregated and monomeric forms. Scavenger experiments point to the involvement of singlet oxygen and hydroxyl radicals in DNA photocleavage. PMID:24332091

  8. Flow Cytometric Assays for Interrogating LAGLIDADG Homing Endonuclease DNA-Binding and Cleavage Properties

    PubMed Central

    Baxter, Sarah K.; Lambert, Abigail R.; Scharenberg, Andrew M.; Jarjour, Jordan

    2014-01-01

    A fast, easy, and scalable method to assess the properties of site-specific nucleases is crucial to understanding their in cellulo behavior in genome engineering or population-level gene drive applications. Here we describe an analytical platform that enables high-throughput, semiquantitative interrogation of the DNA-binding and catalytic properties of LAGLIDADG homing endonucleases (LHEs). Using this platform, natural or engineered LHEs are expressed on the surface of Saccharomyces cerevisiae yeast where they can be rapidly evaluated against synthetic DNA target sequences using flow cytometry. PMID:23423888

  9. RNA cleavage and chain elongation by Escherichia coli DNA-dependent RNA polymerase in a binary enzyme.RNA complex.

    PubMed Central

    Altmann, C R; Solow-Cordero, D E; Chamberlin, M J

    1994-01-01

    In the absence of DNA, Escherichia coli RNA polymerase (EC 2.7.7.6) can bind RNA to form an equimolar binary complex with the concomitant release of the sigma factor. We show now that E. coli RNA polymerase binds at a region near the 3' terminus of the RNA and that an RNA in such RNA.RNA polymerase complexes undergoes reactions previously thought to be unique to nascent RNA in ternary complexes with DNA. These include GreA/GreB-dependent cleavage of the RNA and elongation by 3'-terminal addition of NMP from NTP. Both of these reactions are inhibited by rifampicin. Hence, by several criteria, the RNA in binary complexes is bound to the polymerase in a manner quite similar to that in ternary complexes. These findings can be explained by a model for the RNA polymerase ternary complex in which the RNA is bound at the 3' terminus through two protein binding sites located up to 10 nt apart. In this model, the stability of RNA binding to the polymerase in the ternary complex is due primarily to its interaction with the protein. Images PMID:7513426

  10. Mass spectrometric and theoretical studies on dissociation of the Ssbnd S bond in the allicin: Homolytic cleavage vs heterolytic cleavage

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang

    2012-08-01

    On the basis of the tandem mass spectrometry (ESI-MS/MS) technique and DFT calculations, an experimental and theoretical investigation has been conducted into the gas-phase dissociation of the S1sbnd S1' bond in the allicin as well as that of the Ssbnd C (S1sbnd C2, S1'sbnd C2') bond. Meanwhile, the influence of protonation, alkali metal ion and electron transfer on the dissociation of the S1sbnd S1' bond has been taken into account. ESI-MS/MS experiments and DFT calculations show that in the neutral allicin, [allicin + Li]+ and [allicin + Na]+, the S1sbnd S1' bond favors homolytic cleavage, while in the allicin radical cation and protonated allicin, the S1sbnd S1' bond prefers heterolytic cleavage. In addition, alkali metal ions can strengthen the S1sbnd S1' bond in the allicin, while protonation or the loss of an electron will weaken the S1sbnd S1' bond.

  11. Model studies of DNA photoreactivation

    NASA Astrophysics Data System (ADS)

    Scannell, Michael P.

    1997-12-01

    This research was undertaken with the goal of understanding DNA damage and repair, specifically damage caused by the ultraviolet (UV) component of sunlight. The main type of DNA damage by UV irradiation is dimerization of adjacent thymines. This occurs through a (2+2) cycloaddition resulting in a cyclobutyl linkage between the thymines. These mutagenic lesions are repaired by an enzyme called photolyase, which repairs the dimers through a complex photochemical reaction. The work presented here is divided into three main topics. The first topic (Chapter 3) describes the measurement of the enthalpy of cleavage of dimethylthymine dimer. The enthalpy for the cleavage reaction of cis-syn 1,3-dimethylthymine dimer (DMTD) was measured by photothermal beam deflection calorimetry (PBD), and fluorescence quenching. These results show that the enthalpy of cleavage of the cyclobutyl ring is -19 kcal/mol. For the second topic (Chapters 4 and 5), the interactions of various pyrimidines and their corresponding cis-syn cyclobutane dimers with a series of excited-state electron donors were examined with the goal of understanding the energetics and mechanism of the repair step. For each substrate there is a good correlation between the excited state oxidation potential (E ox/sp/*) and the quenching rate constant (k q). The value for k q increases as E ox/sp/* becomes more negative, asymptotically approaching a value that is at or below the solvent diffusion limit. The data from this study were fit to the Rehm-Weller model of electron transfer. Reduction potentials for each of the substrates could be extracted from this analysis: -2.20 V (vs. SCE) for DMTD; -2.14 V for DMT; -2.17 V for DMCD; and -2.16 for DMC. The reduction potential of trans-syn dimethylthymine was also measured. This dimer shows a remarkably low reduction potential when compared to the cis-syn dimer. This is attributed to unfavorable charge-charge dipole interactions in the cis-syn dimer not presence in the trans

  12. Copper.Lys-Gly-His-Lys mediated cleavage of tRNA(Phe): studies of reaction mechanism and cleavage specificity.

    PubMed

    Bradford, Seth; Kawarasaki, Yuta; Cowan, J A

    2009-06-01

    The reactivity of [Cu2+.Lys-Gly-His-Lys-NH2]2+ and [Cu2+.Lys-Gly-His-Lys]+ toward tRNA(Phe) has been evaluated. The amidated and carboxylate forms of the copper peptides display complex binding behavior with strong and weak sites evident (K(D1)(app) approximately 71 microM, K(D2)(app) approximately 211 microM for the amide form; and K(D1)(app) approximately 34 microM, K(D2)(app) approximately 240 microM for the carboxylate form), while Cu2+(aq) yielded K(D1)(app) approximately 81 microM and K(D2)(app) approximately 136 microM. The time-dependence of the reaction of [Cu2+.Lys-Gly-His-Lys]+ and [Cu2+.Lys-Gly-His-Lys-NH2]2+ with tRNA(Phe) yielded k(obs) approximately 0.075 h(-1) for both complexes. HPLC analysis of the reaction products demonstrated guanine as the sole base product. Mass spectrometric data shows a limited number of cleavage fragments with product peak masses consistent with chemistry occurring at a discrete site defined by the structurally contiguous D and TPsiC loops, and in a domain where high affinity magnesium centers have previously been observed to promote hydrolysis of the tRNA(Phe) backbone. This cleavage pattern is more selective than that previously observed by Long and coworkers for nickel complexes of a series of C-terminally amidated peptides (Gly-Gly-His, Lys-Gly-His, and Arg-Gly-His), and may reflect variations in structural recognition and a distinct reaction path by the nickel derivatives. The data emphasizes the optimal positioning of the metal-associated reactive oxygen species, relative to scissile bonds, as a major criterion for development of efficient catalytic nucleases or therapeutics. PMID:19386364

  13. The dual topoisomerase inhibitor A35 preferentially and specially targets topoisomerase 2α by enhancing pre-strand and post-strand cleavage and inhibiting DNA religation

    PubMed Central

    Bi, Chongwen; Li, Yangbiao; Liu, Jingbo; Ye, Cheng; He, Hongwei; Li, Liang

    2015-01-01

    DNA topoisomerases play a key role in tumor proliferation. Chemotherapeutics targeting topoisomerases have been widely used in clinical oncology, but resistance and side effects, particularly cardiotoxicity, usually limit their application. Clinical data show that a decrease in topoisomerase (top) levels is the primary factor responsible for resistance, but in cells there is compensatory effect between the levels of top1 and top2α. Here, we validated cyclizing-berberine A35, which is a dual top inhibitor and preferentially targets top2α. The impact on the top2α catalytic cycle indicated that A35 could intercalate into DNA but did not interfere with DNA-top binding and top2α ATPase activity. A35 could facilitate DNA-top2α cleavage complex formation by enhancing pre-strand and post-strand cleavage and inhibiting religation, suggesting this compound can be a topoisomerase poison and had a district mechanism from other topoisomerase inhibitors. TARDIS and comet assays showed that A35 could induce cell DNA breakage and DNA-top complexes but had no effect on the cardiac toxicity inducer top2β. Silencing top1 augmented DNA break and silencing top2α decreased DNA break. Further validation in H9c2 cardiac cells showed A35 did not disturb cell proliferation and mitochondrial membrane potency. Additionally, an assay with nude mice further demonstrated A35 did not damage the heart. Our work identifies A35 as a novel skeleton compound dually inhibits topoisomerases, and predominantly and specially targets top2α by interfering with all cleavage steps and its no cardiac toxicity was verified by cardiac cells and mice heart. A35 could be a novel and effective targeting topoisomerase agent. PMID:26462155

  14. Photo-Fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage.

    PubMed

    Zhou, Xuejiao; Zhang, Yan; Wang, Chong; Wu, Xiaochen; Yang, Yongqiang; Zheng, Bin; Wu, Haixia; Guo, Shouwu; Zhang, Jingyan

    2012-08-28

    Graphene quantum dots (GQDs) are great promising in various applications owing to the quantum confinement and edge effects in addition to their intrinsic properties of graphene, but the preparation of the GQDs in bulk scale is challenging. We demonstrated in this work that the micrometer sized graphene oxide (GO) sheets could react with Fenton reagent (Fe(2+)/Fe(3+)/H(2)O(2)) efficiently under an UV irradiation, and, as a result, the GQDs with periphery carboxylic groups could be generated with mass scale production. Through a variety of techniques including atomic force microscopy, X-ray photoelectron spectroscopy, gas chromatography, ultraperformance liquid chromatography-mass spectrometry, and total organic carbon measurement, the mechanism of the photo-Fenton reaction of GO was elucidated. The photo-Fenton reaction of GO was initiated at the carbon atoms connected with the oxygen containing groups, and C-C bonds were broken subsequently, therefore, the reaction rate depends strongly on the oxidization extent of the GO. Given the simple and efficient nature of the photo-Fenton reaction of GO, this method should provide a new strategy to prepare GQDs in mass scale. As a proof-of-concept experiment, the novel DNA cleavage system using as-generated GQDs was constructed. PMID:22813062

  15. Studying DNA in the Classroom.

    ERIC Educational Resources Information Center

    Zarins, Silja

    1993-01-01

    Outlines a workshop for teachers that illustrates a method of extracting DNA and provides instructions on how to do some simple work with DNA without sophisticated and expensive equipment. Provides details on viscosity studies and breaking DNA molecules. (DDR)

  16. 2-Chlorotrityl chloride resin. Studies on anchoring of Fmoc-amino acids and peptide cleavage.

    PubMed

    Barlos, K; Chatzi, O; Gatos, D; Stavropoulos, G

    1991-06-01

    The esterification of 2-chlorotrityl chloride resin with Fmoc-amino acids in the presence of DIEA is studied under various conditions. High esterification yields are obtained using 0.6 equiv. Fmoc-amino acid/mmol resin in DCM or DCE, in 25 min, at room temperature. The reaction proceeds without by product formation even in the case of Fmoc-Asn and Fmoc-Gln. The quantitative and easy cleavage of amino acids and peptides from 2-chlorotrityl resin, by using AcOH/TFE/DCM mixtures, is accomplished within 15-60 min at room temperature, while t-butyl type protecting groups remain unaffected. Under these exceptionally mild conditions 2-chlorotrityl cations generated during the cleavage of amino acids and peptides from resin do not attack the nucleophilic side chains of Trp, Met, and Tyr. PMID:1917309

  17. Translation termination factor eRF3 is targeted for caspase-mediated proteolytic cleavage and degradation during DNA damage-induced apoptosis.

    PubMed

    Hashimoto, Yoshifumi; Hosoda, Nao; Datta, Pinaki; Alnemri, Emad S; Hoshino, Shin-ichi

    2012-12-01

    Polypeptide chain release factor eRF3 plays pivotal roles in translation termination and post-termination events including ribosome recycling and mRNA decay. It is not clear, however, if eRF3 is targeted for the regulation of gene expression. Here we show that DNA-damaging agents (UV and etoposide) induce the immediate cleavage and degradation of eRF3 in a caspase-dependent manner. The effect is selective since the binding partners of eRF3, eRF1 and PABP, and an unrelated control, GAPDH, were not affected. Point mutations of aspartate residues within overlapping DXXD motifs near the amino terminus of eRF3 prevented the appearance of the UV-induced cleavage product, identifying D32 as the major cleavage site. The cleavage and degradation occurred in a similar time-dependent manner to those of eIF4G, a previously established caspase-3 target involved in the inhibition of translation during apoptosis. siRNA-mediated knockdown of eRF3 led to inhibition of cellular protein synthesis, supporting the idea that the decrease in the amount of eRF3 caused by the caspase-mediated degradation contributes to the inhibition of translation during apoptosis. This is the first report showing that eRF3 could serve as a target in the regulation of gene expression. PMID:23054082

  18. Synthesis, spectroscopic characterisation, DNA cleavage, superoxidase dismutase activity and antibacterial properties of some transition metal complexes of a novel bidentate Schiff base derived from isatin and 2-aminopyrimidine.

    PubMed

    Nitha, L P; Aswathy, R; Mathews, Niecy Elsa; Kumari, B Sindhu; Mohanan, K

    2014-01-24

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with a Schiff base, formed by the condensation of isatin with 2-aminopyrimidine have been synthesised and characterised through elemental analysis, molar conductance measurements, magnetic susceptibility, IR, UV-Vis, (1)HNMR, FAB mass and EPR spectral studies. The spectral data revealed that the ligand acts as neutral bidentate, coordinating to the metal ion through the carbonyl oxygen and azomethine nitrogen. Molar conductance values adequately support the electrolytic nature of the complexes. On the basis of the above observations the complexes have been formulated as [M(ISAP)2]X2, where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X=Cl, OAc; ISAP=2-[N-indole-2-one]aminopyrimidine. The ligand and copper(II) complex were subjected to X-ray diffraction studies. The DNA cleavage study was monitored by gel electrophoresis method. The superoxide dismutase (SOD) mimetic activities of the ligand and the metal complexes were checked using NBT assay. The in vitro antibacterial activity of the synthesized compounds has been tested against gram negative and gram positive bacteria. PMID:24051284

  19. Synthesis, spectroscopic characterisation, DNA cleavage, superoxidase dismutase activity and antibacterial properties of some transition metal complexes of a novel bidentate Schiff base derived from isatin and 2-aminopyrimidine

    NASA Astrophysics Data System (ADS)

    Nitha, L. P.; Aswathy, R.; Mathews, Niecy Elsa; Sindhu kumari, B.; Mohanan, K.

    2014-01-01

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with a Schiff base, formed by the condensation of isatin with 2-aminopyrimidine have been synthesised and characterised through elemental analysis, molar conductance measurements, magnetic susceptibility, IR, UV-Vis, 1HNMR, FAB mass and EPR spectral studies. The spectral data revealed that the ligand acts as neutral bidentate, coordinating to the metal ion through the carbonyl oxygen and azomethine nitrogen. Molar conductance values adequately support the electrolytic nature of the complexes. On the basis of the above observations the complexes have been formulated as [M(ISAP)2]X2, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl, OAc; ISAP = 2-[N-indole-2-one]aminopyrimidine. The ligand and copper(II) complex were subjected to X-ray diffraction studies. The DNA cleavage study was monitored by gel electrophoresis method. The superoxide dismutase (SOD) mimetic activities of the ligand and the metal complexes were checked using NBT assay. The in vitro antibacterial activity of the synthesized compounds has been tested against gram negative and gram positive bacteria.

  20. Protospacer Adjacent Motif (PAM)-Distal Sequences Engage CRISPR Cas9 DNA Target Cleavage

    PubMed Central

    Ethier, Sylvain; Schmeing, T. Martin; Dostie, Josée; Pelletier, Jerry

    2014-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)-associated enzyme Cas9 is an RNA-guided nuclease that has been widely adapted for genome editing in eukaryotic cells. However, the in vivo target specificity of Cas9 is poorly understood and most studies rely on in silico predictions to define the potential off-target editing spectrum. Using chromatin immunoprecipitation followed by sequencing (ChIP-seq), we delineate the genome-wide binding panorama of catalytically inactive Cas9 directed by two different single guide (sg) RNAs targeting the Trp53 locus. Cas9:sgRNA complexes are able to load onto multiple sites with short seed regions adjacent to 5′NGG3′ protospacer adjacent motifs (PAM). Yet among 43 ChIP-seq sites harboring seed regions analyzed for mutational status, we find editing only at the intended on-target locus and one off-target site. In vitro analysis of target site recognition revealed that interactions between the 5′ end of the guide and PAM-distal target sequences are necessary to efficiently engage Cas9 nucleolytic activity, providing an explanation for why off-target editing is significantly lower than expected from ChIP-seq data. PMID:25275497

  1. Site specific cleavage of thetaX-174 replicative form DNA after modification by N-acetoxy-N-2-acetylaminofluorene

    SciTech Connect

    Bases, R.; Mendez, F.; Mendez, L.

    1983-01-01

    Three kinds of structural disturbances were found in an 88 base pair (bp) fragment of thetaX-174 DNA after exposure to N-acetoxy-N-2-acetylaminofluorene (N-Aco-AAF). Frequent strand scissions at two specific guanine sites on the 5' /sup 32/P-end-labeled fragment were identified by base sequence analysis. Scissions at these two sites were induced at neutral pH and they were not increased by treatment with apurinic endonuclease. They are an immediate consequence of N-Aco-AAF action and are not primarily apurinic sites. Alkali treatment with 1 M piperidine at 90/sup 0/C induced strand scissions at every guanine, demonstrating adduct slices, depurination and strand scissions. Adducted DNA was sensitive to single-strand specific nuclease digestion, suggesting unwound DNA. These studies indicate the prediliction of N-Aco-AAF for certain DNA sites and they suggest three kinds of DNA modifications which can be expected after adduction by this carcinogen. Some of the sites may be premutational carcinogen-induced DNA structural modifications.

  2. The Ser176 of T4 endonuclease IV is crucial for the restricted and polarized dC-specific cleavage of single-stranded DNA implicated in restriction of dC-containing DNA in host Escherichia coli

    PubMed Central

    Hirano, Nobutaka; Ohshima, Hiroyuki; Sakashita, Hidenori; Takahashi, Hideo

    2007-01-01

    Endonuclease (Endo) IV encoded by denB of bacteriophage T4 is an enzyme that cleaves single-stranded (ss) DNA in a dC-specific manner. Also the growth of dC-substituted T4 phage and host Escherichia coli cells is inhibited by denB expression presumably because of the inhibitory effect on replication of dC-containing DNA. Recently, we have demonstrated that an efficient cleavage by Endo IV occurs exclusively at the 5′-proximal dC (dC1) within a hexameric or an extended sequence consisting of dC residues at the 5′-proximal and the 3′-proximal positions (dCs tract), in which a third dC residue within the tract affects the polarized cleavage and cleavage rate. Here we isolate and characterize two denB mutants, denB(W88R) and denB(S176N). Both mutant alleles have lost the detrimental effect on the host cell. Endo IV(W88R) shows no enzymatic activity (<0.4% of that of wild-type Endo IV). On the other hand, Endo IV(S176N) retains cleavage activity (17.5% of that of wild-type Endo IV), but has lost the polarized and restricted cleavage of a dCs tract, indicating that the Ser176 residue of Endo IV is implicated in the polarized cleavage of a dCs tract which brings about a detrimental effect on the replication of dC-containing DNA. PMID:17913749

  3. DNA cleavage by CgII and NgoAVII requires interaction between N- and R-proteins and extensive nucleotide hydrolysis.

    PubMed

    Zaremba, Mindaugas; Toliusis, Paulius; Grigaitis, Rokas; Manakova, Elena; Silanskas, Arunas; Tamulaitiene, Giedre; Szczelkun, Mark D; Siksnys, Virginijus

    2014-12-16

    The stress-sensitive restriction-modification (RM) system CglI from Corynebacterium glutamicum and the homologous NgoAVII RM system from Neisseria gonorrhoeae FA1090 are composed of three genes: a DNA methyltransferase (M.CglI and M.NgoAVII), a putative restriction endonuclease (R.CglI and R.NgoAVII, or R-proteins) and a predicted DEAD-family helicase/ATPase (N.CglI and N.NgoAVII or N-proteins). Here we report a biochemical characterization of the R- and N-proteins. Size-exclusion chromatography and SAXS experiments reveal that the isolated R.CglI, R.NgoAVII and N.CglI proteins form homodimers, while N.NgoAVII is a monomer in solution. Moreover, the R.CglI and N.CglI proteins assemble in a complex with R2N2 stoichiometry. Next, we show that N-proteins have ATPase activity that is dependent on double-stranded DNA and is stimulated by the R-proteins. Functional ATPase activity and extensive ATP hydrolysis (∼170 ATP/s/monomer) are required for site-specific DNA cleavage by R-proteins. We show that ATP-dependent DNA cleavage by R-proteins occurs at fixed positions (6-7 nucleotides) downstream of the asymmetric recognition sequence 5'-GCCGC-3'. Despite similarities to both Type I and II restriction endonucleases, the CglI and NgoAVII enzymes may employ a unique catalytic mechanism for DNA cleavage. PMID:25429977

  4. Molecular basis of the targeting of topoisomerase II-mediated DNA cleavage by VP16 derivatives conjugated to triplex-forming oligonucleotides.

    PubMed

    Duca, Maria; Guianvarc'h, Dominique; Oussedik, Kahina; Halby, Ludovic; Garbesi, Anna; Dauzonne, Daniel; Monneret, Claude; Osheroff, Neil; Giovannangeli, Carine; Arimondo, Paola B

    2006-01-01

    Human topoisomerase II (topo II) is the cellular target for a number of widely used antitumor agents, such as etoposide (VP16). These agents 'poison' the enzyme and induce it to generate DNA breaks that are lethal to the cell. Topo II-targeted drugs show a limited sequence preference, triggering double-stranded breaks throughout the genome. Circumstantial evidence strongly suggests that some of these breaks induce chromosomal translocations that lead to specific types of leukaemia (called treatment-related or secondary leukaemia). Therefore, efforts are ongoing to decrease these secondary effects. An interesting option is to increase the sequence-specificity of topo II-targeted drugs by attaching them to triplex-forming oligonucleotides (TFO) that bind to DNA in a highly sequence-specific manner. Here five derivatives of VP16 were attached to TFOs. The active topo II poisons, once linked, induced cleavage 13-14 bp from the triplex end where the drug was attached. The use of triple-helical DNA structures offers an efficient strategy for targeting topo II-mediated cleavage to DNA specific sequences. Finally, drug-TFO conjugates are useful tools to investigate the mechanistic details of topo II poisoning. PMID:16598074

  5. Molecular basis of the targeting of topoisomerase II-mediated DNA cleavage by VP16 derivatives conjugated to triplex-forming oligonucleotides

    PubMed Central

    Duca, Maria; Guianvarc'h, Dominique; Oussedik, Kahina; Halby, Ludovic; Garbesi, Anna; Dauzonne, Daniel; Monneret, Claude; Osheroff, Neil; Giovannangeli, Carine; Arimondo, Paola B.

    2006-01-01

    Human topoisomerase II (topo II) is the cellular target for a number of widely used antitumor agents, such as etoposide (VP16). These agents ‘poison’ the enzyme and induce it to generate DNA breaks that are lethal to the cell. Topo II-targeted drugs show a limited sequence preference, triggering double-stranded breaks throughout the genome. Circumstantial evidence strongly suggests that some of these breaks induce chromosomal translocations that lead to specific types of leukaemia (called treatment-related or secondary leukaemia). Therefore, efforts are ongoing to decrease these secondary effects. An interesting option is to increase the sequence-specificity of topo II-targeted drugs by attaching them to triplex-forming oligonucleotides (TFO) that bind to DNA in a highly sequence-specific manner. Here five derivatives of VP16 were attached to TFOs. The active topo II poisons, once linked, induced cleavage 13–14 bp from the triplex end where the drug was attached. The use of triple-helical DNA structures offers an efficient strategy for targeting topo II-mediated cleavage to DNA specific sequences. Finally, drug–TFO conjugates are useful tools to investigate the mechanistic details of topo II poisoning. PMID:16598074

  6. Crystallization and preliminary X-ray diffraction analysis of two N-terminal fragments of the DNA-cleavage domain of topoisomerase IV from Staphylococcus aureus

    SciTech Connect

    Carr, Stephen B.; Makris, George; Phillips, Simon E. V.; Thomas, Christopher D.

    2006-11-01

    The crystallization and data collection of topoisomerase IV from S. aureus is described. Phasing by molecular replacement proved difficult owing to the presence of translational NCS and strategies used to overcome this are discussed. DNA topoisomerase IV removes undesirable topological features from DNA molecules in order to help maintain chromosome stability. Two constructs of 56 and 59 kDa spanning the DNA-cleavage domain of the A subunit of topoisomerase IV from Staphylococcus aureus (termed GrlA56 and GrlA59) have been crystallized. Crystals were grown at 291 K using the sitting-drop vapour-diffusion technique with PEG 3350 as a precipitant. Preliminary X-ray analysis revealed that GrlA56 crystals belong to space group P2{sub 1}, diffract to a resolution of 2.9 Å and possess unit-cell parameters a = 83.6, b = 171.5, c = 87.8 Å, β = 90.1°, while crystals of GrlA59 belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 41.5, b = 171.89, c = 87.9 Å. These crystals diffract to a resolution of 2.8 Å. This is the first report of the crystallization and preliminary X-ray analysis of the DNA-cleavage domain of a topoisomerase IV from a Gram-positive organism.

  7. Evaluation of DNA Binding, Cleavage, and Cytotoxic Activity of Cu(II), Co(II), and Ni(II) Schiff Base Complexes of 1-Phenylindoline-2,3-dione with Isonicotinohydrazide

    PubMed Central

    Gomathi, Ramadoss; Ramu, Andy; Murugan, Athiappan

    2014-01-01

    One new series of Cu(II), Co(II), and Ni(II) Schiff base complexes was prepared through the condensation reaction between 1-phenylindoline-2,3-dione with isonicotinohydrazide followed by metalation, respectively. The Schiff base ligand(L), (E)-N′-(2-oxo-1-phenylindolin-3-lidene)isonicotinohydrazide, and its complexes were found soluble in DMF and DMSO solvents and characterized by using the modern analytical and spectral techniques such as elemental analysis, conductivity, magnetic moments, IR, NMR, UV-visible, Mass, CV, and EPR. The elemental analysis data of ligand and their complexes were well agreed with their calculated values in which metal and ligand stoichiometry ratio 1 : 2 was noted. Molar conductance values indicated that all the complexes were found to be nonelectrolytes. All the complexes showed octahedral geometry around the central metal ions. Herein, we better characterized DNA binding with the complexes by UV-visible and CD spectroscopy and cyclic voltammetry techniques. The DNA cleavage experiments were carried out by Agarose gel electrophoresis method and the cytotoxicity experiments by MTT assay method. Based on the DNA binding, cleavage, and cytotoxicity studies, Cu and Ni complexes were found to be good anticancer agents against AGS-human gastric cancer cell line. PMID:24744691

  8. Synthesis, DNA binding and cleavage activities of copper (II) thiocyanate complex with 4-( N, N-dimethylamino)pyridine and N, N-dimethylformamide

    NASA Astrophysics Data System (ADS)

    Chen, Feng-juan; Xu, Min; Xi, Pin-xian; Liu, Hong-yang; Zeng, Zheng-zhi

    2011-10-01

    Two novel copper(II) thiocyanate complexes with 4-( N, N-dimethylamino) pyridine and N, N-dimethylformamide( 1) and with4-( N, N-dimethylamino) pyridine ( 2) have been synthesized and characterized. The crystal and molecular structures of complexes 1 and 2 were determined by single-crystal X-ray diffraction. Antioxidative activity tests in vitro showed that complex 1 has significant antioxidative activity against hydroxyl free radicals from the Fenton reaction and also oxygen free radicals, which is better than standard antioxidants like vitamin C and mannitol. The interaction of complex 1 with calf thymus DNA was investigated by spectroscopic, cyclic voltammetry, and viscosity measurements. Results suggest that complex 1 can bind to DNA via partial intercalation mode. Moreover, complex 1 has been found to cleavage of plasmid DNA pBR322.

  9. Synthesis, DNA binding and cleavage activities of copper (II) thiocyanate complex with 4-(N,N-dimethylamino)pyridine and N,N-dimethylformamide.

    PubMed

    Chen, Feng-juan; Xu, Min; Xi, Pin-xian; Liu, Hong-yang; Zeng, Zheng-zhi

    2011-10-15

    Two novel copper(II) thiocyanate complexes with 4-(N,N-dimethylamino) pyridine and N,N-dimethylformamide (1) and with 4-(N,N-dimethylamino) pyridine (2) have been synthesized and characterized. The crystal and molecular structures of complexes 1 and 2 were determined by single-crystal X-ray diffraction. Antioxidative activity tests in vitro showed that complex 1 has significant antioxidative activity against hydroxyl free radicals from the Fenton reaction and also oxygen free radicals, which is better than standard antioxidants like vitamin C and mannitol. The interaction of complex 1 with calf thymus DNA was investigated by spectroscopic, cyclic voltammetry, and viscosity measurements. Results suggest that complex 1 can bind to DNA via partial intercalation mode. Moreover, complex 1 has been found to cleavage of plasmid DNA pBR322. PMID:21723777

  10. Modeling study on the cleavage step of the self-splicing reaction in group I introns

    NASA Technical Reports Server (NTRS)

    Setlik, R. F.; Garduno-Juarez, R.; Manchester, J. I.; Shibata, M.; Ornstein, R. L.; Rein, R.

    1993-01-01

    A three-dimensional model of the Tetrahymena thermophila group I intron is used to further explore the catalytic mechanism of the transphosphorylation reaction of the cleavage step. Based on the coordinates of the catalytic core model proposed by Michel and Westhof (Michel, F., Westhof, E. J. Mol. Biol. 216, 585-610 (1990)), we first converted their ligation step model into a model of the cleavage step by the substitution of several bases and the removal of helix P9. Next, an attempt to place a trigonal bipyramidal transition state model in the active site revealed that this modified model for the cleavage step could not accommodate the transition state due to insufficient space. A lowering of P1 helix relative to surrounding helices provided the additional space required. Simultaneously, it provided a better starting geometry to model the molecular contacts proposed by Pyle et al. (Pyle, A. M., Murphy, F. L., Cech, T. R. Nature 358, 123-128. (1992)), based on mutational studies involving the J8/7 segment. Two hydrated Mg2+ complexes were placed in the active site of the ribozyme model, using the crystal structure of the functionally similar Klenow fragment (Beese, L.S., Steitz, T.A. EMBO J. 10, 25-33 (1991)) as a guide. The presence of two metal ions in the active site of the intron differs from previous models, which incorporate one metal ion in the catalytic site to fulfill the postulated roles of Mg2+ in catalysis. The reaction profile is simulated based on a trigonal bipyramidal transition state, and the role of the hydrated Mg2+ complexes in catalysis is further explored using molecular orbital calculations.

  11. Highly sensitive fluorescence assay of DNA methyltransferase activity via methylation-sensitive cleavage coupled with nicking enzyme-assisted signal amplification.

    PubMed

    Zhao, Yongxi; Chen, Feng; Wu, Yayan; Dong, Yanhua; Fan, Chunhai

    2013-04-15

    Herein, using DNA adenine methylation (Dam) methyltransferase (MTase) as a model analyte, a simple, rapid, and highly sensitive fluorescence sensing platform for monitoring the activity and inhibition of DNA MTase was developed on the basis of methylation-sensitive cleavage and nicking enzyme-assisted signal amplification. In the presence of Dam MTase, an elaborately designed hairpin probe was methylated. With the help of methylation-sensitive restriction endonuclease DpnI, the methylated hairpin probe could be cleaved to release a single-stranded DNA (ssDNA). Subsequently, this released ssDNA would hybridize with the molecular beacon (MB) to open its hairpin structure, resulting in the restoration of fluorescence signal as well as formation of the double-stranded recognition site for nicking enzyme Nt.BbvCI. Eventually, an amplified fluorescence signal was observed through the enzymatic recycling cleavage of MBs. Based on this unique strategy, a very low detection limit down to 0.06 U/mL was achieved within a short assay time (60 min) in one step, which is superior to those of most existing approaches. Owing to the specific site recognition of MTase toward its substrate, the proposed sensing system was able to readily discriminate Dam MTase from other MTase such as M.SssI and even detect the target in complex biological matrix. Furthermore, the application of the proposed sensing strategy for screening Dam MTase inhibitors was also demonstrated with satisfactory results. This novel method not only provides a promising platform for monitoring activity and inhibition of DNA MTases, but also shows great potentials in biological process researches, drugs discovery and clinical diagnostics. PMID:23202331

  12. Atomic Force Microscopy Studies on DNA Structural Changes Induced by Vincristine Sulfate and Aspirin

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Zeng, Hu; Xie, Jianming; Ba, Long; Gao, Xiang; Lu, Zuhong

    2004-04-01

    We report that atomic force microscopy (AFM) studies on structural variations of a linear plasmid DNA interact with various concentrations of vincristine sulfate and aspirin. The different binding images show that vincrinstine sulfate binding DNA chains caused some loops and cleavages of the DNA fragments, whereas aspirin interaction caused the width changes and conformational transition of the DNA fragments. Two different DNA structural alternations could be explained by the different mechanisms of the interactions with these two components. Our work indicates that the AFM is a powerful tool in studying the interaction between DNA and small molecules.

  13. Bacteriophage GIL01 gp7 interacts with host LexA repressor to enhance DNA binding and inhibit RecA-mediated auto-cleavage

    PubMed Central

    Fornelos, Nadine; Butala, Matej; Hodnik, Vesna; Anderluh, Gregor; Bamford, Jaana K.; Salas, Margarita

    2015-01-01

    The SOS response in Eubacteria is a global response to DNA damage and its activation is increasingly associated with the movement of mobile genetic elements. The temperate phage GIL01 is induced into lytic growth using the host's SOS response to genomic stress. LexA, the SOS transcription factor, represses bacteriophage transcription by binding to a set of SOS boxes in the lysogenic promoter P1. However, LexA is unable to efficiently repress GIL01 transcription unless the small phage-encoded protein gp7 is also present. We found that gp7 forms a stable complex with LexA that enhances LexA binding to phage and cellular SOS sites and interferes with RecA-mediated auto-cleavage of LexA, the key step in the initiation of the SOS response. Gp7 did not bind DNA, alone or when complexed with LexA. Our findings suggest that gp7 induces a LexA conformation that favors DNA binding but disfavors LexA auto-cleavage, thereby altering the dynamics of the cellular SOS response. This is the first account of an accessory factor interacting with LexA to regulate transcription. PMID:26138485

  14. Bacteriophage GIL01 gp7 interacts with host LexA repressor to enhance DNA binding and inhibit RecA-mediated auto-cleavage.

    PubMed

    Fornelos, Nadine; Butala, Matej; Hodnik, Vesna; Anderluh, Gregor; Bamford, Jaana K; Salas, Margarita

    2015-09-01

    The SOS response in Eubacteria is a global response to DNA damage and its activation is increasingly associated with the movement of mobile genetic elements. The temperate phage GIL01 is induced into lytic growth using the host's SOS response to genomic stress. LexA, the SOS transcription factor, represses bacteriophage transcription by binding to a set of SOS boxes in the lysogenic promoter P1. However, LexA is unable to efficiently repress GIL01 transcription unless the small phage-encoded protein gp7 is also present. We found that gp7 forms a stable complex with LexA that enhances LexA binding to phage and cellular SOS sites and interferes with RecA-mediated auto-cleavage of LexA, the key step in the initiation of the SOS response. Gp7 did not bind DNA, alone or when complexed with LexA. Our findings suggest that gp7 induces a LexA conformation that favors DNA binding but disfavors LexA auto-cleavage, thereby altering the dynamics of the cellular SOS response. This is the first account of an accessory factor interacting with LexA to regulate transcription. PMID:26138485

  15. Analysis of the recognition mechanism involved in the EcoRV catalyzed cleavage of DNA using modified oligodeoxynucleotides.

    PubMed Central

    Fliess, A; Wolfes, H; Seela, F; Pingoud, A

    1988-01-01

    We have prepared a series of undecadeoxynucleotides that contain changes in the functional group pattern present within the EcoRV recognition site - GATATC-. Oligonucleotides were synthesized on solid phase using normal and modified beta-cyanoethylphosphoramidites and analyzed in steady state cleavage experiments with the EcoRV restriction endonuclease. The following groups appear to interact strongly with the enzyme, since their modification or substitution renders the oligonucleotides refractory to cleavage: the exocyclic NH2-groups of both A residues, the N7 of the first A residue, the exocyclic NH2-group of the C residue and the CH3-groups of both T residues. The exocyclic NH-group of the G residue supports effective recognition, since its absence lowers the kcat of the cleavage reaction. The N7 of the second A residue and the C5 position of the C residue apparently are not recognized by EcoRV; their substitution by -CH- or modification with -Br or -CH3, resp., does not considerably change the rate of cleavage. All oligonucleotides investigated compete with the unmodified substrate for binding to the enzyme. We conclude that EcoRV recognizes its substrate presumably through hydrogen bonds to the exocyclic NH2-group and the N7 of the first A residue, the exocyclic NH2-groups of the second A and the C residue, as well as through hydrophobic interactions with both T residues. PMID:3062581

  16. Theoretical study of the mechanism of the rearrangement-cleavage reactions of allylenammonium salts

    SciTech Connect

    Kletskii, M.E.; Minkin, V.I.; Babayan, A.T.

    1988-03-10

    In a theoretical study of the mechanism of the rearrangement-cleavage of tetra-substituted ammonium salts containing 1,2- and 3,4-unsaturated groups using the CNDO/2 and MINDO/3 semiempirical methods, calculations were carried out to determine the electron density in trimethylvinylammonium, trimethylethynylammonium, and phosphonium cations and the minimal energy pathways for the 3,3-sigmatropic shift reactions in the vinylallylammonium cation and of the product of the /alpha/-addition of a hydride ion to it (nucleophilic catalysis model). According to the calculation data, the nucleophilic attack of enammonium compounds in basic media is directed toward the /alpha/-position of the 1,2-unsaturated group. The driving force for the rearrangement-cleavage is the attack of the /alpha/-position by the nucleophile which results in intramolecular C-alkylation by a concerted 3,3-sigmatropic shift mechanism. The calculated activation barrier of the catalyzed reaction (15.8 kcal/mole) is 7.4 kcal/mole lower than in the absence of nucleophilic action.

  17. N-H bond cleavage of ammonia on graphene-like B36 borophene: DFT studies.

    PubMed

    Rostami, Zahra; Soleymanabadi, Hamed

    2016-04-01

    Ammonia N-H bond cleavage at metal-free substrates has attracted great attention because of its industrial importance. Here, we investigate the dissociative adsorption of ammonia onto the surface of a B36 borophene sheet by means of density functional theory calculations. We show that the N-H bond may be broken at the edges of B36 even at room temperature, regarding the small energy barrier of 14.1-19.3 kcal mol(-1) at different levels of theory, and more negative Gibbs free energy change. Unlike basis set size, the kind of exchange correlation functional significantly affects the electronic properties of the studied systems. Also, by increasing the percentage of Hartree Fock (HF) exchange of density functionals, the activation and adsorption energies are lowered. A linear relationship between the highest occupied molecular orbital or lowest unoccupied molecular orbital of B36 borophene and the %HF exchange of functionals is predicted. Our work reveals that pure whole boron nanosheets may be promising metal-free materials in N-H bond cleavage, which would raise the potential application of these sheets. PMID:26969676

  18. Mononuclear dioxomolybdenum(VI) thiosemicarbazonato complexes: Synthesis, characterization, structural illustration, in vitro DNA binding, cleavage, and antitumor properties.

    PubMed

    Hussein, Mouayed A; Guan, Teoh S; Haque, Rosenani A; Khadeer Ahamed, Mohamed B; Abdul Majid, Amin M S

    2015-02-01

    Four dioxomolybdenum(VI) complexes were synthesized by reacting [MoO2(acac)2] with N-ethyl-2-(5-bromo-2-hydroxybenzylidene) hydrazinecarbothioamide (1), N-ethyl-2-(5-allyl-3-methoxy-2-hydroxybenzylidene) hydrazinecarbothioamide (2), N-methyl-2-(3-tert-butyl-2-hydroxybenzylidene) hydrazinecarbothioamide (3), and N-ethyl-2-(3-methyl-2-hydroxybenzylidene) hydrazinecarbothioamide (4). The molecular structures of 1, 2, and all the synthesized complexes were determined using single crystal X-ray crystallography. The binding properties of the ligand and complexes with calf thymus DNA (CT-DNA) were investigated via UV, fluorescence titrations, and viscosity measurement. Gel electrophoresis revealed that all the complexes cleave pBR 322 plasmid DNA. The cytotoxicity of the complexes were studied against the HCT 116 human colorectal cell line. All the complexes exhibited more pronounced activity than the standard reference drug 5-fluorouracil (IC50 7.3μM). These studies show that dioxomolybdenum(VI) complexes could be potentially useful in chemotherapy. PMID:25456676

  19. Mononuclear dioxomolybdenum(VI) thiosemicarbazonato complexes: Synthesis, characterization, structural illustration, in vitro DNA binding, cleavage, and antitumor properties

    NASA Astrophysics Data System (ADS)

    Hussein, Mouayed A.; Guan, Teoh S.; Haque, Rosenani A.; Khadeer Ahamed, Mohamed B.; Abdul Majid, Amin M. S.

    2015-02-01

    Four dioxomolybdenum(VI) complexes were synthesized by reacting [MoO2(acac)2] with N-ethyl-2-(5-bromo-2-hydroxybenzylidene) hydrazinecarbothioamide (1), N-ethyl-2-(5-allyl-3-methoxy-2-hydroxybenzylidene) hydrazinecarbothioamide (2), N-methyl-2-(3-tert-butyl-2-hydroxybenzylidene) hydrazinecarbothioamide (3), and N-ethyl-2-(3-methyl-2-hydroxybenzylidene) hydrazinecarbothioamide (4). The molecular structures of 1, 2, and all the synthesized complexes were determined using single crystal X-ray crystallography. The binding properties of the ligand and complexes with calf thymus DNA (CT-DNA) were investigated via UV, fluorescence titrations, and viscosity measurement. Gel electrophoresis revealed that all the complexes cleave pBR 322 plasmid DNA. The cytotoxicity of the complexes were studied against the HCT 116 human colorectal cell line. All the complexes exhibited more pronounced activity than the standard reference drug 5-fluorouracil (IC50 7.3 μM). These studies show that dioxomolybdenum(VI) complexes could be potentially useful in chemotherapy.

  20. Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties.

    PubMed

    Duman, Fatih; Ocsoy, Ismail; Kup, Fatma Ozturk

    2016-03-01

    In this study, we report the synthesis of copper oxide nanoparticles (CuO NPs) using a medicinal plant (Matricaria chamomilla) flower extract as both reducing and capping agent and investigate their antioxidant activity and interaction with plasmid DNA (pBR322).The CuO NPs were characterized using Uv-Vis spectroscopy, FT-IR (Fourier transform infrared spectroscopy), DLS (dynamic light scattering), XRD (X-ray diffraction), EDX (energy-dispersive X-ray) spectroscopy and SEM (scanning electron microscopy). The CuO NPs exhibited nearly mono-distributed and spherical shapes with diameters of 140 nm size. UV-Vis absorption spectrum of CuO NPs gave a broad peak around 285 and 320 nm. The existence of functional groups on the surface of CuO NPs was characterized with FT-IR analysis. XRD pattern showed that the NPs are in the form of a face-centered cubic crystal. Zeta potential value was measured as -20 mV due to the presence of negatively charged functional groups in plant extract. Additionally, we demonstrated concentration-dependent antioxidant activity of CuO NPs and their interaction with plasmid DNA. We assumed that the CuO NPs both cleave and break DNA double helix structure. PMID:26706538

  1. Toward the design of a catalytic metallodrug: selective cleavage of G-quadruplex telomeric DNA by an anticancer copper-acridine-ATCUN complex.

    PubMed

    Yu, Zhen; Han, Menglu; Cowan, James A

    2015-02-01

    Telomeric DNA represents a novel target for the development of anticancer drugs. By application of a catalytic metallodrug strategy, a copper-acridine-ATCUN complex (CuGGHK-Acr) has been designed that targets G-quadruplex telomeric DNA. Both fluorescence solution assays and gel sequencing demonstrate the CuGGHK-Acr catalyst to selectively bind and cleave the G-quadruplex telomere sequence. The cleavage pathway has been mapped by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) experiments. CuGGHK-Acr promotes significant inhibition of cancer cell proliferation and shortening of telomere length. Both senescence and apoptosis are induced in the breast cancer cell line MCF7. PMID:25504651

  2. Toward the Design of a Catalytic Metallodrug: Selective Cleavage of G-Quadruplex Telomeric DNA by an Anticancer Copper–Acridine–ATCUN Complex**

    PubMed Central

    Yu, Zhen; Han, Menglu

    2015-01-01

    Telomeric DNA represents a novel target for the development of anticancer drugs. By application of a catalytic metallodrug strategy, a copper–acridine–ATCUN complex (CuGGHK-Acr) has been designed that targets G-quadruplex telomeric DNA. Both fluorescence solution assays and gel sequencing demonstrate the CuGGHK-Acr catalyst to selectively bind and cleave the G-quadruplex telomere sequence. The cleavage pathway has been mapped by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) experiments. CuGGHK-Acr promotes significant inhibition of cancer cell proliferation and shortening of telomere length. Both senescence and apoptosis are induced in the breast cancer cell line MCF7. PMID:25504651

  3. New unsymmetric dinuclear Cu(II)Cu(II) complexes and their relevance to copper(II) containing metalloenzymes and DNA cleavage.

    PubMed

    Peralta, Rosely A; Neves, Ademir; Bortoluzzi, Adailton J; Dos Anjos, Ademir; Xavier, Fernando R; Szpoganicz, Bruno; Terenzi, Hernán; de Oliveira, Mauricio C B; Castellano, Eduardo; Friedermann, Geraldo R; Mangrich, Antonio S; Novak, Miguel A

    2006-05-01

    . Since these complexes are redox active species, we analyzed their activity toward the nucleic acid DNA, a macromolecule prone to oxidative damage. Interestingly these complexes promoted DNA cleavage following an oxygen dependent pathway. PMID:16563512

  4. Synthesis and structure of dicopper(II) complexes bridged by N-(5-chloro-2-hydroxyphenyl)-N'-[3-(methy lamino)propyl]oxamide: evaluation of DNA/protein binding, DNA cleavage, and in vitro anticancer activity.

    PubMed

    Xu, Xiao-Wen; Li, Xue-Jie; Zhu, Ling; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-06-01

    Three new dicopper(II) complexes bridged by N-(5-chloro-2-hydroxyphenyl)-N'-[3-(methylamino)-propyl]oxamide (H3chmpoxd) and end-capped with 1,10-phenanthroline (phen); 2,2'-diamino-4,4'-bithiazole (dabt); and 2,2'-bipyridine (bpy), namely [Cu2(chmpoxd)(H2O)(phen)](ClO4)⋅CH3CN (1), [Cu2(chmpoxd)(dabt)(C2H5OH)](NO3) (2) and [Cu2(chmpoxd)(H2O)(bpy)](NO3)⋅CH3CN (3), were synthesized and structurally characterized. The single-crystal X-ray diffraction analysis revealed that both the copper(II) ions bridged by the cis-chmpoxd(3-) ligands in the three complexes are in square-planar and square-pyramidal environments, respectively. The reactivity towards herring sperm DNA (HS-DNA) and protein bovine serum albumin (BSA) indicated that these copper(II) complexes can interact with the DNA in the mode of intercalation, and bind to BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The cytotoxicity and DNA cleavage suggested that all the dicopper(II) complexes are active against the selected tumor cell lines, and the complex 1 exhibits the cleavage capacity for plasmid DNA. PMID:25837411

  5. Reversed DNA strand cleavage specificity in initiation of Cre-LoxP recombination induced by the His289Ala active-site substitution.

    PubMed

    Gelato, Kathy A; Martin, Shelley S; Baldwin, Enoch P

    2005-11-25

    During the first steps of site-specific recombination, Cre protein cleaves and religates a specific homologous pair of LoxP strands to form a Holliday junction (HJ) intermediate. The HJ is resolved into recombination products through exchange of the second homologous strand pair. CreH289A, containing a His to Ala substitution in the conserved R-H-R catalytic motif, has a 150-fold reduced recombination rate and accumulates HJs. However, to produce these HJs, CreH289A exchanges the opposite set of strands compared to wild-type Cre (CreWT). To investigate how CreH289A and CreWT impose strand exchange order, we characterized their reactivities and strand cleavage preferences toward LoxP duplex and HJ substrates containing 8bp spacer substitutions. Remarkably, CreH289A had different and often opposite strand exchange preferences compared to CreWT with nearly all substrates. CreH289N was much less perturbed, implying that overall recombination rate and strand exchange depend more on His289 hydrogen bonding capability than on its acid/base properties. LoxP substitutions immediately 5' (S1 nucleotide) or 3' (S1' nucleotide) of the scissile phosphate had large effects on substrate utilization and strand exchange order. S1' substitutions, designed to alter base-unstacking events concomitant with Cre-induced LoxP bending, caused HJ accumulation and dramatically inverted the cleavage preferences. That pre-formed HJs were resolved via either strand in vitro suggests that inhibition of the "conformational switch" isomerization required to trigger the second strand exchange accounts for the observed HJ accumulation. Rather than reflecting CreWT behavior, CreH289A accumulates HJs of opposite polarity through a combination of its unique cleavage specificity and an HJ isomerization defect. The overall implication is that cleavage specificity is mediated by sequence-dependent DNA deformations that influence the scissile phosphate positioning and reactivity. A role of His289 may be to

  6. Reversed DNA Strand Cleavage Specificity in Initiation of Cre–LoxP Recombination Induced by the His289Ala Active-site Substitution

    PubMed Central

    Gelato, Kathy A.; Martin, Shelley S.; Baldwin, Enoch P.

    2010-01-01

    During the first steps of site-specific recombination, Cre protein cleaves and religates a specific homologous pair of LoxP strands to form a Holliday junction (HJ) intermediate. The HJ is resolved into recombination products through exchange of the second homologous strand pair. CreH289A, containing a His to Ala substitution in the conserved R-H-R catalytic motif, has a 150-fold reduced recombination rate and accumulates HJs. However, to produce these HJs, CreH289A exchanges the opposite set of strands compared to wild-type Cre (CreWT). To investigate how CreH289A and CreWT impose strand exchange order, we characterized their reactivities and strand cleavage preferences toward LoxP duplex and HJ substrates containing 8 bp spacer substitutions. Remarkably, CreH289A had different and often opposite strand exchange preferences compared to CreWT with nearly all substrates. CreH289N was much less perturbed, implying that overall recombination rate and strand exchange depend more on His289 hydrogen bonding capability than on its acid/base properties. LoxP substitutions immediately 5′(S1 nucleotide) or 3′(S1′nucleotide) of the scissile phosphate had large effects on substrate utilization and strand exchange order. S1′substitutions, designed to alter base-unstacking events concomitant with Cre-induced LoxP bending, caused HJ accumulation and dramatically inverted the cleavage preferences. That pre-formed HJs were resolved via either strand in vitro suggests that inhibition of the “conformational switch” isomerization required to trigger the second strand exchange accounts for the observed HJ accumulation. Rather than reflecting CreWT behavior, CreH289A accumulates HJs of opposite polarity through a combination of its unique cleavage specificity and an HJ isomerization defect. The overall implication is that cleavage specificity is mediated by sequence-dependent DNA deformations that influence the scissile phosphate positioning and reactivity. A role of His289

  7. Synthesis, crystal structures and characterization of late first row transition metal complexes derived from benzothiazole core: anti-tuberculosis activity and special emphasis on DNA binding and cleavage property.

    PubMed

    Netalkar, Priya P; Netalkar, Sandeep P; Budagumpi, Srinivasa; Revankar, Vidyanand K

    2014-05-22

    Air and moisture stable coordination compounds of late first row transition metals, viz. Co(II), Ni(II), Cu(II) and Zn(II), with a newly designed ligand, 2-(2-benzo[d]thiazol-2-yl)hydrazono)propan-1-ol (LH), were prepared and successfully characterized using various spectro-analytical techniques. The molecular structures of the ligand and nickel complex were unambiguously determined by single-crystal X-ray diffraction method. The [Ni(LH)2]Cl2.3H2O complex is stabilized by intermolecular CH⋯π stacking interactions between the methyl hydrogen and the C18 atom of the phenyl ring (C11-H11B⋯C18) forming 1D zig-zag chain structure. Both, the ligand and its copper complex, were electrochemically active in the working potential range, showing quasi-reversible redox system. The interactions of all the compounds with calf thymus DNA have been comprehensively investigated using electronic absorption spectroscopy, viscosity, electrochemistry and thermal denaturation studies. The cleavage reaction on pBR322 DNA has been monitored by agarose gel electrophoresis. The results showed that the ligand can bind to CT-DNA through partial intercalation, whereas the complexes bind electrostatically. Further, [Ni(LH)2]Cl2.3H2O and [CuLCl(H2O)2] complexes in the series have high binding and cleavage affinity towards pBR322 DNA. Additionally, all the compounds were screened for anti-tuberculosis activity. All the complexes revealed an MIC value of 0.8 μg/mL, which is almost 8 times active than standard used (Streptomycin, 6.25 μg/mL). PMID:24721314

  8. Mitoxantrone resistance in HL-60 leukemia cells: Reduced nuclear topoisomerase II catalytic activity and drug-induced DNA cleavage in association with reduced expression of the topoisomerase II. beta. isoform

    SciTech Connect

    Harker, W.G.; Slade, D.L.; Parr, R.L. ); Drake, F.H. )

    1991-10-15

    Mitoxantrone-resistant variants of the human HL-60 leukemia cell line are cross-resistant to several natural product and synthetic antineoplastic agents. The resistant cells (HL-60/MX2) retain sensitivity to the Vinca alkaloids vincristine and vinblastine, drugs that are typically associated with the classical multidrug resistance phenotype. Mitoxantrone accumulation and retention are equivalent in the sensitive and resistant cell types, suggesting that mitoxantrone resistance inn HL-60/MX2 cells might be associated with an alteration in the type II DNA topoisomerases. The authors discovered that topoisomerase II catalytic activity in 1.0 M NaCl nuclear extracts from the HL-60/MX2 variant was reduced 4- to 5-fold compared to that in the parental HL-60 cells. Studies were designed to minimize the proteolytic degradation of the topoisomerase II enzymes by extraction of whole cells with hot SDS. When nuclear extracts from the two cell types were normalized for equivalent catalytic activity, mitoxantrone inhibited the decatenation of kDNA by these extracts to an equal extent but levels of mitoxantrone-induced cleavage of {sup 32}P-labeled pBR322 DNA by nuclear extracts from HL-60/MX2 cells were 3- to 4-fold lower than in comparable HL-60 extracts. Resistance to the topoisomerase II inhibitor mitoxantrone in HL-60/MX2 is associated with reduced nuclear and whole cell topoisomerase II catalytic activity, immunologically undetectable levels of the 180-kDa topoisomerase II isozyme, and reduced mitoxantrone-induced cleavage of radiolabeled DNA by topoisomerase II in nuclear extracts from these cells.

  9. Initial Stages of V(D)J Recombination: the Organization of RAG1/2 and RSS DNA in the Post-cleavage Complex

    PubMed Central

    Grundy, Gabrielle J.; Ramón-Maiques, Santiago; Dimitriadis, Emilios K.; Kotova, Svetlana; Biertümpfel, Christian; Heymann, J. Bernard; Steven, Alasdair C.; Gellert, Martin; Yang, Wei

    2009-01-01

    SUMMARY To obtain structural information on the early stages of V(D)J recombination, we isolated a complex of the core RAG1 and RAG2 proteins with DNA containing a pair of cleaved recombination signal sequences (RSS). Stoichiometric and molecular mass analysis established that this signal end complex (SEC) contains two protomers each of RAG1 and RAG2. Visualization of the SEC by negative staining electron microscopy revealed an anchor-shaped particle with approximate two-fold symmetry. Consistent with a parallel arrangement of DNA and protein subunits, the N-termini of RAG1 and RAG2 are positioned at opposing ends of the complex, and the DNA chains beyond the RSS nonamer emerge from the same face of the complex, near to the RAG1 N-termini. These first images of the V(D)J recombinase in its post-cleavage state provide a framework for modeling RAG domains and their interactions with DNA. PMID:19647518

  10. Mixed ligand complexation of some transition metal ions in solution and solid state: Spectral characterization, antimicrobial, antioxidant, DNA cleavage activities and molecular modeling

    NASA Astrophysics Data System (ADS)

    Shobana, Sutha; Dharmaraja, Jeyaprakash; Selvaraj, Shanmugaperumal

    2013-04-01

    Equilibrium studies of Ni(II), Cu(II) and Zn(II) mixed ligand complexes involving a primary ligand 5-fluorouracil (5-FU; A) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) as co-ligands(B) were carried out pH-metrically in aqueous medium at 310 ± 0.1 K with I = 0.15 M (NaClO4). In solution state, the stoichiometry of MABH, MAB and MAB2 species have been detected. The primary ligand(A) binds the central M(II) ions in a monodentate manner whereas him, bim, hist and his co-ligands(B) bind in mono, mono, bi and tridentate modes respectively. The calculated Δ log K, log X and log X' values indicate higher stability of the mixed ligand complexes in comparison to binary species. Stability of the mixed ligand complex equilibria follows the Irving-Williams order of stability. In vitro biological evaluations of the free ligand(A) and their metal complexes by well diffusion technique show moderate activities against common bacterial and fungal strains. Oxidative cleavage interaction of ligand(A) and their copper complexes with CT DNA is also studied by gel electrophoresis method in the presence of oxidant. In vitro antioxidant evaluations of the primary ligand(A), CuA and CuAB complexes by DPPH free radical scavenging model were carried out. In solid, the MAB type of M(II)sbnd 5-FU(A)sbnd his(B) complexes were isolated and characterized by various physico-chemical and spectral techniques. Both the magnetic susceptibility and electronic spectral analysis suggest distorted octahedral geometry. Thermal studies on the synthesized mixed ligand complexes show loss of coordinated water molecule in the first step followed by decomposition of the organic residues subsequently. XRD and SEM analysis suggest that the microcrystalline nature and homogeneous morphology of MAB complexes. Further, the 3D molecular modeling and analysis for the mixed ligand MAB complexes have also been carried out.

  11. Activities of Human Immunodeficiency Virus (HIV) Integration Protein In vitro: Specific Cleavage and Integration of HIV DNA

    NASA Astrophysics Data System (ADS)

    Bushman, Frederic D.; Craigie, Robert

    1991-02-01

    Growth of human immunodeficiency virus (HIV) after infection requires the integration of a DNA copy of the viral RNA genome into a chromosome of the host. Here we present a simple in vitro system that carries out the integration reaction and the use of this system to probe the mechanism of integration. The only HIV protein necessary is the integration (IN) protein, which has been overexpressed in insect cells and then partially purified. DNA substrates are supplied as oligonucleotides that match the termini of the linear DNA product of reverse transcription. In the presence of HIV IN protein, oligonucleotide substrates are cleaved to generate the recessed 3' ends that are the precursor for integration, and the cleaved molecules are efficiently inserted into a DNA target. Analysis of reaction products reveals that HIV IN protein joins 3' ends of the viral DNA to 5' ends of cuts made by IN protein in the DNA target. We have also used this assay to characterize the sequences at the ends of the viral DNA involved in integration. The assay provides a simple screen for testing candidate inhibitors of HIV IN protein; some such inhibitors might have useful antiviral activity.

  12. DNA Binding, Cleavage and Antibacterial Activity of Mononuclear Cu(II), Ni(II) and Co(II) Complexes Derived from Novel Benzothiazole Schiff Bases.

    PubMed

    Vamsikrishna, Narendrula; Kumar, Marri Pradeep; Tejaswi, Somapangu; Rambabu, Aveli; Shivaraj

    2016-07-01

    A series of novel bivalent metal complexes M(L1)2 and M(L2)2 where M = Cu(II), Ni(II), Co(II) and L1 = 2-((benzo [d] thiazol-6-ylimino)methyl)-4-bromophenol [BTEMBP], L2 = 1-((benzo [d] thiazol-6-ylimino)methyl) naphthalen-2-ol [BTEMNAPP] were synthesized. All the compounds have been characterized by elemental analysis, SEM, Mass, (1)H NMR, (13)C NMR, UV-Vis, IR, ESR, spectral data and magnetic susceptibility measurements. Based on the analytical and spectral data four-coordinated square planar geometry is assigned to all the complexes. DNA binding properties of these complexes have been investigated by electronic absorption spectroscopy, fluorescence and viscosity measurements. It is observed that these binary complexes strongly bind to calf thymus DNA by an intercalation mode. DNA cleavage efficacy of these complexes was tested in presence of H2O2 and UV light by gel electrophoresis and found that all the complexes showed better nuclease activity. Finally the compounds were screened for antibacterial activity against few pathogens and found that the complexes have potent biocidal activity than their free ligands. PMID:27165038

  13. A mechanistic study of Trichoderma reesei Cel7B catalyzed glycosidic bond cleavage.

    PubMed

    Zhang, Yu; Yan, Shihai; Yao, Lishan

    2013-07-25

    An ONIOM study is performed to illustrate the mechanism of Trichoderma reesei Cel7B catalyzed p-nitrophenyl lactoside hydrolysis. In both the glycosylation and deglycosylation steps, the reaction proceeds in a concerted way, meaning the nucleophilic attack and the glycosidic bond cleavage occur simultaneously. The glycosylation step is rate limiting with a barrier of 18.9 kcal/mol, comparable to the experimental value derived from the kcat measured in this work. The function of four residues R108, Y146, Y170, and D172, which form a hydrogen-bond network involving the substrate, is studied by conservative mutations. The mutants, including R108K, Y146F, Y170F, and D172N, decrease the enzyme activity by about 150-8000-fold. Molecular dynamics simulations show that the mutations disrupt the hydrogen-bond network, cause the substrate to deviate from active binding and hinder either the proton transfer from E201 to O4(+1) or the nucleophilic attack from E196 to C1(-1). PMID:23822607

  14. Interaction of DNA with Simple and Mixed Ligand Copper(II) Complexes of 1,10-Phenanthrolines as Studied by DNA-Fiber EPR Spectroscopy

    PubMed Central

    Chikira, Makoto; Ng, Chew Hee; Palaniandavar, Mallayan

    2015-01-01

    The interaction of simple and ternary Cu(II) complexes of 1,10-phenanthrolines with DNA has been studied extensively because of their various interesting and important functions such as DNA cleavage activity, cytotoxicity towards cancer cells, and DNA based asymmetric catalysis. Such functions are closely related to the DNA binding modes of the complexes such as intercalation, groove binding, and electrostatic surface binding. A variety of spectroscopic methods have been used to study the DNA binding mode of the Cu(II) complexes. Of all these methods, DNA-fiber electron paramagnetic resonance (EPR) spectroscopy affords unique information on the DNA binding structures of the complexes. In this review we summarize the results of our DNA-fiber EPR studies on the DNA binding structure of the complexes and discuss them together with the data accumulated by using other measurements. PMID:26402668

  15. Theoretical studies on Si-C bond cleavage in organosilane precursors during polycondensation to organosilica hybrids.

    PubMed

    Shirai, Soichi; Goto, Yasutomo; Mizoshita, Norihiro; Ohashi, Masataka; Tani, Takao; Shimada, Toyoshi; Hyodo, Shi-aki; Inagaki, Shinji

    2010-05-20

    Molecular orbital theory calculations were carried out to predict the occurrence of Si-C bond cleavage in various organosilane precursors during polycondensation to organosilica hybrids under acidic and basic conditions. On the basis of proposed mechanisms for cleavage of the Si-C bonds, the proton affinity (PA) of the carbon atom at the ipso-position and the PA of the carbanion generated after Si-C cleavage were chosen as indices for Si-C bond stability under acidic and basic conditions, respectively. The indices were calculated using a density functional theory (DFT) method for model compounds of organosilane precursors (R-Si(OH)(3)) having organic groups (R) of benzene (Ph), biphenyl (Bp), terphenyl (Tph), naphthalene (Nph), N-methylcarbazole (MCz), and anthracene (Ant). The orders for the predicted stability of the Si-C bond were Ph > Nph > Bp > Ant > Tph > MCz for acidic conditions and Ph > MCz > Bp > Nph > Tph > Ant for basic conditions. These behaviors were primarily in agreement with experimental results where cleavage of the Si-C bonds occurred for Tph (both acidic and basic), MCz (acidic), and Ant (basic). The Si-C bond cleavage of organosilane precursors during polycondensation is qualitatively predicted from these indices based on our theoretical approach. PMID:20429568

  16. Magnetic resonance imaging-based anatomical study of the multifidus-longissimus cleavage planes in the lumbar spine

    PubMed Central

    Li, Haijun; Yang, Lei; Chen, Jinhua; Xie, Hao; Tian, Weizhong; Cao, Xiaojian

    2016-01-01

    Purpose: The Wiltse approach allows spinal surgeries to be performed with minimal soft tissue trauma. The purpose of this study was to investigate the anatomy of the natural cleavage plane between multifidus and longissimus at different levels based on MRI images. Methods: MRI cross-sectional scans from L1 to S1 were collected from 205 out patients (103 males, 102 females). Based on the images, some parameters were defined and measured to describe the locations, curvature and directions of Wiltse approach. Besides, differences of these parameters between genders and segments were compared. Results: Among the total of 2460 one-sided images, cleavage planes between multifidus and longissimus were not able to be identified in 105 images. The locations, directions and curvature of the cleavage plane differed significantly among different segments but followed some regular pattern from L1-S1. The simultaneous rotation of the plane around its deepest points to the midline from S1 to L1 and the plane seemed to be the most curved at L3 and relatively straight for L5 and S1. Conclusions: With a better understanding of the natural cleavage plane between multifidus and longissimus, performers can correctly plan the distance of skin incisions from the midline and the direction of muscle dissection at each vertebral level, thus reducing trauma in the operation. PMID:27069544

  17. Analytical methods to determine the comparative DNA binding studies of curcumin-Cu(II) complexes

    NASA Astrophysics Data System (ADS)

    Rajesh, Jegathalaprathaban; Rajasekaran, Marichamy; Rajagopal, Gurusamy; Athappan, Periakaruppan

    2012-11-01

    DNA interaction studies of two mononuclear [1:1(1); 1:2(2)] copper(II) complexes of curcumin have been studied. The interaction of these complexes with CT-DNA has been explored by physical methods to propose modes of DNA binding of the complexes. Absorption spectral titrations of complex 1 with CT-DNA shows a red-shift of 3 nm with the DNA binding affinity of Kb, 5.21 × 104 M-1 that are higher than that obtained for 2 (red-shift, 2 nm; Kb, 1.73 × 104 M-1) reveal that the binding occurs in grooves as a result of the interaction is via exterior phosphates. The CD spectra of these Cu(II) complexes show a red shift of 3-10 nm in the positive band with increase in intensities. This spectral change of induced CD due to the hydrophobic interaction of copper complexes with DNA is the characteristic of B to A conformational change. The EB displacement assay also reveals the same trend as observed in UV-Vis spectral titration. The addition of complexes 1 and 2 to the DNA bound ethidium bromide (EB) solutions causes an obvious reduction in emission intensities indicating that these complexes competitively bind to DNA with EB. The positive shift of both the Epc and E0' accompanied by reduction of peak currents in differential pulse voltammogram (DPV), upon adding different concentrations of DNA to the metal complexes, are obviously in favor of strong binding to DNA. The super coiled plasmid pUC18 DNA cleavage ability of Cu(II) complexes in the presence of reducing agent reveals the single strand DNA cleavage (ssDNA) is observed. The hydroxyl radical (HOrad ) and the singlet oxygen are believed to be the reactive species responsible for the cleavage.

  18. Calcium-induced cleavage of DNA topoisomerase I involves the cytoplasmic-nuclear shuttling of calpain 2.

    PubMed

    Chou, Shang-Min; Huang, Ting-Hsiang; Chen, Hsiang-Chin; Li, Tsai-Kun

    2011-08-01

    Important to the function of calpains is temporal and spatial regulation of their proteolytic activity. Here, we demonstrate that cytoplasm-resident calpain 2 cleaves human nuclear topoisomerase I (hTOP1) via Ca(2+)-activated proteolysis and nucleoplasmic shuttling of proteases. This proteolysis of hTOP1 was induced by either ionomycin-caused Ca(2+) influx or addition of Ca(2+) in cellular extracts. Ca(2+) failed to induce hTOP1 proteolysis in calpain 2-knockdown cells. Moreover, calpain 2 cleaved hTOP1 in vitro. Furthermore, calpain 2 entered the nucleus upon Ca(2+) influx, and calpastatin interfered with this process. Calpain 2 cleavage sites were mapped at K(158) and K(183) of hTOP1. Calpain 2-truncated hTOP1 exhibited greater relaxation activity but remained able to interact with nucleolin and to form cleavable complexes. Interestingly, calpain 2 appears to be involved in ionomycin-induced protection from camptothecin-induced cytotoxicity. Thus, our data suggest that nucleocytoplasmic shuttling may serve as a novel type of regulation for calpain 2-mediated nuclear proteolysis. PMID:21086148

  19. Single Molecule Study of DNA Organization and Recombination

    NASA Astrophysics Data System (ADS)

    Xiao, Botao

    We have studied five projects related to DNA organization and recombination using mainly single molecule force-spectroscopy and statistical tools. First, HU is one of the most abundant DNA-organizing proteins in bacterial chromosomes and participates in gene regulation. We report experiments that study the dependence of DNA condensation by HU on force, salt and HU concentration. A first important result is that at physiological salt levels, HU only bends DNA, resolving a previous paradox of why a chromosome-compacting protein should have a DNA-stiffening function. A second major result is quantitative demonstration of strong dependencies of HU-DNA dissociation on both salt concentration and force. Second, we have used a thermodynamic Maxwell relation to count proteins driven off large DNAs by tension, an effect important to understanding DNA organization. Our results compare well with estimates of numbers of proteins HU and Fis in previous studies. We have also shown that a semi-flexible polymer model describes our HU experimental data well. The force-dependent binding suggests mechano-chemical mechanisms for gene regulation. Third, the elusive role of protein H1 in chromatin has been clarified with purified H1 and Xenopus extracts. We find that H1 compacts DNA by both bending and looping. Addition of H1 enhances chromatin formation and maintains the plasticity of the chromatin. Fourth, the topology and mechanics of DNA twisting are critical to DNA organization and recombination. We have systematically measured DNA extension as a function of linking number density from 0.08 to -2 with holding forces from 0.2 to 2.4 pN. Unlike previous proposals, the DNA extension decreases with negative linking number. Finally, DNA recombination is a dynamic process starting from enzyme-DNA binding. We report that the Int-DBD domain of lambda integrase binds to DNA without compaction at low Int-DBD concentration. High concentration of Int-DBD loops DNA below a threshold force

  20. Synthesis, photochemical properties and DNA binding studies of dna cleaving agents based on chiral dipyridine dihydrodioxins salts

    NASA Astrophysics Data System (ADS)

    Shamaev, Alexei

    activated by UV-light. The mechanism of o-quinone release and intramolecular ET was studied in detail by methods of Ultrafast Transient Absortion Spectroscopy and supported by high-level quantum mechanical calculations. The binding properties of chiral intercalators based on PDHD to various DNA oligonucleotides were studied by various methods and DNA cleavage properties indicating strong binding and cleaving ability of the synthesized PDHDs. Also, a new method for synthesis of cyclohexa[e]pyrenes which possibly capable of intramolecular ET and electron transfer-oxidative stress (ET-OS) DNA cleavage was developed and partially accomplished.

  1. Comparison of the specificities and catalytic activities of hammerhead ribozymes and DNA enzymes with respect to the cleavage of BCR-ABL chimeric L6 (b2a2) mRNA.

    PubMed

    Kuwabara, T; Warashina, M; Tanabe, T; Tani, K; Asano, S; Taira, K

    1997-08-01

    With the eventual goal of developing a treatment for chronic myelogenous leukemia (CML), attempts have been made to design hammerhead ribozymes that can specifically cleave BCR-ABL fusion mRNA. In the case of L6 BCR-ABL fusion mRNA (b2a2 type; BCR exon 2 is fused to ABL exon 2), which has no effective cleavage sites for conventional hammerhead ribozymes near the BCR-ABL junction, it has proved very difficult to cleave the chimeric mRNA specifically. Several hammerhead ribozymes with relatively long junction-recognition sequences have poor substrate-specificity. Therefore, we explored the possibility of using newly selected DNA enzymes that can cleave RNA molecules with high activity to cleave L6 BCR-ABL fusion (b2a2) mRNA. In contrast to the results with the conventional ribozymes, the newly designed DNA enzymes, having higher flexibility for selection of cleavage sites, were able to cleave this chimeric RNA molecule specifically at sites close to the junction. Cleavage occurred only within the abnormal BCR-ABL mRNA, without any cleavage of the normal ABL or BCR mRNA. Thus, these chemically synthesized DNA enzymes seem to be potentially useful for application in vivo , especially for the treatment of CML, if we can develop exogenous delivery strategies. PMID:9224607

  2. Cleavages and co-operation in the UK alcohol industry: A qualitative study

    PubMed Central

    2012-01-01

    Background It is widely believed that corporate actors exert substantial influence on the making of public health policy, including in the alcohol field. However, the industry is far from being monolithic, comprising a range of producers and retailers with varying and diverse interests. With a focus on contemporary debates concerning the minimum pricing of alcohol in the UK, this study examined the differing interests of actors within the alcohol industry, the cleavages which emerged between them on this issue and how this impacted on their ability to organise themselves collectively to influence the policy process. We conducted 35 semi-structured interviews between June and November 2010 with respondents from all sectors of the industry as well as a range of non-industry actors who had knowledge of the alcohol policy process, including former Ministers, Members of the UK Parliament and the Scottish Parliament, civil servants, members of civil society organisations and professionals. Methods The paper draws on an analysis of publicly available documents and 35 semi-structured interviews with respondents from the alcohol industry (on- and off-trade including retailers, producers of wines, spirits and beers and trade associations) and a range of non-industry actors with knowledge of the alcohol policy process (including former Ministers, Members of Parliament and of the Scottish Parliament, civil servants, members of civil society organisations and professional groups). Interviews were recorded, transcribed and analysed using Nvivo qualitative analysis software. Processes of triangulation between data sources and different types of respondent sought to ensure we gained as accurate a picture as possible of industry participation in the policy process. Results Divergences of interest were evident between producers and retailers and within the retail sector between the on and off trade. Divisions within the alcohol industry, however, existed not only between these

  3. Photophysical and photochemical studies of a novel amphiphilic zinc phthalocyanine and its interaction with calf thymus DNA.

    PubMed

    Yuan, Linxin; Gui, Li; Wang, Yue; Zhang, Quanquan; Zhou, Lin; Wei, Shaohua

    2016-04-01

    β-tetra (aminophenoxy) sulfonic substituted zinc phthalocyanines (SNZnPc), a novel amphiphilic zinc phthalocyanine (Pc), was synthesized. The photophysical, photochemical, and photobiology properties were studied. Results indicated that the synthesized SNZnPc has good amphiphilic property and high reactive oxygen species (ROSs) generation ability. Furthermore, SNZnPc has strong affinity to calf thymus DNA (CT-DNA) through intercalation ways and can effectively cleavage CT-DNA after irradiation by light with appropriate wavelength. PMID:26775097

  4. Photophysical and photochemical studies of a novel amphiphilic zinc phthalocyanine and its interaction with calf thymus DNA

    NASA Astrophysics Data System (ADS)

    Yuan, Linxin; Gui, Li; Wang, Yue; Zhang, Quanquan; Zhou, Lin; Wei, Shaohua

    2016-04-01

    β-tetra (aminophenoxy) sulfonic substituted zinc phthalocyanines (SNZnPc), a novel amphiphilic zinc phthalocyanine (Pc), was synthesized. The photophysical, photochemical, and photobiology properties were studied. Results indicated that the synthesized SNZnPc has good amphiphilic property and high reactive oxygen species (ROSs) generation ability. Furthermore, SNZnPc has strong affinity to calf thymus DNA (CT-DNA) through intercalation ways and can effectively cleavage CT-DNA after irradiation by light with appropriate wavelength.

  5. Fuzzy logic sensing of G-quadruplex DNA and its cleavage reagents based on reduced graphene oxide.

    PubMed

    Huang, Wei Tao; Zhang, Jian Rong; Xie, Wan Yi; Shi, Yan; Luo, Hong Qun; Li, Nian Bing

    2014-07-15

    Herein, by combining the merits of nanotechnology and fuzzy logic theory, we develop a simple, label-free, and general strategy based on an organic dye-graphene hybrid system for fluorescence intelligent sensing of G-quadruplexes (G4) formation, hydroxyl radical (HO∙), and Fe(2+) in vitro. By exploiting acridine orange (AO) dyes-graphene as a nanofilter and nanoswitch and the ability of graphene to interact with DNA with different structures, our approach can efficiently distinguish, quantitatively detect target analytes. In vitro assays with G4DNA demonstrated increases in fluorescence intensity of the AO-rGO system with a linear range of 16-338 nM and a detection limit as low as 2.0 nM. The requenched fluorescence of the G4TBA-AO-rGO system has a non-linear response to Fenton reagent. But this requenching reduces the fluorescence intensity in a manner proportional to the logarithm to the base 10 of the concentration of Fenton reagent in the range of 0.1-100 μM and 100-2000 μM, respectively. Furthermore, we develop a novel and intelligent sensing method based on fuzzy logic which mimics human reasoning, solves complex and non-linear problems, and transforms the numerical output into the language description output for potential application in biochemical systems, environmental monitoring systems, and molecular-level fuzzy logic computing system. PMID:24561526

  6. Dual role of glutathione in modulating camptothecin activity: depletion potentiates activity, but conjugation enhances the stability of the topoisomerase I-DNA cleavage complex.

    PubMed

    Gamcsik, M P; Kasibhatla, M S; Adams, D J; Flowers, J L; Colvin, O M; Manikumar, G; Wani, M; Wall, M E; Kohlhagen, G; Pommier, Y

    2001-11-01

    Depletion of glutathione (GSH) in MCF-7 and MDA-MB-231 cell lines by pretreatment with the GSH synthesis inhibitor buthionine sulfoximine potentiated the activity of 10,11-methylenedioxy-20(S)-camptothecin, SN-38 [7-ethyl-10-hydroxy-20(S)-camptothecin], topotecan, and 7-chloromethyl-10,11-methylenedioxy-20(S)-camptothecin (CMMDC). The greatest potentiation was observed with the alkylating camptothecin CMMDC. Buthionine sulfoximine pretreatment also increased the number of camptothecin-induced DNA-protein crosslinks, indicating that GSH affects the mechanism of action of camptothecin. We also report that GSH interacts with CMMDC to form a stable conjugate, 7-(glutathionylmethyl)-10,11-methylenedioxy-20(S)-camptothecin (GSMMDC), which is formed spontaneously in buffered solutions and in MCF-7 cells treated with CMMDC. GSMMDC was synthesized and found to be nearly as active as 10,11-methylenedioxy-20(S)-camptothecin in a topoisomerase (topo) I-mediated DNA nicking assay. The resulting topo I cleavage complexes were remarkably stable. In cell culture, GSMMDC displayed potent growth-inhibitory activity against U937 and P388 leukemia cell lines. GSMMDC was not active against a topo I-deficient P388 cell line, indicating that topo I is its cellular target. Peptide-truncated analogues of GSMMDC were prepared and evaluated. All three derivatives [7-(gamma-glutamylcysteinylmethyl)-10,11-methylenedioxy-20(S)-camptothecin, 7-(cysteinylglycylmethyl)-10,11-methylenedioxy-20(S)-camptothecin, and 7-(cysteinylmethyl)-10,11-methylenedioxy-20(S)-camptothecin] displayed topo I and cell growth-inhibitory activity. These results suggest that 7-peptidyl derivatives represent a new class of camptothecin analogues. PMID:12467234

  7. New Oxidovanadium Complexes Incorporating Thiosemicarbazones and 1, 10-Phenanthroline Derivatives as DNA Cleavage, Potential Anticancer Agents, and Hydroxyl Radical Scavenger.

    PubMed

    Ying, Peng; Zeng, Pengfei; Lu, Jiazheng; Chen, Hongyuan; Liao, Xiangwen; Yang, Ning

    2015-10-01

    Four novel oxidovanadium(IV) complexes, [VO(hntdtsc)(PHIP)] (1) (hntdtsc = 2-hydroxy-1-naphthaldehyde thiosemicarbazone, PHIP= 2-phenyl-imidazo[4,5-f]1,10-phenanthroline), [VO(hntdtsc)(DPPZ)](2)(DPPZ= dipyrido[3,2-a:2',3'-c]phenazine), [VO(satsc)(PHIP)](3) (satsc=salicylaldehyde thiosemicarbazone), and [VO(satsc)(DPPZ)](4), have been prepared and characterized. The chemical nuclease activities and photocleavage reactions of the complexes were tested. All four complexes can efficiently cleave pBR322 DNA, and complex 1 has the best cleaving ability. The antitumor properties of these complexes were examined with three different tumor cell lines using MTT assay. Their antitumor mechanism has been analyzed using cell cycle analysis, fluorescence microscopy of apoptosis, and Annexin V-FITC/PI assay. The results showed that the growth of human neuroblastoma (SH-SY5Y, SK-N-SH) and human breast adenocarcinoma (MCF-7) cells were inhibited significantly with very low IC50 values. Complex 1 was found to be the most potent antitumor agent among the four complexes. It can cause G0/G1 phase arrest of the cell cycle and exhibited significant induced apoptosis in SK-N-SH cells and displayed typical morphological apoptotic characteristics. In addition, they all displayed reasonable abilities to scavenge hydroxyl radical, and complex 1 was the best inhibitor. PMID:25659415

  8. Determining the Architecture of a Protein-DNA Complex by Combining FeBABE Cleavage Analyses, 3-D Printed Structures, and the ICM Molsoft Program.

    PubMed

    James, Tamara; Hsieh, Meng-Lun; Knipling, Leslie; Hinton, Deborah

    2015-01-01

    Determining the structure of a protein-DNA complex can be difficult, particularly if the protein does not bind tightly to the DNA, if there are no homologous proteins from which the DNA binding can be inferred, and/or if only portions of the protein can be crystallized. If the protein comprises just a part of a large multi-subunit complex, other complications can arise such as the complex being too large for NMR studies, or it is not possible to obtain the amounts of protein and nucleic acids needed for crystallographic analyses. Here, we describe a technique we used to map the position of an activator protein relative to the DNA within a large transcription complex. We determined the position of the activator on the DNA from data generated using activator proteins that had been conjugated at specific residues with the chemical cleaving reagent, iron bromoacetamidobenzyl-EDTA (FeBABE). These analyses were combined with 3-D models of the available structures of portions of the activator protein and B-form DNA to obtain a 3-D picture of the protein relative to the DNA. Finally, the Molsoft program was used to refine the position, revealing the architecture of the protein-DNA within the transcription complex. PMID:26404142

  9. Synthesis, characterization, DNA binding, cleavage activity, cytotoxicity and molecular docking of new nano water-soluble [M(5-CH₂PPh₃-3,4-salpyr)](ClO₄)₂ (M = Ni, Zn) complexes.

    PubMed

    Mandegani, Zeinab; Asadi, Zahra; Asadi, Mozaffar; Karbalaei-Heidari, Hamid Reza; Rastegari, Banafsheh

    2016-04-21

    Some new water soluble complexes [N,N'-bis{5-[(triphenyl phosphonium chloride)-methyl]salicylidine}-3,4-diaminopyridine] M(ii), which are formulated as nano-[Zn(5-CH2PPh3-3,4-salpyr)](ClO4)2 (), [Zn(5-CH2PPh3-3,4-salpyr)](ClO4)2 (), nano-[Ni(5-CH2PPh3-3,4-salpyr)](ClO4)2 (), [Ni(5-CH2PPh3-3,4-salpyr)](ClO4)2 (), and [N,N'-bis{5-[(triphenyl phosphonium chloride)-methyl]salicylidine}-2,3-diaminopyridine]Ni(ii) [Ni(5-CH2PPh3-2,3-salpyr)](ClO4)2 () have been isolated and characterized by elemental analysis, FT-IR, (1)H NMR, (13)C NMR, (31)P NMR, and UV-vis spectroscopy. The morphology and size of the nano complexes were determined using FE-SEM and TEM. In vitro DNA binding studies were investigated by UV-vis absorption spectroscopy, viscosity measurements, CD spectroscopy, cyclic voltammetry, emission spectra and gel electrophoresis, which suggest that the metal complexes act as efficient DNA binders. The absorption spectroscopy of the compounds with DNA reveals that the DNA binding affinity (Kb) has this order: > > > > > Ligand. The metal complexes show DNA binding stronger than the ligand, which is expected due to the nature of the metal. The nano complexes display DNA binding stronger than the other complexes which is related to the effect of size on binding affinity and the Ni(ii) complexes reveal DNA binding stronger than the corresponding Zn(ii) analogues, which is expected due to their z* effect and geometry. The prominent double strand DNA cleavage abilities of compound are observed in the absence of H2O2 with efficiencies of more than 50% even at 70 μM complex concentration. Surprisingly, Zn(ii) complexes (compounds & ) exhibit a higher cytotoxicity (IC50: 7.3 & 10.9 μM at 24 h; IC50: 4.6 & 8.7 μM at 48 h) against human hepatoma (HepG2) and HeLa cell lines than the Ni(ii) complexes (compounds , & ) and 5-fluorouracil as control in spite of their inability to cleave DNA. Finally, DNA binding interactions were performed by docking studies. Density functional

  10. Water-soluble DNA minor groove binders as potential chemotherapeutic agents: synthesis, characterization, DNA binding and cleavage, antioxidation, cytotoxicity and HSA interactions.

    PubMed

    Fu, Xia-Bing; Liu, Dan-Dan; Lin, Yuan; Hu, Wei; Mao, Zong-Wan; Le, Xue-Yi

    2014-06-21

    Two new water-soluble copper(ii)-dipeptide complexes: [Cu(glygly)(PyTA)]ClO4·1.5H2O (1) and [Cu(glygly)(PzTA)]ClO4·1.5H2O (2) (glygly = glycylglycine anion, PyTA = 2,4-diamino-6-(2'-pyridyl)-1,3,5-triazine and PzTA = 2,4-diamino-6-(2'-pyrazino)-1,3,5-triazine), utilizing two interrelated DNA base-like ligands (PyTA and PzTA), have been synthesized and characterized. The structure elucidation for 1 performed by single crystal X-ray diffraction showed a one dimensional chain conformation in which the central copper ions arrange in a five-coordinate distorted square-pyramidal geometry. Spectroscopic titration, viscosity and electrophoresis measurements revealed that the complexes bound to DNA via an outside groove binding mode, and cleaved pBR322 DNA efficiently in the presence of ascorbate, probably via an oxidative mechanism with the involvement of ˙OH and ˙O2(-). Notably, the complexes exhibited considerable in vitro cytotoxicity against four human carcinoma cell lines (HepG2, HeLa, A549 and U87) with IC50 values ranging from 41.68 to 159.17 μM, in addition to their excellent SOD mimics (IC50 ~ 0.091 and 0.114 μM). Besides, multispectroscopic evidence suggested their HSA-binding at the cavity containing Trp-214 in subdomain IIA with moderate affinity, mainly via hydrophobic interaction. Further, the molecular docking technique utilized for ascertaining the mechanism and mode of action towards DNA and HSA theoretically verified the experimental results. PMID:24770345

  11. DNA binding, photoactivated DNA cleavage and cytotoxic activity of Cu(II) and Co(II) based Schiff-base azo photosensitizers

    NASA Astrophysics Data System (ADS)

    Pradeepa, S. M.; Bhojya Naik, H. S.; Vinay Kumar, B.; Indira Priyadarsini, K.; Barik, Atanu; Prabhakara, M. C.

    2015-04-01

    A new class of Cu(II) and Co(II) complexes of azo-containing Schiff base of the type [Cu(L1)2] and [Co(L1)2], where L1 = 4-[(E)-{2-hydroxy-3-[(E)-(4-bromophenyl)diazenyl]benzylidene}amino]benzoic acid have been synthesized and characterized. Extension of conjugation and the presence of free carboxylic acid group of the ligand L1 increased the wavelength of the complexes from visible region to the near IR region (620-850 nm). The Cu(II) and Co(II) complexes interacted with CT-DNA via intercalative mode with the respective Kb value of 3.2 × 104 M-1 and 2.9 × 104 M-1 and acted as proficient photocleavers of SC pUC19 DNA in UV-A light, forming 1O2 as the reactive oxygen species with the quantum yield of 0.38 and 0.36, respectively. Furthermore, the Cu(II) and Co(II) complexes showed photocytotoxicity toward two selected tumor cell lines MCF-7 and A549 by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) method, and the Cu(II) complex exhibits higher photocytotoxicity than Co(II) complex against each of the selected cell lines, this result is identical with their DNA binding ability order.

  12. Differential reaction kinetics, cleavage complex formation, and nonamer binding domain dependence dictate the structure-specific and sequence-specific nuclease activity of RAGs.

    PubMed

    Naik, Abani Kanta; Raghavan, Sathees C

    2012-01-20

    During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the "nonamer binding region," which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease. PMID:22119487

  13. Mixed-ligand copper(ii) Schiff base complexes: the role of the co-ligand in DNA binding, DNA cleavage, protein binding and cytotoxicity.

    PubMed

    Lian, Wen-Jing; Wang, Xin-Tian; Xie, Cheng-Zhi; Tian, He; Song, Xue-Qing; Pan, He-Ting; Qiao, Xin; Xu, Jing-Yuan

    2016-05-31

    Four novel mononuclear Schiff base copper(ii) complexes, namely, [Cu(L)(OAc)]·H2O (), [Cu(HL)(C2O4)(EtOH)]·EtOH (), [Cu(L)(Bza)] () and [Cu(L)(Sal)] () (HL = 1-(((2-((2-hydroxypropyl)amino)ethyl)imino)methyl)naphthalene-2-ol), Bza = benzoic acid, Sal = salicylic acid), were synthesized and characterized by X-ray crystallography, elemental analysis and infrared spectroscopy. Single-crystal diffraction analysis revealed that all the complexes were mononuclear molecules, in which the Schiff base ligand exhibited different coordination modes and conformations. The N-HO and O-HO inter- and intramolecular hydrogen bonding interactions linked these molecules into multidimensional networks. Their interactions with calf thymus DNA (CT-DNA) were investigated by UV-visible and fluorescence spectrometry, as well as by viscosity measurements. The magnitude of the Kapp values of the four complexes was 10(5), indicating a moderate intercalative binding mode between the complexes and DNA. Electrophoresis results showed that all these complexes induced double strand breaks of pUC19 plasmid DNA in the presence of H2O2 through an oxidative pathway. In addition, the fluorescence spectrum of human serum albumin (HSA) with the complexes suggested that the quenching mechanism of HSA by the complexes was a static process. Moreover, the antiproliferative activity of the four complexes against HeLa (human cervical carcinoma) and HepG-2 (human liver hepatocellular carcinoma) cells evaluated by colorimetric cell proliferation assay and clonogenic assay revealed that all four complexes had improved cytotoxicity against cancer cells. Inspiringly, complex , with salicylic acid as the auxiliary ligand, displayed a stronger anticancer activity, suggesting that a synergistic effect of the Schiff base complex and the nonsteroidal anti-inflammatory drug may be involved in the cell killing process. The biological features of mixed-ligand copper(ii) Schiff base complexes and how acetic auxiliary

  14. Anhydride formation is not a valid mechanism for peptide cleavage by carboxypeptidase-A: a semiempirical reaction pathway study

    NASA Astrophysics Data System (ADS)

    Vardi-Kilshtain, Alexandra; Shoham, Gil; Goldblum, Amiram

    The mechanism of action of zinc metalloproteinases has been studied by following the direct nucleophilic pathway, which has been frequently suggested but not yet examined by computational methods, and comparing it to other pathways. We computed the reaction enthalpies for the direct nucleophilic attack by Glu270 in the active site model of carboxypeptidase-A on a model substrate's peptide carbonyl and followed this pathway through mixed anhydride formation and subsequent anhydride cleavage by water. The starting molecular coordinates originate in our own high-resolution crystal structure and the computations have been conducted with the minimal neglect of differential overlap (MNDO) Hamiltonian, modified to include the d-orbitals of zinc and the effects of multiple hydrogen bonding, thus labelled MNDO/d/H. Compared to our recent results for two other candidate pathways for this mechanism, both of the General-Acid-General-Base type, we conclude that the direct nucleophilic or 'anhydride' pathway has a much higher energy barrier at the rate determining step, which is a proton transfer, than previously calculated paths. We argue that the 'anhydride' pathway is thus not a valid one for the cleavage of peptides by carboxypeptidase-A.

  15. RNA Study Using DNA Nanotechnology.

    PubMed

    Tadakuma, Hisashi; Masubuchi, Takeya; Ueda, Takuya

    2016-01-01

    Transcription is one of the fundamental steps of gene expression, where RNA polymerases (RNAPs) bind to their template genes and make RNAs. In addition to RNAP and the template gene, many molecules such as transcription factors are involved. The interaction and the effect of these factors depend on the geometry. Molecular layout of these factors, RNAP and gene is thus important. DNA nanotechnology is a promising technology that allows controlling of the molecular layout in the range of nanometer to micrometer scale with nanometer resolution; thus, it is expected to expand the RNA study beyond the current limit. PMID:26970193

  16. Mutation, DNA strand cleavage and nitric oxide formation caused by N-nitrosoproline with sunlight: a possible mechanism of UVA carcinogenicity.

    PubMed

    Arimoto-Kobayashi, Sakae; Ando, Yoshiko; Horai, Yumi; Okamoto, Keinosuke; Hayatsu, Hikoya; Lowe, Jillian E; Green, Michael H L

    2002-09-01

    N-Nitrosoproline (NPRO) is endogenously formed from proline and nitrite. NPRO has been reported to be nonmutagenic and noncarcinogenic. In this study, we have detected the direct mutagenicity of NPRO plus natural sunlight towards Salmonella typhimurium. Furthermore, formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a mutagenic lesion, was observed in calf thymus DNA treated with NPRO plus simulated sunlight. The treatment with NPRO and sunlight induced single strand breaks in the superhelical replicative form of phage M13mp2 DNA. Single-strand DNA breaks also occurred in the human fibroblast cells on treatment with NPRO plus UVA, as detected by the comet assay. An analysis using scavengers suggested that both reactive oxygen species and NO radical mediate the strand breaks. The formation of nitric oxide was observed in NPRO solution irradiated with UVA. We analyzed the photodynamic spectrum of mutation induction and DNA breakage using monochromatic radiation at a series of wavelengths between 300 and 400 nm. Both mutation frequencies and DNA breakage were highest at the absorption maximum of NPRO, 340 nm. The co-mutagenic and co-toxic actions of NPRO and sunlight merit attention as possible mechanisms increasing the carcinogenic risk from UVA irradiation. PMID:12189198

  17. Thiosemicarbazone Cu(II) and Zn(II) complexes as potential anticancer agents: syntheses, crystal structure, DNA cleavage, cytotoxicity and apoptosis induction activity.

    PubMed

    Shao, Jia; Ma, Zhong-Ying; Li, Ang; Liu, Ya-Hong; Xie, Cheng-Zhi; Qiang, Zhao-Yan; Xu, Jing-Yuan

    2014-07-01

    Four novel thiosemicarbazone metal complexes, [Cu(Am4M)(OAc)]·H2O (1), [Zn(HAm4M)Cl2] (2), [Zn2(Am4M)2Br2] (3) and [Zn2(Am4M)2(OAc)2]·2MeOH (4) [HAm4M=(Z)-2-(amino(pyridin-2-yl)methylene)-N-methylhydrazinecarbothioamide], have been synthesized and characterized by X-ray crystallography, elemental analysis, ESI-MS and IR. X-ray analysis revealed that complexes 1 and 2 are mononuclear, which possess residual coordination sites for Cu(II) ion in 1 and good leaving groups (Cl(-)) for Zn(II) ion in 2. Both 3 and 4 displayed dinuclear units, in which the metal atoms are doubly bridged by S atoms of two Am4M(-) ligands in 3 and by two acetate ions in bi- and mono-dentate forms, respectively, in 4. Their antiproliferative activities on human epithelial cervical cancer cell line (HeLa), human liver hepatocellular carcinoma cell line (HepG-2) and human gastric cancer cell line (SGC-7901) were screened. Inspiringly, IC50 value (11.2±0.9 μM) of complex 1 against HepG-2 cells was nearly 0.5 fold of that against human hepatic cell lines LO2, showing a lower toxicity to human liver cells. Additionally, it displayed a stronger inhibition on the viability of HepG-2 cells than cisplatin (IC50=25±3.1 μM), suggesting complex 1 might be a potential high efficient antitumor agent. Furthermore, fluorescence microscopic observation and flow cytometric analysis revealed that complex 1 could significantly suppress HepG-2 cell viability and induce apoptosis. Several indexes, such as DNA cleavage, reactive oxygen species (ROS) generation, comet assay and cell cycle analysis indicated that the antitumor mechanism of complex 1 on HepG-2 cells might be via ROS-triggered apoptosis pathway. PMID:24690556

  18. Comparative study of HOCl-inflicted damage to bacterial DNA ex vivo and within cells.

    PubMed

    Suquet, Christine; Warren, Jeffrey J; Seth, Nimulrith; Hurst, James K

    2010-01-15

    The prospects for using bacterial DNA as an intrinsic probe for HOCl and secondary oxidants/chlorinating agents associated with it has been evaluated using both in vitro and in vivo studies. Single-strand and double-strand breaks occurred in bare plasmid DNA that had been exposed to high levels of HOCl, although these reactions were very inefficient compared to polynucleotide chain cleavage caused by the OH.-generating reagent, peroxynitrite. Plasmid nicking was not increased when intact Escherichia coli were exposed to HOCl; rather, the amount of recoverable plasmid diminished in a dose-dependent manner. At concentration levels of HOCl exceeding lethal doses, genomic bacterial DNA underwent extensive fragmentation and the amount of precipitable DNA-protein complexes increased several-fold. The 5-chlorocytosine content of plasmid and genomic DNA isolated from HOCl-exposed E. coli was also slightly elevated above controls, as measured by mass spectrometry of the deaminated product, 5-chlorouracil. However, the yields were not dose-dependent over the bactericidal concentration range. Genomic DNA recovered from E. coli that had been subjected to phagocytosis by human neutrophils occasionally showed small increases in 5-chlorocytosine content when compared to analogous cellular reactions where myeloperoxidase activity was inhibited by azide ion. Overall, the amount of isolable 5-chlorouracil from the HOCl-exposed bacterial cells was far less than the damage manifested in polynucleotide bond cleavage and cross-linking. PMID:19850004

  19. Photoleucine Survives Backbone Cleavage by Electron Transfer Dissociation. A Near-UV Photodissociation and Infrared Multiphoton Dissociation Action Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Shaffer, Christopher J.; Martens, Jonathan; Marek, Aleš; Oomens, Jos; Tureček, František

    2016-04-01

    We report a combined experimental and computational study aimed at elucidating the structure of N-terminal fragment ions of the c type produced by electron transfer dissociation of photo-leucine (L*) peptide ions GL*GGKX. The c 4 ion from GL*GGK is found to retain an intact diazirine ring that undergoes selective photodissociation at 355 nm, followed by backbone cleavage. Infrared multiphoton dissociation action spectra point to the absence in the c 4 ion of a diazoalkane group that could be produced by thermal isomerization of vibrationally hot ions. The c 4 ion from ETD of GL*GGK is assigned an amide structure by a close match of the IRMPD action spectrum and calculated IR absorption. The energetics and kinetics of c 4 ion dissociations are discussed.

  20. Photoleucine Survives Backbone Cleavage by Electron Transfer Dissociation. A Near-UV Photodissociation and Infrared Multiphoton Dissociation Action Spectroscopy Study.

    PubMed

    Shaffer, Christopher J; Martens, Jonathan; Marek, Aleš; Oomens, Jos; Tureček, František

    2016-07-01

    We report a combined experimental and computational study aimed at elucidating the structure of N-terminal fragment ions of the c type produced by electron transfer dissociation of photo-leucine (L*) peptide ions GL*GGKX. The c 4 ion from GL*GGK is found to retain an intact diazirine ring that undergoes selective photodissociation at 355 nm, followed by backbone cleavage. Infrared multiphoton dissociation action spectra point to the absence in the c 4 ion of a diazoalkane group that could be produced by thermal isomerization of vibrationally hot ions. The c 4 ion from ETD of GL*GGK is assigned an amide structure by a close match of the IRMPD action spectrum and calculated IR absorption. The energetics and kinetics of c 4 ion dissociations are discussed. Graphical Abstract ᅟ. PMID:27059977

  1. Photoleucine Survives Backbone Cleavage by Electron Transfer Dissociation. A Near-UV Photodissociation and Infrared Multiphoton Dissociation Action Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Shaffer, Christopher J.; Martens, Jonathan; Marek, Aleš; Oomens, Jos; Tureček, František

    2016-07-01

    We report a combined experimental and computational study aimed at elucidating the structure of N-terminal fragment ions of the c type produced by electron transfer dissociation of photo-leucine (L*) peptide ions GL*GGKX. The c 4 ion from GL*GGK is found to retain an intact diazirine ring that undergoes selective photodissociation at 355 nm, followed by backbone cleavage. Infrared multiphoton dissociation action spectra point to the absence in the c 4 ion of a diazoalkane group that could be produced by thermal isomerization of vibrationally hot ions. The c 4 ion from ETD of GL*GGK is assigned an amide structure by a close match of the IRMPD action spectrum and calculated IR absorption. The energetics and kinetics of c 4 ion dissociations are discussed.

  2. Synthesis, characterization and multi-spectroscopic DNA interaction studies of a new platinum complex containing the drug metformin

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Heidari, Leila

    2014-07-01

    A new platinum(II) complex; [Pt(Met)(DMSO)Cl]Cl in which Met = metformin and DMSO: dimethylsulfoxide, was synthesized and characterized by 1H NMR, IR, UV-Vis spectra, molar conductivity and computational methods. Binding interaction of this complex with calf thymus (CT) DNA has been investigated by using absorption, emission, circular dichroism, viscosity measurements, differential pulse voltammetry and cleavage studies by agarose gel electrophoresis. UV-Vis absorption studies showed hyperchromism. CD studies showed less perturbation on the base stacking and helicity bands in the CD spectrum of CT-DNA (B → C structural transition). In fluorimeteric studies, the Pt(II) complex can bind with DNA-NR complex and forms a new non-fluorescence adduct. The anodic peak current in the differential pulse voltammogram of the Pt(II) complex decreased gradually with the addition of DNA. Cleavage experiments showed that the Pt(II) complex does not induce any cleavage under the experimental setup. Finally all results indicated that Pt(II) complex interact with DNA via groove binding mode.

  3. Mass Spectrometry and Theoretical Studies on N-C Bond Cleavages in the N-Sulfonylamidino Thymine Derivatives

    NASA Astrophysics Data System (ADS)

    Kobetić, Renata; Kazazić, Snježana; Kovačević, Borislav; Glasovac, Zoran; Krstulović, Luka; Bajić, Miroslav; Žinić, Biserka

    2015-05-01

    The reactivity of new biologically active thymine derivatives substituted with 2-(arylsulfonamidino)ethyl group at N1 and N3 position was investigated in the gas phase using CID experiments (ESI-MS/MS) and by density functional theory (DFT) calculations. Both derivatives show similar chemistry in the negative mode with a retro-Michael addition (Path A-) being the most abundant reaction channel, which correlate well with the fluoride induced retro-Michael addition observed in solution. The difference in the fragmentation of N-3 substituted thymine 5 and N-1 substituted thymine 1 in the positive mode relates to the preferred cleavage of the sulfonyl group ( m/z 155, Path B) in N-3 isomer and the formation of the acryl sulfonamidine 3 ( m/z 309) via Path A in N-1 isomer. Mechanistic studies of the cleavage reaction conducted by DFT calculations give the trend of the calculated activation energies that agree well with the experimental observations. A mechanism of the retro-Michael reaction was interpreted as a McLafferty type of fragmentation, which includes Hβ proton shift to one of the neighboring oxygen atoms in a 1,5-fashion inducing N1(N3)-Cα bond scission. This mechanism was found to be kinetically favorable over other tested mechanisms. Significant difference in the observed fragmentation pattern of N-1 and N-3 isomers proves the ESI-MS/MS technique as an excellent method for tracking the fate of similar sulfonamidine drugs. Also, the observed N-1 and/or N-3 thymine alkylation with in situ formed reactive acryl sulfonamidine 3 as a Michael acceptor may open interesting possibilities for the preparation of other N-3 substituted pyrimidines.

  4. Double-stranded DNA-templated cleavage of oligonucleotides containing a P3'->N5' linkage triggered by triplex formation: the effects of chemical modifications and remarkable enhancement in reactivity.

    PubMed

    Ito, Kosuke Ramon; Kodama, Tetsuya; Tomizu, Masaharu; Negoro, Yoshinori; Orita, Ayako; Osaki, Tomohisa; Hosoki, Noritsugu; Tanaka, Takaya; Imanishi, Takeshi; Obika, Satoshi

    2010-11-01

    We recently reported double-stranded DNA-templated cleavage of oligonucleotides as a sequence-specific DNA-detecting method. In this method, triplex-forming oligonucleotides (TFOs) modified with 5'-amino-2',4'-BNA were used as a DNA-detecting probe. This modification introduced a P3'→N5' linkage (P-N linkage) in the backbone of the TFO, which was quickly cleaved under acidic conditions when it formed a triplex. The prompt fission of the P-N linkage was assumed to be driven by a conformational strain placed on the linkage upon triplex formation. Therefore, chemical modifications around the P-N linkage should change the reactivity by altering the microenvironment. We synthesized 5'-aminomethyl type nucleic acids, and incorporated them into TFOs instead of 5'-amino-2',4'-BNA to investigate the effect of 5'-elongation. In addition, 2',4'-BNA/LNA or 2',5'-linked DNA were introduced at the 3'- and/or 5'-neighboring residues of 5'-amino-2',4'-BNA to reveal neighboring residual effects. We evaluated the triplex stability and reaction properties of these TFOs, and found out that chemical modifications around the P-N linkage greatly affected their reaction properties. Notably, 2',5'-linked DNA at the 3' position flanking 5'-amino-2',4'-BNA brought significantly higher reactivity, and we succeeded in indicating that a TFO with this modification is promising as a DNA analysis tool. PMID:20615902

  5. Micromanipulation Study of DNA, DNA-protein Interactions, and Chromosomes

    NASA Astrophysics Data System (ADS)

    Marko, John F.

    2002-03-01

    Physical - and to a large degree mechanical - properties of nucleic acids and proteins are essential to their functions in living cells. Therefore understanding the micromechanics of biomolecules is important to understanding cell machinery. I will review the rapid progress that has been made over the last decade in studying physical properties of single DNA molecules using micromanipulation techniques, and the future research directions for this field. I will then discuss how our lab has started to study whole chromosomes from cells with micromanipulation techniques. I focus on the use of in-situ enzyme reactions to show that DNA itself is the contiguous load-bearing element of the folded chromosome.

  6. A new ternary copper(II) complex derived from 2-(2'-pyridyl)benzimidazole and glycylglycine: synthesis, characterization, DNA binding and cleavage, antioxidation and HSA interaction.

    PubMed

    Fu, Xia-Bing; Lin, Zi-Hua; Liu, Hai-Feng; Le, Xue-Yi

    2014-03-25

    A new ternary copper(II)-dipeptide complex [Cu(glygly)(HPB)(Cl)]⋅2H2O (glygly=glycylglycine anion, HPB=2-(2'-pyridyl)benzimidazole) has been synthesized and characterized. The DNA interaction of the complex was studied by spectroscopic methods, viscosity, and electrophoresis measurements. The antioxidant activity was also investigated using the pyrogallol autoxidation assay. Besides, the interaction of the complex with human serum albumin (HSA) in vitro was examined by multispectroscopic techniques. The complex partially intercalated to CT-DNA with a high binding constant (Kb=7.28×10(5) M(-1)), and cleaved pBR322 DNA efficiently via an oxidative mechanism in the presence of Vc, with the HO· and O2(-) as the active species, and the SOD as a promoter. Furthermore, the complex shows a considerable SOD-like activity with the IC50 value of 3.8386 μM. The complex exhibits desired binding affinity to HSA, in which hydrogen bond or vander Waals force played a major role. The alterations of HSA secondary structure induced by the complex were confirmed by UV-visible, CD, synchronous fluorescence and 3D fluorescence spectroscopy. PMID:24291450

  7. A new ternary copper(II) complex derived from 2-(2";-pyridyl)benzimidazole and glycylglycine: Synthesis, characterization, DNA binding and cleavage, antioxidation and HSA interaction

    NASA Astrophysics Data System (ADS)

    Fu, Xia-Bing; Lin, Zi-Hua; Liu, Hai-Feng; Le, Xue-Yi

    2014-03-01

    A new ternary copper(II)-dipeptide complex [Cu(glygly)(HPB)(Cl)]ṡ2H2O (glygly = glycylglycine anion, HPB = 2-(2";-pyridyl)benzimidazole) has been synthesized and characterized. The DNA interaction of the complex was studied by spectroscopic methods, viscosity, and electrophoresis measurements. The antioxidant activity was also investigated using the pyrogallol autoxidation assay. Besides, the interaction of the complex with human serum albumin (HSA) in vitro was examined by multispectroscopic techniques. The complex partially intercalated to CT-DNA with a high binding constant (Kb = 7.28 × 105 M-1), and cleaved pBR322 DNA efficiently via an oxidative mechanism in the presence of Vc, with the HO· and O2-rad as the active species, and the SOD as a promoter. Furthermore, the complex shows a considerable SOD-like activity with the IC50 value of 3.8386 μM. The complex exhibits desired binding affinity to HSA, in which hydrogen bond or vander Waals force played a major role. The alterations of HSA secondary structure induced by the complex were confirmed by UV-visible, CD, synchronous fluorescence and 3D fluorescence spectroscopy.

  8. Studies of DNA-carbon nanotube interactions

    NASA Astrophysics Data System (ADS)

    Hughes, Mary Elizabeth

    2008-10-01

    Recently a new biomaterial consisting of a DNA-wrapped single-walled carbon nanotube, and known as a DNA/SWNT, has been discovered. The possible applications of this hybrid are varied and range from genomic sequencing to nanoscale electronics to molecular delivery. The realization of these potential applications requires more knowledge about the microscopic properties of this material. In this thesis, I present studies of: the orientation of nucleobases on the nanotube sidewall; the sequence and length dependence of the DNA-nanotube interaction; and solution conditions to manipulate the DNA/SWNT hybrid. The measurement of the UV optical absorbance of DNA/SWNT and the nucleotide absorbance from DNA/SWNT provide the first experimental confirmation that DNA binds to nanotubes through pi-stacking. Because the hypochromic absorbance typical of pi-stacked structures are expected to occur primarily for DNA dipole transitions that lie along the axis of the optically anisotropic SWNTs, the absorbance changes following binding of DNA to the nanotubes reveals the preferred orientation assumed by each of the four bound nucleotides with respect to the nanotube's long axis. The first observations of pronounced sequence- and length-dependent variations in the binding between ssDNA and SWNTs in aqueous solution are presented. These observations rely on the discovery that there exists a range of DNA lengths able to hybridize with SWNTs that can nevertheless be dissociated at temperatures below the boiling point of water. Quantitative results comparing the isochronal dissociation temperatures and binding energies of DNA/SWNT composed of differing DNA sequences and lengths are given. These results indicate variability and complexity in the binding mechanism responsible for the stability of the hybrid system that transcends simple models based on the sum of independent base-nanotube interactions. Binding energies between a DNA base and nanotube (0.05 to 0.09 eV per base) are similar

  9. Synthesis, characterization, antimicrobial, DNA-cleavage and antioxidant activities of 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its metal complexes

    NASA Astrophysics Data System (ADS)

    Vivekanand, B.; Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2015-01-01

    Schiff base 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its Cu(II), Co(II), Ni(II), Zn(II) and Fe(III), complexes have been synthesized and characterized by elemental analysis, UV-Visible, IR, 1H NMR, 13C NMR and mass spectra, molar conductance, magnetic susceptibility, ESR and TGA data. The ligand and its metal complexes have been screened for their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, antifungal activity against Aspergillus niger and Aspergillus flavus in minimum inhibition concentration (MIC) by cup plate method respectively, antioxidant activity using 1,1-diphenyl-2-picryl hydrazyl (DPPH), which was compared with that of standard drugs vitamin-C and vitamin-E and DNA cleavage activity using calf-thymus DNA.

  10. Label-Free and Sensitive Fluorescent Detection of Sequence-Specific Single-Strand DNA Based on S1 Nuclease Cleavage Effects

    PubMed Central

    Guan, Zheng; Liu, Jinchuan; Bai, Wenhui; Lv, Zhenzhen; Jiang, Xiaoling; Yang, Shuming; Chen, Ailiang; Lv, Guiyuan

    2014-01-01

    The ability to detect sequence-specific single-strand DNA (ssDNA) in complex, contaminant-ridden samples, using a fluorescent method directly without a DNA extraction and PCR step could simplify the detection of pathogens in the field and in the clinic. Here, we have demonstrated a simple label-free sensing strategy to detect ssDNA by employing its complementary ssDNA, S1 nuclease and nucleic acid fluorescent dyes. Upon clearing away redundant complementary ssDNA and possibly mismatched double strand DNA by using S1 nuclease, the fluorescent signal-to-noise ratio could be increased dramatically. It enabled the method to be adaptable to three different types of DNA fluorescent dyes and the ability to detect target ssDNA in complex, multicomponent samples, like tissue homogenate. The method can distinguish a two-base mismatch from avian influenza A (H1N1) virus. Also, it can detect the appearance of 50 pM target ssDNA in 0.5 µg·mL−1 Lambda DNA, and 50 nM target ssDNA in 5 µg·mL−1 Lambda DNA or in tissue homogenate. It is facile and cost-effective, and could be easily extended to detect other ssDNA with many common nucleic acid fluorescent dyes. PMID:25285445

  11. Label-free and sensitive fluorescent detection of sequence-specific single-strand DNA based on S1 nuclease cleavage effects.

    PubMed

    Guan, Zheng; Liu, Jinchuan; Bai, Wenhui; Lv, Zhenzhen; Jiang, Xiaoling; Yang, Shuming; Chen, Ailiang; Lv, Guiyuan

    2014-01-01

    The ability to detect sequence-specific single-strand DNA (ssDNA) in complex, contaminant-ridden samples, using a fluorescent method directly without a DNA extraction and PCR step could simplify the detection of pathogens in the field and in the clinic. Here, we have demonstrated a simple label-free sensing strategy to detect ssDNA by employing its complementary ssDNA, S1 nuclease and nucleic acid fluorescent dyes. Upon clearing away redundant complementary ssDNA and possibly mismatched double strand DNA by using S1 nuclease, the fluorescent signal-to-noise ratio could be increased dramatically. It enabled the method to be adaptable to three different types of DNA fluorescent dyes and the ability to detect target ssDNA in complex, multicomponent samples, like tissue homogenate. The method can distinguish a two-base mismatch from avian influenza A (H1N1) virus. Also, it can detect the appearance of 50 pM target ssDNA in 0.5 µg · mL(-1) Lambda DNA, and 50 nM target ssDNA in 5 µg · mL(-1) Lambda DNA or in tissue homogenate. It is facile and cost-effective, and could be easily extended to detect other ssDNA with many common nucleic acid fluorescent dyes. PMID:25285445

  12. Photocytotoxicity and DNA cleavage activity of L-arg and L-lys Schiff base oxovanadium(IV) complexes having phenanthroline bases.

    PubMed

    Sasmal, Pijus K; Majumdar, Ritankar; Dighe, Rajan R; Chakravarty, Akhil R

    2010-08-14

    Oxovanadium(IV) complexes [VO(sal-argH)(B)]Cl (1-3) and [VO(sal-lysH)(B)]Cl (4-6), where sal-argH2 and sal-lysH2 are N-salicylidene-L-arginine and N-salicylidene-L-lysine Schiff bases and B is a phenanthroline base, viz. 1,10-phenanthroline (phen in 1 and 4); dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 2 and 5) and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 3 and 6), have been prepared, characterized and their DNA photocleavage activity studied. Complex 1, characterized by X-ray crystallography, shows the presence of a vanadyl group in V(IV)O3N3 coordination geometry with a tridentate Schiff base having a pendant guanidinium moiety and bidentate phen ligand. The complexes exhibit a d-d band at 715 nm in 20% DMF-Tris-HCl buffer. The complexes are redox active showing cathodic and anodic responses near -1.0 V and 0.85 V (vs. SCE) for the V(IV)-V(III) and V(V)-V(IV) couples, respectively, in DMF-Tris-HCl buffer. The complexes bind to calf thymus DNA giving Kb values in the range of 3.8 x 10(4) to 1.6 x 10(5) M(-1). Thermal denaturation and viscosity data suggest DNA groove binding nature of the complexes. The complexes do not show any "chemical nuclease" activity in dark in the presence of 3-mercaptopropionic acid or H2O2. The dpq and dppz complexes are efficient photocleavers of plasmid DNA in UV-A (365 nm) and red light (676 nm) via singlet oxygen pathway. The dppz complexes exhibit photocytotoxicity in HeLa cancer cells giving IC50 values of 15.4 microM for 3 and 17.5 microM for 6 in visible light while being non-toxic in dark giving IC50 values of >100 microM. PMID:20563340

  13. Molecular dynamics study displays near in-line attack conformations in the hammerhead ribozyme self-cleavage reaction

    PubMed Central

    Torres, Rhonda A.; Bruice, Thomas C.

    1998-01-01

    We have performed molecular dynamics (MD) calculations by using one of the recently solved crystal structures of a hammerhead ribozyme. By rotating the α, β, γ, δ, ɛ, and ζ torsion angles of the phosphate linkage of residue 17, the nucleobase at the cleavage site was slightly rotated out of the active site toward the solution. Unconstrained MD simulations exceeding 1 ns were performed on this starting structure solvated in water with explicit counter ions and two Mg2+ ions at the active site. Our results reveal that near attack conformations consistently were formed in the simulation. These near attack conformations are characterized by assumption of the 2′-hydroxyl to a near in-line position for attack on the -O-(PO2−)-O- phosphorous. Also during the time course of the MD study, one Mg2+ moved immediately to associate with a pro-R phosphate oxygen in the conserved core region, and the second Mg2+ remained associated with the pro-R oxygen on the phosphate linkage undergoing hydrolysis. These results are in accord with a one-metal ion mechanism of catalysis and give insight into the possible roles of many of the conserved residues in the ribozyme. PMID:9736692

  14. Mapping Homing Endonuclease Cleavage Sites Using In Vitro Generated Protein

    PubMed Central

    Belfort, Marlene

    2015-01-01

    Mapping the precise position of endonucleolytic cleavage sites is a fundamental experimental technique used to describe the function of a homing endonuclease. However, these proteins are often recalcitrant to cloning and over-expression in biological systems because of toxicity induced by spurious DNA cleavage events. In this chapter we outline the steps to successfully express a homing endonuclease in vitro and use this product in nucleotide-resolution cleavage assays. PMID:24510259

  15. Simple Bond Cleavage

    SciTech Connect

    Gary S. Groenewold

    2005-08-01

    Simple bond cleavage is a class of fragmentation reactions in which a single bond is broken, without formation of new bonds between previously unconnected atoms. Because no bond making is involved, simple bond cleavages are endothermic, and activation energies are generally higher than for rearrangement eliminations. The rate of simple bond cleavage reactions is a strong function of the internal energy of the molecular ion, which reflects a loose transition state that resembles reaction products, and has a high density of accessible states. For this reason, simple bond cleavages tend to dominate fragmentation reactions for highly energized molecular ions. Simple bond cleavages have negligible reverse activation energy, and hence they are used as valuable probes of ion thermochemistry, since the energy dependence of the reactions can be related to the bond energy. In organic mass spectrometry, simple bond cleavages of odd electron ions can be either homolytic or heterolytic, depending on whether the fragmentation is driven by the radical site or the charge site. Simple bond cleavages of even electron ions tend to be heterolytic, producing even electron product ions and neutrals.

  16. Recovery of the poisoned topoisomerase II for DNA religation: coordinated motion of the cleavage core revealed with the microsecond atomistic simulation

    PubMed Central

    Huang, Nan-Lan; Lin, Jung-Hsin

    2015-01-01

    Type II topoisomerases resolve topological problems of DNA double helices by passing one duplex through the reversible double-stranded break they generated on another duplex. Despite the wealth of information in the cleaving operation, molecular understanding of the enzymatic DNA ligation remains elusive. Topoisomerase poisons are widely used in anti-cancer and anti-bacterial therapy and have been employed to entrap the intermediates of topoisomerase IIβ with religatable DNA substrate. We removed drug molecules from the structure and conducted molecular dynamics simulations to investigate the enzyme-mediated DNA religation. The drug-unbound intermediate displayed transitions toward the resealing-compliant configuration: closing distance between the cleaved DNA termini, B-to-A transformation of the double helix, and restoration of the metal-binding motif. By mapping the contact configurations and the correlated motions between enzyme and DNA, we identified the indispensable role of the linker preceding winged helix domain (WHD) in coordinating the movements of TOPRIM, the nucleotide-binding motifs, and the bound DNA substrate during gate closure. We observed a nearly vectorial transition in the recovery of the enzyme and identified the previously uncharacterized roles of Asn508 and Arg677 in DNA rejoining. Our findings delineate the dynamic mechanism of the DNA religation conducted by type II topoisomerases. PMID:26150421

  17. Effect of sociocultural cleavage on genetic differentiation: a study from North India.

    PubMed

    Khan, Faisal; Pandey, Atul Kumar; Borkar, Meenal; Tripathi, Manorma; Talwar, Sudha; Bisen, P S; Agrawal, Suraksha

    2008-06-01

    Indian populations possess an exclusive genetic profile primarily due to the many migratory events, which caused an extensive range of genetic diversity, and also due to stringent and austere sociocultural barriers that structure these populations into different endogamous groups. In the present study we attempt to explore the genetic relationships between various endogamous North Indian populations and to determine the effect of stringent social regulations on their gene pool. Twenty STR markers were genotyped in 1,800 random North Indians from 9 endogamous populations belonging to upper-caste and middle-caste Hindus and Muslims. All nine populations had high allelic diversity (176 alleles) and average observed heterozygosity (0.742 +/- 0.06), suggesting strong intrapopulation diversity. The average F(ST) value over all loci was as low as 0.0084. However, within-group F(ST) and genetic distance analysis showed that populations of the same group were genetically closer to each other. The genetic distance of Muslims from middle castes (F(ST) = 0.0090; DA = 0.0266) was significantly higher than that of Muslims from upper castes (F(ST) = 0.0050; DA = 0.0148). Phylogenetic trees (neighbor-joining and maximum-likelihood) show the basal cluster pattern of three clusters corresponding to Muslims, upper-caste, and middle-caste populations, with Muslims clustered with upper-caste populations. Based on the results, we conclude that the extensive gene flow through a series of migrations and invasions has created an enormous amount of genetic diversity. The interpopulation differences are minimal but have a definite pattern, in which populations of different socioreligious groups have more genetic similarity within the same group and are genetically more distant from populations of other groups. Finally, North Indian Muslims show a differential genetic relationship with upper- and middle-caste populations. PMID:19130797

  18. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  19. Cleavage of nucleic acids

    SciTech Connect

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  20. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  1. Rottlerin potentiates camptothecin-induced cytotoxicity in human hormone refractory prostate cancers through increased formation and stabilization of topoisomerase I-DNA cleavage complexes in a PKCδ-independent pathway

    PubMed Central

    Hsu, Jui-Ling; Ho, Yunn-Fang; Li, Tsai-Kun; Chen, Ching-Shih; Hsu, Lih-Ching; Guh, Jih-Hwa

    2014-01-01

    Combination therapy, which can optimize killing activity to cancers and minimize drug resistance, is a mainstream therapy against hormone-refractory prostate cancers (HRPCs). Rottlerin, a natural polyphenolic component, synergistically increased PC-3 (a HRPC cell line) apoptosis induced by camptothecin (a topoisomerase I inhibitor). Using siRNA technique to knockdown protein kinase C-δ (PKCδ), the data showed that rottlerin-mediated synergistic effect was PKCδ-independent, although rottlerin has been used as a PKCδ inhibitor. Rottlerin potentiated camptothecin-induced DNA fragmentation at S phase and ATM phosphorylation at Ser1981. The effect was correlated to apoptosis (r2 = 0.9). To detect upstream signals, the data showed that camptothecin acted on and stabilized topoisomerase I-DNA complex, leading to the formation of camptothecin-trapped cleavage complexes (TOP1cc). The effect was potentiated by rottlerin. To determine DNA repair capability, the time-related γH2A.X formation was examined after camptothecin removal. Consequently, rottlerin significantly inhibited camptothecin removal-mediated decline of γH2A.X formation at S phase, indicating the impairment of DNA repair activity in the presence of rottlerin. The combinatory treatment of camptothecin and rottlerin induced conformational change and activation of Bax and formation of truncated Bad, suggesting the contribution of mitochondria stress to apoptosis. In summary, the data suggest that rottlerin-mediated camptothecin sensitization is through the augmented stabilization of TOP1cc, leading to an increase of DNA damage stress and, possibly, an impairment of DNA repair capability. Subsequently, mitochondria-involved apoptosis is triggered through Bax activation and truncated Bad formation. The novel discovery may provide an anticancer approach of combinatory use between rottlerin and camptothecin for the treatment of HRPCs. PMID:22490701

  2. Double-stranded DNA-templated cleavage of oligonucleotides containing a P3′→N5′ linkage triggered by triplex formation: the effects of chemical modifications and remarkable enhancement in reactivity

    PubMed Central

    Ito, Kosuke Ramon; Kodama, Tetsuya; Tomizu, Masaharu; Negoro, Yoshinori; Orita, Ayako; Osaki, Tomohisa; Hosoki, Noritsugu; Tanaka, Takaya; Imanishi, Takeshi; Obika, Satoshi

    2010-01-01

    We recently reported double-stranded DNA-templated cleavage of oligonucleotides as a sequence-specific DNA-detecting method. In this method, triplex-forming oligonucleotides (TFOs) modified with 5′-amino-2′,4′-BNA were used as a DNA-detecting probe. This modification introduced a P3′→N5′ linkage (P–N linkage) in the backbone of the TFO, which was quickly cleaved under acidic conditions when it formed a triplex. The prompt fission of the P–N linkage was assumed to be driven by a conformational strain placed on the linkage upon triplex formation. Therefore, chemical modifications around the P–N linkage should change the reactivity by altering the microenvironment. We synthesized 5′-aminomethyl type nucleic acids, and incorporated them into TFOs instead of 5′-amino-2′,4′-BNA to investigate the effect of 5′-elongation. In addition, 2′,4′-BNA/LNA or 2′,5′-linked DNA were introduced at the 3′- and/or 5′-neighboring residues of 5′-amino-2′,4′-BNA to reveal neighboring residual effects. We evaluated the triplex stability and reaction properties of these TFOs, and found out that chemical modifications around the P–N linkage greatly affected their reaction properties. Notably, 2′,5′-linked DNA at the 3′ position flanking 5′-amino-2′,4′-BNA brought significantly higher reactivity, and we succeeded in indicating that a TFO with this modification is promising as a DNA analysis tool. PMID:20615902

  3. DNA hydration studied by neutron fiber diffraction

    SciTech Connect

    Fuller, W.; Forsyth, V.T.; Mahendrasingam, A.; Langan, P.; Pigram, W.J.

    1994-12-31

    The development of neutron high angle fiber diffraction to investigate the location of water around the deoxyribonucleic acid (DNA) double-helix is described. The power of the technique is illustrated by its application to the D and A conformations of DNA using the single crystal diffractometer, D19, at the Institute Laue-Langevin, Grenoble and the time of flight diffractometer, SXD, at the Rutherford Appleton ISIS Spallation Neutron Source. These studies show the existence of bound water closely associated with the DNA. The patterns of hydration in these two DNA conformations are quite distinct and are compared to those observed in X-ray single crystal studies of two-stranded oligodeoxynucleotides. Information on the location of water around the DNA double-helix from the neutron fiber diffraction studies is combined with that on the location of alkali metal cations from complementary X-ray high angle fiber diffraction studies at the Daresbury Laboratory SRS using synchrotron radiation. These analyses emphasize the importance of viewing DNA, water and ions as a single system with specific interactions between the three components and provide a basis for understanding the effect of changes in the concentration of water and ions in inducing conformations] transitions in the DNA double-helix.

  4. ARTEMIS nuclease facilitates apoptotic chromatin cleavage.

    PubMed

    Britton, Sébastien; Frit, Philippe; Biard, Denis; Salles, Bernard; Calsou, Patrick

    2009-10-15

    One hallmark of apoptosis is DNA degradation that first appears as high molecular weight fragments followed by extensive internucleosomal fragmentation. During apoptosis, the DNA-dependent protein kinase (DNA-PK) is activated. DNA-PK is involved in the repair of DNA double-strand breaks (DSB) and its catalytic subunit is associated with the nuclease ARTEMIS. Here, we report that, on initiation of apoptosis in human cells by agents causing DNA DSB or by staurosporine or other agents, ARTEMIS binds to apoptotic chromatin together with DNA-PK and other DSB repair proteins. ARTEMIS recruitment to chromatin showed a time and dose dependency. It required DNA-PK protein kinase activity and was blocked by antagonizing the onset of apoptosis with a pan-caspase inhibitor or on overexpression of the antiapoptotic BCL2 protein. In the absence of ARTEMIS, no defect in caspase-3, poly(ADP-ribose) polymerase-1, and XRCC4 cleavage or in H2AX phosphorylation was observed and DNA-PK catalytic subunit was still phosphorylated on S2056 in response to staurosporine. However, DNA fragmentation including high molecular weight fragmentation was delayed in ARTEMIS-deficient cells compared with cells expressing ARTEMIS. In addition, ARTEMIS enhanced the kinetics of MLL gene cleavage at a breakage cluster breakpoint that is frequently translocated in acute or therapy-related leukemias. These results show a facilitating role for ARTEMIS at least in early, site-specific chromosome breakage during apoptosis. PMID:19808974

  5. Fluorescence spectroscopic studies of DNA dynamics

    SciTech Connect

    Scalettar, B.A.

    1987-04-01

    Random solvent induced motions of DNA are manifest as nanosecond torsional oscillations of the helix backbone, nanosecond through millisecond bending deformations and overall rotational and translational diffusion of the polymer. Fluorescence spectroscopy is used to study this spectrum of DNA motions while ethidium monoazide was covalently bounded. The steady state fluorescence depolarization data indicate that the covalent monoazide/DNA complex exhibits internal motions characterized by an average angular amplitude of 26 degrees confirming reports of fast torsional oscillations in noncovalent ethidium bromide/DNA systems. Data obtained by use of a new polarized photobleaching recovery technique (FPR) reflect both the rotational dynamics of the polymer and the reversible photochemistry of the dye. To isolate the reorientational motion of the DNA, the FPR experiments were ran in two modes that differ only in the polarization of the bleaching light. A quotient function constructed from the data obtained in these two modes monitors only the rotational component of the FPR recovery. In specific applications those bending deformations of long DNA molecules that have characteristic relaxation times on the order of 100 microseconds have been resolved. A fluorescence correlation technique that relates fluctuations in particle number to center-of-mass motion was used to measure translational diffusion on coefficients of the plasmid PBR322 and a short oligomeric DNA. A theory that describes angular correlation in systems exhibiting cyclic, biologically directed reorientation and random Brownian rotation is developed.

  6. HMG-box domain stimulation of RAG1/2 cleavage activity is metal ion dependent

    PubMed Central

    Kriatchko, Aleksei N; Bergeron, Serge; Swanson, Patrick C

    2008-01-01

    Background RAG1 and RAG2 initiate V(D)J recombination by assembling a synaptic complex with a pair of antigen receptor gene segments through interactions with their flanking recombination signal sequence (RSS), and then introducing a DNA double-strand break at each RSS, separating it from the adjacent coding segment. While the RAG proteins are sufficient to mediate RSS binding and cleavage in vitro, these activities are stimulated by the architectural DNA binding and bending factors HMGB1 and HMGB2. Two previous studies (Bergeron et al., 2005, and Dai et al., 2005) came to different conclusions regarding whether only one of the two DNA binding domains of HMGB1 is sufficient to stimulate RAG-mediated binding and cleavage of naked DNA in vitro. Here we test whether this apparent discrepancy is attributed to the choice of divalent metal ion and the concentration of HMGB1 used in the cleavage reaction. Results We show here that single HMG-box domains of HMGB1 stimulate RAG-mediated RSS cleavage in a concentration-dependent manner in the presence of Mn2+, but not Mg2+. Interestingly, the inability of a single HMG-box domain to stimulate RAG-mediated RSS cleavage in Mg2+ is overcome by the addition of partner RSS to promote synapsis. Furthermore, we show that mutant forms of HMGB1 which otherwise fail to stimulate RAG-mediated RSS cleavage in Mg2+ can be substantially rescued when Mg2+ is replaced with Mn2+. Conclusion The conflicting data published previously in two different laboratories can be substantially explained by the choice of divalent metal ion and abundance of HMGB1 in the cleavage reaction. The observation that single HMG-box domains can promote RAG-mediated 23-RSS cleavage in Mg2+ in the presence, but not absence, of partner RSS suggests that synaptic complex assembly in vitro is associated with conformational changes that alter how the RAG and/or HMGB1 proteins bind and bend DNA in a manner that functionally replaces the role of one of the HMG-box domains

  7. 2-Alkynyl-N-propargyl pyridinium salts: pyridinium-based heterocyclic skipped aza-enediynes that cleave DNA by deoxyribosyl hydrogen-atom abstraction and guanine oxidation.

    PubMed

    Tuesuwan, Bodin; Kerwin, Sean M

    2006-06-13

    Diradical-generating cyclizations such as the enediyne Bergman cyclization and the enyne allene Myers-Saito cyclization have been exploited by nature in the mechanism of DNA cleavage by a series of potent antitumor antibiotics. Alternative diradical-generating cyclizations have been proposed in the design of selective antitumor agents; however, little information is available concerning the utility of these alternative cyclizations in radical-based DNA cleavage chemistry. One such alternative diradical-generating cyclization, the aza-Myers-Saito cyclization of aza-enyne allenes that are derived from base-promoted isomerization of skipped aza-enediynes, has been recently reported. Here, we report the synthesis and DNA cleavage chemistry of a series of pyridinium skipped aza-enediynes (2-alkynyl-N-propargyl pyridinium salts). Efficient DNA cleavage requires the presence of the skipped aza-enediyne functionality, and optimal DNA cleavage occurs at basic pH. Within this series of compounds, the analogue bearing a p-methoxyphenyl group on the pyridinium 2-alkyne substituents was found to be the most effective DNA cleavage agent, displaying significant supercoiled DNA-nicking activity at concentrations as low as 1 microM. Detailed studies of this analogue show that DNA cleavage occurs through 4'-hydrogen-atom abstraction from the DNA backbone and oxidation of guanine bases. This is the first report of enediyne-like radical-based DNA cleavage by an agent designed to undergo an alternative diradical-generating cyclization. PMID:16752915

  8. Insights into the Reaction Mechanism of Aromatic Ring Cleavage by Homogentisate Dioxygenase: A Quantum Mechanical/Molecular Mechanical Study.

    PubMed

    Qi, Yue; Lu, Jiarui; Lai, Wenzhen

    2016-05-26

    To elucidate the reaction mechanism of the ring cleavage of homogentisate by homogentisate dioxygenase, quantum mechanical/molecular mechanical (QM/MM) calculations were carried out by using two systems in different protonation states of the substrate C2 hydroxyl group. When the substrate C2 hydroxyl group is ionized (the ionized pathway), the superoxo attack on the substrate is the rate-limiting step in the catalytic cycle, with a barrier of 15.9 kcal/mol. Glu396 was found to play an important role in stabilizing the bridge species and its O-O cleavage product by donating a proton via a hydrogen-bonded water molecule. When the substrate C2 hydroxyl group is not ionized (the nonionized pathway), the O-O bond cleavage of the bridge species is the rate-limiting step, with a barrier of 15.3 kcal/mol. The QM/MM-optimized geometries for the dioxygen and alkylperoxo complexes using the nonionized model (for the C2 hydroxyl group) are in agreement with the experimental crystal structures, suggesting that the C2 hydroxyl group is more likely to be nonionized. PMID:27119315

  9. The Relationship between Cell Number, Division Behavior and Developmental Potential of Cleavage Stage Human Embryos: A Time-Lapse Study

    PubMed Central

    Gong, Fei; Lu, Changfu; Zhang, Shuoping; Lu, Guangxiu; Lin, Ge

    2016-01-01

    Day 3 cleavage embryo transfer is routine in many assisted reproductive technology centers today. Embryos are usually selected according to cell number, cell symmetry and fragmentation for transfer. Many studies have showed the relationship between cell number and embryo developmental potential. However, there is limited understanding of embryo division behavior and their association with embryo cell number and developmental potential. A retrospective and observational study was conducted to investigate how different division behaviors affect cell number and developmental potential of day 3 embryos by time-lapse imaging. Based on cell number at day 3, the embryos (from 104 IVF/intracytoplasmic sperm injection (ICSI) treatment cycles, n = 799) were classified as follows: less than 5 cells (< 5C; n = 111); 5–6 cells (5–6C; n = 97); 7–8 cells (7–8C; n = 442), 9–10 cells (9–10C; n = 107) and more than 10 cells (>10C; n = 42). Division behavior, morphokinetic parameters and blastocyst formation rate were analyzed in 5 groups of day 3 embryos with different cell numbers. In <5C and 5–6C embryos, fragmentation (FR; 62.2% and 30.9%, respectively) was the main cause for low cell number. The majority of 7–8C embryos exhibited obvious normal behaviors (NB; 85.7%) during development. However, the incidence of DC in 9–10C and >10C embryos increased compared to 7–8C embryos (45.8%, 33.3% vs. 11.1%, respectively). In ≥5C embryos, FR and DC significantly reduced developmental potential, whereas <5C embryos showed little potential irrespective of division behaviors. In NB embryos, the blastocyst formation rate increased with cell number from 7.4% (<5C) to 89.3% (>10C). In NB embryos, the cell cycle elongation or shortening was the main cause for abnormally low or high cell number, respectively. After excluding embryos with abnormal division behaviors, the developmental potential, implantation rate and live birth rate of day 3 embryos increased with cell number

  10. Requirement for End-Joining and Checkpoint Functions, but Not RAD52-Mediated Recombination, after EcoRI Endonuclease Cleavage of Saccharomyces cerevisiae DNA

    PubMed Central

    Lewis, L. Kevin; Kirchner, Jakob M.; Resnick, Michael A.

    1998-01-01

    RAD52 and RAD9 are required for the repair of double-strand breaks (DSBs) induced by physical and chemical DNA-damaging agents in Saccharomyces cerevisiae. Analysis of EcoRI endonuclease expression in vivo revealed that, in contrast to DSBs containing damaged or modified termini, chromosomal DSBs retaining complementary ends could be repaired in rad52 mutants and in G1-phase Rad+ cells. Continuous EcoRI-induced scission of chromosomal DNA blocked the growth of rad52 mutants, with most cells arrested in G2 phase. Surprisingly, rad52 mutants were not more sensitive to EcoRI-induced cell killing than wild-type strains. In contrast, endonuclease expression was lethal in cells deficient in Ku-mediated end joining. Checkpoint-defective rad9 mutants did not arrest cell cycling and lost viability rapidly when EcoRI was expressed. Synthesis of the endonuclease produced extensive breakage of nuclear DNA and stimulated interchromosomal recombination. These results and those of additional experiments indicate that cohesive ended DSBs in chromosomal DNA can be accurately repaired by RAD52-mediated recombination and by recombination-independent complementary end joining in yeast cells. PMID:9528760

  11. Physical map of polyoma viral DNA fragments produced by cleavage with a restriction enzyme from Haemophilus aegyptius, endonuclease R-HaeIII.

    PubMed Central

    Summers, J

    1975-01-01

    Digestion of polyoma viral DNA with a restriction enzyme from Haemophilus aegyptius generates at least 22 unique fragments. The fragments have been characterized with respect to size and physical order on the polyoma genome, and the 5' to 3' orientation of the (+) and (-) strands has been determined. A method for specific radiolabeling of adjacent fragments was employed to establish the fragment order. This technique may be useful for ordering the fragments produced by digestion of complex DNAs. Images PMID:163927

  12. Self-assembly Controls Self-cleavage of HHR from ASBVd (−): a Combined SANS and Modeling Study

    PubMed Central

    Leclerc, Fabrice; Zaccai, Giuseppe; Vergne, Jacques; Řìhovà, Martina; Martel, Anne; Maurel, Marie-Christine

    2016-01-01

    In the Avocado Sunblotch Viroid (ASBVd: 249-nt) from the Avsunviroidae family, a symmetric rolling-circle replication operates through an autocatalytic mechanism mediated by hammerhead ribozymes (HHR) embedded in both polarity strands. The concatenated multimeric ASBVd (+) and ASBVd (−) RNAs thus generated are processed by cleavage to unit-length where ASBVd (−) self-cleaves with more efficiency. Absolute scale small angle neutron scattering (SANS) revealed a temperature-dependent dimer association in both ASBVd (−) and its derived 79-nt HHR (−). A joint thermodynamic analysis of SANS and catalytic data indicates the rate-determining step corresponds to the dimer/monomer transition. 2D and 3D models of monomeric and dimeric HHR (−) suggest that the inter-molecular contacts stabilizing the dimer (between HI and HII domains) compete with the intra-molecular ones stabilizing the active conformation of the full-length HHR required for an efficient self-cleavage. Similar competing intra- and inter-molecular contacts are proposed in ASBVd (−) though with a remoter region from an extension of the HI domain. PMID:27456224

  13. Self-assembly Controls Self-cleavage of HHR from ASBVd (-): a Combined SANS and Modeling Study.

    PubMed

    Leclerc, Fabrice; Zaccai, Giuseppe; Vergne, Jacques; Řìhovà, Martina; Martel, Anne; Maurel, Marie-Christine

    2016-01-01

    In the Avocado Sunblotch Viroid (ASBVd: 249-nt) from the Avsunviroidae family, a symmetric rolling-circle replication operates through an autocatalytic mechanism mediated by hammerhead ribozymes (HHR) embedded in both polarity strands. The concatenated multimeric ASBVd (+) and ASBVd (-) RNAs thus generated are processed by cleavage to unit-length where ASBVd (-) self-cleaves with more efficiency. Absolute scale small angle neutron scattering (SANS) revealed a temperature-dependent dimer association in both ASBVd (-) and its derived 79-nt HHR (-). A joint thermodynamic analysis of SANS and catalytic data indicates the rate-determining step corresponds to the dimer/monomer transition. 2D and 3D models of monomeric and dimeric HHR (-) suggest that the inter-molecular contacts stabilizing the dimer (between HI and HII domains) compete with the intra-molecular ones stabilizing the active conformation of the full-length HHR required for an efficient self-cleavage. Similar competing intra- and inter-molecular contacts are proposed in ASBVd (-) though with a remoter region from an extension of the HI domain. PMID:27456224

  14. Self-assembly Controls Self-cleavage of HHR from ASBVd (‑): a Combined SANS and Modeling Study

    NASA Astrophysics Data System (ADS)

    Leclerc, Fabrice; Zaccai, Giuseppe; Vergne, Jacques; Řìhovà, Martina; Martel, Anne; Maurel, Marie-Christine

    2016-07-01

    In the Avocado Sunblotch Viroid (ASBVd: 249-nt) from the Avsunviroidae family, a symmetric rolling-circle replication operates through an autocatalytic mechanism mediated by hammerhead ribozymes (HHR) embedded in both polarity strands. The concatenated multimeric ASBVd (+) and ASBVd (‑) RNAs thus generated are processed by cleavage to unit-length where ASBVd (‑) self-cleaves with more efficiency. Absolute scale small angle neutron scattering (SANS) revealed a temperature-dependent dimer association in both ASBVd (‑) and its derived 79-nt HHR (‑). A joint thermodynamic analysis of SANS and catalytic data indicates the rate-determining step corresponds to the dimer/monomer transition. 2D and 3D models of monomeric and dimeric HHR (‑) suggest that the inter-molecular contacts stabilizing the dimer (between HI and HII domains) compete with the intra-molecular ones stabilizing the active conformation of the full-length HHR required for an efficient self-cleavage. Similar competing intra- and inter-molecular contacts are proposed in ASBVd (‑) though with a remoter region from an extension of the HI domain.

  15. DNA-binding, cytotoxicity, cellular uptake, apoptosis and photocleavage studies of Ru(II) complexes.

    PubMed

    N Deepika; C Shobha Devi; Y Praveen Kumar; K Laxma Reddy; P Venkat Reddy; D Anil Kumar; Surya S Singh; S Satyanarayana

    2016-07-01

    Two Ru(II) complexes [Ru(phen)2bppp](ClO4)2 (1) and [Ru(phen)27-Br-dppz](ClO4)2 (2) [phen=1,10 phenanthroline, 7-Br-dppz=7-fluorodipyrido[3,2-a:2',3'-c]phenazine, bppp=11-bromo-pyrido[2',3':5,6]pyrazino[2,3-f] [1,10]phenanthroline] have been synthesized and characterized by elemental analysis, ES-MS, (1)H-NMR, (13)C-NMR and IR. The in vitro cytotoxicity of the complexes examined against a panel of cancer cell lines (HeLa, Du145 and A549) by MTT method, both complexes show prominent anticancer activity against various cancer cells. Live cell imaging study and flow cytometric analysis demonstrate that both the complexes 1 and 2 could cross the cell membrane accumulating in the nucleus. Further, flow cytometry experiments showed that the cytotoxic Ru(II) complexes 1 and 2 induced apoptosis of HeLa tumor cell lines. Photo induced DNA cleavage studies have been performed and results indicate that both the complexes efficiently photo cleave pBR322 DNA. The binding properties of two complexes toward CT-DNA were investigated by various optical methods and viscosity measurements. The experimental results suggested that both Ru(II) complexes can intercalate into DNA base pairs. The complexes were docked into DNA-base pairs using the GOLD docking program. PMID:27107334

  16. Solvent influence on cellulose 1,4-β-glycosidic bond cleavage: a molecular dynamics and metadynamics study.

    PubMed

    Loerbroks, Claudia; Boulanger, Eliot; Thiel, Walter

    2015-03-27

    We explore the influence of two solvents, namely water and the ionic liquid 1-ethyl-3-methylimidazolium acetate (EmimAc), on the conformations of two cellulose models (cellobiose and a chain of 40 glucose units) and the solvent impact on glycosidic bond cleavage by acid hydrolysis by using molecular dynamics and metadynamics simulations. We investigate the rotation around the glycosidic bond and ring puckering, as well as the anomeric effect and hydrogen bonds, in order to gauge the effect on the hydrolysis mechanism. We find that EmimAc eases hydrolysis through stronger solvent-cellulose interactions, which break structural and electronic barriers to hydrolysis. Our results indicate that hydrolysis in cellulose chains should start from the ends and not in the centre of the chain, which is less accessible to solvent. PMID:25689773

  17. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system

    PubMed Central

    Liu, Xiaoxi; Homma, Ayaka; Sayadi, Jamasb; Yang, Shu; Ohashi, Jun; Takumi, Toru

    2016-01-01

    The CRISPR-Cas9 system has recently emerged as a versatile tool for biological and medical research. In this system, a single guide RNA (sgRNA) directs the endonuclease Cas9 to a targeted DNA sequence for site-specific manipulation. In addition to this targeting function, the sgRNA has also been shown to play a role in activating the endonuclease activity of Cas9. This dual function of the sgRNA likely underlies observations that different sgRNAs have varying on-target activities. Currently, our understanding of the relationship between sequence features of sgRNAs and their on-target cleavage efficiencies remains limited, largely due to difficulties in assessing the cleavage capacity of a large number of sgRNAs. In this study, we evaluated the cleavage activities of 218 sgRNAs using in vitro Surveyor assays. We found that nucleotides at both PAM-distal and PAM-proximal regions of the sgRNA are significantly correlated with on-target efficiency. Furthermore, we also demonstrated that the genomic context of the targeted DNA, the GC percentage, and the secondary structure of sgRNA are critical factors contributing to cleavage efficiency. In summary, our study reveals important parameters for the design of sgRNAs with high on-target efficiencies, especially in the context of high throughput applications. PMID:26813419

  18. Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study.

    PubMed

    Kaminski, R; Bella, R; Yin, C; Otte, J; Ferrante, P; Gendelman, H E; Li, H; Booze, R; Gordon, J; Hu, W; Khalili, K

    2016-08-01

    A CRISPR/Cas9 gene editing strategy has been remarkable in excising segments of integrated HIV-1 DNA sequences from the genome of latently infected human cell lines and by introducing InDel mutations, suppressing HIV-1 replication in patient-derived CD4+ T-cells, ex vivo. Here, we employed a short version of the Cas9 endonuclease, saCas9, together with a multiplex of guide RNAs (gRNAs) for targeting the viral DNA sequences within the 5'-LTR and the Gag gene for removing critically important segments of the viral DNA in transgenic mice and rats encompassing the HIV-1 genome. Tail-vein injection of transgenic mice with a recombinant Adeno-associated virus 9 (rAAV9) vector expressing saCas9 and the gRNAs, rAAV:saCas9/gRNA, resulted in the cleavage of integrated HIV-1 DNA and excision of a 978 bp DNA fragment spanning between the LTR and Gag gene in the spleen, liver, heart, lung and kidney as well as in the circulating lymphocytes. Retro-orbital inoculation of rAAV9:saCas9/gRNA in transgenic rats eliminated a targeted segment of viral DNA and substantially decreased the level of viral gene expression in circulating blood lymphocytes. The results from the proof-of-concept studies, for the first time, demonstrate the in vivo eradication of HIV-1 DNA by CRISPR/Cas9 on delivery by an rAAV9 vector in a range of cells and tissues that harbor integrated copies of viral DNA. PMID:27194423

  19. Fluorescence "turn-on" determination of H2O2 using multilayer porous SiO2/NGQDs and PdAu mimetics enzymatic/oxidative cleavage of single-stranded DNA.

    PubMed

    Liang, Linlin; Lan, Feifei; Li, Li; Su, Min; Ge, Shenguang; Yu, Jinghua; Liu, Haiyun; Yan, Mei

    2016-08-15

    A 3D microfluidic paper-based fluorescence analytical device with hollow channels based on the turn-on switching of a resonance energy transfer triggered by the •OH induced cleavage of a DNA strand was successfully constructed. And this fluorescent nanoplatform was first designed to achieve in situ and real-time determination of H2O2 released from cancer cells to obtain an accurate determination. With optimal conditions, the proposed method displayed excellent analytical performance for the detection of H2O2 ranging from 0.3 to 1.0mM with a detection limit of 0.1nM. The favorable performances of this sensor were due to the peroxidase-like activity of nitrogen-doped graphene quantum dots (multilayer porous SiO2 act as stabilizer to load more nitrogen-doped graphene quantum dots for signal amplification) and folic acid-pPdAu/GO (which also could act as an efficient fluorescence quencher and a recognition element of cancer cells by folic acid). It was worth noting that it could be used for visually determined the flux of H2O2 from the cells. Therefore, the developed biosensor holds potential for ultrasensitive quantitative analysis of H2O2 and supplies valuable information for diabetes mellitus research and clinical diagnosis. PMID:27085952

  20. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis

    PubMed Central

    Mukherjee, Anirban; Vasquez, Karen M.

    2012-01-01

    Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences. PMID:21501652

  1. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis.

    PubMed

    Mukherjee, Anirban; Vasquez, Karen M

    2011-08-01

    Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences. PMID:21501652

  2. Co(III) and Ni(II) Complexes Containing Bioactive Ligands: Synthesis, DNA Binding, and Photocleavage Studies

    PubMed Central

    Prabhakara, M. C.; Basavaraju, B.; Naik, H. S. Bhojya

    2007-01-01

    DNA binding and photocleavage characteristics of a series of mixed ligand complexes of the type [M(bpy)2qbdp](PF6)n·xH2O (where M = Co(III) or Ni(II), bpy = 2.2′-bipryidine, qbdp = Quinolino[3,2-b]benzodiazepine, n = 3 or 2 and x = 5 or 2) have been investigated. The DNA binding property of the complexes with calf thymus DNA has been investigated by using absorption spectra, viscosity measurements, as well as thermal denaturation studies. Intrinsic binding constant (Kb) has been estimated under similar set of experimental conditions. Absorption spectral studies indicate that the Co(III) and Ni(II) complexes intercalate between the base pairs of the CT-DNA tightly with intrinsic DNA binding constant of 1.3 × 106 and 3.1 × 105 M−1 in Tris-HCl buffer containing 50 mM NaCl, respectively. The proposed DNA binding mode supports the large enhancement in the relative viscosity of DNA on binding to quinolo[3,2-b]benzodiazepine. The oxidative as well as photo-induced cleavage reactions were monitered by gel electrophoresis for both complexes. The photocleavage experiments showed that the cobalt(III) complex can cleave pUC19 DNA effectively in the absence of external additives as an effective inorganic nuclease. PMID:17541480

  3. High-Throughput Genotyping of Green Algal Mutants Reveals Random Distribution of Mutagenic Insertion Sites and Endonucleolytic Cleavage of Transforming DNA[W][OPEN

    PubMed Central

    Zhang, Ru; Patena, Weronika; Armbruster, Ute; Gang, Spencer S.; Blum, Sean R.; Jonikas, Martin C.

    2014-01-01

    A high-throughput genetic screening platform in a single-celled photosynthetic eukaryote would be a transformative addition to the plant biology toolbox. Here, we present ChlaMmeSeq (Chlamydomonas MmeI-based insertion site Sequencing), a tool for simultaneous mapping of tens of thousands of mutagenic insertion sites in the eukaryotic unicellular green alga Chlamydomonas reinhardtii. We first validated ChlaMmeSeq by in-depth characterization of individual insertion sites. We then applied ChlaMmeSeq to a mutant pool and mapped 11,478 insertions, covering 39% of annotated protein coding genes. We observe that insertions are distributed in a manner largely indistinguishable from random, indicating that mutants in nearly all genes can be obtained efficiently. The data reveal that sequence-specific endonucleolytic activities cleave the transforming DNA and allow us to propose a simple model to explain the origin of the poorly understood exogenous sequences that sometimes surround insertion sites. ChlaMmeSeq is quantitatively reproducible, enabling its use for pooled enrichment screens and for the generation of indexed mutant libraries. Additionally, ChlaMmeSeq allows genotyping of hits from Chlamydomonas screens on an unprecedented scale, opening the door to comprehensive identification of genes with roles in photosynthesis, algal lipid metabolism, the algal carbon-concentrating mechanism, phototaxis, the biogenesis and function of cilia, and other processes for which C. reinhardtii is a leading model system. PMID:24706510

  4. Studies of Xenopus laevis mitochondrial DNA: D-loop mapping and characterization of DNA-binding proteins

    SciTech Connect

    Cairns, S.S.

    1987-01-01

    In X. laevis oocytes, mitochondrial DNA accumulates to 10/sup 5/ times the somatic cell complement, and is characterized by a high frequency of a triple-stranded displacement hoop structure at the origin of replication. To map the termini of the single strands, it was necessary to correct the nucleotide sequence of the D-loop region. The revised sequence of 2458 nucleotides contains 54 discrepancies in comparison to a previously published sequence. Radiolabeling of the nascent strands of the D-loop structure either at the 5' end or at the 3' end identifies a major species with a length of 1670 nucleotides. Cleavage of the 5' labeled strands reveals two families of ends located near several matches to an element, designated CSB-1, that is conserved in this location in several vertebrate genomes. Cleavage of 3' labeled strands produced one fragment. The unique 3' end maps to about 15 nucleotides preceding the tRNA/sup Pro/ gene. A search for proteins which may bind to mtDNA in this region to regulate nucleic acid synthesis has identified three activities in lysates of X. laevis mitochondria. The DNA-binding proteins were assayed by monitoring their ability to retard the migration of labeled double- or single-stranded DNA fragments in polyacrylamide gels. The DNA binding preference was determined by competition with an excess of either ds- or ssDNA.

  5. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies

    SciTech Connect

    Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.; Garman, Elspeth F.; Owen, Robin L.; Snell, Edward H.; Bernhard, William A.

    2013-12-01

    Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage, to confirm a multi-track radiation-damage process and to develop a model of that process. Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.

  6. Study on the interaction between rivanol and DNA and its application to DNA assay

    NASA Astrophysics Data System (ADS)

    Li, Wen-You; Xu, Jin-Gou; Guo, Xiang-Qun; Zhu, Qing-Zhi; Zhao, Yi-Bing

    1997-05-01

    Rivanol (RVN) binds to the double helical DNA with a high affinity, as deduced from the absorption and fluorescence spectral data. Extensive hypochromism and red shifts in the absorption spectra were observed when RVN binds to calf thymus DNA (CT DNA), which suggested the intercalation mechanism of RVN into DNA bases. Upon binding to DNA, the fluorescence from RVN was efficiently quenched by the DNA bases, with no shifts in the emission maximum. The large increases in the polarization upon binding to CT DNA supported the intercalation of RVN into the helix. Iodide quenching studies showed that the magnitude of Ksv of the free RVN was higher than that of the bound RVN. The results of competitive binding studies showed that RVN can be displaced by ethidium bromide. Thermal denaturation experiments exhibited that the quenching of the fluorescence from RVN by single strand (ssDNA) was smaller than that by double strand (dsDNA). The results of all above further studies also proved the intercalation of RVN into DNA base stack. Quenching of fluorescence from RVN by DNA can be employed for sensitive detection of DNA. The limit of detection for CT DNA was 16 ng ml -1.

  7. Charge transfer through DNA/DNA duplexes and DNA/RNA hybrids: complex theoretical and experimental studies.

    PubMed

    Kratochvílová, Irena; Vala, Martin; Weiter, Martin; Špérová, Miroslava; Schneider, Bohdan; Páv, Ondřej; Šebera, Jakub; Rosenberg, Ivan; Sychrovský, Vladimír

    2013-01-01

    Oligonucleotides conduct electric charge via various mechanisms and their characterization and understanding is a very important and complicated task. In this work, experimental (temperature dependent steady state fluorescence spectroscopy, time-resolved fluorescence spectroscopy) and theoretical (Density Functional Theory) approaches were combined to study charge transfer processes in short DNA/DNA and RNA/DNA duplexes with virtually equivalent sequences. The experimental results were consistent with the theoretical model - the delocalized nature of HOMO orbitals and holes, base stacking, electronic coupling and conformational flexibility formed the conditions for more effective short distance charge transfer processes in RNA/DNA hybrids. RNA/DNA and DNA/DNA charge transfer properties were strongly connected with temperature affected structural changes of molecular systems - charge transfer could be used as a probe of even tiny changes of molecular structures and settings. PMID:23968861

  8. BACTERIAL METABOLISM OF NAPTHALENE: CONSTRUCTION AND USE OF RECOMBINANT BACTERIA TO STUDY THE RING CLEAVAGE OF 1,2-DIIHYDROXYNAPTHALENE

    EPA Science Inventory

    The reactions involved in the bacterial metabolism of napthalene to salicylate have been reinvestigated by using recombinant bacteria carrying genes cloned form plasmid NAH7. hen intact cells of Pseudomonas aeruginosa PAO1 carrying DNA fragments encoding the first three enzymes o...

  9. Density functional theory studies of electron interaction with DNA: can zero eV electrons induce strand breaks?

    PubMed

    Li, Xifeng; Sevilla, Michael D; Sanche, Léon

    2003-11-12

    The discovery of DNA strand breaks induced by low energy secondary electrons sparks a necessity to elucidate the mechanism. Through theoretical studies based on a sugar-phosphate-sugar model that mimics a backbone section of the DNA strand, it is found that bond cleavages at 3' or 5'C-O sites after addition of an electron are possible with a ca. 10 kcal/mol activation barrier. Moreover, the potential energy surfaces show that dissociation at both sites is highly favorable thermodynamically. Although the phosphate group in DNA is not a favored site for electron attachment because of competitive electron transfer to the bases, any electrons which attach to phosphates on first encounter may induce strand breaks even when the electron energy is near zero eV. These findings have profound implication as low energy secondary electrons are abundantly generated in all types of ionization radiation. PMID:14599198

  10. DNA studies using atomic force microscopy: capabilities for measurement of short DNA fragments

    PubMed Central

    Pang, Dalong; Thierry, Alain R.; Dritschilo, Anatoly

    2015-01-01

    Short DNA fragments, resulting from ionizing radiation induced DNA double strand breaks (DSBs), or released from cells as a result of physiological processes and circulating in the blood stream, may play important roles in cellular function and potentially in disease diagnosis and early intervention. The size distribution of DNA fragments contribute to knowledge of underlining biological processes. Traditional techniques used in radiation biology for DNA fragment size measurements lack the resolution to quantify short DNA fragments. For the measurement of cell-free circulating DNA (ccfDNA), real time quantitative Polymerase Chain Reaction (q-PCR) provides quantification of DNA fragment sizes, concentration and specific gene mutation. A complementary approach, the imaging-based technique using Atomic Force Microscopy (AFM) provides direct visualization and measurement of individual DNA fragments. In this review, we summarize and discuss the application of AFM-based measurements of DNA fragment sizes. Imaging of broken plasmid DNA, as a result of exposure to ionizing radiation, as well as ccfDNA in clinical specimens offer an innovative approach for studies of short DNA fragments and their biological functions. PMID:25988169

  11. Structural basis of cohesin cleavage by separase.

    PubMed

    Lin, Zhonghui; Luo, Xuelian; Yu, Hongtao

    2016-04-01

    Accurate chromosome segregation requires timely dissolution of chromosome cohesion after chromosomes are properly attached to the mitotic spindle. Separase is absolutely essential for cohesion dissolution in organisms from yeast to man. It cleaves the kleisin subunit of cohesin and opens the cohesin ring to allow chromosome segregation. Cohesin cleavage is spatiotemporally controlled by separase-associated regulatory proteins, including the inhibitory chaperone securin, and by phosphorylation of both the enzyme and substrates. Dysregulation of this process causes chromosome missegregation and aneuploidy, contributing to cancer and birth defects. Despite its essential functions, atomic structures of separase have not been determined. Here we report crystal structures of the separase protease domain from the thermophilic fungus Chaetomium thermophilum, alone or covalently bound to unphosphorylated and phosphorylated inhibitory peptides derived from a cohesin cleavage site. These structures reveal how separase recognizes cohesin and how cohesin phosphorylation by polo-like kinase 1 (Plk1) enhances cleavage. Consistent with a previous cellular study, mutating two securin residues in a conserved motif that partly matches the separase cleavage consensus converts securin from a separase inhibitor to a substrate. Our study establishes atomic mechanisms of substrate cleavage by separase and suggests competitive inhibition by securin. PMID:27027290

  12. Metal ion cooperativity in ribozyme cleavage of RNA

    PubMed Central

    Brännvall, Mathias; Kirsebom, Leif A.

    2001-01-01

    Combinations of chemical and genetic approaches were used to study the function of divalent metal ions in cleavage of RNA by the ribozyme RNase P RNA. We show that different divalent metal ions have differential effects on cleavage site recognition and rescue of cleavage activity by mixing divalent metal ions that do not promote cleavage by themselves. We conclude that efficient and correct cleavage is the result of cooperativity between divalent metal ions bound at different sites in the RNase P RNA-substrate complex. Complementation of a mutant RNase P RNA phenotype as a result of divalent metal ion replacement is demonstrated also. This finding together with other data indicate that one of the metal ions involved in this cooperativity is positioned near the cleavage site. The possibility that the Mg2+/Ca2+ ratio might regulate the activity of biocatalysts that depend on RNA for activity is discussed. PMID:11606743

  13. Selective cleavage of pepsin by molybdenum metallopeptidase

    SciTech Connect

    Yenjai, Sudarat; Malaikaew, Pinpinat; Liwporncharoenvong, Teerayuth; Buranaprapuk, Apinya

    2012-03-02

    Graphical abstract: Molybdenum metallopeptidase: the Mo(VI) cluster with six molybdenum cations has the ability to cleave protein under mild conditions (37 Degree-Sign C, pH 7) without reducing agents. The reaction required only low concentration of ammonium heptamolybdatetetrahydrate ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) (0.125 mM). The reaction undergoes possibly via a hydrolytic mechanism. This is the first demonstration of protein cleavage by a molybdenum cluster. Highlights: Black-Right-Pointing-Pointer This is the first demonstration of protein cleavage by a Mo(VI) cluster with six molybdenum cations. Black-Right-Pointing-Pointer The cleavage reaction undergoes at mild conditions. Black-Right-Pointing-Pointer No need of reducing agents. Black-Right-Pointing-Pointer Only low concentration of Mo(VI) cluster and short time of incubation are needed. -- Abstract: In this study, the cleavage of protein by molybdenum cluster is reported for the first time. The protein target used is porcine pepsin. The data presented in this study show that pepsin is cleaved to at least three fragments with molecular weights of {approx}23, {approx}19 and {approx}16 kDa when the mixture of the protein and ammonium heptamolybdate tetrahydrate ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) was incubated at 37 Degree-Sign C for 24 h. No self cleavage of pepsin occurs at 37 Degree-Sign C, 24 h indicating that the reaction is mediated by the metal ions. N-terminal sequencing of the peptide fragments indicated three cleavage sites of pepsin between Leu 112-Tyr 113, Leu 166-Leu 167 and Leu 178-Asn 179. The cleavage reaction occurs after incubation of the mixture of pepsin and (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) only for 2 h. However, the specificity of the cleavage decreases when incubation time is longer than 48 h. The mechanism for cleavage of pepsin is expected to be hydrolytic chemistry of the amide bonds in the protein

  14. Smoking During Pregnancy Seems to Alter Fetal DNA, Study Finds

    MedlinePlus

    ... html Smoking During Pregnancy Seems to Alter Fetal DNA, Study Finds Discovery could help explain link between ... News) -- When a pregnant woman smokes, the fetus' DNA is altered in ways also seen in adult ...

  15. Low-temperature N-O bond cleavage of nitrogen monoxide in heterometallic carbonyl complexes. An experimental and theoretical study.

    PubMed

    García, M Esther; Melón, Sonia; Ruiz, Miguel A; López, Ramón; Sordo, Tomás; Marchiò, Luciano; Tiripicchio, Antonio

    2008-11-17

    The reaction of Na[RuCp(CO) 2] with [MnCp'(CO) 2(NO)]BF 4 gives the corresponding heterometallic derivative [MnRuCpCp'(mu-CO) 2(CO)(NO)] (Cp = eta (5)-C 5H 5; Cp' = eta (5)-C 5H 4Me). In contrast, the group 6 metal carbonyl anions [MCp(CO) 2L] (-) (M = Mo, W; L = CO, P(OMe) 3, PPh 3) react with the Mn and Re complexes [M'Cp'(CO) 2(NO)]BF 4 to give the heterometallic derivatives [MM'CpCp'(mu-N)(CO) 3L] having a nitride ligand linearly bridging the metal centers (W-N = 1.81(3) A, N-Re = 1.97(3) A, W-N-Re = 179(1) (o), in [WReCpCp'(mu-N)(CO) 3{P(OMe) 3}]). Density-functional theory calculations on the reactions of [WCp(CO) 3] (-) and [RuCp(CO) 2] (-) with [MnCp(CO) 2(NO)] (+) revealed a comparable qualitative behavior. Thus, two similar and thermodynamically allowed reaction pathways were found in each case, one implying the displacement of CO from the cation and formation of a metal-metal bond, the other implying the cleavage of the N-O bond of the nitrosyl ligand and release of a carbonyl from the anion as CO 2. The second pathway is more exoergonic and is initiated through an orbitally controlled attack of the anion on the N atom of the NO ligand in the cation. In contrast, the first pathway is initiated through a charge-controlled attack of the anion to the C atom of a CO ligand in the cation. The CO 2-elimination pathway requires at the intermediate stages a close approach of the NO and CO ligands, which is more difficult for the Ru compound because of its lower coordination number (compared to W). This effect, when combined with a stronger stabilization of the initial intermediate in the Ru reaction, makes the CO 2-elimination pathway slower in that case. PMID:18928276

  16. Synthesis, spectral characterization, DNA interaction, anticancer and molecular docking studies on some transition metal complexes with bidentate ligand.

    PubMed

    Dhanaraj, C Justin; Hassan, Israr Ul; Johnson, Jijo; Joseph, J; Joseyphus, R Selwin

    2016-09-01

    The ligand, N(2),N(3)-bis(3-nitrophenyl)quinoxaline-2.3-diamine was prepared by the condensation of quinoxaline-2.3(1,4H)-dione with 3-nitroaniline. It was treated with Co(II), Ni(II), Cu(II) and Zn(II) acetates to form the metal complexes. These were characterized by elemental analysis, molar conductance, magnetic moment, UV-Vis., IR, (1)H NMR, ESR and mass spectral data. Octahedral geometry has been assigned to Co(II), Ni(II) and Zn(II) complexes, whereas Cu(II) complex has distorted octahedral geometry. From the powder XRD data, crystallite size and unit cell parameters were calculated. The surface morphology of the synthesized compounds were determined using SEM analysis. The antimicrobial activity of the compounds against some bacterial species viz. Escherichiacoli, Klebsiella pneumoniae, Pseudomonas aeuruginosa and Staphylococcus aureus; also the fungal species, Aspergillus niger, and Candida albicans were done by disc diffusion method. DNA binding, cleavage and super oxide anion scavenging activities were also evaluated. The DNA binding activity of the compounds were identified using electronic absorption titrations and DNA cleavage was determined using gel electrophoresis. The anticancer activities of the compounds against HeLa cell line were determined using MTT assay. The highly potent compound among the five against HeLa cell line is subjected to molecular docking study against human papilloma virus receptor molecule and ATP binding site of telomerase. PMID:27367456

  17. Complex Negative Regulation of TLR9 by Multiple Proteolytic Cleavage Events.

    PubMed

    Sinha, Siddhartha S; Cameron, Jody; Brooks, James C; Leifer, Cynthia A

    2016-08-15

    TLR9 is an innate immune receptor important for recognizing DNA of host and foreign origin. A mechanism proposed to prevent excessive response to host DNA is the requirement for proteolytic cleavage of TLR9 in endosomes to generate a mature form of the receptor (TLR9(471-1032)). We previously described another cleavage event in the juxtamembrane region of the ectodomain that generated a dominant-negative form of TLR9. Thus, there are at least two independent cleavage events that regulate TLR9. In this study, we investigated whether an N-terminal fragment of TLR9 could be responsible for regulation of the mature or negative-regulatory form. We show that TLR9(471-1032), corresponding to the proteolytically cleaved form, does not function on its own. Furthermore, activity is not rescued by coexpression of the N-terminal fragment (TLR9(1-440)), inclusion of the hinge region (TLR9(441-1032)), or overexpression of UNC93B1, the last of which is critical for trafficking and cleavage of TLR9. TLR9(1-440) coimmunoprecipitates with full-length TLR9 and TLR9(471-1032) but does not rescue the native glycosylation pattern; thus, inappropriate trafficking likely explains why TLR9(471-1032) is nonfunctional. Lastly, we show that TLR9(471-1032) is also a dominant-negative regulator of TLR9 signaling. Together, these data provide a new perspective on the complexity of TLR9 regulation by proteolytic cleavage and offer potential ways to inhibit activity through this receptor, which may dampen autoimmune inflammation. PMID:27421483

  18. A new strategy for selective protein cleavage

    SciTech Connect

    Hoyer, D.; Cho, Ho; Schultz, P.G. )

    1990-04-11

    The ability of proteolytic enzymes and chemical reagents to selectively cleave peptides and proteins at defined sequences has greatly facilitated studies of protein structure and function. Unfortunately, only a limited number of selective peptide cleavage agents exist, in contrast to the wide array of selective nucleases available for analyzing and manipulating nucleic acid structure. The development of strategies for generating site-specific peptidases of any defined sequence would greatly facilitate the mapping of protein structural domains, protein sequencing, the generation of semisynthetic proteins, and would likely lead to the development of new therapeutic agents. The authors report here a new approach to the generation of selective protein cleavage agents that is based on oxidative cleavage of the polypeptide backbone.

  19. A comparative immunogenicity study in rabbits of disulfide-stabilized, proteolytically cleaved, soluble trimeric human immunodeficiency virus type 1 gp140, trimeric cleavage-defective gp140 and monomeric gp120

    SciTech Connect

    Beddows, Simon; Franti, Michael; Dey, Antu K.; Kirschner, Marc; Iyer, Sai Prasad N.; Fisch, Danielle C.; Ketas, Thomas; Yuste, Eloisa; Desrosiers, Ronald C.; Klasse, Per Johan; Maddon, Paul J.; Olson, William C.; Moore, John P. . E-mail: jpm2003@med.cornell.edu

    2007-04-10

    The human immunodeficiency virus type 1 (HIV-1) surface envelope glycoprotein (Env) complex, a homotrimer containing gp120 surface glycoprotein and gp41 transmembrane glycoprotein subunits, mediates the binding and fusion of the virus with susceptible target cells. The Env complex is the target for neutralizing antibodies (NAbs) and is the basis for vaccines intended to induce NAbs. Early generation vaccines based on monomeric gp120 subunits did not confer protection from infection; one alternative approach is therefore to make and evaluate soluble forms of the trimeric Env complex. We have directly compared the immunogenicity in rabbits of two forms of soluble trimeric Env and monomeric gp120 based on the sequence of HIV-1{sub JR-FL}. Both protein-only and DNA-prime, protein-boost immunization formats were evaluated, DNA-priming having little or no influence on the outcome. One form of trimeric Env was made by disrupting the gp120-gp41 cleavage site by mutagenesis (gp140{sub UNC}), the other contains an intramolecular disulfide bond to stabilize the cleaved gp120 and gp41 moieties (SOSIP.R6 gp140). Among the three immunogens, SOSIP.R6 gp140 most frequently elicited neutralizing antibodies against the homologous, neutralization-resistant strain, HIV-1{sub JR-FL}. All three proteins induced NAbs against more sensitive strains, but the breadth of activity against heterologous primary isolates was limited. When antibodies able to neutralize HIV-1{sub JR-FL} were detected, antigen depletion studies showed they were not directed at the V3 region but were targeted at other, undefined gp120 and also non-gp120 epitopes.

  20. Cleavage-quasi cleavage in ferritic and martensitic steels

    SciTech Connect

    Odette, G.R.; Edsinger, K.V.; Lucas, G.E.

    1997-12-31

    Confocal microscopy-fracture reconstruction and SEM were used to characterize the sequence-of-events leading to cleavage in a low alloy pressure vessel steel and two 8--12 Cr martensitic steels as a function of temperature. While differences between the steels were observed, they shared some common characteristics that differ from the conventional view of cleavage. Most notably cleavage does not occur as a single weakest link event; rather it is the consequence of a critical condition when a previously nucleated dispersion of microcracks suddenly coalesce to form a large, rapidly propagating macroscopic crack. It is argued that the critical event can be treated as a bridging instability. The stabilizing effect of the ductile ligaments separating the cleavage facets increases with increasing temperature. Indeed, even in the ductile tearing regime cleavage facets form a significant fraction of nuclei for larger microvoids.

  1. Cleaving DNA with DNA

    NASA Astrophysics Data System (ADS)

    Carmi, Nir; Balkhi, Shameelah R.; Breaker, Ronald R.

    1998-03-01

    A DNA structure is described that can cleave single-stranded DNA oligonucleotides in the presence of ionic copper. This ``deoxyribozyme'' can self-cleave or can operate as a bimolecular complex that simultaneously makes use of duplex and triplex interactions to bind and cleave separate DNA substrates. Bimolecular deoxyribozyme-mediated strand scission proceeds with a kobs of 0.2 min-1, whereas the corresponding uncatalyzed reaction could not be detected. The duplex and triplex recognition domains can be altered, making possible the targeted cleavage of single-stranded DNAs with different nucleotide sequences. Several small synthetic DNAs were made to function as simple ``restriction enzymes'' for the site-specific cleavage of single-stranded DNA.

  2. Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3.

    PubMed Central

    Lobigs, M

    1993-01-01

    Flavivirus protein biosynthesis involves the proteolytic processing of a single polyprotein precursor by host- and virus-encoded proteinases. In this study, the requirement for the proteolytic function of the viral proteinase NS3 for correct processing of a polyprotein segment encompassing the Murray Valley encephalitis virus structural proteins is shown. The NS3-mediated cleavage in the structural polyprotein region presumably releases the capsid protein from its membrane anchor and triggers the appearance of the premembrane (prM) protein. This suggests that cleavage of prM by signal peptidase in the lumen of the endoplasmic reticulum is under control of a cytoplasmic cleavage catalyzed by a viral proteinase. The function of the viral proteinase is also essential for secretion of flaviviral spike proteins when expressed from cDNA via vaccinia virus recombinants or in COS cell transfections. This has important implications for the design of flavivirus subunit vaccines. Images Fig. 1 Fig. 2 Fig. 3 PMID:8392191

  3. Binding and cleavage of nucleic acids by the "hairpin" ribozyme.

    PubMed

    Chowrira, B M; Burke, J M

    1991-09-01

    The "hairpin" ribozyme derived from the minus strand of tobacco ringspot virus satellite RNA [(-)sTRSV] efficiently catalyzes sequence-specific RNA hydrolysis in trans (Feldstein et al., 1989; Hampel & Triz, 1989; Haseloff & Gerlach, 1989). The ribozyme does not cleave DNA. An RNA substrate analogue containing a single deoxyribonucleotide residue 5' to the cleavage site (A-1) binds to the ribozyme efficiently but cannot be cleaved. A DNA substrate analogue with a ribonucleotide at A-1 is cleaved; thus A-1 provides the only 2'-OH required for cleavage. These results support cleavage via a transphosphorylation mechanism initiated by attack of the 2'-OH of A-1 on the scissile phosphodiester. The ribozyme discriminates between DNA and RNA in both binding and cleavage. Results indicate that the 2'-OH of A-1 functions in complex stabilization as well as cleavage. The ribozyme efficiently cleaves a phosphorothioate diester linkage, suggesting that the pro-Rp oxygen at the scissile phosphodiester does not coordinate Mg2+. PMID:1909564

  4. Cleavage of synthetic substrates containing non-nucleotide inserts by restriction endonucleases. Change in the cleavage specificity of endonuclease SsoII.

    PubMed Central

    Kubareva, E A; Petrauskene, O V; Karyagina, A S; Tashlitsky, V N; Nikolskaya, I I; Gromova, E S

    1992-01-01

    A study was made of the interaction between restriction endonucleases recognizing CCNGG (SsoII and ScrFI) or CCA/TGG (MvaI and EcoRII) DNA sequences and a set of synthetic substrates containing 1,3-propanediol, 1,2-dideoxy-D-ribofuranose or 9-[1'-hydroxy-2'-(hydroxymethyl)ethoxy] methylguanine (gIG) residues replacing either one of the central nucleosides or dG residues in the recognition site. The non-nucleotide inserts (except for gIG) introduced into the recognition site both increase the efficiency of SsoII and change its specificity. A cleavage at the noncanonical position takes place, in some cases in addition to the correct ones. Noncanonical hydrolysis by SsoII occurs at the phosphodiester bond adjacent to the point of modification towards the 5'-end. With the guanine base returned (the substrate with gIG), the correct cleavage position is restored. ScrFI specifically cleaves all the modified substrates. DNA duplexes with non-nucleotide inserts (except for the gIG-containing duplex) are resistant to hydrolysis by MvaI and EcoRII. Prompted by the data obtained we discuss the peculiarities of recognition by restriction endonucleases of 5-membered DNA sequences which have completely or partially degenerated central base pairs. It is suggested that SsoII forms a complex with DNA in an 'open' form. Images PMID:1408753

  5. [Progress in molecular biology study of DNA computer].

    PubMed

    Zhang, Zhi-Zhou; Zhao, Jian; He, Lin

    2003-09-01

    DNA (deoxyribonucleotide acids) computer is an emerging new study area that basically combines molecular biology study of DNA molecules and computational study on how to employ these specific molecules to calculate. In 1994 Adleman described his pioneering research on DNA computing in Science. This is the first experimental report on DNA computer study. In 2001 Benenson et al published a paper in Nature regarding a programmable and autonomous DNA computing device. Because of its Turing-like functions, the device is regarded as another milestone progress for DNA computer study. The main features of DNA computer are massively parallel computing ability and potential enormous data storage capacity. Comparing with conventional electronic computers, DNA molecules provide conceptually a revolution in computing, and more and more implications have been found in various disciplines. DNA computer studies have brought great progress not only in its own computing mechanisms, but also in DNA manipulation technologies especially nano-technology. This article presents the basic principles of DNA computer, its applications, its important relationship with genomic research and our comments on all above issues. PMID:14577383

  6. Studying DNA Looping by Single-Molecule FRET

    PubMed Central

    Le, Tung T.; Kim, Harold D.

    2014-01-01

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA. PMID:24998459

  7. DNA binding studies of Vinca alkaloids: experimental and computational evidence.

    PubMed

    Pandya, Prateek; Gupta, Surendra P; Pandav, Kumud; Barthwal, Ritu; Jayaram, B; Kumar, Surat

    2012-03-01

    Fluorescence studies on the indole alkaloids vinblastine sulfate, vincristine sulfate, vincamine and catharanthine have demonstrated the DNA binding ability of these molecules. The binding mode of these molecules in the minor groove of DNA is non-specific. A new parameter of the purine-pyrimidine base sequence specificty was observed in order to define the non-specific DNA binding of ligands. Catharanthine had shown 'same' pattern of 'Pu-Py' specificity while evaluating its DNA binding profile. The proton resonances of a DNA decamer duplex were assigned. The models of the drug:DNA complexes were analyzed for DNA binding features. The effect of temperature on the DNA binding was also evaluated. PMID:22545401

  8. Reductive cleavage of the peptide bond

    NASA Technical Reports Server (NTRS)

    Holian, J.; Garrison, W. M.

    1973-01-01

    In many biological research efforts, long chain organic molecules are studied by breaking large molecules into smaller components. Cleavage technique of recent interest is the use of solvated electrons. These are formed when aqueous solutions are bombarded with gamma radiation. Solvated electron is very reactive and can reduce most any species present, even to form free radicals.

  9. Abnormal Early Cleavage Events Predict Early Embryo Demise: Sperm Oxidative Stress and Early Abnormal Cleavage

    PubMed Central

    Burruel, Victoria; Klooster, Katie; Barker, Christopher M.; Pera, Renee Reijo; Meyers, Stuart

    2014-01-01

    Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1 hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors. PMID:25307782

  10. Electronic states of DNA and M-DNA studied by optical absorption

    NASA Astrophysics Data System (ADS)

    Tsuburaya, Makoto; Sakamoto, Hirokazu; Mizoguchi, Kenji

    2014-02-01

    To unveil the electronic states of divalent metal ion incorporated M-DNAs, where M is Mg, Mn, Ni, Co, or Fe, optical absorption spectra have been studied in aqueous solutions of single-stranded (SS) 30mer DNA of poly(dA) (adenine), poly(dG) (guanine), poly(dT) (thymine), poly(dC) (cytosine), salmon-sperm DNA (B-DNA), and M-DNA. The absorption spectrum of the double-stranded (DS) B-DNA can be reproduced with the sum of the four absorption spectra of the SS oligo-DNAs in the ratio corresponding to the composition of B-DNA. This observation suggests that the interactions between complementary strands of DS DNA are negligibly weaker than the bandwidths of the optical spectra. In the metal-incorporated M-DNAs, except for Fe-DNA, the absorption spectra show no significant qualitative change from that of B-DNA. Quantitatively, however, the absorption intensity decreases by ≈15% uniquely in a DS poly(dA)-poly(dT) solution with adding MCl2, while nothing happens quantitatively and qualitatively in any SS oligo-DNA and DS poly(dG)-poly(dC) solutions, suggesting some suppression of the electronic excitation only in the Adenine-M-Thymine complex. In contrast, remarkable differences have been observed in Fe-DNA, prepared with FeCl2 and B-DNA. New absorption bands appear in the intragap energy of Fe-DNA, in addition to the suppression of the interband absorption peak of DNA at 4.8 eV. The intragap absorption is attributed to the appearance of Fe3+ species with the same spectral feature as that of FeCl3, that is, purely ionic Fe3+ species. This observation suggests that FeCl2+B-DNA forms Fe-DNA with hydrated Fe3+ ions with ionic bonds. Thus, it is concluded that the charge transfer from Fe2+ to DNA has occurred in Fe-DNA and that the transferred charges are expected to be located in the nearby bases.

  11. On the Relationship between the Enthalpy of Formation of Carbenes upon Cleavage of the Double Bond in Fluoroolefins and the Electron Density on the pi Bond: An Ab Initio Study

    SciTech Connect

    Borisov, Yurii A.; Garrett, Bruce C.; Kobanovskii, Y. A.; Bilera, I. V.; Buravtsev, N. N.

    2003-08-07

    In this study, we established a correlation between the enthalpy of cleavage of the C=C bond in fluorine-substituted olefins giving rise to two carbenes in the electronic ground state and the distribution of the electron density on this bond.

  12. Pharmacogenomic study using bio- and nanobioelectrochemistry: Drug-DNA interaction.

    PubMed

    Hasanzadeh, Mohammad; Shadjou, Nasrin

    2016-04-01

    Small molecules that bind genomic DNA have proven that they can be effective anticancer, antibiotic and antiviral therapeutic agents that affect the well-being of millions of people worldwide. Drug-DNA interaction affects DNA replication and division; causes strand breaks, and mutations. Therefore, the investigation of drug-DNA interaction is needed to understand the mechanism of drug action as well as in designing DNA-targeted drugs. On the other hand, the interaction between DNA and drugs can cause chemical and conformational modifications and, thus, variation of the electrochemical properties of nucleobases. For this purpose, electrochemical methods/biosensors can be used toward detection of drug-DNA interactions. The present paper reviews the drug-DNA interactions, their types and applications of electrochemical techniques used to study interactions between DNA and drugs or small ligand molecules that are potentially of pharmaceutical interest. The results are used to determine drug binding sites and sequence preference, as well as conformational changes due to drug-DNA interactions. Also, the intention of this review is to give an overview of the present state of the drug-DNA interaction cognition. The applications of electrochemical techniques for investigation of drug-DNA interaction were reviewed and we have discussed the type of qualitative or quantitative information that can be obtained from the use of each technique. PMID:26838928

  13. Single-Molecule Studies of DNA Replisome Function

    PubMed Central

    Perumal, Senthil K.; Yue, Hongjun; Hu, Zhenxin; Spiering, Michelle M.; Benkovic, Stephen J.

    2010-01-01

    Fast and accurate replication of DNA is accomplished by the interactions of multiple proteins in the dynamic DNA replisome. The DNA replisome effectively coordinates the leading and lagging strand synthesis of DNA. These complex, yet elegantly organized, molecular machines have been studied extensively by kinetic and structural methods to provide an in-depth understanding of the mechanism of DNA replication. Owing to averaging of observables, unique dynamic information of the biochemical pathways and reactions are concealed in conventional ensemble methods. However, recent advances in the rapidly expanding field of single-molecule analyses to study single biomolecules offer opportunities to probe and understand the dynamic processes involved in large biomolecular complexes such as replisomes. This review will focus on the recent developments in the biochemistry and biophysics of DNA replication employing single-molecule techniques and the insights provided by these methods towards a better understanding of the intricate mechanisms of DNA replication. PMID:19665592

  14. DNA damage as an intermediate biomarker in intervention studies.

    PubMed

    Santella, R M

    1997-11-01

    The development of sensitive assays for measurement of DNA damage in humans has great potential for enhancing intervention studies. Methods for DNA adduct measurement include immunoassays, [32p] postlabeling, high-performance liquid chromatography with fluorescence or electrochemical detection, and gas chromatography/mass spectroscopy. It is now well established that DNA adducts are a marker of exposure to various environmental, lifestyle, or occupational chemical carcinogens. Our own studies concentrate on immunologic detection of adducts by enzyme-linked immunosorbent assay (ELISA) of isolated DNA or quantitative immunohistochemical analysis of intact cells. Polycyclic aromatic hydrocarbon (PAH)-DNA adducts are elevated in blood cells of foundry and coke oven workers, individuals with high levels of exposure to environmental air pollution, and smokers. The study in smokers also found an inverse relationship between serum antioxidants and PAH-DNA, and is the basis for an ongoing antioxidant intervention. DNA adducts of PAH and 4-aminobiphenyl and oxidative DNA damage (8-oxo-deoxyguanosine) are being measured in blood mononuclear cells and exfoliated oral and bladder cells from subjects on antioxidants or placebo. Data on published intervention studies investigating oxidative damage and general aromatic DNA adducts measured by postlabeling are also summarized. These studies have already demonstrated that DNA adducts can be modulated by interventions and suggest that they can provide important mechanistic information in support of larger scale studies. PMID:9349685

  15. Cleavage of chromatin with methidiumpropyl-EDTA . iron(II).

    PubMed Central

    Cartwright, I L; Hertzberg, R P; Dervan, P B; Elgin, S C

    1983-01-01

    Methidiumpropyl-EDTA . iron(II) [MPE . Fe (II)] cleaves double-helical DNA with considerably lower sequence specificity than micrococcal nuclease. Moreover, digestions with MPE . Fe(II) can be performed in the presence of certain metal chelators, which will minimize the action of many endogenous nucleases. Because of these properties MPE . Fe(II) would appear to be a superior tool for probing chromatin structure. We have compared the patterns generated from the 1.688 g/cm3 complex satellite, 5S ribosomal RNA, and histone gene sequences of Drosophila melanogaster chromatin and protein-free DNA by MPE . Fe(II) and micrococcal nuclease cleavage. MPE . Fe(II) at low concentrations recognizes the nucleosome array, efficiently introducing a regular series of single-stranded (and some double-stranded) cleavages in chromatin DNA. Subsequent S1 nuclease digestion of the purified DNA produces a typical extended oligonucleosome pattern, with a repeating unit of ca. 190 base pairs. Under suitable conditions, relatively little other nicking is observed. Unlike micrococcal nuclease, which has a noticeable sequence preference in introducing cleavages, MPE . Fe(II) cleaves protein-free tandemly repetitive satellite and 5S DNA sequences in a near-random fashion. The spacing of cleavage sites in chromatin, however, bears a direct relationship to the length of the respective sequence repeats. In the case of the histone gene sequences a faint, but detectable, MPE . Fe(II) cleavage pattern is observed on DNA, in some regions similar to and in some regions different from the strong chromatin-specified pattern. The results indicate that MPE . Fe(II) will be very useful in the analysis of chromatin structure. Images PMID:6407008

  16. School Desegregation and Racial Cleavage, 1954-1970: A Review of the Literature

    ERIC Educational Resources Information Center

    Carithers, Martha W.

    1970-01-01

    Reviews the empirical studies dealing with school desegregation and racial cleavage which have appeared since the 1954 Supreme Court decision. Focuses on patterns and consequences of interracial association, and attitude change relevant to racial cleavage. (DM)

  17. Identification and characterization of the genomic termini and cleavage/packaging signals of gallid herpesvirus 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herpesvirus replication within host cells produces concatameric genomic DNA which is cleaved into unit-length genomes and packaged into the capsid by a complex of proteins. The sites of cleavage have been identified for many herpesviruses and conserved signaling sequences involved in cleavage and p...

  18. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  19. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  20. Initiation of bacteriophage Φ29 DNA packaging studied by optical tweezers manipulation of single DNA molecules

    NASA Astrophysics Data System (ADS)

    Rickgauer, John Peter; Fuller, Derek N.; Hu, Bo; Grimes, Shelley; Jardine, Paul J.; Anderson, Dwight L.; Smith, Douglas E.

    2006-08-01

    A key step in the life cycle of many viruses, including bacteriophages, adenoviruses, and herpesviruses, is the packaging of replicated viral genomes into pre-assembled proheads by the action of ATP-dependent portal motor complexes. Here we present a method that allows the initiation of packaging by single complexes to be studied using optical tweezers. A procedure is developed for assembling phage Φ29 prohead-motor complexes, which are demonstrated to bind and begin translocation of a target DNA molecule within only a few seconds. We show that the Φ29 DNA terminal protein (gene product 3), which functions to prime DNA replication, also has a dramatic effect on packaging. The DNA tether length measured immediately after binding varied from ~30-100% of the full length, yet shortened monotonically, indicating that packaging does not strictly begin at the terminal end of the DNA. Removal of the terminal protein eliminated this variability, causing packaging to initiate at or very near the end of the DNA. These findings, taken together with electron microscopy data, suggest that rather than simply threading into the portal, the motor captures and dynamically tensions a DNA loop, and that the function of the terminal protein is to load DNA segments on both sides of the loop junction onto separate DNA translocating units.

  1. Flavonoid-DNA binding studies and thermodynamic parameters

    NASA Astrophysics Data System (ADS)

    Janjua, Naveed Kausar; Shaheen, Amber; Yaqub, Azra; Perveen, Fouzia; Sabahat, Sana; Mumtaz, Misbah; Jacob, Claus; Ba, Lalla Aicha; Mohammed, Hamdoon A.

    2011-09-01

    Interactional studies of new flavonoid derivatives (Fl) with chicken blood ds.DNA were investigated spectrophotometrically in DMSO-H 2O (9:1 v/v) at various temperatures. Spectral parameters suggest considerable binding between the flavonoid derivatives studied and ds.DNA. The binding constant values lie in the enhanced-binding range. Thermodynamic parameters obtained from UV studies also point to strong spontaneous binding of Fl with ds.DNA. Viscometric studies complimented the UV results where a small linear increase in relative viscosity of the DNA solution was observed with added optimal flavonoid concentration. An overall mixed mode of interaction (intercalative plus groove binding) is proposed between DNA and flavonoids. Conclusively, investigated flavonoid derivatives are found to be strong DNA binders and seem to be promising drug candidates like their natural analogues.

  2. Novel Pt(II) complexes containing pyrrole oxime; synthesis, characterization and DNA binding studies

    NASA Astrophysics Data System (ADS)

    Erdogan, Deniz Altunoz; Özalp-Yaman, Şeniz

    2014-05-01

    Since the discovery of anticancer activity and subsequent clinical success of cisplatin (cis-[PtCl2(NH3)2]), platinum-based compounds have since been widely synthesized and studied as potential chemotherapeutic agents. In this sense, three novel nuclease active Pt(II) complexes with general formula; [Pt(NH3)Cl(L)] (1), [Pt(L)2] (2), and K[PtCl2(L)] (3) in which L is 1-H-pyrrole-2-carbaldehyde oxime were synthesized. Characterization of complexes was performed by elemental analysis, FT-IR, 1H NMR and mass spectroscopy measurements. Interaction of complexes (1-3) with calf thymus deoxyribonucleic acid (ct-DNA) was investigated by using electrochemical, spectroelectrochemical methods and cleavage studies. The hyperchromic change in the electronic absorption spectrum of the Pt(II) complexes indicates an electrostatic interaction between the complexes and ct-DNA. Binding constant values between 4.42 × 103 and 5.09 × 103 M-1 and binding side size values between 2 and 3 base pairs were determined from cyclic voltammetry (CV) and differential pulse voltammetry (DPV) studies.

  3. Internal guide RNA interactions interfere with Cas9-mediated cleavage.

    PubMed

    Thyme, Summer B; Akhmetova, Laila; Montague, Tessa G; Valen, Eivind; Schier, Alexander F

    2016-01-01

    The CRISPR/Cas system uses guide RNAs (gRNAs) to direct sequence-specific DNA cleavage. Not every gRNA elicits cleavage and the mechanisms that govern gRNA activity have not been resolved. Low activity could result from either failure to form a functional Cas9-gRNA complex or inability to recognize targets in vivo. Here we show that both phenomena influence Cas9 activity by comparing mutagenesis rates in zebrafish embryos with in vitro cleavage assays. In vivo, our results suggest that genomic factors such as CTCF inhibit mutagenesis. Comparing near-identical gRNA sequences with different in vitro activities reveals that internal gRNA interactions reduce cleavage. Even though gRNAs containing these structures do not yield cleavage-competent complexes, they can compete with active gRNAs for binding to Cas9. These results reveal that both genomic context and internal gRNA interactions can interfere with Cas9-mediated cleavage and illuminate previously uncharacterized features of Cas9-gRNA complex formation. PMID:27282953

  4. Regulated post-transcriptional RNA cleavage diversifies the eukaryotic transcriptome

    PubMed Central

    Mercer, Tim R.; Dinger, Marcel E.; Bracken, Cameron P.; Kolle, Gabriel; Szubert, Jan M.; Korbie, Darren J.; Askarian-Amiri, Marjan E.; Gardiner, Brooke B.; Goodall, Gregory J.; Grimmond, Sean M.; Mattick, John S.

    2010-01-01

    The complexity of the eukaryotic transcriptome is generated by the interplay of transcription initiation, termination, alternative splicing, and other forms of post-transcriptional modification. It was recently shown that RNA transcripts may also undergo cleavage and secondary 5′ capping. Here, we show that post-transcriptional cleavage of RNA contributes to the diversification of the transcriptome by generating a range of small RNAs and long coding and noncoding RNAs. Using genome-wide histone modification and RNA polymerase II occupancy data, we confirm that the vast majority of intraexonic CAGE tags are derived from post-transcriptional processing. By comparing exonic CAGE tags to tissue-matched PARE data, we show that the cleavage and subsequent secondary capping is regulated in a developmental-stage- and tissue-specific manner. Furthermore, we find evidence of prevalent RNA cleavage in numerous transcriptomic data sets, including SAGE, cDNA, small RNA libraries, and deep-sequenced size-fractionated pools of RNA. These cleavage products include mRNA variants that retain the potential to be translated into shortened functional protein isoforms. We conclude that post-transcriptional RNA cleavage is a key mechanism that expands the functional repertoire and scope for regulatory control of the eukaryotic transcriptome. PMID:21045082

  5. Internal guide RNA interactions interfere with Cas9-mediated cleavage

    PubMed Central

    Thyme, Summer B.; Akhmetova, Laila; Montague, Tessa G.; Valen, Eivind; Schier, Alexander F.

    2016-01-01

    The CRISPR/Cas system uses guide RNAs (gRNAs) to direct sequence-specific DNA cleavage. Not every gRNA elicits cleavage and the mechanisms that govern gRNA activity have not been resolved. Low activity could result from either failure to form a functional Cas9–gRNA complex or inability to recognize targets in vivo. Here we show that both phenomena influence Cas9 activity by comparing mutagenesis rates in zebrafish embryos with in vitro cleavage assays. In vivo, our results suggest that genomic factors such as CTCF inhibit mutagenesis. Comparing near-identical gRNA sequences with different in vitro activities reveals that internal gRNA interactions reduce cleavage. Even though gRNAs containing these structures do not yield cleavage-competent complexes, they can compete with active gRNAs for binding to Cas9. These results reveal that both genomic context and internal gRNA interactions can interfere with Cas9-mediated cleavage and illuminate previously uncharacterized features of Cas9–gRNA complex formation. PMID:27282953

  6. Single-molecule fluorescence studies on DNA looping.

    PubMed

    Jeong, Jiyoun; Le, Tung T; Kim, Harold D

    2016-08-01

    Structure and dynamics of DNA impact how the genetic code is processed and maintained. In addition to its biological importance, DNA has been utilized as building blocks of various nanomachines and nanostructures. Thus, understanding the physical properties of DNA is of fundamental importance to basic sciences and engineering applications. DNA can undergo various physical changes. Among them, DNA looping is unique in that it can bring two distal sites together, and thus can be used to mediate interactions over long distances. In this paper, we introduce a FRET-based experimental tool to study DNA looping at the single molecule level. We explain the connection between experimental measurables and a theoretical concept known as the J factor with the intent of raising awareness of subtle theoretical details that should be considered when drawing conclusions. We also explore DNA looping-assisted protein diffusion mechanism called intersegmental transfer using protein induced fluorescence enhancement (PIFE). We present some preliminary results and future outlooks. PMID:27064000

  7. A method to study in vivo stability of DNA nanostructures☆

    PubMed Central

    Surana, Sunaina; Bhatia, Dhiraj; Krishnan, Yamuna

    2013-01-01

    DNA nanostructures are rationally designed, synthetic, nanoscale assemblies obtained from one or more DNA sequences by their self-assembly. Due to the molecularly programmable as well as modular nature of DNA, such designer DNA architectures have great potential for in cellulo and in vivo applications. However, demonstrations of functionality in living systems necessitates a method to assess the in vivo stability of the relevant nanostructures. Here, we outline a method to quantitatively assay the stability and lifetime of various DNA nanostructures in vivo. This exploits the property of intact DNA nanostructures being uptaken by the coelomocytes of the multicellular model organism Caenorhabditis elegans. These studies reveal that the present fluorescence based assay in coelomocytes of C. elegans is an useful in vivo test bed for measuring DNA nanostructure stability. PMID:23623822

  8. Raman spectroscopic study of plasma-treated salmon DNA

    SciTech Connect

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha; Kwon, Young-Wan

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  9. Cleavage factor Im (CFIm) as a regulator of alternative polyadenylation.

    PubMed

    Hardy, Jessica G; Norbury, Chris J

    2016-08-15

    Most mammalian protein coding genes are subject to alternative cleavage and polyadenylation (APA), which can generate distinct mRNA 3'UTRs with differing regulatory potential. Although this process has been intensely studied in recent years, it remains unclear how and to what extent cleavage site selection is regulated under different physiological conditions. The cleavage factor Im (CFIm) complex is a core component of the mammalian cleavage machinery, and the observation that its depletion causes transcriptome-wide changes in cleavage site use makes it a key candidate regulator of APA. This review aims to summarize current knowledge of the CFIm complex, and explores the evidence surrounding its potential contribution to regulation of APA. PMID:27528751

  10. Real time kinetics of restriction endonuclease cleavage monitored by fluorescence resonance energy transfer.

    PubMed Central

    Ghosh, S S; Eis, P S; Blumeyer, K; Fearon, K; Millar, D P

    1994-01-01

    The kinetics of PaeR7 endonuclease-catalysed cleavage reactions of fluorophor-labeled oligonucleotide substrates have been examined using fluorescence resonance energy transfer (FRET). A series of duplex substrates were synthesized with an internal CTCGAG PaeR7 recognition site and donor (fluorescein) and acceptor (rhodamine) dyes conjugated to the opposing 5' termini. The time-dependent increase in donor fluorescence resulting from restriction cleavage of these substrates was continuously monitored and the initial rate data was fitted to the Michaelis-Menten equation. The steady state kinetic parameters for these substrates were in agreement with the rate constants obtained from a gel electrophoresis-based fixed time point assay using radiolabeled substrates. The FRET method provides a rapid continuous assay as well as high sensitivity and reproducibility. These features should make the technique useful for the study of DNA-cleaving enzymes. Images PMID:8065930

  11. Global analyses of endonucleolytic cleavage in mammals reveal expanded repertoires of cleavage-inducing small RNAs and their targets

    PubMed Central

    Cass, Ashley A.; Bahn, Jae Hoon; Lee, Jae-Hyung; Greer, Christopher; Lin, Xianzhi; Kim, Yong; Hsiao, Yun-Hua Esther; Xiao, Xinshu

    2016-01-01

    In mammals, small RNAs are important players in post-transcriptional gene regulation. While their roles in mRNA destabilization and translational repression are well appreciated, their involvement in endonucleolytic cleavage of target RNAs is poorly understood. Very few microRNAs are known to guide RNA cleavage. Endogenous small interfering RNAs are expected to induce target cleavage, but their target genes remain largely unknown. We report a systematic study of small RNA-mediated endonucleolytic cleavage in mouse through integrative analysis of small RNA and degradome sequencing data without imposing any bias toward known small RNAs. Hundreds of small cleavage-inducing RNAs and their cognate target genes were identified, significantly expanding the repertoire of known small RNA-guided cleavage events. Strikingly, both small RNAs and their target sites demonstrated significant overlap with retrotransposons, providing evidence for the long-standing speculation that retrotransposable elements in mRNAs are leveraged as signals for gene targeting. Furthermore, our analysis showed that the RNA cleavage pathway is also present in human cells but affecting a different repertoire of retrotransposons. These results show that small RNA-guided cleavage is more widespread than previously appreciated. Their impact on retrotransposons in non-coding regions shed light on important aspects of mammalian gene regulation. PMID:26975654

  12. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies

    PubMed Central

    Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.; Garman, Elspeth F.; Owen, Robin L.; Snell, Edward H.; Bernhard, William A.

    2013-01-01

    Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure. PMID:24311579

  13. Cytoplasmic translocation, aggregation, and cleavage of TDP-43 by enteroviral proteases modulate viral pathogenesis.

    PubMed

    Fung, G; Shi, J; Deng, H; Hou, J; Wang, C; Hong, A; Zhang, J; Jia, W; Luo, H

    2015-12-01

    We have previously demonstrated that infection by coxsackievirus B3 (CVB3), a positive-stranded RNA enterovirus, results in the accumulation of insoluble ubiquitin-protein aggregates, which resembles the common feature of neurodegenerative diseases. The importance of protein aggregation in viral pathogenesis has been recognized; however, the underlying regulatory mechanisms remain ill-defined. Transactive response DNA-binding protein-43 (TDP-43) is an RNA-binding protein that has an essential role in regulating RNA metabolism at multiple levels. Cleavage and cytoplasmic aggregation of TDP-43 serves as a major molecular marker for amyotrophic lateral sclerosis and frontotemporal lobar degeneration and contributes significantly to disease progression. In this study, we reported that TDP-43 is translocated from the nucleus to the cytoplasm during CVB3 infection through the activity of viral protease 2A, followed by the cleavage mediated by viral protease 3C. Cytoplasmic translocation of TDP-43 is accompanied by reduced solubility and increased formation of protein aggregates. The cleavage takes place at amino-acid 327 between glutamine and alanine, resulting in the generation of an N- and C-terminal cleavage fragment of ~35 and ~8 kDa, respectively. The C-terminal product of TDP-43 is unstable and quickly degraded through the proteasome degradation pathway, whereas the N-terminal truncation of TDP-43 acts as a dominant-negative mutant that inhibits the function of native TDP-43 in alternative RNA splicing. Lastly, we demonstrated that knockdown of TDP-43 results in an increase in viral titers, suggesting a protective role for TDP-43 in CVB3 infection. Taken together, our findings suggest a novel model by which cytoplasmic redistribution and cleavage of TDP-43 as a consequence of CVB3 infection disrupts the solubility and transcriptional activity of TDP-43. Our results also reveal a mechanism evolved by enteroviruses to support efficient viral infection. PMID

  14. Computational studies of spatially constrained DNA

    SciTech Connect

    Olson, W.K.; Westcott, T.P.; Liu, Guo-Hua

    1996-12-31

    Closed loops of double stranded DNA are ubiquitous in nature, occurring in systems ranging from plasmids, bacterial chromosomes, and many viral genomes, which form single closed loops, to eukaryotic chromosomes and other linear DNAs, which appear to be organized into topologically constrained domains by DNA-binding proteins. The topological constraints in the latter systems are determined by the spacing of the bound proteins along the contour of the double helix along with the imposed turns and twists of DNA in the intermolecular complexes. As long as the duplex remains unbroken, the linking number Lk, or number of times the two strands of the DNA wrap around one another, is conserved. If one of the strands is nicked and later re-sealed, the change in overall folding that accompanies DNA-protein interactions leads to a change in Lk. The supercoiling brought about by such protein action, in turn, determines a number of key biological events, including replication, transcription, and recombination. 51 refs., 5 figs., 1 tab.

  15. Role of aromatic structure in pathways of hydrogen transfer and bond cleavage in coal liquefaction: Theoretical studies

    SciTech Connect

    Franz, J.A.; Autrey, T.; Camaioni, D.M.; Watts, J.D.; Bartlett, R.J.

    1995-09-01

    The mechanisms by which strong carbon-carbon bonds between aromatic rings and side chains are cleaved under hydropyrolysis conditions remain a subject of wide interest to fuel science. Recently, the authors have studied in detail an alternate pathway for hydrogen atom transfer to {pi}-systems, radical hydrogen transfer (RHT). RHT is the direct, bimolecular transfer of hydrogen from the {beta}-position of an organic radical to the target {pi}-system. In the initial theoretical study, they examined the reaction ethyl radical + ethylene = ethylene + ethyl at the spin-projected UMP2/6-31G** level of theory. Recently, they have used a calibrated ROHF-MNDO-PM3 method to predict thermoneutral RHT barriers for hydrogen transfer between hydroaryl radicals and the corresponding arene. Because of the inherent limitations of semiempirical methods such as ROHF-MNDO-PM3, they have extended the initial work with the ethyl + ethylene study to examine this reaction at the ROHF-MBPT[2]-6-31G** and ROHF-CCSD[T]-6-31G** levels of ab initio theory. The primary objective was to determine how intrinsic RHT barriers change with conjugative stabilization of the radicals. The spin-restricted ROHF approach has been applied to study several RHT reactions, and they present completed ROHF results for the ethyl + ethylene system and preliminary results for the methallyl + butadiene system. The methallyl + butadiene system serves as a model for highly stabilized hydroaryl radicals: the methallyl radical exhibits a C-H bond strength of 46.5 kcal/mol compared to 9-hydroanthracenyl, 43.1 kcal/mol.

  16. Single molecule study of a processivity clamp sliding on DNA

    SciTech Connect

    Laurence, T A; Kwon, Y; Johnson, A; Hollars, C; O?Donnell, M; Camarero, J A; Barsky, D

    2007-07-05

    Using solution based single molecule spectroscopy, we study the motion of the polIII {beta}-subunit DNA sliding clamp ('{beta}-clamp') on DNA. Present in all cellular (and some viral) forms of life, DNA sliding clamps attach to polymerases and allow rapid, processive replication of DNA. In the absence of other proteins, the DNA sliding clamps are thought to 'freely slide' along the DNA; however, the abundance of positively charged residues along the inner surface may create favorable electrostatic contact with the highly negatively charged DNA. We have performed single-molecule measurements on a fluorescently labeled {beta}-clamp loaded onto freely diffusing plasmids annealed with fluorescently labeled primers of up to 90 bases. We find that the diffusion constant for 1D diffusion of the {beta}-clamp on DNA satisfies D {le} 10{sup -14} cm{sup 2}/s, much slower than the frictionless limit of D = 10{sup -10} cm{sup 2}/s. We find that the {beta} clamp remains at the 3-foot end in the presence of E. coli single-stranded binding protein (SSB), which would allow for a sliding clamp to wait for binding of the DNA polymerase. Replacement of SSB with Human RP-A eliminates this interaction; free movement of sliding clamp and poor binding of clamp loader to the junction allows sliding clamp to accumulate on DNA. This result implies that the clamp not only acts as a tether, but also a placeholder.

  17. Cleavage of Hemagglutinin-Bearing Lentiviral Pseudotypes and Their Use in the Study of Influenza Virus Persistence

    PubMed Central

    Sawoo, Olivier; Dublineau, Amélie; Batéjat, Christophe; Zhou, Paul; Manuguerra, Jean-Claude; Leclercq, India

    2014-01-01

    Influenza A viruses (IAVs) are a major cause of infectious respiratory human diseases and their transmission is dependent upon the environment. However, the role of environmental factors on IAV survival outside the host still raises many questions. In this study, we used lentiviral pseudotypes to study the influence of the hemagglutinin protein in IAV survival. High-titered and cleaved influenza-based lentiviral pseudoparticles, through the use of a combination of two proteases (HAT and TMPRSS2) were produced. Pseudoparticles bearing hemagglutinin proteins derived from different H1N1, H3N2 and H5N1 IAV strains were subjected to various environmental parameters over time and tested for viability through single-cycle infectivity assays. We showed that pseudotypes with different HAs have different persistence profiles in water as previously shown with IAVs. Our results also showed that pseudotypes derived from H1N1 pandemic virus survived longer than those derived from seasonal H1N1 virus from 1999, at high temperature and salinity, as previously shown with their viral counterparts. Similarly, increasing temperature and salinity had a negative effect on the survival of the H3N2 and H5N1 pseudotypes. These results showed that pseudotypes with the same lentiviral core, but which differ in their surface glycoproteins, survived differently outside the host, suggesting a role for the HA in virus stability. PMID:25166303

  18. Usefulness of microchip electrophoresis for the analysis of mitochondrial DNA in forensic and ancient DNA studies.

    PubMed

    Alonso, Antonio; Albarran, Cristina; Martín, Pablo; García, Pilar; Capilla, Javier; García, Oscar; de la Rua, Concepción; Izaguirre, Neskuts; Pereira, Filipe; Pereira, Luisa; Amorim, António; Sancho, Manuel

    2006-12-01

    We evaluate the usefulness of a commercially available microchip CE (MCE) device in different genetic identification studies performed with mitochondrial DNA (mtDNA) targets, including the haplotype analysis of HVR1 and HVR2 and the study of interspecies diversity of cytochrome b (Cyt b) and 16S ribosomal RNA (16S rRNA) mitochondrial genes in forensic and ancient DNA samples. The MCE commercial system tested in this study proved to be a fast and sensitive detection method of length heteroplasmy in cytosine stretches produced by 16 189T>C transitions in HVR1 and by 309.1 and 309.2 C-insertions in HVR2. Moreover, the quantitative analysis of PCR amplicons performed by LIF allowed normalizing the amplicon input in the sequencing reactions, improving the overall quality of sequence data. These quantitative data in combination with the quantification of genomic mtDNA by real-time PCR has been successfully used to evaluate the PCR efficiency and detection limit of full sequencing methods of different mtDNA targets. The quantification of amplicons also provided a method for the rapid evaluation of PCR efficiency of multiplex-PCR versus singleplex-PCR to amplify short HV1 amplicons (around 100 bp) from severely degraded ancient DNA samples. The combination of human-specific (Cyt b) and universal (16S rRNA) mtDNA primer sets in a single PCR reaction followed by MCE detection offers a very rapid and simple screening test to differentiate between human and nonhuman hair forensic samples. This method was also very efficient with degraded DNA templates from forensic hair and bone samples, because of its applicability to detect small amplicon sizes. Future possibilities of MCE in forensic DNA typing, including nuclear STRs and SNP profiling are suggested. PMID:17120261

  19. Maximizing DNA yield for epidemiologic studies: no more buffy coats?

    PubMed

    Gail, Mitchell H; Sheehy, Tim; Cosentino, Mark; Pee, David; Diaz-Mayoral, Norma A; Garcia-Closas, Montserrat; Caporaso, Neil E; Pitt, Karen; Ziegler, Regina G

    2013-10-01

    Some molecular analyses require microgram quantities of DNA, yet many epidemiologic studies preserve only the buffy coat. In Frederick, Maryland, in 2010, we estimated DNA yields from 5 mL of whole blood and from equivalent amounts of all-cell-pellet (ACP) fraction, buffy coat, and residual blood cells from fresh blood (n = 10 volunteers) and from both fresh and frozen blood (n = 10). We extracted DNA with the QIAamp DNA Blood Midi Kit (Qiagen Sciences, Germantown, Maryland) for silica spin column capture and measured double-stranded DNA. Yields from frozen blood fractions were not statistically significantly different from those obtained from fresh fractions. ACP fractions yielded 80.6% (95% confidence interval: 66, 97) of the yield of frozen whole blood and 99.3% (95% confidence interval: 86, 100) of the yield of fresh blood. Frozen buffy coat and residual blood cells each yielded only half as much DNA as frozen ACP, and the yields were more variable. Assuming that DNA yield and quality from frozen ACP are stable, we recommend freezing plasma and ACP. Not only does ACP yield twice as much DNA as buffy coat but it is easier to process, and its yield is less variable from person to person. Long-term stability studies are needed. If one wishes to separate buffy coat before freezing, one should also save the residual blood cell fraction, which contains just as much DNA. PMID:23857774

  20. Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia

    PubMed Central

    Strick, Reiner; Strissel, Pamela L.; Borgers, Susanne; Smith, Steve L.; Rowley, Janet D.

    2000-01-01

    Chromosomal translocations involving the MLL gene occur in about 80% of infant leukemia. In the search for possible agents inducing infant leukemia, we identified bioflavonoids, natural substances in food as well as in dietary supplements, that cause site-specific DNA cleavage in the MLL breakpoint cluster region (BCR) in vivo. The MLL BCR DNA cleavage was shown in primary progenitor hematopoietic cells from healthy newborns and adults as well as in cell lines; it colocalized with the MLL BCR cleavage site induced by chemotherapeutic agents, such as etoposide (VP16) and doxorubicin (Dox). Both in vivo and additional in vitro experiments demonstrated topoisomerase II (topo II) as the target of bioflavonoids similar to VP16 and Dox. Based on 20 bioflavonoids tested, we identified a common structure essential for topo II-induced DNA cleavage. Reversibility experiments demonstrated a religation of the bioflavonoid as well as the VP16-induced MLL cleavage site. Our observations support a two-stage model of cellular processing of topo II inhibitors: The first and reversible stage of topo II-induced DNA cleavage results in DNA repair, but also rarely in chromosome translocations; whereas the second, nonreversible stage leads to cell death because of an accumulation of DNA damage. These results suggest that maternal ingestion of bioflavonoids may induce MLL breaks and potentially translocations in utero leading to infant and early childhood leukemia. PMID:10758153

  1. Spring loading a pre-cleavage intermediate for hairpin telomere formation

    PubMed Central

    Lucyshyn, Danica; Huang, Shu Hui; Kobryn, Kerri

    2015-01-01

    The Borrelia telomere resolvase, ResT, forms the unusual hairpin telomeres of the linear Borrelia replicons in a process referred to as telomere resolution. Telomere resolution is a DNA cleavage and rejoining reaction that proceeds from a replicated telomere intermediate in a reaction with mechanistic similarities to that catalyzed by type IB topoisomerases. Previous reports have implicated the hairpin-binding module, at the end of the N-terminal domain of ResT, in distorting the DNA between the scissile phosphates so as to promote DNA cleavage and hairpin formation by the catalytic domain. We report that unwinding the DNA between the scissile phosphates, prior to DNA cleavage, is a key cold-sensitive step in telomere resolution. Through the analysis of ResT mutants, rescued by substrate modifications that mimic DNA unwinding between the cleavage sites, we show that formation and/or stabilization of an underwound pre-cleavage intermediate depends upon cooperation of the hairpin-binding module and catalytic domain. The phenotype of the mutants argues that the pre-cleavage intermediate promotes strand ejection to favor the forward reaction and that subsequent hairpin capture is a reversible reaction step. These reaction features are proposed to promote hairpin formation over strand resealing while allowing reversal back to substrate of aborted reactions. PMID:26007659

  2. DNA interaction, SOD, peroxidase and nuclease activity studies of iron complex having ligand with carboxamido nitrogen donors

    NASA Astrophysics Data System (ADS)

    Ghosh, Kaushik; Tyagi, Nidhi; Kumar, Hemant; Rathi, Sweety

    2015-07-01

    Complex (Et3HN)[FeIII(bpb)Cl2], 1 {where H2bpb: N,N‧-(1,2-phenylene)bis(pyridine-2-carboxamide)} was synthesized and characterized by reported procedure (Yang et al., 1991). Complex 1 was found to be effective in superoxide scavenging activity and an IC50 value of 4.1 μM was obtained in xanthine-xanthine oxidase nitro blue tetrazolium assay. Peroxidase-like activity of this complex was determined by the oxidation of 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). DNA interaction studies of complex 1 showed binding of DNA through external or groove binding. Complex 1 exhibited chemical nuclease activity in the presence of hydrogen peroxide and cleaved supercoiled pBR322 DNA to its linear and nicked circular form at physiological pH. Mechanistic studies indicated possible role of hydroxyl radical (radOH) species in DNA cleavage activity via hydroperoxo intermediate: [FeIIIsbnd OOH-]2+ → [FeIVdbnd O]2+ + radOH.

  3. DNA binding studies of new valine derived chiral complexes of tin(IV) and zirconium(IV)

    NASA Astrophysics Data System (ADS)

    Arjmand, Farukh; Jamsheera, A.

    2011-01-01

    Valine derived chiral complexes of SnCl 4 ( 1) and ZrCl 4 ( 2) were designed as potent antitumor agents. These complexes were characterized by elemental analysis, IR, 1H NMR, 119Sn NMR and ESI mass spectroscopy. In vitro binding studies of complexes 1 and 2 under physiological conditions at room temperature with CT-DNA were carried out employing UV-vis absorption titration, fluorescence studies and viscosity measurements. The extent of binding was quantified by Kb values of complexes 1 and 2 which were found to be 1.97 × 10 4 and 1.17 × 10 3 M -1, respectively, suggesting that complex 1 has significantly greater DNA binding propensity in contrast to the complex 2. The mode of action at the molecular level was ascertained by the interaction of complex 1 with 5'GMP and 5'TMP which revealed that complex 1 binds via electrostatic mode with the oxygen of the negatively charged surface phosphate group of the DNA helix. The supercoiled pBR322 plasmid DNA cleavage activity of complex 1 was ascertained by gel electrophoresis assay.

  4. Drug-DNA Interaction Studies of Acridone-Based Derivatives.

    PubMed

    Thimmaiah, Kuntebomanahalli; Ugarkar, Apoorva G; Martis, Elvis F; Shaikh, Mushtaque S; Coutinho, Evans C; Yergeri, Mayur C

    2015-01-01

    N10-alkylated 2-bromoacridones are a novel series of potent antitumor compounds. DNA binding studies of these compounds were carried out using spectrophotometric titrations, Circular dichroism (CD) measurements using Calf Thymus DNA (CT DNA). The binding constants were identified at a range of K=0.3 to 3.9×10(5) M(-1) and the percentage of hypochromism from the spectral titrations at 28-54%. This study has identified a compound 9 with the good binding affinity of K=0.39768×10(5) M(-1) with CT DNA. Molecular dynamics (MD) simulations have investigated the changes in structural and dynamic features of native DNA on binding to the active compound 9. All the synthesized compounds have increased the uptake of Vinblastine in MDR KBChR-8-5 cells to an extent of 1.25- to1.9-fold than standard modulator Verapamil of similar concentration. These findings allowed us to draw preliminary conclusions about the structural features of 2-bromoacridones and further chemical enhancement will improve the binding affinity of the acridone derivatives to CT-DNA for better drug-DNA interaction. The molecular modeling studies have shown mechanism of action and the binding modes of the acridones to DNA. PMID:25874941

  5. A hybrid density functional study of O-O bond cleavage and phenyl ring hydroxylation for a biomimetic non-heme iron complex.

    PubMed

    Borowski, Tomasz; Bassan, Arianna; Siegbahn, Per E M

    2004-05-17

    Density functional calculations using the B3LYP functional have been used to study the reaction mechanism of [Fe(Tp(Ph2))BF] (Tp(Ph2) = hydrotris(3,5-diphenylpyrazol-1-yl)borate; BF = benzoylformate) with dioxygen. This mononuclear non-heme iron(II) complex was recently synthesized, and it proved to be the first biomimetic complex reproducing the dioxygenase activity of alpha-ketoglutarate-dependent enzymes. Moreover, the enthalpy and entropy of activation for this biologically interesting process were derived from kinetic experiments offering a unique possibility for direct comparison of theoretical and experimental data. The results reported here support a mechanism in which oxidative decarboxylation of the keto acid is the rate-limiting step. This oxygen activation process proceeds on the septet potential energy surface through a transition state for a concerted O-O and C-C bond cleavage. In the next step, a high-valent iron-oxo species performs electrophilic attack on the phenyl ring of the Tp(Ph2) ligand leading to an iron(III)-radical sigma-complex. Subsequent proton-coupled electron-transfer yields an iron(II)-phenol intermediate, which can bind dioxygen and reduce it to a superoxide radical. Finally, the protonated superoxide radical leaves the first coordination sphere of the iron(III)-phenolate complex and dismutates to dioxygen and hydrogen peroxide. The calculated activation barrier (enthalpy and entropy) and the overall reaction energy profile agree well with experimental data. A comparison to the enzymatic process, which is suggested to occur on the quintet surface, has been made. PMID:15132638

  6. Constraint of DNA on Functionalized Graphene Improves Its Biostability and Specificity

    SciTech Connect

    Tang, Zhiwen; Wu, Hong; Cort, John R.; Buchko, Garry W.; Zhang, Youyu; Shao, Yuyan; Aksay, Ilhan A.; Liu, Jun; Lin, Yuehe

    2010-06-01

    The single-stranded DNA constrained on graphene surface is effectively protected from enzymatic cleavage by DNase I. The anisotropy, fluorescence, NMR, and CD studies suggest that the single-stranded DNA is promptly adsorbed onto graphene forming strong molecular interactions. Furthermore, the constraint of DNA probe on graphene improves the specificity of its response to complementary DNA. These findings will promote the further application of graphene in biotechnology and biomedical fields.

  7. l-Histidyl-glycyl-glycyl-l-histidine. Amino-acid structuring of the bleomycin-type pentadentate metal-binding environment capable of efficient double-strand cleavage of plasmid DNA.

    PubMed

    Ida, Satomi; Iwamaru, Kana; Fujita, Mikako; Okamoto, Yoshinari; Kudo, Yuri; Kurosaki, Hiromasa; Otsuka, Masami

    2015-10-01

    A tetrapeptide, l-histidyl-glycyl-glycyl-l-histidine (HGGH), was synthesized and the pUC19 plasmid DNA cleaving activity by copper(II) complex of HGGH (Cu(II)-HGGH) was investigated. Cu(II)-HGGH showed bleomycin-like DNA cleaving activity and, at 50nM, converted a supercoiled DNA efficiently to a linear DNA in the presence of 500μM H2O2/sodium ascorbate through an oxidative pathway. PMID:26159895

  8. Synthesis, physicochemical studies, embryos toxicity and DNA interaction of some new Iron(II) Schiff base amino acid complexes

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.

    2013-05-01

    New Fe(II) Schiff base amino acid complexes derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized by elemental analysis, IR, electronic spectra, and conductance measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. The investigated Schiff bases exhibited tridentate coordination mode with the general formulae [Fe(HL)2]·nH2O for all amino acids except L-histidine. But in case of L-histidine, the ligand acts as tetradentate ([FeL(H2O)2]·2H2O), where HL = mono anion and L = dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their toxicity on chick embryos and found to be safe until a concentration of 100 μg/egg with full embryos formation. The interaction between CT-DNA and the investigated complexes were followed by spectrophotometry and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA cleavage activity with the sequence: nhi > nari > nali > nasi > nphali. The thermodynamic Profile of the binding of nphali complex and CT-DNA was constructed by analyzing the experimental data of absorption titration and UV melting studies with the McGhee equation, van't Hoff's equation, and the Gibbs-Helmholtz equation.

  9. Studying nucleotide excision repair of mammalian DNA in a cell-free system

    SciTech Connect

    Wood, R.D.

    1994-12-31

    During nucleotide excision repair, a multiprotein system locates a lesion in DNA and catalyzes enzymatic cleavage of the altered strand. The damaged oligonucleotide and the incision proteins are then displaced, DNA synthesis proceeds to form a short patch using the nonmodified strand as a template, and repair is completed by a DNA ligase. Many gene products participate in these reactions, the best known of which correspond to the seven genetic complementation groups XP-A to XP-G of the disease xeroderma pigmentosum (XP). Cells representing any of these XP groups appear to exhibit, to varying degrees, defects in the first steps of nucleotide excision repair. Individuals affected with XP are hypersensitive to sunlight; most have a predisposition to skin cancer, and some patients show severe neurological abnormalities. In addition to XP, other UV-sensitive mutants of mammalian cells are providing insight into nucleotide excision repair. Of particular interest are mutants isolated from the rodent cells, which have been assigned to 11 different complementation groups. Human genes that can correct the repair defects of rodent mutants in these complementation groups are denoted. ERCC (excision repair cross-complementing) genes are are referred to by number, ERCC1 to ERCC11. Some of these genes are proving to be equivalent to particular XP-complementing genes, while others are distinct. The process of nucleotide excision repair is evolutionarily conserved in eukaryotes, and functional homologues of many of the ERCC and XP genes have been identified in other organisms; studies in yeast are proving to be particularly informative.

  10. Increasing cleavage specificity and activity of restriction endonuclease KpnI

    PubMed Central

    Vasu, Kommireddy; Nagamalleswari, Easa; Zahran, Mai; Imhof, Petra; Xu, Shuang-yong; Zhu, Zhenyu; Chan, Siu-Hong; Nagaraja, Valakunja

    2013-01-01

    Restriction enzyme KpnI is a HNH superfamily endonuclease requiring divalent metal ions for DNA cleavage but not for binding. The active site of KpnI can accommodate metal ions of different atomic radii for DNA cleavage. Although Mg2+ ion higher than 500 μM mediates promiscuous activity, Ca2+ suppresses the promiscuity and induces high cleavage fidelity. Here, we report that a conservative mutation of the metal-coordinating residue D148 to Glu results in the elimination of the Ca2+-mediated cleavage but imparting high cleavage fidelity with Mg2+. High cleavage fidelity of the mutant D148E is achieved through better discrimination of the target site at the binding and cleavage steps. Biochemical experiments and molecular dynamics simulations suggest that the mutation inhibits Ca2+-mediated cleavage activity by altering the geometry of the Ca2+-bound HNH active site. Although the D148E mutant reduces the specific activity of the enzyme, we identified a suppressor mutation that increases the turnover rate to restore the specific activity of the high fidelity mutant to the wild-type level. Our results show that active site plasticity in coordinating different metal ions is related to KpnI promiscuous activity, and tinkering the metal ion coordination is a plausible way to reduce promiscuous activity of metalloenzymes. PMID:23963701

  11. Utilization of Dioxygen by Carotenoid Cleavage Oxygenases.

    PubMed

    Sui, Xuewu; Golczak, Marcin; Zhang, Jianye; Kleinberg, Katie A; von Lintig, Johannes; Palczewski, Krzysztof; Kiser, Philip D

    2015-12-18

    Carotenoid cleavage oxygenases (CCOs) are non-heme, Fe(II)-dependent enzymes that participate in biologically important metabolic pathways involving carotenoids and apocarotenoids, including retinoids, stilbenes, and related compounds. CCOs typically catalyze the cleavage of non-aromatic double bonds by dioxygen (O2) to form aldehyde or ketone products. Expressed only in vertebrates, the RPE65 sub-group of CCOs catalyzes a non-canonical reaction consisting of concerted ester cleavage and trans-cis isomerization of all-trans-retinyl esters. It remains unclear whether the former group of CCOs functions as mono- or di-oxygenases. Additionally, a potential role for O2 in catalysis by the RPE65 group of CCOs has not been evaluated to date. Here, we investigated the pattern of oxygen incorporation into apocarotenoid products of Synechocystis apocarotenoid oxygenase. Reactions performed in the presence of (18)O-labeled water and (18)O2 revealed an unambiguous dioxygenase pattern of O2 incorporation into the reaction products. Substitution of Ala for Thr at position 136 of apocarotenoid oxygenase, a site predicted to govern the mono- versus dioxygenase tendency of CCOs, greatly reduced enzymatic activity without altering the dioxygenase labeling pattern. Reevaluation of the oxygen-labeling pattern of the resveratrol-cleaving CCO, NOV2, previously reported to be a monooxygenase, using a purified enzyme sample revealed that it too is a dioxygenase. We also demonstrated that bovine RPE65 is not dependent on O2 for its cleavage/isomerase activity. In conjunction with prior research, the results of this study resolve key issues regarding the utilization of O2 by CCOs and indicate that dioxygenase activity is a feature common among double bond-cleaving CCOs. PMID:26499794

  12. Intracellular RNA cleavage by the hairpin ribozyme.

    PubMed Central

    Seyhan, A A; Amaral, J; Burke, J M

    1998-01-01

    Studies involving ribozyme-directed inactivation of targeted RNA molecules have met with mixed success, making clear the importance of methods to measure and optimize ribozyme activity within cells. The interpretation of biochemical assays for determining ribozyme activity in the cellular environment have been complicated by recent results indicating that hammerhead and hairpin ribozymes can cleave RNA following cellular lysis. Here, we report the results of experiments in which the catalytic activity of hairpin ribozymes is monitored following expression in mammalian cells, and in which post-lysis cleavage is rigorously excluded through a series of biochemical and genetic controls. Following transient transfection, self-processing transcripts containing active and inactive hairpin ribozymes together with cleavable and non-cleavable substrates were generated within the cytoplasm of mouse OST7-1 cells using T7 RNA polymerase. Unprocessed RNA and products ofintracellular cleavage were detected and analyzed using a primer-extension assay. Ribozyme-containing transcripts accumulated to a level of 4 x 10(4) copies per cell, and self-processing proceeded to an extent of >75% within cells. Cellular RNA processing was blocked by mutations within the ribozyme (G8A, G21U) or substrate (DeltaA-1) that, in vitro , eliminate cleavage without affecting substrate binding. In addition to self-processing activity, trans -cleavage reactions were supported by the ribozyme-containing product of the self-processing reaction, and by the ribozyme linked to the non-cleavable substrate analog. Ribozyme activity was present in extracts of cells expressing constructs with active ribozyme domains. These results provide direct biochemical evidence for the catalytic activity of the hairpin ribozyme in a cellular environment, and indicate that self-processing ribozyme transcripts may be well suited for cellular RNA-inactivation experiments. PMID:9671810

  13. Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascena.

    PubMed

    Huang, Fong-Chin; Horváth, Györgyi; Molnár, Péter; Turcsi, Erika; Deli, József; Schrader, Jens; Sandmann, Gerhard; Schmidt, Holger; Schwab, Wilfried

    2009-03-01

    Several of the key flavor compounds in rose essential oil are C(13)-norisoprenoids, such as beta-damascenone, beta-damascone, and beta-ionone which are derived from carotenoid degradation. To search for genes putatively responsible for the cleavage of carotenoids, cloning of carotenoid cleavage (di-)oxygenase (CCD) genes from Rosa damascena was carried out by a degenerate primer approach and yielded a full-length cDNA (RdCCD1). The RdCCD1 gene was expressed in Escherichia coli and recombinant protein was assayed for its cleavage activity with a multitude of carotenoid substrates. The RdCCD1 protein was able to cleave a variety of carotenoids at the 9-10 and 9'-10' positions to produce a C(14) dialdehyde and two C(13) products, which vary depending on the carotenoid substrates. RdCCD1 could also cleave lycopene at the 5-6 and 5'-6' positions to produce 6-methyl-5-hepten-2-one. Expression of RdCCD1 was studied by real-time PCR in different tissues of rose. The RdCCD1 transcript was present predominantly in rose flower, where high levels of volatile C(13)-norisoprenoids are produced. Thus, the accumulation of C(13)-norisoprenoids in rose flower is correlated to the expression of RdCCD1. PMID:19264332

  14. Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta.

    PubMed

    Ilg, Andrea; Yu, Qiuju; Schaub, Patrick; Beyer, Peter; Al-Babili, Salim

    2010-08-01

    Carotenoids are converted by carotenoid cleavage dioxygenases that catalyze oxidative cleavage reactions leading to apocarotenoids. However, apocarotenoids can also be further truncated by some members of this enzyme family. The plant carotenoid cleavage dioxygenase 1 (CCD1) subfamily is known to degrade both carotenoids and apocarotenoids in vitro, leading to different volatile compounds. In this study, we investigated the impact of the rice CCD1 (OsCCD1) on the pigmentation of Golden Rice 2 (GR2), a genetically modified rice variety accumulating carotenoids in the endosperm. For this purpose, the corresponding cDNA was introduced into the rice genome under the control of an endosperm-specific promoter in sense and anti-sense orientations. Despite high expression levels of OsCCD1 in sense plants, pigment analysis revealed carotenoid levels and patterns comparable to those of GR2, pleading against carotenoids as substrates in rice endosperm. In support, similar carotenoid contents were determined in anti-sense plants. To check whether OsCCD1 overexpressed in GR2 endosperm is active, in vitro assays were performed with apocarotenoid substrates. HPLC analysis confirmed the cleavage activity of introduced OsCCD1. Our data indicate that apocarotenoids rather than carotenoids are the substrates of OsCCD1 in planta. PMID:20549230

  15. Nanolithography of Amyloid Precursor Protein Cleavage with β-Secretase by Atomic Force Microscopy.

    PubMed

    Han, Sung-Woong; Shin, Hoon-Kyu; Adachi, Taiji

    2016-03-01

    Cleavage of the amyloid precursor protein (APP) by secretases is critical in neural cell processes including the pathway for neural cell proliferation and that underlying the pathogenesis of Alzheimer's disease (AD). Understanding the mechanism of APP cleavage and development of a convenient tool for the accurate evaluation of APP cleavage intensity by secretases are very important in the development of new AD therapeutic targets. In this study, we developed a sophisticated technology to evaluate the APP cleavage mechanism at the nano-molecular level by atomic force microscopic (AFM) nanolithography. APP was modified on a glass substrate; nanolithography of APP cleavage by β-secretase-modified AFM probe scanning was achieved. APP cleavage was verified by the AFM imaging and the fluorescent immunostaining. The present method will be very useful in understanding the molecular level of the APP cleavage mechanism by β-secretase in vitro; this method will facilitate inhibitor screening for the therapeutic target of AD. PMID:27280252

  16. Label-free electrochemical nucleic acid biosensing by tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme amplification.

    PubMed

    Liu, Shufeng; Gong, Hongwei; Wang, Yanqun; Wang, Li

    2016-03-15

    Owing to the intrinsic importance of nucleic acid as bio-targets, the achievement of its simple and sensitive detection with high confidence is very essential for biological studies and diagnostic purposes. Herein, a label-free, isothermal, and ultrasensitive electrochemical detection of target DNA was developed by using a tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme releasing amplification strategy. Upon sensing of the nucleic acid analyte for the assembled hairpin-like probe DNA on the electrode, the DNA polymerase guided the target recycling and simultaneously triggered the lambda exonuclease cleavage, accompanied by the cascade recycling of the released new complementary strand and the amplified liberation of the G-rich sequence of the HRP-mimicking DNAzyme. The electrocatalytic reduction of H2O2 by the generated hemin/G-quadruplex DNAzyme was used for the signal readout and further amplification toward target response. Such tandem functional operation by DNA polymerase, lambda exonuclease and DNAzyme endows the developed biosensor with a high sensitivity and also a high confidence. A low detection limit of 5 fM with an excellent selectivity toward target DNA could be achieved. It also exhibits the distinct advantages of simplicity in probe design and biosensor fabrication, and label-free electrochemical detection, thus may offer a promising avenue for the applications in disease diagnosis and clinical biomedicine. PMID:26513289

  17. Sliding of Proteins Non-specifically Bound to DNA: Brownian Dynamics Studies with Coarse-Grained Protein and DNA Models

    PubMed Central

    Ando, Tadashi; Skolnick, Jeffrey

    2014-01-01

    DNA binding proteins efficiently search for their cognitive sites on long genomic DNA by combining 3D diffusion and 1D diffusion (sliding) along the DNA. Recent experimental results and theoretical analyses revealed that the proteins show a rotation-coupled sliding along DNA helical pitch. Here, we performed Brownian dynamics simulations using newly developed coarse-grained protein and DNA models for evaluating how hydrodynamic interactions between the protein and DNA molecules, binding affinity of the protein to DNA, and DNA fluctuations affect the one dimensional diffusion of the protein on the DNA. Our results indicate that intermolecular hydrodynamic interactions reduce 1D diffusivity by 30%. On the other hand, structural fluctuations of DNA give rise to steric collisions between the CG-proteins and DNA, resulting in faster 1D sliding of the protein. Proteins with low binding affinities consistent with experimental estimates of non-specific DNA binding show hopping along the CG-DNA. This hopping significantly increases sliding speed. These simulation studies provide additional insights into the mechanism of how DNA binding proteins find their target sites on the genome. PMID:25504215

  18. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  19. Ancient DNA studies: new perspectives on old samples

    PubMed Central

    2012-01-01

    In spite of past controversies, the field of ancient DNA is now a reliable research area due to recent methodological improvements. A series of recent large-scale studies have revealed the true potential of ancient DNA samples to study the processes of evolution and to test models and assumptions commonly used to reconstruct patterns of evolution and to analyze population genetics and palaeoecological changes. Recent advances in DNA technologies, such as next-generation sequencing make it possible to recover DNA information from archaeological and paleontological remains allowing us to go back in time and study the genetic relationships between extinct organisms and their contemporary relatives. With the next-generation sequencing methodologies, DNA sequences can be retrieved even from samples (for example human remains) for which the technical pitfalls of classical methodologies required stringent criteria to guaranty the reliability of the results. In this paper, we review the methodologies applied to ancient DNA analysis and the perspectives that next-generation sequencing applications provide in this field. PMID:22697611

  20. Studies of DNA supercoiling in vivo and in vitro

    SciTech Connect

    Cook, D.N.

    1990-10-01

    This thesis describes a number of diverse experiments whose common theme is to elaborate some aspect of DNA supercoiling. The torsion elastic constant of DNA is measure as a function of superhelix density using the technique of picosecond Time Resolved Fluorescence Polarization Anisotropy (FPA) of intercalated ethidium bromide. The results agree with theories which predict that the anisotropy decay should vary with the square root of the relative viscosity. This experiment furthermore demonstrates a sensitivity of FPA to a change in torsion elastic constant of less than 10%. A number of covalently closed DNA samples, ranging in superhelix density from = {minus}0.123 to {plus}0.042, are then examined. A novel method for measuring changes in local supercoiling on a large PNA molecule which is sensitive to changes in supercoiling of regions of chromosomal DNA as short as 1 kilobase in length is presented. Study of chromosomal supercoiling regulating anaerobic gene expression in the facultative photosynthetic bacterium, Rhodobacter capsulatus showed that no stable change in chromosomal supercoiling upon a shift from aerobic respiratory growth to anaerobic photosynthetic conditions. Studies to detect transient changes in DNA supercoiling indicate that DNA downstream from heavily transcribed genes for the photosynthetic reaction center are relaxed or perhaps overwound upon the induction of photosynthetic metabolism. These results are interpreted in terms of the twin domain model of transcriptional supercoiling.

  1. Studies of DNA supercoiling in vivo and in vitro

    SciTech Connect

    Cook, D.N.

    1990-10-01

    This thesis describes a number of diverse experiments whose common theme is to elaborate some aspect of DNA supercoiling. The torsion elastic constant of DNA is measure as a function of superhelix density using the technique of picosecond Time Resolved Fluorescence Polarization Anisotropy (FPA) of intercalated ethidium bromide. The results agree with theories which predict that the anisotropy decay should vary with the square root of the relative viscosity. This experiment furthermore demonstrates a sensitivity of FPA to a change in torsion elastic constant of less than 10%. A number of covalently closed DNA samples, ranging in superhelix density from = [minus]0.123 to [plus]0.042, are then examined. A novel method for measuring changes in local supercoiling on a large PNA molecule which is sensitive to changes in supercoiling of regions of chromosomal DNA as short as 1 kilobase in length is presented. Study of chromosomal supercoiling regulating anaerobic gene expression in the facultative photosynthetic bacterium, Rhodobacter capsulatus showed that no stable change in chromosomal supercoiling upon a shift from aerobic respiratory growth to anaerobic photosynthetic conditions. Studies to detect transient changes in DNA supercoiling indicate that DNA downstream from heavily transcribed genes for the photosynthetic reaction center are relaxed or perhaps overwound upon the induction of photosynthetic metabolism. These results are interpreted in terms of the twin domain model of transcriptional supercoiling.

  2. DNA interaction studies of new nano metal based anticancer agent: validation by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Tabassum, Sartaj; Sharma, Girish Chandra; Arjmand, Farukh; Azam, Ameer

    2010-05-01

    A new nano dimensional heterobimetallic Cu-Sn containing complex as a potential drug candidate was designed, synthesized and characterized by analytical and spectral methods. The electronic absorption and electron paramagnetic resonance parameters of the complex revealed that the Cu(II) ion exhibits a square pyramidal geometry with the two pyrazole nitrogen atoms, the amine nitrogen atom and the carboxylate oxygen of the phenyl glycine chloride ligand located at the equatorial sites and the coordinated chloride ion occupying an apical position. 119Sn NMR spectral data showed a hexa-coordinated environment around the Sn(IV) metal ion. TEM, AFM and XRD measurements illustrate that the complex could induce the condensation of CT-DNA to a particulate nanostructure. The interaction of the Cu-Sn complex with CT-DNA was investigated by UV-vis absorption and emission spectroscopy, as well as cyclic voltammetric measurements. The results indicated that the complex interacts with DNA through an electrostatic mode of binding with an intrinsic binding constant Kb = 8.42 × 104 M - 1. The Cu-Sn complex exhibits effective cleavage of pBR322 plasmid DNA by an oxidative cleavage mechanism, monitored at different concentrations both in the absence and in the presence of reducing agents.

  3. Cleavage mechanism in vanadium alloys

    SciTech Connect

    Odette, G.R.; Donahue, E.; Lucas, G.E.

    1997-12-31

    The effect specimen geometry, loading rate and irradiation on the ductile-to-brittle transition in a V-4Ti-4Cr alloy were evaluated and modeled. Confocal microscopy-fracture reconstruction and SEM were used to characterize the sequence-of-events leading to cleavage, as well as the CTOD at fracture initiation. This alloy undergoes normal stress-controlled transgranular cleavage below a transition temperature that depends primarily on the tensile properties and constraint. Thus an equivalent yield stress model is in good agreement with observed effects of loading rate and irradiation hardening. Predicted effects of specimen geometry based on a critical stress-area criteria and FEM simulations of crack tip fields were also found to be in agreement with experiment. Some interesting characteristics of the fracture process are also described.

  4. Preferential site-dependent cleavage by restriction endonuclease PstI.

    PubMed Central

    Armstrong, K; Bauer, W R

    1982-01-01

    The four identical recognition sites for the restriction endonuclease PstI in purified plasmid pSM1 DNA I are cleaved at markedly different rates. The order and relative frequencies of cleavage at these four PstI sites have been determined from the order of appearance of partial cleavage products and from an analysis of production of specific unit length linear molecules. The same pattern of preferential cleavage is also found when linear, nicked circular, or relaxed closed circular forms of the same plasmid DNa are used as substrates for PstI. Inspection of the nucleotide sequences immediately adjoining each of the PstI sites suggests that the presence of adjacent runs of G-C base pairs confers significant resistance to cleavage. Images PMID:6278444

  5. Time of flight Laue fiber diffraction studies of perdeuterated DNA

    SciTech Connect

    Forsyth, V.T.; Whalley, M.A.; Mahendrasingam, A.; Fuller, W.

    1994-12-31

    The diffractometer SXD at the Rutherford Appleton Laboratory ISIS pulsed neutron source has been used to record high resolution time-of-flight Laue fiber diffraction data from DNA. These experiments, which are the first of their kind, were undertaken using fibers of DNA in the A conformation and prepared using deuterated DNA in order to minimis incoherent background scattering. These studies complement previous experiments on instrument D19 at the Institute Laue Langevin using monochromatic neutrons. Sample preparation involved drawing large numbers of these deuterated DNA fibers and mounting them in a parallel array. The strategy of data collection is discussed in terms of camera design, sample environment and data collection. The methods used to correct the recorded time-of-flight data and map it into the final reciprocal space fiber diffraction dataset are also discussed. Difference Fourier maps showing the distribution of water around A-DNA calculated on the basis of these data are compared with results obtained using data recorded from hydrogenated A-DNA on D19. Since the methods used for sample preparation, data collection and data processing are fundamentally different for the monochromatic and Laue techniques, the results of these experiments also afford a valuable opportunity to independently test the data reduction and analysis techniques used in the two methods.

  6. Low energy electron induced cytosine base release in 2′-deoxycytidine-3′-monophosphate via glycosidic bond cleavage: A time-dependent wavepacket study

    SciTech Connect

    Bhaskaran, Renjith; Sarma, Manabendra

    2014-09-14

    Low energy electron (LEE) induced cytosine base release in a selected pyrimidine nucleotide, viz., 2′-deoxycytidine-3′-monophosphate is investigated using ab initio electronic structure methods and time dependent quantum mechanical calculations. It has been noted that the cytosine base scission is comparatively difficult process than the 3′ C–O bond cleavage from the lowest π{sup *} shape resonance in energy region <1 eV. This is mainly due to the high activation energy barrier associated with the electron transfer from the π{sup *} orbital of the base to the σ{sup *} orbital of the glycosidic N–C bond. In addition, the metastable state formed after impinging LEE (0–1 eV) has very short lifetime (10 fs) which may decay in either of the two competing auto-detachment or dissociation process simultaneously. On the other hand, the selected N–C mode may cleave to form the cytosine base anion at higher energy regions (>2 eV) via tunneling of the glycosidic bond. Resonance states generated within this energy regime will exist for a duration of ∼35–55 fs. Comparison of salient features of the two dissociation events, i.e., 3′ C–O single strand break and glycosidic N–C bond cleavage in 3′-dCMPH molecule are also provided.

  7. Low energy electron induced cytosine base release in 2'-deoxycytidine-3'-monophosphate via glycosidic bond cleavage: A time-dependent wavepacket study

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Renjith; Sarma, Manabendra

    2014-09-01

    Low energy electron (LEE) induced cytosine base release in a selected pyrimidine nucleotide, viz., 2'-deoxycytidine-3'-monophosphate is investigated using ab initio electronic structure methods and time dependent quantum mechanical calculations. It has been noted that the cytosine base scission is comparatively difficult process than the 3' C-O bond cleavage from the lowest π* shape resonance in energy region <1 eV. This is mainly due to the high activation energy barrier associated with the electron transfer from the π* orbital of the base to the σ* orbital of the glycosidic N-C bond. In addition, the metastable state formed after impinging LEE (0-1 eV) has very short lifetime (10 fs) which may decay in either of the two competing auto-detachment or dissociation process simultaneously. On the other hand, the selected N-C mode may cleave to form the cytosine base anion at higher energy regions (>2 eV) via tunneling of the glycosidic bond. Resonance states generated within this energy regime will exist for a duration of ˜35-55 fs. Comparison of salient features of the two dissociation events, i.e., 3' C-O single strand break and glycosidic N-C bond cleavage in 3'-dCMPH molecule are also provided.

  8. Centralspindlin in Rappaport's cleavage signaling.

    PubMed

    Mishima, Masanori

    2016-05-01

    Cleavage furrow in animal cell cytokinesis is formed by cortical constriction driven by contraction of an actomyosin network activated by Rho GTPase. Although the role of the mitotic apparatus in furrow induction has been well established, there remain discussions about the detailed molecular mechanisms of the cleavage signaling. While experiments in large echinoderm embryos highlighted the role of astral microtubules, data in smaller cells indicate the role of central spindle. Centralspindlin is a constitutive heterotetramer of MKLP1 kinesin and the non-motor CYK4 subunit and plays crucial roles in formation of the central spindle and recruitment of the downstream cytokinesis factors including ECT2, the major activator of Rho during cytokinesis, to the site of division. Recent reports have revealed a role of this centralspindlin-ECT2 pathway in furrow induction both by the central spindle and by the astral microtubules. Here, a unified view of the stimulation of cortical contractility by this pathway is discussed. Cytokinesis, the division of the whole cytoplasm, is an essential process for cell proliferation and embryonic development. In animal cells, cytokinesis is executed using a contractile network of actin filaments driven by a myosin-II motor that constricts the cell cortex (cleavage furrow ingression) into a narrow channel between the two daughter cells, which is resolved by scission (abscission) [1-3]. The anaphase-specific organization of the mitotic apparatus (MA, spindle with chromosomes plus asters) positions the cleavage furrow and plays a major role in spatial coupling between mitosis and cytokinesis [4-6]. The nucleus and chromosomes are dispensable for furrow specification [7-10], although they contribute to persistent furrowing and robust completion in some cell types [11,12]. Likewise, centrosomes are not essential for cytokinesis, but they contribute to the general fidelity of cell division [10,13-15]. Here, classical models of cleavage furrow

  9. Single molecule studies of DNA packaging by bacteriophages

    NASA Astrophysics Data System (ADS)

    Fuller, Derek Nathan

    The DNA packaging dynamics of bacteriophages φ29, gamma, and T4 were studied at the single molecule level using a dual trap optical tweezers. Also, a method for producing long DNA molecules by PCR for optical tweezers studies of protein DNA interactions is presented and thoroughly characterized. This DNA preparation technique provided DNA samples for the φ29 and T4 studies. In the studies of φ29, the role of charge was investigated by varying the ionic conditions of the packaging buffer. Ionic conditions in which the DNA charge was highly screened due to divalent and trivalent cations showed the lowest resistance to packaging of the DNA to high density. This confirmed the importance of counterions in shielding the DNA interstrand repulsion when packaged to high density. While the ionic nature of the packaging buffer had a strong effect on packaging velocities, there was no clear trend between the counterion-screened charge of the DNA and the maximum packaging velocity. The packaging studies of lambda and T4 served as systems for comparative studies with φ29. Each system showed similarities to the φ29 system and unique differences. Both the lambda and T4 packaging motors were capable of generating forces in excess of 50 pN and showed remarkably high processivity, similar to φ29. However, dynamic structural transitions were observed with lambda that are not observed with φ29. The packaging of the lambda genome showed capsid expansion at approximately 30 percent of the genome packaged and capsid rupture at 90 percent of the genome packaged in the absence of capsid stabilizing protein gpD. Unique to the T4 packaging motor, packaging dynamics showed a remarkable amount of variability in velocities. This variability was seen both within individual packaging phages and from one phage to the next. This is possibly due to different conformational states of the packaging machinery. Additionally, lambda and T4 had average packaging velocities under minimal load of 600

  10. Raman microprobe spectroscopic studies of solid DNA-CTMA films

    NASA Astrophysics Data System (ADS)

    Yaney, Perry P.; Ahmad, Faizan; Grote, James G.

    2008-08-01

    Extensive studies have been carried out on developing the new biopolymer, deoxyribonucleic acid (DNA) derived from salmon, that has been complexed with a surfactant to make it water insoluble for application to bioelectronic and biophotonic devices. One of the key issues associated with the properties and behavior of solid films of this material is the extreme size of the >8 MDa molecular weight of the virgin, as-received material. Reduction of this molecular weight by factors of up to 40 is achieved by high power sonication. To support the various measurements that have been made to confirm that the sonicated material is still double strand DNA and to look for other effects of sonication, Raman studies were carried out to compare the spectra over a wide range of molecular weights and to develop baseline data that can be used in intercolation studies where various dopants are added to change the electrical, mechanical or optical properties. Raman microprobe spectra from solid, dry thin films of DNA with molecular weights ranging from 200 kDa to >8 MDa complexed with cetyltrimethyl-ammonium chloride (CTMA) are reported and compared to the as-received spectrum and to published DNA spectra in aqueous solutions. In addition, microscopy and measurements on macro-molecular structures of DNA-CTMA are reported.

  11. Studying Z-DNA and B- to Z-DNA transitions using a cytosine analogue FRET-pair.

    PubMed

    Dumat, Blaise; Larsen, Anders Foller; Wilhelmsson, L Marcus

    2016-06-20

    Herein, we report on the use of a tricyclic cytosine FRET pair, incorporated into DNA with different base pair separations, to study Z-DNA and B-Z DNA junctions. With its position inside the DNA structure, the FRET pair responds to a B- to Z-DNA transition with a distinct change in FRET efficiency for each donor/acceptor configuration allowing reliable structural probing. Moreover, we show how fluorescence spectroscopy and our cytosine analogues can be used to determine rate constants for the B- to Z-DNA transition mechanism. The modified cytosines have little influence on the transition and the FRET pair is thus an easily implemented and virtually non-perturbing fluorescence tool to study Z-DNA. This nucleobase analogue FRET pair represents a valuable addition to the limited number of fluorescence methods available to study Z-DNA and we suggest it will facilitate, for example, deciphering the B- to Z-DNA transition mechanism and investigating the interaction of DNA with Z-DNA binding proteins. PMID:26896804

  12. Studying Z-DNA and B- to Z-DNA transitions using a cytosine analogue FRET-pair

    PubMed Central

    Dumat, Blaise; Larsen, Anders Foller; Wilhelmsson, L. Marcus

    2016-01-01

    Herein, we report on the use of a tricyclic cytosine FRET pair, incorporated into DNA with different base pair separations, to study Z-DNA and B-Z DNA junctions. With its position inside the DNA structure, the FRET pair responds to a B- to Z-DNA transition with a distinct change in FRET efficiency for each donor/acceptor configuration allowing reliable structural probing. Moreover, we show how fluorescence spectroscopy and our cytosine analogues can be used to determine rate constants for the B- to Z-DNA transition mechanism. The modified cytosines have little influence on the transition and the FRET pair is thus an easily implemented and virtually non-perturbing fluorescence tool to study Z-DNA. This nucleobase analogue FRET pair represents a valuable addition to the limited number of fluorescence methods available to study Z-DNA and we suggest it will facilitate, for example, deciphering the B- to Z-DNA transition mechanism and investigating the interaction of DNA with Z-DNA binding proteins. PMID:26896804

  13. Structure–Function Studies of DNA Polymerase λ

    PubMed Central

    2015-01-01

    DNA polymerase λ (pol λ) functions in DNA repair with its main roles considered to be filling short gaps during repair of double-strand breaks by nonhomologous end joining and during base excision repair. As indicated by structural and biochemical studies over the past 10 years, pol λ shares many common properties with other family X siblings (pol β, pol μ, and terminal deoxynucleotidyl transferase) but also has unique structural features that determine its specific functions. In this review, we consider how structural studies over the past decade furthered our understanding of the behavior and biological roles of pol λ. PMID:24716527

  14. Efficient and facile Ar-Si bond cleavage by montmorillonite KSF: synthetic and mechanistic aspects of solvent-free protodesilylation studied by solution and solid-state MAS NMR.

    PubMed

    Zafrani, Yossi; Gershonov, Eytan; Columbus, Ishay

    2007-08-31

    A facile and efficient method for the cleavage of the Ar-Si bond of various aryl trimethyl silanes is described. When adsorbed on montmorillonite KSF (mont KSF), these arylsilanes readily undergo a solvent-free protodesilylation to the corresponding arenes at room temperature in excellent yields. This approach seems to be superior to the traditional mild methods (i.e., desilylation by TFA, TBAF, CsF), in terms of reaction yield, rate, and environmentally benign conditions. Some mechanistic studies using both solution and solid-state magic-angle spinning (SS MAS) (1)H NMR are also presented. PMID:17676903

  15. Design, synthesis, physicochemical studies, solvation, and DNA damage of quinoline-appended chalcone derivative: comprehensive spectroscopic approach toward drug discovery.

    PubMed

    Kumar, Himank; Chattopadhyay, Anjan; Prasath, R; Devaraji, Vinod; Joshi, Ritika; Bhavana, P; Saini, Praveen; Ghosh, Sujit Kumar

    2014-07-01

    The present study epitomizes the design, synthesis, photophysics, solvation, and interaction with calf-thymus DNA of a potential antitumor, anticancer quinoline-appended chalcone derivative, (E)-3-(anthracen-10-yl)-1-(6,8-dibromo-2-methylquinolin-3-yl)prop-2-en-1-one (ADMQ) using steady state absorption and fluorescence spectroscopy, molecular modeling, molecular docking, Fourier-transform infrared spectroscopy (FTIR), molecular dynamics (MD) simulation, and gel electrophoresis studies. ADMQ shows an unusual photophysical behavior in a variety of solvents of different polarity. The dual emission has been observed along with the formation of twisted intramolecular charge transfer (TICT) excited state. The radiationless deactivation of the TICT state is found to be promoted strongly by hydrogen bonding. Quantum mechanical (DFT, TDDFT, and ZINDO-CI) calculations show that the ADMQ is sort of molecular rotor which undergoes intramolecular twist followed by a complete charge transfer in the optimized excited state. FTIR studies reveals that ADMQ undergoes important structural change from its native structure to a β-hydroxy keto form in water at physiological pH. The concentration-dependent DNA cleavage has been identified in agarose gel DNA electrophoresis experiment and has been further supported by MD simulation. ADMQ forms hydrogen bond with the deoxyribose sugar attached with the nucleobase adenine DA-17 (chain A) and result in significant structural changes which potentially cleave DNA double helix. The compound does not exhibit any deleterious effect or toxicity to the E. coli strain in cytotoxicity studies. The consolidated spectroscopic research described herein can provide enormous information to open up new avenues for designing and synthesizing chalcone derivatives with low systematic toxicity for medicinal chemistry research. PMID:24962605

  16. DNA-cisplatin interaction studied with single molecule stretching experiments.

    PubMed

    Crisafuli, F A P; Cesconetto, E C; Ramos, E B; Rocha, M S

    2012-05-01

    By performing single molecule stretching experiments with optical tweezers, we have studied the changes in the mechanical properties of DNA-cisplatin complexes as a function of some variables of interest such as the drug diffusion time and concentration in the sample. We propose a model to explain the behavior of the persistence length as a function of the drug concentration, extracting the binding data from pure mechanical measurements. Such analysis has allowed us to show that cisplatin binds cooperatively to the DNA molecule. In addition, DNA compaction by the action of the drug was also observed under our experimental conditions by studying the kinetics of some mechanical properties such as the radius of gyration and the end-to-end distance, e.g. Crisafuli et al., Integr. Biol., 2011, xx, xxxx. PMID:22513758

  17. Study of DNA uptake locations in single E. coli cells

    NASA Astrophysics Data System (ADS)

    Xu, C. Shan; Meadow Anderson, L.; Yang, Haw

    2006-03-01

    Artificial gene transfer of bacteria, such as E. coli, has become the main stream technique in genetic engineering and molecular cell biology studies. In spite of the great improvements in transformation efficiency, some fundamental questions remained to be answered. For instance, what are the DNA uptake channels and how do they form and function under external stimuli? Furthermore, where are these channels located on the cell membrane? Here we report a study aimed at DNA uptake locations in the two widely used gene transformation techniques: electroporation and heat shock. A direct visualization of the settling location of single DNA molecules inside individual E. coli cells was obtained by fluorescence imaging and spectroscopy. Electroporation and heat shock exhibit two distinct characteristics of DNA uptake locations. A preferential distribution toward cell poles during electroporation is consistent with earlier experiments and previously proposed models. However, the result from heat shock is unanticipated in which the majority of DNA enters the cell near the center. Such observation suggests that uptake channels form preferentially where newly-synthesized membrane is located under cation and low temperature treatment

  18. DNA compaction by the bacteriophage protein Cox studied on the single DNA molecule level using nanofluidic channels.

    PubMed

    Frykholm, Karolin; Berntsson, Ronnie Per-Arne; Claesson, Magnus; de Battice, Laura; Odegrip, Richard; Stenmark, Pål; Westerlund, Fredrik

    2016-09-01

    The Cox protein from bacteriophage P2 forms oligomeric filaments and it has been proposed that DNA can be wound up around these filaments, similar to how histones condense DNA. We here use fluorescence microscopy to study single DNA-Cox complexes in nanofluidic channels and compare how the Cox homologs from phages P2 and WΦ affect DNA. By measuring the extension of nanoconfined DNA in absence and presence of Cox we show that the protein compacts DNA and that the binding is highly cooperative, in agreement with the model of a Cox filament around which DNA is wrapped. Furthermore, comparing microscopy images for the wild-type P2 Cox protein and two mutants allows us to discriminate between compaction due to filament formation and compaction by monomeric Cox. P2 and WΦ Cox have similar effects on the physical properties of DNA and the subtle, but significant, differences in DNA binding are due to differences in binding affinity rather than binding mode. The presented work highlights the use of single DNA molecule studies to confirm structural predictions from X-ray crystallography. It also shows how a small protein by oligomerization can have great impact on the organization of DNA and thereby fulfill multiple regulatory functions. PMID:27131370

  19. Cleavage of an amide bond by a ribozyme

    NASA Technical Reports Server (NTRS)

    Dai, X.; De Mesmaeker, A.; Joyce, G. F.; Miller, S. L. (Principal Investigator)

    1995-01-01

    A variant form of a group I ribozyme, optimized by in vitro evolution for its ability to catalyze magnesium-dependent phosphoester transfer reactions involving DNA substrates, also catalyzes the cleavage of an unactivated alkyl amide when that linkage is presented in the context of an oligodeoxynucleotide analog. Substrates containing an amide bond that joins either two DNA oligos, or a DNA oligo and a short peptide, are cleaved in a magnesium-dependent fashion to generate the expected products. The first-order rate constant, kcat, is 0.1 x 10(-5) min-1 to 1 x 10(-5) min-1 for the DNA-flanked substrates, which corresponds to a rate acceleration of more than 10(3) as compared with the uncatalyzed reaction.

  20. Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faeces

    PubMed Central

    Deagle, Bruce E; Eveson, J Paige; Jarman, Simon N

    2006-01-01

    Background Poorly preserved biological tissues have become an important source of DNA for a wide range of zoological studies. Measuring the quality of DNA obtained from these samples is often desired; however, there are no widely used techniques available for quantifying damage in highly degraded DNA samples. We present a general method that can be used to determine the frequency of polymerase blocking DNA damage in specific gene-regions in such samples. The approach uses quantitative PCR to measure the amount of DNA present at several fragment sizes within a sample. According to a model of random degradation the amount of available template will decline exponentially with increasing fragment size in damaged samples, and the frequency of DNA damage (λ) can be estimated by determining the rate of decline. Results The method is illustrated through the analysis of DNA extracted from sea lion faecal samples. Faeces contain a complex mixture of DNA from several sources and different components are expected to be differentially degraded. We estimated the frequency of DNA damage in both predator and prey DNA within individual faecal samples. The distribution of fragment lengths for each target fit well with the assumption of a random degradation process and, in keeping with our expectations, the estimated frequency of damage was always less in predator DNA than in prey DNA within the same sample (mean λpredator = 0.0106 per nucleotide; mean λprey = 0.0176 per nucleotide). This study is the first to explicitly define the amount of template damage in any DNA extracted from faeces and the first to quantify the amount of predator and prey DNA present within individual faecal samples. Conclusion We present an approach for characterizing mixed, highly degraded PCR templates such as those often encountered in ecological studies using non-invasive samples as a source of DNA, wildlife forensics investigations and ancient DNA research. This method will allow researchers to

  1. Differential Nuclear and Mitochondrial DNA Preservation in Post-Mortem Teeth with Implications for Forensic and Ancient DNA Studies

    PubMed Central

    Higgins, Denice; Rohrlach, Adam B.; Kaidonis, John; Townsend, Grant; Austin, Jeremy J.

    2015-01-01

    Major advances in genetic analysis of skeletal remains have been made over the last decade, primarily due to improvements in post-DNA-extraction techniques. Despite this, a key challenge for DNA analysis of skeletal remains is the limited yield of DNA recovered from these poorly preserved samples. Enhanced DNA recovery by improved sampling and extraction techniques would allow further advancements. However, little is known about the post-mortem kinetics of DNA degradation and whether the rate of degradation varies between nuclear and mitochondrial DNA or across different skeletal tissues. This knowledge, along with information regarding ante-mortem DNA distribution within skeletal elements, would inform sampling protocols facilitating development of improved extraction processes. Here we present a combined genetic and histological examination of DNA content and rates of DNA degradation in the different tooth tissues of 150 human molars over short-medium post-mortem intervals. DNA was extracted from coronal dentine, root dentine, cementum and pulp of 114 teeth via a silica column method and the remaining 36 teeth were examined histologically. Real time quantification assays based on two nuclear DNA fragments (67 bp and 156 bp) and one mitochondrial DNA fragment (77 bp) showed nuclear and mitochondrial DNA degraded exponentially, but at different rates, depending on post-mortem interval and soil temperature. In contrast to previous studies, we identified differential survival of nuclear and mtDNA in different tooth tissues. Futhermore histological examination showed pulp and dentine were rapidly affected by loss of structural integrity, and pulp was completely destroyed in a relatively short time period. Conversely, cementum showed little structural change over the same time period. Finally, we confirm that targeted sampling of cementum from teeth buried for up to 16 months can provide a reliable source of nuclear DNA for STR-based genotyping using standard

  2. Real-time PCR designs to estimate nuclear and mitochondrial DNA copy number in forensic and ancient DNA studies.

    PubMed

    Alonso, Antonio; Martín, Pablo; Albarrán, Cristina; García, Pilar; García, Oscar; de Simón, Lourdes Fernández; García-Hirschfeld, Julia; Sancho, Manuel; de La Rúa, Concepción; Fernández-Piqueras, Jose

    2004-01-28

    We explore different designs to estimate both nuclear and mitochondrial human DNA (mtDNA) content based on the detection of the 5' nuclease activity of the Taq DNA polymerase using fluorogenic probes and a real-time quantitative PCR detection system. Human mtDNA quantification was accomplished by monitoring the real-time progress of the PCR-amplification of two different fragment sizes (113 and 287 bp) within the hypervariable region I (HV1) of the mtDNA control region, using two fluorogenic probes to specifically determine the mtDNA copy of each fragment size category. This mtDNA real-time PCR design has been used to assess the mtDNA preservation (copy number and degradation state) of DNA samples retrieved from 500 to 1500 years old human remains that showed low copy number and highly degraded mtDNA. The quantification of nuclear DNA was achieved by real-time PCR of a segment of the X-Y homologous amelogenin (AMG) gene that allowed the simultaneous estimation of a Y-specific fragment (AMGY: 112 bp) and a X-specific fragment (AMGX: 106 bp) making possible not only haploid or diploid DNA quantitation but also sex determination. The AMG real-time PCR design has been used to quantify a set of 57 DNA samples from 4-5 years old forensic bone remains with improved sensitivity compared with the slot-blot hybridization method. The potential utility of this technology to improve the quality of some PCR-based forensic and ancient DNA studies (microsatellite typing and mtDNA sequencing) is discussed. PMID:15040907

  3. Differential nuclear and mitochondrial DNA preservation in post-mortem teeth with implications for forensic and ancient DNA studies.

    PubMed

    Higgins, Denice; Rohrlach, Adam B; Kaidonis, John; Townsend, Grant; Austin, Jeremy J

    2015-01-01

    Major advances in genetic analysis of skeletal remains have been made over the last decade, primarily due to improvements in post-DNA-extraction techniques. Despite this, a key challenge for DNA analysis of skeletal remains is the limited yield of DNA recovered from these poorly preserved samples. Enhanced DNA recovery by improved sampling and extraction techniques would allow further advancements. However, little is known about the post-mortem kinetics of DNA degradation and whether the rate of degradation varies between nuclear and mitochondrial DNA or across different skeletal tissues. This knowledge, along with information regarding ante-mortem DNA distribution within skeletal elements, would inform sampling protocols facilitating development of improved extraction processes. Here we present a combined genetic and histological examination of DNA content and rates of DNA degradation in the different tooth tissues of 150 human molars over short-medium post-mortem intervals. DNA was extracted from coronal dentine, root dentine, cementum and pulp of 114 teeth via a silica column method and the remaining 36 teeth were examined histologically. Real time quantification assays based on two nuclear DNA fragments (67 bp and 156 bp) and one mitochondrial DNA fragment (77 bp) showed nuclear and mitochondrial DNA degraded exponentially, but at different rates, depending on post-mortem interval and soil temperature. In contrast to previous studies, we identified differential survival of nuclear and mtDNA in different tooth tissues. Furthermore histological examination showed pulp and dentine were rapidly affected by loss of structural integrity, and pulp was completely destroyed in a relatively short time period. Conversely, cementum showed little structural change over the same time period. Finally, we confirm that targeted sampling of cementum from teeth buried for up to 16 months can provide a reliable source of nuclear DNA for STR-based genotyping using standard

  4. A Theoretical and Experimental Study of DNA Self-assembly

    NASA Astrophysics Data System (ADS)

    Chandran, Harish

    The control of matter and phenomena at the nanoscale is fast becoming one of the most important challenges of the 21st century with wide-ranging applications from energy and health care to computing and material science. Conventional top-down approaches to nanotechnology, having served us well for long, are reaching their inherent limitations. Meanwhile, bottom-up methods such as self-assembly are emerging as viable alternatives for nanoscale fabrication and manipulation. A particularly successful bottom up technique is DNA self-assembly where a set of carefully designed DNA strands form a nanoscale object as a consequence of specific, local interactions among the different components, without external direction. The final product of the self-assembly process might be a static nanostructure or a dynamic nanodevice that performs a specific function. Over the past two decades, DNA self-assembly has produced stunning nanoscale objects such as 2D and 3D lattices, polyhedra and addressable arbitrary shaped substrates, and a myriad of nanoscale devices such as molecular tweezers, computational circuits, biosensors and molecular assembly lines. In this dissertation we study multiple problems in the theory, simulations and experiments of DNA self-assembly. We extend the Turing-universal mathematical framework of self-assembly known as the Tile Assembly Model by incorporating randomization during the assembly process. This allows us to reduce the tile complexity of linear assemblies. We develop multiple techniques to build linear assemblies of expected length N using far fewer tile types than previously possible. We abstract the fundamental properties of DNA and develop a biochemical system, which we call meta-DNA, based entirely on strands of DNA as the only component molecule. We further develop various enzyme-free protocols to manipulate meta-DNA systems and provide strand level details along with abstract notations for these mechanisms. We simulate DNA circuits by

  5. Functional Studies of DNA-Protein Interactions Using FRET Techniques.

    PubMed

    Blouin, Simon; Craggs, Timothy D; Lafontaine, Daniel A; Penedo, J Carlos

    2015-01-01

    Protein-DNA interactions underpin life and play key roles in all cellular processes and functions including DNA transcription, packaging, replication, and repair. Identifying and examining the nature of these interactions is therefore a crucial prerequisite to understand the molecular basis of how these fundamental processes take place. The application of fluorescence techniques and in particular fluorescence resonance energy transfer (FRET) to provide structural and kinetic information has experienced a stunning growth during the past decade. This has been mostly promoted by new advances in the preparation of dye-labeled nucleic acids and proteins and in optical sensitivity, where its implementation at the level of individual molecules has opened a new biophysical frontier. Nowadays, the application of FRET-based techniques to the analysis of protein-DNA interactions spans from the classical steady-state and time-resolved methods averaging over large ensembles to the analysis of distances, conformational changes, and enzymatic reactions in individual protein-DNA complexes. This chapter introduces the practical aspects of applying these methods for the study of protein-DNA interactions. PMID:26404147

  6. The dyslexia-associated KIAA0319 protein undergoes proteolytic processing with {gamma}-secretase-independent intramembrane cleavage.

    PubMed

    Velayos-Baeza, Antonio; Levecque, Clotilde; Kobayashi, Kazuhiro; Holloway, Zoe G; Monaco, Anthony P

    2010-12-17

    The KIAA0319 gene has been associated with reading disability in several studies. It encodes a plasma membrane protein with a large, highly glycosylated, extracellular domain. This protein is proposed to function in adhesion and attachment and thought to play an important role during neuronal migration in the developing brain. We have previously proposed that endocytosis of this protein could constitute an important mechanism to regulate its function. Here we show that KIAA0319 undergoes ectodomain shedding and intramembrane cleavage. At least five different cleavage events occur, four in the extracellular domain and one within the transmembrane domain. The ectodomain shedding processing cleaves the extracellular domain, generating several small fragments, including the N-terminal region with the Cys-rich MANEC domain. It is possible that these fragments are released to the extracellular medium and trigger cellular responses. The intramembrane cleavage releases the intracellular domain from its membrane attachment. Our results suggest that this cleavage event is not carried out by γ-secretase, the enzyme complex involved in similar processing in many other type I proteins. The soluble cytoplasmic domain of KIAA0319 is able to translocate to the nucleus, accumulating in nucleoli after overexpression. This fragment has an unknown role, although it could be involved in regulation of gene expression. The absence of DNA-interacting motifs indicates that such a function would most probably be mediated through interaction with other proteins, not by direct DNA binding. These results suggest that KIAA0319 not only has a direct role in neuronal migration but may also have additional signaling functions. PMID:20943657

  7. The Dyslexia-associated KIAA0319 Protein Undergoes Proteolytic Processing with γ-Secretase-independent Intramembrane Cleavage*

    PubMed Central

    Velayos-Baeza, Antonio; Levecque, Clotilde; Kobayashi, Kazuhiro; Holloway, Zoe G.; Monaco, Anthony P.

    2010-01-01

    The KIAA0319 gene has been associated with reading disability in several studies. It encodes a plasma membrane protein with a large, highly glycosylated, extracellular domain. This protein is proposed to function in adhesion and attachment and thought to play an important role during neuronal migration in the developing brain. We have previously proposed that endocytosis of this protein could constitute an important mechanism to regulate its function. Here we show that KIAA0319 undergoes ectodomain shedding and intramembrane cleavage. At least five different cleavage events occur, four in the extracellular domain and one within the transmembrane domain. The ectodomain shedding processing cleaves the extracellular domain, generating several small fragments, including the N-terminal region with the Cys-rich MANEC domain. It is possible that these fragments are released to the extracellular medium and trigger cellular responses. The intramembrane cleavage releases the intracellular domain from its membrane attachment. Our results suggest that this cleavage event is not carried out by γ-secretase, the enzyme complex involved in similar processing in many other type I proteins. The soluble cytoplasmic domain of KIAA0319 is able to translocate to the nucleus, accumulating in nucleoli after overexpression. This fragment has an unknown role, although it could be involved in regulation of gene expression. The absence of DNA-interacting motifs indicates that such a function would most probably be mediated through interaction with other proteins, not by direct DNA binding. These results suggest that KIAA0319 not only has a direct role in neuronal migration but may also have additional signaling functions. PMID:20943657

  8. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  9. DNA methylation studies using twins: what are they telling us?

    PubMed

    Bell, Jordana T; Spector, Tim D

    2012-01-01

    Recent studies have identified both heritable DNA methylation effects and differential methylation in disease-discordant identical twins. Larger sample sizes, replication, genetic-epigenetic analyses and longitudinal assays are now needed to establish the role of epigenetic variants in disease. PMID:23078798

  10. Antimicrobial action of histone H2B in Escherichia coli: evidence for membrane translocation and DNA-binding of a histone H2B fragment after proteolytic cleavage by outer membrane proteinase T.

    PubMed

    Kawasaki, Hiroaki; Koyama, Takumi; Conlon, J Michael; Yamakura, Fumiyuki; Iwamuro, Shawichi

    2008-01-01

    Previous studies have led to the isolation of histone H2B with antibacterial properties from an extract of the skin of the Schlegel's green tree frog Rhacophorus schlegelii and it is now demonstrated that the intact peptide is released into norepinephrine-stimulated skin secretions. In order to investigate the mechanism of action of this peptide, a maltose-binding protein (MBP)-fused histone H2B (MBP-H2B) conjugate was prepared and subjected to antimicrobial assay. The fusion protein showed bacteriostatic activity against Escherichia coli strain JCM5491 with a minimum inhibitory concentration of 11 microM. The lysate prepared from JCM5491 cells was capable of fragmenting MBP-H2B within the histone H2B region, but the lysate from the outer membrane proteinase T (OmpT) gene-deleted BL21(DE3) cells was not. FITC-labeled MBP-H2B (FITC-MBP-H2B) penetrated into the bacterial cell membrane of JCM5491 and ompT-transformed BL21(DE3) cells, but not into ompT-deleted BL21(DE3) cells. Gel retardation assay using MBP-H2B-deletion mutants indicated that MBP-H2B bound to DNA at a site within the N-terminal region of histone H2B. Consequently, it is proposed that the antimicrobial action of histone H2B involves, at least in part, penetration of an OmpT-produced N-terminal histone H2B fragment into the bacterial cell membrane with subsequent inhibition of cell functions. PMID:18706965

  11. Design of a combinatorial DNA microarray for protein-DNA interaction studies

    PubMed Central

    Mintseris, Julian; Eisen, Michael B

    2006-01-01

    Background Discovery of precise specificity of transcription factors is an important step on the way to understanding the complex mechanisms of gene regulation in eukaryotes. Recently, double-stranded protein-binding microarrays were developed as a potentially scalable approach to tackle transcription factor binding site identification. Results Here we present an algorithmic approach to experimental design of a microarray that allows for testing full specificity of a transcription factor binding to all possible DNA binding sites of a given length, with optimally efficient use of the array. This design is universal, works for any factor that binds a sequence motif and is not species-specific. Furthermore, simulation results show that data produced with the designed arrays is easier to analyze and would result in more precise identification of binding sites. Conclusion In this study, we present a design of a double stranded DNA microarray for protein-DNA interaction studies and show that our algorithm allows optimally efficient use of the arrays for this purpose. We believe such a design will prove useful for transcription factor binding site identification and other biological problems. PMID:17018151

  12. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments

    NASA Technical Reports Server (NTRS)

    Ojha, R. P.; Dhingra, M. M.; Sarma, M. H.; Myer, Y. P.; Setlik, R. F.; Shibata, M.; Kazim, A. L.; Ornstein, R. L.; Rein, R.; Turner, C. J.; Sarma, R. H.

    1997-01-01

    The structure of an anti-HIV-1 ribozyme-DNA abortive substrate complex was investigated by 750 MHz NMR and computer modeling experiments. The ribozyme was a chimeric molecule with 30 residues-18 DNA nucleotides, and 12 RNA residues in the conserved core. The DNA substrate analog had 17 residues. The chimeric ribozyme and the DNA substrate formed a shortened ribozyme-abortive substrate complex of 47 nucleotides with two DNA stems (stems I and III) and a loop consisting of the conserved core residues. Circular dichroism spectra showed that the DNA stems assume A-family conformation at the NMR concentration and a temperature of 15 degrees C, contrary to the conventional wisdom that DNA duplexes in aqueous solution populate entirely in the B-form. It is proposed that the A-family RNA residues at the core expand the A-family initiated at the core into the DNA stems because of the large free energy requirement for the formation of A/B junctions. Assignments of the base H8/H6 protons and H1' of the 47 residues were made by a NOESY walk. In addition to the methyl groups of all T's, the imino resonances of stems I and III and AH2's were assigned from appropriate NOESY walks. The extracted NMR data along with available crystallographic data, were used to derive a structural model of the complex. Stems I and III of the final model displayed a remarkable similarity to the A form of DNA; in stem III, a GC base pair was found to be moving into the floor of the minor groove defined by flanking AT pairs; data suggest the formation of a buckled rhombic structure with the adjacent pair; in addition, the base pair at the interface of stem III and the loop region displayed deformed geometry. The loop with the catalytic core, and the immediate region of the stems displayed conformational multiplicity within the NMR time scale. A catalytic mechanism for ribozyme action based on the derived structure, and consistent with biochemical data in the literature, is proposed. The complex

  13. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments.

    PubMed

    Ojha, R P; Dhingra, M M; Sarma, M H; Myer, Y P; Setlik, R F; Shibata, M; Kazim, A L; Ornstein, R L; Rein, R; Turner, C J; Sarma, R H

    1997-10-01

    The structure of an anti-HIV-1 ribozyme-DNA abortive substrate complex was investigated by 750 MHz NMR and computer modeling experiments. The ribozyme was a chimeric molecule with 30 residues-18 DNA nucleotides, and 12 RNA residues in the conserved core. The DNA substrate analog had 17 residues. The chimeric ribozyme and the DNA substrate formed a shortened ribozyme-abortive substrate complex of 47 nucleotides with two DNA stems (stems I and III) and a loop consisting of the conserved core residues. Circular dichroism spectra showed that the DNA stems assume A-family conformation at the NMR concentration and a temperature of 15 degrees C, contrary to the conventional wisdom that DNA duplexes in aqueous solution populate entirely in the B-form. It is proposed that the A-family RNA residues at the core expand the A-family initiated at the core into the DNA stems because of the large free energy requirement for the formation of A/B junctions. Assignments of the base H8/H6 protons and H1' of the 47 residues were made by a NOESY walk. In addition to the methyl groups of all T's, the imino resonances of stems I and III and AH2's were assigned from appropriate NOESY walks. The extracted NMR data along with available crystallographic data, were used to derive a structural model of the complex. Stems I and III of the final model displayed a remarkable similarity to the A form of DNA; in stem III, a GC base pair was found to be moving into the floor of the minor groove defined by flanking AT pairs; data suggest the formation of a buckled rhombic structure with the adjacent pair; in addition, the base pair at the interface of stem III and the loop region displayed deformed geometry. The loop with the catalytic core, and the immediate region of the stems displayed conformational multiplicity within the NMR time scale. A catalytic mechanism for ribozyme action based on the derived structure, and consistent with biochemical data in the literature, is proposed. The complex

  14. γ-Secretase Modulators and APH1 Isoforms Modulate γ-Secretase Cleavage but Not Position of ε-Cleavage of the Amyloid Precursor Protein (APP)

    PubMed Central

    Lessard, Christian B.; Cottrell, Barbara A.; Maruyama, Hiroko; Suresh, Suraj; Golde, Todd E.; Koo, Edward H.

    2015-01-01

    The relative increase in Aβ42 peptides from familial Alzheimer disease (FAD) linked APP and PSEN mutations can be related to changes in both ε-cleavage site utilization and subsequent step-wise cleavage. Cleavage at the ε-site releases the amyloid precursor protein (APP) intracellular domain (AICD), and perturbations in the position of ε-cleavage are closely associated with changes in the profile of amyloid β-protein (Aβ) species that are produced and secreted. The mechanisms by which γ-secretase modulators (GSMs) or FAD mutations affect the various γ-secretase cleavages to alter the generation of Aβ peptides have not been fully elucidated. Recent studies suggested that GSMs do not modulate ε-cleavage of APP, but the data were derived principally from recombinant truncated epitope tagged APP substrate. Here, using full length APP from transfected cells, we investigated whether GSMs modify the ε-cleavage of APP under more native conditions. Our results confirmed the previous findings that ε-cleavage is insensitive to GSMs. In addition, fenofibrate, an inverse GSM (iGSM), did not alter the position or kinetics of ε-cleavage position in vitro. APH1A and APH1B, a subunit of the γ-secretase complex, also modulated Aβ42/Aβ40 ratio without any alterations in ε-cleavage, a result in contrast to what has been observed with PS1 and APP FAD mutations. Consequently, GSMs and APH1 appear to modulate γ-secretase activity and Aβ42 generation by altering processivity but not ε-cleavage site utilization. PMID:26678856

  15. Dendritic polymer imaging systems for the evaluation of conjugate uptake and cleavage

    NASA Astrophysics Data System (ADS)

    Krüger, Harald R.; Nagel, Gregor; Wedepohl, Stefanie; Calderón, Marcelo

    2015-02-01

    Fluorescent turn-on probes combined with polymers have a broad range of applications, e.g. for intracellular sensing of ions, small molecules, or DNA. In the field of polymer therapeutics, these probes can be applied to extend the in vitro characterization of novel conjugates beyond cytotoxicity and cellular uptake studies. This is particularly true in cases in which polymer conjugates contain drugs attached by cleavable linkers. Better information on the intracellular linker cleavage and drug release would allow a faster evaluation and optimization of novel polymer therapeutic concepts. We therefore developed a fluorescent turn-on probe that enables direct monitoring of pH-mediated cleavage processes over time. This is achieved by exploiting the fluorescence resonance energy transfer (FRET) between two dyes that have been coupled to a dendritic polymer. We demonstrate the use of this probe to evaluate polymer uptake and intracellular release of cargo in a cell based microplate assay that is suitable for high throughput screening.Fluorescent turn-on probes combined with polymers have a broad range of applications, e.g. for intracellular sensing of ions, small molecules, or DNA. In the field of polymer therapeutics, these probes can be applied to extend the in vitro characterization of novel conjugates beyond cytotoxicity and cellular uptake studies. This is particularly true in cases in which polymer conjugates contain drugs attached by cleavable linkers. Better information on the intracellular linker cleavage and drug release would allow a faster evaluation and optimization of novel polymer therapeutic concepts. We therefore developed a fluorescent turn-on probe that enables direct monitoring of pH-mediated cleavage processes over time. This is achieved by exploiting the fluorescence resonance energy transfer (FRET) between two dyes that have been coupled to a dendritic polymer. We demonstrate the use of this probe to evaluate polymer uptake and intracellular

  16. Synthesis, characterization, plasmid cleavage and cytotoxicity of cancer cells by a copper(II) complex of anthracenyl-terpyridine.

    PubMed

    Kumar, Amit; Chinta, Jugun Prakash; Ajay, Amrendra Kumar; Bhat, Manoj Kumar; Rao, Chebrolu P

    2011-11-01

    Metallo-organic compounds are interesting to study for their antitumor activity and related applications. This paper deals with the syntheses, characterization, structure determination of a copper complex of anthracenyl terpyridine (1) and its plasmid cleavage and cytotoxicity towards different cancer cell lines. The complex binds CT-DNA through partial intercalation mode. The plasmid cleavage studies carried out using pBR322 and pUC18 resulted in the formation of all the three forms of the plasmid DNA. Plasmid cleavage studies carried out with a non-redoxable Zn(2+) complex (2) supported the role of the redox activity of copper in 1. The complex 1 showed remarkable antiproliferative activity against cancer cell lines, viz., cervical (HeLa, SiHa, CaSki), breast (MCF-7), liver (HepG2) and lung (H1299). A considerable lowering was observed in the IC(50) values of HPV-infected (viz., HeLa, SiHa, CaSki) vs. non-HPV-infected cell lines (MCF-7, HepG2, H1299). Antiproliferative activity of 1 was found to be much higher than the carboplatin when treated with the same cell lines. Incubation of the cells with 1 results in granular structures only with the HPV-infected cells and not with others as studied by phase contrast and fluorescence microscopy. The lower IC(50) value observed in case of 1 with HPV-infected cell lines may be correlated with the involvement of HPV oncoprotein. The role of HPV has been further augmented by transfecting the MCF-7 cells (originally not possessing HPV copy) with e6 oncoprotein cDNA. To our knowledge this is the first copper complex that causes cell death by interacting with HPV oncoprotein followed by exhibition of remarkable antiproliferative activity. PMID:21709916

  17. Accounting for population stratification in DNA methylation studies.

    PubMed

    Barfield, Richard T; Almli, Lynn M; Kilaru, Varun; Smith, Alicia K; Mercer, Kristina B; Duncan, Richard; Klengel, Torsten; Mehta, Divya; Binder, Elisabeth B; Epstein, Michael P; Ressler, Kerry J; Conneely, Karen N

    2014-04-01

    DNA methylation is an important epigenetic mechanism that has been linked to complex diseases and is of great interest to researchers as a potential link between genome, environment, and disease. As the scale of DNA methylation association studies approaches that of genome-wide association studies, issues such as population stratification will need to be addressed. It is well-documented that failure to adjust for population stratification can lead to false positives in genetic association studies, but population stratification is often unaccounted for in DNA methylation studies. Here, we propose several approaches to correct for population stratification using principal components (PCs) from different subsets of genome-wide methylation data. We first illustrate the potential for confounding due to population stratification by demonstrating widespread associations between DNA methylation and race in 388 individuals (365 African American and 23 Caucasian). We subsequently evaluate the performance of our PC-based approaches and other methods in adjusting for confounding due to population stratification. Our simulations show that (1) all of the methods considered are effective at removing inflation due to population stratification, and (2) maximum power can be obtained with single-nucleotide polymorphism (SNP)-based PCs, followed by methylation-based PCs, which outperform both surrogate variable analysis and genomic control. Among our different approaches to computing methylation-based PCs, we find that PCs based on CpG sites chosen for their potential to proxy nearby SNPs can provide a powerful and computationally efficient approach to adjust for population stratification in DNA methylation studies when genome-wide SNP data are unavailable. PMID:24478250

  18. Do all hemochromatosis patients have the same origin? A pilot study of mitochondrial DNA and Y-DNA

    PubMed Central

    Symonette, Caitlin J; Adams, Paul C

    2011-01-01

    BACKGROUND: Mitochondrial DNA (mtDNA) and Y-DNA analysis have been widely used to predict ancestral origin. Genetic anthropologists predict that human civilizations may have originated in central Africa one to two million years previously. Primary iron overload is not a common diagnosis among indigenous people of northern Africa, but hereditary hemochromatosis is present in approximately one in 200 people in northern Europe. MtDNA analysis has the potential to determine whether contemporary hemochromatosis patients have an ancient ancestral linkage. METHODS: DNA was obtained from buccal smears for mtDNA and Y-DNA analysis. Y-DNA analysis included examination of 20 short tandem repeat markers on the Y chromosome. Analysis of mtDNA involved sequencing of the HVR-1 genetic sequence (nucleotides 16001 to 16520) and was compared with the Cambridge Reference Sequence. MtDNA ancestral haplotypes were predicted from the analysis of the HVR-1 sequence. RESULTS: Twenty-six male C282Y homozygotes were studied. There were 28 polymorphisms present in the HVR-1 sequence of these participants. The most common polymorphism was present at position 16519 in 15 participants and at position 16311 in eight participants. There were 12 different ancestral haplotypes predicted by mtDNA analysis, with the K haplotype being present in five participants. Y-DNA analysis revealed eight different haplotypes, with R1b being found in 11 of the 26 participants. CONCLUSION: Analysis of mtDNA and Y-DNA in 26 hemochromatosis patients suggested that they did not all originate from the same ancestral tribe in Africa. These findings were consistent with the theory that the original hemochromatosis mutation occurred after migration of these ancestral people to central Europe, possibly 4000 years previously. PMID:21766093

  19. Specificity of hammerhead ribozyme cleavage.

    PubMed Central

    Hertel, K J; Herschlag, D; Uhlenbeck, O C

    1996-01-01

    To be effective in gene inactivation, the hammerhead ribozyme must cleave a complementary RNA target without deleterious effects from cleaving non-target RNAs that contain mismatches and shorter stretches of complementarity. The specificity of hammerhead cleavage was evaluated using HH16, a well-characterized ribozyme designed to cleave a target of 17 residues. Under standard reaction conditions, HH16 is unable to discriminate between its full-length substrate and 3'-truncated substrates, even when six fewer base pairs are formed between HH16 and the substrate. This striking lack of specificity arises because all the substrates bind to the ribozyme with sufficient affinity so that cleavage occurs before their affinity differences are manifested. In contrast, HH16 does exhibit high specificity towards certain 3'-truncated versions of altered substrates that either also contain a single base mismatch or are shortened at the 5' end. In addition, the specificity of HH16 is improved in the presence of p7 nucleocapsid protein from human immunodeficiency virus (HIV)-1, which accelerates the association and dissociation of RNA helices. These results support the view that the hammerhead has an intrinsic ability to discriminate against incorrect bases, but emphasizes that the high specificity is only observed in a certain range of helix lengths. Images PMID:8670879

  20. DNA compaction by the bacteriophage protein Cox studied on the single DNA molecule level using nanofluidic channels

    PubMed Central

    Frykholm, Karolin; Berntsson, Ronnie Per-Arne; Claesson, Magnus; de Battice, Laura; Odegrip, Richard; Stenmark, Pål; Westerlund, Fredrik

    2016-01-01

    The Cox protein from bacteriophage P2 forms oligomeric filaments and it has been proposed that DNA can be wound up around these filaments, similar to how histones condense DNA. We here use fluorescence microscopy to study single DNA–Cox complexes in nanofluidic channels and compare how the Cox homologs from phages P2 and WΦ affect DNA. By measuring the extension of nanoconfined DNA in absence and presence of Cox we show that the protein compacts DNA and that the binding is highly cooperative, in agreement with the model of a Cox filament around which DNA is wrapped. Furthermore, comparing microscopy images for the wild-type P2 Cox protein and two mutants allows us to discriminate between compaction due to filament formation and compaction by monomeric Cox. P2 and WΦ Cox have similar effects on the physical properties of DNA and the subtle, but significant, differences in DNA binding are due to differences in binding affinity rather than binding mode. The presented work highlights the use of single DNA molecule studies to confirm structural predictions from X-ray crystallography. It also shows how a small protein by oligomerization can have great impact on the organization of DNA and thereby fulfill multiple regulatory functions. PMID:27131370

  1. The cytotoxicity of (-)-lomaiviticin A arises from induction of double-strand breaks in DNA

    NASA Astrophysics Data System (ADS)

    Colis, Laureen C.; Woo, Christina M.; Hegan, Denise C.; Li, Zhenwu; Glazer, Peter M.; Herzon, Seth B.

    2014-06-01

    The metabolite (-)-lomaiviticin A, which contains two diazotetrahydrobenzo[b]fluorene (diazofluorene) functional groups, inhibits the growth of cultured human cancer cells at nanomolar-picomolar concentrations; however, the mechanism responsible for the potent cytotoxicity of this natural product is not known. Here we report that (-)-lomaiviticin A nicks and cleaves plasmid DNA by a pathway that is independent of reactive oxygen species and iron, and that the potent cytotoxicity of (-)-lomaiviticin A arises from the induction of DNA double-strand breaks (dsbs). In a plasmid cleavage assay, the ratio of single-strand breaks (ssbs) to dsbs is 5.3 ± 0.6:1. Labelling studies suggest that this cleavage occurs via a radical pathway. The structurally related isolates (-)-lomaiviticin C and (-)-kinamycin C, which contain one diazofluorene, are demonstrated to be much less effective DNA cleavage agents, thereby providing an explanation for the enhanced cytotoxicity of (-)-lomaiviticin A compared to that of other members of this family.

  2. Correlation of DNA methylation levels in blood and saliva DNA in young girls of the LEGACY Girls study

    PubMed Central

    Wu, Hui-Chen; Wang, Qiao; Chung, Wendy K; Andrulis, Irene L; Daly, Mary B; John, Esther M; Keegan, Theresa HM; Knight, Julia; Bradbury, Angela R; Kappil, Maya A; Gurvich, Irina; Santella, Regina M; Terry, Mary Beth

    2014-01-01

    Many epidemiologic studies of environmental exposures and disease susceptibility measure DNA methylation in white blood cells (WBC). Some studies are also starting to use saliva DNA as it is usually more readily available in large epidemiologic studies. However, little is known about the correlation of methylation between WBC and saliva DNA. We examined DNA methylation in three repetitive elements, Sat2, Alu, and LINE-1, and in four CpG sites, including AHRR (cg23576855, cg05575921), cg05951221 at 2q37.1, and cg11924019 at CYP1A1, in 57 girls aged 6–15 years with blood and saliva collected on the same day. We measured all DNA methylation markers by bisulfite-pyrosequencing, except for Sat2 and Alu, which were measured by the MethyLight assay. Methylation levels measured in saliva DNA were lower than those in WBC DNA, with differences ranging from 2.8% for Alu to 14.1% for cg05575921. Methylation levels for the three repetitive elements measured in saliva DNA were all positively correlated with those in WBC DNA. However, there was a wide range in the Spearman correlations, with the smallest correlation found for Alu (0.24) and the strongest correlation found for LINE-1 (0.73). Spearman correlations for cg05575921, cg05951221, and cg11924019 were 0.33, 0.42, and 0.79, respectively. If these findings are replicated in larger studies, they suggest that, for selected methylation markers (e.g., LINE-1), methylation levels may be highly correlated between blood and saliva, while for others methylation markers, the levels may be more tissue specific. Thus, in studies that differ by DNA source, each interrogated site should be separately examined in order to evaluate the correlation in DNA methylation levels across DNA sources. PMID:24756002

  3. Correlation of DNA methylation levels in blood and saliva DNA in young girls of the LEGACY Girls study.

    PubMed

    Wu, Hui-Chen; Wang, Qiao; Chung, Wendy K; Andrulis, Irene L; Daly, Mary B; John, Esther M; Keegan, Theresa H M; Knight, Julia; Bradbury, Angela R; Kappil, Maya A; Gurvich, Irina; Santella, Regina M; Terry, Mary Beth

    2014-07-01

    Many epidemiologic studies of environmental exposures and disease susceptibility measure DNA methylation in white blood cells (WBC). Some studies are also starting to use saliva DNA as it is usually more readily available in large epidemiologic studies. However, little is known about the correlation of methylation between WBC and saliva DNA. We examined DNA methylation in three repetitive elements, Sat2, Alu, and LINE-1, and in four CpG sites, including AHRR (cg23576855, cg05575921), cg05951221 at 2q37.1, and cg11924019 at CYP1A1, in 57 girls aged 6-15 years with blood and saliva collected on the same day. We measured all DNA methylation markers by bisulfite-pyrosequencing, except for Sat2 and Alu, which were measured by the MethyLight assay. Methylation levels measured in saliva DNA were lower than those in WBC DNA, with differences ranging from 2.8% for Alu to 14.1% for cg05575921. Methylation levels for the three repetitive elements measured in saliva DNA were all positively correlated with those in WBC DNA. However, there was a wide range in the Spearman correlations, with the smallest correlation found for Alu (0.24) and the strongest correlation found for LINE-1 (0.73). Spearman correlations for cg05575921, cg05951221, and cg11924019 were 0.33, 0.42, and 0.79, respectively. If these findings are replicated in larger studies, they suggest that, for selected methylation markers (e.g., LINE-1), methylation levels may be highly correlated between blood and saliva, while for others methylation markers, the levels may be more tissue specific. Thus, in studies that differ by DNA source, each interrogated site should be separately examined in order to evaluate the correlation in DNA methylation levels across DNA sources. PMID:24756002

  4. Evolution of the R2 Retrotransposon Ribozyme and Its Self-Cleavage Site

    PubMed Central

    Eickbush, Danna G.; Burke, William D.; Eickbush, Thomas H.

    2013-01-01

    R2 is a non-long terminal repeat retrotransposon that inserts site-specifically in the tandem 28S rRNA genes of many animals. Previously, R2 RNA from various species of Drosophila was shown to self-cleave from the 28S rRNA/R2 co-transcript by a hepatitis D virus (HDV)-like ribozyme encoded at its 5' end. RNA cleavage was at the precise 5' junction of the element with the 28S gene. Here we report that RNAs encompassing the 5' ends of R2 elements from throughout its species range fold into HDV-like ribozymes. In vitro assays of RNA self-cleavage conducted in many R2 lineages confirmed activity. For many R2s, RNA self-cleavage was not at the 5' end of the element but at 28S rRNA sequences up to 36 nucleotides upstream of the junction. The location of cleavage correlated well with the types of endogenous R2 5' junctions from different species. R2 5' junctions were uniform for most R2s in which RNA cleavage was upstream in the rRNA sequences. The 28S sequences remaining on the first DNA strand synthesized during retrotransposition are postulated to anneal to the target site and uniformly prime second strand DNA synthesis. In species where RNA cleavage occurred at the R2 5' end, the 5' junctions were variable. This junction variation is postulated to result from the priming of second strand DNA synthesis by chance microhomologies between the target site and the first DNA strand. Finally, features of R2 ribozyme evolution, especially changes in cleavage site and convergence on the same active site sequences, are discussed. PMID:24066021

  5. DNA-binding, photocleavage studies of ruthenium(II) complexes with 2-(2-quinolinyl) imidazo[4,5-f][1,10]phenanthroline

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Wen; Chen, Zhen-gan; Li, Lin; Chen, Yuan-Dao; Lu, Ji-Lin; Zhang, Da-Shun

    2013-02-01

    Two new ruthenium complexes with [Ru(L)2(qip)]2+ (L = bpy (2,2'- bipyridine), phen (1,10-phenanthroline); qip = 2-(2-quinolinyl)imidazo[4,5-f][1,10]phenanthroline), have been synthesized and characterized by elemental analysis, ES-MS, 1H NMR. The binding properties of two complexes towards CT-DNA were investigated by various optical methods and viscosity measurements. The experiment results suggested that both Ru(II) complexes can intercalate into DNA base pairs. Strong quenching in emission intensity of two Ru(II) complexes were observed upon addition of Ag+ in the absence and presence of CT-DNA. Furthermore, the two complexes can promote cleavage of pBR322 DNA under irradiation at 365 nm, and complex 2 exhibits a stronger DNA-photocleavage efficiency than complex 1. The mechanism of DNA cleavage suggests that singlet oxygen (1O2) is likely to be the cleaving agent.

  6. Reactivity studies of a pseudo three-coordinate vanadium(II) complex: Synthesis of terminal oxo and sulfido complexes of vanadium(IV) and S-S and Se-Se reductive bond cleavage reactions

    SciTech Connect

    Tran, Ba L; Chen, Chun-Hsing; Mindiola, Daniel J

    2012-02-07

    Terminal oxo and sulfido complexes in the form of (nacnac)V=E(Ntol2) (nacnac = [ArNC(CH3)]2CH-, Ar = 2,6-(CHMe2)2C6H3, Ntol2 = -N(C6H4-4-Me), E = O (1), S (2)) were isolated from treatment of the masked three-coordinate vanadium(II) complex, (nacnac)V(Ntol2), with C5H5NO and S8, respectively. Both vanadium(IV) species, 1 and 2, have been characterized by room temperature X-band EPR spectroscopic studies, and in the case of complex 1, a single crystal molecular structure confirmed the presence of a terminal oxo moiety. Moreover, reaction of (nacnac)V(Ntol2) with diphenyl-disulfide and diphenyl-diselenide results in the reductive cleavage of these compounds to produce the vanadium(III) complexes (nacnac)V(XPh)(Ntol2) (X = S, (3), Se (4)). A molecular structure of the phenylsulfide complex, 3, confirmed formation of the d2 complex resulting from reductive cleavage of the S-S bond.

  7. Pyridine and p-Nitrophenyl Oxime Esters with Possible Photochemotherapeutic Activity: Synthesis, DNA Photocleavage and DNA Binding Studies.

    PubMed

    Pasolli, Milena; Dafnopoulos, Konstantinos; Andreou, Nicolaos-Panagiotis; Gritzapis, Panagiotis S; Koffa, Maria; Koumbis, Alexandros E; Psomas, George; Fylaktakidou, Konstantina C

    2016-01-01

    Compared to standard treatments for various diseases, photochemotherapy and photo-dynamic therapy are less invasive approaches, in which DNA photocleavers represent promising tools for novel "on demand" chemotherapeutics. A series of p-nitrobenzoyl and p-pyridoyl ester conjugated aldoximes, amidoximes and ethanone oximes were subjected to UV irradiation at 312 nm with supercoiled circular plasmid DNA. The compounds which possessed appropriate properties were additionally subjected to UVA irradiation at 365 nm. The ability of most of the compounds to photocleave DNA was high at 312 nm, whereas higher concentrations were required at 365 nm as a result of their lower UV absorption. The affinity of selected compounds to calf-thymus (CT) DNA was studied by UV spectroscopy, viscosity experiments and competitive studies with ethidium bromide (EB) revealing that all compounds interacted with CT DNA. The fluorescence emission spectra of the pre-treated EB-DNA exhibited a moderate to significant quenching in the presence of the compounds indicating the binding of the compounds to CT DNA via intercalation as concluded also by DNA-viscosity experiments. For the oxime esters the DNA photocleavage and affinity studies aimed to clarify the role of the oxime nature (aldoxime, ketoxime, amidoxime) and the role of the pyridine and p-nitrophenyl moieties both as oxime substituents and ester conjugates. PMID:27376258

  8. HIV-1 Vpu accessory protein induces caspase-mediated cleavage of IRF3 transcription factor.

    PubMed

    Park, Sang Yoon; Waheed, Abdul A; Zhang, Zai-Rong; Freed, Eric O; Bonifacino, Juan S

    2014-12-19

    Vpu is an accessory protein encoded by HIV-1 that interferes with multiple host-cell functions. Herein we report that expression of Vpu by transfection into 293T cells causes partial proteolytic cleavage of interferon regulatory factor 3 (IRF3), a key transcription factor in the innate anti-viral response. Vpu-induced IRF3 cleavage is mediated by caspases and occurs mainly at Asp-121. Cleavage produces a C-terminal fragment of ∼37 kDa that comprises the IRF dimerization and transactivation domains but lacks the DNA-binding domain. A similar cleavage is observed upon infection of the Jurkat T-cell line with vesicular stomatitis virus G glycoprotein (VSV-G)-pseudotyped HIV-1. Two other HIV-1 accessory proteins, Vif and Vpr, also contribute to the induction of IRF3 cleavage in both the transfection and the infection systems. The C-terminal IRF3 fragment interferes with the transcriptional activity of full-length IRF3. Cleavage of IRF3 under all of these conditions correlates with cleavage of poly(ADP-ribose) polymerase, an indicator of apoptosis. We conclude that Vpu contributes to the attenuation of the anti-viral response by partial inactivation of IRF3 while host cells undergo apoptosis. PMID:25352594

  9. Semen predictors of in vitro fertilization and embryo cleavage.

    PubMed

    Daya, S; Gunby, J; Kohut, J

    1989-11-01

    In vitro fertilization treatment for male infertility is not very successful because fertilization is known to be affected by semen quality. Information on fertilizing ability may provide prognostic information for couples contemplating such treatment. The purpose of this study was to identify semen variables that would predict fertilization and embryo cleavage. Sperm was prepared by the swim-up method before insemination of oocytes obtained by laparoscopy after ovulation induction. Routine semen analysis and the hypoosmotic swelling test for assessment of sperm membrane integrity were performed on aliquots of prepared sperm. Logistic regression and receiver-operator characteristic curve analyses were performed to determine the overall best-fitting model and discriminatory level of variables that would predict cleavage. The results indicate that after the swim-up procedure, at least 10 million sperm/ml, capable of undergoing swelling in hypoosmotic medium, are necessary to increase the likelihood of in vitro fertilization and cleavage. PMID:2589452

  10. A simulation study of sample size for DNA barcoding.

    PubMed

    Luo, Arong; Lan, Haiqiang; Ling, Cheng; Zhang, Aibing; Shi, Lei; Ho, Simon Y W; Zhu, Chaodong

    2015-12-01

    For some groups of organisms, DNA barcoding can provide a useful tool in taxonomy, evolutionary biology, and biodiversity assessment. However, the efficacy of DNA barcoding depends on the degree of sampling per species, because a large enough sample size is needed to provide a reliable estimate of genetic polymorphism and for delimiting species. We used a simulation approach to examine the effects of sample size on four estimators of genetic polymorphism related to DNA barcoding: mismatch distribution, nucleotide diversity, the number of haplotypes, and maximum pairwise distance. Our results showed that mismatch distributions derived from subsamples of ≥20 individuals usually bore a close resemblance to that of the full dataset. Estimates of nucleotide diversity from subsamples of ≥20 individuals tended to be bell-shaped around that of the full dataset, whereas estimates from smaller subsamples were not. As expected, greater sampling generally led to an increase in the number of haplotypes. We also found that subsamples of ≥20 individuals allowed a good estimate of the maximum pairwise distance of the full dataset, while smaller ones were associated with a high probability of underestimation. Overall, our study confirms the expectation that larger samples are beneficial for the efficacy of DNA barcoding and suggests that a minimum sample size of 20 individuals is needed in practice for each population. PMID:26811761

  11. Mechanism study of goldenseal-associated DNA damage.

    PubMed

    Chen, Si; Wan, Liqing; Couch, Letha; Lin, Haixia; Li, Yan; Dobrovolsky, Vasily N; Mei, Nan; Guo, Lei

    2013-07-31

    Goldenseal has been used for the treatment of a wide variety of ailments including gastrointestinal disturbances, urinary tract disorders, and inflammation. The five major alkaloid constituents in goldenseal are berberine, palmatine, hydrastine, hydrastinine, and canadine. When goldenseal was evaluated by the National Toxicology Program (NTP) in the standard 2-year bioassay, goldenseal induced an increase in liver tumors in rats and mice; however, the mechanism of goldenseal-associated liver carcinogenicity remains unknown. In this study, the toxicity of the five goldenseal alkaloid constituents was characterized, and their toxic potencies were compared. As measured by the Comet assay and the expression of γ-H2A.X, berberine, followed by palmatine, appeared to be the most potent DNA damage inducer in human hepatoma HepG2 cells. Berberine and palmatine suppressed the activities of both topoisomerase (Topo) I and II. In berberine-treated cells, DNA damage was shown to be directly associated with the inhibitory effect of Topo II, but not Topo I by silencing gene of Topo I or Topo II. In addition, DNA damage was also observed when cells were treated with commercially available goldenseal extracts and the extent of DNA damage was positively correlated to the berberine content. Our findings suggest that the Topo II inhibitory effect may contribute to berberine- and goldenseal-induced genotoxicity and tumorigenicity. PMID:23747414

  12. Modeling the Study of DNA Damage Responses in Mice

    PubMed Central

    Specks, Julia; Nieto-Soler, Maria; Lopez-Contreras, Andres J; Fernandez-Capetillo, Oscar

    2016-01-01

    Summary Damaged DNA has a profound impact on mammalian health and overall survival. In addition to being the source of mutations that initiate cancer, the accumulation of toxic amounts of DNA damage can cause severe developmental diseases and accelerate ageing. Therefore, understanding how cells respond to DNA damage has become one of the most intense areas of biomedical research in the recent years. However, whereas most mechanistic studies derive from in vitro or in cellulo work, the impact of a given mutation on a living organism is largely unpredictable. For instance, why BRCA1 mutations preferentially lead to breast cancer whereas mutations compromising mismatch repair drive colon cancer is still not understood. In this context, evaluating the specific physiological impact of mutations that compromise genome integrity has become crucial for a better dimensioning of our knowledge. We here describe the various technologies that can be used for modeling mutations in mice, and provide a review of the genes and pathways that have been modeled so far in the context of DNA damage responses. PMID:25636482

  13. [Experimental study on an auditory method for analyzing DNA segments].

    PubMed

    Xiao, Shouzhong; Fang, Xianglin

    2002-01-01

    To explore a new method for analyzing biological molecules that have already been sequenced, an experimental study on an auditory method was carried out. The auditory method for analyzing biological molecules includes audible representation of sequence data. Audible representation of sequence data was implemented by using a multimedia computer. Each mononucleotide in a DNA sequence was matched with a corresponding sound, i.e., a DNA sequence was "dubbed" in a sound sequence. When the sound sequence is played, a special cadence can be heard. In the audible representation experiment, special cadences of different exons can be clearly heard. The results show that audible representation of DNA sequence data can be implemented by using a multimedia technique. After a 5-time auditory training, subjects both in internal testing and external testing can obtain 93%-100% of judgment accuracy rate for the difference between two sound sequences of two different exons, thus providing an experimental basis for the practicability of this method. Auditory method for analyzing DNA segments might be beneficial for the research in comparative genomics and functional genomics. This new technology must be robust and be carefully evaluated and improved in a high-throughput environment before its implementation in an application setting. PMID:11951511

  14. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    SciTech Connect

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7{beta}, 8{alpha}-dihydoxy-9{alpha}, l0{alpha}-epoxy-7,8,9, 10-tetrahydrobenzo[{alpha}]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, ({minus})-trans-, (+)-cis- and ({minus})-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( {approximately} 25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant {pi}-{pi} stacking interactions between the pyrenyl residues and the bases. Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G{sub 2} or G{sub 3} (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N{sup 2}-dG in DNA isolated from the skin of mice treated topically with benzo[{alpha}]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N{sup 2}-dG.

  15. Expression and identification of hepatitis C virus polyprotein cleavage products.

    PubMed Central

    Grakoui, A; Wychowski, C; Lin, C; Feinstone, S M; Rice, C M

    1993-01-01

    Hepatitis C virus (HCV) is the major cause of transfusion-acquired non-A, non-B hepatitis. HCV is an enveloped positive-sense RNA virus which has been classified as a new genus in the flavivirus family. Like the other two genera in this family, the flaviviruses and the pestiviruses, HCV polypeptides appear to be produced by translation of a long open reading frame and subsequent proteolytic processing of this polyprotein. In this study, a cDNA clone encompassing the long open reading frame of the HCV H strain (3,011 amino acid residues) has been assembled and sequenced. This clone and various truncated derivatives were used in vaccinia virus transient-expression assays to map HCV-encoded polypeptides and to study HCV polyprotein processing. HCV polyproteins and cleavage products were identified by using convalescent human sera and a panel of region-specific polyclonal rabbit antisera. Similar results were obtained for several mammalian cell lines examined, including the human HepG2 hepatoma line. The data indicate that at least nine polypeptides are produced by cleavage of the HCV H strain polyprotein. Putative structural proteins, located in the N-terminal one-fourth of the polyprotein, include the capsid protein C (21 kDa) followed by two possible virion envelope proteins, E1 (31 kDa) and E2 (70 kDa), which are heavily modified by N-linked glycosylation. The remainder of the polyprotein probably encodes nonstructural proteins including NS2 (23 kDa), NS3 (70 kDa), NS4A (8 kDa), NS4B (27 kDa), NS5A (58 kDa), and NS5B (68 kDa). An 82- to 88-kDa glycoprotein which reacted with both E2 and NS2-specific HCV antisera was also identified (called E2-NS2). Preliminary results suggest that a fraction of E1 is associated with E2 and E2-NS2 via disulfide linkages. Images PMID:7679746

  16. Mutation detection by chemical cleavage.

    PubMed

    Cotton, R G

    1999-02-01

    Detection and amplification of mutations in genes in a cheap, 100% effective manner is a major objective in modern molecular genetics. This ideal is some way away and many methods are used each of which have their own particular advantages and disadvantages. Sequencing is often thought of as the 'gold standard' for mutation detection. This perception is distorted due to the fact that this is the ONLY method of mutation identification but this does not mean it is the best for mutation detection. The fact that many scanning methods detect 5-10% of mutant molecules in a wild type environment immediately indicates these methods are advantageous over sequencing. One such method, the Chemical Cleavage method, is able to cut the costs of detecting a mutation on order of magnitude and guarantees mutation detection as evidenced by track record and the fact that each mutation has two chances of being detected. PMID:10084109

  17. Synthesis, characterization, DNA binding studies, photocleavage, cytotoxicity and docking studies of ruthenium(II) light switch complexes.

    PubMed

    Gabra, Nazar Mohammed; Mustafa, Bakheit; Kumar, Yata Praveen; Devi, C Shobha; Srishailam, A; Reddy, P Venkat; Reddy, Kotha Laxma; Satyanarayana, S

    2014-01-01

    A new ligand 3-(1H-imidazo[4,5-f][1,10]phenanthrolin-2yl)phenylboronic acid and its (IPPBA) three ruthenium(II) complexes [Ru(phen)2(IPPBA)](ClO4)2 (1), [Ru(bpy)2(IPPBA)](ClO4)2 (2) and [Ru(dmb)2(IPPBA)](ClO4)2 (3) have been synthesized and characterized by elemental analysis, UV/VIS, IR, (1)H-NMR,(13)C-NMR and mass spectra. The binding behaviors of the three complexes to calf thymus DNA were investigated by absorption spectra, emission spectroscopy, viscosity measurements, thermal denaturation and photoactivated cleavage. The DNA-binding constants for complexes 1, 2 and 3 have been determined to be 7.9 × 10(5) M(-1), 6.7 × 10(5) M(-1) and 2.9 × 10(5) M(-1). The results suggest that these complexes bound to double-stranded DNA in an intercalation mode. Upon irradiation at 365 nm, three ruthenium complexes were found to promote the cleavage of plasmid pBR322 DNA from super coiled form І to nicked form ІІ. Further in the presence of Co(2+), the emission of DNA-Ru(ΙΙ) complexes can be quenched. And when EDTA was added, the emission was recovered. The experimental results show that all three complexes exhibited the "on-off-on" properties of molecular "light switch". The highest Cytotoxicity potential of the complex1 was observed on the Human alveolar adenocarcinoma (A549) cell line. Good agreement was generally found between the spectroscopic techniques and molecular docked model which provides further evidence of groove binding. PMID:23982735

  18. Chromosome aberrations in decondensed sperm DNA

    SciTech Connect

    Preston, R.J.

    1982-01-01

    Factors that could influence the chromosomal aberration frequency observed at first cleavage following in vivo exposure of germ cells to chemical mutagens are discussed. The techniques of chromosome aberration analysis following sperm DNA condensation by in vitro fertilization or fusion seem to be viable research areas for providing information of human germ cell exposures. However, the potential sensitivity of the assay needs to be better understood, and factors that can influence this sensitivity require a great deal of further study using animal models.

  19. Construction of HBV-specific ribozyme and its recombinant with HDV and their cleavage activity in vitro

    PubMed Central

    Wen, Shu-Juan; Xiang, Kai-Jun; Huang, Zhen-Hua; Zhou, Rong; Qi, Xue-Zhong

    2000-01-01

    AIM: To construct the recombinant of HDV cDNA and HBV-specific ribozyme gene by recombinant PCR in order to use HDV as a transporting vector carrying HBV-specific ribozyme into liver cells for inhibiting the replication of HBV. METHODS: We separately cloned the ribozyme (RZ) gene and recombinant DVRZ (comprising HDV cDNA and HBV-specific ribozyme gene) into the downstream of T7 promoter of pTAdv-T vector and studied the in vitro cleavage activity of their transcripts (rRZ, rDVRZ) on target RNA (rBVCF) from in vitro transcription of HBV C gene fragment(BVCF). RESULTS: Both the simple (rRZ) and the recombinant ribozyme rDVRZ could efficiently catalyze the cleavage of target RNA (rBVCF) under different temperatures (37 °C, 42 °C and 55 °C) and Mg2+ concentrations (10 mmol/L, 15 mmol/L and 20 mmol/L) and their catalytic activity tended to increase as the temperature was rising. But the activity of rRZ was evidently higher than that of rDVRZ. CONCLUSION: The recombinant of HDV cDNA and ribozyme gene had the potential of being further explored and used in gene therapy of HBV infection. PMID:11819602

  20. Ultrarapid mutation detection by multiplex, solid-phase chemical cleavage

    SciTech Connect

    Rowley, G.; Saad, S.; Giannelli, F.; Green, P.M.

    1995-12-10

    The chemical cleavage of mismatches in heteroduplexes formed by probe and test DNA detects and locates any sequence change in long DNA segments ({approximately}1.8 kb), and its efficiency has been well tested in the analysis of both average (e.g., coagulation factor IX) and large, complex genes (e.g., coagulation factor VIII and dystrophin). In the latter application RT/PCR products allow the examination of all essential sequences of the gene in a minimum number of reactions. We use two specific chemical reactants (hydroxylamine and osmium tetroxide) and piperidine cleavage of the above procedure to develop a very fast mutation screening method. This is based on: (1) 5{prime} or internal fluorescent labeling to allow concurrent screening of three to four DNA fragments and (2) solid-phase chemistry to use a microliter format and reduce the time required for the procedure, from amplification of sequence to gel loading inclusive, to one person-working-day. We test the two variations of the method, one entailing 5{prime} labeling of probe DNA and the other uniform labeling of both probe and target DNA, by detecting 114 known hemophilia B (coagulation factor IX) mutations and by analyzing 129 new patients. Uniform labeling of both probe and target DNA prior to formation of the heteroduplexes leads to almost twofold redundancy in the ability to detect mutations. Alternatively, the latter procedure may offer very efficient though less than 100% screening for sequence changes with only hydroxylamine. The full method with two chemical reactions (hydroxylamine and osmium tetroxide) should allow one person to screen with virtually 100% accuracy more than 300 kb of sequence in three ABI 373 gels in 1 day. 26 refs., 7 figs., 1 tab.

  1. Perpetuating the homing endonuclease life cycle: identification of mutations that modulate and change I-TevI cleavage preference

    PubMed Central

    Roy, Alexander C.; Wilson, Geoffrey G.; Edgell, David R.

    2016-01-01

    Homing endonucleases are sequence-tolerant DNA endonucleases that act as mobile genetic elements. The ability of homing endonucleases to cleave substrates with multiple nucleotide substitutions suggests a high degree of adaptability in that changing or modulating cleavage preference would require relatively few amino acid substitutions. Here, using directed evolution experiments with the GIY-YIG homing endonuclease I-TevI that targets the thymidylate synthase gene of phage T4, we readily isolated variants that dramatically broadened I-TevI cleavage preference, as well as variants that fine-tuned cleavage preference. By combining substitutions, we observed an ∼10 000-fold improvement in cleavage on some substrates not cleaved by the wild-type enzyme, correlating with a decrease in readout of information content at the cleavage site. Strikingly, we were able to change the cleavage preference of I-TevI to that of the isoschizomer I-BmoI which targets a different cleavage site in the thymidylate synthase gene, recapitulating the evolution of cleavage preference in this family of homing endonucleases. Our results define a strategy to isolate GIY-YIG nuclease domains with distinct cleavage preferences, and provide insight into how homing endonucleases may escape a dead-end life cycle in a population of saturated target sites by promoting transposition to different target sites. PMID:27387281

  2. Mixed-ligand copper(II) phenolate complexes: Synthesis, spectral characterization, phosphate-hydrolysis, antioxidant, DNA interaction and cytotoxic studies

    NASA Astrophysics Data System (ADS)

    Gurumoorthy, Perumal; Mahendiran, Dharmasivam; Prabhu, Durai; Arulvasu, Chinnasamy; Rahiman, Aziz Kalilur

    2015-01-01

    A series of phenol-based mixed-ligand copper(II) complexes of the type [CuL1-4(diimine)] (1-8), where L1-4 = N1,N2-bis(5-substituted-2-hydroxybenzylidene)-1,2-ethylene/phenylenediimine and diimine = 2,2‧-bipyridyl (bpy) or 1,10-phenanthroline (phen), have been isolated and fully characterized by analytical and spectral techniques. Electronic spectra of complexes suggest Cu(II) cation has a d9 electronic configuration, adopting distorted octahedral geometry with axial elongation, due to Jahn-Teller effect. Electrochemical studies of complexes evidenced one-electron irreversible reduction wave in the cathodic region. The observed rate constant (k) values for the hydrolysis of 4-nitrophenylphosphate (4-NPP) are in the range of 0.25-3.82 × 10-2 min-1. The obtained room temperature magnetic moment values (1.79-1.90 BM) lies within the range observed for octahedral copper(II) complexes. Antioxidant studies revealed that these complexes possess considerable radical scavenging potency against DPPH. The binding studies of complexes with calf thymus DNA (CT-DNA) revealed intercalation with minor-groove binding, and the complex 4 exhibits highest binding activity than the other complexes. The cleavage activity on supercoiled pBR322 DNA revealed the involvement of hydroxyl radical and singlet-oxygen as reactive oxygen species, and complexes encourage binding to minor-groove. Further, the cytotoxicity of complex 4 on human hepatocellular liver carcinoma HepG2 cell line implies the cell death through apoptosis.

  3. Mathematical modeling of DNA's transcription process for the cancer study

    NASA Astrophysics Data System (ADS)

    Morales-Peñaloza, A.; Meza-López, C. D.; Godina-Nava, J. J.

    2012-10-01

    The cancer is a phenomenon caused by an anomaly in the DNA's transcription process, therefore it is necessary to known how such anomaly is generated in order to implement alternative therapies to combat it. We propose to use mathematical modeling to treat the problem. Is implemented a simulation of the process of transcription and are studied the transport properties in the heterogeneous case using nonlinear dynamics.

  4. Improving the prospects of cleavage-based nanopore sequencing engines

    NASA Astrophysics Data System (ADS)

    Brady, Kyle T.; Reiner, Joseph E.

    2015-08-01

    Recently proposed methods for DNA sequencing involve the use of cleavage-based enzymes attached to the opening of a nanopore. The idea is that DNA interacting with either an exonuclease or polymerase protein will lead to a small molecule being cleaved near the mouth of the nanopore, and subsequent entry into the pore will yield information about the DNA sequence. The prospects for this approach seem promising, but it has been shown that diffusion related effects impose a limit on the capture probability of molecules by the pore, which limits the efficacy of the technique. Here, we revisit the problem with the goal of optimizing the capture probability via a step decrease in the nucleotide diffusion coefficient between the pore and bulk solutions. It is shown through random walk simulations and a simplified analytical model that decreasing the molecule's diffusion coefficient in the bulk relative to its value in the pore increases the nucleotide capture probability. Specifically, we show that at sufficiently high applied transmembrane potentials (≥100 mV), increasing the potential by a factor f is equivalent to decreasing the diffusion coefficient ratio Dbulk/Dpore by the same factor f. This suggests a promising route toward implementation of cleavage-based sequencing protocols. We also discuss the feasibility of forming a step function in the diffusion coefficient across the pore-bulk interface.

  5. Microstructure and cleavage in lath martensitic steels

    NASA Astrophysics Data System (ADS)

    Morris, John W., Jr.; Kinney, Chris; Pytlewski, Ken; Adachi, Y.

    2013-02-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified ‘classic’ lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov-Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage.

  6. DNA-Based Nanostructures: Changes of Mechanical Properties of DNA upon Ligand Binding

    NASA Astrophysics Data System (ADS)

    Nechipurenko, Yury; Grokhovsky, Sergey; Gursky, Georgy; Nechipurenko, Dmitry; Polozov, Robert

    The formation of DNA-based nanostructures involves the binding of different kinds of ligands to DNA as well as the interaction of DNA molecules with each other. Complex formation between ligand and DNA can alter physicochemical properties of the DNA molecule. In the present work, the accessibility of DNA-ligand complexes to cleavage by DNase I are considered, and the exact algorithms for analysis of diagrams of DNase I footprinting for ligand-DNA complexes are obtained. Changes of mechanical properties of the DNA upon ligand binding are also demonstrated by the cleavage patterns generated upon ultrasound irradiation of cis-platin-DNA complexes. Propagation of the mechanical perturbations along DNA in the presence of bound ligands is considered in terms of a string model with a heterogeneity corresponding to the position of a bound ligand on DNA. This model can reproduce qualitatively the cleavage patterns obtained upon ultrasound irradiation of cis-platin-DNA complexes.

  7. N.m.r. spectroscopic studies of fucose-containing oligosaccharides derived from keratanase digestion of articular cartilage keratan sulphates. Influence of fucose residues on keratanase cleavage.

    PubMed Central

    Tai, G H; Huckerby, T N; Nieduszynski, I A

    1993-01-01

    Keratan sulphate chains from bovine articular cartilage were fully digested with keratanase from Pseudomonas sp. and the products were reduced with alkaline borohydride. The resultant fragments were fractionated on a Nucleosil 5SB column and the earliest eluting fucose-containing oligosaccharides were isolated. Structural analysis using 1H n.m.r. spectroscopy (600 MHz) showed the two least-charged species to have the following structure: GlcNAc(6S) beta 1-3Gal beta 1-4(Fuc alpha 1-3)GlcNAc(6S) beta 1- 3Gal beta 1-4GlcNAc(6S) beta 1-3Gal-ol and GlcNAc(6S) beta 1-3Gal beta 1- 4(Fuc alpha 1-3)GlcNAc(6S) beta 1-3Gal beta 1-4GlcNAc(6S) beta 1-6(Gal beta 1- 3)GalNAc-ol. Both galactoses adjacent to the fucosylated N-acetylglucosamine residue are unsulphated. Therefore, it can be deduced from these structures that the presence of fucose on N-acetylglucosamine residues in keratan sulphates protects both of the adjacent unsulphated galactose residues from keratanase cleavage. This result has implications for the interpretation of keratanase fingerprints, because in articular cartilage keratan sulphates the keratanase-resistant blocks are not solely those with fully sulphated galactose residues, but also include the fucosylated sequences, which have unsulphated galactoses. It is, therefore, not possible to estimate their galactose sulphation or the size of the fully sulphated disaccharide-repeat sequences from keratan sulphates that contain fucose. PMID:8489515

  8. Molecular modeling and spectroscopic studies of semustine binding with DNA and its comparison with lomustine-DNA adduct formation.

    PubMed

    Agarwal, Shweta; Chadha, Deepti; Mehrotra, Ranjana

    2015-01-01

    Chloroethyl nitrosoureas constitute an important family of cancer chemotherapeutic agents, used in the treatment of various types of cancer. They exert antitumor activity by inducing DNA interstrand cross-links. Semustine, a chloroethyl nitrosourea, is a 4-methyl derivative of lomustine. There exist some interesting reports dealing with DNA-binding properties of chloroethyl nitrosoureas; however, underlying mechanism of cytotoxicity caused by semustine has not been precisely and completely delineated. The present work focuses on understanding semustine-DNA interaction to comprehend its anti-proliferative action at molecular level using various spectroscopic techniques. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy is used to determine the binding site of semustine on DNA. Conformational transition in DNA after semustine complexation is investigated using circular dichroism (CD) spectroscopy. Stability of semustine-DNA complexes is determined using absorption spectroscopy. Results of the present study demonstrate that semustine performs major-groove-directed DNA alkylation at guanine residues in an incubation-time-drug-concentration-dependent manner. CD spectral outcomes suggest partial transition of DNA from native B-conformation to C-form. Calculated binding constants (Ka) for semustine and lomustine interactions with DNA are 1.53 × 10(3) M(-1) and 8.12 × 10(3) M(-1), respectively. Moreover, molecular modeling simulation is performed to predict preferential binding orientation of semustine with DNA that corroborates well with spectral outcomes. Results based on comparative study of DNA-binding properties of semustine and lomustine, presented here, may establish a correlation between molecular structure and cytotoxicity of chloroethyl nitrosoureas that may be instrumental in the designing and synthesis of new nitrosourea therapeutics possessing better efficacy and fewer side effects. PMID:25350567

  9. Self-assembling DNA dendrimers: a numerical study.

    PubMed

    Largo, Julio; Starr, Francis W; Sciortino, Francesco

    2007-05-22

    DNA is increasingly used as a specific linker to template nanostructured materials. We present a molecular dynamics simulation study of a simple DNA-dendrimer model designed to capture the basic characteristics of the biological interactions, where selectivity and strong cooperativity play an important role. Exploring a large set of densities and temperatures, we follow the progressive formation of a percolating large-scale network whose connectivity can be described by random percolation theory. We identify the relative regions of network formation and kinetic arrest versus phase separation and show that the location of the two-phase region can be interpreted in the same framework as reduced valency models. This correspondence provides guidelines for designing stable, equilibrium self-assembled low-density networks. Finally, we demonstrate a relation between bonding and dynamics, by showing that the temperature dependence of the diffusion constant is controlled by the number of fully unbonded dendrimers. PMID:17439252

  10. A non-B DNA can replace heptamer of V(D)J recombination when present along with a nonamer: implications in chromosomal translocations and cancer.

    PubMed

    Nishana, Mayilaadumveettil; Raghavan, Sathees C

    2012-11-15

    The RAG (recombination-activating gene) complex is responsible for the generation of antigen receptor diversity by acting as a sequence-specific nuclease. Recent studies have shown that it also acts as a structure-specific nuclease. However, little is known about the factors regulating this activity at the genomic level. We show in the present study that the proximity of a V(D)J nonamer to heteroduplex DNA significantly increases RAG cleavage and binding efficiencies at physiological concentrations of MgCl(2). The position of the nonamer with respect to heteroduplex DNA was important, but not orientation. A spacer length of 18 bp between the nonamer and mismatch was optimal for RAG-mediated DNA cleavage. Mutations to the sequence of the nonamer and deletion of the nonamer-binding domain of RAG1 reinforced the role of the nonamer in the enhancement in RAG cleavage. Interestingly, partial mutation of the nonamer did not significantly reduce RAG cleavage on heteroduplex DNA, suggesting that even cryptic nonamers were sufficient to enhance RAG cleavage. More importantly, we show that the fragile region involved in chromosomal translocations associated with BCL2 (B-cell lymphoma 2) can be cleaved by RAGs following a nonamer-dependent mechanism. Hence our results from the present study suggest that a non-B DNA can replace the heptamer of RSS (recombination signal sequence) when present adjacent to nonamers, explaining the generation of certain chromosomal translocations in lymphoid malignancies. PMID:22891626

  11. An investigation into the role of ATP in the mammalian pre-mRNA 3' cleavage reaction.

    PubMed

    Khleborodova, Asya; Pan, Xiaozhou; Nagre, Nagaraja N; Ryan, Kevin

    2016-06-01

    RNA Polymerase II transcribes beyond what later becomes the 3' end of a mature messenger RNA (mRNA). The formation of most mRNA 3' ends results from pre-mRNA cleavage followed by polyadenylation. In vitro studies have shown that low concentrations of ATP stimulate the 3' cleavage reaction while high concentrations inhibit it, but the origin of these ATP effects is unknown. ATP might enable a cleavage factor kinase or activate a cleavage factor directly. To distinguish between these possibilities, we tested several ATP structural analogs in a pre-mRNA 3' cleavage reaction reconstituted from DEAE-fractionated cleavage factors. We found that adenosine 5'-(β,γ-methylene)triphosphate (AMP-PCP) is an effective in vitro 3' cleavage inhibitor with an IC50 of ∼300 μM, but that most other ATP analogs, including adenosine 5'-(β,γ-imido)triphosphate, which cannot serve as a protein kinase substrate, promoted 3' cleavage but less efficiently than ATP. In combination with previous literature data, our results do not support ATP stimulation of 3' cleavage through cleavage factor phosphorylation in vitro. Instead, the more likely mechanism is that ATP stimulates cleavage factor activity through direct cleavage factor binding. The mammalian 3' cleavage factors known to bind ATP include the cleavage factor II (CF IIm) Clp1 subunit, the CF Im25 subunit and poly(A) polymerase alpha (PAP). The yeast homolog of the CF IIm complex also binds ATP through yClp1. To investigate the mammalian complex, we used a cell-line expressing FLAG-tagged Clp1 to co-immunoprecipitate Pcf11 as a function of ATP concentration. FLAG-Clp1 co-precipitated Pcf11 with or without ATP and the complex was not affected by AMP-PCP. Diadenosine tetraphosphate (Ap4A), an ATP analog that binds the Nudix domain of the CF Im25 subunit with higher affinity than ATP, neither stimulated 3' cleavage in place of ATP nor antagonized ATP-stimulated 3' cleavage. The ATP-binding site of PAP was disrupted by site

  12. Selective cleavage enhanced by acetylating the side chain of lysine.

    PubMed

    Fu, Leixiaomeng; Chen, Tingting; Xue, Gaiqing; Zu, Lily; Fang, Weihai

    2013-01-01

    Selective cleavage is of great interest in mass spectrometry studies as it can help sequence identification by promoting simple fragmentation pattern of peptides and proteins. In this work, the collision-induced dissociation of peptides containing internal lysine and acetylated lysine residues were studied. The experimental and computational results revealed that multiple fragmentation pathways coexisted when the lysine residue was two amino acid residues away from N-terminal of the peptide. After acetylation of the lysine side-chain, b(n)+ ions were the most abundant primary fragment products and the Lys(Ac)-Gly amide bond became the dominant cleavage site via an oxazolone pathway. Acetylating the side-chain of lysine promoted the selective cleavage of Lys-Xxx amide bond and generated much more information of the peptide backbone sequence. The results re-evaluate the selective cleavage due to the lysine basic side-chain and provide information for studying the post-translational modification of proteins and other bio-molecules containing Lys residues. PMID:23303756

  13. A Computational Study of Expanded Heterocyclic Nucleosides in DNA

    PubMed Central

    O'Daniel, Peter I.; Jefferson, Malcolm; Wiest, Olaf; Seley-Radtke, Katherine L.

    2008-01-01

    The first molecular dynamics study of a series of heterospacer-expanded tricyclic bases in DNA using modified force field parameters in AMBER is detailed. The expanded purine nucleoside monomers have been designed to probe the effects of a heteroaromatic spacer ring on the structure, function, and dynamics of the DNA helix. The heterobase scaffold has been expanded with a furan, pyrrole, or thiophene spacer ring. This structural modification increases the polarizability of the bases and provides an additional hydrogen bond donor with the amine hydrogen of the pyrrole ring or hydrogen bond acceptor with the furan or thiophene ring free electron pairs. The polarizability of the expanded bases were determined by AM1 calculations and the results of the MD simulations of 20-mers predict that the modified curvature of the expanded base leads to a much larger major groove, while the effect on the minor groove is negligible. Overall, the structure resembles A-DNA. MD simulations of 10-mers suggest that the balance between base pairing vs. base stacking and intercalation can be shifted towards the latter due to the increased surface area and polariz-ability of the expanded bases. PMID:18808194

  14. DNA barcoding in diverse educational settings: five case studies

    PubMed Central

    Imondi, Ralph; James, Karen; Spencer, Diana; Steinke, Dirk

    2016-01-01

    Despite 250 years of modern taxonomy, there remains a large biodiversity knowledge gap. Most species remain unknown to science. DNA barcoding can help address this gap and has been used in a variety of educational contexts to incorporate original research into school curricula and informal education programmes. A growing body of evidence suggests that actively conducting research increases student engagement and retention in science. We describe case studies in five different educational settings in Canada and the USA: a programme for primary and secondary school students (ages 5–18), a year-long professional development programme for secondary school teachers, projects embedding this research into courses in a post-secondary 2-year institution and a degree-granting university, and a citizen science project. We argue that these projects are successful because the scientific content is authentic and compelling, DNA barcoding is conceptually and technically straightforward, the workflow is adaptable to a variety of situations, and online tools exist that allow participants to contribute high-quality data to the international research effort. Evidence of success includes the broad adoption of these programmes and assessment results demonstrating that participants are gaining both knowledge and confidence. There are exciting opportunities for coordination among educational projects in the future. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481792

  15. DNA barcoding in diverse educational settings: five case studies.

    PubMed

    Henter, Heather J; Imondi, Ralph; James, Karen; Spencer, Diana; Steinke, Dirk

    2016-09-01

    Despite 250 years of modern taxonomy, there remains a large biodiversity knowledge gap. Most species remain unknown to science. DNA barcoding can help address this gap and has been used in a variety of educational contexts to incorporate original research into school curricula and informal education programmes. A growing body of evidence suggests that actively conducting research increases student engagement and retention in science. We describe case studies in five different educational settings in Canada and the USA: a programme for primary and secondary school students (ages 5-18), a year-long professional development programme for secondary school teachers, projects embedding this research into courses in a post-secondary 2-year institution and a degree-granting university, and a citizen science project. We argue that these projects are successful because the scientific content is authentic and compelling, DNA barcoding is conceptually and technically straightforward, the workflow is adaptable to a variety of situations, and online tools exist that allow participants to contribute high-quality data to the international research effort. Evidence of success includes the broad adoption of these programmes and assessment results demonstrating that participants are gaining both knowledge and confidence. There are exciting opportunities for coordination among educational projects in the future.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481792

  16. Carbon-nitrogen bond construction and carbon-oxygen double bond cleavage on a molecular titanium oxonitride: a combined experimental and computational study.

    PubMed

    Carbó, Jorge J; García-López, Diego; González-Del Moral, Octavio; Martín, Avelino; Mena, Miguel; Santamaría, Cristina

    2015-10-01

    New carbon-nitrogen bonds were formed on addition of isocyanide and ketone reagents to the oxonitride species [{Ti(η(5)-C5Me5)(μ-O)}3(μ3-N)] (1). Reaction of 1 with XylNC (Xyl = 2,6-Me2C6H3) in a 1:3 molar ratio at room temperature leads to compound [{Ti(η(5)-C5Me5)(μ-O)}3(μ-XylNCCNXyl)(NCNXyl)] (2), after the addition of the nitrido group to one coordinated isocyanide and the carbon-carbon coupling of the other two isocyanide molecules have taken place. Thermolysis of 2 gives [{Ti(η(5)-C5Me5)(μ-O)}3(XylNCNXyl)(CN)] (3) where the heterocumulene [XylNCCNXyl] moiety and the carbodiimido [NCNXyl] fragment in 2 have undergone net transformations. Similarly, tert-butyl isocyanide (tBuNC) reacts with the starting material 1 under mild conditions to give the paramagnetic derivative [{Ti3(η(5)-C5Me5)3(μ-O)3(NCNtBu)}2(μ-CN)2] (4). However, compound 1 provides the oxo ketimide derivatives [{Ti3(η(5)-C5Me5)3(μ-O)4}(NCRPh)] [R = Ph (5), p-Me(C6H4) (6), o-Me(C6H4) (7)] upon reaction with benzophenone, p-methylbenzophenone, and o-methylbenzophenone, respectively. In these reactions, the carbon-oxygen double bond is completely ruptured, leading to the formation of a carbon-nitrogen and two metal-oxygen bonds. The molecular structures of complexes 2-4, 6, and 7 were determined by single-crystal X-ray diffraction analyses. Density functional theory calculations were performed on the incorporation of isocyanides and ketones to the model complex [{Ti(η(5)-C5H5)(μ-O)}3(μ3-N)] (1H). The mechanism involves the coordination of the substrates to one of the titanium metal centers, followed by an isomerization to place those substrates cis with respect to the apical nitrogen of 1H, where carbon-nitrogen bond formation occurs with a low-energy barrier. In the case of aryl isocyanides, the resulting complex incorporates additional isocyanide molecules leading to a carbon-carbon coupling. With ketones, the high oxophilicity of titanium promotes the unusual total cleavage of the

  17. Characterization of inherent curvature in DNA lacking polyadenine runs.

    PubMed

    McNamara, P T; Harrington, R E

    1991-07-01

    Sequence-directed DNA curvature is most commonly associated with AA dinucleotides in the form of polyadenine runs. We demonstrate inherent curvature in DNA which lacks AA/TT dinucleotides using the criteria of polyacrylamide gel mobility and efficiency of DNA cyclization. These studies are based upon two 21-base pair synthetic DNA fragments designed to exhibit fixed curvature according to deflections made to the helical axis by non-AA dinucleotide stacks. Repeats of these sequences display anomalously slow migration in polyacrylamide gels. Moreover, both sequences describe helical conformations that are closed into circles by DNA ligase at much smaller sizes than is typical of nondeformed DNA. Chemical cleavage of these DNA molecules with hydroxyl radical is also consistent with local variation in helical conformation at specific dinucleotide steps. PMID:1648100

  18. Studies on the formation and stability of triplex DNA using fluorescence correlation spectroscopy.

    PubMed

    Hu, Hongyan; Huang, Xiangyi; Ren, Jicun

    2016-05-01

    Triplex DNA has become one of the most useful recognition motifs in the design of new molecular biology tools, therapeutic agents and sophisticated DNA-based nanomaterials because of its direct recognition of natural double-stranded DNA. In this paper, we developed a sensitive and microscale method to study the formation and stability characterization of triplex DNA using fluorescence correlation spectroscopy (FCS). The principle of this method is mainly based on the excellent capacity of FCS for sensitively distinguishing between free single-strand DNA (ssDNA) fluorescent probes and fluorescent probe-double-strand DNA (dsDNA) hybridized complexes. First, we systematically investigated the experimental conditions of triplex DNA formation. Then, we evaluated the equilibrium association constants (Ka ) under different ssDNA probe lengths, composition and pH. Finally, we used FCS to measure the hybridization fraction of a 20-mer perfectly matched ssDNA probe and three single-base mismatched ssDNA probes with 146-mer dsDNA. Our data illustrated that FCS is a useful tool for the direct determination of the thermodynamic parameters of triplex DNA formation and discrimination of a single-base mismatch of triplex DNA without denaturation. Compared with current methods, our method is characterized by high sensitivity, good universality and small sample and reagent requirements. More importantly, our method has the potential to become a platform for triplex DNA research in vitro. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26377428

  19. Experiments on schistosity and slaty cleavage

    USGS Publications Warehouse

    Becker, George Ferdinand

    1904-01-01

    Schistosity as a structure is important, and it is a part of the business of geologists to explain its origin. Slaty cleavage has further and greater importance as a possible tectonic feature. Scarcely a great mountain range exists, or has existed, along the course of which belts of slaty rock are not found, the dip of the cleavage usually approaching verticality. Are these slate belts equivalent to minutely distributed step faults of great total throw, or do they indicate compression perpendicular to the cleavage without attendant relative dislocation? Evidently the answer to this question is of first importance in the interpretation of orogenic phenomena.

  20. kuzbanian-mediated cleavage of Drosophila Notch

    PubMed Central

    Lieber, Toby; Kidd, Simon; Young, Michael W.

    2002-01-01

    Loss of Kuzbanian, a member of the ADAM family of metalloproteases, produces neurogenic phenotypes in Drosophila. It has been suggested that this results from a requirement for kuzbanian-mediated cleavage of the Notch ligand Delta. Using transgenic Drosophila expressing transmembrane Notch proteins, we show that kuzbanian, independent of any role in Delta processing, is required for the cleavage of Notch. We show that Kuzbanian can physically associate with Notch and that removal of kuzbanian activity by RNA-mediated interference in Drosophila tissue culture cells eliminates processing of ligand-independent transmembrane Notch molecules. Our data suggest that in Drosophila, kuzbanian can mediate S2 cleavage of Notch. PMID:11799064

  1. Competitive DNA-Binding Studies between Metal Complexes and GelRed as a New and Safe Fluorescent DNA Dye.

    PubMed

    Anjomshoa, Marzieh; Torkzadeh-Mahani, Masoud

    2016-07-01

    The focus of this work is introduction of GelRed (GR) as a stable, sensitive and environmentally safe fluorescent DNA dye instead of the highly toxic ethidium bromide (EB). Competitive DNA-binding studies between metal complexes, [Cu(phen-dion)(phen)Cl]Cl (1), [Cu(phen-dione)(bpy)Cl]Cl (2), [Cu(dppt)2(H2O)]PF6 (3), [Ni(dppt)2Cl2] (4), [Zn(dppt)2Cl2] (5), and K3[Fe(CN)6] (6) (where phen-dione is 1,10-phenanthroline-5,6-dione, phen is 1,10- phenanthroline, bpy is 2,2'-bipyridine, and dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), and GelRed have been investigated under physiological conditions by fluorescence spectroscopy. This simple method can reveal the binding affinity and mode of metal complexes with DNA. The method is based on the decrease of fluorescence derived from the displacement of GelRed from DNA by metal complexes. The % fluorescence decrease is directly related to the extent of DNA binding. Results indicate the DNA binding affinities of complexes follow the order 3 > 4 > 1 > 2 > 5 > 6. The significant quenching of the emission band of the GR-DNA with the addition of complexes 1, 3, and 4 suggests that complexes compete for DNA-binding sites with GR and displace GR from the GR-DNA, which is usually characteristic of the intercalative interaction of compounds with DNA. A small quenching of the emission band of the GR-DNA with the addition of the complex 2 was observed that show the complex weaker competes for DNA-binding sites with GR than complexes 1, 3, and 4. Results show complexes 5 and 6 cannot compete for DNA-binding sites with GR and their interaction with DNA is external binding (groove or electrostatic bindig). PMID:27324950

  2. A luminescent beta-cyclodextrin-based Ru(phen)3 complex as DNA compactor, enzyme inhibitor, and translocation tracer.

    PubMed

    Liu, Yu; Chen, Yong; Duan, Zhong-Yu; Feng, Xi-Zeng; Hou, Sen; Wang, Chen; Wang, Rui

    2007-11-01

    A beta-cyclodextrin-based Ru(phen)(3) complex (1) has been synthesized and exhibits good luminescent behavior. Atomic force microscopic and scanning electron microscopic studies show that 1 can induce the aggregation of originally circular DNA to toroidal or spherical shapes. The morphology of these DNA aggregates changes following a pathway of naked circular DNA --> toroid with gaps --> solid toroid --> spherical aggregate, depending on the different 1/DNA (w/w) ratios, and their average diameters vary from the nanometer to micrometer scale. Owing to its capability of inducing the aggregation of DNA, 1 can be used as an inhibitor for DNA topoisomerase and DNA cleavage enzymes. Further studies by means of fluorescence microscopy indicate that 1 can also efficiently trace the translocation of DNA into 293T cells (the human embryonic kidney cell line). These observations consequently establish 1 as not only a potential DNA carrier but also a fluorescent DNA probe. PMID:19206682

  3. Coordination behavior of ligand based on NNS and NNO donors with ruthenium(III) complexes and their catalytic and DNA interaction studies

    NASA Astrophysics Data System (ADS)

    Manikandan, R.; Viswnathamurthi, P.

    2012-11-01

    Reactions of 2-acetylpyridine-thiosemicarbazone HL1, 2-acetylpyridine-4-methyl-thiosemicarbazone HL2, 2-acetylpyridine-4-phenyl-thiosemicarbazone HL3 and 2-acetylpyridine-semicarbazone HL4 with ruthenium(III) precursor complexes were studied and the products were characterized by analytical and spectral (FT-IR, electronic, EPR and EI-MS) methods. The ligands coordinated with the ruthenium(III) ion via pyridine nitrogen, azomethine nitrogen and thiolate sulfur/enolate oxygen. An octahedral geometry has been proposed for all the complexes based on the studies. All the complexes are redox active and display an irreversible and quasireversible metal centered redox processes. Further, the catalytic activity of the new complexes has been investigated for the transfer hydrogenation of ketones in the presence of isopropanol/KOH and the Kumada-Corriu coupling of aryl halides with aryl Grignard reagents. The DNA cleavage efficiency of new complexes has also been tested.

  4. Coordination behavior of ligand based on NNS and NNO donors with ruthenium(III) complexes and their catalytic and DNA interaction studies.

    PubMed

    Manikandan, R; Viswnathamurthi, P

    2012-11-01

    Reactions of 2-acetylpyridine-thiosemicarbazone HL(1), 2-acetylpyridine-4-methyl-thiosemicarbazone HL(2), 2-acetylpyridine-4-phenyl-thiosemicarbazone HL(3) and 2-acetylpyridine-semicarbazone HL(4) with ruthenium(III) precursor complexes were studied and the products were characterized by analytical and spectral (FT-IR, electronic, EPR and EI-MS) methods. The ligands coordinated with the ruthenium(III) ion via pyridine nitrogen, azomethine nitrogen and thiolate sulfur/enolate oxygen. An octahedral geometry has been proposed for all the complexes based on the studies. All the complexes are redox active and display an irreversible and quasireversible metal centered redox processes. Further, the catalytic activity of the new complexes has been investigated for the transfer hydrogenation of ketones in the presence of isopropanol/KOH and the Kumada-Corriu coupling of aryl halides with aryl Grignard reagents. The DNA cleavage efficiency of new complexes has also been tested. PMID:22902929

  5. Ahaptoglobinaemia in Melanesia: DNA and malarial antibody studies.

    PubMed

    Hill, A V; Whitehouse, D B; Bowden, D K; Hopkinson, D A; Draper, C C; Peto, T E; Clegg, J B; Weatherall, D J

    1987-01-01

    To assess the relative contributions of genetic and acquired factors, particularly malaria, to the high frequencies of ahaptoglobinaemia found in Melanesia we have performed DNA and malarial antibody studies in a population from Vanuatu. No gene deletion or rearrangement was found on gene mapping in any ahaptoglobinaemic individual and the frequencies of the Hp1 and Hp2 alleles in the ahaptoglobinaemic group were similar to controls. However, antibodies to Plasmodium falciparum were significantly elevated in the ahaptoglobinaemics. These data suggest that malaria rather than genetic factors is the major cause of ahaptoglobinaemia in Melanesia. PMID:3328345

  6. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.

    PubMed

    Jasin, Maria; Haber, James E

    2016-08-01

    DNA double-strand breaks (DSBs) are dangerous lesions that if not properly repaired can lead to genomic change or cell death. Organisms have developed several pathways and have many factors devoted to repairing DSBs, which broadly occurs by homologous recombination, which relies on an identical or homologous sequence to template repair, or nonhomologous end-joining. Much of our understanding of these repair mechanisms has come from the study of induced DNA cleavage by site-specific endonucleases. In addition to their biological role, these cellular pathways can be co-opted for gene editing to study gene function or for gene therapy or other applications. While the first gene editing experiments were done more than 20 years ago, the recent discovery of RNA-guided endonucleases has simplified approaches developed over the years to make gene editing an approach that is available to the entire biomedical research community. Here, we review DSB repair mechanisms and site-specific cleavage systems that have provided insight into these mechanisms and led to the current gene editing revolution. PMID:27261202

  7. DNA sequencing: chemical methods

    SciTech Connect

    Ambrose, B.J.B.; Pless, R.C.

    1987-01-01

    Limited base-specific or base-selective cleavage of a defined DNA fragment yields polynucleotide products, the length of which correlates with the positions of the particular base (or bases) in the original fragment. Sverdlov and co-workers recognized the possibility of using this principle for the determination of DNA sequences. In 1977 a fully elaborated method was introduced based on this principle, which allowed routine analysis of DNA sequences over distances greater than 100 nucleotide unite from a defined, radiolabeled terminus. Six procedures for partial cleavage were described. Simultaneous parallel resolution of an appropriate set of partial cleavage mixtures by polyacrylamide gel electrophoresis, followed by visualization of the radioactive bands by autoradiography, allows the deduction of nucleotide sequence.

  8. Crystal structure of a DNA catalyst.

    PubMed

    Ponce-Salvatierra, Almudena; Wawrzyniak-Turek, Katarzyna; Steuerwald, Ulrich; Höbartner, Claudia; Pena, Vladimir

    2016-01-14

    Catalysis in biology is restricted to RNA (ribozymes) and protein enzymes, but synthetic biomolecular catalysts can also be made of DNA (deoxyribozymes) or synthetic genetic polymers. In vitro selection from synthetic random DNA libraries identified DNA catalysts for various chemical reactions beyond RNA backbone cleavage. DNA-catalysed reactions include RNA and DNA ligation in various topologies, hydrolytic cleavage and photorepair of DNA, as well as reactions of peptides and small molecules. In spite of comprehensive biochemical studies of DNA catalysts for two decades, fundamental mechanistic understanding of their function is lacking in the absence of three-dimensional models at atomic resolution. Early attempts to solve the crystal structure of an RNA-cleaving deoxyribozyme resulted in a catalytically irrelevant nucleic acid fold. Here we report the crystal structure of the RNA-ligating deoxyribozyme 9DB1 (ref. 14) at 2.8 Å resolution. The structure captures the ligation reaction in the post-catalytic state, revealing a compact folding unit stabilized by numerous tertiary interactions, and an unanticipated organization of the catalytic centre. Structure-guided mutagenesis provided insights into the basis for regioselectivity of the ligation reaction and allowed remarkable manipulation of substrate recognition and reaction rate. Moreover, the structure highlights how the specific properties of deoxyribose are reflected in the backbone conformation of the DNA catalyst, in support of its intricate three-dimensional organization. The structural principles underlying the catalytic ability of DNA elucidate differences and similarities in DNA versus RNA catalysts, which is relevant for comprehending the privileged position of folded RNA in the prebiotic world and in current organisms. PMID:26735012

  9. RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery

    PubMed Central

    Lima, Walt F.; De Hoyos, Cheryl L.; Liang, Xue-hai; Crooke, Stanley T.

    2016-01-01

    DNA-based antisense oligonucleotides (ASOs) elicit cleavage of the targeted RNA by the endoribonuclease RNase H1, whereas siRNAs mediate cleavage through the RNAi pathway. To determine the fates of the cleaved RNA in cells, we lowered the levels of the factors involved in RNA surveillance prior to treating cells with ASOs or siRNA and analyzed cleavage products by RACE. The cytoplasmic 5′ to 3′ exoribonuclease XRN1 was responsible for the degradation of the downstream cleavage products generated by ASOs or siRNA targeting mRNAs. In contrast, downstream cleavage products generated by ASOs targeting nuclear long non-coding RNA Malat 1 and pre-mRNA were degraded by nuclear XRN2. The downstream cleavage products did not appear to be degraded in the 3′ to 5′ direction as the majority of these products contained intact poly(A) tails and were bound by the poly(A) binding protein. The upstream cleavage products of Malat1 were degraded in the 3′ to 5′ direction by the exosome complex containing the nuclear exoribonuclease Dis3. The exosome complex containing Dis3 or cytoplasmic Dis3L1 degraded mRNA upstream cleavage products, which were not bound by the 5′-cap binding complex and, consequently, were susceptible to degradation in the 5′ to 3′ direction by the XRN exoribonucleases. PMID:26843429

  10. RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery.

    PubMed

    Lima, Walt F; De Hoyos, Cheryl L; Liang, Xue-Hai; Crooke, Stanley T

    2016-04-20

    DNA-based antisense oligonucleotides (ASOs) elicit cleavage of the targeted RNA by the endoribonuclease RNase H1, whereas siRNAs mediate cleavage through the RNAi pathway. To determine the fates of the cleaved RNA in cells, we lowered the levels of the factors involved in RNA surveillance prior to treating cells with ASOs or siRNA and analyzed cleavage products by RACE. The cytoplasmic 5' to 3' exoribonuclease XRN1 was responsible for the degradation of the downstream cleavage products generated by ASOs or siRNA targeting mRNAs. In contrast, downstream cleavage products generated by ASOs targeting nuclear long non-coding RNA Malat 1 and pre-mRNA were degraded by nuclear XRN2. The downstream cleavage products did not appear to be degraded in the 3' to 5' direction as the majority of these products contained intact poly(A) tails and were bound by the poly(A) binding protein. The upstream cleavage products of Malat1 were degraded in the 3' to 5' direction by the exosome complex containing the nuclear exoribonuclease Dis3. The exosome complex containing Dis3 or cytoplasmic Dis3L1 degraded mRNA upstream cleavage products, which were not bound by the 5'-cap binding complex and, consequently, were susceptible to degradation in the 5' to 3' direction by the XRN exoribonucleases. PMID:26843429

  11. The Importance of Exosite Interactions for Substrate Cleavage by Human Thrombin

    PubMed Central

    Chahal, Gurdeep; Thorpe, Michael; Hellman, Lars

    2015-01-01

    Thrombin is a serine protease of the chymotrypsin family that acts both as a procoagulant and as an anticoagulant by cleaving either factor VIII, factor V and fibrinogen or protein C, respectively. Numerous previous studies have shown that electropositive regions at a distance from the active site, so called exosites, are of major importance for the cleavage by human thrombin. Upstream of all the known major cleavage sites for thrombin in factor VIII, factor V and fibrinogen are clusters of negatively charged amino acids. To study the importance of these sites for the interaction with the exosites and thereby the cleavage by thrombin, we have developed a new type of recombinant substrate. We have compared the cleavage rate of the minimal cleavage site, involving only 8-9 amino acids (typically the P4-P4’ positions) surrounding the cleavage site, with the substrates also containing the negatively charged regions upstream of the cleavage sites. The results showed that addition of these regions enhanced the cleavage rate by more than fifty fold. However, the enhancement was highly dependent on the sequence of the actual cleavage site. A minimal site that showed poor activity by itself could be cleaved as efficiently as an optimal cleavage site when presented together with these negatively charged regions. Whereas sites conforming closely to the optimal site were only minimally enhanced by the addition of these regions. The possibility to mimic this interaction for the sites in factor V and factor VIII by recombinant substrates, which do not have the same folding as the full size target, indicates that the enhancement was primarily dependent on a relatively simple electrostatic interaction. However, the situation was very different for fibrinogen and protein C where other factors than only charge is of major importance. PMID:26110612

  12. Structure and dynamics of DNA loops on nucleosomes studied with atomistic, microsecond-scale molecular dynamics.

    PubMed

    Pasi, Marco; Lavery, Richard

    2016-06-20

    DNA loop formation on nucleosomes is strongly implicated in chromatin remodeling and occurs spontaneously in nucleosomes subjected to superhelical stress. The nature of such loops depends crucially on the balance between DNA deformation and DNA interaction with the nucleosome core. Currently, no high-resolution structural data on these loops exist. Although uniform rod models have been used to study loop size and shape, these models make assumptions concerning DNA mechanics and DNA-core binding. We present here atomic-scale molecular dynamics simulations for two different loop sizes. The results point to the key role of localized DNA kinking within the loops. Kinks enable the relaxation of DNA bending strain to be coupled with improved DNA-core interactions. Kinks lead to small, irregularly shaped loops that are asymmetrically positioned with respect to the nucleosome core. We also find that loop position can influence the dynamics of the DNA segments at the extremities of the nucleosome. PMID:27098037

  13. Oncogenes in human testicular cancer: DNA and RNA studies.

    PubMed Central

    Peltomäki, P.; Alfthan, O.; de la Chapelle, A.

    1991-01-01

    Oncogene dosage and expression were studied in 16 testicular neoplasms, 14 of germ cell and two of non-germ cell origin. In comparison with normal DNA, tumour DNA of a total of eight patients (seven with germ cell neoplasm and one with testicular lymphoma) showed increased dosages of KRAS2, PDGFA, EGFR, MET and PDGFB. The most frequent (occurring in six tumours) and prominent (up to 3-4-fold) increases were detected in the dosages of KRAS2 (on chromosome 12p) and PDGFA (chromosome 7p), relative to a reference locus from chromosome 2. Importantly, there was a similar increase in 12p dosage in general in these tumours, suggesting the presence of the characteristic isochromosome 12p marker. On the contrary, possible 7p polysomy (assessed by molecular methods) did not explain the PDGFA (or EGFR) changes in all cases. NRAS, MYCN, CSFIR, MYB, MYC, ABL, HRASI, TP53, and ERBB2 did not reveal any consistent alterations in tumour DNA. In RNA dot blot assays the expression of KRAS2, PDGFA, EGFR, or MYC was generally not increased in the tumour samples when compared to that in normal testicular tissue of the same patients although there was interindividual variation in mRNA levels. It thus appears that while oncogene dosage changes occur in a proportion of testis cancers, they are often part of changes in large chromosomal regions or whole arms and are seldom accompanied by altered expression. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1829952

  14. Multispectroscopic studies of the interaction of calf thymus DNA with the anti-viral drug, valacyclovir

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Fatahi, Navid; Mahdavi, Maryam; Nejad, Zahra Kiani; Pourfoulad, Mehdi

    2011-12-01

    The present study investigated the binding interaction between an antiviral drug, valacyclovir and calf thymus DNA (CT-DNA) using emission, absorption, circular dichroism, viscosity and DNA melting studies. In fluorimetric studies, thermodynamic enhancement constant ( KD) and bimolecular enhancement constant ( KB) were calculated at different temperatures and demonstrated that fluorescence enhancement is not initiated by a dynamic process, but instead by a static process that involves complex DNA formation in the ground state. Further, the enthalpy and entropy of the reaction between the drug and CT-DNA showed that the reaction is exothermic and enthalpy-favored. In addition, detectable changes in the circular dichroism spectrum of CT-DNA in the presence of valacyclovir indicated conformational changes in the DNA double helix following interaction with the drug. All these results prove that this antiviral drug interacts with CT-DNA via an intercalative mode of binding.

  15. Nuclease digestion studies of chromatin structure

    SciTech Connect

    Deutsch, S.M.

    1987-01-01

    Micrococcal nuclease, which preferentially cleaves linker DNA in chromatin, was immobilized by covalent attachment to CNBr-activated agarose beads and used to study the accessibility of linker DNA in chromatin fibers prepared from chicken erythrocyte nuclei. This immobilized nuclease was able to cleave chromatin fibers into the typical pattern of fragments corresponding to multiples of mononucleosomes. Cleavage from only the ends of the fibers was ruled out by examining the products of cleavage of fibers end-labelled with /sup 35/P. Comparison of the rate of digestion by immobilized and soluble micrococcal nuclease indicated that the fiber structure does not significantly affect access to linker DNA. The absence of an effect of reducing temperatures on the rate of digestion of fibers, as compared to short oligonucleosomes, indicated that breathing motions to allow access to the fiber interior were not required for cleavage of linker DNA.

  16. Patterned Thread-like Micelles and DNA-Tethered Nanoparticles: A Structural Study of PEGylated Cationic Liposome–DNA Assemblies

    PubMed Central

    Majzoub, Ramsey N.; Ewert, Kai K.; Jacovetty, Erica L.; Carragher, Bridget; Potter, Clinton S.; Li, Youli; Safinya, Cyrus R.

    2015-01-01

    The self-assembly of oppositely charged biomacromolecules has been extensively studied due to its pertinence in the design of functional nanomaterials. Using cryo electronic microscopy (cryo-EM), optical light scattering and fluorescence microscopy, we investigated the structure and phase behavior of PEGylated (PEG: poly(ethylene-glycol)) cationic liposome–DNA nanoparticles (CL–DNA NPs) as a function of DNA length, topology (linear and circular) and ρchg (the molar charge ratio of cationic lipid to anionic DNA). Although all NPs studied showed a lamellar internal nanostructure, NPs formed with short (~ 2 kbps), linear, polydisperse DNA were defect-rich and contained smaller domains. Unexpectedly, we found distinctly different equilibrium structures away from the isoelectric point. At ρchg > 1, in the excess cationic lipid regime, thread-like micelles rich in PEG-lipid were found to coexist with NPs, cationic liposomes and spherical micelles. At high concentrations these PEGylated thread-like micelles formed a well-ordered, patterned morphology with highly uniform inter-micellar spacing. At ρchg < 1, in the excess DNA regime and with no added salt, individual NPs were tethered together via long, linear DNA (48 kbps λ-phage DNA) into a biopolymer-mediated floc. Our results provide insight on what equilibrium nanostructures can form when oppositely charged macromolecules self-assemble in aqueous media. Self-assembled, well-ordered thread-like micelles and tethered nanoparticles may have a broad range of applications in bionanotechnology, including nanoscale lithograpy and the development of lipid-based multi-functional nanoparticle networks. PMID:26048043

  17. Patterned Threadlike Micelles and DNA-Tethered Nanoparticles: A Structural Study of PEGylated Cationic Liposome-DNA Assemblies.

    PubMed

    Majzoub, Ramsey N; Ewert, Kai K; Jacovetty, Erica L; Carragher, Bridget; Potter, Clinton S; Li, Youli; Safinya, Cyrus R

    2015-06-30

    The self-assembly of oppositely charged biomacromolecules has been extensively studied due to its pertinence in the design of functional nanomaterials. Using cryo electron microscopy (cryo-EM), optical light scattering, and fluorescence microscopy, we investigated the structure and phase behavior of PEGylated (PEG: poly(ethylene glycol)) cationic liposome-DNA nanoparticles (CL-DNA NPs) as a function of DNA length, topology (linear and circular), and ρ(chg) (the molar charge ratio of cationic lipid to anionic DNA). Although all NPs studied exhibited lamellar internal nanostructure, NPs formed with short (∼2 kbps), linear, polydisperse DNA were defect-rich and contained smaller domains. Unexpectedly, we found distinctly different equilibrium structures away from the isoelectric point. At ρ(chg) > 1, in the excess cationic lipid regime, threadlike micelles rich in PEG-lipid were found to coexist with NPs, cationic liposomes, and spherical micelles. At high concentrations these PEGylated threadlike micelles formed a well-ordered, patterned morphology with highly uniform intermicellar spacing. At ρ(chg) < 1, in the excess DNA regime and with no added salt, individual NPs were tethered together via long, linear DNA (48 kbps λ-phage DNA) into a biopolymer-mediated floc. Our results provide insight into what equilibrium nanostructures can form when oppositely charged macromolecules self-assemble in aqueous media. Self-assembled, well-ordered threadlike micelles and tethered nanoparticles may have a broad range of applications in bionanotechnology, including nanoscale lithograpy and the development of lipid-based multifunctional nanoparticle networks. PMID:26048043

  18. Synthesis, interactions, molecular structure, biological properties and molecular docking studies on Mn, Co, Zn complexes containing acetylacetone and pyridine ligands with DNA duplex.

    PubMed

    Thamilarasan, V; Sengottuvelan, N; Stalin, N; Srinivasan, P; Chakkaravarthi, G

    2016-07-01

    Three metal complexes (1-3) of the type [Mn(acac)2(py)·H2O] (1), [Co(acac)2(py)·H2O] (2) and [Zn(acac)2(py)·H2O] (3), [Where acac=acetylacetone, py=pyridine] were synthesized and characterized by spectral (UV-vis, FT-IR, ESI-mass) analysis. The structure of complex 2 has been determined by single crystal X-ray diffraction studies and the configuration of ligand-coordinated to metal(II) ion was well described as distorted octahedral coordination geometry. The interaction of the complexes with CT-DNA has been explored by absorption, fluorescence, circular dichromism spectroscopy, viscosity measurements and molecular docking studies. The intrinsic binding constant Kb of complexes 1-3 with CT-DNA obtained from UV-vis absorption spectral studies were 2.1×10(4), 2.1×10(5) and 1.98×10(4)M(-1), respectively, which revealed that the complexes could interact with CT-DNA through groove binding. The results indicated that the complexes (1-3) were able to bind to DNA with different binding affinity, in the order: 2>1>3. The interaction of the compounds with bovine serum albumins were also investigated using fluorescence methods and the gel electrophoresis assay demonstrates weak cleavage ability of the pBR322 plasmid DNA in the presence of the metal complexes (1-3) with various activators. Further, the in vitro cytotoxic effect of the complexes were examined on cancerous cell line, with human breast cancer cells MCF-7. PMID:27104666

  19. Beyond DNA puffs: What can we learn from studying sciarids?

    PubMed

    Simon, Claudio Roberto; Siviero, Fábio; Monesi, Nadia

    2016-07-01

    Members of the Sciaridae family attracted the interest of researchers because of the demonstration that the DNA puff regions, which are formed in the salivary gland polytene chromosomes at the end of the fourth larval instar, constitute sites of developmentally regulated gene amplification. Besides contributing to a deeper understanding of the process of gene amplification, the study of sciarids has also provided important insights on other biological processes such as sex determination, programmed cell death, insect immunity, telomere maintenance, and nucleolar organizing regions (NOR) formation. Open questions in sciarids include among others, early development, the role of noncoding RNAs in gene amplification and the relationship between gene amplification and transcription in DNA puff forming regions. These and other questions can now be pursued with next generation sequencing techniques and experiments using RNAi experiments, since this latter technique has been shown to be feasible in sciarids. These new perspectives in the field of sciarid biology open the opportunity to consolidate sciarid species as important emerging models. genesis 54:361-378, 2016. © 2016 Wiley Periodicals, Inc. PMID:27178805

  20. Temperature-dependent cleavage of chromatin by micrococcal nuclease near the nucleosome center.

    PubMed

    Huang, S Y; Garrard, W T

    1986-04-01

    Digestion of nuclei at 4 degrees C with micrococcal nuclease results in significant intranucleosomal cleavage compared to digestion conducted at 37 degrees C. Employing nucleoprotein gel electrophoresis in one dimension followed by DNA electrophoresis in a second dimension, we demonstrate that such temperature-sensitive, internal cleavage predominantly occurs about 20 bp from the nucleosome center. We suggest that lower temperatures reduce the stability of hydrophobic interactions within the histone octamer and lead to a conformational alteration in nucleosomes that is detected by micrococcal nuclease. PMID:3956749

  1. Monoclonal antibody to single-stranded DNA: a potential tool for DNA repair studies.

    PubMed

    Cooke, M S; Patel, K; Ahmad, J; Holloway, K; Evans, M D; Lunec, J

    2001-06-01

    Growing evidence suggests that DNA repair capacity is an important factor in cancer risk and is therefore essential to assess. Immunochemical assays are amenable to the detection of repair products in complex matrices, such as urine, facilitating noninvasive measurements, although diet and extra-DNA sources of lesion can confound interpretation. The production of single-stranded, lesion-containing DNA oligomers characterises nucleotide excision repair (NER) and hence defines the repair pathway from which a lesion may be derived. Herein we describe the characterisation of a monoclonal antibody which recognises guanine moieties in single-stranded DNA. Application of this antibody in ELISA, demonstrated such oligomers in supernatants from repair-proficient cells post-insult. Testing of urine samples from volunteers demonstrated a relationship between oligomer levels and two urinary DNA damage products, thymine dimers and 8-oxo-2'-deoxyguanosine, supporting our hypothesis that NER gives rise to lesion-containing oligomers which are specific targets for the investigation of DNA repair. PMID:11374895

  2. Analytical model study of dendrimer/DNA complexes.

    PubMed

    Qamhieh, Khawla; Nylander, Tommy; Ainalem, Marie-Louise

    2009-07-13

    The interaction between positively charged poly(amido amine) (PAMAM) dendrimers of generation 4 and DNA has been investigated for two DNA lengths; 2000 basepairs (bp; L = 680 nm) and 4331 bp (L = 1472.5 nm) using a theoretical model by Schiessel for a semiflexible polyelectrolyte and hard spheres. The model was modified to take into account that the dendrimers are to be regarded as soft spheres, that is, the radius is not constant when the DNA interact with the dendrimer. For the shorter and longer DNA, the estimated optimal wrapping length, l(opt) is ≈15.69 and ≈12.25 nm, respectively, for dendrimers that retain their original size (R(o) = 2.25 nm) upon DNA interaction. However, the values of l(opt) for the dendrimers that were considered to have a radius of (R = 0.4R(o)) 0.9 nm were 9.3 and 9.4 nm for the short and long DNA, respectively, and the effect due to the DNA length is no longer observed. For l(opt) = 10.88 nm, which is the length needed to neutralize the 64 positive charges of the G4 dendrimer, the maximum number of dendrimers per DNA (N(max)) was ≈76 for the shorter DNA, which is larger than the corresponding experimental value of 35 for 2000 bp DNA. For the longer DNA, N(max) ≈ 160, which is close to the experimental value of 140 for the 4331 bp DNA. Charge inversion of the dendrimer is only observed when they retain their size or only slightly contract upon DNA interaction. PMID:19438230

  3. An Overview of Y-Family DNA Polymerases and a Case Study of Human DNA Polymerase η

    PubMed Central

    2015-01-01

    Y-Family DNA polymerases specialize in translesion synthesis, bypassing damaged bases that would otherwise block the normal progression of replication forks. Y-Family polymerases have unique structural features that allow them to bind damaged DNA and use a modified template base to direct nucleotide incorporation. Each Y-Family polymerase is unique and has different preferences for lesions to bypass and for dNTPs to incorporate. Y-Family polymerases are also characterized by a low catalytic efficiency, a low processivity, and a low fidelity on normal DNA. Recruitment of these specialized polymerases to replication forks is therefore regulated. The catalytic center of the Y-Family polymerases is highly conserved and homologous to that of high-fidelity and high-processivity DNA replicases. In this review, structural differences between Y-Family and A- and B-Family polymerases are compared and correlated with their functional differences. A time-resolved X-ray crystallographic study of the DNA synthesis reaction catalyzed by the Y-Family DNA polymerase human polymerase η revealed transient elements that led to the nucleotidyl-transfer reaction. PMID:24716551

  4. The stereochemistry of a four-way DNA junction: a theoretical study.

    PubMed Central

    von Kitzing, E; Lilley, D M; Diekmann, S

    1990-01-01

    The stereochemical conformation of the four-way helical junction in DNA (the Holliday junction; the postulated central intermediate of genetic recombination) has been analysed, using molecular mechanical computer modelling. A version of the AMBER program package was employed, that had been modified to include the influence of counterions and a global optimisation procedure. Starting from an extended planar structure, the conformation was varied in order to minimise the energy, and we discuss three structures obtained by this procedure. One structure is closely related to a square-planar cross, in which there is no stacking interaction between the four double helical stems. This structure is probably closely similar to that observed experimentally in the absence of cations. The remaining two structures are based on related, yet distinct, conformations, in which there is pairwise coaxial stacking of neighbouring stems. In these structures, the four DNA stems adopt the form of two quasi-continuous helices, in which base stacking is very similar to that found in standard B-DNA geometry. The two stacked helices so formed are not aligned parallel to each other, but subtend an angle of approximately 60 degrees. The strands that exchange between one stacked helix and the other are disposed about the smaller angle of the cross (i.e. 60 degrees rather than 120 degrees), generating an approximately antiparallel alignment of DNA sequences. This structure is precisely the stacked X-structure proposed on the basis of experimental data. The calculations indicate distortions from standard B-DNA conformation that are required to adopt the stacked X-structure; a widening of the minor groove at the junction, and reorientation of the central phosphate groups of the exchanging strands. An important feature of the stacked X-structure is that it presents two structurally distinct sides. These may be recognised differently by enzymes, providing a rationalisation for the points of cleavage

  5. Leukocyte Protease Binding to Nucleic Acids Promotes Nuclear Localization and Cleavage of Nucleic Acid Binding Proteins

    PubMed Central

    Thomas, Marshall P.; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-01-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. Here we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein (RBP) targets, while adding RNA to recombinant RBP substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Pre-incubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G (CATG). During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps (NETs), which bind NE and CATG. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and NETs in a DNA-dependent manner. Thus, high affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation. PMID:24771851

  6. Does Cleavage Work at Work? Men, but Not Women, Falsely Believe Cleavage Sells a Weak Product

    ERIC Educational Resources Information Center

    Glick, Peter; Chrislock, Karyna; Petersik, Korinne; Vijay, Madhuri; Turek, Aleksandra

    2008-01-01

    We examined whether men, but not women, would be distracted by a female sales representative's exposed cleavage, leading to greater perceived efficacy for a weak, but not for a strong product. A community sample of 88 men and 97 women viewed a video of a female pharmaceutical sales representative who (a) had exposed cleavage or dressed modestly…

  7. [Study of Chloroplast DNA Polymorphism in the Sunflower (Helianthus L.)].

    PubMed

    Markina, N V; Usatov, A V; Logacheva, M D; Azarin, K V; Gorbachenko, C F; Kornienko, I V; Gavrilova, V A; Tihobaeva, V E

    2015-08-01

    The polymorphism of microsatellite loci of chloroplast genome in six Helianthus species and 46 lines of cultivated sunflower H. annuus (17 CMS lines and 29 Rf-lines) were studied. The differences between species are confined to four SSR loci. Within cultivated forms of the sunflower H. annuus, the polymorphism is absent. A comparative analysis was performed on sequences of the cpDNA inbred line 3629, line 398941 of the wild sunflower, and the American line HA383 H. annuus. As a result, 52 polymorphic loci represented by 27 SSR and 25 SNP were found; they can be used for genotyping of H. annuus samples, including cultural varieties: twelve polymorphic positions, of which eight are SSR and four are SNP. PMID:26601486

  8. Numerical study of a disordered model for DNA denaturation transition.

    PubMed

    Coluzzi, Barbara

    2006-01-01

    We numerically study a disordered version of the model for DNA denaturation transition consisting of two interacting self-avoiding walks in three dimensions, which undergoes a first order transition in the homogeneous case. The two possible values epsilonAT and epsilonGC of the interactions between base pairs are taken as quenched random variables distributed with equal probability along the chain. We measure quantities averaged over disorder such as the energy density, the specific heat, and the probability distribution of the loop lengths. When applying the scaling laws used in the homogeneous case we find that the transition seems to be smoothe