Sample records for dna complexes probed

  1. Determination for Enterobacter cloacae based on a europium ternary complex labeled DNA probe

    NASA Astrophysics Data System (ADS)

    He, Hui; Niu, Cheng-Gang; Zeng, Guang-Ming; Ruan, Min; Qin, Pin-Zhu; Liu, Jing

    2011-11-01

    The fast detection and accurate diagnosis of the prevalent pathogenic bacteria is very important for the treatment of disease. Nowadays, fluorescence techniques are important tools for diagnosis. A two-probe tandem DNA hybridization assay was designed for the detection of Enterobacter cloacae based on time-resolved fluorescence. In this work, the authors synthesized a novel europium ternary complex Eu(TTA) 3(5-NH 2-phen) with intense luminescence, high fluorescence quantum yield and long lifetime before. We developed a method based on this europium complex for the specific detection of original extracted DNA from E. cloacae. In the hybridization assay format, the reporter probe was labeled with Eu(TTA) 3(5-NH 2-phen) on the 5'-terminus, and the capture probe capture probe was covalent immobilized on the surface of the glutaraldehyde treated glass slides. The original extracted DNA of samples was directly used without any DNA purification and amplification. The detection was conducted by monitoring the fluorescence intensity from the glass surface after DNA hybridization. The detection limit of the DNA was 5 × 10 -10 mol L -1. The results of the present work proved that this new approach was easy to operate with high sensitivity and specificity. It could be conducted as a powerful tool for the detection of pathogen microorganisms in the environment.

  2. Fluorescence studies with DNA probes: dynamic aspects of DNA structure and DNA-protein interactions

    NASA Astrophysics Data System (ADS)

    Millar, David P.; Carver, Theodore E.

    1994-08-01

    Time-resolved fluorescence measurements of optical probes incorporated at specific sites in DNA provides a new approach to studies of DNA structure and DNA:protein interactions. This approach can be used to study complex multi-state behavior, such as the folding of DNA into alternative higher order structures or the transfer of DNA between multiple binding sites on a protein. In this study, fluorescence anisotropy decay of an internal dansyl probe attached to 17/27-mer oligonucleotides was used to monitor the distribution of DNA 3' termini bound at either the polymerase of 3' to 5' exonuclease sites of the Klenow fragment of DNA polymerase I. Partitioning of the primer terminus between the two active sites of the enzyme resulted in a heterogeneous probe environment, reflected in the associative behavior of the fluorescence anisotropy decay. Analysis of the anisotropy decay with a two state model of solvent-exposed and protein-associated dansyl probes was used to determine the fraction of DNA bound at each site. We examined complexes of Klenow fragment with DNAs containing various base mismatches. Single mismatches at the primer terminus caused a 3-fold increase in the equilibrium partitioning of DNA into the exonuclease site, while two or more consecutive G:G mismatches caused the DNA to bind exclusively at the exonuclease site, with a partitioning constant at least 250- fold greater than that of the corresponding matched DNA sequence. Internal single mismatches located up to four bases from the primer terminus produced larger effects than the same mismatch at the primer terminus. These results provide insight into the recognition mechanisms that enable DNA polymerases to proofread misincorporated bases during DNA replication.

  3. Rapid colorimetric assay for detection of Listeria monocytogenes in food samples using LAMP formation of DNA concatemers and gold nanoparticle-DNA probe complex

    NASA Astrophysics Data System (ADS)

    Wachiralurpan, Sirirat; Sriyapai, Thayat; Areekit, Supatra; Sriyapai, Pichapak; Augkarawaritsawong, Suphitcha; Santiwatanakul, Somchai; Chansiri, Kosum

    2018-04-01

    ABSTRACT Listeria monocytogenes is a major foodborne pathogen of global health concern. Herein, the rapid diagnosis of L. monocytogenes has been achieved using loop-mediated isothermal amplification (LAMP) based on the phosphatidylcholine-phospholipase C gene (plcB). Colorimetric detection was then performed through the formation of DNA concatemers and a gold nanoparticle/DNA probe complex (GNP/DNA probe). The overall detection process was accomplished within approximately 1 h with no need for complicated equipment. The limits of detection for L. monocytogenes in the forms of purified genomic DNA and pure culture were 800 fg and 2.82 CFU mL-1, respectively. No cross reactions were observed from closely related bacteria species. The LAMP-GNP/DNA probe assay was applied to the detection of 200 raw chicken meat samples and compared to routine standard methods. The data revealed that the specificity, sensitivity and accuracy were 100%, 90.20% and 97.50%, respectively. The present assay was 100% in conformity with LAMP-agarose gel electrophoresis assay. Five samples that were negative by both assays appeared to have the pathogen at below the level of detection. The assay can be applied as a rapid direct screening method for L. monocytogenes.

  4. Ferrocene-oligonucleotide conjugates for electrochemical probing of DNA.

    PubMed Central

    Ihara, T; Maruo, Y; Takenaka, S; Takagi, M

    1996-01-01

    Toward the development of a universal, sensitive and convenient method of DNA (or RNA) detection, electrochemically active oligonucleotides were prepared by covalent linkage of a ferrocenyl group to the 5'-aminohexyl-terminated synthetic oligonucleotides. Using these electrochemically active probes, we have been able to demonstrate the detection of DNA and RNA at femtomole levels by HPLC equipped with an ordinary electrochemical detector (ECD) [Takenaka,S., Uto,Y., Kondo,H., Ihara,T. and Takagi,M. (1994) Anal. Biochem., 218, 436-443]. Thermodynamic and electrochemical studies of the interaction between the probes and the targets are presented here. The thermodynamics obtained revealed that the conjugation stabilizes the triple-helix complexes by 2-3 kcal mol-1 (1-2 orders increment in binding constant) at 298 K, which corresponds to the effect of elongation of additional several base triplets. The main cause of this thermodynamic stabilization by the conjugation is likely to be the overall conformational change of whole structure of the conjugate rather than the additional local interaction. The redox potential of the probe was independent of the target structure, which is either single- or double stranded. However, the potential is slightly dependent (with a 10-30 mV negative shift on complexation) on the extra sequence in the target, probably because the individual sequence is capable of contacting or interacting with the ferrocenyl group in a slightly different way from each other. This small potential shift itself, however, does not cause any inconvenience on practical applications in detecting the probes by using ECD. These results lead to the conclusion that the redox-active probes are very useful for the microanalysis of nucleic acids due to the stability of the complexes, high detection sensitivity and wide applicability to the target structures (DNA and RNA; single- and double strands) and the sequences. PMID:8932383

  5. Modular probes for enriching and detecting complex nucleic acid sequences

    NASA Astrophysics Data System (ADS)

    Wang, Juexiao Sherry; Yan, Yan Helen; Zhang, David Yu

    2017-12-01

    Complex DNA sequences are difficult to detect and profile, but are important contributors to human health and disease. Existing hybridization probes lack the capability to selectively bind and enrich hypervariable, long or repetitive sequences. Here, we present a generalized strategy for constructing modular hybridization probes (M-Probes) that overcomes these challenges. We demonstrate that M-Probes can tolerate sequence variations of up to 7 nt at prescribed positions while maintaining single nucleotide sensitivity at other positions. M-Probes are also shown to be capable of sequence-selectively binding a continuous DNA sequence of more than 500 nt. Furthermore, we show that M-Probes can detect genes with triplet repeats exceeding a programmed threshold. As a demonstration of this technology, we have developed a hybrid capture method to determine the exact triplet repeat expansion number in the Huntington's gene of genomic DNA using quantitative PCR.

  6. Platinated DNA oligonucleotides: new probes forming ultrastable conjugates with graphene oxide

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Liu, Juewen

    2014-05-01

    Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate is further tested for surface hybridization. This is the first demonstration of using metallated DNA as a polymeric material for interfacing with nanoscale materials.Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate

  7. Sub-diffusion and trapped dynamics of neutral and charged probes in DNA-protein coacervates

    NASA Astrophysics Data System (ADS)

    Arfin, Najmul; Yadav, Avinash Chand; Bohidar, H. B.

    2013-11-01

    The physical mechanism leading to the formation of large intermolecular DNA-protein complexes has been studied. Our study aims to explain the occurrence of fast coacervation dynamics at the charge neutralization point, followed by the appearance of smaller complexes and slower coacervation dynamics as the complex experiences overcharging. Furthermore, the electrostatic potential and probe mobility was investigated to mimic the transport of DNA / DNA-protein complex in a DNA-protein complex coacervate medium [N. Arfin and H. B. Bohidar, J. Phys. Chem. B 116, 13192 (2012)] by assigning neutral, negative, or positive charge to the probe particle. The mobility of the neutral probe was maximal at low matrix concentrations and showed random walk behavior, while its mobility ceased at the jamming concentration of c = 0.6, showing sub-diffusion and trapped dynamics. The positively charged probe showed sub-diffusive random walk followed by trapped dynamics, while the negatively charged probe showed trapping with occasional hopping dynamics at much lower concentrations. Sub-diffusion of the probe was observed in all cases under consideration, where the electrostatic interaction was used exclusively as the dominant force involved in the dynamics. For neutral and positive probes, the mean square displacement ⟨R2⟩ exhibits a scaling with time as ⟨R2⟩ ˜ tα, distinguishing random walk and trapped dynamics at α = 0.64 ± 0.04 at c = 0.12 and c = 0.6, respectively. In addition, the same scaling factors with the exponent β = 0.64 ± 0.04 can be used to distinguish random walk and trapped dynamics for the neutral and positive probes using the relation between the number of distinct sites visited by the probe, S(t), which follows the scaling, S(t) ˜ tβ/ln (t). Our results established the occurrence of a hierarchy of diffusion dynamics experienced by a probe in a dense medium that is either charged or neutral.

  8. Site-directed DNA crosslinking of large multisubunit protein-DNA complexes.

    PubMed

    Persinger, Jim; Bartholomew, Blaine

    2009-01-01

    Several methods have been developed to site-specifically incorporate photoreactive nucleotide analogs into DNA for the purpose of identifying the proteins and their domains that are in contact with particular regions of DNA. The synthesis of several deoxynucleotide analogs that have a photoreactive group tethered to the nucleotide base and the incorporation of these analogs into DNA are described. In a second approach, oligonucleotide with a photoreactive group attached to the phosphate backbone is chemically synthesized. The photoreactive oligonucleotide is then enzymatically incorporated into DNA by annealing it to a complementary DNA template and extending with DNA polymerase. Both approaches have been effectively used to map protein-DNA interactions in large multisubunit complexes such as the eukaryotic transcription or ATP-dependent chromatin remodeling complexes. Not only do these techniques map the binding sites of the various subunits in these complexes, but when coupled with peptide mapping also determine the protein domain that is in close proximity to the different DNA sites. The strength of these techniques is the ability to scan a large number of potential sites by making combinations of different DNA probes and is facilitated by using an immobilized DNA template for synthesis.

  9. Recent patents on self-quenching DNA probes.

    PubMed

    Knemeyer, Jens-Peter; Marmé, Nicole

    2007-01-01

    In this review, we report on patents concerning self-quenching DNA probes for assaying DNA during or after amplification as well as for direct assaying DNA or RNA, for example in living cells. Usually the probes consist of fluorescently labeled oligonucleotides whose fluorescence is quenched in the absence of the matching target DNA. Thereby the fluorescence quenching is based on fluorescence resonance energy transfer (FRET), photoinduced electron transfer (PET), or electronically interactions between dye and quencher. However, upon hybridization to the target or after the degradation during a PCR, the fluorescence of the dye is restored. Although the presented probes were originally developed for use in homogeneous assay formats, most of them are also appropriate to improve surface-based assay methods. In particular we describe patents for self-quenching primers, self-quenching probes for TaqMan assays, probes based on G-quartets, Molecular Beacons, Smart Probes, and Pleiades Probes.

  10. DNA Probe for Lactobacillus delbrueckii

    PubMed Central

    Delley, Michèle; Mollet, Beat; Hottinger, Herbert

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α-32P-labeled DNA probe. Images PMID:16348233

  11. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    PubMed

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay. © The Author(s) 2016.

  12. Mechanisms of small molecule–DNA interactions probed by single-molecule force spectroscopy

    PubMed Central

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Rouzina, Ioulia; Williams, Mark C.

    2016-01-01

    There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA–ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules. PMID:27085806

  13. Methods of staining target chromosomal DNA employing high complexity nucleic acid probes

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Ol'li-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2006-10-03

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  14. DNA probe for lactobacillus delbrueckii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delley, M.; Mollet, B.; Hottinger, H.

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  15. DNA Clutch Probes for Circulating Tumor DNA Analysis.

    PubMed

    Das, Jagotamoy; Ivanov, Ivaylo; Sargent, Edward H; Kelley, Shana O

    2016-08-31

    Progress toward the development of minimally invasive liquid biopsies of disease is being bolstered by breakthroughs in the analysis of circulating tumor DNA (ctDNA): DNA released from cancer cells into the bloodstream. However, robust, sensitive, and specific methods of detecting this emerging analyte are lacking. ctDNA analysis has unique challenges, since it is imperative to distinguish circulating DNA from normal cells vs mutation-bearing sequences originating from tumors. Here we report the electrochemical detection of mutated ctDNA in samples collected from cancer patients. By developing a strategy relying on the use of DNA clutch probes (DCPs) that render specific sequences of ctDNA accessible, we were able to readout the presence of mutated ctDNA. DCPs prevent reassociation of denatured DNA strands: they make one of the two strands of a dsDNA accessible for hybridization to a probe, and they also deactivate other closely related sequences in solution. DCPs ensure thereby that only mutated sequences associate with chip-based sensors detecting hybridization events. The assay exhibits excellent sensitivity and specificity in the detection of mutated ctDNA: it detects 1 fg/μL of a target mutation in the presence of 100 pg/μL of wild-type DNA, corresponding to detecting mutations at a level of 0.01% relative to wild type. This approach allows accurate analysis of samples collected from lung cancer and melanoma patients. This work represents the first detection of ctDNA without enzymatic amplification.

  16. Accelerated Photobleaching of a Cyanine Dye in the Presence of a Ternary Target DNA, PNA Probe, Dye Catalytic Complex: A Molecular Diagnostic

    PubMed Central

    Wang, M.; Holmes-Davis, R.; Rafinski, Z.; Jedrzejewska, B.; Choi, K. Y.; Zwick, M.; Bupp, C.; Izmailov, A.; Paczkowski, J.; Warner, B.; Koshinsky, H.

    2009-01-01

    In many settings, molecular testing is needed but unavailable due to complexity and cost. Simple, rapid, and specific DNA detection technologies would provide important alternatives to existing detection methods. Here we report a novel, rapid nucleic acid detection method based on the accelerated photobleaching of the light-sensitive cyanine dye, 3,3′-diethylthiacarbocyanine iodide (DiSC2(3) I−), in the presence of a target genomic DNA and a complementary peptide nucleic acid (PNA) probe. On the basis of the UV–vis, circular dichroism, and fluorescence spectra of DiSC2(3) with PNA–DNA oligomer duplexes and on characterization of a product of photolysis of DiSC2(3) I−, a possible reaction mechanism is proposed. We propose that (1) a novel complex forms between dye, PNA, and DNA, (2) this complex functions as a photosensitizer producing 1O2, and (3) the 1O2 produced promotes photobleaching of dye molecules in the mixture. Similar cyanine dyes (DiSC3(3), DiSC4(3), DiSC5(3), and DiSCpy(3)) interact with preformed PNA–DNA oligomer duplexes but do not demonstrate an equivalent accelerated photobleaching effect in the presence of PNA and target genomic DNA. The feasibility of developing molecular diagnostic assays based on the accelerated photobleaching (the smartDNA assay) that results from the novel complex formed between DiSC2(3) and PNA–DNA is under way. PMID:19231844

  17. Synthesis of Bipartite Tetracysteine PNA Probes for DNA In Situ Fluorescent Labeling.

    PubMed

    Fang, Ge-Min; Seitz, Oliver

    2017-12-24

    "Label-free" fluorescent probes that avoid additional steps or building blocks for conjugation of fluorescent dyes with oligonucleotides can significantly reduce the time and cost of parallel bioanalysis of a large number of nucleic acid samples. A method for the synthesis of "label-free" bicysteine-modified PNA probes using solid-phase synthesis and procedures for sequence-specific DNA in situ fluorescent labeling is described here. The concept is based on the adjacent alignment of two bicysteine-modified peptide nucleic acids on a DNA target to form a structurally optimized bipartite tetracysteine motif, which induces a sequence-specific fluorogenic reaction with commercially available biarsenic dyes, even in complex media such as cell lysate. This unit will help researchers to quickly synthesize bipartite tetracysteine PNA probes and carry out low-cost DNA in situ fluorescent labeling experiments. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  18. Solution Structures of 2 : 1 And 1 : 1 DNA Polymerase - DNA Complexes Probed By Ultracentrifugation And Small-Angle X-Ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, K.H.; /Ohio State U.; Niebuhr, M.

    2009-04-30

    We report small-angle X-ray scattering (SAXS) and sedimentation velocity (SV) studies on the enzyme-DNA complexes of rat DNA polymerase {beta} (Pol {beta}) and African swine fever virus DNA polymerase X (ASFV Pol X) with one-nucleotide gapped DNA. The results indicated formation of a 2 : 1 Pol {beta}-DNA complex, whereas only 1 : 1 Pol X-DNA complex was observed. Three-dimensional structural models for the 2 : 1 Pol {beta}-DNA and 1 : 1 Pol X-DNA complexes were generated from the SAXS experimental data to correlate with the functions of the DNA polymerases. The former indicates interactions of the 8 kDamore » 5{prime}-dRP lyase domain of the second Pol {beta} molecule with the active site of the 1 : 1 Pol {beta}-DNA complex, while the latter demonstrates how ASFV Pol X binds DNA in the absence of DNA-binding motif(s). As ASFV Pol X has no 5{prime}-dRP lyase domain, it is reasonable not to form a 2 : 1 complex. Based on the enhanced activities of the 2 : 1 complex and the observation that the 8 kDa domain is not in an optimal configuration for the 5{prime}-dRP lyase reaction in the crystal structures of the closed ternary enzyme-DNA-dNTP complexes, we propose that the asymmetric 2 : 1 Pol {beta}-DNA complex enhances the function of Pol {beta}.« less

  19. DNA stable-isotope probing (DNA-SIP).

    PubMed

    Dunford, Eric A; Neufeld, Josh D

    2010-08-02

    DNA stable-isotope probing (DNA-SIP) is a powerful technique for identifying active microorganisms that assimilate particular carbon substrates and nutrients into cellular biomass. As such, this cultivation-independent technique has been an important methodology for assigning metabolic function to the diverse communities inhabiting a wide range of terrestrial and aquatic environments. Following the incubation of an environmental sample with stable-isotope labelled compounds, extracted nucleic acid is subjected to density gradient ultracentrifugation and subsequent gradient fractionation to separate nucleic acids of differing densities. Purification of DNA from cesium chloride retrieves labelled and unlabelled DNA for subsequent molecular characterization (e.g. fingerprinting, microarrays, clone libraries, metagenomics). This JoVE video protocol provides visual step-by-step explanations of the protocol for density gradient ultracentrifugation, gradient fractionation and recovery of labelled DNA. The protocol also includes sample SIP data and highlights important tips and cautions that must be considered to ensure a successful DNA-SIP analysis.

  20. DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes

    PubMed Central

    Gaylord, Brent S.; Heeger, Alan J.; Bazan, Guillermo C.

    2002-01-01

    The light-harvesting properties of cationic conjugated polymers are used to sensitize the emission of a dye on a specific peptide nucleic acid (PNA) sequence for the purpose of homogeneous, “real-time” DNA detection. Signal transduction is controlled by hybridization of the neutral PNA probe and the negative DNA target. Electrostatic interactions bring the hybrid complex and cationic polymer within distances required for Förster energy transfer. Conjugated polymer excitation provides fluorescein emission >25 times higher than that obtained by exciting the dye, allowing detection of target DNA at concentrations of 10 pM with a standard fluorometer. A simple and highly sensitive assay with optical amplification that uses the improved hybridization behavior of PNA/DNA complexes is thus demonstrated. PMID:12167673

  1. Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection.

    PubMed

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2007-06-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive, and multiplex format, an alternative surface-enhanced Raman scattering based probe was designed and fabricated to covalently attach both DNA probing sequence and nonfluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the nonfluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA to its complementary targets was successfully accomplished with a long-term goal to use nonfluorescent RTags in a Raman-based DNA microarray platform.

  2. Whole genomic DNA probe for detection of Porphyromonas endodontalis.

    PubMed

    Nissan, R; Makkar, S R; Sela, M N; Stevens, R

    2000-04-01

    The purpose of the present study was to develop a DNA probe for Porphyromonas endodontalis. Pure cultures of P. endodontalis were grown in TYP medium, in an anaerobic chamber. DNA was extracted from the P. endodontalis and labeled using the Genius System by Boehringer Mannheim. The labeled P. endodontalis DNA was used in dot-blot hybridization reactions with homologous (P. endodontalis) and unrelated bacterial samples. To determine specificity, strains of 40 other oral bacterial species (e.g. Porphyromonas gingivalis, Porphyromonas asaccharolytica, and Prevotella intermedia) were spotted and reacted with the P. endodontalis DNA probe. None of the panel of 40 oral bacteria hybridized with the P. endodontalis probe, whereas the blot of the homologous organism showed a strong positive reaction. To determine the sensitivity of the probe, dilutions of a P. endodontalis suspension of known concentration were blotted onto a nylon membrane and reacted with the probe. The results of our investigation indicate that the DNA probe that we have prepared specifically detects only P. endodontalis and can detect at least 3 x 10(4) cells.

  3. Surface-Enhanced Raman Scattering Based Nonfluorescent Probe for Multiplex DNA Detection

    PubMed Central

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2008-01-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive and multiplex format, an alternative surface enhanced Raman scattering (SERS) based probe was designed and fabricated to covalently attach both DNA probing sequence and non-fluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the non-fluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA (ssDNA) to its complementary targets was successfully accomplished with a long-term goal to use non-fluorescent RTags in a Raman-based DNA microarray platform. PMID:17465531

  4. Colorimetric DNA detection of transgenic plants using gold nanoparticles functionalized with L-shaped DNA probes

    NASA Astrophysics Data System (ADS)

    Nourisaeid, Elham; Mousavi, Amir; Arpanaei, Ayyoob

    2016-01-01

    In this study, a DNA colorimetric detection system based on gold nanoparticles functionalized with L-shaped DNA probes was prepared and evaluated. We investigated the hybridization efficiency of the L-shaped probes and studied the effect of nanoparticle size and the L-shaped DNA probe length on the performance of the as-prepared system. Probes were attached to the surface of gold nanoparticles using an adenine sequence. An optimal sequence of 35S rRNA gene promoter from the cauliflower mosaic virus, which is frequently used in the development of transgenic plants, and the two complementary ends of this gene were employed as model target strands and probe molecules, respectively. The spectrophotometric properties of the as-prepared systems indicated that the large NPs show better changes in the absorption spectrum and consequently present a better performance. The results of this study revealed that the probe/Au-NPs prepared using a vertical spacer containing 5 thymine oligonucleotides exhibited a stronger spectrophotometric response in comparison to that of larger probes. These results in general indicate the suitable performance of the L-shaped DNA probe-functionalized Au-NPs, and in particular emphasize the important role of the gold nanoparticle size and length of the DNA probes in enhancing the performance of such a system.

  5. A novel magneto-DNA duplex probe for bacterial DNA detection based on exonuclease III-aided cycling amplification.

    PubMed

    Zeng, Yan; Wan, Yi; Zhang, Dun; Qi, Peng

    2015-01-01

    A novel magneto-DNA duplex probe for bacterial DNA detection based on exonuclease III (Exo-III) aided cycling amplification has been developed. This magneto-DNA duplex probe contains a partly hybrid fluorophore-modified capture probe and a fluorophore-modified signal probe with magnetic microparticle as carrier. In the presence of a perfectly matched target bacterial DNA, blunt 3'-terminus of the capture probe is formed, activating the Exo-III aided cycling amplification. Thus, Exo-III catalyzes the stepwise removal of mononucleotides from this terminus, releasing both fluorophore-modified signal probe, fluorescent dyes of the capture probe and target DNA. The released target DNA then starts a new cycle, while released fluorescent fragments are recovered with magnetic separation for fluorescence signal collection. This system exhibited sensitive detection of bacterial DNA, with a detection limit of 14 pM because of the unique cleavage function of Exo-III, high fluorescence intensity, and separating function of magneto-DNA duplex probes. Besides this sensitivity, this strategy exhibited excellent selectivity with mismatched bacterial DNA targets and other bacterial species targets and good applicability in real seawater samples, hence, this strategy could be potentially used for qualitative and quantitative analysis of bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Development of DNA probes for Candida albicans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, L.L.; Hudson, J.B.

    1988-07-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves.more » It became evident that, although both /sup 32/P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis.« less

  7. Probe and method for DNA detection

    DOEpatents

    Yeh, Hsin-Chih; Werner, James Henry; Sharma, Jaswinder Kumar; Martinez, Jennifer Suzanne

    2013-07-02

    A hybridization probe containing two linear strands of DNA lights up upon hybridization to a target DNA using silver nanoclusters that have been templated onto one of the DNA strands. Hybridization induces proximity between the nanoclusters on one strand and an overhang on the other strand, which results in enhanced fluorescence emission from the nanoclusters.

  8. Creating complex molecular topologies by configuring DNA four-way junctions

    NASA Astrophysics Data System (ADS)

    Liu, Di; Chen, Gang; Akhter, Usman; Cronin, Timothy M.; Weizmann, Yossi

    2016-10-01

    The realization of complex topologies at the molecular level represents a grand challenge in chemistry. This necessitates the manipulation of molecular interactions with high precision. Here we show that single-stranded DNA (ssDNA) knots and links can be created by utilizing the inherent topological properties that pertain to the DNA four-way junction, at which the two helical strands form a node and can be configured conveniently and connected for complex topological construction. Using this strategy, we produced series of ssDNA topoisomers with the same sequences. By finely designing the curvature and torsion, double-stranded DNA knots were accessed by hybridizing and ligating the complementary strands with the knotted ssDNA templates. Furthermore, we demonstrate the use of a constructed ssDNA knot both to probe the topological conversion catalysed by DNA topoisomerase and to study the DNA replication under topological constraint.

  9. Utilizing Gold Nanoparticle Probes to Visually Detect DNA Methylation

    NASA Astrophysics Data System (ADS)

    Chen, Kui; Zhang, Mingyi; Chang, Ya-Nan; Xia, Lin; Gu, Weihong; Qin, Yanxia; Li, Juan; Cui, Suxia; Xing, Gengmei

    2016-06-01

    The surface plasmon resonance (SPR) effect endows gold nanoparticles (GNPs) with the ability to visualize biomolecules. In the present study, we designed and constructed a GNP probe to allow the semi-quantitative analysis of methylated tumor suppressor genes in cultured cells. To construct the probe, the GNP surfaces were coated with single-stranded DNA (ssDNA) by forming Au-S bonds. The ssDNA contains a thiolated 5'-end, a regulatory domain of 12 adenine nucleotides, and a functional domain with absolute pairing with methylated p16 sequence (Met- p16). The probe, paired with Met- p16, clearly changed the color of aggregating GNPs probe in 5 mol/L NaCl solution. Utilizing the probe, p16 gene methylation in HCT116 cells was semi-quantified. Further, the methylation of E-cadherin, p15, and p16 gene in Caco2, HepG2, and HCT116 cell lines were detected by the corresponding probes, constructed with three domains. This simple and cost-effective method was useful for the diagnosis of DNA methylation-related diseases.

  10. DNA - peptide polyelectrolyte complexes: Phase control by hybridization

    NASA Astrophysics Data System (ADS)

    Vieregg, Jeffrey; Lueckheide, Michael; Marciel, Amanda; Leon, Lorraine; Tirrell, Matthew

    DNA is one of the most highly-charged molecules known, and interacts strongly with charged molecules in the cell. Condensation of long double-stranded DNA is one of the classic problems of biophysics, but the polyelectrolyte behavior of short and/or single-stranded nucleic acids has attracted far less study despite its importance for both biological and engineered systems. We report here studies of DNA oligonucleotides complexed with cationic peptides and polyamines. As seen previously for longer sequences, double-stranded oligonucleotides form solid precipitates, but single-stranded oligonucleotides instead undergo liquid-liquid phase separation to form coacervate droplets. Complexed oligonucleotides remain competent for hybridization, and display sequence-dependent environmental response. We observe similar behavior for RNA oligonucleotides, and methylphosphonate substitution of the DNA backbone indicates that nucleic acid charge density controls whether liquid or solid complexes are formed. Liquid-liquid phase separations of this type have been implicated in formation of membraneless organelles in vivo, and have been suggested as protocells in early life scenarios; oligonucleotides offer an excellent method to probe the physics controlling these phenomena.

  11. Probe DNA-Cisplatin Interaction with Solid-State Nanopores

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Hu, Ying; Li, Wei; Xu, Zhi; Wang, Pengye; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua; Nanopore Collaboration

    2014-03-01

    Understanding the mechanism of DNA-cisplatin interaction is essential for clinical application and novel drug design. As an emerging single-molecule technology, solid-state nanopore has been employed in biomolecule detection and probing DNA-molecule interactions. Herein, we reported a real-time monitoring of DNA-cisplatin interaction by employing solid-state SiN nanopores. The DNA-cisplatin interacting process is clearly classified into three stages by measuring the capture rate of DNA-cisplatin adducts. In the first stage, the negative charged DNA molecules were partially discharged due to the bonding of positive charged cisplatin and forming of mono-adducts. In the second stage, forming of DNA-cisplatin di-adducts with the adjacent bases results in DNA bending and softening. The capture rate increases since the softened bi-adducts experience a lower barrier to thread into the nanopores. In the third stage, complex structures, such as micro-loop, are formed and the DNA-cisplatin adducts are aggregated. The capture rate decreases to zero as the aggregated adduct grows to the size of the pore. The characteristic time of this stage was found to be linear with the diameter of the nanopore and this dynamic process can be described with a second-order reaction model. We are grateful to Laboratory of Microfabrication, Dr. Y. Yao, and Prof. R.C. Yu (Institute of Physics, Chinese Academy of Sciences) for technical assistance.

  12. Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes

    PubMed Central

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-01-01

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry. PMID:23435052

  13. Combined in vitro transcription and reverse transcription to amplify and label complex synthetic oligonucleotide probe libraries.

    PubMed

    Murgha, Yusuf; Beliveau, Brian; Semrau, Kassandra; Schwartz, Donald; Wu, Chao-Ting; Gulari, Erdogan; Rouillard, Jean-Marie

    2015-06-01

    Oligonucleotide microarrays allow the production of complex custom oligonucleotide libraries for nucleic acid detection-based applications such as fluorescence in situ hybridization (FISH). We have developed a PCR-free method to make single-stranded DNA (ssDNA) fluorescent probes through an intermediate RNA library. A double-stranded oligonucleotide library is amplified by transcription to create an RNA library. Next, dye- or hapten-conjugate primers are used to reverse transcribe the RNA to produce a dye-labeled cDNA library. Finally the RNA is hydrolyzed under alkaline conditions to obtain the single-stranded fluorescent probes library. Starting from unique oligonucleotide library constructs, we present two methods to produce single-stranded probe libraries. The two methods differ in the type of reverse transcription (RT) primer, the incorporation of fluorescent dye, and the purification of fluorescent probes. The first method employs dye-labeled reverse transcription primers to produce multiple differentially single-labeled probe subsets from one microarray library. The fluorescent probes are purified from excess primers by oligonucleotide-bead capture. The second method uses an RNA:DNA chimeric primer and amino-modified nucleotides to produce amino-allyl probes. The excess primers and RNA are hydrolyzed under alkaline conditions, followed by probe purification and labeling with amino-reactive dyes. The fluorescent probes created by the combination of transcription and reverse transcription can be used for FISH and to detect any RNA and DNA targets via hybridization.

  14. Isolation of a DNA Probe for Lactobacillus curvatus

    PubMed Central

    Petrick, Hendrik A. R.; Ambrosio, Riccardo E.; Holzapfel, Wilhelm H.

    1988-01-01

    A genomic library of Lactobacillus curvatus DSM 20019 was constructed in bacteriophage λ gt11. A 1.2-kilobase DNA probe specific for L. curvatus was isolated from this library. When this probe was hybridized to DNA from Lactobacillus isolates from different sources classified by conventional techniques, differing degrees of hybridization were obtained. This could imply that these isolates may have been incorrectly classified. Images PMID:16347554

  15. Discrepancy between culture and DNA probe analysis for the detection of periodontal bacteria.

    PubMed

    van Steenbergen, T J; Timmerman, M F; Mikx, F H; de Quincey, G; van der Weijden, G A; van der Velden, U; de Graaff, J

    1996-10-01

    The purpose of this study was to compare a commercially available DNA probe technique with conventional cultural techniques for the detection of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia in subgingival plaque samples. Samples from 20 patients with moderate to severe periodontitis were evaluated at baseline and during a 15 months period of periodontal treatment. Paperpoints from 4 periodontal pockets per patient were forwarded to Omnigene for DNA probe analysis, and simultaneously inserted paperpoints from the same pockets were analyzed by standard culture techniques. In addition, mixed bacterial samples were constructed harbouring known proportions of 25 strains of A. actinomycetemcomitans, P. gingivalis and P. intermedia each. A relatively low concordance was found between both methods. At baseline a higher detection frequency was found for A. actinomycetemcomitans and P. gingivalis for the DNA probe technique; for P. intermedia the detection frequency by culture was higher. For A. actinomycetemcomitans, 21% of the culture positive samples was positive with the DNA probe. Testing the constructed bacterial samples with the DNA probe method resulted in about 16% false positive results for the 3 species tested. Furthermore, 40% of P. gingivalis strains were not detected by the DNA probe. The present data suggest that at least part of the discrepancies found between the DNA probe technique used and cultural methods are caused by false positive and false negative DNA probe results. Therefore, the value of this DNA probe method for the detection of periodontal pathogens is questionable.

  16. Nanostructure and Corresponding Quenching Efficiency of Fluorescent DNA Probes.

    PubMed

    Guo, Wenjuan; Wei, Yanhong; Dai, Zhao; Chen, Guangping; Chu, Yuanyuan; Zhao, Yifei

    2018-02-09

    Based on the fluorescence resonance energy transfer (FRET) mechanism, fluorescent DNA probes were prepared with a novel DNA hairpin template method, with SiO₂ coated CdTe (CdTe/SiO₂) core/shell nanoparticles used as the fluorescence energy donors and gold (Au) nanoparticles (AuNPs) as the energy acceptors. The nanostructure and energy donor/acceptor ratio in a probe were controlled with this method. The relationship between the nanostructure of the probes and FRET efficiency (quenching efficiency) were investigated. The results indicated that when the donor/acceptor ratios were 2:1, 1:1, and 1:2; the corresponding FRET efficiencies were about 33.6%, 57.5%, and 74.2%, respectively. The detection results indicated that the fluorescent recovery efficiency of the detecting system was linear when the concentration of the target DNA was about 0.0446-2.230 nmol/L. Moreover, the probes showed good sensitivity and stability in different buffer conditions with a low detection limit of about 0.106 nmol/L.

  17. Optimized oligonucleotide probes for DNA fingerprinting.

    PubMed

    Schäfer, R; Zischler, H; Birsner, U; Becker, A; Epplen, J T

    1988-08-01

    The three different simple repetitive oligonucleotide probes (CT)8, (CAC)5 and (TCC)5 were hybridized to a panel of human DNAs which had been digested with the restriction endonucleases Alu I, Hinf I and Mbo I. The resulting DNA fingerprints were analyzed and different parameters calculated, such as the maximal mean allele frequency and the average number of polymorphic bands per individual. The highest number of bands was obtained after hybridization of Hinf I digested DNA with (CAC)5. The probability of finding the same band pattern as in individual A in individual B is 2 x 10(-8). The DNAs of monozygous twins show indistinguishable banding patterns and the bands are inherited according to the Mendelian laws. Thus this procedure reveals informative fingerprints that can be used for individual identification, e.g. in paternity testing and in forensic applications. In most of these experiments 32P-labelled probes were employed, yet the biotinylated oligonucleotide (GACA)4 produced results which were equivalent to those obtained by hybridization with the 32P-labelled probe (GACA)4.

  18. Immobilization of human papillomavirus DNA probe for surface plasmon resonance imaging

    NASA Astrophysics Data System (ADS)

    Chong, Xinyuan; Ji, Yanhong; Ma, Suihua; Liu, Le; Liu, Zhiyi; Li, Yao; He, Yonghong; Guo, Jihua

    2009-08-01

    Human papillomavirus (HPV) is a kind of double-stranded DNA virus whose subspecies have diversity. Near 40 kinds of subspecies can invade reproductive organ and cause some high risk disease, such as cervical carcinoma. In order to detect the type of the subspecies of the HPV DNA, we used the parallel scan spectral surface plasmon resonance (SPR) imaging technique, which is a novel type of two- dimensional bio-sensing method based on surface plasmon resonance and is proposed in our previous work, to study the immobilization of the HPV DNA probes on the gold film. In the experiment, four kinds of the subspecies of the HPV DNA (HPV16, HPV18, HPV31, HPV58) probes are fixed on one gold film, and incubate in the constant temperature condition to get a HPV DNA probe microarray. We use the parallel scan spectral SPR imaging system to detect the reflective indices of the HPV DNA subspecies probes. The benefits of this new approach are high sensitive, label-free, strong specificity and high through-put.

  19. Quantitative Detection of Small Molecule/DNA Complexes Employing a Force-Based and Label-Free DNA-Microarray

    PubMed Central

    Ho, Dominik; Dose, Christian; Albrecht, Christian H.; Severin, Philip; Falter, Katja; Dervan, Peter B.; Gaub, Hermann E.

    2009-01-01

    Force-based ligand detection is a promising method to characterize molecular complexes label-free at physiological conditions. Because conventional implementations of this technique, e.g., based on atomic force microscopy or optical traps, are low-throughput and require extremely sensitive and sophisticated equipment, this approach has to date found only limited application. We present a low-cost, chip-based assay, which combines high-throughput force-based detection of dsDNA·ligand interactions with the ease of fluorescence detection. Within the comparative unbinding force assay, many duplicates of a target DNA duplex are probed against a defined reference DNA duplex each. The fractions of broken target and reference DNA duplexes are determined via fluorescence. With this assay, we investigated the DNA binding behavior of artificial pyrrole-imidazole polyamides. These small compounds can be programmed to target specific dsDNA sequences and distinguish between D- and L-DNA. We found that titration with polyamides specific for a binding motif, which is present in the target DNA duplex and not in the reference DNA duplex, reliably resulted in a shift toward larger fractions of broken reference bonds. From the concentration dependence nanomolar to picomolar dissociation constants of dsDNA·ligand complexes were determined, agreeing well with prior quantitative DNAase footprinting experiments. This finding corroborates that the forced unbinding of dsDNA in presence of a ligand is a nonequilibrium process that produces a snapshot of the equilibrium distribution between dsDNA and dsDNA·ligand complexes. PMID:19486688

  20. Nanostructure and Corresponding Quenching Efficiency of Fluorescent DNA Probes

    PubMed Central

    Guo, Wenjuan; Wei, Yanhong; Dai, Zhao; Chen, Guangping; Chu, Yuanyuan; Zhao, Yifei

    2018-01-01

    Based on the fluorescence resonance energy transfer (FRET) mechanism, fluorescent DNA probes were prepared with a novel DNA hairpin template method, with SiO2 coated CdTe (CdTe/SiO2) core/shell nanoparticles used as the fluorescence energy donors and gold (Au) nanoparticles (AuNPs) as the energy acceptors. The nanostructure and energy donor/acceptor ratio in a probe were controlled with this method. The relationship between the nanostructure of the probes and FRET efficiency (quenching efficiency) were investigated. The results indicated that when the donor/acceptor ratios were 2:1, 1:1, and 1:2; the corresponding FRET efficiencies were about 33.6%, 57.5%, and 74.2%, respectively. The detection results indicated that the fluorescent recovery efficiency of the detecting system was linear when the concentration of the target DNA was about 0.0446–2.230 nmol/L. Moreover, the probes showed good sensitivity and stability in different buffer conditions with a low detection limit of about 0.106 nmol/L. PMID:29425163

  1. DNA hybridization activity of single-stranded DNA-conjugated gold nanoparticles used as probes for DNA detection

    NASA Astrophysics Data System (ADS)

    Kira, Atsushi; Matsuo, Kosuke; Nakajima, Shin-ichiro

    2016-02-01

    Colloidal nanoparticles (NPs) have potential applications in bio-sensing technologies as labels or signal enhancers. In order to meet demands for a development of biomolecular assays by a quantitative understanding of single-molecule, it is necessary to regulate accuracy of the NPs probes modified with biomolecules to optimize the characteristics of NPs. However, to our knowledge, there is little information about the structural effect of conjugated biomolecules to the NPs. In this study, we investigated the contribution of a density of single-stranded DNA (ssDNA) conjugating gold NP to hybridization activity. Hybridization activity decreased in accordance with increases in the density of attached ssDNAs, likely due to electrostatic repulsion generated by negatively charged phosphate groups in the ssDNA backbone. These results highlight the importance of controlling the density of ssDNAs attached to the surface of NPs used as DNA detection probes.

  2. ProbeDesigner: for the design of probesets for branched DNA (bDNA) signal amplification assays.

    PubMed

    Bushnell, S; Budde, J; Catino, T; Cole, J; Derti, A; Kelso, R; Collins, M L; Molino, G; Sheridan, P; Monahan, J; Urdea, M

    1999-05-01

    The sensitivity and specificity of branched DNA (bDNA) assays are derived in part through the judicious design of the capture and label extender probes. To minimize non-specific hybridization (NSH) events, which elevate assay background, candidate probes must be computer screened for complementarity with generic sequences present in the assay. We present a software application which allows for rapid and flexible design of bDNA probesets for novel targets. It includes an algorithm for estimating the magnitude of NSH contribution to background, a mechanism for removing probes with elevated contributions, a methodology for the simultaneous design of probesets for multiple targets, and a graphical user interface which guides the user through the design steps. The program is available as a commercial package through the Pharmaceutical Drug Discovery program at Chiron Diagnostics.

  3. Synthetic-Molecule/Protein Hybrid Probe with Fluorogenic Switch for Live-Cell Imaging of DNA Methylation.

    PubMed

    Hori, Yuichiro; Otomura, Norimichi; Nishida, Ayuko; Nishiura, Miyako; Umeno, Maho; Suetake, Isao; Kikuchi, Kazuya

    2018-02-07

    Hybrid probes consisting of synthetic molecules and proteins are powerful tools for detecting biological molecules and signals in living cells. To date, most targets of the hybrid probes have been limited to pH and small analytes. Although biomacromolecules are essential to the physiological function of cells, the hybrid-probe-based approach has been scarcely employed for live-cell detection of biomacromolecules. Here, we developed a hybrid probe with a chemical switch for live-cell imaging of methylated DNA, an important macromolecule in the repression of gene expression. Using a protein labeling technique, we created a hybrid probe containing a DNA-binding fluorogen and a methylated-DNA-binding domain. The hybrid probe enhanced fluorescence intensity upon binding to methylated DNA and successfully monitored methylated DNA during mitosis. The hybrid probe offers notable advantages absent from probes based on small molecules or fluorescent proteins and is useful for live-cell analyses of epigenetic phenomena and diseases related to DNA methylation.

  4. Design of 240,000 orthogonal 25mer DNA barcode probes.

    PubMed

    Xu, Qikai; Schlabach, Michael R; Hannon, Gregory J; Elledge, Stephen J

    2009-02-17

    DNA barcodes linked to genetic features greatly facilitate screening these features in pooled formats using microarray hybridization, and new tools are needed to design large sets of barcodes to allow construction of large barcoded mammalian libraries such as shRNA libraries. Here we report a framework for designing large sets of orthogonal barcode probes. We demonstrate the utility of this framework by designing 240,000 barcode probes and testing their performance by hybridization. From the test hybridizations, we also discovered new probe design rules that significantly reduce cross-hybridization after their introduction into the framework of the algorithm. These rules should improve the performance of DNA microarray probe designs for many applications.

  5. Design of 240,000 orthogonal 25mer DNA barcode probes

    PubMed Central

    Xu, Qikai; Schlabach, Michael R.; Hannon, Gregory J.; Elledge, Stephen J.

    2009-01-01

    DNA barcodes linked to genetic features greatly facilitate screening these features in pooled formats using microarray hybridization, and new tools are needed to design large sets of barcodes to allow construction of large barcoded mammalian libraries such as shRNA libraries. Here we report a framework for designing large sets of orthogonal barcode probes. We demonstrate the utility of this framework by designing 240,000 barcode probes and testing their performance by hybridization. From the test hybridizations, we also discovered new probe design rules that significantly reduce cross-hybridization after their introduction into the framework of the algorithm. These rules should improve the performance of DNA microarray probe designs for many applications. PMID:19171886

  6. Photonic Crystal Biosensor with In-Situ Synthesized DNA Probes for Enhanced Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shuren; Zhao, Y.; Retterer, Scott T

    2013-01-01

    We report on a nearly 8-fold increase in multi-hole defect photonic crystal biosensor response by incorporating in-situ synthesis of DNA probes, as compared to the conventional functionalization method employing pre-synthesized DNA probe immobilization.

  7. Applications of DNA-Stable Isotope Probing in Bioremediation Studies

    NASA Astrophysics Data System (ADS)

    Chen, Yin; Vohra, Jyotsna; Murrell, J. Colin

    DNA-stable isotope probing, a method to identify active microorganisms without the prerequisite of cultivation, has been widely applied in the study of microorganisms involved in the degradation of environmental pollutants. Recent advances and technique considerations in applying DNA-SIP in bioremediation are highlighted. A detailed protocol of a DNA-SIP experiment is provided.

  8. Applications of DNA-stable isotope probing in bioremediation studies.

    PubMed

    Chen, Yin; Vohra, Jyotsna; Murrell, J Colin

    2010-01-01

    DNA-stable isotope probing, a method to identify active microorganisms without the prerequisite of cultivation, has been widely applied in the study of microorganisms involved in the degradation of environmental pollutants. Recent advances and technique considerations in applying DNA-SIP in bioremediation are highlighted. A detailed protocol of a DNA-SIP experiment is provided.

  9. Fluoroquinolone-Gyrase-DNA Complexes

    PubMed Central

    Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M.; Hiasa, Hiroshi; Marks, Kevin R.; Kerns, Robert J.; Berger, James M.; Drlica, Karl

    2014-01-01

    DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys466 gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly81 and GyrB-Glu466 residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases. PMID:24497635

  10. Using Atomic Force Microscopy to Characterize the Conformational Properties of Proteins and Protein-DNA Complexes That Carry Out DNA Repair.

    PubMed

    LeBlanc, Sharonda; Wilkins, Hunter; Li, Zimeng; Kaur, Parminder; Wang, Hong; Erie, Dorothy A

    2017-01-01

    Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of single biomolecules and complexes deposited on a surface with nanometer resolution. AFM is a powerful tool for characterizing protein-protein and protein-DNA interactions. It can be used to capture snapshots of protein-DNA solution dynamics, which in turn, enables the characterization of the conformational properties of transient protein-protein and protein-DNA interactions. With AFM, it is possible to determine the stoichiometries and binding affinities of protein-protein and protein-DNA associations, the specificity of proteins binding to specific sites on DNA, and the conformations of the complexes. We describe methods to prepare and deposit samples, including surface treatments for optimal depositions, and how to quantitatively analyze images. We also discuss a new electrostatic force imaging technique called DREEM, which allows the visualization of the path of DNA within proteins in protein-DNA complexes. Collectively, these methods facilitate the development of comprehensive models of DNA repair and provide a broader understanding of all protein-protein and protein-nucleic acid interactions. The structural details gleaned from analysis of AFM images coupled with biochemistry provide vital information toward establishing the structure-function relationships that govern DNA repair processes. © 2017 Elsevier Inc. All rights reserved.

  11. [DNA complexes, formed on aqueous phase surfaces: new planar polymeric and composite nanostructures].

    PubMed

    Antipina, M N; Gaĭnutdinov, R V; Rakhnianskaia, A A; Sergeev-Cherenkov, A N; Tolstikhina, A L; Iurova, T V; Kislov, V V; Khomutov, G B

    2003-01-01

    The formation of DNA complexes with Langmuir monolayers of the cationic lipid octadecylamine (ODA) and the new amphiphilic polycation poly-4-vinylpyridine with 16% of cetylpyridinium groups (PVP-16) on the surface of an aqueous solution of native DNA of low ionic strength was studied. Topographic images of Langmuir-Blodgett films of DNA/ODA and DNA/PVP-16 complexes applied to micaceous substrates were investigated by the method of atomic force microscopy. It was found that films of the amphiphilic polycation have an ordered planar polycrystalline structure. The morphology of planar DNA complexes with the amphiphilic cation substantially depended on the incubation time and the phase state of the monolayer on the surface of the aqueous DNA solution. Complex structures and individual DNA molecules were observed on the surface of the amphiphilic monolayer. Along with quasi-linear individual bound DNA molecules, characteristic extended net-like structures and quasi-circular toroidal condensed conformations of planar DNA complexes were detected. Mono- and multilayer films of DNA/PVP-16 complexes were used as templates and nanoreactors for the synthesis of inorganic nanostructures via the binding of metal cations from the solution and subsequent generation of the inorganic phase. As a result, ultrathin polymeric composite films with integrated DNA building blocks and quasi-linear arrays of inorganic semiconductor (CdS) and iron oxide nanoparticles and nanowires were obtained. The nanostructures obtained were characterized by scanning probe microscopy and transmission electron microscopy techniques. The methods developed are promising for investigating the mechanisms of structural organization and transformation in DNA and polyelectrolyte complexes at the gas-liquid interface and for the design of new extremely thin highly ordered planar polymeric and composite materials, films, and coatings with controlled ultrastructure for applications in nanoelectronics and

  12. Redox polymer and probe DNA tethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization.

    PubMed

    Kavanagh, Paul; Leech, Dónal

    2006-04-15

    The detection of nucleic acids based upon recognition surfaces formed by co-immobilization of a redox polymer mediator and DNA probe sequences on gold electrodes is described. The recognition surface consists of a redox polymer, [Os(2,2'-bipyridine)2(polyvinylimidazole)(10)Cl](+/2+), and a model single DNA strand cross-linked and tethered to a gold electrode via an anchoring self-assembled monolayer (SAM) of cysteamine. Hybridization between the immobilized probe DNA of the recognition surface and a biotin-conjugated target DNA sequence (designed from the ssrA gene of Listeria monocytogenes), followed by addition of an enzyme (glucose oxidase)-avidin conjugate, results in electrical contact between the enzyme and the mediating redox polymer. In the presence of glucose, the current generated due to the catalytic oxidation of glucose to gluconolactone is measured, and a response is obtained that is binding-dependent. The tethering of the probe DNA and redox polymer to the SAM improves the stability of the surface to assay conditions of rigorous washing and high salt concentration (1 M). These conditions eliminate nonspecific interaction of both the target DNA and the enzyme-avidin conjugate with the recognition surfaces. The sensor response increases linearly with increasing concentration of target DNA in the range of 1 x 10(-9) to 2 x 10(-6) M. The detection limit is approximately 1.4 fmol, (corresponding to 0.2 nM of target DNA). Regeneration of the recognition surface is possible by treatment with 0.25 M NaOH solution. After rehybridization of the regenerated surface with the target DNA sequence, >95% of the current is recovered, indicating that the redox polymer and probe DNA are strongly bound to the surface. These results demonstrate the utility of the proposed approach.

  13. Double-strand DNA-templated formation of copper nanoparticles as fluorescent probe for label-free aptamer sensor.

    PubMed

    Zhou, Zhixue; Du, Yan; Dong, Shaojun

    2011-07-01

    Double-strand DNA (dsDNA) can act as an efficient template for the formation of copper nanoparticles (Cu NPs) at low concentration of CuSO(4), and the formed Cu NPs have excellent fluorescence, whereas a single-strand DNA (ssDNA) template does not support Cu NPs' formation. This property of dsDNA-Cu NPs makes it suitable for DNA sensing. However, exploration of dsDNA-Cu NPs applied in biological analysis is still at an early stage. In this regard, we report herein for the first time a sensitive, cost-effective, and simple aptamer sensor (aptasensor) using dsDNA-Cu NPs as fluorescent probe. The design consists of a dsDNA with reporter DNA (here, aptamer) as template for the formation of Cu NPs, and the formed dsDNA-Cu NPs show high fluorescence. Using adenosine triphosphate (ATP) as a model analyte, the introduction of ATP triggers the structure switching of reporter DNA to form aptamer-ATP complex, causing the destruction of the double helix and thus no formation of the Cu NPs, resulting in low fluorescence. The preferable linear range (0.05-500 μM), sensitivity (LOD 28 nM), and simplicity for the detection of ATP indicate that dsDNA-Cu NPs may have great prospects in the field of biological analysis. We also use this novel fluorescent probe to determine ATP in 1% human serum and human adenocarcinoma HeLa cells. The dsDNA-Cu NPs probes provide recovery of 104-108% in 1% human serum and a prominent fluorescent signal is obtained in cellular ATP assay, revealing the practicality of using dsDNA-Cu NPs for the determination of ATP in real samples. Besides, this design is simply based on nucleic acid hybridization, so it can be generally applied to other aptamers for label-free detection of a broad range of analytes. Successful detection of cocaine with detection limit of 0.1 μM demonstrates its potential to be a general method.

  14. NMR and computational methods applied to the 3- dimensional structure determination of DNA and ligand-DNA complexes in solution

    NASA Astrophysics Data System (ADS)

    Smith, Jarrod Anson

    2D homonuclear 1H NMR methods and restrained molecular dynamics (rMD) calculations have been applied to determining the three-dimensional structures of DNA and minor groove-binding ligand-DNA complexes in solution. The structure of the DNA decamer sequence d(GCGTTAACGC)2 has been solved both with a distance-based rMD protocol and an NOE relaxation matrix backcalculation-based protocol in order to probe the relative merits of the different refinement methods. In addition, three minor groove binding ligand-DNA complexes have been examined. The solution structure of the oligosaccharide moiety of the antitumor DNA scission agent calicheamicin γ1I has been determined in complex with a decamer duplex containing its high affinity 5'-TCCT- 3' binding sequence. The structure of the complex reinforces the belief that the oligosaccharide moiety is responsible for the sequence selective minor-groove binding activity of the agent, and critical intermolecular contacts are revealed. The solution structures of both the (+) and (-) enantiomers of the minor groove binding DNA alkylating agent duocarmycin SA have been determined in covalent complex with the undecamer DNA duplex d(GACTAATTGTC).d(GAC AATTAGTC). The results support the proposal that the alkylation activity of the duocarmycin antitumor antibiotics is catalyzed by a binding-induced conformational change in the ligand which activates the cyclopropyl group for reaction with the DNA. Comparisons between the structures of the two enantiomers covalently bound to the same DNA sequence at the same 5'-AATTA-3 ' site have provided insight into the binding orientation and site selectivity, as well as the relative rates of reactivity of these two agents.

  15. Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1991-01-01

    A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. Probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations.

  16. Analyte-Triggered DNA-Probe Release from a Triplex Molecular Beacon for Nanopore Sensing.

    PubMed

    Guo, Bingyuan; Sheng, Yingying; Zhou, Ke; Liu, Quansheng; Liu, Lei; Wu, Hai-Chen

    2018-03-26

    A new nanopore sensing strategy based on triplex molecular beacon was developed for the detection of specific DNA or multivalent proteins. The sensor is composed of a triplex-forming molecular beacon and a stem-forming DNA component that is modified with a host-guest complex. Upon target DNA hybridizing with the molecular beacon loop or multivalent proteins binding to the recognition elements on the stem, the DNA probe is released and produces highly characteristic current signals when translocated through α-hemolysin. The frequency of current signatures can be used to quantify the concentrations of the target molecules. This sensing approach provides a simple, quick, and modular tool for the detection of specific macromolecules with high sensitivity and excellent selectivity. It may find useful applications in point-of-care diagnostics with a portable nanopore kit in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ

    DOEpatents

    Gray, J.W.; Pinkel, D.

    1991-07-02

    A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. The probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations. No Drawings

  18. Spectroscopic quantification of 5-hydroxymethylcytosine in genomic DNA using boric acid-functionalized nano-microsphere fluorescent probes.

    PubMed

    Chen, Hua-Yan; Wei, Jing-Ru; Pan, Jiong-Xiu; Zhang, Wei; Dang, Fu-Quan; Zhang, Zhi-Qi; Zhang, Jing

    2017-05-15

    5-hydroxymethylcytosine (5hmC) is the sixth base of DNA. It is involved in active DNA demethylation and can be a marker of diseases such as cancer. In this study, we developed a simple and sensitive 2-(4-boronophenyl)quinoline-4-carboxylic acid modified poly (glycidyl methacrylate (PBAQA-PGMA) fluorescent probe to detect the 5hmC content of genomic DNA based on T4 β-glucosyltransferase-catalyzed glucosylation of 5hmC. The fluorescence-enhanced intensity recorded from the DNA sample was proportional to its 5-hydroxymethylcytosine content and could be quantified by fluorescence spectrophotometry. The developed probe showed good detection sensitivity and selectivity and a good linear relationship between the fluorescence intensity and the concentration of 5 hmC within a 0-100nM range. Compared with other fluorescence detection methods, this method not only could determine trace amounts of 5 hmC from genomic DNA but also could eliminate the interference of fluorescent dyes and the need for purification. It also could avoid multiple labeling. Because the PBAQA-PGMA probe could enrich the content of glycosyl-5-hydroxymethyl-2-deoxycytidine from a complex ground substance, it will broaden the linear detection range and improve sensitivity. The limit of detection was calculated to be 0.167nM after enrichment. Furthermore, the method was successfully used to detect 5-hydroxymethylcytosine from mouse tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Probing the DNA kink structure induced by the hyperthermophilic chromosomal protein Sac7d

    PubMed Central

    Chen, Chin-Yu; Ko, Tzu-Ping; Lin, Ting-Wan; Chou, Chia-Cheng; Chen, Chun-Jung; Wang, Andrew H.-J.

    2005-01-01

    Sac7d, a small, abundant, sequence-general DNA-binding protein from the hyperthermophilic archaeon Sulfolobus acidocaldarius, causes a single-step sharp kink in DNA (∼60°) via the intercalation of both Val26 and Met29. These two amino acids were systematically changed in size to probe their effects on DNA kinking. Eight crystal structures of five Sac7d mutant–DNA complexes have been analyzed. The DNA-binding pattern of the V26A and M29A single mutants is similar to that of the wild-type, whereas the V26A/M29A protein binds DNA without side chain intercalation, resulting in a smaller overall bending (∼50°). The M29F mutant inserts the Phe29 side chain orthogonally to the C2pG3 step without stacking with base pairs, inducing a sharp kink (∼80°). In the V26F/M29F-GCGATCGC complex, Phe26 intercalates deeply into DNA bases by stacking with the G3 base, whereas Phe29 is stacked on the G15 deoxyribose, in a way similar to those used by the TATA box-binding proteins. All mutants have reduced DNA-stabilizing ability, as indicated by their lower Tm values. The DNA kink patterns caused by different combinations of hydrophobic side chains may be relevant in understanding the manner by which other minor groove-binding proteins interact with DNA. PMID:15653643

  20. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Heng, Lee Yook

    2014-09-03

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy){sub 2}(PIP)]{sup 2+}, (bpy = 2,2′bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy){sub 2}(PIP)]{sup 2+} was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulsemore » voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy){sub 2}(PIP)]{sup 2+} with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.« less

  1. Rapid detection of Listeria monocytogenes in foods, by a combination of PCR and DNA probe.

    PubMed

    Ingianni, A; Floris, M; Palomba, P; Madeddu, M A; Quartuccio, M; Pompei, R

    2001-10-01

    Listeria monocytogenes is a frequent contaminant of water and foods. Its rapid detection is needed before some foods can be prepared for marketing. In this work L. monocytogenes has been searched for in foods, by a combination of polymerase chain reaction (PCR) and a DNA probe. Both PCR and the probe were prepared for recognizing a specific region of the internalin gene, which is responsible for the production of one of the most important pathogenic factors of Listeria. The combined use of PCR and the DNA probe was used for the detection of L. monocytogenes in over 180 environmental and food samples. Several detection methods were compared in this study, namely conventional culture methods; direct PCR; PCR after an enrichment step; a DNA probe alone; a DNA probe after enrichment and another commercially available gene-probe. Finally PCR and the DNA probe were used in series on all the samples collected. When the DNA probe was associated with the PCR, specific and accurate detection of listeria in the samples could be obtained in about a working-day. The present molecular method showed some advantages in terms of rapidity and specificity in comparison to the other aforementioned tests. In addition, it resulted as being easy to handle, even for non-specialized personnel in small diagnostic microbiology laboratories. Copyright 2001 Academic Press.

  2. Using AFM to probe the complexation of DNA with anionic lipids mediated by Ca(2+): the role of surface pressure.

    PubMed

    Luque-Caballero, Germán; Martín-Molina, Alberto; Sánchez-Treviño, Alda Yadira; Rodríguez-Valverde, Miguel A; Cabrerizo-Vílchez, Miguel A; Maldonado-Valderrama, Julia

    2014-04-28

    Complexation of DNA with lipids is currently being developed as an alternative to classical vectors based on viruses. Most of the research to date focuses on cationic lipids owing to their spontaneous complexation with DNA. Nonetheless, recent investigations have revealed that cationic lipids induce a large number of adverse effects on DNA delivery. Precisely, the lower cytotoxicity of anionic lipids accounts for their use as a promising alternative. However, the complexation of DNA with anionic lipids (mediated by cations) is still in early stages and is not yet well understood. In order to explore the molecular mechanisms underlying the complexation of anionic lipids and DNA we proposed a combined methodology based on the surface pressure-area isotherms, Gibbs elasticity and Atomic Force Microscopy (AFM). These techniques allow elucidation of the role of the surface pressure in the complexation and visualization of the interfacial aggregates for the first time. We demonstrate that the DNA complexes with negatively charged model monolayers (DPPC/DPPS 4 : 1) only in the presence of Ca(2+), but is expelled at very high surface pressures. Also, according to the Gibbs elasticity plot, the complexation of lipids and DNA implies a whole fluidisation of the monolayer and a completely different phase transition map in the presence of DNA and Ca(2+). AFM imaging allows identification for the first time of specific morphologies associated with different packing densities. At low surface coverage, a branched net like structure is observed whereas at high surface pressure fibers formed of interfacial aggregates appear. In summary, Ca(2+) mediates the interaction between DNA and negatively charged lipids and also the conformation of the ternary system depends on the surface pressure. Such observations are important new generic features of the interaction between DNA and anionic lipids.

  3. Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe.

    PubMed

    Lu, Ying; Li, Xianchan; Zhang, Limin; Yu, Ping; Su, Lei; Mao, Lanqun

    2008-03-15

    This study describes a facile and general strategy for the development of aptamer-based electrochemical sensors with a high specificity toward the targets and a ready regeneration feature. Very different from the existing strategies for the development of electrochemical aptasensors with the aptamers as the probes, the strategy proposed here is essentially based on the utilization of the aptamer-complementary DNA (cDNA) oligonucleotides as the probes for electrochemical sensing. In this context, the sequences at both ends of the cDNA are tailor-made to be complementary and both the redox moiety (i.e., ferrocene in this study) and thiol group are labeled onto the cDNA. The labeled cDNA are hybridized with their respective aptamers (i.e., ATP- and thrombin-binding aptamers in this study) to form double-stranded DNA (ds-DNA) and the electrochemical aptasensors are prepared by self-assembling the labeled ds-DNA onto Au electrodes. Upon target binding, the aptamers confined onto electrode surface dissociate from their respective cDNA oligonucleotides into the solution and the single-stranded cDNA could thus tend to form a hairpin structure through the hybridization of the complementary sequences at both its ends. Such a conformational change of the cDNA resulting from the target binding-induced dissociation of the aptamers essentially leads to the change in the voltammetric signal of the redox moiety labeled onto the cDNA and thus constitutes the mechanism for the electrochemical aptasensors for specific target sensing. The aptasensors demonstrated here with the cDNA as the probe are readily regenerated and show good responses toward the targets. This study may offer a new and relatively general approach to electrochemical aptasensors with good analytical properties and potential applications.

  4. Novel DNA probes with low background and high hybridization-triggered fluorescence.

    PubMed

    Lukhtanov, Eugeny A; Lokhov, Sergey G; Gorn, Vladimir V; Podyminogin, Mikhail A; Mahoney, Walt

    2007-01-01

    Novel fluorogenic DNA probes are described. The probes (called Pleiades) have a minor groove binder (MGB) and a fluorophore at the 5'-end and a non-fluorescent quencher at the 3'-end of the DNA sequence. This configuration provides surprisingly low background and high hybridization-triggered fluorescence. Here, we comparatively study the performance of such probes, MGB-Eclipse probes, and molecular beacons. Unlike the other two probe formats, the Pleiades probes have low, temperature-independent background fluorescence and excellent signal-to-background ratios. The probes possess good mismatch discrimination ability and high rates of hybridization. Based on the analysis of fluorescence and absorption spectra we propose a mechanism of action for the Pleiades probes. First, hydrophobic interactions between the quencher and the MGB bring the ends of the probe and, therefore, the fluorophore and the quencher in close proximity. Second, the MGB interacts with the fluorophore and independent of the quencher is able to provide a modest (2-4-fold) quenching effect. Joint action of the MGB and the quencher is the basis for the unique quenching mechanism. The fluorescence is efficiently restored upon binding of the probe to target sequence due to a disruption in the MGB-quencher interaction and concealment of the MGB moiety inside the minor groove.

  5. Novel DNA probes with low background and high hybridization-triggered fluorescence

    PubMed Central

    Lukhtanov, Eugeny A.; Lokhov, Sergey G.; Gorn, Vladimir V.; Podyminogin, Mikhail A.; Mahoney, Walt

    2007-01-01

    Novel fluorogenic DNA probes are described. The probes (called Pleiades) have a minor groove binder (MGB) and a fluorophore at the 5′-end and a non-fluorescent quencher at the 3′-end of the DNA sequence. This configuration provides surprisingly low background and high hybridization-triggered fluorescence. Here, we comparatively study the performance of such probes, MGB-Eclipse probes, and molecular beacons. Unlike the other two probe formats, the Pleiades probes have low, temperature-independent background fluorescence and excellent signal-to-background ratios. The probes possess good mismatch discrimination ability and high rates of hybridization. Based on the analysis of fluorescence and absorption spectra we propose a mechanism of action for the Pleiades probes. First, hydrophobic interactions between the quencher and the MGB bring the ends of the probe and, therefore, the fluorophore and the quencher in close proximity. Second, the MGB interacts with the fluorophore and independent of the quencher is able to provide a modest (2–4-fold) quenching effect. Joint action of the MGB and the quencher is the basis for the unique quenching mechanism. The fluorescence is efficiently restored upon binding of the probe to target sequence due to a disruption in the MGB–quencher interaction and concealment of the MGB moiety inside the minor groove. PMID:17259212

  6. Use of Ti plasmid DNA probes for determining tumorigenicity of agrobacterium strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, T.J.; Norelli, J.L.; Katz, B.H.

    1990-06-01

    Probes consisting of T-DNA genes from the Ti plasmid of Agrobacterium tumefaciens were used for determining tumorigenicity of strains. Two {sup 32}P-labeled probes hybridized with 28 of 28 tumorigenic strains of the pathogen but not with 20 of 22 nontumorigenic strains. One probe, pTHE17, consists of all but the far left portion of the T-DNA of strain C58. Probe SmaI7 consists of SmaI fragment 7 of pTiC58, including onc genes 1, 4, and 6a and most of 2. Another probe, pAL4044, consisting of the vir region of strain Ach-5, hybridized with several nontumorigenic as well as tumorigenic strains. Colony hybridizationsmore » were done with 28 tumorigenic and 22 nontumorigenic Agrobacterium strains. About 10{sup 6} CFU of the different tumorigenic strains were detectable with this method. Southern analyses confirmed the presence or absence of Ti plasmids in strains for which tumorigenicity was questioned. Colony hybridization with the T-DNA probes provides a rapid and sensitive means for determining the tumorigenic nature of Agrobacterium strains.« less

  7. Interaction of the replication terminator protein of Bacillus subtilis with DNA probed by NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastings, Adam F.; Otting, Gottfried; Folmer, Rutger H.A.

    2005-09-23

    Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the dimeric 29 kDa replication terminator protein (RTP) and DNA terminator sites. We have used NMR spectroscopy to probe the changes in {sup 1}H-{sup 15}N correlation spectra of a {sup 15}N-labelled RTP.C110S mutant upon the addition of a 21 base pair symmetrical DNA binding site. Assignment of the {sup 1}H-{sup 15}N correlations was achieved using a suite of triple resonance NMR experiments with {sup 15}N,{sup 13}C,70% {sup 2}H enriched protein recorded at 800 MHz and using TROSY pulse sequences. Perturbationsmore » to {sup 1}H-{sup 15}N spectra revealed that the N-termini, {alpha}3-helices and several loops are affected by the binding interaction. An analysis of this data in light of the crystallographically determined apo- and DNA-bound forms of RTP.C110S revealed that the NMR spectral perturbations correlate more closely to protein structural changes upon complex formation rather than to interactions at the protein-DNA interface.« less

  8. DNA Probe Pooling for Rapid Delineation of Chromosomal Breakpoints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Chun-Mei; Kwan, Johnson; Baumgartner, Adolf

    2009-01-30

    Structural chromosome aberrations are hallmarks of many human genetic diseases. The precise mapping of translocation breakpoints in tumors is important for identification of genes with altered levels of expression, prediction of tumor progression, therapy response, or length of disease-free survival as well as the preparation of probes for detection of tumor cells in peripheral blood. Similarly, in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for carriers of balanced, reciprocal translocations benefit from accurate breakpoint maps in the preparation of patient-specific DNA probes followed by a selection of normal or balanced oocytes or embryos. We expedited the process of breakpointmore » mapping and preparation of case-specific probes by utilizing physically mapped bacterial artificial chromosome (BAC) clones. Historically, breakpoint mapping is based on the definition of the smallest interval between proximal and distal probes. Thus, many of the DNA probes prepared for multi-clone and multi-color mapping experiments do not generate additional information. Our pooling protocol described here with examples from thyroid cancer research and PGD accelerates the delineation of translocation breakpoints without sacrificing resolution. The turnaround time from clone selection to mapping results using tumor or IVF patient samples can be as short as three to four days.« less

  9. Coaxial atomic force microscope probes for dielectrophoresis of DNA under different buffer conditions

    NASA Astrophysics Data System (ADS)

    Tao, Yinglei; Kumar Wickramasinghe, H.

    2017-02-01

    We demonstrate a coaxial AFM nanoprobe device for dielectrophoretic (DEP) trapping of DNA molecules in Tris-EDTA (TE) and phosphate-buffered saline (PBS) buffers. The DEP properties of 20 nm polystyrene beads were studied with coaxial probes in media with different conductivities. Due to the special geometry of our DEP probe device, sufficiently high electric fields were generated at the probe end to focus DNA molecules with positive DEP. DEP trapping for both polystyrene beads and DNA molecules was quantitatively analyzed over the frequency range from 100 kHz to 50 MHz and compared with the Clausius-Mossotti theory. Finally, we discussed the negative effect of medium salinity during DEP trapping.

  10. Differentiating RNA from DNA by a molecular fluorescent probe based on the "door-bolt" mechanism biomaterials.

    PubMed

    Yao, Qichao; Li, Haidong; Xian, Liman; Xu, Feng; Xia, Jing; Fan, Jiangli; Du, Jianjun; Wang, Jingyun; Peng, Xiaojun

    2018-09-01

    Although excellent florescent probes have been developed for DNA, good probes for RNA remain lacking. The shortage of reported and commercial RNA probes is attributable to their severe interference from DNA. As DNA and RNA have similar structures but different functions, it has been an imperative challenge to develop RNA probes that differentiate from DNA. In this study, an NIR fluorescent probe, NBE, is described, which contains a bulky julolidine group that can fit in a spacious RNA pocket and emit intense fluorescence. However, NBE has no response to DNA, as it cannot intercalate into the double strands or even in the DNA minor groove. The sensing mechanism is similar to the effect of a door-bolt. NBE shows excellent performance in RNA sensing (outstanding photostability, high selectivity and fast response), whether in aqueous buffers, fixed cells or living cells. These findings might provide not only a potential imaging tool but also a new design strategy for the recognition of RNA while avoiding interference from DNA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme

    NASA Astrophysics Data System (ADS)

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2018-06-01

    Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562 nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50 ng mL-1 with the limit detection of 9.899 ng mL-1. Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 103 to 108 CFU mL-1 in real samples with a detection limit of 320 CFU mL-1.

  12. Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme.

    PubMed

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2018-06-15

    Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50ngmL -1 with the limit detection of 9.899ngmL -1 . Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 10 3 to 10 8 CFUmL -1 in real samples with a detection limit of 320CFUmL -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Effect of DNA-CTMA complex on optical properties of LDS 821 dye

    NASA Astrophysics Data System (ADS)

    Udayan, Sony; Ramachandran, Vijesh Kavumoottil; Sebastian, Mathew; Chandran, Pradeep; Nampoori, Vadakkedath Parameswaran Narayanan; Thomas, Sheenu

    2017-07-01

    We have investigated the fluorescence behavior of LDS 821 dye (Styryl 9 M) with deoxyribonucleic acid attached with cetyltrimethyl-ammonium (DNA-CTMA). Optical absorption studies confirm the intercalation of the dye molecules with DNA-CTMA. Fluorescence studies show an enhancement of fluorescence intensity of dye with DNA-CTMA, which suggest the reduction of TICT states of the dye molecule. The FWHM of the fluorescence spectrum increases from 95 nm to 161 nm indicating the formation of new energy levels when DNA-CTMA forms a complex with LDS 821 dye. Fluorescence lifetime measurements shows that lifetime of LDS 821 varies from 507ps to 953 ps with the addition of DNA-CTMA, which also confirms the deactivation of TICT states of dye molecule. Results show that the incorporation of DNA-CTMA with LDS 821 dye improves the optical characteristics of LDS 821 dye and therefore, can be used as a good fluorescence probe for DNA visualization as well as in lasing applications.

  14. Automated design of genomic Southern blot probes

    PubMed Central

    2010-01-01

    Background Sothern blotting is a DNA analysis technique that has found widespread application in molecular biology. It has been used for gene discovery and mapping and has diagnostic and forensic applications, including mutation detection in patient samples and DNA fingerprinting in criminal investigations. Southern blotting has been employed as the definitive method for detecting transgene integration, and successful homologous recombination in gene targeting experiments. The technique employs a labeled DNA probe to detect a specific DNA sequence in a complex DNA sample that has been separated by restriction-digest and gel electrophoresis. Critically for the technique to succeed the probe must be unique to the target locus so as not to cross-hybridize to other endogenous DNA within the sample. Investigators routinely employ a manual approach to probe design. A genome browser is used to extract DNA sequence from the locus of interest, which is searched against the target genome using a BLAST-like tool. Ideally a single perfect match is obtained to the target, with little cross-reactivity caused by homologous DNA sequence present in the genome and/or repetitive and low-complexity elements in the candidate probe. This is a labor intensive process often requiring several attempts to find a suitable probe for laboratory testing. Results We have written an informatic pipeline to automatically design genomic Sothern blot probes that specifically attempts to optimize the resultant probe, employing a brute-force strategy of generating many candidate probes of acceptable length in the user-specified design window, searching all against the target genome, then scoring and ranking the candidates by uniqueness and repetitive DNA element content. Using these in silico measures we can automatically design probes that we predict to perform as well, or better, than our previous manual designs, while considerably reducing design time. We went on to experimentally validate a number

  15. Individual specific DNA fingerprints from a hypervariable region probe: alpha-globin 3'HVR.

    PubMed

    Fowler, S J; Gill, P; Werrett, D J; Higgs, D R

    1988-06-01

    A probe detecting a hypervariable region (HVR) 3' to the alpha globin locus on chromosome 16 has been used to produce DNA fingerprints. Segregation analysis has revealed multiple, randomly dispersed DNA fragments inherited in a Mendelian fashion with minimal allelism and linkage. The fingerprints are highly polymorphic (probability of chance association between random individuals much less than 10(-14]. The probe is, therefore, a powerful discriminating tool: it is envisaged that this probe will have forensic applications, including paternity cases, and will be informative in linkage analysis.

  16. Characterization of an In Vivo Z-DNA Detection Probe Based on a Cell Nucleus Accumulating Intrabody.

    PubMed

    Gulis, Galina; Silva, Izabel Cristina Rodrigues; Sousa, Herdson Renney; Sousa, Isabel Garcia; Bezerra, Maryani Andressa Gomes; Quilici, Luana Salgado; Maranhao, Andrea Queiroz; Brigido, Marcelo Macedo

    2016-09-01

    Left-handed Z-DNA is a physiologically unstable DNA conformation, and its existence in vivo can be attributed to localized torsional distress. Despite evidence for the existence of Z-DNA in vivo, its precise role in the control of gene expression is not fully understood. Here, an in vivo probe based on an anti-Z-DNA intrabody is proposed for native Z-DNA detection. The probe was used for chromatin immunoprecipitation of potential Z-DNA-forming sequences in the human genome. One of the isolated putative Z-DNA-forming sequences was cloned upstream of a reporter gene expression cassette under control of the CMV promoter. The reporter gene encoded an antibody fragment fused to GFP. Transient co-transfection of this vector along with the Z-probe coding vector improved reporter gene expression. This improvement was demonstrated by measuring reporter gene mRNA and protein levels and the amount of fluorescence in co-transfected CHO-K1 cells. These results suggest that the presence of the anti-Z-DNA intrabody can interfere with a Z-DNA-containing reporter gene expression. Therefore, this in vivo probe for the detection of Z-DNA could be used for global correlation of Z-DNA-forming sequences and gene expression regulation.

  17. Enhancing the response rate of strand displacement-based electrochemical aptamer sensors using bivalent binding aptamer-cDNA probes.

    PubMed

    Zhang, Ziping; Tao, Cancan; Yin, Jungang; Wang, Yunhui; Li, Yanshen

    2018-04-30

    Electrochemical aptamer (EA) sensors based on aptamer-cDNA duplex probes (cDNA: complementary DNA) and target induced strand displacement (TISD) recognition are sensitive, selective and capable of detecting a wide variety of target analytes. While substantial research efforts have focused on engineering of new signaling mechanisms for the improvement of sensor sensitivity, little attention was paid to the enhancement of sensor response rate. Typically, the previous TISD based EA sensors exhibited relatively long response times larger than 30min, which mainly resulted from the suboptimal aptamer-cDNA probe structure in which most of aptamer bases were paired to the cDNA bases. In an effort to improve the response rate of this type of sensors, we report here the rational engineering of a quickly responsive and sensitive aptamer-cDNA probe by employing the conception of bivalent interaction in supramolecular chemistry. We design a bivalent cDNA strand through linking two short monovalent cDNA sequences, and it is simultaneously hybridized to two electrode-immobilized aptamer probes to form a bivalent binding (BB) aptamer-cDNA probe. This class of BB probe possesses the advantages of less aptamer bases paired to the cDNA bases for quick response rate and good structural stability for high sensor sensitivity. By use of the rationally designed BB aptamer-cDNA probe, a TISD based EA sensor against ATP with significantly enhanced response rate (with a displacement equilibrium time of 4min) and high sensitivity was successfully constructed. We believe that our BB probe conception will help guide future designs and applications of TISD based EA sensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Using a biased qubit to probe complex systems

    NASA Astrophysics Data System (ADS)

    Pollock, Felix A.; Checińska, Agata; Pascazio, Saverio; Modi, Kavan

    2016-09-01

    Complex mesoscopic systems play increasingly important roles in modern science, from understanding biological functions at the molecular level to designing solid-state information processing devices. The operation of these systems typically depends on their energetic structure, yet probing their energy landscape can be extremely challenging; they have many degrees of freedom, which may be hard to isolate and measure independently. Here, we show that a qubit (a two-level quantum system) with a biased energy splitting can directly probe the spectral properties of a complex system, without knowledge of how they couple. Our work is based on the completely positive and trace-preserving map formalism, which treats any unknown dynamics as a "black-box" process. This black box contains information about the system with which the probe interacts, which we access by measuring the survival probability of the initial state of the probe as function of the energy splitting and the process time. Fourier transforming the results yields the energy spectrum of the complex system. Without making assumptions about the strength or form of its coupling, our probe could determine aspects of a complex molecule's energy landscape as well as, in many cases, test for coherent superposition of its energy eigenstates.

  19. Metal complexes as DNA intercalators.

    PubMed

    Liu, Hong-Ke; Sadler, Peter J

    2011-05-17

    DNA has a strong affinity for many heterocyclic aromatic dyes, such as acridine and its derivatives. Lerman in 1961 first proposed intercalation as the source of this affinity, and this mode of DNA binding has since attracted considerable research scrutiny. Organic intercalators can inhibit nucleic acid synthesis in vivo, and they are now common anticancer drugs in clinical therapy. The covalent attachment of organic intercalators to transition metal coordination complexes, yielding metallointercalators, can lead to novel DNA interactions that influence biological activity. Metal complexes with σ-bonded aromatic side arms can act as dual-function complexes: they bind to DNA both by metal coordination and through intercalation of the attached aromatic ligand. These aromatic side arms introduce new modes of DNA binding, involving mutual interactions of functional groups held in close proximity. The biological activity of both cis- and trans-diamine Pt(II) complexes is dramatically enhanced by the addition of σ-bonded intercalators. We have explored a new class of organometallic "piano-stool" Ru(II) and Os(II) arene anticancer complexes of the type [(η(6)-arene)Ru/Os(XY)Cl](+). Here XY is, for example, ethylenediamine (en), and the arene ligand can take many forms, including tetrahydroanthracene, biphenyl, or p-cymene. Arene-nucleobase stacking interactions can have a significant influence on both the kinetics and thermodynamics of DNA binding. In particular, the cytotoxic activity, conformational distortions, recognition by DNA-binding proteins, and repair mechanisms are dependent on the arene. A major difficulty in developing anticancer drugs is cross-resistance, a phenomenon whereby a cell that is resistant to one drug is also resistant to another drug in the same class. These new complexes are non-cross-resistant with cisplatin towards cancer cells: they constitute a new class of anticancer agents, with a mechanism of action that differs from the anticancer

  20. Live-Cell Imaging of DNA Methylation Based on Synthetic-Molecule/Protein Hybrid Probe.

    PubMed

    Kumar, Naresh; Hori, Yuichiro; Kikuchi, Kazuya

    2018-06-04

    The epigenetic modification of DNA involves the conversion of cytosine to 5-methylcytosine, also known as DNA methylation. DNA methylation is important in modulating gene expression and thus, regulating genome and cellular functions. Recent studies have shown that aberrations in DNA methylation are associated with various epigenetic disorders or diseases including cancer. This stimulates great interest in the development of methods that can detect and visualize DNA methylation. For instance, fluorescent proteins (FPs) in conjugation with methyl-CpG-binding domain (MBD) have been employed for live-cell imaging of DNA methylation. However, the FP-based approach showed fluorescence signals for both the DNA-bound and -unbound states and thus differentiation between these states is difficult. Synthetic-molecule/protein hybrid probes can provide an alternative to overcome this restriction. In this article, we discuss the synthetic-molecule/protein hybrid probe that we developed recently for live-cell imaging of DNA methylation, which exhibited fluorescence enhancement only after binding to methylated DNA. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. An Electrochemical DNA Sensing System Using Modified Nanoparticle Probes for Detecting Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Sakamoto, Hiroaki; Amano, Yoshihisa; Satomura, Takenori; Suye, Shin-Ichiro

    2017-01-01

    We have developed a novel, highly sensitive, biosensing system for detecting methicillin-resistant Staphylococcus aureus (MRSA). The system employs gold nanoparticles (AuNPs), magnetic nanoparticles (mNPs), and an electrochemical detection method. We have designed and synthesized ferrocene- and single-stranded DNA-conjugated nanoparticles that hybridize to MRSA DNA. Hybridized complexes are easily separated by taking advantage of mNPs. A current response could be obtained through the oxidation of ferrocene on the AuNP surface when a constant potential of +250 mV vs. Ag/AgCl is applied. The enzymatic reaction of L-proline dehydrogenase provides high signal amplification. This sensing system, using a nanoparticle-modified probe, has the ability to detect 10 pM of genomic DNA from MRSA without amplification by the polymerase chain reaction. Current responses are linearly related to the amount of genomic DNA in the range of 10-166 pM. Selectivity is confirmed by demonstrating that this sensing system could distinguish MRSA from Staphylococcus aureus (SA) DNA.

  2. Study on the SPR responses of various DNA probe concentrations by parallel scan spectral SPR imaging

    NASA Astrophysics Data System (ADS)

    Ma, Suihua; Liu, Le; Lu, Weiping; Zhang, Yaou; He, Yonghong; Guo, Jihua

    2008-12-01

    SPR sensors have become a high sensitive and label free method for characterizing and quantifying chemical and biochemical interactions. However, the relations between the SPR refractive index response and the property (such as concentrations) of biochemical probes are still lacking. In this paper, an experimental study on the SPR responses of varies concentrations of Legionella pneumophila mip DNA probes is presented. We developed a novel two-dimensional SPR sensing technique-parallel scan spectral SPR imaging-to detect an array of mip gene probes. This technique offers quantitative refractive index information with a high sensing throughput. By detecting mip DNA probes with different concentrations, we obtained the relations between the SPR refractive index response and the concentrations of mip DNA probes. These results are valuable for design and developing SPR based mip gene biochips.

  3. Effect of structure on sensing performance of a target induced signaling probe shifting DNA-based (TISPS-DNA) sensor.

    PubMed

    Yu, Xiang; Yu, Zhigang; Li, Fengqin; Xu, Yanmei; He, Xunjun; Xu, Lan; Shi, Wenbing; Zhang, Guiling; Yan, Hong

    2017-05-15

    A type of "signal on" displacement-based sensors named target induced signaling probe shifting DNA-based (TISPS-DNA) sensor were developed for a designated DNA detection. The signaling mechanism of the signaling probe (SP) shifting different from the classical conformation/flexibility change mode endows the sensor with high sensitivity. Through using thiolated or no thiolated capturing probe (CP), two 3-probe sensing structures, sensor-1 and sensor-2, were designed and constructed. The systematical comparing research results show that both sensors exhibit some similarities or big differences in sensing performance. On the one hand, the similarity in structures determines the similarity in some aspects of signaling mechanism, background signal, signal changing form, anti-fouling ability and versatility; on the other hand, the slight difference in structures also results in two opposite hybridization modes of gradual increasing resistance and gradual decreasing resistance which can affect the hybridization efficiency between the assistant probe (AP) and the SP, further producing some big differences in sensing performance, for example, apparently different signal enhancement (SE) change, point mutation discrimination ability and response speed. Under the optimized fabrication and detection conditions, both sensors feature high sensitivity for target DNAs with the detection limits of ∼10 fM for sensor-1 and ∼7 fM for sensor-2, respectively. Among many acquired sensing virtues, the sensor-1 shows a peculiar specificity adjustability which is also a highlight in this work. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Thiophene antibacterials that allosterically stabilize DNA-cleavage complexes with DNA gyrase.

    PubMed

    Chan, Pan F; Germe, Thomas; Bax, Benjamin D; Huang, Jianzhong; Thalji, Reema K; Bacqué, Eric; Checchia, Anna; Chen, Dongzhao; Cui, Haifeng; Ding, Xiao; Ingraham, Karen; McCloskey, Lynn; Raha, Kaushik; Srikannathasan, Velupillai; Maxwell, Anthony; Stavenger, Robert A

    2017-05-30

    A paucity of novel acting antibacterials is in development to treat the rising threat of antimicrobial resistance, particularly in Gram-negative hospital pathogens, which has led to renewed efforts in antibiotic drug discovery. Fluoroquinolones are broad-spectrum antibacterials that target DNA gyrase by stabilizing DNA-cleavage complexes, but their clinical utility has been compromised by resistance. We have identified a class of antibacterial thiophenes that target DNA gyrase with a unique mechanism of action and have activity against a range of bacterial pathogens, including strains resistant to fluoroquinolones. Although fluoroquinolones stabilize double-stranded DNA breaks, the antibacterial thiophenes stabilize gyrase-mediated DNA-cleavage complexes in either one DNA strand or both DNA strands. X-ray crystallography of DNA gyrase-DNA complexes shows the compounds binding to a protein pocket between the winged helix domain and topoisomerase-primase domain, remote from the DNA. Mutations of conserved residues around this pocket affect activity of the thiophene inhibitors, consistent with allosteric inhibition of DNA gyrase. This druggable pocket provides potentially complementary opportunities for targeting bacterial topoisomerases for antibiotic development.

  5. Surface modification of poly(dimethylsiloxane) (PDMS) microchannels with DNA capture-probes for potential use in microfluidic DNA analysis systems

    NASA Astrophysics Data System (ADS)

    Khodakov, Dmitriy A.; Thredgold, Leigh D.; Lenehan, Claire E.; Andersson, Gunther A.; Kobus, Hilton; Ellis, Amanda V.

    2011-12-01

    Poly(dimethylsiloxane) (PDMS) is an elastomeric material used for microfluidic devices and is especially suited to medical and forensic applications. This is due to its relatively low cost, ease of fabrication, excellent optical transmission characteristics and its ability to support electroosmotic flow, required during electrophoretic separations. These aspects combined with its large range of surface modification chemistries, make PDMS an attractive substrate in microfluidic devices for, in particular, DNA separation. Here, we report the successful wet chemical surface modification of PDMS microchannels using a simple three step method to produce an isothiocyanate-terminated surface. Initially, PDMS was oxygen plasma treated to produce a silanol-terminated surface, this was then reacted with 3-aminopropyltriethoxysilane with subsequent reaction of the now amine-terminated surface with p-phenylenediisothiocyanate. Water contact angle measurements both before and after modification showed a reduction in hydrophobicity from 101o for native PDMS to 94o for the isothiocyante-terminated PDMS. The isothiocyanate-terminated surface was then coupled with an amineterminated single-stranded DNA (ssDNA) oligonucleotide capture probe via a thiourea linkage. Confirmation of capture probe attachment was observed using fluorescent microscopy after hybridization of the capture probes with fluorescently labeled complimentary ssDNA oligonucleotides.

  6. Effect of a Dual Charge on the DNA-Conjugated Redox Probe on DNA Sensing by Short Hairpin Beacons Tethered to Gold Electrodes.

    PubMed

    Kékedy-Nagy, László; Shipovskov, Stepan; Ferapontova, Elena E

    2016-08-16

    Charges of redox species can critically affect both the interfacial state of DNA and electrochemistry of DNA-conjugated redox labels and, as a result, the electroanalytical performance of those systems. Here, we show that the kinetics of electron transfer (ET) between the gold electrode and methylene blue (MB) label conjugated to a double-stranded (ds) DNA tethered to gold strongly depend on the charge of the MB molecule, and that affects the performance of genosensors exploiting MB-labeled hairpin DNA beacons. Positively charged MB binds to dsDNA via electrostatic and intercalative/groove binding, and this binding allows the DNA-mediated electrochemistry of MB intercalated into the duplex and, as a result, a complex mode of the electrochemical signal change upon hairpin hybridization to the target DNA, dominated by the "on-off" signal change mode at nanomolar levels of the analyzed DNA. When MB bears an additional carboxylic group, the negative charge provided by this group prevents intimate interactions between MB and DNA, and then the ET in duplexes is limited by the diffusion of the MB-conjugated dsDNA (the phenomenon first shown in Farjami , E. ; Clima , L. ; Gothelf , K. ; Ferapontova , E. E. Anal. Chem. 2011 , 83 , 1594 ) providing the robust "off-on" nanomolar DNA sensing. Those results can be extended to other intercalating redox probes and are of strategic importance for design and development of electrochemical hybridization sensors exploiting DNA nanoswitchable architectures.

  7. 'FloraArray' for screening of specific DNA probes representing the characteristics of a certain microbial community.

    PubMed

    Yokoi, Takahide; Kaku, Yoshiko; Suzuki, Hiroyuki; Ohta, Masayuki; Ikuta, Hajime; Isaka, Kazuichi; Sumino, Tatsuo; Wagatsuma, Masako

    2007-08-01

    To investigate uncharacterized microbial communities, a custom DNA microarray named 'FloraArray' was developed for screening specific probes that would represent the characteristics of a microbial community. The array was prepared by spotting 2000 plasmid DNAs from a genomic shotgun library of a sludge sample on a DNA microarray. By comparative hybridization of the array with two different samples of genomic DNA, one from the activated sludge and the other from a nonactivated sludge sample of an anaerobic ammonium oxidation (anammox) bacterial community, specific spots were visualized as a definite fluctuating profile in an MA (differential intensity ratio vs. spot intensity) plot. About 300 spots of the array accounted for the candidate probes to represent anammox reaction of the activated sludge. After sequence analysis of the probes and examination of the results of blastn searches against the reported anammox reference sequence, complete matches were found for 161 probes (58.3%) and >90% matches were found for 242 probes (87.1%). These results demonstrate that 'FloraArray' could be a useful tool for screening specific DNA molecules of unknown microbial communities.

  8. Gold nanoparticle-based probes for the colorimetric detection of Mycobacterium avium subspecies paratuberculosis DNA.

    PubMed

    Ganareal, Thenor Aristotile Charles S; Balbin, Michelle M; Monserate, Juvy J; Salazar, Joel R; Mingala, Claro N

    2018-02-12

    Gold nanoparticle (AuNP) is considered to be the most stable metal nanoparticle having the ability to be functionalized with biomolecules. Recently, AuNP-based DNA detection methods captured the interest of researchers worldwide. Paratuberculosis or Johne's disease, a chronic gastroenteritis in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP), was found to have negative effect in the livestock industry. In this study, AuNP-based probes were evaluated for the specific and sensitive detection of MAP DNA. AuNP-based probe was produced by functionalization of AuNPs with thiol-modified oligonucleotide and was confirmed by Fourier-Transform Infrared (FTIR) spectroscopy. UV-Vis spectroscopy and Scanning Electron Microscopy (SEM) were used to characterize AuNPs. DNA detection was done by hybridization of 10 μL of DNA with 5 μL of probe at 63 °C for 10 min and addition of 3 μL salt solution. The method was specific to MAP with detection limit of 103 ng. UV-Vis and SEM showed dispersion and aggregation of the AuNPs for the positive and negative results, respectively, with no observed particle growth. This study therefore reports an AuNP-based probes which can be used for the specific and sensitive detection of MAP DNA. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Immunodetection of human topoisomerase I-DNA covalent complexes

    PubMed Central

    Patel, Anand G.; Flatten, Karen S.; Peterson, Kevin L.; Beito, Thomas G.; Schneider, Paula A.; Perkins, Angela L.; Harki, Daniel A.; Kaufmann, Scott H.

    2016-01-01

    A number of established and investigational anticancer drugs slow the religation step of DNA topoisomerase I (topo I). These agents induce cytotoxicity by stabilizing topo I-DNA covalent complexes, which in turn interact with advancing replication forks or transcription complexes to generate lethal lesions. Despite the importance of topo I-DNA covalent complexes, it has been difficult to detect these lesions within intact cells and tumors. Here, we report development of a monoclonal antibody that specifically recognizes covalent topo I-DNA complexes, but not free topo I or DNA, by immunoblotting, immunofluorescence or flow cytometry. Utilizing this antibody, we demonstrate readily detectable topo I-DNA covalent complexes after treatment with camptothecins, indenoisoquinolines and cisplatin but not nucleoside analogues. Topotecan-induced topo I-DNA complexes peak at 15–30 min after drug addition and then decrease, whereas indotecan-induced complexes persist for at least 4 h. Interestingly, simultaneous staining for covalent topo I-DNA complexes, phospho-H2AX and Rad51 suggests that topotecan-induced DNA double-strand breaks occur at sites distinct from stabilized topo I-DNA covalent complexes. These studies not only provide new insight into the action of topo I-directed agents, but also illustrate a strategy that can be applied to study additional topoisomerases and their inhibitors in vitro and in vivo. PMID:26917015

  10. Exciton-controlled fluorescence: application to hybridization-sensitive fluorescent DNA probe.

    PubMed

    Okamoto, Akimitsu; Ikeda, Shuji; Kubota, Takeshi; Yuki, Mizue; Yanagisawa, Hiroyuki

    2009-01-01

    A hybridization-sensitive fluorescent probe has been designed for nucleic acid detection, using the concept of fluorescence quenching caused by the intramolecular excitonic interaction of fluorescence dyes. We synthesized a doubly thiazole orange-labeled nucleotide showing high fluorescence intensity for a hybrid with the target nucleic acid and effective quenching for the single-stranded state. This exciton-controlled fluorescent probe was applied to living HeLa cells using microinjection to visualize intracellular mRNA localization. Immediately after injection of the probe into the cell, fluorescence was observed from the probe hybridizing with the target RNA. This fluorescence rapidly decreased upon addition of a competitor DNA. Multicoloring of this probe resulted in the simple simultaneous detection of plural target nucleic acid sequences. This probe realized a large, rapid, reversible change in fluorescence intensity in sensitive response to the amount of target nucleic acid, and facilitated spatiotemporal monitoring of the behavior of intracellular RNA.

  11. Development of an on-site rapid real-time polymerase chain reaction system and the characterization of suitable DNA polymerases for TaqMan probe technology.

    PubMed

    Furutani, Shunsuke; Naruishi, Nahoko; Hagihara, Yoshihisa; Nagai, Hidenori

    2016-08-01

    On-site quantitative analyses of microorganisms (including viruses) by the polymerase chain reaction (PCR) system are significantly influencing medical and biological research. We have developed a remarkably rapid and portable real-time PCR system that is based on microfluidic approaches. Real-time PCR using TaqMan probes consists of a complex reaction. Therefore, in a rapid real-time PCR, the optimum DNA polymerase must be estimated by using actual real-time PCR conditions. In this study, we compared the performance of three DNA polymerases in actual PCR conditions using our rapid real-time PCR system. Although KAPA2G Fast HS DNA Polymerase has the highest enzymatic activity among them, SpeedSTAR HS DNA Polymerase exhibited better performance to rapidly increase the fluorescence signal in an actual real-time PCR using TaqMan probes. Furthermore, we achieved rapid detection of Escherichia coli in 7 min by using SpeedSTAR HS DNA Polymerase with the same sensitivity as that of a conventional thermal cycler.

  12. Development of a biotinylated DNA probe for detection of infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Deering, R.E.; Arakawa, C.K.; Oshima, K.H.; O'Hara, P.J.; Landolt, M.L.; Winton, J.R.

    1991-01-01

    A nonrad~oact~ve DNA probe assay was developed to detect and ~dent~fy infect~ous hernatopoiet~c necrosls virus (IHNV) uslng a dot blot format The probe a synthet~c DNA oligonucleot~de labeled enzymatlcally w~th biotln hybnd~zed spec~f~cally w~th nucleocaps~d mRNA extracted from Infected cells early In the vlrus repl~cation cycle A rap~d guan~dln~um th~ocyanate based RNA extraction method uslng RNAzol B and rn~crocentrifuge tubes eff~c~ently pioduced h~gh qual~ty RNA from 3 commonly used f~sh cell llnes, CHSE-214, CHH-1, and EPC The probe reacted with 6 d~verse ~solates of IHNV, but d~d not react \

  13. UniPROBE, update 2011: expanded content and search tools in the online database of protein-binding microarray data on protein-DNA interactions.

    PubMed

    Robasky, Kimberly; Bulyk, Martha L

    2011-01-01

    The Universal PBM Resource for Oligonucleotide-Binding Evaluation (UniPROBE) database is a centralized repository of information on the DNA-binding preferences of proteins as determined by universal protein-binding microarray (PBM) technology. Each entry for a protein (or protein complex) in UniPROBE provides the quantitative preferences for all possible nucleotide sequence variants ('words') of length k ('k-mers'), as well as position weight matrix (PWM) and graphical sequence logo representations of the k-mer data. In this update, we describe >130% expansion of the database content, incorporation of a protein BLAST (blastp) tool for finding protein sequence matches in UniPROBE, the introduction of UniPROBE accession numbers and additional database enhancements. The UniPROBE database is available at http://uniprobe.org.

  14. Spatial Organization of the Core Region of Yeast TFIIIB-DNA Complexes

    PubMed Central

    Persinger, Jim; Sengupta, Sarojini M.; Bartholomew, Blaine

    1999-01-01

    The interaction of yeast TFIIIB with the region upstream of the SUP4 tRNATyr gene was extensively probed by use of photoreactive phosphodiesters, deoxyuridines, and deoxycytidines that are site specifically incorporated into DNA. The TATA binding protein (TBP) was found to be in close proximity to the minor groove of a TATA-like DNA sequence that starts 30 nucleotides upstream of the start site of transcription. TBP was cross-linked to the phosphate backbone of DNA from bp −30 to −20 in the nontranscribed strand and from bp −28 to −24 in the transcribed strand (+1 denotes the start site of transcription). Most of the major groove of DNA in this region was shown not to be in close proximity to TBP, thus resembling the binding of TBP to the TATA box, with one notable exception. TBP was shown to interact with the major groove of DNA primarily at bp −23 and to a lesser degree at bp −25 in the transcribed strand. The stable interaction of TBP with the major groove at bp −23 was shown to require the B" subunit of TFIIIB. The S4 helix and flanking region of TBP were shown to be proximal to the major groove of DNA by peptide mapping of the region of TBP cross-linked at bp −23. Thus, TBP in the TFIIIB-SUP4 gene promoter region is bound in the same direction as TBP bound to the TATA box with respect to the transcription start site. The B" and TFIIB-related factor (BRF) subunits of TFIIIB are positioned on opposite sides of the TBP-DNA core of the TFIIIB complex, as indicated by correlation of cross-linking data to the crystal structure of the TBP-TATA box complex. Evidence is given for BRF binding near the C-terminal stirrup of TBP, similar to that of TFIIB near the TBP-TATA box complex. The protein clamp formed around the TBP-DNA complex by BRF and B" would help explain the long half-life of the TFIIIB-DNA complex and its resistance to polyanions and high salt. The path of DNA traversing the surface of TBP at the 3′ end of the TATA-like element in the SUP4

  15. A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition

    PubMed Central

    Junicke, Henrik; Hart, Jonathan R.; Kisko, Jennifer; Glebov, Oleg; Kirsch, Ilan R.; Barton, Jacqueline K.

    2003-01-01

    A rhodium(III) complex, rac-[Rh(bpy)2phzi]3+ (bpy, 2,2′-bipyridine; phzi, benzo[a]phenazine-5,6-quinone diimine) has been designed as a sterically demanding intercalator targeted to destabilized mismatched sites in double-helical DNA. The complex is readily synthesized by condensation of the phenazine quinone with the corresponding diammine complex. Upon photoactivation, the complex promotes direct strand scission at single-base mismatch sites within the DNA duplex. As with the parent mismatch-specific reagent, [Rh(bpy)2(chrysi)]3+ [chrysene-5,6-quinone diimine (chrysi)], mismatch selectivity depends on the helix destabilization associated with mispairing. Unlike the parent chrysi complex, the phzi analogue binds and cleaves with high affinity and efficiency. The specific binding constants for CA, CC, and CT mismatches within a 31-mer oligonucleotide duplex are 0.3, 1, and 6 × 107 M−1, respectively; site-specific photocleavage is evident at nanomolar concentrations. Moreover, the specificity, defined as the ratio in binding affinities for mispaired vs. well paired sites, is maintained. The increase in affinity is attributed to greater stability in the mismatched site associated with stacking by the heterocyclic aromatic ligand. The high-affinity complex is also applied in the differential cleavage of DNA obtained from cell lines deficient in mismatch repair vs. those proficient in mismatch repair. Agreement is found between photocleavage by the mismatch-specific probes and deficiency in mismatch repair. This mismatch-specific targeting, therefore, offers a potential strategy for new chemotherapeutic design. PMID:12610209

  16. Nucleoprotein Complexes Containing Replicating Simian Virus 40 DNA: Comparison with Polyoma Nucleoprotein Complexes

    PubMed Central

    Hall, Mark R.; Meinke, William; Goldstein, David A.

    1973-01-01

    Procedures for isolating nucleoprotein complexes containing replicating polyoma DNA from infected mouse cells were used to prepare short-lived nucleoprotein complexes (r-SV40 complexes) containing replicating simian virus 40 (SV40) DNA from infected monkey cells. Like the polyoma complexes, r-SV40 complexes were only partially released from nuclei by cell lysis but could be extracted from nuclei by prolonged treatment with solutions containing Triton X-100. r-SV40 complexes sedimented faster than complexes containing SV40 supercoiled DNA (SV40 complex) in sucrose gradients, and both types of SV40 nucleoprotein complexes sedimented ahead of polyoma complexes containing supercoiled polyoma DNA (py complex). The sedimentation rates of py complex and SV40 complex were 56 and 61S, respectively, based on the sedimentation rate of the mouse large ribosomal subunit as a marker. r-SV40 complexes sedimented as multiple peaks between 56 and 75S. Sedimentation and buoyant density measurements indicated that protein is bound to all forms of SV40 DNA at about the same ratio of protein to DNA (1-2/1) as was reported for polyoma nucleoproteins. PMID:4359958

  17. Chemical Biology Probes from Advanced DNA-encoded Libraries.

    PubMed

    Salamon, Hazem; Klika Škopić, Mateja; Jung, Kathrin; Bugain, Olivia; Brunschweiger, Andreas

    2016-02-19

    The identification of bioactive compounds is a crucial step toward development of probes for chemical biology studies. Screening of DNA-encoded small molecule libraries (DELs) has emerged as a validated technology to interrogate vast chemical space. DELs consist of chimeric molecules composed of a low-molecular weight compound that is conjugated to a DNA identifier tag. They are screened as pooled libraries using selection to identify "hits." Screening of DELs has identified numerous bioactive compounds. Some of these molecules were instrumental in gaining a deeper understanding of biological systems. One of the main challenges in the field is the development of synthesis methodology for DELs.

  18. Molecular dynamics simulations of DNA-polycation complexes

    NASA Astrophysics Data System (ADS)

    Ziebarth, Jesse; Wang, Yongmei

    2008-03-01

    A necessary step in the preparation of DNA for use in gene therapy is the packaging of DNA with a vector that can condense DNA and provide protection from degrading enzymes. Because of the immunoresponses caused by viral vectors, there has been interest in developing synthetic gene therapy vectors, with polycations emerging as promising candidates. Molecular dynamics simulations of the DNA duplex CGCGAATTCGCG in the presence of 20 monomer long sequences of the polycations, poly-L-lysine (PLL) and polyethyleneimine (PEI), with explicit counterions and TIP3P water, are performed to provide insight into the structure and formation of DNA polyplexes. After an initial separation of approximately 50 å, the DNA and polycation come together and form a stable complex within 10 ns. The DNA does not undergo any major structural changes upon complexation and remains in the B-form. In the formed complex, the charged amine groups of the polycation mainly interact with DNA phosphate groups, and rarely occupy electronegative sites in either the major or minor grooves. Differences between complexation with PEI and PLL will be discussed.

  19. Development of Prevotella intermedia-specific PCR primers based on the nucleotide sequences of a DNA probe Pig27.

    PubMed

    Kim, Min Jung; Hwang, Kyung Hwan; Lee, Young-Seok; Park, Jae-Yoon; Kook, Joong-Ki

    2011-03-01

    The aim of this study was to develop Prevotella intermedia-specific PCR primers based on the P. intermedia-specific DNA probe. The P. intermedia-specific DNA probe was screened by inverted dot blot hybridization and confirmed by Southern blot hybridization. The nucleotide sequences of the species-specific DNA probes were determined using a chain termination method. Southern blot analysis showed that the DNA probe, Pig27, detected only the genomic DNA of P. intermedia strains. PCR showed that the PCR primers, Pin-F1/Pin-R1, had species-specificity for P. intermedia. The detection limits of the PCR primer sets were 0.4pg of the purified genomic DNA of P. intermedia ATCC 49046. These results suggest that the PCR primers, Pin-F1/Pin-R1, could be useful in the detection of P. intermedia as well as in the development of a PCR kit in epidemiological studies related to periodontal diseases. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  20. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    NASA Astrophysics Data System (ADS)

    Xi, Dong; Luo, XiaoPing; Lu, QiangHua; Yao, KaiLun; Liu, ZuLi; Ning, Qin

    2008-03-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method.

  1. DNA fingerprinting of red clover (Trifolium pratense L.) with Jeffrey's probes: detection of somaclonal variation and other applications.

    PubMed

    Nelke, M; Nowak, J; Wright, J M; McLean, N L

    1993-12-01

    DNA fingerprints generated by the Jeffreys' probes, 33.6 and 33.15, indicated the presence of minisatellite-like sequences in the red clover genome. The fingerprints generated by probe 33.6 gave less background and fewer but better defined bands than those obtained with probe 33.15. Assay of a regenerative somaclonal variant (F49R) by DNA fingerprinting with probe 33.6 detected mutation that was unlinked to the regenerative trait. The fingerprints obtained under the applied conditions also demonstrated genetic stability of consecutive generations of the regenerants in tissue culture. DNA fingerprints of F1 plants revealed that each polymorphic band was inherited from either one or the other parent. Both probes distinguished individual-specific genotypes in seven cultivars of red clover. Greater variability in DNA fingerprints was detected between (V=0.899) than within (0.417≤V≤0.548) cultivars.

  2. Structural basis for bifunctional zinc(II) macrocyclic complex recognition of thymine bulges in DNA.

    PubMed

    del Mundo, Imee Marie A; Siters, Kevin E; Fountain, Matthew A; Morrow, Janet R

    2012-05-07

    The zinc(II) complex of 1-(4-quinoylyl)methyl-1,4,7,10-tetraazacyclododecane (cy4q) binds selectively to thymine bulges in DNA and to a uracil bulge in RNA. Binding constants are in the low-micromolar range for thymine bulges in the stems of hairpins, for a thymine bulge in a DNA duplex, and for a uracil bulge in an RNA hairpin. Binding studies of Zn(cy4q) to a series of hairpins containing thymine bulges with different flanking bases showed that the complex had a moderate selectivity for thymine bulges with neighboring purines. The dissociation constants of the most strongly bound Zn(cy4q)-DNA thymine bulge adducts were 100-fold tighter than similar sequences with fully complementary stems or than bulges containing cytosine, guanine, or adenine. In order to probe the role of the pendent group, three additional zinc(II) complexes containing 1,4,7,10-tetraazacyclododecane (cyclen) with aromatic pendent groups were studied for binding to DNA including 1-(2-quinolyl)methyl-1,4,7,10-tetraazacyclododecane (cy2q), 1-(4-biphenyl)methyl-1,4,7,10-tetraazacyclododecane (cybp), and 5-(1,4,7,10-tetraazacyclododecan-1-ylsulfonyl)-N,N-dimethylnaphthalen-1-amine (dsc). The Zn(cybp) complex binds with moderate affinity but little selectivity to DNA hairpins with thymine bulges and to DNA lacking bulges. Similarly, Zn(dsc) binds weakly both to thymine bulges and hairpins with fully complementary stems. The zinc(II) complex of cy2q has the 2-quinolyl moiety bound to the Zn(II) center, as shown by (1)H NMR spectroscopy and pH-potentiometric titrations. As a consequence, only weak (500 μM) binding is observed to DNA with no appreciable selectivity. An NMR structure of a thymine-bulge-containing hairpin shows that the thymine is extrahelical but rotated toward the major groove. NMR data for Zn(cy4q) bound to DNA containing a thymine bulge is consistent with binding of the zinc(II) complex to the thymine N3(-) and stacking of the quinoline on top of the thymine. The thymine-bulge bound

  3. Rapid Identification of Seven Waterborne Exophiala Species by RCA DNA Padlock Probes.

    PubMed

    Najafzadeh, M J; Vicente, V A; Feng, Peiying; Naseri, A; Sun, Jiufeng; Rezaei-Matehkolaei, A; de Hoog, G S

    2018-03-05

    The black yeast genus Exophiala includes numerous potential opportunistic species that potentially cause systematic and disseminated infections in immunocompetent individuals. Species causing systemic disease have ability to grow at 37-40 °C, while others consistently lack thermotolerance and are involved in diseases of cold-blooded, waterborne vertebrates and occasionally invertebrates. We explain a fast and sensitive assay for recognition and identification of waterborne Exophiala species without sequencing. The ITS rDNA region of seven Exophiala species (E. equina, E. salmonis, E. opportunistica, E. pisciphila, E. aquamarina, E. angulospora and E. castellanii) along with the close relative Veronaea botryosa was sequenced and aligned for the design of specific padlock probes for the detection of characteristic single-nucleotide polymorphisms. The assay demonstrated to successfully amplify DNA of target fungi, allowing detection at the species level. Amplification products were visualized on 1% agarose gels to confirm specificity of probe-template binding. Amounts of reagents were reduced to prevent the generation of false positive results. The simplicity, tenderness, robustness and low expenses provide padlock probe assay (RCA) a definite place as a very practical method among isothermal approaches for DNA diagnostics.

  4. Use of DNA probes to study tetracycline resistance determinants in gram-negative bacteria from swine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.Y.

    1989-01-01

    Specific {sup 32}P-labeled DNA probes were prepared and used to evaluate the distribution of tetracycline resistance determinants carried by gram-negative enteric bacteria isolated from pigs in 3 swine herds with different histories of antibiotic exposure. Plasmid DNA, ranging in size from 2.1 to 186 Kb, was observed in over 84% of 114 isolates studied. Two of 78 tetracycline resistant strains did not harbor plasmids. The DNA probes were isolated from plasmids pSL18, pRT29/Tn10, pBR322 and pSL106, respectively, and they represented class A, B, C and D tetracycline resistance determinants. Hybridization conditions using 0.5X SSPE at 65{degrees}C minimize cross-hybridization between themore » different class of tetracycline resistance genes. Cross-hybridization between class A and class C determinants could be distinguished by simultaneous comparison of the intensity of their hybridization signals. Plasmids from over 44% of the tetracycline resistant isolates did not hybridize to DNA probes for the determinants tested. Class B determinant occurred more frequently than class A or C. None of the isolates hybridized with the class D probe.« less

  5. A graphene-based biosensing platform based on the release of DNA probes and rolling circle amplification.

    PubMed

    Liu, Meng; Song, Jinping; Shuang, Shaomin; Dong, Chuan; Brennan, John D; Li, Yingfu

    2014-06-24

    We report a versatile biosensing platform capable of achieving ultrasensitive detection of both small-molecule and macromolecular targets. The system features three components: reduced graphene oxide for its ability to adsorb single-stranded DNA molecules nonspecifically, DNA aptamers for their ability to bind reduced graphene oxide but undergo target-induced conformational changes that facilitate their release from the reduced graphene oxide surface, and rolling circle amplification (RCA) for its ability to amplify a primer-template recognition event into repetitive sequence units that can be easily detected. The key to the design is the tagging of a short primer to an aptamer sequence, which results in a small DNA probe that allows for both effective probe adsorption onto the reduced graphene oxide surface to mask the primer domain in the absence of the target, as well as efficient probe release in the presence of the target to make the primer available for template binding and RCA. We also made an observation that the circular template, which on its own does not cause a detectable level of probe release from the reduced graphene oxide, augments target-induced probe release. The synergistic release of DNA probes is interpreted to be a contributing factor for the high detection sensitivity. The broad utility of the platform is illustrated though engineering three different sensors that are capable of achieving ultrasensitive detection of a protein target, a DNA sequence and a small-molecule analyte. We envision that the approach described herein will find useful applications in the biological, medical, and environmental fields.

  6. Visualization of DNA and Protein-DNA Complexes with Atomic Force Microscopy

    PubMed Central

    Lyubchenko, Yuri L.; Gall, Alexander A.; Shlyakhtenko, Luda S.

    2014-01-01

    This article describes sample preparation techniques for AFM imaging of DNA and protein–DNA complexes. The approach is based on chemical functionalization of the mica surface with aminopropyl silatrane (APS) to yield an APS-mica surface. This surface binds nucleic acids and nucleoprotein complexes in a wide range of ionic strengths, in the absence of divalent cations, and in a broad range of pH. The chapter describes the methodologies for the preparation of APS-mica surfaces and the preparation of samples for AFM imaging. The protocol for synthesis and purifi cation of APS is also provided. The AFM applications are illustrated with examples of images of DNA and protein–DNA complexes. PMID:24357372

  7. Complex DNA Brick Assembly.

    PubMed

    Ong, Luvena L; Ke, Yonggang

    2017-01-01

    DNA nanostructures are a useful technology for precisely organizing and manipulating nanomaterials. The DNA bricks method is a modular and versatile platform for applications requiring discrete or periodic structures with complex three-dimensional features. Here, we describe how structures are designed from the fundamental strand architecture through assembly and characterization of the formed structures.

  8. Investigation of paternity establishing without the putative father using hypervariable DNA probes.

    PubMed

    Yokoi, T; Odaira, T; Nata, M; Sagisaka, K

    1990-09-01

    Seven kinds of DNA probes which recognize hypervariable loci were applied for paternity test. The putative father was decreased and unavailable for the test. The two legitimate children and their mother (the deceased's wife) and the four illegitimate children and their mother (the deceased's kept mistress) were available for analysis. Paternity index of four illegitimate child was investigated. Allelic frequencies and their confidence intervals among unrelated Japanese individuals were previously reported from our laboratory, and co-dominant segregation of the polymorphism was confirmed in family studies. Cumulative paternity indices of four illegitimate children from 16 kinds of standard blood group markers were 165, 42, 0.09, and 36, respectively. On the other hand, cumulative paternity indices from 7 kinds of DNA probes are 2,363, 4,685, 57,678, and 54,994, respectively, which are 14, 113, 640, 864, and 1,509 times higher than that from standard blood group markers. The DNA analyses gave nearly conclusive evidence that the putative father was the biological father of the children. Especially, the paternity relation of the third illegitimate child could not be established without the DNA analyses. Accordingly, DNA polymorphism is considered to be informative enough for paternity test.

  9. Multivalent Lipid--DNA Complexes: Distinct DNA Compaction Regimes

    NASA Astrophysics Data System (ADS)

    Evans, Heather M.; Ahmad, A.; Ewert, K.; Safinya, C. R.

    2004-03-01

    Cationic liposomes (CL), while intrinsically advantageous in comparison to viruses, still have limited success for gene therapy and require more study. CL spontaneously self-assemble with DNA via counterion release, forming small particles approximately 200nm in diameter. X-ray diffraction reveals CL-DNA structures that are typically a multilamellar organization of lipids with DNA intercalated between the layers. We explore the structural properties of CL-DNA complexes formed with new multivalent lipids (Ewert et al, J. Med. Chem. 2002; 45:5023) that range from 2+ to 16+. Contrary to a simple prediction for the DNA interaxial spacing d_DNA based on a geometrical space-filling model, these lipids show dramatic DNA compaction, down to d_DNA ˜ 25 ÅVariations in the membrane charge density, σ _M, lead to distinct spacing regimes. We propose that this DNA condensation is controlled by a unique locking mechanism between the DNA double helix and the large, multivalent lipid head groups. Funded by NSF DMR-0203755 and NIH GM-59288.

  10. DNA probes for monitoring dynamic and transient molecular encounters on live cell membranes

    NASA Astrophysics Data System (ADS)

    You, Mingxu; Lyu, Yifan; Han, Da; Qiu, Liping; Liu, Qiaoling; Chen, Tao; Sam Wu, Cuichen; Peng, Lu; Zhang, Liqin; Bao, Gang; Tan, Weihong

    2017-05-01

    Cells interact with the extracellular environment through molecules expressed on the membrane. Disruption of these membrane-bound interactions (or encounters) can result in disease progression. Advances in super-resolution microscopy have allowed membrane encounters to be examined, however, these methods cannot image entire membranes and cannot provide information on the dynamic interactions between membrane-bound molecules. Here, we show a novel DNA probe that can transduce transient membrane encounter events into readable cumulative fluorescence signals. The probe, which translocates from one anchor site to another, mimicking motor proteins, is realized through a toehold-mediated DNA strand displacement reaction. Using this probe, we successfully monitored rapid encounter events of membrane lipid domains using flow cytometry and fluorescence microscopy. Our results show a preference for encounters within the same lipid domains.

  11. DNA probe for monitoring dynamic and transient molecular encounters on live cell membranes

    PubMed Central

    You, Mingxu; Lyu, Yifan; Han, Da; Qiu, Liping; Liu, Qiaoling; Chen, Tao; Wu, Cuichen Sam; Peng, Lu; Zhang, Liqin; Bao, Gang; Tan, Weihong

    2017-01-01

    Cells interact with the extracellular environment through molecules expressed on the membrane. Disruption of these membrane-bound interactions (or encounters) can result in disease progression. Advances in super-resolution microscopy have allowed membrane encounters to be examined, however, these methods cannot image entire membranes and cannot provide information on the dynamic interactions between membrane-bound molecules. Here, we show a novel DNA probe that can transduce transient membrane encounter events into readable cumulative fluorescence signals. The probe, which translocates from one anchor site to another, such as motor proteins, is realized through a toehold-mediated DNA strand displacement reaction. Using this probe, we successfully monitored rapid encounter events of membrane lipid domains using flow cytometry and fluorescence microscopy. Our results show a preference for encounters within different lipid domains. PMID:28319616

  12. DNA-Directed Assembly of Capture Tools for Constitutional Studies of Large Protein Complexes.

    PubMed

    Meyer, Rebecca; Faesen, Alex; Vogel, Katrin; Jeganathan, Sadasivam; Musacchio, Andrea; Niemeyer, Christof M

    2015-06-10

    Large supramolecular protein complexes, such as the molecular machinery involved in gene regulation, cell signaling, or cell division, are key in all fundamental processes of life. Detailed elucidation of structure and dynamics of such complexes can be achieved by reverse-engineering parts of the complexes in order to probe their interactions with distinctive binding partners in vitro. The exploitation of DNA nanostructures to mimic partially assembled supramolecular protein complexes in which the presence and state of two or more proteins are decisive for binding of additional building blocks is reported here. To this end, four-way DNA Holliday junction motifs bearing a fluorescein and a biotin tag, for tracking and affinity capture, respectively, are site-specifically functionalized with centromeric protein (CENP) C and CENP-T. The latter serves as baits for binding of the so-called KMN component, thereby mimicking early stages of the assembly of kinetochores, structures that mediate and control the attachment of microtubules to chromosomes in the spindle apparatus. Results from pull-down experiments are consistent with the hypothesis that CENP-C and CENP-T may bind cooperatively to the KMN network. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electroactive crown ester-Cu2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s.

    PubMed

    Zhan, Fengping; Liao, Xiaolei; Gao, Feng; Qiu, Weiwei; Wang, Qingxiang

    2017-06-15

    A novel electrochemical DNA biosensor has been facilely constructed by in-situ assembly of electroactive 4'-aminobenzo-18-crown-6-copper(II) complex (AbC-Cu 2+ ) on the free terminal of the hairpin-structured molecule beacon. The 3'-SH modified molecule beacon probe was first immobilized on the gold electrode (AuE) surface through self-assembly chemistry of Au-S bond. Then the crow ester of AbC was covalently coupled with 5'-COOH on the molecule beacon, and served as a platform to attach the Cu 2+ by coordination with ether bond (-O-) of the crown cycle. Thus, an electroactive molecule beacon-based biosensing interface was constructed. In comparison with conventional methods for preparation of electroactive molecule beacon, the approach presented in this work is much simpler, reagent- and labor-saving. Selectivity study shows that the in-situ fabricated electroactive molecule beacon remains excellent recognition ability of pristine molecule beacon probe to well differentiate various DNA fragments. The target DNA can be quantatively determined over the range from 0.10pM to 0.50nM. The detection limit of 0.060pM was estimated based on signal-to-noise ratio of 3. When the biosensor was applied for the detection cauliflower mosaic virus 35s (CaMV 35s) in soybean extraction samples, satisfactory results are achieved. This work opens a new strategy for facilely fabricating electrochemical sensing interface, which also shows great potential in aptasensor and immurosensor fabrication. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. DNA synthesis involving a complexes form of DNA polymerase I in extracts of Escherichia coli.

    PubMed Central

    Hendler, R W; Pereira, M; Scharff, R

    1975-01-01

    DNA polymerase I (EC 2.7.7.7; deoxynucleosidetriphosphate:DNA deoxynucleotidyltransferase) has been recovered as a complex of about 390,000 molecular weight. The complex displays an ATP-stimulated DNA-synthesizing activity that prefers native to heat-denatured DNA. Genetic evidence indicates that the recBC enzyme is associated with the polymerase in the complex. Preliminary evidence for complexes involving DNA polymerases II and III is also presented. PMID:1094453

  15. SINE sequences detect DNA fingerprints in salmonid fishes.

    PubMed

    Spruell, P; Thorgaard, G H

    1996-04-01

    DNA probes homologous to two previously described salmonid short interspersed nuclear elements (SINEs) detected DNA fingerprint patterns in 14 species of salmonid fishes. The probes showed more homology to some species than to others and little homology to three nonsalmonid fishes. The DNA fingerprint patterns derived from the SINE probes are individual-specific and inherited in a Mendelian manner. Probes derived from different regions of the same SINE detect only partially overlapping banding patterns, reflecting a more complex SINE structure than has been previously reported. Like the human Alu sequence, the SINEs found in salmonids could provide useful genetic markers and primer sites for PCR-based techniques. These elements may be more desirable for some applications than traditional DNA fingerprinting probes that detect tandemly repeated arrays.

  16. Combination probes with intercalating anchors and proximal fluorophores for DNA and RNA detection

    PubMed Central

    Qiu, Jieqiong; Wilson, Adam; El-Sagheer, Afaf H.; Brown, Tom

    2016-01-01

    A new class of modified oligonucleotides (combination probes) has been designed and synthesised for use in genetic analysis and RNA detection. Their chemical structure combines an intercalating anchor with a reporter fluorophore on the same thymine nucleobase. The intercalator (thiazole orange or benzothiazole orange) provides an anchor, which upon hybridisation of the probe to its target becomes fluorescent and simultaneously stabilizes the duplex. The anchor is able to communicate via FRET to a proximal reporter dye (e.g. ROX, HEX, ATTO647N, FAM) whose fluorescence signal can be monitored on a range of analytical devices. Direct excitation of the reporter dye provides an alternative signalling mechanism. In both signalling modes, fluorescence in the unhybridised probe is switched off by collisional quenching between adjacent intercalator and reporter dyes. Single nucleotide polymorphisms in DNA and RNA targets are identified by differences in the duplex melting temperature, and the use of short hybridization probes, made possible by the stabilisation provided by the intercalator, enhances mismatch discrimination. Unlike other fluorogenic probe systems, placing the fluorophore and quencher on the same nucleobase facilitates the design of short probes containing multiple modifications. The ability to detect both DNA and RNA sequences suggests applications in cellular imaging and diagnostics. PMID:27369379

  17. Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Liu, Shu-yao; Zhang, Xian; Liu, Ying-kai; Qiao, Cong-de; Liu, Zhao-e.

    2016-03-01

    Two new styryl heterocyclic two-photon (TP) materials, 4-[4-(N-methyl)styrene]-imidazo [4,5-f][1,10] phenanthroline-benzene iodated salt (probe-1) and 4,4- [4-(N-methyl)styrene] -benzene iodated salt (probe-2) were successfully synthesized and studied as potential fluorescent probes of DNA detection. The linear and nonlinear photophysical properties of two compounds in different solvents were investigated. The absorption, one- and two-photon fluorescent spectra of the free dye and dye-DNA complex were also examined to evaluate their photophysical properties. The binding constants of dye-DNA were obtained according to Scatchard equation with good values. The results showed that two probes could be used as fluorescent DNA probes by two-photon excitation, and TP fluorescent properties of probe-1 are superior to that of probe-2. The fluorescent method date indicated that the mechanisms of dye-DNA complex interaction may be groove binding for probe-1 and electrostatic interaction for probe-2, respectively. The MTT assay experiments showed two probes are low toxicity. Moreover, the TP fluorescence imaging of DNA detection in living cells at 800 nm indicated that the ability to locate in cell nuclei of probe-1 is better than that of probe-2.

  18. Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA.

    PubMed

    Gao, Chao; Liu, Shu-yao; Zhang, Xian; Liu, Ying-kai; Qiao, Cong-de; Liu, Zhao-e

    2016-03-05

    Two new styryl heterocyclic two-photon (TP) materials, 4-[4-(N-methyl)styrene]-imidazo [4,5-f][1,10] phenanthroline-benzene iodated salt (probe-1) and 4,4-[4-(N-methyl)styrene]-benzene iodated salt (probe-2) were successfully synthesized and studied as potential fluorescent probes of DNA detection. The linear and nonlinear photophysical properties of two compounds in different solvents were investigated. The absorption, one- and two-photon fluorescent spectra of the free dye and dye-DNA complex were also examined to evaluate their photophysical properties. The binding constants of dye-DNA were obtained according to Scatchard equation with good values. The results showed that two probes could be used as fluorescent DNA probes by two-photon excitation, and TP fluorescent properties of probe-1 are superior to that of probe-2. The fluorescent method date indicated that the mechanisms of dye-DNA complex interaction may be groove binding for probe-1 and electrostatic interaction for probe-2, respectively. The MTT assay experiments showed two probes are low toxicity. Moreover, the TP fluorescence imaging of DNA detection in living cells at 800 nm indicated that the ability to locate in cell nuclei of probe-1 is better than that of probe-2. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Sample preparation for SFM imaging of DNA, proteins, and DNA-protein complexes.

    PubMed

    Ristic, Dejan; Sanchez, Humberto; Wyman, Claire

    2011-01-01

    Direct imaging is invaluable for understanding the mechanism of complex genome transactions where proteins work together to organize, transcribe, replicate, and repair DNA. Scanning (or atomic) force microscopy is an ideal tool for this, providing 3D information on molecular structure at nanometer resolution from defined components. This is a convenient and practical addition to in vitro studies as readily obtainable amounts of purified proteins and DNA are required. The images reveal structural details on the size and location of DNA-bound proteins as well as protein-induced arrangement of the DNA, which are directly correlated in the same complexes. In addition, even from static images, the different forms observed and their relative distributions can be used to deduce the variety and stability of different complexes that are necessarily involved in dynamic processes. Recently available instruments that combine fluorescence with topographic imaging allow the identification of specific molecular components in complex assemblies, which broadens the applications and increases the information obtained from direct imaging of molecular complexes. We describe here basic methods for preparing samples of proteins, DNA, and complexes of the two for topographic imaging and quantitative analysis. We also describe special considerations for combined fluorescence and topographic imaging of molecular complexes.

  20. Probing Human Telomeric DNA and RNA Topology and Ligand Binding in a Cellular Model by Using Responsive Fluorescent Nucleoside Probes.

    PubMed

    Manna, Sudeshna; Panse, Cornelia H; Sontakke, Vyankat A; Sangamesh, Sarangamath; Srivatsan, Seergazhi G

    2017-08-17

    The development of biophysical systems that enable an understanding of the structure and ligand-binding properties of G-quadruplex (GQ)-forming nucleic acid sequences in cells or models that mimic the cellular environment would be highly beneficial in advancing GQ-directed therapeutic strategies. Herein, the establishment of a biophysical platform to investigate the structure and recognition properties of human telomeric (H-Telo) DNA and RNA repeats in a cell-like confined environment by using conformation-sensitive fluorescent nucleoside probes and a widely used cellular model, bis(2-ethylhexyl) sodium sulfosuccinate reverse micelles (RMs), is described. The 2'-deoxy and ribonucleoside probes, composed of a 5-benzofuran uracil base analogue, faithfully report the aqueous micellar core through changes in their fluorescence properties. The nucleoside probes incorporated into different loops of H-Telo DNA and RNA oligonucleotide repeats are minimally perturbing and photophysically signal the formation of respective GQ structures in both aqueous buffer and RMs. Furthermore, these sensors enable a direct comparison of the binding affinity of a ligand to H-Telo DNA and RNA GQ structures in the bulk and confined environment of RMs. These results demonstrate that this combination of a GQ nucleoside probe and easy-to-handle RMs could provide new opportunities to study and devise screening-compatible assays in a cell-like environment to discover GQ binders of clinical potential. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Amplified electrochemiluminescence detection of DNA based on novel quantum dots signal probe by multiple cycling amplification strategy.

    PubMed

    Tan, Lu; Ge, Junjun; Jiao, Meng; Jie, Guifen; Niu, Shuyan

    2018-06-01

    In the present work, we designed a unique enzyme-aided multiple amplification strategy for sensitive electrochemiluminescence (ECL) detection of DNA by using the amplified gold nanoparticles (GNPS)-polyamidoamine (PAMAM)-CdSe quantum dots (QDs) signal probe. Firstly, the novel GNPS-PAMAM dendrimers nanostructure with good biocompatibility and electroconductibility contains many amino groups, which can load a large number of CdSe QDs to develop amplified ECL signal probe. Then, the presence of target DNA activated the enzyme-assisted polymerization strand-displacement cycling reaction, and a large number of the hairpin template was opened. Subsequently, the opened stem further interacted with the capture hairpin (HP) DNA on the electrode, and the GNPS-PAMAM-CdSe signal probe hybridized with the exposed stem of the HP to trigger the second new polymerization reaction. Meanwhile, the first cycle was generating abundant DNA triggers which could directly open the template. As a result of the cascade amplification technique, a large number of CdSe QDs signal probe could be assembled on the electrode, generating much amplified ECL signal for sensitive detection of target DNA. Thus, this novel QDs-based amplified ECL strategy holds great promise for DNA detection and can be further exploited for sensing applications in clinical diagnostics. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Fluorescence correlation spectroscopy study of the complexation of DNA hybrids, IgG antibody, and a chimeric protein of IgG-binding ZZ domains fused with a carbohydrate binding module.

    PubMed

    Rosa, A M M; Prazeres, D M F; Paulo, P M R

    2017-06-28

    Fluorescence correlation spectroscopy (FCS) was used to characterize the molecular interactions between the four components of a DNA recognition system. A fluorescent DNA probe was used to assess: (i) the hybridization with a complementary biotin-labeled target, (ii) the complexation of the resulting hybrid and an anti-biotin antibody, and (iii) the binding of the latter complex to a ZZ-CBM fusion protein that combines small synthetic IgG Fc-binding Z domains with a carbohydrate binding module (CBM). These binding interactions were monitored by exposing the fluorescent DNA probe to different amounts and combinations of the other molecules in solution. Through the analysis of FCS autocorrelation curves, an association constant (K a ) of 2.9 × 10 7 M -1 was estimated for DNA·DNA hybridization, and the presence of (non-) complementary target DNA in solution could be discriminated. The specific capture of biotinylated DNA hybrids by anti-biotin IgG was verified, with an apparent K a of 2.5 × 10 6 M -1 . The increment in the diffusion time measured when the DNA·DNA:antibody complexes were in contact with the ZZ-CBM fusion protein suggested that the binding occurs at a stoichiometric ratio of DNA/antibody complex to fusion larger than 1 : 1. The FCS-derived information obtained is useful to gain insight into molecular interactions involved in diagnostic assays.

  3. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors.

    PubMed

    Pang, Jie; Zhang, Ziping; Jin, Haizhu

    2016-03-15

    Electrochemical aptamer-based (E-AB) sensors employing electrode-immobilized, redox-tagged aptamer probes have emerged as a promising platform for the sensitive and quick detection of target analytes ranging from small molecules to proteins. Signal generation in this class of sensor is linked to change in electron transfer efficiency upon binding-induced change in flexibility/conformation of the aptamer probe. Because of this signaling mechanism, signal gains of these sensors can be improved by employing a displacement-based recognition system, which links target binding with a large-scale flexibility/conformation shift from the aptamer-DNA duplex to the single-stranded DNA or the native aptamer. Despite the relatively large number of displacement-based E-AB sensor samples, little attention has been paid to the structure variation of the aptamer-DNA duplex probe. Here we detail the effects of complementary length and position of the aptamer-DNA duplex probe on the performance of a model displacement-based E-AB sensor for ATP. We find that, greater background suppression and signal gain are observed with longer complementary length of the aptamer-DNA duplex probe. However, sensor equilibration time slows monotonically with increasing complementary length; and with too many target binding sites in aptamer sequence being occupied by the complementary DNA, the aptamer-target binding does not occur and no signal gain observed. We also demonstrate that signal gain of the displacement-based E-AB sensor is strongly dependent on the complementary position of the aptamer-DNA duplex probe, with complementary position located at the electrode-attached or redox-tagged end of the duplex probe, larger background suppression and signal increase than that of the middle position are observed. These results highlight the importance of rational structure design of the aptamer-DNA duplex probe and provide new insights into the optimization of displacement-based E-AB sensors. Copyright

  4. Radiation damage to DNA in DNA-protein complexes.

    PubMed

    Spotheim-Maurizot, M; Davídková, M

    2011-06-03

    The most aggressive product of water radiolysis, the hydroxyl (OH) radical, is responsible for the indirect effect of ionizing radiations on DNA in solution and aerobic conditions. According to radiolytic footprinting experiments, the resulting strand breaks and base modifications are inhomogeneously distributed along the DNA molecule irradiated free or bound to ligands (polyamines, thiols, proteins). A Monte-Carlo based model of simulation of the reaction of OH radicals with the macromolecules, called RADACK, allows calculating the relative probability of damage of each nucleotide of DNA irradiated alone or in complexes with proteins. RADACK calculations require the knowledge of the three dimensional structure of DNA and its complexes (determined by X-ray crystallography, NMR spectroscopy or molecular modeling). The confrontation of the calculated values with the results of the radiolytic footprinting experiments together with molecular modeling calculations show that: (1) the extent and location of the lesions are strongly dependent on the structure of DNA, which in turns is modulated by the base sequence and by the binding of proteins and (2) the regions in contact with the protein can be protected against the attack by the hydroxyl radicals via masking of the binding site and by scavenging of the radicals. 2011 Elsevier B.V. All rights reserved.

  5. Determination of mutated genes in the presence of wild-type DNA by using molecular beacons as probe

    NASA Astrophysics Data System (ADS)

    Zhang, Yonghua; Ai, Junjie; Gu, Qiaorong; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2017-03-01

    Low-abundance mutations in the presence of wild-type DNA can be determined using molecular beacon (MB) as probe. A MB is generally used as DNA probe because it can distinguish single-base mismatched target DNA from fully matched target DNA. However, the probe can not determine low-abundance mutations in the presence of wild-type DNA. In this study, this limitation is addressed by enhancing the stability of unpaired base-containing dsDNA with a hydrogen-bonding ligand, which was added after hybridization of the MB to the target DNA. The ligand formed hydrogen bonds with unpaired bases and stabilized the unpaired base-containing dsDNA if target DNA is mutated one. As a result, more MBs were opened by the mutant genes in the presence of the ligand and a further increase in the fluorescence intensity was obtained. By contrast, fluorescence intensity did not change if target DNA is wild-type one. Consequent increase in the fluorescence intensity of the MB was regarded as a signal derived from mutant genes. The proposed method was applied in synthetic template systems to determine point mutation in DNA obtained from PCR analysis. The method also allows rapid and simple discrimination of a signal if it is originated in the presence of mutant gene or alternatively by a lower concentration of wild gene.

  6. DNA fingerprinting of Brassica juncea cultivars using microsatellite probes.

    PubMed

    Bhatia, S; Das, S; Jain, A; Lakshmikumaran, M

    1995-09-01

    The genetic variability in the Brassica juncea cultivars was detected by employing in-gel hybridization of restricted DNA to simple repetitive sequences such as (GATA)4, (GACA)4 and (CAC)5. The most informative probe/enzyme combination was (GATA)4/EcoRI, yielding highly polymorphic fingerprint patterns for the B. juncea cultivars. This technique was found to be dependable for establishing the variety specific patterns for most of the cultivars studied, a prerequisite for germplasm preservation. The results of the present study were compared with those reported in our earlier study in which random amplification of polymorphic DNA (RAPD) was used for assessing the genetic variability in the B. juncea cultivars.

  7. Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling.

    PubMed

    Zheng, Wenjun

    2017-02-01

    In the adaptive immune systems of many bacteria and archaea, the Cas9 endonuclease forms a complex with specific guide/scaffold RNA to identify and cleave complementary target sequences in foreign DNA. This DNA targeting machinery has been exploited in numerous applications of genome editing and transcription control. However, the molecular mechanism of the Cas9 system is still obscure. Recently, high-resolution structures have been solved for Cas9 in different structural forms (e.g., unbound forms, RNA-bound binary complexes, and RNA-DNA-bound tertiary complexes, corresponding to an inactive state, a pre-target-bound state, and a cleavage-competent or product state), which offered key structural insights to the Cas9 mechanism. To further probe the structural dynamics of Cas9 interacting with RNA and DNA at the amino-acid level of details, we have performed systematic coarse-grained modeling using an elastic network model and related analyses. Our normal mode analysis predicted a few key modes of collective motions that capture the observed conformational changes featuring large domain motions triggered by binding of RNA and DNA. Our flexibility analysis identified specific regions with high or low flexibility that coincide with key functional sites (such as DNA/RNA-binding sites, nuclease cleavage sites, and key hinges). We also identified a small set of hotspot residues that control the energetics of functional motions, which overlap with known functional sites and offer promising targets for future mutagenesis efforts to improve the specificity of Cas9. Finally, we modeled the conformational transitions of Cas9 from the unbound form to the binary complex and then the tertiary complex, and predicted a distinct sequence of domain motions. In sum, our findings have offered rich structural and dynamic details relevant to the Cas9 machinery, and will guide future investigation and engineering of the Cas9 systems. Proteins 2017; 85:342-353. © 2016 Wiley Periodicals

  8. Facile construction of a highly sensitive DNA biosensor by in-situ assembly of electro-active tags on hairpin-structured probe fragment

    PubMed Central

    Wang, Qingxiang; Gao, Feng; Ni, Jiancong; Liao, Xiaolei; Zhang, Xuan; Lin, Zhenyu

    2016-01-01

    An ultrasensitive DNA biosensor has been developed through in-situ labeling of electroactive melamine-Cu2+ complex (Mel-Cu2+) on the end of hairpin-like probe using gold nanoparticles (AuNPs) as the signal amplification platform. The 3′-thiolated hairpin-like probe was first immobilized to the gold electrode surface by the Au-S bond. The AuNPs were then tethered on the free 5′-end of the immobilized probe via the special affinity between Au and the modified -NH2. Followed by, the Mel and Cu2+ were assembled on the AuNPs surface through Au-N bond and Cu2+-N bond, respectively. Due to the surface area and electrocatalytic effects of the AuNPs, the loading amount and electron transfer kinetic of the Mel-Cu2+ were enhanced greatly, resulting in significantly enhanced electrochemical response of the developed biosensor. Compared with the synthesis process of conventional electroactive probe DNA accomplished by homogeneous method, the method presented in this work is more reagent- and time-saving. The proposed biosensor showed high selectivity, wide linear range and low detection limit. This novel strategy could also be extended to the other bioanalysis platforms such as immunosensors and aptasensors. PMID:26931160

  9. Detection of DNA "fingerprints" of cultivated rice by hybridization with a human minisatellite DNA probe.

    PubMed

    Dallas, J F

    1988-09-01

    A human minisatellite DNA probe detects several restriction fragment length polymorphisms in cultivars of Asian and African rice. Certain fragments appear to be inherited in a Mendelian fashion and may represent unlinked loci. The hybridization patterns appear to be cultivar-specific and largely unchanged after the regeneration of plants from tissue culture. The results suggest that these regions of the rice genome may be used to generate cultivar-specific DNA fingerprints. The demonstration of similarity between a human minisatellite sequence and polymorphic regions in the rice genome suggests that such regions also occur in the genomes of many other plant species.

  10. Structure, stability, and thermodynamics of lamellar DNA-lipid complexes.

    PubMed Central

    Harries, D; May, S; Gelbart, W M; Ben-Shaul, A

    1998-01-01

    We develop a statistical thermodynamic model for the phase evolution of DNA-cationic lipid complexes in aqueous solution, as a function of the ratios of charged to neutral lipid and charged lipid to DNA. The complexes consist of parallel strands of DNA intercalated in the water layers of lamellar stacks of mixed lipid bilayers, as determined by recent synchrotron x-ray measurements. Elastic deformations of the DNA and the lipid bilayers are neglected, but DNA-induced spatial inhomogeneities in the bilayer charge densities are included. The relevant nonlinear Poisson-Boltzmann equation is solved numerically, including self-consistent treatment of the boundary conditions at the polarized membrane surfaces. For a wide range of lipid compositions, the phase evolution is characterized by three regions of lipid to DNA charge ratio, rho: 1) for low rho, the complexes coexist with excess DNA, and the DNA-DNA spacing in the complex, d, is constant; 2) for intermediate rho, including the isoelectric point rho = 1, all of the lipid and DNA in solution is incorporated into the complex, whose inter-DNA distance d increases linearly with rho; and 3) for high rho, the complexes coexist with excess liposomes (whose lipid composition is different from that in the complex), and their spacing d is nearly, but not completely, independent of rho. These results can be understood in terms of a simple charging model that reflects the competition between counterion entropy and inter-DNA (rho < 1) and interbilayer (rho > 1) repulsions. Finally, our approach and conclusions are compared with theoretical work by others, and with relevant experiments. PMID:9649376

  11. Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP.

    PubMed

    Lin, C H; Patel, D J

    1997-11-01

    Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP) with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution. The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G.A mismatches are flanked by sheared G.A and reversed Hoogsteen G.G mismatch pairs. The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G.A mismatch formation. The recognition G.A mismatch stacks with a reversed Hoogsteen G.G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 10(14) molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.

  12. Comparison of randomly cloned and whole genomic DNA probes for the detection of Porphyromonas gingivalis and Bacteroides forsythus

    PubMed Central

    Wong, M.; DiRienzo, J.M.; Lai, C.-H.; Listgarten, M. A.

    2012-01-01

    Whole genomic and randomly-cloned DNA probes for two fastidious periodontal pathogens, Porphyromonas gingivalis and Bacteroides forsythus were labeled with digoxigenin and detected by a colorimetric method. The specificity and sensitivity of the whole genomic and cloned probes were compared. The cloned probes were highly specific compared to the whole genomic probes. A significant degree of cross-reactivity with Bacteroides species. Capnocytophaga sp. and Prevotella sp. was observed with the whole genomic probes. The cloned probes were less sensitive than the whole genomic probes and required at least 106 target cells or a minimum of 10 ng of target DNA to be detected during hybridization. Although a ten-fold increase in sensitivity was obtained with the whole genomic probes, cross-hybridization to closely related species limits their reliability in identifying target bacteria in subgingival plaque samples. PMID:8636873

  13. Additional hydrogen bonds and base-pair kinetics in the symmetrical AMP-DNA aptamer complex.

    PubMed Central

    Nonin-Lecomte, S; Lin, C H; Patel, D J

    2001-01-01

    The solution structure of an adenosine monophosphate (AMP)-DNA aptamer complex has been determined previously [Lin, C. H., and Patel, D. J. (1997) Chem. Biol. 4:817-832]. On a symmetrical aptamer complex containing the same binding loop, but with better resolved spectra, we have identified two additional hydrogen bond-mediated associations in the binding loop. One of these involves a rapidly exchanging G imino proton. The phosphate group of the AMP ligand was identified as the acceptor by comparison with other aptamer complexes. Imino proton exchange measurements also yielded the dissociation constants of the stem and binding loop base pairs. This study shows that nuclear magnetic resonance-based imino proton exchange is a good probe for detection of weak hydrogen-bond associations. PMID:11721004

  14. Dramatic Increase in the Signal and Sensitivity of Detection via Self-Assembly of Branched DNA

    PubMed Central

    Kim, Kyung-Tae; Chae, Chi-Bom

    2011-01-01

    In molecular testing using PCR, the target DNA is amplified via PCR and the sequence of interest is investigated via hybridization with short oligonucleotide capture probes that are either in a solution or immobilized on solid supports such as beads or glass slides. In this report, we report the discovery of assembly of DNA complex(es) between a capture probe and multiple strands of the PCR product. The DNA complex most likely has branched structure. The assembly of branched DNA was facilitated by the product of asymmetric PCR. The amount of branched DNA assembled was increased five fold when the asymmetric PCR product was denatured and hybridized with a capture probe all in the same PCR reaction mixture. The major branched DNA species appeared to contain three reverse strands (the strand complementary to the capture probe) and two forward strands. The DNA was sensitive to S1 nuclease suggesting that it had single-stranded gaps. Branched DNA also appeared to be assembled with the capture probes immobilized on the surface of solid support when the product of asymmetric PCR was hybridized. Assembly of the branched DNA was also increased when hybridization was performed in complete PCR reaction mixture suggesting the requirement of DNA synthesis. Integration of asymmetric PCR, heat denaturation and hybridization in the same PCR reaction mixture with the capture probes immobilized on the surface of solid support achieved dramatic increase in the signal and sensitivity of detection of DNA. Such a system should be advantageously applied for development of automated process for detection of DNA. PMID:21870112

  15. Quercetin-Iron Complex: Synthesis, Characterization, Antioxidant, DNA Binding, DNA Cleavage, and Antibacterial Activity Studies.

    PubMed

    Raza, Aun; Xu, Xiuquan; Xia, Li; Xia, Changkun; Tang, Jian; Ouyang, Zhen

    2016-11-01

    Quercetin-iron (II) complex was synthesized and characterized by elemental analysis, ultraviolet-visible spectrophotometry, fourier transform infrared spectroscopy, mass spectrometry, proton nuclear magnetic resonance spectroscopy, thermogravimetry and differential scanning calorimetry, scanning electron micrography and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal:ligand) of the complex. Antioxidant study of the quercetin and its metal complex against 2, 2-di-phenyl-1-picryl hydrazyl radical showed that the complex has much more radical scavenging activity than free quercetin. The interaction of quercetin-iron (II) complex with DNA was determined using ultraviolet visible spectra, fluorescence spectra and agarose gel electrophoresis. The results showed that quercetin-iron (II) complex can intercalate moderately with DNA, quench a strong intercalator ethidium bromide and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form to nicked circular form and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was an oxidative cleavage pathway. These results revealed the potential nuclease activity of complex to cleave DNA. In addition, antibacterial activity of complex on E.coli and S. aureus was also investigated. The results showed that complex has higher antibacterial activity than ligand.

  16. DNA condensing effects and sequence selectivity of DNA binding of antitumor noncovalent polynuclear platinum complexes.

    PubMed

    Malina, Jaroslav; Farrell, Nicholas P; Brabec, Viktor

    2014-02-03

    The noncovalent analogues of antitumor polynuclear platinum complexes represent a structurally discrete class of platinum drugs. Their chemical and biological properties differ significantly from those of most platinum chemotherapeutics, which bind to DNA in a covalent manner by formation of Pt-DNA adducts. In spite of the fact that these noncovalent polynuclear platinum complexes contain no leaving groups, they have been shown to bind to DNA with high affinity. We report here on the DNA condensation properties of a series of noncovalent analogues of antitumor polynuclear platinum complexes described by biophysical and biochemical methods. The results demonstrate that these polynuclear platinum compounds are capable of inducing DNA condensation at more than 1 order of magnitude lower concentrations than conventional spermine. Atomic force microscopy studies of DNA condensation confined to a mica substrate have revealed that the DNA morphologies become more compact with increasing concentration of the platinum complexes. Moreover, we also found that the noncovalent polynuclear platinum complex [{Pt(NH3)3}2-μ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}](6+) (TriplatinNC-A) binds to DNA in a sequence-dependent manner, namely, to A/T-rich sequences and A-tract regions, and that noncovalent polynuclear platinum complexes protect DNA from enzymatic cleavage by DNase I. The results suggest that mechanisms of antitumor and cytotoxic activities of these complexes may be associated with their unique ability to condense DNA along with their sequence-specific DNA binding. Owing to their high cellular accumulation, it is also reasonable to suggest that their mechanism of action is based on the competition with naturally occurring DNA condensing agents, such as polyamines spermine, spermidine, and putrescine, for intracellular binding sites, resulting in the disturbance of the correct binding of regulatory proteins initiating the onset of apoptosis.

  17. Photoconductivity in DNA-Porphyrin Complexes

    NASA Astrophysics Data System (ADS)

    Myint, Peco; Oxford, Emma; Nyazenga, Collence; Smith, Walter; Qi, Zhengqing; Johnson, A. T.

    2015-03-01

    We have measured the photoconductivity of λ - DNA that is modified by intercalating a porphyrin compound, meso-tetrakis(N-methyl-4-pyridiniumyl)porphyrin (TMPyP), into its base stacks. Intercalation was verified by a red shift and hypochromism of the Soret absorption peak. The DNA/porphyrin strands were then deposited onto oxidized silicon substrates which had been patterned with interdigitated electrodes, and blown dry. Electrical measurements were carried out under nitrogen, using illumination from a 445 nm laser; this wavelength falls within the absorption peak of the DNA/porphyrin complexes. When initially measured under dry nitrogen, the complexes show no photoconductivity or dark conductivity. However, at relative humidities of 30% and above, we do observe dark conductivity, and also photoconductivity that grows with time. Photoconductivity gets larger at higher relative humidity. Remarkably, when the humidity is lowered again, some photoconductivity is now observed, indicating a change that persists for more than 24 hours. It may be that the humidity alters the structure of the DNA, perhaps allowing for better alignment of the bases. This work was supported by NSF Grant BMAT-1306170.

  18. Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB

    PubMed Central

    Munir, Ahsan; Waseem, Hassan; Williams, Maggie R.; Stedtfeld, Robert D.; Gulari, Erdogan; Tiedje, James M.; Hashsham, Syed A.

    2017-01-01

    Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics) to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs). Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R2 = 0.8131). PMID:28555058

  19. Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB.

    PubMed

    Munir, Ahsan; Waseem, Hassan; Williams, Maggie R; Stedtfeld, Robert D; Gulari, Erdogan; Tiedje, James M; Hashsham, Syed A

    2017-05-29

    Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics) to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs). Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R² = 0.8131).

  20. Interaction Mode between Inclusion Complex of Vitamin K3 with γ- Cyclodextrin and Herring-Sperm DNA.

    PubMed

    Tang, Yan; Cai, Li; Xue, Kang; Wang, Chunling; Xiong, Xiaoli

    2016-05-03

    Methods including spectroscopy, electronic chemistry and thermodynamics were used to study the inclusion effect between γ-cyclodextrin (CD) and vitamin K3(K3), as well as the interaction mode between herring-sperm DNA (hsDNA) and γ-CD-K3 inclusion complex. The results from ultraviolet spectroscopic method indicated that VK3 and γ-CD formed 1:1 inclusion complex, with the inclusion constant Kf = 1.02 × 10(4) L/mol, which is based on Benesi-Hildebrand's viewpoint. The outcomes from the probe method and Scatchard methods suggested that the interaction mode between γ-CD-K3 and DNA was a mixture mode, which included intercalation and electrostatic binding effects. The binding constants were K (θ)25°C = 2.16 × 10(4) L/mol, and K(θ)37°C = 1.06 × 10(4) L/mol. The thermodynamic functions of the interaction between γ-CD-K3 and DNA were ΔrHm(θ) = -2.74 × 10(4) J/mol, ΔrSm(θ) = 174.74 J·mol(-1)K(-1), therefore, both ΔrHm(θ) (enthalpy) and ΔrSm(θ) (entropy) worked as driven forces in this action.

  1. One-to-one quantum dot-labeled single long DNA probes.

    PubMed

    He, Shibin; Huang, Bi-Hai; Tan, Junjun; Luo, Qing-Ying; Lin, Yi; Li, Jun; Hu, Yong; Zhang, Lu; Yan, Shihan; Zhang, Qi; Pang, Dai-Wen; Li, Lijia

    2011-08-01

    Quantum dots (QDs) have been received most attention due to their unique properties. Constructing QDs conjugated with certain number of biomolecules is considered as one of the most important research goals in nanobiotechnology. In this study, we report polymerase chain reaction (PCR) amplification of primer oligonucleotides bound to QDs, termed as QD-based PCR. Characterization of QD-based PCR products by gel electrophoresis and atomic force microscopy showed that QD-labeled long DNA strands were synthesized and only a single long DNA strand was conjugated with a QD. The QD-based PCR products still kept fluorescence properties. Moreover, the one-to-one QD-labeled long DNA conjugates as probes could detect a single-copy gene on maize chromosomes by fluorescence in situ hybridization. Labeling a single QD to a single long DNA will make detection of small single-copy DNA fragments, quantitative detection and single molecule imaging come true by nanotechnology, and it will promote medical diagnosis and basic biological research as well as nano-material fabrication. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. [Molecular dynamics of immune complex of photoadduct-containing DNA with Fab-Anti-DNA antibody fragment].

    PubMed

    Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I

    2016-01-01

    Antibodies to DNA play an important role in the pathogenesis of autoimmune diseases. The elucidation of structural mechanisms of both the antigen recognition and the interaction of anti-DNA antibodies with DNA will help to understand the role of DNA-containing immune complexes in various pathologies and can provide a basis for new treatment modalities. Moreover, the DNA-antibody complex is an analog of specific intracellular DNA-protein interactions. In this work, we used in silico molecular dynamic simulations of bimolecular complexes of the dsDNA segment containing the Fab fragment of an anti-DNA antibody to obtain the detailed thermodynamic and structural characteristics of dynamic intermolecular interactions. Using computationally modified crystal structure of the Fab-DNA complex (PDB ID: 3VW3), we studied the equilibrium molecular dynamics of the 64M-5 antibody Fab fragment associated with the dsDNA fragment containing the thymine dimer, the product of DNA photodamage. Amino acid residues that constitute paratopes and the complementary nucleotide epitopes for the Fab-DNA construct were identified. Stacking and electrostatic interactions were found to play the main role in mediating the most specific antibody-dsDNA contacts, while hydrogen bonds were less significant. These findings may shed light on the formation and properties of pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus associated with skin photosensitivity and DNA photodamage.

  3. An isolated Hda-clamp complex is functional in the regulatory inactivation of DnaA and DNA replication.

    PubMed

    Kawakami, Hironori; Su'etsugu, Masayuki; Katayama, Tsutomu

    2006-10-01

    In Escherichia coli, a complex consisting of Hda and the DNA-loaded clamp-subunit of the DNA polymerase III holoenzyme promotes hydrolysis of DnaA-ATP. The resultant ADP-DnaA is inactive for initiation of chromosomal DNA replication, thereby repressing excessive initiations. As the cellular content of the clamp is 10-100 times higher than that of Hda, most Hda molecules might be complexed with the clamp in vivo. Although Hda predominantly forms irregular aggregates when overexpressed, in the present study we found that co-overexpression of the clamp with Hda enhances Hda solubility dramatically and we efficiently isolated the Hda-clamp complex. A single molecule of the complex appears to consist of two Hda molecules and a single clamp. The complex is competent in DnaA-ATP hydrolysis and DNA replication in the presence of DNA and the clamp deficient subassembly of the DNA polymerase III holoenzyme (pol III*). These findings indicate that the clamp contained in the complex is loaded onto DNA through an interaction with the pol III* and that the Hda activity is preserved in these processes. The complex consisting of Hda and the DNA-unloaded clamp may play a specific role in a process proceeding to the DnaA-ATP hydrolysis in vivo.

  4. A specific DNA probe which identifies Babesia bovis in whole blood.

    PubMed

    Petchpoo, W; Tan-ariya, P; Boonsaeng, V; Brockelman, C R; Wilairat, P; Panyim, S

    1992-05-01

    A genomic library of Babesia bovis DNA from the Mexican strain M was constructed in plasmid pUN121 and cloned in Escherichia coli. Several recombinants which hybridized strongly to radioactively labeled B. bovis genomic DNA in an in situ screening were selected and further analyzed for those which specifically hybridized to B. bovis DNA. It was found that pMU-B1 had the highest sensitivity, detecting 25 pg of purified B. bovis DNA, and 300 parasites in 10 microliters of whole infected blood, or 0.00025% parasitemia. pMU-B1 contained a 6.0 kb B. bovis DNA insert which did not cross-hybridize to Babesia bigemina, Trypanosoma evansi, Plasmodium falciparum, Anaplasma marginale, Boophilus microplus and cow DNA. In the Southern blot analysis of genomic DNA, pMU-B1 could differentiate between two B. bovis geographic isolates, Mexican strain M and Thai isolate TS4. Thus, the pMU-B1 probe will be useful in the diagnosis of Babesia infection in cattle and ticks, and in the differentiation of B. bovis strains.

  5. Mapped DNA probes from Ioblolly pine can be used for restriction fragment length polymorphism mapping in other conifers

    Treesearch

    M.R. Ahuja; M.E. Devey; A.T. Groover; K.D. Jermstad; D.B Neale

    1994-01-01

    A high-density genetic map based on restriction fragment length polymorphisms (RFLPs) is being constructed for loblolly pine (Pinus taeda L.). Consequently, a large number of DNA probes from loblolly pine are potentially available for use in other species. We have used some of these DNA probes to detect RFLPs in 12 conifers and an angiosperm....

  6. [A new class of exciplex-formed probe detect of specific sequence DNA].

    PubMed

    Li, Qing-Yong; Zu, Yuan-Gang; Lü, Hong-Yan; Wang, Li-Min

    2009-07-01

    The present research was to develop the exciplex-based fluorescence detection of DNA. A SNP-containing region of cytochrome P450 2C9 DNA systems was evaluated to define some of the structural and associated requirement of this new class of exciplex-formed probe, and a 24-base target was selected which contains single-nucleotide polymorphisms (SNP) in genes coding for cytochrome P450. The two probes were all 12-base to give coverage of a 24-base target region to ensure specificity within the human genome. Exciplex partners used in this study were prepared using analogous phosphoramide attachment to the 3'- or 5'-phosphate group of the appropriate oligonucleotide probes. The target effectively assembled its own detector by hybridization from components which were non-fluorescent at the detection wavelength, leading to the huge improvement in terms of decreased background. This research provides details of the effects of different partner, position of partners and different excitation wavelengths for the split-oligonucleotide probe system for exciplex-based fluorescence detection of DNA. This study demonstrates that the emission intensity of the excimer formed by new pyrene derivative is the highest in these excimer and exciplex, and the excimer is easy to be formed and not sensitive to the position of partners. However the exciplex formed by the new pyrene derivative and naphthalene emitted strongly at -505 nm with large Stokes shifts (120-130 nm), and the monomer emission at 390 and 410 nm is nearly zero. Excitation wavelength of 400 nm is the best for I(e505)/I(m410) (exciplex emission at 505 nm/monomer emission at 410 nm) of the exciplex. This method features lower background and high sensitivity. Moreover the exciplex is sensitive to the steric factor, different position of partners and microenvironment, so this exciplex system is promising and could be tried to identify the SNP genes.

  7. Transcription initiation complex structures elucidate DNA opening.

    PubMed

    Plaschka, C; Hantsche, M; Dienemann, C; Burzinski, C; Plitzko, J; Cramer, P

    2016-05-19

    Transcription of eukaryotic protein-coding genes begins with assembly of the RNA polymerase (Pol) II initiation complex and promoter DNA opening. Here we report cryo-electron microscopy (cryo-EM) structures of yeast initiation complexes containing closed and open DNA at resolutions of 8.8 Å and 3.6 Å, respectively. DNA is positioned and retained over the Pol II cleft by a network of interactions between the TATA-box-binding protein TBP and transcription factors TFIIA, TFIIB, TFIIE, and TFIIF. DNA opening occurs around the tip of the Pol II clamp and the TFIIE 'extended winged helix' domain, and can occur in the absence of TFIIH. Loading of the DNA template strand into the active centre may be facilitated by movements of obstructing protein elements triggered by allosteric binding of the TFIIE 'E-ribbon' domain. The results suggest a unified model for transcription initiation with a key event, the trapping of open promoter DNA by extended protein-protein and protein-DNA contacts.

  8. Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY® FL-labeled probe or primer

    PubMed Central

    Kurata, Shinya; Kanagawa, Takahiro; Yamada, Kazutaka; Torimura, Masaki; Yokomaku, Toyokazu; Kamagata, Yoichi; Kurane, Ryuichiro

    2001-01-01

    We have developed a simple method for the quantitative detection of specific DNA or RNA molecules based on the finding that BODIPY® FL fluorescence was quenched by its interaction with a uniquely positioned guanine. This approach makes use of an oligonucleotide probe or primer containing a BODIPY® FL-modified cytosine at its 5′-end. When such a probe was hybridized with a target DNA, its fluorescence was quenched by the guanine in the target, complementary to the modified cytosine, and the quench rate was proportional to the amount of target DNA. This widely applicable technique will be used directly with larger samples or in conjunction with the polymerase chain reaction to quantify small DNA samples. PMID:11239011

  9. Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding.

    PubMed

    Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M; Hiasa, Hiroshi; Marks, Kevin R; Kerns, Robert J; Berger, James M; Drlica, Karl

    2014-05-02

    DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys(466) gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly(81) and GyrB-Glu(466) residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.

  10. CryoEM and image sorting for flexible protein/DNA complexes.

    PubMed

    Villarreal, Seth A; Stewart, Phoebe L

    2014-07-01

    Intrinsically disordered regions of proteins and conformational flexibility within complexes can be critical for biological function. However, disorder, flexibility, and heterogeneity often hinder structural analyses. CryoEM and single particle image processing techniques offer the possibility of imaging samples with significant flexibility. Division of particle images into more homogenous subsets after data acquisition can help compensate for heterogeneity within the sample. We present the utility of an eigenimage sorting analysis for examining two protein/DNA complexes with significant conformational flexibility and heterogeneity. These complexes are integral to the non-homologous end joining pathway, and are involved in the repair of double strand breaks of DNA. Both complexes include the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and biotinylated DNA with bound streptavidin, with one complex containing the Ku heterodimer. Initial 3D reconstructions of the two DNA-PKcs complexes resembled a cryoEM structure of uncomplexed DNA-PKcs without additional density clearly attributable to the remaining components. Application of eigenimage sorting allowed division of the DNA-PKcs complex datasets into more homogeneous subsets. This led to visualization of density near the base of the DNA-PKcs that can be attributed to DNA, streptavidin, and Ku. However, comparison of projections of the subset structures with 2D class averages indicated that a significant level of heterogeneity remained within each subset. In summary, image sorting methods allowed visualization of extra density near the base of DNA-PKcs, suggesting that DNA binds in the vicinity of the base of the molecule and potentially to a flexible region of DNA-PKcs. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Significance of the DNA-Histone Complex Level as a Predictor of Major Adverse Cardiovascular Events in Hemodialysis Patients: The Effect of Uremic Toxin on DNA-Histone Complex Formation.

    PubMed

    Jeong, Jong Cheol; Kim, Ji-Eun; Gu, Ja-Yoon; Yoo, Hyun Ju; Ryu, Ji Won; Kim, Dong Ki; Joo, Kwon Wook; Kim, Hyun Kyung

    2016-01-01

    Neutrophils can release the DNA-histone complex into circulation following exposure to inflammatory stimuli. This prospective study investigated whether the DNA-histone complex and other biomarkers could predict major cardiovascular adverse events (MACEs) in hemodialysis (HD) patients. The levels of circulating DNA-histone complexes, cell-free DNA, interleukin (IL)-6, and neutrophil elastase were measured in 60 HD patients and 28 healthy controls. MACE was assessed at 24 months. Uremic toxin-induced neutrophil released contents were measured in vitro. Compared with controls, HD patients showed higher levels of DNA-histone complexes and IL-6. The DNA-histone complex level was inversely associated with the Kt/V. In a multivariable Cox analysis, the high level of DNA-histone complexes was a significant independent predictor of MACE. The uremic toxins induced DNA-histone complex formation in normal neutrophils in vitro. The DNA-histone complex is a potentially useful marker to predict MACE in HD patients. Uremic toxins induced DNA-histone complex formation in vitro. © 2015 S. Karger AG, Basel.

  12. Study of concentration of HPV DNA probe immobilization for cervical cancer detection based IDE biosensor

    NASA Astrophysics Data System (ADS)

    Roshila, M. L.; Hashim, U.; Azizah, N.

    2016-07-01

    This paper mainly illustrates regarding the detection process of Human Papillomavirus (HPV) DNA probe. HPV is the most common virus that infected to human by a sexually transmitted virus. The most common high-risk HPV are 16 and 18. Interdigitated electrode (IDE) device used as based of Titanium Dioxide (TiO2) acts as inorganic surface, where by using APTES as a linker between inorganic surface and organic surface. A strategy of rapid and sensitive for the HPV detection was proposed by integrating simple DNA extraction with a gene of DNA. The extraction of the gene of DNA will make an efficiency of the detection process. It will depend on the sequence of the capture probes and the way to support their attached. The fabrication, surface modification, immobilization and hybridization processes are characterized by current voltage (I-V) measurement by using KEITHLEY 6487. This strategy will perform a good sensitivity of HPV detection.

  13. Effect of different concentration of HPV DNA probe immobilization for cervical cancer detection based IDE biosensor

    NASA Astrophysics Data System (ADS)

    Roshila, M. L.; Hashim, U.; Azizah, N.; Nadzirah, Sh.; Arshad, M. K. Md; Ruslinda, A. R.; Gopinath, Subash C. B.

    2017-03-01

    This paper principally delineates to the detection process of Human Papillomavirus (HPV) DNA test. HPV is an extremely common virus infection that infected to human by the progressions cell in the cervix cell. The types of HPV that give a most exceedingly awful infected with cervical cancer is 16 and 18 other than 31 and 45. The HPV DNA probe is immobilized with a different concentration to stabilize the sensitivity. A technique of rapid and sensitive for the HPV identification was proposed by coordinating basic DNA extraction with a quality of DNA. The extraction of the quality of DNA will make a proficiency of the discovery procedure. It will rely on the sequence of the capture probes and the way to support their attached. The fabrication, surface modification, immobilization and hybridization procedures are described by current-voltage (I-V) estimation by utilizing KEITHLEY 6487. This procedure will play out a decent affectability and selectivity of HPV discovery.

  14. Accuracy of the clinical diagnosis of vaginitis compared with a DNA probe laboratory standard.

    PubMed

    Lowe, Nancy K; Neal, Jeremy L; Ryan-Wenger, Nancy A

    2009-01-01

    To estimate the accuracy of the clinical diagnosis of the three most common causes of acute vulvovaginal symptoms (bacterial vaginosis, candidiasis vaginitis, and trichomoniasis vaginalis) using a traditional, standardized clinical diagnostic protocol compared with a DNA probe laboratory standard. This prospective clinical comparative study had a sample of 535 active-duty United States military women presenting with vulvovaginal symptoms. Clinical diagnoses were made by research staff using a standardized protocol of history, physical examination including pelvic examination, determination of vaginal pH, vaginal fluid amines test, and wet-prep microscopy. Vaginal fluid samples were obtained for DNA analysis. The research clinicians were blinded to the DNA results. The participants described a presenting symptom of abnormal discharge (50%), itching/irritation (33%), malodor (10%), burning (4%), or others such as vulvar pain and vaginal discomfort. According to laboratory standard, there were 225 cases (42%) of bacterial vaginosis, 76 cases (14%) of candidiasis vaginitis, 8 cases (1.5%) of trichomoniasis vaginalis, 87 cases of mixed infections (16%), and 139 negative cases (26%). For each single infection, the clinical diagnosis had a sensitivity and specificity of 80.8% and 70.0% for bacterial vaginosis, 83.8% and 84.8% for candidiasis vaginitis, and 84.6% and 99.6% for trichomoniasis vaginalis when compared with the DNA probe standard. Compared with a DNA probe standard, clinical diagnosis is 81-85% sensitive and 70-99% specific for bacterial vaginosis, Candida vaginitis, and trichomoniasis. Even under research conditions that provided clinicians with sufficient time and materials to conduct a thorough and standardized clinical evaluation, the diagnosis and, therefore, subsequent treatment of these common vaginal problems remains difficult. II.

  15. Sensitive detection of multiple pathogens using a single DNA probe.

    PubMed

    Nordin, Noordiana; Yusof, Nor Azah; Abdullah, Jaafar; Radu, Son; Hushiarian, Roozbeh

    2016-12-15

    A simple but promising electrochemical DNA nanosensor was designed, constructed and applied to differentiate a few food-borne pathogens. The DNA probe was initially designed to have a complementary region in Vibrio parahaemolyticus (VP) genome and to make different hybridization patterns with other selected pathogens. The sensor was based on a screen printed carbon electrode (SPCE) modified with polylactide-stabilized gold nanoparticles (PLA-AuNPs) and methylene blue (MB) was employed as the redox indicator binding better to single-stranded DNA. The immobilization and hybridization events were assessed using differential pulse voltammetry (DPV). The fabricated biosensor was able to specifically distinguish complementary, non-complementary and mismatched oligonucleotides. DNA was measured in the range of 2.0×10(-9)-2.0×10(-13)M with a detection limit of 5.3×10(-12)M. The relative standard deviation for 6 replications of DPV measurement of 0.2µM complementary DNA was 4.88%. The fabricated DNA biosensor was considered stable and portable as indicated by a recovery of more than 80% after a storage period of 6 months at 4-45°C. Cross-reactivity studies against various food-borne pathogens showed a reliably sensitive detection of VP. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Molecular dynamics simulations show altered secondary structure of clawless in binary complex with DNA providing insights into aristaless-clawless-DNA ternary complex formation.

    PubMed

    Kachhap, Sangita; Priyadarshini, Pragya; Singh, Balvinder

    2017-05-01

    Aristaless (Al) and clawless (Cll) homeodomains that are involved in leg development in Drosophila melanogaster are known to bind cooperatively to 5'-(T/C)TAATTAA(T/A)(T/A)G-3' DNA sequence, but the mechanism of their binding to DNA is unknown. Molecular dynamics (MD) studies have been carried out on binary, ternary, and reconstructed protein-DNA complexes involving Al, Cll, and DNA along with binding free energy analysis of these complexes. Analysis of MD trajectories of Cll-3A01, binary complex reveals that C-terminal end of helixIII of Cll, unwind in the absence of Al and remains so in reconstructed ternary complex, Cll-3A01-Al. In addition, this change in secondary structure of Cll does not allow it to form protein-protein interactions with Al in the ternary reconstructed complex. However, secondary structure of Cll and its interactions are maintained in other reconstructed ternary complex, Al-3A01-Cll where Cll binds to Al-3A01, binary complex to form ternary complex. These interactions as observed during MD simulations compare well with those observed in ternary crystal structure. Thus, this study highlights the role of helixIII of Cll and protein-protein interactions while proposing likely mechanism of recognition in ternary complex, Al-Cll-DNA.

  17. Electrochemical DNA probe for Hg(2+) detection based on a triple-helix DNA and Multistage Signal Amplification Strategy.

    PubMed

    Wang, Huan; Zhang, Yihe; Ma, Hongmin; Ren, Xiang; Wang, Yaoguang; Zhang, Yong; Wei, Qin

    2016-12-15

    In this work, an ultrasensitive electrochemical sensor was developed for detection of Hg(2+). Gold nanoparticles decorated bovine serum albumin reduction of graphene oxide (AuNP-BSA-rGO) were used as subsurface material for the immobilization of triple-helix DNA. The triple-helix DNA containing a thiol labelled single-stranded DNA (sDNA) and a thymine-rich DNA (T-rich DNA), which could be unwinded in the present of Hg(2+) to form more stable thymine-Hg(2+)-thymine (T-Hg(2+)-T) complex. T-Hg(2+)-T complex was then removed and the sDNA was left on the electrode. At this time, gold nanoparticle carrying thiol labelled cytosine-rich complementary DNA (cDNA-AuNP) could bind with the free sDNA. Meanwhile, the other free cDNA on AuNP could bind with each other in the present of Ag(+) to form the stable cytosine-Ag(+)-cytosine (C-Ag(+)-C) complex and circle amplification. Plenty of C-Ag(+)-C could form silver nanoclusters by electrochemical reduction and the striping signal of Ag could be measured for purpose of the final electrochemical detection of Hg(2+). This sensor could detect Hg(2+) over a wide concentration range from 0.1 to 130nM with a detection limit of 0.03nM. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Polymer-induced DNA Condensation in the Lamellar Phase of DNA-Lipid Complexes

    NASA Astrophysics Data System (ADS)

    Martin, Ana; Lin, Alison J.; Schulze, Uwe; Safinya, Cyrus R.; Schmidt, Hans-Werner

    2000-03-01

    The lamellar phase of cationic lipid-DNA complexes (CL-DNA)[1,2] is a model system for the study of a polymer induced condensation in two dimensions. Measurements of X-ray diffraction show DNA condensation with the addition of cationic poly(ethylene glycol) PEG-lipid to the membrane of the CL-DNA complexes, revealing the existence of two different behaviors as a function of the PEG length. For shorter PEG the DNA condensation can be described by considering the charge increase on the membrane due to the incorporation of the cationic polymeric chains. For longer PEG a deviation from the predicted electrostatic distance between DNA chains is observed. This higher condensation is caused by a novel depletion-attraction interaction between DNA chains in two dimensions. This work is supported by NSF-DMR9972246 and a fellowship of the Education Ministry of Spain. [1] Rädler, JO; Koltover, I; Salditt, T; Safinya, CR., Science 275, 810 (1997). [2] Koltover, I; Salditt, T; Safinya, CR., Biophys. J. 77, 915 (1999).

  19. Mimicking an Enzyme-Based Colorimetric Aptasensor for Antibiotic Residue Detection in Milk Combining Magnetic Loop-DNA Probes and CHA-Assisted Target Recycling Amplification.

    PubMed

    Luan, Qian; Gan, Ning; Cao, Yuting; Li, Tianhua

    2017-07-19

    A mimicking-enzyme-based colorimetric aptasensor was developed for the detection of kanamycin (KANA) in milk using magnetic loop-DNA-NMOF-Pt (m-L-DNA) probes and catalytic hairpin assembly (CHA)-assisted target recycling for signal amplification. The m-L-DNA probes were constructed via hybridization of hairpin DNA H1 (containing aptamer sequence) immobilized magnetic beads (m-H1) and signal DNA (sDNA, partial hybridization with H1) labeled nano Fe-MIL-88NH 2 -Pt (NMOF-Pt-sDNA). In the presence of KANA and complementary hairpin DNA H2, the m-L-DNA probes decomposed and formed an m-H1/KANA intermediate, which triggered the CHA reaction to form a stable duplex strand (m-H1-H2) while releasing KANA again for recycling. Consequently, numerous NMOF-Pt-sDNA as mimicking enzymes can synergistically catalyze 3,3',5,5'-tetramethylbenzidine (TMB) for color development. The aptasensor exhibited high selectivity and sensitivity for KANA in milk with a detection limit of 0.2 pg mL -1 within 30 min. The assay can be conveniently extended for on-site screening of other antibiotics in foods by simply changing the base sequence of the probes.

  20. Visualization of complex DNA damage along accelerated ions tracks

    NASA Astrophysics Data System (ADS)

    Kulikova, Elena; Boreyko, Alla; Bulanova, Tatiana; Ježková, Lucie; Zadneprianetc, Mariia; Smirnova, Elena

    2018-04-01

    The most deleterious DNA lesions induced by ionizing radiation are clustered DNA double-strand breaks (DSB). Clustered or complex DNA damage is a combination of a few simple lesions (single-strand breaks, base damage etc.) within one or two DNA helix turns. It is known that yield of complex DNA lesions increases with increasing linear energy transfer (LET) of radiation. For investigation of the induction and repair of complex DNA lesions, human fibroblasts were irradiated with high-LET 15N ions (LET = 183.3 keV/μm, E = 13MeV/n) and low-LET 60Co γ-rays (LET ≈ 0.3 keV/μm) radiation. DNA DSBs (γH2AX and 53BP1) and base damage (OGG1) markers were visualized by immunofluorecence staining and high-resolution microscopy. The obtained results showed slower repair kinetics of induced DSBs in cells irradiated with accelerated ions compared to 60Co γ-rays, indicating induction of more complex DNA damage. Confirming previous assumptions, detailed 3D analysis of γH2AX/53BP1 foci in 15N ions tracks revealed more complicated structure of the foci in contrast to γ-rays. It was shown that proteins 53BP1 and OGG1 involved in repair of DNA DSBs and modified bases, respectively, were colocalized in tracks of 15N ions and thus represented clustered DNA DSBs.

  1. Direct fluorescence in situ hybridization on human metaphase chromosomes using quantum dot-platinum labeled DNA probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Gyoyeon; Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon; Lee, Hansol

    The telomere shortening in chromosomes implies the senescence, apoptosis, or oncogenic transformation of cells. Since detecting telomeres in aging and diseases like cancer, is important, the direct detection of telomeres has been a very useful biomarker. We propose a telomere detection method using a newly synthesized quantum dot (QD) based probe with oligonucleotide conjugation and direct fluorescence in situ hybridization (FISH). QD-oligonucleotides were prepared with metal coordination bonding based on platinum-guanine binding reported in our previous work. The QD-oligonucleotide conjugation method has an advantage where any sequence containing guanine at the end can be easily bound to the starting QD-Ptmore » conjugate. A synthesized telomeric oligonucleotide was bound to the QD-Pt conjugate successfully and this probe hybridized specifically on the telomere of fabricated MV-4-11 and MOLT-4 chromosomes. Additionally, the QD-telomeric oligonucleotide probe successfully detected the telomeres on the CGH metaphase slide. Due to the excellent photostability and high quantum yield of QDs, the QD-oligonucleotide probe has high fluorescence intensity when compared to the organic dye-oligonucleotide probe. Our QD-oligonucleotide probe, conjugation method of this QD probe, and hybridization protocol with the chromosomes can be a useful tool for chromosome painting and FISH. - Highlights: • We prepared a probe linked between QD and telomeric oligonucleotide with platinum-guanine bonding. • Telomeres were detected by our new telomere probes successfully in three different human metaphase chromosomes. • QDPt-DNA probe has high fluorescence intensity in comparison with organic dye-DNA probe.« less

  2. Structure determination of uracil-DNA N-glycosylase from Deinococcus radiodurans in complex with DNA.

    PubMed

    Pedersen, Hege Lynum; Johnson, Kenneth A; McVey, Colin E; Leiros, Ingar; Moe, Elin

    2015-10-01

    Uracil-DNA N-glycosylase (UNG) is a DNA-repair enzyme in the base-excision repair (BER) pathway which removes uracil from DNA. Here, the crystal structure of UNG from the extremophilic bacterium Deinococcus radiodurans (DrUNG) in complex with DNA is reported at a resolution of 1.35 Å. Prior to the crystallization experiments, the affinity between DrUNG and different DNA oligonucleotides was tested by electrophoretic mobility shift assays (EMSAs). As a result of this analysis, two 16 nt double-stranded DNAs were chosen for the co-crystallization experiments, one of which (16 nt AU) resulted in well diffracting crystals. The DNA in the co-crystal structure contained an abasic site (substrate product) flipped into the active site of the enzyme, with no uracil in the active-site pocket. Despite the high resolution, it was not possible to fit all of the terminal nucleotides of the DNA complex into electron density owing to disorder caused by a lack of stabilizing interactions. However, the DNA which was in contact with the enzyme, close to the active site, was well ordered and allowed detailed analysis of the enzyme-DNA interaction. The complex revealed that the interaction between DrUNG and DNA is similar to that in the previously determined crystal structure of human UNG (hUNG) in complex with DNA [Slupphaug et al. (1996). Nature (London), 384, 87-92]. Substitutions in a (here defined) variable part of the leucine loop result in a shorter loop (eight residues instead of nine) in DrUNG compared with hUNG; regardless of this, it seems to fulfil its role and generate a stabilizing force with the minor groove upon flipping out of the damaged base into the active site. The structure also provides a rationale for the previously observed high catalytic efficiency of DrUNG caused by high substrate affinity by demonstrating an increased number of long-range electrostatic interactions between the enzyme and the DNA. Interestingly, specific interactions between residues

  3. New environment-sensitive multichannel DNA fluorescent label for investigation of the protein-DNA interactions.

    PubMed

    Kuznetsova, Alexandra A; Kuznetsov, Nikita A; Vorobjev, Yuri N; Barthes, Nicolas P F; Michel, Benoît Y; Burger, Alain; Fedorova, Olga S

    2014-01-01

    Here, we report the study of a new multichannel DNA fluorescent base analogue 3-hydroxychromone (3HC) to evaluate its suitability as a fluorescent reporter probe of structural transitions during protein-DNA interactions and its comparison with the current commercially available 2-aminopurine (aPu), pyrrolocytosine (Cpy) and 1,3-diaza-2-oxophenoxazine (tCO). For this purpose, fluorescent base analogues were incorporated into DNA helix on the opposite or on the 5'-side of the damaged nucleoside 5,6-dihydrouridine (DHU), which is specifically recognized and removed by Endonuclease VIII. These fluorophores demonstrated different sensitivities to the DNA helix conformational changes. The highest sensitivity and the most detailed information about the conformational changes of DNA induced by protein binding and processing were obtained using the 3HC probe. The application of this new artificial fluorescent DNA base is a very useful tool for the studies of complex mechanisms of protein-DNA interactions. Using 3HC biosensor, the kinetic mechanism of Endonuclease VIII action was specified.

  4. Crystal structure of the Msx-1 homeodomain/DNA complex.

    PubMed

    Hovde, S; Abate-Shen, C; Geiger, J H

    2001-10-09

    The Msx-1 homeodomain protein plays a crucial role in craniofacial, limb, and nervous system development. Homeodomain DNA-binding domains are comprised of 60 amino acids that show a high degree of evolutionary conservation. We have determined the structure of the Msx-1 homeodomain complexed to DNA at 2.2 A resolution. The structure has an unusually well-ordered N-terminal arm with a unique trajectory across the minor groove of the DNA. DNA specificity conferred by bases flanking the core TAAT sequence is explained by well ordered water-mediated interactions at Q50. Most interactions seen at the TAAT sequence are typical of the interactions seen in other homeodomain structures. Comparison of the Msx-1-HD structure to all other high resolution HD-DNA complex structures indicate a remarkably well-conserved sphere of hydration between the DNA and protein in these complexes.

  5. DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio

    The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less

  6. DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis

    DOE PAGES

    Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio; ...

    2016-03-09

    The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less

  7. Recognition of DNA abasic site nanocavity by fluorophore-switched probe: Suitable for all sequence environments

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Hu, Yuehua; Wu, Tao; Zhang, Lihua; Liu, Hua; Zhou, Xiaoshun; Shao, Yong

    2016-01-01

    Removal of a damaged base in DNA produces an abasic site (AP site) nanocavity. If left un-repaired in vivo by the specific enzyme, this nanocavity will result in nucleotide mutation in the following DNA replication. Therefore, selective recognition of AP site nanocavity by small molecules is important for identification of such DNA damage and development of genetic drugs. In this work, we investigate the fluorescence behavior of isoquinoline alkaloids including palmatine (PAL), berberine (BER), epiberberine (EPI), jatrorrhizine (JAT), coptisine (COP), coralyne (COR), worenine (WOR), berberrubine (BEU), sanguinarine (SAN), chelerythrine (CHE), and nitidine (NIT) upon binding with the AP nanocavity. PAL is screened out as the most efficient fluorophore-switched probe to recognize the AP nanocavity over the fully matched DNA. Its fluorescence enhancement occurs for all of the AP nanocavity sequence environments, which has not been achieved by the previously used probes. The bridged π conjugation effect should partially contribute to the AP nanocavity-specific fluorescence, as opposed to the solvent effect. Due to the strong binding with the AP nanocavity, PAL will find wide applications in the DNA damage recognition and sensor development.

  8. Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex

    PubMed Central

    Witosch, Justine; Wolf, Eva; Mizuno, Naoko

    2014-01-01

    The Timeless-Tipin (Tim-Tipin) complex, also referred to as the fork protection complex, is involved in coordination of DNA replication. Tim-Tipin is suggested to be recruited to replication forks via Replication Protein A (RPA) but details of the interaction are unknown. Here, using cryo-EM and biochemical methods, we characterized complex formation of Tim-Tipin, RPA and single-stranded DNA (ssDNA). Tim-Tipin and RPA form a 258 kDa complex with a 1:1:1 stoichiometry. The cryo-EM 3D reconstruction revealed a globular architecture of the Tim-Tipin-RPA complex with a ring-like and a U-shaped domain covered by a RPA lid. Interestingly, RPA in the complex adopts a horse shoe-like shape resembling its conformation in the presence of long ssDNA (>30 nucleotides). Furthermore, the recruitment of the Tim-Tipin-RPA complex to ssDNA is modulated by the RPA conformation and requires RPA to be in the more compact 30 nt ssDNA binding mode. The dynamic formation and disruption of the Tim-Tipin-RPA-ssDNA complex implicates the RPA-based recruitment of Tim-Tipin to the replication fork. PMID:25348395

  9. An active fluorescent probe based on aggregation-induced emission for intracellular bioimaging of Zn2+ and tracking of interactions with single-stranded DNA.

    PubMed

    Wen, Xiaoye; Wang, Qi; Fan, Zhefeng

    2018-07-12

    A novel dual-sensing fluorescence probe L was designed and synthesized for highly selective and sensitive detection of Zn 2+ and DNA. The probe L achieved a detection limit of 3.8 nM for Zn 2+ , which is lower than the acceptable level of Zn 2+ in living cells. The probe L displayed high selectivity toward Zn 2+ over other interference metal ions and amino acids. Moreover, the probe L displayed low cytotoxicity and good cell permeability, indicating its potential for detecting and bio-imaging of Zn 2+ . In addition, the probe L-Zn 2+ exhibited enhanced fluorescence signal for DNA detection through the metal-coordination interaction between Zn 2+ and DNA. The enhanced signal is higher than that of the classical ethidium bromide probe. The experiments in aqueous media verified the feasibility of applying probe L in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The phase behavior of cationic lipid-DNA complexes.

    PubMed Central

    May, S; Harries, D; Ben-Shaul, A

    2000-01-01

    We present a theoretical analysis of the phase behavior of solutions containing DNA, cationic lipids, and nonionic (helper) lipids. Our model allows for five possible structures, treated as incompressible macroscopic phases: two lipid-DNA composite (lipoplex) phases, namely, the lamellar (L(alpha)(C)) and hexagonal (H(II)(C)) complexes; two binary (cationic/neutral) lipid phases, that is, the bilayer (L(alpha)) and inverse-hexagonal (H(II)) structures, and uncomplexed DNA. The free energy of the four lipid-containing phases is expressed as a sum of composition-dependent electrostatic, elastic, and mixing terms. The electrostatic free energies of all phases are calculated based on Poisson-Boltzmann theory. The phase diagram of the system is evaluated by minimizing the total free energy of the three-component mixture with respect to all the compositional degrees of freedom. We show that the phase behavior, in particular the preferred lipid-DNA complex geometry, is governed by a subtle interplay between the electrostatic, elastic, and mixing terms, which depend, in turn, on the lipid composition and lipid/DNA ratio. Detailed calculations are presented for three prototypical systems, exhibiting markedly different phase behaviors. The simplest mixture corresponds to a rigid planar membrane as the lipid source, in which case, only lamellar complexes appear in solution. When the membranes are "soft" (i.e., low bending modulus) the system exhibits the formation of both lamellar and hexagonal complexes, sometimes coexisting with each other, and with pure lipid or DNA phases. The last system corresponds to a lipid mixture involving helper lipids with strong propensity toward the inverse-hexagonal phase. Here, again, the phase diagram is rather complex, revealing a multitude of phase transitions and coexistences. Lamellar and hexagonal complexes appear, sometimes together, in different regions of the phase diagram. PMID:10733951

  11. An overview of the structures of protein-DNA complexes

    PubMed Central

    Luscombe, Nicholas M; Austin, Susan E; Berman , Helen M; Thornton, Janet M

    2000-01-01

    On the basis of a structural analysis of 240 protein-DNA complexes contained in the Protein Data Bank (PDB), we have classified the DNA-binding proteins involved into eight different structural/functional groups, which are further classified into 54 structural families. Here we present this classification and review the functions, structures and binding interactions of these protein-DNA complexes. PMID:11104519

  12. Simple and Sensitive Quantification of MicroRNAs via PS@Au Microspheres-Based DNA Probes and DSN-Assisted Signal Amplification Platform.

    PubMed

    Zhao, Qian; Piao, Jiafang; Peng, Weipan; Wang, Yang; Zhang, Bo; Gong, Xiaoqun; Chang, Jin

    2018-01-31

    Identifying the microRNA (miRNA) expression level can provide critical information for early diagnosis of cancers or monitoring the cancer therapeutic efficacy. This paper focused on a kind of gold-nanoparticle-coated polystyrene microbeads (PS@Au microspheres)-based DNA probe as miRNA capture and duplex-specific nuclease (DSN) signal amplification platform based on an RGB value readout for detection of miRNAs. In virtue of the outstanding selectivity and simple experimental operation, 5'-fluorochrome-labeled molecular beacons (MBs) were immobilized on PS@Au microspheres via their 3'-thiol, in the wake of the fluorescence quenching by nanoparticle surface energy transfer (NSET). Target miRNAs were captured by the PS@Au microspheres-based DNA probe through DNA/RNA hybridization. DSN enzyme subsequently selectively cleaved the DNA to recycle the target miRNA and release of fluorophores, thereby triggering the signal amplification with more free fluorophores. The RGB value measurement enabled a detection limit of 50 fM, almost 4 orders of magnitude lower than PS@Au microspheres-based DNA probe detection without DSN. Meanwhile, by different encoding of dyes, miRNA-21 and miRNA-10b were simultaneously detected in the same sample. Considering the ability for quantitation, high sensitivity, and convenient merits, the PS@Au microspheres-based DNA probe and DSN signal amplification platform supplied valuable information for early diagnosis of cancers.

  13. Linear RNA amplification for the production of microarray hybridization probes.

    PubMed

    Klebes, Ansgar; Kornberg, Thomas B

    2008-01-01

    To understand Drosophila development and other genetically controlled processes, it is often desirable to identify differences in gene expression levels. An experimental approach to investigate these processes is to catalog the transcriptome by hybridization of mRNA to DNA microbar-rays. In these experiments mRNA-derived hybridization probes are produced and hybridized to an array of DNA spots on a solid support. The labeled cDNAs of the complex hybridization probe will bind to their complementary sequences and provide quantification of the relative concentration of the corresponding transcript in the starting material. However, such approaches are often limited by the scarcity of the experimental sample because standard methods of probe preparation require microgram quantities of mRNA template. Linear RNA amplification can alleviate such limitations to support the generation of microarray hybridization probes from a few 100 pg of mRNA. These smaller quantities can be isolated from a few 100 cells. Here, we present a linear amplification protocol designed to preserve both the relative abundance of transcripts as well as their sequence complexity.

  14. Identification of salivary Lactobacillus rhamnosus species by DNA profiling and a specific probe.

    PubMed

    Richard, B; Groisillier, A; Badet, C; Dorignac, G; Lonvaud-Funel, A

    2001-03-01

    The Lactobacillus genus has been shown to be associated with the dental carious process, but little is known about the species related to the decay, although Lactobacillus rhamnosus is suspected to be the most implicated species. Conventional identification methods based on biochemical criteria lead to ambiguous results, since the Lactobacillus species found in saliva are phenotypically close. To clarify the role of this genus in the evolution of carious disease, this work aimed to find a rapid and reliable method for identifying the L. rhamnosus species. Methods based on hybridization with DNA probes and DNA amplification by PCR were used. The dominant salivary Lactobacillus species (reference strains from the ATCC) were selected for this purpose as well as some wild strains isolated from children's saliva. DNA profiling using semirandom polymorphic DNA amplification (semi-RAPD) generated specific patterns for L. rhamnosus ATCC 7469. The profiles of all L. rhamnosus strains tested were similar and could be grouped; these strains shared four common fragments. Wild strains first identified with classic methods shared common patterns with the L. rhamnosus species and could be reclassified. One fragment of the profile was purified, cloned, used as a probe and found to be specific to the L. rhamnosus species. These results may help to localize this species within its ecological niche and to elucidate the progression of the carious process.

  15. A cascade signal amplification strategy for sensitive and label-free DNA detection based on Exo III-catalyzed recycling coupled with rolling circle amplification.

    PubMed

    Liu, Xingti; Xue, Qingwang; Ding, Yongshun; Zhu, Jing; Wang, Lei; Jiang, Wei

    2014-06-07

    A sensitive and label-free fluorescence assay for DNA detection has been developed based on cascade signal amplification combining exonuclease III (Exo III)-catalyzed recycling with rolling circle amplification. In this assay, probe DNA hybridized with template DNA was coupled onto magnetic nanoparticles to prepare a magnetic bead-probe (MNB-probe)-template complex. The complex could hybridize with the target DNA, which transformed the protruding 3' terminus of template DNA into a blunt end. Exo III could then digest template DNA, liberating the MNB-probe and target DNA. The intact target DNA then hybridized with other templates and released more MNB-probes. The liberated MNB-probe captured the primer, circular DNA and then initiated the rolling circle amplification (RCA) reaction, realizing a cascade signal amplification. Using this cascade amplification strategy, a sensitive DNA detection method was developed which was superior to many existing Exo III-based signal amplification methods. Moreover, N-methyl mesoporphyrin IX, which had a pronounced structural selectivity for the G-quadruplex, was used to combine with the G-quadruplex RCA products and generate a fluorescence signal, avoiding the need for any fluorophore-label probes. The spike and recovery experiments in a human serum sample indicated that our assay also had great potential for DNA detection in real biological samples.

  16. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, A.N.; Benson, S.C.

    1997-07-08

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated. 4 figs.

  17. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, A.M.; Benson, S.C.

    1998-06-16

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated. 4 figs.

  18. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, Alexander M.; Benson, Scott C.

    1999-01-01

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated.

  19. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, Alexander M.; Benson, Scott C.

    1998-01-01

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated.

  20. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, Alexander N.; Benson, Scott C.

    1995-01-01

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated.

  1. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, Alexander N.; Benson, Scott C.

    1997-01-01

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated.

  2. DNA complexes with dyes designed for energy transfer as fluorescent markers

    DOEpatents

    Glazer, A.N.; Benson, S.C.

    1995-03-28

    Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated. 4 figures.

  3. Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex.

    PubMed

    Witosch, Justine; Wolf, Eva; Mizuno, Naoko

    2014-11-10

    The Timeless-Tipin (Tim-Tipin) complex, also referred to as the fork protection complex, is involved in coordination of DNA replication. Tim-Tipin is suggested to be recruited to replication forks via Replication Protein A (RPA) but details of the interaction are unknown. Here, using cryo-EM and biochemical methods, we characterized complex formation of Tim-Tipin, RPA and single-stranded DNA (ssDNA). Tim-Tipin and RPA form a 258 kDa complex with a 1:1:1 stoichiometry. The cryo-EM 3D reconstruction revealed a globular architecture of the Tim-Tipin-RPA complex with a ring-like and a U-shaped domain covered by a RPA lid. Interestingly, RPA in the complex adopts a horse shoe-like shape resembling its conformation in the presence of long ssDNA (>30 nucleotides). Furthermore, the recruitment of the Tim-Tipin-RPA complex to ssDNA is modulated by the RPA conformation and requires RPA to be in the more compact 30 nt ssDNA binding mode. The dynamic formation and disruption of the Tim-Tipin-RPA-ssDNA complex implicates the RPA-based recruitment of Tim-Tipin to the replication fork. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. PriC-mediated DNA replication restart requires PriC complex formation with the single-stranded DNA-binding protein.

    PubMed

    Wessel, Sarah R; Marceau, Aimee H; Massoni, Shawn C; Zhou, Ruobo; Ha, Taekjip; Sandler, Steven J; Keck, James L

    2013-06-14

    Frequent collisions between cellular DNA replication complexes (replisomes) and obstacles such as damaged DNA or frozen protein complexes make DNA replication fork progression surprisingly sporadic. These collisions can lead to the ejection of replisomes prior to completion of replication, which, if left unrepaired, results in bacterial cell death. As such, bacteria have evolved DNA replication restart mechanisms that function to reload replisomes onto abandoned DNA replication forks. Here, we define a direct interaction between PriC, a key Escherichia coli DNA replication restart protein, and the single-stranded DNA-binding protein (SSB), a protein that is ubiquitously associated with DNA replication forks. PriC/SSB complex formation requires evolutionarily conserved residues from both proteins, including a pair of Arg residues from PriC and the C terminus of SSB. In vitro, disruption of the PriC/SSB interface by sequence changes in either protein blocks the first step of DNA replication restart, reloading of the replicative DnaB helicase onto an abandoned replication fork. Consistent with the critical role of PriC/SSB complex formation in DNA replication restart, PriC variants that cannot bind SSB are non-functional in vivo. Single-molecule experiments demonstrate that PriC binding to SSB alters SSB/DNA complexes, exposing single-stranded DNA and creating a platform for other proteins to bind. These data lead to a model in which PriC interaction with SSB remodels SSB/DNA structures at abandoned DNA replication forks to create a DNA structure that is competent for DnaB loading.

  5. New modulated design, docking and synthesis of carbohydrate-conjugate heterobimetallic CuII-SnIV complex as potential topoisomerase II inhibitor: in vitro DNA binding, cleavage and cytotoxicity against human cancer cell lines.

    PubMed

    Tabassum, Sartaj; Afzal, Mohd; Arjmand, Farukh

    2014-03-03

    New carbohydrate-conjugate heterobimetallic complexes [C₂₂H₅₀N₆O₁₃CuSnCl₂] (3) and [C₂₂H₅₈N₆O₁₇NiSnCl₂] (4) were synthesized from their monometallic analogs [C₂₂H₅₂N₆O₁₃Cu] (1) and [C₂₂H₆₀N₆O₁₇Ni] (2) containing N-glycoside ligand (L). In vitro DNA binding studies of L and complexes (1-4) with CT DNA were carried out by employing various biophysical and molecular docking techniques which revealed that heterobimetallic complex 3 strongly binds to DNA in comparison to 4, monometallic complexes (1 and 2) and the free ligand. Complex 3 cleaves pBR322 DNA via hydrolytic pathway (confirmed by T4 DNA ligase assay) and inhibited Topo-II activity in a dose-dependent manner. Furthermore, complex 3 was docked into the ATPase domain of human-Topo-II in order to probe the possible mechanism of inhibition. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization.

    PubMed

    Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae

    2016-12-01

    In the diagnosis of genetic diseases, rapid and highly sensitive DNA detection is crucial. Therefore, many strategies for detecting target DNA have been developed, including electrical, optical, and mechanical methods. Herein, a highly sensitive FRET based sensor was developed by using PNA (Peptide Nucleic Acid) probe and QD, in which red color QDs are hybridized with capture probes, reporter probes and target DNAs by EDC-NHS coupling. The hybridized probe with target DNA gives off fluorescent signal due to the energy transfer from QD to Cy5 dye in the reporter probe. Compared to the conventional DNA sensor using DNA probes, the DNA sensor using PNA probes shows higher FRET factor and efficiency due to the higher reactivity between PNA and target DNA. In addition, to elicit the effect of the distance between the donor and the acceptor, we have investigated two types of the reporter probes having Cy5 dyes attached at the different positions of the reporter probes. Results show that the shorter the distance between QDs and Cy5s, the stronger the signal intensity. Furthermore, based on the fluorescence microscopy images using microcapillary chips, the FRET signal is enhanced to be up to 276% times stronger than the signal obtained using the cuvette by the fluorescence spectrometer. These results suggest that the PNA probe system conjugated with QDs can be used as ultrasensitive DNA nanosensors. Copyright © 2016. Published by Elsevier B.V.

  7. Excited-state solvation and proton transfer dynamics of DAPI in biomimetics and genomic DNA.

    PubMed

    Banerjee, Debapriya; Pal, Samir Kumar

    2008-08-14

    The fluorescent probe DAPI (4',6-diamidino-2-phenylindole) is an efficient DNA binder. Studies on the DAPI-DNA complexes show that the probe exhibits a wide variety of interactions of different strengths and specificities with DNA. Recently the probe has been used to report the environmental dynamics of a DNA minor groove. However, the use of the probe as a solvation reporter in restricted environments is not straightforward. This is due to the presence of two competing relaxation processes (intramolecular proton transfer and solvation stabilization) in the excited state, which can lead to erroneous interpretation of the observed excited-state dynamics. In this study, the possibility of using DAPI to unambiguously report the environmental dynamics in restricted environments including DNA is explored. The dynamics of the probe is studied in bulk solvents, biomimetics like micelles and reverse micelles, and genomic DNA using steady-state and picosecond-resolved fluorescence spectroscopies.

  8. Chemical probes of the conformation of DNA modified by cis-diamminedichloroplatinum(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrot, L.; Leng, M.

    The purpose of this work was to analyze at the nucleotide level the distortions induced by the binding of cis-diamminedichloroplatinum(II) (cis-DDP) to DNA by means of chemical probes. In order to test the chemical probes, experiments were first carried out on two platinated oligonucleotides. It has been verified by circular dichroism and gel electrophoresis that the binding of cis-DDP to an AG or to a GTG site within a double-stranded oligonucleotide distorts the double helix. The reactivity of the oligonucleotide platinated at the GTG site with chloroacetaldehyde, diethyl pyrocarbonate, and osmium tetraoxide, respectively, suggests a local denaturation of the doublemore » helix. The 5'G residue and the T residue within the adduct are no longer paired, while the 3'G residue is paired. The double helix is more distorted (but not denatured) at the 5' side of the adduct than at the 3' side. The reactivities of the chemical probes with six platinated DNA restriction fragments show that even at a relatively high level of platination only a few base pairs are unpaired but the double helix is largely distorted. No local denaturation has been detected at the GG sites separated from the nearest GG or AG sites by at least three base pairs. The AG sites separated from the nearest AG or GG sites by at least three base pairs do not denature the double helix locally when they are in the sequences puAG/pyTC. It is suggested that the distortion within these sequences is induced by adducts located further away along the DNA fragments, these sequences not being the major sites for the binding of cis-DDP.« less

  9. New Environment-Sensitive Multichannel DNA Fluorescent Label for Investigation of the Protein-DNA Interactions

    PubMed Central

    Vorobjev, Yuri N.; Barthes, Nicolas P. F.; Michel, Benoît Y.; Burger, Alain; Fedorova, Olga S.

    2014-01-01

    Here, we report the study of a new multichannel DNA fluorescent base analogue 3-hydroxychromone (3HC) to evaluate its suitability as a fluorescent reporter probe of structural transitions during protein-DNA interactions and its comparison with the current commercially available 2-aminopurine (aPu), pyrrolocytosine (Cpy) and 1,3-diaza-2-oxophenoxazine (tCO). For this purpose, fluorescent base analogues were incorporated into DNA helix on the opposite or on the 5′-side of the damaged nucleoside 5,6-dihydrouridine (DHU), which is specifically recognized and removed by Endonuclease VIII. These fluorophores demonstrated different sensitivities to the DNA helix conformational changes. The highest sensitivity and the most detailed information about the conformational changes of DNA induced by protein binding and processing were obtained using the 3HC probe. The application of this new artificial fluorescent DNA base is a very useful tool for the studies of complex mechanisms of protein-DNA interactions. Using 3HC biosensor, the kinetic mechanism of Endonuclease VIII action was specified. PMID:24925085

  10. Comparison of peroxidase-labeled DNA probes with radioactive RNA probes for detection of human papillomaviruses by in situ hybridization in paraffin sections.

    PubMed

    Park, J S; Kurman, R J; Kessis, T D; Shah, K V

    1991-01-01

    A study comparing in situ hybridization using nonradioactive DNA probes directly conjugated with horseradish peroxidase (HRP), and 35S-labeled antisense RNA probes for human papillomavirus (HPV) types 6/11, 16, and 18 was performed on formalin-fixed, paraffin-embedded tissue from 34 lesions of the cervix and vulva. These lesions included exophytic condylomas and intraepithelial and invasive neoplasms. HPV 6/11 was detected in two of four condylomata acuminata by both in situ techniques. HPV 16 was detected in 13 of 30 cases of intraepithelial and invasive neoplasms by both methods. Discordance between the two methods occurred in two instances. The radiolabeled probe but not the HRP probe detected HPV 16 in one case of cervical intraepithelial neoplasia (CIN 3), whereas the converse occurred in one case of vulvar intraepithelial neoplasia (VIN 3). HPV 18 was not detected in any of the specimens by either method. This study demonstrates that nonradioactive HRP-labeled probes for the detection of specific HPV types are as sensitive as the more laborious and potentially hazardous radioactive probes.

  11. Comparison of peroxidase-labeled DNA probes with radioactive RNA probes for detection of human papillomaviruses by in situ hybridization in paraffin sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.S.; Kurman, R.J.; Kessis, T.D.

    1991-01-01

    A study comparing in situ hybridization using nonradioactive DNA probes directly conjugated with horseradish peroxidase (HRP), and {sup 35}S-labeled antisense RNA probes for human papillomavirus (HPV) types 6/11, 16, and 18 was performed on formalin-fixed, paraffin-embedded tissue from 34 lesions of the cervix and vulva. These lesions included exophytic condylomas and intraepithelial and invasive neoplasms. HPV 6/11 was detected in two of four condylomata acuminata by both in situ techniques. HPV 16 was detected in 13 of 30 cases of intraepithelial and invasive neoplasms by both methods. Discordance between the two methods occurred in two instances. The radiolabeled probe butmore » not the HRP probe detected HPV 16 in one case of cervical intraepithelial neoplasia (CIN 3), whereas the converse occurred in one case of vulvar intraepithelial neoplasia (VIN 3). HPV 18 was not detected in any of the specimens by either method. This study demonstrates that nonradioactive HRP-labeled probes for the detection of specific HPV types are as sensitive as the more laborious and potentially hazardous radioactive probes.« less

  12. High-performance analysis of single interphase cells with custom DNA probes spanning translocation break points

    NASA Astrophysics Data System (ADS)

    Weier, Heinz-Ulli G.; Munne, S.; Lersch, Robert A.; Marquez, C.; Wu, J.; Pedersen, Roger A.; Fung, Jingly

    1999-06-01

    The chromatin organization of interphase cell nuclei, albeit an object of intense investigation, is only poorly understood. In the past, this has hampered the cytogenetic analysis of tissues derived from specimens where only few cells were actively proliferating or a significant number of metaphase cells could be obtained by induction of growth. Typical examples of such hard to analyze cell systems are solid tumors, germ cells and, to a certain extent, fetal cells such as amniocytes, blastomeres or cytotrophoblasts. Balanced reciprocal translocations that do not disrupt essential genes and thus do not led to disease symptoms exit in less than one percent of the general population. Since the presence of translocations interferes with homologue pairing in meiosis, many of these individuals experience problems in their reproduction, such as reduced fertility, infertility or a history of spontaneous abortions. The majority of translocation carriers enrolled in our in vitro fertilization (IVF) programs carry simple translocations involving only two autosomes. While most translocations are relatively easy to spot in metaphase cells, the majority of cells biopsied from embryos produced by IVF are in interphase and thus unsuitable for analysis by chromosome banding or FISH-painting. We therefore set out to analyze single interphase cells for presence or absence of specific translocations. Our assay, based on fluorescence in situ hybridization (FISH) of breakpoint-spanning DNA probes, detects translocations in interphase by visual microscopic inspection of hybridization domains. Probes are prepared so that they span a breakpoint and cover several hundred kb of DNA adjacent to the breakpoint. On normal chromosomes, such probes label a contiguous stretch of DNA and produce a single hybridization domain per chromosome in interphase cells. The translocation disrupts the hybridization domain and the resulting two fragments appear as physically separated hybridization domains in

  13. Mismatch and G-Stack Modulated Probe Signals on SNP Microarrays

    PubMed Central

    Binder, Hans; Fasold, Mario; Glomb, Torsten

    2009-01-01

    Background Single nucleotide polymorphism (SNP) arrays are important tools widely used for genotyping and copy number estimation. This technology utilizes the specific affinity of fragmented DNA for binding to surface-attached oligonucleotide DNA probes. We analyze the variability of the probe signals of Affymetrix GeneChip SNP arrays as a function of the probe sequence to identify relevant sequence motifs which potentially cause systematic biases of genotyping and copy number estimates. Methodology/Principal Findings The probe design of GeneChip SNP arrays enables us to disentangle different sources of intensity modulations such as the number of mismatches per duplex, matched and mismatched base pairings including nearest and next-nearest neighbors and their position along the probe sequence. The effect of probe sequence was estimated in terms of triple-motifs with central matches and mismatches which include all 256 combinations of possible base pairings. The probe/target interactions on the chip can be decomposed into nearest neighbor contributions which correlate well with free energy terms of DNA/DNA-interactions in solution. The effect of mismatches is about twice as large as that of canonical pairings. Runs of guanines (G) and the particular type of mismatched pairings formed in cross-allelic probe/target duplexes constitute sources of systematic biases of the probe signals with consequences for genotyping and copy number estimates. The poly-G effect seems to be related to the crowded arrangement of probes which facilitates complex formation of neighboring probes with at minimum three adjacent G's in their sequence. Conclusions The applied method of “triple-averaging” represents a model-free approach to estimate the mean intensity contributions of different sequence motifs which can be applied in calibration algorithms to correct signal values for sequence effects. Rules for appropriate sequence corrections are suggested. PMID:19924253

  14. Multiple conformational states of DnaA protein regulate its interaction with DnaA boxes in the initiation of DNA replication.

    PubMed

    Patel, Meera J; Bhatia, Lavesh; Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B

    2017-09-01

    DnaA protein is the initiator of genomic DNA replication in prokaryotes. It binds to specific DNA sequences in the origin of DNA replication and unwinds small AT-rich sequences downstream for the assembly of the replisome. The mechanism of activation of DnaA that enables it to bind and organize the origin DNA and leads to replication initiation remains unclear. In this study, we have developed double-labeled fluorescent DnaA probes to analyze conformational states of DnaA protein upon binding DNA, nucleotide, and Soj sporulation protein using Fluorescence Resonance Energy Transfer (FRET). Our studies demonstrate that DnaA protein undergoes large conformational changes upon binding to substrates and there are multiple distinct conformational states that enable it to initiate DNA replication. DnaA protein adopted a relaxed conformation by expanding ~15Å upon binding ATP and DNA to form the ATP·DnaA·DNA complex. Hydrolysis of bound ATP to ADP led to a contraction of DnaA within the complex. The relaxed conformation of DnaA is likely required for the formation of the multi-protein ATP·DnaA·DNA complex. In the initiation of sporulation, Soj binding to DnaA prevented relaxation of its conformation. Soj·ADP appeared to block the activation of DnaA, suggesting a mechanism for Soj·ADP in switching initiation of DNA replication to sporulation. Our studies demonstrate that multiple conformational states of DnaA protein regulate its binding to DNA in the initiation of DNA replication. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Role of the external NH2 linker on the conformation of surface immobilized single strand DNA probes and their SERS detection

    NASA Astrophysics Data System (ADS)

    He, Lijie; Langlet, Michel; Stambouli, Valerie

    2017-03-01

    The conformation and topological properties of DNA single strand probe molecules attached on solid surfaces are important, notably for the performances of devices such as biosensors. Commonly, the DNA probes are tethered to the surface using external linkers such as NH2. In this study, the role and influence of this amino-linker on the immobilization way and conformation of DNA probes on Ag nanoparticle surface is emphasized using Surface Enhanced Raman Spectroscopy (SERS). We compare the SERS spectra and their reproducibility in the case of two groups of DNA polybase probes which are polyA, polyC, polyT, and polyG. In the first group, the polybases exhibit an external NH2 functional linker while in the second group the polybases are NH2-free. The results show that the reproducibility of SERS spectra is enhanced in the case of the first group. It leads us to propose two models of polybase conformation on Ag surface according to the presence or the absence of the external NH2 linker. In the presence of the NH2 external linker, the latter would act as a major anchoring point. As a result, the polybases are much ordered with a less random orientation than in the case of NH2-free polybases. Consequently, in view of further in situ hybridization for biosensing applications, it is strongly recommended to use NH2 linker functionalized DNA probes.

  16. Formation of Stable Cationic Lipid/DNA Complexes for Gene Transfer

    NASA Astrophysics Data System (ADS)

    Hofland, Hans E. J.; Shephard, Lee; Sullivan, Sean M.

    1996-07-01

    Stable cationic lipid/DNA complexes were formed by solubilizing cationic liposomes with 1% octylglucoside and complexing a DNA plasmid with the lipid in the presence of detergent. Removal of the detergent by dialysis yielded a lipid/DNA suspension that was able to transfect tissue culture cells up to 90 days after formation with no loss in activity. Similar levels of gene transfer were obtained by mixing the cationic lipid in a liposome form with DNA just prior to cell addition. However, expression was completely lost 24 hr after mixing. The transfection efficiency of the stable complex in 15% fetal calf serum was 30% of that obtained in the absence of serum, whereas the transient complex was completely inactivated with 2% fetal calf serum. A 90-day stability study comparing various storage conditions showed that the stable complex could be stored frozen or as a suspension at 4 degrees C with no loss in transfection efficiency. Centrifugation of the stable complex produced a pellet that contained approximately 90% of the DNA and 10% of the lipid. Transfection of cells with the resuspended pellet and the supernatant showed that the majority of the transfection activity was in the pellet and all the toxicity was in the supernatant. Formation of a stable cationic lipid/DNA complex has produced a transfection vehicle that can be stored indefinitely, can be concentrated with no loss in transfection efficiency, and the toxicity levels can be greatly reduced when the active complex is isolated from the uncomplexed lipid.

  17. Nucleolin forms a specific complex with a fragment of the viral (minus) strand of minute virus of mice DNA.

    PubMed Central

    Barrijal, S; Perros, M; Gu, Z; Avalosse, B L; Belenguer, P; Amalric, F; Rommelaere, J

    1992-01-01

    Nucleolin, a major nucleolar protein, forms a specific complex with the genome (a single-stranded DNA molecule of minus polarity) of parvovirus MVMp in vitro. By means of South-western blotting experiments, we mapped the binding site to a 222-nucleotide motif within the non-structural transcription unit, referred to as NUBE (nucleolin-binding element). The specificity of the interaction was confirmed by competitive gel retardation assays. DNaseI and nuclease S1 probing showed that NUBE folds into a secondary structure, in agreement with a computer-assisted conformational prediction. The whole NUBE may be necessary for the interaction with nucleolin, as suggested by the failure of NUBE subfragments to bind the protein and by the nuclease footprinting experiments. The present work extends the previously reported ability of nucleolin to form a specific complex with ribosomal RNA, to a defined DNA substrate. Considering the tropism of MVMp DNA replication for host cell nucleoli, these data raise the possibility that nucleolin may contribute to the regulation of the parvoviral life-cycle. Images PMID:1408821

  18. Complex structure of knob DNA on maize chromosome 9. Retrotransposon invasion into heterochromatin.

    PubMed Central

    Ananiev, E V; Phillips, R L; Rines, H W

    1998-01-01

    The recovery of maize (Zea mays L.) chromosome addition lines of oat (Avena sativa L.) from oat x maize crosses enables us to analyze the structure and composition of specific regions, such as knobs, of individual maize chromosomes. A DNA hybridization blot panel of eight individual maize chromosome addition lines revealed that 180-bp repeats found in knobs are present in each of these maize chromosomes, but the copy number varies from approximately 100 to 25, 000. Cosmid clones with knob DNA segments were isolated from a genomic library of an oat-maize chromosome 9 addition line with the help of the 180-bp knob-associated repeated DNA sequence used as a probe. Cloned knob DNA segments revealed a complex organization in which blocks of tandemly arranged 180-bp repeating units are interrupted by insertions of other repeated DNA sequences, mostly represented by individual full size copies of retrotransposable elements. There is an obvious preference for the integration of retrotransposable elements into certain sites (hot spots) of the 180-bp repeat. Sequence microheterogeneity including point mutations and duplications was found in copies of 180-bp repeats. The 180-bp repeats within an array all had the same polarity. Restriction maps constructed for 23 cloned knob DNA fragments revealed the positions of polymorphic sites and sites of integration of insertion elements. Discovery of the interspersion of retrotransposable elements among blocks of tandem repeats in maize and some other organisms suggests that this pattern may be basic to heterochromatin organization for eukaryotes. PMID:9691055

  19. Role of DNA conformation & energetic insights in Msx-1-DNA recognition as revealed by molecular dynamics studies on specific and nonspecific complexes.

    PubMed

    Kachhap, Sangita; Singh, Balvinder

    2015-01-01

    In most of homeodomain-DNA complexes, glutamine or lysine is present at 50th position and interacts with 5th and 6th nucleotide of core recognition region. Molecular dynamics simulations of Msx-1-DNA complex (Q50-TG) and its variant complexes, that is specific (Q50K-CC), nonspecific (Q50-CC) having mutation in DNA and (Q50K-TG) in protein, have been carried out. Analysis of protein-DNA interactions and structure of DNA in specific and nonspecific complexes show that amino acid residues use sequence-dependent shape of DNA to interact. The binding free energies of all four complexes were analysed to define role of amino acid residue at 50th position in terms of binding strength considering the variation in DNA on stability of protein-DNA complexes. The order of stability of protein-DNA complexes shows that specific complexes are more stable than nonspecific ones. Decomposition analysis shows that N-terminal amino acid residues have been found to contribute maximally in binding free energy of protein-DNA complexes. Among specific protein-DNA complexes, K50 contributes more as compared to Q50 towards binding free energy in respective complexes. The sequence dependence of local conformation of DNA enables Q50/Q50K to make hydrogen bond with nucleotide(s) of DNA. The changes in amino acid sequence of protein are accommodated and stabilized around TAAT core region of DNA having variation in nucleotides.

  20. Label-free fluorescence strategy for sensitive detection of adenosine triphosphate using a loop DNA probe with low background noise.

    PubMed

    Lin, Chunshui; Cai, Zhixiong; Wang, Yiru; Zhu, Zhi; Yang, Chaoyong James; Chen, Xi

    2014-07-15

    A simple, rapid, label-free, and ultrasensitive fluorescence strategy for adenosine triphosphate (ATP) detection was developed using a loop DNA probe with low background noise. In this strategy, a loop DNA probe, which is the substrate for both ligation and digestion enzyme reaction, was designed. SYBR green I (SG I), a double-stranded specific dye, was applied for the readout fluorescence signal. Exonuclease I (Exo I) and exonuclease III (Exo III), sequence-independent nucleases, were selected to digest the loop DNA probe in order to minimize the background fluorescence signal. As a result, in the absence of ATP, the loop DNA was completely digested by Exo I and Exo III, leading to low background fluorescence owing to the weak electrostatic interaction between SG I and mononucleotides. On the other hand, ATP induced the ligation of the nicking site, and the sealed loop DNA resisted the digestion of Exo I and ExoIII, resulting in a remarkable increase of fluorescence response. Upon background noise reduction, the sensitivity of the ATP determination was improved significantly, and the detection limitation was found to be 1.2 pM, which is much lower than that in almost all the previously reported methods. This strategy has promise for wide application in the determination of ATP.

  1. DNA binding of supramolecular mixed-metal complexes

    NASA Astrophysics Data System (ADS)

    Swavey, Shawn; Williams, Rodd L.; Fang, Zhenglai; Milkevitch, Matthew; Brewer, Karen J.

    2001-10-01

    The high binding affinity of cisplatin toward DNA has led to its popularity as an anticancer agent. Due to cumulative drug resistance and toxic side effects, researchers are exploring related metallodrugs. Our approach involves the use of supramolecular complexes. These mixed-metal complexes incorporate a reactive platinum moiety bridged by a polyazine ligand to a light absorbing metal-based chromophore. The presence of the light absorber allows excitation of these systems, opening up the possibility of photoactivation. The use of a supramolecular design allows components of the assembly to be varied to enhance device function and light absorbing properties. Aspects of our molecular design process and results on the DNA binding properties for a number of these mixed-metal complexes will be discussed.

  2. Individualization and estimation of relatedness in crocodilians by DNA fingerprinting with a Bkm-derived probe.

    PubMed

    Lang, J W; Aggarwal, R K; Majumdar, K C; Singh, L

    1993-04-01

    Individual-specific DNA fingerprints of crocodilians were obtained by the use of Bkm-2(8) probe. Pedigree analyses of Crocodylus palustris, C. porosus and Caiman crocodilus revealed that the multiple bands (22-23 bands with Aludigest) thus obtained were inherited stably in a Mendelian fashion. Unique fingerprints permitted us to identify individuals, assign parentage, and reconstruct the DNA profile of a missing parent. Average band sharing between unrelated crocodiles was found to be 0.37. Band sharing between animals of known pedigrees increased predictably with relatedness and provided a basis for distinguishing relatives from non-relatives. Similar results obtained in other species/genera, using the same probe, suggest that this approach may be applicable to all species of crocodilians, and could facilitate genetic studies of wild and captive populations.

  3. StructAlign, a Program for Alignment of Structures of DNA-Protein Complexes.

    PubMed

    Popov, Ya V; Galitsyna, A A; Alexeevski, A V; Karyagina, A S; Spirin, S A

    2015-11-01

    Comparative analysis of structures of complexes of homologous proteins with DNA is important in the analysis of DNA-protein recognition. Alignment is a necessary stage of the analysis. An alignment is a matching of amino acid residues and nucleotides of one complex to residues and nucleotides of the other. Currently, there are no programs available for aligning structures of DNA-protein complexes. We present the program StructAlign, which should fill this gap. The program inputs a pair of complexes of DNA double helix with proteins and outputs an alignment of DNA chains corresponding to the best spatial fit of the protein chains.

  4. Probe classification of on-off type DNA microarray images with a nonlinear matching measure

    NASA Astrophysics Data System (ADS)

    Ryu, Munho; Kim, Jong Dae; Min, Byoung Goo; Kim, Jongwon; Kim, Y. Y.

    2006-01-01

    We propose a nonlinear matching measure, called counting measure, as a signal detection measure that is defined as the number of on pixels in the spot area. It is applied to classify probes for an on-off type DNA microarray, where each probe spot is classified as hybridized or not. The counting measure also incorporates the maximum response search method, where the expected signal is obtained by taking the maximum among the measured responses of the various positions and sizes of the spot template. The counting measure was compared to existing signal detection measures such as the normalized covariance and the median for 2390 patient samples tested on the human papillomavirus (HPV) DNA chip. The counting measure performed the best regardless of whether or not the maximum response search method was used. The experimental results showed that the counting measure combined with the positional search was the most preferable.

  5. Complexes formed between DNA and poly(amido amine) dendrimers of different generations--modelling DNA wrapping and penetration.

    PubMed

    Qamhieh, Khawla; Nylander, Tommy; Black, Camilla F; Attard, George S; Dias, Rita S; Ainalem, Marie-Louise

    2014-07-14

    This study deals with the build-up of biomaterials consisting of biopolymers, namely DNA, and soft particles, poly(amido amine) (PAMAM) dendrimers, and how to model their interactions. We adopted and applied an analytical model to provide further insight into the complexation between DNA (4331 bp) and positively charged PAMAM dendrimers of generations 1, 2, 4, 6 and 8, previously studied experimentally. The theoretical models applied describe the DNA as a semiflexible polyelectrolyte that interacts with dendrimers considered as either hard (impenetrable) spheres or as penetrable and soft spheres. We found that the number of DNA turns around one dendrimer, thus forming a complex, increases with the dendrimer size or generation. The DNA penetration required for the complex to become charge neutral depends on dendrimer generation, where lower generation dendrimers require little penetration to give charge neutral complexes. High generation dendrimers display charge inversion for all considered dendrimer sizes and degrees of penetration. Consistent with the morphologies observed experimentally for dendrimer/DNA aggregates, where highly ordered rods and toroids are found for low generation dendrimers, the DNA wraps less than one turn around the dendrimer. Disordered globular structures appear for high generation dendrimers, where the DNA wraps several turns around the dendrimer. Particularly noteworthy is that the dendrimer generation 4 complexes, where the DNA wraps about one turn around the dendrimers, are borderline cases and can form all types of morphologies. The net-charges of the aggregate have been estimated using zeta potential measurements and are discussed within the theoretical framework.

  6. Mitochondrial respiratory complex I probed by delayed luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Baran, Irina; Ionescu, Diana; Privitera, Simona; Scordino, Agata; Mocanu, Maria Magdalena; Musumeci, Francesco; Grasso, Rosaria; Gulino, Marisa; Iftime, Adrian; Tofolean, Ioana Teodora; Garaiman, Alexandru; Goicea, Alexandru; Irimia, Ruxandra; Dimancea, Alexandru; Ganea, Constanta

    2013-12-01

    The role of mitochondrial complex I in ultraweak photon-induced delayed photon emission [delayed luminescence (DL)] of human leukemia Jurkat T cells was probed by using complex I targeting agents like rotenone, menadione, and quercetin. Rotenone, a complex I-specific inhibitor, dose-dependently increased the mitochondrial level of reduced nicotinamide adenine dinucleotide (NADH), decreased clonogenic survival, and induced apoptosis. A strong correlation was found between the mitochondrial levels of NADH and oxidized flavin mononucleotide (FMNox) in rotenone-, menadione- and quercetin-treated cells. Rotenone enhanced DL dose-dependently, whereas quercetin and menadione inhibited DL as well as NADH or FMNox. Collectively, the data suggest that DL of Jurkat cells originates mainly from mitochondrial complex I, which functions predominantly as a dimer and less frequently as a tetramer. In individual monomers, both pairs of pyridine nucleotide (NADH/reduced nicotinamide adenine dinucleotide phosphate) sites and flavin (FMN-a/FMN-b) sites appear to bind cooperatively their specific ligands. Enhancement of delayed red-light emission by rotenone suggests that the mean time for one-electron reduction of ubiquinone or FMN-a by the terminal Fe/S center (N2) is 20 or 284 μs, respectively. All these findings suggest that DL spectroscopy could be used as a reliable, sensitive, and robust technique to probe electron flow within complex I in situ.

  7. Stable isotope probing to study functional components of complex microbial ecosystems.

    PubMed

    Mazard, Sophie; Schäfer, Hendrik

    2014-01-01

    This protocol presents a method of dissecting the DNA or RNA of key organisms involved in a specific biochemical process within a complex ecosystem. Stable isotope probing (SIP) allows the labelling and separation of nucleic acids from community members that are involved in important biochemical transformations, yet are often not the most numerically abundant members of a community. This pure culture-independent technique circumvents limitations of traditional microbial isolation techniques or data mining from large-scale whole-community metagenomic studies to tease out the identities and genomic repertoires of microorganisms participating in biological nutrient cycles. SIP experiments can be applied to virtually any ecosystem and biochemical pathway under investigation provided a suitable stable isotope substrate is available. This versatile methodology allows a wide range of analyses to be performed, from fatty-acid analyses, community structure and ecology studies, and targeted metagenomics involving nucleic acid sequencing. SIP experiments provide an effective alternative to large-scale whole-community metagenomic studies by specifically targeting the organisms or biochemical transformations of interest, thereby reducing the sequencing effort and time-consuming bioinformatics analyses of large datasets.

  8. Probing the role of intercalating protein sidechains for kink formation in DNA

    PubMed Central

    Sandmann, Achim

    2018-01-01

    Protein binding can induce DNA kinks, which are for example important to enhance the specificity of the interaction and to facilitate the assembly of multi protein complexes. The respective proteins frequently exhibit amino acid sidechains that intercalate between the DNA base steps at the site of the kink. However, on a molecular level there is only little information available about the role of individual sidechains for kink formation. To unravel structural principles of protein-induced DNA kinking we have performed molecular dynamics (MD) simulations of five complexes that varied in their architecture, function, and identity of intercalated residues. Simulations were performed for the DNA complexes of wildtype proteins (Sac7d, Sox-4, CcpA, TFAM, TBP) and for mutants, in which the intercalating residues were individually or combined replaced by alanine. The work revealed that for systems with multiple intercalated residues, not all of them are necessarily required for kink formation. In some complexes (Sox-4, TBP), one of the residues proved to be essential for kink formation, whereas the second residue has only a very small effect on the magnitude of the kink. In other systems (e.g. Sac7d) each of the intercalated residues proved to be individually capable of conferring a strong kink suggesting a partially redundant role of the intercalating residues. Mutation of the key residues responsible for kinking either resulted in stable complexes with reduced kink angles or caused conformational instability as evidenced by a shift of the kink to an adjacent base step. Thus, MD simulations can help to identify the role of individual inserted residues for kinking, which is not readily apparent from an inspection of the static structures. This information might be helpful for understanding protein-DNA interactions in more detail and for designing proteins with altered DNA binding properties in the future. PMID:29432448

  9. Probing the role of intercalating protein sidechains for kink formation in DNA.

    PubMed

    Sandmann, Achim; Sticht, Heinrich

    2018-01-01

    Protein binding can induce DNA kinks, which are for example important to enhance the specificity of the interaction and to facilitate the assembly of multi protein complexes. The respective proteins frequently exhibit amino acid sidechains that intercalate between the DNA base steps at the site of the kink. However, on a molecular level there is only little information available about the role of individual sidechains for kink formation. To unravel structural principles of protein-induced DNA kinking we have performed molecular dynamics (MD) simulations of five complexes that varied in their architecture, function, and identity of intercalated residues. Simulations were performed for the DNA complexes of wildtype proteins (Sac7d, Sox-4, CcpA, TFAM, TBP) and for mutants, in which the intercalating residues were individually or combined replaced by alanine. The work revealed that for systems with multiple intercalated residues, not all of them are necessarily required for kink formation. In some complexes (Sox-4, TBP), one of the residues proved to be essential for kink formation, whereas the second residue has only a very small effect on the magnitude of the kink. In other systems (e.g. Sac7d) each of the intercalated residues proved to be individually capable of conferring a strong kink suggesting a partially redundant role of the intercalating residues. Mutation of the key residues responsible for kinking either resulted in stable complexes with reduced kink angles or caused conformational instability as evidenced by a shift of the kink to an adjacent base step. Thus, MD simulations can help to identify the role of individual inserted residues for kinking, which is not readily apparent from an inspection of the static structures. This information might be helpful for understanding protein-DNA interactions in more detail and for designing proteins with altered DNA binding properties in the future.

  10. Crystallization of bFGF-DNA Aptamer Complexes Using a Sparse Matrix Designed for Protein-Nucleic Acid Complexes

    NASA Technical Reports Server (NTRS)

    Cannone, Jaime J.; Barnes, Cindy L.; Achari, Aniruddha; Kundrot, Craig E.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Sparse Matrix approach for obtaining lead crystallization conditions has proven to be very fruitful for the crystallization of proteins and nucleic acids. Here we report a Sparse Matrix developed specifically for the crystallization of protein-DNA complexes. This method is rapid and economical, typically requiring 2.5 mg of complex to test 48 conditions. The method was originally developed to crystallize basic fibroblast growth factor (bFGF) complexed with DNA sequences identified through in vitro selection, or SELEX, methods. Two DNA aptamers that bind with approximately nanomolar affinity and inhibit the angiogenic properties of bFGF were selected for co-crystallization. The Sparse Matrix produced lead crystallization conditions for both bFGF-DNA complexes.

  11. Differentiation of respiratory syncytial virus subgroups with cDNA probes in a nucleic acid hybridization assay.

    PubMed Central

    Sullender, W M; Anderson, L J; Anderson, K; Wertz, G W

    1990-01-01

    A new approach to respiratory syncytial (RS) virus subgroup determination was developed by using a simple nucleic acid filter hybridization technique. By this method, virus-infected cells are bound and fixed in a single step, and the viral RNA in the fixed-cell preparation is characterized directly by its ability to hybridize to cDNA probes specific for either the A or B subgroups of RS virus. The subgroup-specific probes were constructed from cDNA clones that corresponded to a portion of the extracellular domain of the RS virus G protein of either a subgroup B RS virus (8/60) or a subgroup A RS virus (A2). The cDNA probes were labeled with 32P and used to analyze RS virus isolates collected over a period of three decades. Replicate templates of infected cell preparations were hybridized with either the subgroup A or B probe. The subgroup assignments of 40 viruses tested by nucleic acid hybridization were in agreement with the results of subgroup determinations based on their reactivities with monoclonal antibodies, which previously has been the only method available for determining the subgroup classification of RS virus isolates. The nucleic acid hybridization assay has the advantage of providing broad-based discrimination of the two subgroups on the basis of nucleic acid homology, irrespective of minor antigenic differences that are detected in assays in which monoclonal antibodies are used. The nucleic acid hybridization technique provides a reliable method for RS virus subgroup characterization. Images PMID:2118548

  12. Structural Analysis of HMGD-DNA Complexes Reveal Influence of Intercalation on Sequence Selectivity and DNA Bending

    PubMed Central

    Churchill, Mair E.A.; Klass, Janet; Zoetewey, David L.

    2010-01-01

    The ubiquitous eukaryotic High-Mobility-Group-Box (HMGB) chromosomal proteins promote many chromatin-mediated cellular activities through their non-sequence-specific binding and bending of DNA. Minor groove DNA binding by the HMG box results in substantial DNA bending toward the major groove owing to electrostatic interactions, shape complementarity and DNA intercalation that occurs at two sites. Here, the structures of the complexes formed with DNA by a partially DNA intercalation-deficient mutant of Drosophila melanogaster HMGD have been determined by X-ray crystallography at a resolution of 2.85 Å. The six proteins and fifty base pairs of DNA in the crystal structure revealed a variety of bound conformations. All of the proteins bound in the minor groove, bridging DNA molecules, presumably because these DNA regions are easily deformed. The loss of the primary site of DNA intercalation decreased overall DNA bending and shape complementarity. However, DNA bending at the secondary site of intercalation was retained and most protein-DNA contacts were preserved. The mode of binding resembles the HMGB1-boxA-cisplatin-DNA complex, which also lacks a primary intercalating residue. This study provides new insights into the binding mechanisms used by HMG boxes to recognize varied DNA structures and sequences as well as modulate DNA structure and DNA bending. PMID:20800069

  13. Intercalation of a Zn(II) complex containing ciprofloxacin drug between DNA base pairs.

    PubMed

    Shahabadi, Nahid; Asadian, Ali Ashraf; Mahdavi, Mryam

    2017-11-02

    In this study, an attempt has been made to study the interaction of a Zn(II) complex containing an antibiotic drug, ciprofloxacin, with calf thymus DNA using spectroscopic methods. It was found that Zn(II) complex could bind with DNA via intercalation mode as evidenced by: hyperchromism in UV-Vis spectrum; these spectral characteristics suggest that the Zn(II) complex interacts with DNA most likely through a mode that involves a stacking interaction between the aromatic chromophore and the base pairs of DNA. DNA binding constant (K b = 1.4 × 10 4 M -1 ) from spectrophotometric studies of the interaction of Zn(II) complex with DNA is comparable to those of some DNA intercalative polypyridyl Ru(II) complexes 1.0 -4.8 × 10 4 M -1 . CD study showed stabilization of the right-handed B form of DNA in the presence of Zn(II) complex as observed for the classical intercalator methylene blue. Thermodynamic parameters (ΔH < 0 and ΔS < 0) indicated that hydrogen bond and Van der Waals play main roles in this binding prose. Competitive fluorimetric studies with methylene blue (MB) dye have shown that Zn(II) complex exhibits the ability of this complex to displace with DNA-MB, indicating that it binds to DNA in strong competition with MB for the intercalation.

  14. Strand-invading linear probe combined with unmodified PNA.

    PubMed

    Asanuma, Hiroyuki; Niwa, Rie; Akahane, Mariko; Murayama, Keiji; Kashida, Hiromu; Kamiya, Yukiko

    2016-09-15

    Efficient strand invasion by a linear probe to fluorescently label double-stranded DNA has been implemented by employing a probe and unmodified PNA. As a fluorophore, we utilized ethynylperylene. Multiple ethynylperylene residues were incorporated into the DNA probe via a d-threoninol scaffold. The ethynylperylene did not significantly disrupt hybridization with complementary DNA. The linear probe self-quenched in the absence of target DNA and did not hybridize with PNA. A gel-shift assay revealed that linear probe and PNA combination invaded the central region of double-stranded DNA upon heat-shock treatment to form a double duplex. To further suppress the background emission and increase the stability of the probe/DNA duplex, a probe containing anthraquinones as well as ethynylperylene was synthesized. This probe and PNA invader pair detected an internal sequence in a double-stranded DNA with high sensitivity when heat shock treatment was used. The probe and PNA pair was able to invade at the terminus of a long double-stranded DNA at 40°C at 100mM NaCl concentration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A Single Molecular Beacon Probe Is Sufficient for the Analysis of Multiple Nucleic Acid Sequences

    PubMed Central

    Gerasimova, Yulia V.; Hayson, Aaron; Ballantyne, Jack; Kolpashchikov, Dmitry M.

    2010-01-01

    Molecular beacon (MB) probes are dual-labeled hairpin-shaped oligodeoxyribonucleotides that are extensively used for real-time detection of specific RNA/DNA analytes. In the MB probe, the loop fragment is complementary to the analyte: therefore, a unique probe is required for the analysis of each new analyte sequence. The conjugation of an oligonucleotide with two dyes and subsequent purification procedures add to the cost of MB probes, thus reducing their application in multiplex formats. Here we demonstrate how one MB probe can be used for the analysis of an arbitrary nucleic acid. The approach takes advantage of two oligonucleotide adaptor strands, each of which contains a fragment complementary to the analyte and a fragment complementary to an MB probe. The presence of the analyte leads to association of MB probe and the two DNA strands in quadripartite complex. The MB probe fluorescently reports the formation of this complex. In this design, the MB does not bind the analyte directly; therefore, the MB sequence is independent of the analyte. In this study one universal MB probe was used to genotype three human polymorphic sites. This approach promises to reduce the cost of multiplex real-time assays and improve the accuracy of single-nucleotide polymorphism genotyping. PMID:20665615

  16. Polymerase chain reaction and DNA probe hybridization to assess the efficacy of diminazene treatment in Trypanosoma brucei-infected cattle.

    PubMed

    Clausen, P H; Waiswa, C; Katunguka-Rwakishaya, E; Schares, G; Steuber, S; Mehlitz, D

    1999-03-01

    Four of eight Ankole longhorn cattle experimentally infected with Trypanosoma brucei were treated with 7 mg/kg diminazene aceturate (Berenil, Hoechst AG, Germany) at day 71 postinfection. The trypanocidal activity was monitored using polymerase chain reaction (PCR) and DNA probe hybridization. When extracted parasite DNA (without host DNA) was used, as little as 1 fg per reaction, which is equivalent to about 1-10% of the DNA in a single trypanosome, produced a specific product that was visible as a 177-bp band in an agarose gel. In infected cattle, specific PCR products could be amplified at as early as 1 day postinfection. PCR signals remained positive during infection, except in one sample, although aparasitemic phases occurred. In cases where treatment resulted in a significant clinical improvement, PCR signals disappeared at 3-4 days after the administration of the drug. By contrast, in cattle that showed clinical signs of CNS involvement after treatment, although aparasitemic, and died before the termination of the experiment, specific products could be amplified on several occasions following treatment. The PCR signals generated after treatment could be further enhanced by subsequent slot-blot hybridization with a T. brucei-specific DNA probe. We conclude that PCR coupled with DNA probe hybridization provides a highly sensitive tool for the assessment of therapeutic efficiency and disease progression in trypanosome infections, especially in chronic infections when the level of parasitemia is low or when trypanosomes are sequestered at cryptic sites.

  17. Synthesis and structural characterization of dioxomolybdenum and dioxotungsten hydroxamato complexes and their function in the protection of radiation induced DNA damage.

    PubMed

    Paul, Shiv Shankar; Selim, Md; Saha, Abhijit; Mukherjea, Kalyan K

    2014-02-21

    complexes was further established by EPR spectroscopy using a stable free radical, the DPPH, as a probe. The experimental results of DNA binding are further supported by molecular docking studies.

  18. Re-visiting protein-centric two-tier classification of existing DNA-protein complexes.

    PubMed

    Malhotra, Sony; Sowdhamini, Ramanathan

    2012-07-16

    Precise DNA-protein interactions play most important and vital role in maintaining the normal physiological functioning of the cell, as it controls many high fidelity cellular processes. Detailed study of the nature of these interactions has paved the way for understanding the mechanisms behind the biological processes in which they are involved. Earlier in 2000, a systematic classification of DNA-protein complexes based on the structural analysis of the proteins was proposed at two tiers, namely groups and families. With the advancement in the number and resolution of structures of DNA-protein complexes deposited in the Protein Data Bank, it is important to revisit the existing classification. On the basis of the sequence analysis of DNA binding proteins, we have built upon the protein centric, two-tier classification of DNA-protein complexes by adding new members to existing families and making new families and groups. While classifying the new complexes, we also realised the emergence of new groups and families. The new group observed was where β-propeller was seen to interact with DNA. There were 34 SCOP folds which were observed to be present in the complexes of both old and new classifications, whereas 28 folds are present exclusively in the new complexes. Some new families noticed were NarL transcription factor, Z-α DNA binding proteins, Forkhead transcription factor, AP2 protein, Methyl CpG binding protein etc. Our results suggest that with the increasing number of availability of DNA-protein complexes in Protein Data Bank, the number of families in the classification increased by approximately three fold. The folds present exclusively in newly classified complexes is suggestive of inclusion of proteins with new function in new classification, the most populated of which are the folds responsible for DNA damage repair. The proposed re-visited classification can be used to perform genome-wide surveys in the genomes of interest for the presence of DNA

  19. An Engineered Kinetic Amplification Mechanism for Single Nucleotide Variant Discrimination by DNA Hybridization Probes.

    PubMed

    Chen, Sherry Xi; Seelig, Georg

    2016-04-20

    Even a single-nucleotide difference between the sequences of two otherwise identical biological nucleic acids can have dramatic functional consequences. Here, we use model-guided reaction pathway engineering to quantitatively improve the performance of selective hybridization probes in recognizing single nucleotide variants (SNVs). Specifically, we build a detection system that combines discrimination by competition with DNA strand displacement-based catalytic amplification. We show, both mathematically and experimentally, that the single nucleotide selectivity of such a system in binding to single-stranded DNA and RNA is quadratically better than discrimination due to competitive hybridization alone. As an additional benefit the integrated circuit inherits the property of amplification and provides at least 10-fold better sensitivity than standard hybridization probes. Moreover, we demonstrate how the detection mechanism can be tuned such that the detection reaction is agnostic to the position of the SNV within the target sequence. in contrast, prior strand displacement-based probes designed for kinetic discrimination are highly sensitive to position effects. We apply our system to reliably discriminate between different members of the let-7 microRNA family that differ in only a single base position. Our results demonstrate the power of systematic reaction network design to quantitatively improve biotechnology.

  20. Structural studies on Pax-8 Prd domain/DNA complex.

    PubMed

    Campagnolo, M; Pesaresi, A; Zelezetsky, I; Geremia, S; Randaccio, L; Bisca, A; Tell, G

    2007-04-01

    Pax-8 is a member of the Pax family of transcription factors and is essential in the development of thyroid follicular cells. Pax-8 has two DNA-binding domains: the paired domain and the homeo domain. In this study, a preliminary X-ray diffraction analysis of the mammalian Pax-8 paired domain in complex with the C-site of the thyroglobulin promoter was achieved. The Pax-8 paired domain was crystallized by the hanging-drop vapor-diffusion method in complex with both a blunt-ended 26 bp DNA fragment and with a sticky-ended 24 bp DNA fragment with two additional overhanging bases. Crystallization experiments make clear that the growth of transparent crystals with large dimensions and regular shape is particularly influenced by ionic strength. The crystals of Pax-8 complex with blunt-ended and sticky-ended DNA, diffracted synchrotron radiation to 6.0 and 8.0 A resolution and belongs both to the C centered monoclinic system with cell dimensions: a = 89.88 A, b = 80.05 A, c = 67.73 A, and beta = 124.3 degrees and a = 256.56, b = 69.07, c = 99.32 A, and beta = 98.1 degrees , respectively. Fluorescence experiments suggest that the crystalline disorder, deduced by the poor diffraction, can be attributed to the low homogeneity of the protein-DNA sample. The theoretical comparative model of the Pax-8 paired domain complexed with the C-site of the thyroglobulin promoter shows the probable presence of some specific protein-DNA interactions already observed in other Pax proteins and the important role of the cysteine residues of PAI subdomain in the redox control of the DNA recognition.

  1. Studies on the formation and stability of triplex DNA using fluorescence correlation spectroscopy.

    PubMed

    Hu, Hongyan; Huang, Xiangyi; Ren, Jicun

    2016-05-01

    Triplex DNA has become one of the most useful recognition motifs in the design of new molecular biology tools, therapeutic agents and sophisticated DNA-based nanomaterials because of its direct recognition of natural double-stranded DNA. In this paper, we developed a sensitive and microscale method to study the formation and stability characterization of triplex DNA using fluorescence correlation spectroscopy (FCS). The principle of this method is mainly based on the excellent capacity of FCS for sensitively distinguishing between free single-strand DNA (ssDNA) fluorescent probes and fluorescent probe-double-strand DNA (dsDNA) hybridized complexes. First, we systematically investigated the experimental conditions of triplex DNA formation. Then, we evaluated the equilibrium association constants (K(a)) under different ssDNA probe lengths, composition and pH. Finally, we used FCS to measure the hybridization fraction of a 20-mer perfectly matched ssDNA probe and three single-base mismatched ssDNA probes with 146-mer dsDNA. Our data illustrated that FCS is a useful tool for the direct determination of the thermodynamic parameters of triplex DNA formation and discrimination of a single-base mismatch of triplex DNA without denaturation. Compared with current methods, our method is characterized by high sensitivity, good universality and small sample and reagent requirements. More importantly, our method has the potential to become a platform for triplex DNA research in vitro. Copyright © 2015 John Wiley & Sons, Ltd.

  2. High sensitive and direct fluorescence detection of single viral DNA sequences by integration of double strand probes onto microgels particles.

    PubMed

    Aliberti, A; Cusano, A M; Battista, E; Causa, F; Netti, P A

    2016-02-21

    A novel class of probes for fluorescence detection was developed and combined to microgel particles for a high sensitive fluorescence detection of nucleic acids. A double strand probe with an optimized fluorescent-quencher couple was designed for the detection of different lengths of nucleic acids (39 nt and 100 nt). Such probe proved efficient in target detection in different contests and specific even in presence of serum proteins. The conjugation of double strand probes onto polymeric microgels allows for a sensitive detection of DNA sequences from HIV, HCV and SARS corona viruses with a LOD of 1.4 fM, 3.7 fM and 1.4 fM, respectively, and with a dynamic range of 10(-9)-10(-15) M. Such combination enhances the sensitivity of the detection of almost five orders of magnitude when compared to the only probe. The proposed platform based on the integration of innovative double strand probe into microgels particles represents an attractive alternative to conventional sensitive DNA detection technologies that rely on amplifications methods.

  3. Biophysical and transfection studies of the diC(14)-amidine/DNA complex.

    PubMed Central

    Cherezov, Vadim; Qiu, Hong; Pector, Veronique; Vandenbranden, Michel; Ruysschaert, Jean-Marie; Caffrey, Martin

    2002-01-01

    Liposomes of the synthetic cationic lipid, N-t-butyl-N'-tetradecylamino-propionamidine (diC(14)-amidine), efficiently ports DNA into mammalian cells in the absence of other (neutral) lipids. The compositional simplicity of this transfection mix makes it attractive from a formulation perspective. We have used low- and wide-angle x-ray diffraction and polarized light microscopy to characterize the thermotropic phase behavior and microstructure of diC(14)-amidine and of the lipid/DNA (circular plasmid, 5.4 kb) complex with a view to understanding the structure of the complex and its role in transfection. Upon heating, the lipid in buffer undergoes a lamellar crystalline (L(c), d(001) = 41.7 A)-to-lamellar liquid crystal (L(c)(alpha), d(001) depends on hydration and T) transition at approximately 40 degrees C. Sonicated lipid vesicles with a reported transition temperature of approximately 23 degrees C complex with DNA. Complex formation is complete at a DNA/lipid mole ratio (rho) of 0.8. Adding DNA to the lipid causes d(001) of the multilayered complex to drop from 52 to 49 A as rho rises from 0.03 to 1.64. The minimal DNA-DNA duplex separation observed is 26 A, consistent with the close packing of B-DNA. Lipid bilayers in the complex undergo a lamellar gel (L(c)(beta))-to-L(c)(alpha) (superscript c refers to complex) transition at approximately 23 degrees C. Transfection efficiency was maximized at rho = 0.4. The structure and transfection data combined suggest that densely packaged DNA in a net positively charged complex is essential for transfection. PMID:12023234

  4. Multiple components in restriction enzyme digests of mammalian (insectivore), avian and reptilian genomic DNA hybridize with murine immunoglobulin VH probes.

    PubMed

    Litman, G W; Berger, L; Jahn, C L

    1982-06-11

    High molecular weight genomic DNAs isolated from an insectivore, Tupaia, and a representative reptilian, Caiman, and avian, Gallus, were digested with restriction endonucleases transferred to nitrocellulose and hybridized with nick-translated probes of murine VH genes. The derivations of the probes designated S107V (1) and mu 107V (2,3) have been described previously. Under conditions of reduced stringency, multiple hybridizing components were observed with Tupaia and Caiman; only mu mu 107V exhibited significant hybridization with the separated fragments of Gallus DNA. The nick-translated S107V probe was digested with Fnu4H1 and subinserts corresponding to the 5' and 3' regions both detected multiple hybridizing components in Tupaia and Caiman DNA. A 5' probe lacking the leader sequence identified the same components as the intact 5' probe, suggesting that VH coding regions distant as the reptilians may possess multiple genetic components which exhibit significant homology with murine immunoglobulin in VH regions.

  5. Multiple components in restriction enzyme digests of mammalian (insectivore), avian and reptilian genomic DNA hybridize with murine immunoglobulin VH probes.

    PubMed Central

    Litman, G W; Berger, L; Jahn, C L

    1982-01-01

    High molecular weight genomic DNAs isolated from an insectivore, Tupaia, and a representative reptilian, Caiman, and avian, Gallus, were digested with restriction endonucleases transferred to nitrocellulose and hybridized with nick-translated probes of murine VH genes. The derivations of the probes designated S107V (1) and mu 107V (2,3) have been described previously. Under conditions of reduced stringency, multiple hybridizing components were observed with Tupaia and Caiman; only mu mu 107V exhibited significant hybridization with the separated fragments of Gallus DNA. The nick-translated S107V probe was digested with Fnu4H1 and subinserts corresponding to the 5' and 3' regions both detected multiple hybridizing components in Tupaia and Caiman DNA. A 5' probe lacking the leader sequence identified the same components as the intact 5' probe, suggesting that VH coding regions distant as the reptilians may possess multiple genetic components which exhibit significant homology with murine immunoglobulin in VH regions. Images PMID:6285298

  6. Multiply Intercalator-Substituted Cu(II) Cyclen Complexes as DNA Condensers and DNA/RNA Synthesis Inhibitors.

    PubMed

    Hormann, Jan; Malina, Jaroslav; Lemke, Oliver; Hülsey, Max J; Wedepohl, Stefanie; Potthoff, Jan; Schmidt, Claudia; Ott, Ingo; Keller, Bettina G; Brabec, Viktor; Kulak, Nora

    2018-05-07

    Many drugs that are applied in anticancer therapy such as the anthracycline doxorubicin contain DNA-intercalating 9,10-anthraquinone (AQ) moieties. When Cu(II) cyclen complexes were functionalized with up to three (2-anthraquinonyl)methyl substituents, they efficiently inhibited DNA and RNA synthesis resulting in high cytotoxicity (selective for cancer cells) accompanied by DNA condensation/aggregation phenomena. Molecular modeling suggests an unusual bisintercalation mode with only one base pair between the two AQ moieties and the metal complex as a linker. A regioisomer, in which the AQ moieties point in directions unfavorable for such an interaction, had a much weaker biological activity. The ligands alone and corresponding Zn(II) complexes (used as redox inert control compounds) also exhibited lower activity.

  7. FANCI-FANCD2 stabilizes the RAD51-DNA complex by binding RAD51 and protects the 5′-DNA end

    PubMed Central

    Sato, Koichi; Shimomuki, Mayo; Katsuki, Yoko; Takahashi, Daisuke; Kobayashi, Wataru; Ishiai, Masamichi; Miyoshi, Hiroyuki; Takata, Minoru; Kurumizaka, Hitoshi

    2016-01-01

    The FANCI-FANCD2 (I-D) complex is considered to work with RAD51 to protect the damaged DNA in the stalled replication fork. However, the means by which this DNA protection is accomplished have remained elusive. In the present study, we found that the I-D complex directly binds to RAD51, and stabilizes the RAD51-DNA filament. Unexpectedly, the DNA binding activity of FANCI, but not FANCD2, is explicitly required for the I-D complex-mediated RAD51-DNA filament stabilization. The RAD51 filament stabilized by the I-D complex actually protects the DNA end from nucleolytic degradation by an FA-associated nuclease, FAN1. This DNA end protection is not observed with the RAD51 mutant from FANCR patient cells. These results clearly answer the currently enigmatic question of how RAD51 functions with the I-D complex to prevent genomic instability at the stalled replication fork. PMID:27694619

  8. Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights.

    PubMed

    Shimizu, Masahiro; Noguchi, Yasunori; Sakiyama, Yukari; Kawakami, Hironori; Katayama, Tsutomu; Takada, Shoji

    2016-12-13

    Upon DNA replication initiation in Escherichia coli, the initiator protein DnaA forms higher-order complexes with the chromosomal origin oriC and a DNA-bending protein IHF. Although tertiary structures of DnaA and IHF have previously been elucidated, dynamic structures of oriC-DnaA-IHF complexes remain unknown. Here, combining computer simulations with biochemical assays, we obtained models at almost-atomic resolution for the central part of the oriC-DnaA-IHF complex. This complex can be divided into three subcomplexes; the left and right subcomplexes include pentameric DnaA bound in a head-to-tail manner and the middle subcomplex contains only a single DnaA. In the left and right subcomplexes, DnaA ATPases associated with various cellular activities (AAA+) domain III formed helices with specific structural differences in interdomain orientations, provoking a bend in the bound DNA. In the left subcomplex a continuous DnaA chain exists, including insertion of IHF into the DNA looping, consistent with the DNA unwinding function of the complex. The intervening spaces in those subcomplexes are crucial for DNA unwinding and loading of DnaB helicases. Taken together, this model provides a reasonable near-atomic level structural solution of the initiation complex, including the dynamic conformations and spatial arrangements of DnaA subcomplexes.

  9. Neocarzinostatin as a probe for DNA protection activity--molecular interaction with caffeine.

    PubMed

    Chin, Der-Hang; Li, Huang-Hsien; Kuo, Hsiu-Maan; Chao, Pei-Dawn Lee; Liu, Chia-Wen

    2012-04-01

    Neocarzinostatin (NCS), a potent mutagen and carcinogen, consists of an enediyne prodrug and a protein carrier. It has a unique double role in that it intercalates into DNA and imposes radical-mediated damage after thiol activation. Here we employed NCS as a probe to examine the DNA-protection capability of caffeine, one of common dietary phytochemicals with potential cancer-chemopreventive activity. NCS at the nanomolar concentration range could induce significant single- and double-strand lesions in DNA, but up to 75 ± 5% of such lesions were found to be efficiently inhibited by caffeine. The percentage of inhibition was caffeine-concentration dependent, but was not sensitive to the DNA-lesion types. The well-characterized activation reactions of NCS allowed us to explore the effect of caffeine on the enediyne-generated radicals. Postactivation analyses by chromatographic and mass spectroscopic methods identified a caffeine-quenched enediyne-radical adduct, but the yield was too small to fully account for the large inhibition effect on DNA lesions. The affinity between NCS chromophore and DNA was characterized by a fluorescence-based kinetic method. The drug-DNA intercalation was hampered by caffeine, and the caffeine-induced increases in DNA-drug dissociation constant was caffeine-concentration dependent, suggesting importance of binding affinity in the protection mechanism. Caffeine has been shown to be both an effective free radical scavenger and an intercalation inhibitor. Our results demonstrated that caffeine ingeniously protected DNA against the enediyne-induced damages mainly by inhibiting DNA intercalation beforehand. The direct scavenging of the DNA-bound NCS free radicals by caffeine played only a minor role. Copyright © 2011 Wiley Periodicals, Inc.

  10. Method for detecting point mutations in DNA utilizing fluorescence energy transfer

    DOEpatents

    Parkhurst, Lawrence J.; Parkhurst, Kay M.; Middendorf, Lyle

    2001-01-01

    A method for detecting point mutations in DNA using a fluorescently labeled oligomeric probe and Forster resonance energy transfer (FRET) is disclosed. The selected probe is initially labeled at each end with a fluorescence dye, which act together as a donor/acceptor pair for FRET. The fluorescence emission from the dyes changes dramatically from the duplex stage, wherein the probe is hybridized to the complementary strand of DNA, to the single strand stage, when the probe is melted to become detached from the DNA. The change in fluorescence is caused by the dyes coming into closer proximity after melting occurs and the probe becomes detached from the DNA strand. The change in fluorescence emission as a function of temperature is used to calculate the melting temperature of the complex or T.sub.m. In the case where there is a base mismatch between the probe and the DNA strand, indicating a point mutation, the T.sub.m has been found to be significantly lower than the T.sub.m for a perfectly match probelstand duplex. The present invention allows for the detection of the existence and magnitude of T.sub.m, which allows for the quick and accurate detection of a point mutation in the DNA strand and, in some applications, the determination of the approximate location of the mutation within the sequence.

  11. Structure of the EndoMS-DNA Complex as Mismatch Restriction Endonuclease.

    PubMed

    Nakae, Setsu; Hijikata, Atsushi; Tsuji, Toshiyuki; Yonezawa, Kouki; Kouyama, Ken-Ichi; Mayanagi, Kouta; Ishino, Sonoko; Ishino, Yoshizumi; Shirai, Tsuyoshi

    2016-11-01

    Archaeal NucS nuclease was thought to degrade the single-stranded region of branched DNA, which contains flapped and splayed DNA. However, recent findings indicated that EndoMS, the orthologous enzyme of NucS, specifically cleaves double-stranded DNA (dsDNA) containing mismatched bases. In this study, we determined the structure of the EndoMS-DNA complex. The complex structure of the EndoMS dimer with dsDNA unexpectedly revealed that the mismatched bases were flipped out into binding sites, and the overall architecture most resembled that of restriction enzymes. The structure of the apo form was similar to the reported structure of Pyrococcus abyssi NucS, indicating that movement of the C-terminal domain from the resting state was required for activity. In addition, a model of the EndoMS-PCNA-DNA complex was preliminarily verified with electron microscopy. The structures strongly support the idea that EndoMS acts in a mismatch repair pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Controlled assembly of artificial protein-protein complexes via DNA duplex formation.

    PubMed

    Płoskoń, Eliza; Wagner, Sara C; Ellington, Andrew D; Jewett, Michael C; O'Reilly, Rachel; Booth, Paula J

    2015-03-18

    DNA-protein conjugates have found a wide range of applications. This study demonstrates the formation of defined, non-native protein-protein complexes via the site specific labeling of two proteins of interest with complementary strands of single-stranded DNA in vitro. This study demonstrates that the affinity of two DNA-protein conjugates for one another may be tuned by the use of variable lengths of DNA allowing reversible control of complex formation.

  13. Development of Active DNA Control Technique for DNA Sequencer With a Solid-state Nanopore

    NASA Astrophysics Data System (ADS)

    Akahori, Rena; Harada, Kunio; Goto, Yusuke; Yanagi, Itaru; Yokoi, Takahide; Oura, Takeshi; Shibahara, Masashi; Takeda, Ken-Ichi

    We have developed a technique that can control the arbitrary speeds of DNA passing through a solid-state nanopore of a DNA sequencer. For this active DNA control technique, we used a DNA-immobilized Si probe, larger than the membrane with a nanopore, and used a piezoelectric actuator and stepper motor to drive the probe. This probe enables a user to adjust the relative position between the nanopore and DNA immobilized on the probe without the need for precise lateral control. In this presentation, we demonstrate how DNA (block copolymer ([(dT)25-(dC)25-(dA)50]m)), immobilized on the probe, slid through a nanopore and was pulled out using the active DNA control technique. As the DNA-immobilized probe was being pulled out, we obtained various ion-current signal levels corresponding to the number of different nucleotides in a single strand of DNA.

  14. STATIC AND KINETIC SITE-SPECIFIC PROTEIN-DNA PHOTOCROSSLINKING: ANALYSIS OF BACTERIAL TRANSCRIPTION INITIATION COMPLEXES

    PubMed Central

    Naryshkin, Nikolai; Druzhinin, Sergei; Revyakin, Andrei; Kim, Younggyu; Mekler, Vladimir; Ebright, Richard H.

    2009-01-01

    Static site-specific protein-DNA photocrosslinking permits identification of protein-DNA interactions within multiprotein-DNA complexes. Kinetic site-specific protein-DNA photocrosslinking--involving rapid-quench-flow mixing and pulsed-laser irradiation--permits elucidation of pathways and kinetics of formation of protein-DNA interactions within multiprotein-DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein-DNA photocrosslinking to bacterial transcription initiation complexes. PMID:19378179

  15. Interaction of DNA with Simple and Mixed Ligand Copper(II) Complexes of 1,10-Phenanthrolines as Studied by DNA-Fiber EPR Spectroscopy

    PubMed Central

    Chikira, Makoto; Ng, Chew Hee; Palaniandavar, Mallayan

    2015-01-01

    The interaction of simple and ternary Cu(II) complexes of 1,10-phenanthrolines with DNA has been studied extensively because of their various interesting and important functions such as DNA cleavage activity, cytotoxicity towards cancer cells, and DNA based asymmetric catalysis. Such functions are closely related to the DNA binding modes of the complexes such as intercalation, groove binding, and electrostatic surface binding. A variety of spectroscopic methods have been used to study the DNA binding mode of the Cu(II) complexes. Of all these methods, DNA-fiber electron paramagnetic resonance (EPR) spectroscopy affords unique information on the DNA binding structures of the complexes. In this review we summarize the results of our DNA-fiber EPR studies on the DNA binding structure of the complexes and discuss them together with the data accumulated by using other measurements. PMID:26402668

  16. Complexity: an internet resource for analysis of DNA sequence complexity

    PubMed Central

    Orlov, Y. L.; Potapov, V. N.

    2004-01-01

    The search for DNA regions with low complexity is one of the pivotal tasks of modern structural analysis of complete genomes. The low complexity may be preconditioned by strong inequality in nucleotide content (biased composition), by tandem or dispersed repeats or by palindrome-hairpin structures, as well as by a combination of all these factors. Several numerical measures of textual complexity, including combinatorial and linguistic ones, together with complexity estimation using a modified Lempel–Ziv algorithm, have been implemented in a software tool called ‘Complexity’ (http://wwwmgs.bionet.nsc.ru/mgs/programs/low_complexity/). The software enables a user to search for low-complexity regions in long sequences, e.g. complete bacterial genomes or eukaryotic chromosomes. In addition, it estimates the complexity of groups of aligned sequences. PMID:15215465

  17. Molecular docking studies of curcumin natural derivatives with DNA topoisomerase I and II-DNA complexes.

    PubMed

    Kumar, Anil; Bora, Utpal

    2014-12-01

    DNA topoisomerase I (topo I) and II (topo II) are essential enzymes that solve the topological problems of DNA by allowing DNA strands or double helices to pass through each other during cellular processes such as replication, transcription, recombination, and chromatin remodeling. Their critical roles make topoisomerases an attractive drug target against cancer. The present molecular docking study provides insights into the inhibition of topo I and II by curcumin natural derivatives. The binding modes suggested that curcumin natural derivatives docked at the site of DNA cleavage parallel to the axis of DNA base pairing. Cyclocurcumin and curcumin sulphate were predicted to be the most potent inhibitors amongst all the curcumin natural derivatives docked. The binding modes of cyclocurcumin and curcumin sulphate were similar to known inhibitors of topo I and II. Residues like Arg364, Asn722 and base A113 (when docked to topo I-DNA complex) and residues Asp479, Gln778 and base T9 (when docked to topo II-DNA complex) seem to play important role in the binding of curcumin natural derivatives at the site of DNA cleavage.

  18. DNA-lipid complexes: stability of honeycomb-like and spaghetti-like structures.

    PubMed Central

    May, S; Ben-Shaul, A

    1997-01-01

    A molecular level theory is presented for the thermodynamic stability of two (similar) types of structural complexes formed by (either single strand or supercoiled) DNA and cationic liposomes, both involving a monolayer-coated DNA as the central structural unit. In the "spaghetti" complex the central unit is surrounded by another, oppositely curved, monolayer, thus forming a bilayer mantle. The "honeycomb" complex is a bundle of hexagonally packed DNA-monolayer units. The formation free energy of these complexes, starting from a planar cationic/neutral lipid bilayer and bare DNA, is expressed as a sum of electrostatic, bending, mixing, and (for the honeycomb) chain frustration contributions. The electrostatic free energy is calculated using the Poisson-Boltzmann equation. The bending energy of the mixed lipid layers is treated in the quadratic curvature approximation with composition-dependent bending rigidity and spontaneous curvature. Ideal lipid mixing is assumed within each lipid monolayer. We found that the most stable monolayer-coated DNA units are formed when the charged/neutral lipid composition corresponds (nearly) to charge neutralization; the optimal monolayer radius corresponds to close DNA-monolayer contact. These conclusions are also valid for the honeycomb complex, as the chain frustration energy is found to be negligible. Typically, the stabilization energies for these structures are on the order of 1 k(B)T/A of DNA length, reflecting mainly the balance between the electrostatic and bending energies. The spaghetti complexes are less stable due to the additional bending energy of the external monolayer. A thermodynamic analysis is presented for calculating the equilibrium lipid compositions when the complexes coexist with excess bilayer. PMID:9370436

  19. Quaternary complexes composed of plasmid DNA/protamine/fish sperm DNA/stearic acid grafted chitosan oligosaccharide micelles for gene delivery.

    PubMed

    Du, Yong-Zhong; Lu, Ping; Yuan, Hong; Zhou, Jian-Ping; Hu, Fu-Qiang

    2011-01-01

    Quaternary complexes with condensed core of plasmid DNA, protamine, fish sperm DNA and shell of stearic acid grafted chitosan oligosaccharide (CSO-SA), were prepared. The CSO-SA could self-assemble to form nano-sized micelles in aqueous solution and demonstrated excellent internalization ability of tumor cells. Dynamic light scattering (DLS) measurement and transmission electrostatic microscope (TEM) images showed that quaternary complexes had spherical shape with about 25 nm number average diameter, and the size of quaternary complexes was smaller than that of CSO-SA micelles and CSO-SA micelles/plasmid DNA binary complexes. The transfection efficiencies of quaternary complexes on HEK293 and MCF-7 cells increased with incubation time, and were significantly higher than that of CSO-SA micelles/plasmid DNA binary complexes. The optimal transfection efficiency of quaternary complexes on HEK293 and MCF-7 cells measured by flow cytometer after 96 h was 23.82% and 41.43%, respectively. Whereas, the transfection efficiency of Lipofectamine™ 2000 on HEK293 and MCF-7 cells after 96 h was 32.45% and 33.23%, respectively. The data of luciferease activity measurement showed that the optimal ratio of plasmid DNA:fish sperm DNA:protamine:CSO-SA was 1:1:5:5. The results indicated that the present quaternary complexes were potential non-viral gene delivery system. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. The long story of mitochondrial DNA and respiratory complex I.

    PubMed

    Degli Esposti, Mauro

    2017-01-01

    This article examines the long story of the relationship between mitochondrial DNA (mtDNA) and respiratory complex I, NADH:Ubiquinone Oxidoreductase, from its beginning  in the genome of the bacterial endosymbiont which then evolved into the mitochondria of our cells. The story begins with the evolution of ancient forms of bacterial complex I into the Nuo14 complex I that was present in the alpha proteobacterial ancestor of mitochondria. The story then becomes complicated in the diversity of eukaryotic organisms that are currently recognized. Therefore, it does not have a clear end, because currently available information shows different situations of metabolic adaptation and gene loss, indicating cases of de-evolution of the original protonmotive complex into a system that may fundamentally assist [FeFe]-hydrogenases in re-oxidising metabolically produced NADH under anaerobic conditions. The history of complex I is thus a never ending story of molecular and physiological evolution producing new perspectives for studying the enzyme complex that occupies the largest proportion of mitochondrial DNA.

  1. Re-visiting protein-centric two-tier classification of existing DNA-protein complexes

    PubMed Central

    2012-01-01

    Background Precise DNA-protein interactions play most important and vital role in maintaining the normal physiological functioning of the cell, as it controls many high fidelity cellular processes. Detailed study of the nature of these interactions has paved the way for understanding the mechanisms behind the biological processes in which they are involved. Earlier in 2000, a systematic classification of DNA-protein complexes based on the structural analysis of the proteins was proposed at two tiers, namely groups and families. With the advancement in the number and resolution of structures of DNA-protein complexes deposited in the Protein Data Bank, it is important to revisit the existing classification. Results On the basis of the sequence analysis of DNA binding proteins, we have built upon the protein centric, two-tier classification of DNA-protein complexes by adding new members to existing families and making new families and groups. While classifying the new complexes, we also realised the emergence of new groups and families. The new group observed was where β-propeller was seen to interact with DNA. There were 34 SCOP folds which were observed to be present in the complexes of both old and new classifications, whereas 28 folds are present exclusively in the new complexes. Some new families noticed were NarL transcription factor, Z-α DNA binding proteins, Forkhead transcription factor, AP2 protein, Methyl CpG binding protein etc. Conclusions Our results suggest that with the increasing number of availability of DNA-protein complexes in Protein Data Bank, the number of families in the classification increased by approximately three fold. The folds present exclusively in newly classified complexes is suggestive of inclusion of proteins with new function in new classification, the most populated of which are the folds responsible for DNA damage repair. The proposed re-visited classification can be used to perform genome-wide surveys in the genomes of

  2. Charge-transfer optical absorption mechanism of DNA:Ag-nanocluster complexes

    NASA Astrophysics Data System (ADS)

    Longuinhos, R.; Lúcio, A. D.; Chacham, H.; Alexandre, S. S.

    2016-05-01

    Optical properties of DNA:Ag-nanoclusters complexes have been successfully applied experimentally in Chemistry, Physics, and Biology. Nevertheless, the mechanisms behind their optical activity remain unresolved. In this work, we present a time-dependent density functional study of optical absorption in DNA:Ag4. In all 23 different complexes investigated, we obtain new absorption peaks in the visible region that are not found in either the isolated Ag4 or isolated DNA base pairs. Absorption from red to green are predominantly of charge-transfer character, from the Ag4 to the DNA fragment, while absorption in the blue-violet range are mostly associated to electronic transitions of a mixed character, involving either DNA-Ag4 hybrid orbitals or intracluster orbitals. We also investigate the role of exchange-correlation functionals in the calculated optical spectra. Significant differences are observed between the calculations using the PBE functional (without exact exchange) and the CAM-B3LYP functional (which partly includes exact exchange). Specifically, we observe a tendency of charge-transfer excitations to involve purines bases, and the PBE spectra error is more pronounced in the complexes where the Ag cluster is bound to the purines. Finally, our results also highlight the importance of adding both the complementary base pair and the sugar-phosphate backbone in order to properly characterize the absorption spectrum of DNA:Ag complexes.

  3. Charge-transfer optical absorption mechanism of DNA:Ag-nanocluster complexes.

    PubMed

    Longuinhos, R; Lúcio, A D; Chacham, H; Alexandre, S S

    2016-05-01

    Optical properties of DNA:Ag-nanoclusters complexes have been successfully applied experimentally in Chemistry, Physics, and Biology. Nevertheless, the mechanisms behind their optical activity remain unresolved. In this work, we present a time-dependent density functional study of optical absorption in DNA:Ag_{4}. In all 23 different complexes investigated, we obtain new absorption peaks in the visible region that are not found in either the isolated Ag_{4} or isolated DNA base pairs. Absorption from red to green are predominantly of charge-transfer character, from the Ag_{4} to the DNA fragment, while absorption in the blue-violet range are mostly associated to electronic transitions of a mixed character, involving either DNA-Ag_{4} hybrid orbitals or intracluster orbitals. We also investigate the role of exchange-correlation functionals in the calculated optical spectra. Significant differences are observed between the calculations using the PBE functional (without exact exchange) and the CAM-B3LYP functional (which partly includes exact exchange). Specifically, we observe a tendency of charge-transfer excitations to involve purines bases, and the PBE spectra error is more pronounced in the complexes where the Ag cluster is bound to the purines. Finally, our results also highlight the importance of adding both the complementary base pair and the sugar-phosphate backbone in order to properly characterize the absorption spectrum of DNA:Ag complexes.

  4. Analytical methods to determine the comparative DNA binding studies of curcumin-Cu(II) complexes

    NASA Astrophysics Data System (ADS)

    Rajesh, Jegathalaprathaban; Rajasekaran, Marichamy; Rajagopal, Gurusamy; Athappan, Periakaruppan

    2012-11-01

    DNA interaction studies of two mononuclear [1:1(1); 1:2(2)] copper(II) complexes of curcumin have been studied. The interaction of these complexes with CT-DNA has been explored by physical methods to propose modes of DNA binding of the complexes. Absorption spectral titrations of complex 1 with CT-DNA shows a red-shift of 3 nm with the DNA binding affinity of Kb, 5.21 × 104 M-1 that are higher than that obtained for 2 (red-shift, 2 nm; Kb, 1.73 × 104 M-1) reveal that the binding occurs in grooves as a result of the interaction is via exterior phosphates. The CD spectra of these Cu(II) complexes show a red shift of 3-10 nm in the positive band with increase in intensities. This spectral change of induced CD due to the hydrophobic interaction of copper complexes with DNA is the characteristic of B to A conformational change. The EB displacement assay also reveals the same trend as observed in UV-Vis spectral titration. The addition of complexes 1 and 2 to the DNA bound ethidium bromide (EB) solutions causes an obvious reduction in emission intensities indicating that these complexes competitively bind to DNA with EB. The positive shift of both the Epc and E0' accompanied by reduction of peak currents in differential pulse voltammogram (DPV), upon adding different concentrations of DNA to the metal complexes, are obviously in favor of strong binding to DNA. The super coiled plasmid pUC18 DNA cleavage ability of Cu(II) complexes in the presence of reducing agent reveals the single strand DNA cleavage (ssDNA) is observed. The hydroxyl radical (HOrad ) and the singlet oxygen are believed to be the reactive species responsible for the cleavage.

  5. Structure of homeodomain-leucine zipper/DNA complexes studied using hydroxyl radical cleavage of DNA and methylation interference.

    PubMed

    Tron, Adriana E; Comelli, Raúl N; Gonzalez, Daniel H

    2005-12-27

    Homeodomain-leucine zipper (HD-Zip) proteins, unlike most homeodomain proteins, bind a pseudopalindromic DNA sequence as dimers. We have investigated the structure of the DNA complexes formed by two HD-Zip proteins with different nucleotide preferences at the central position of the binding site using footprinting and interference methods. The results indicate that the respective complexes are not symmetric, with the strand bearing a central purine (top strand) showing higher protection around the central region and the bottom strand protected toward the 3' end. Binding to a sequence with a nonpreferred central base pair produces a decrease in protection in either the top or the bottom strand, depending upon the protein. Modeling studies derived from the complex formed by the monomeric Antennapedia homeodomain with DNA indicate that in the HD-Zip/DNA complex the recognition helix of one of the monomers is displaced within the major groove respective to the other one. This monomer seems to lose contacts with a part of the recognition sequence upon binding to the nonpreferred site. The results show that the structure of the complex formed by HD-Zip proteins with DNA is dependent upon both protein intrinsic characteristics and the nucleotides present at the central position of the recognition sequence.

  6. Efficient plasmid DNA cleavage by a mononuclear copper(II) complex.

    PubMed

    Sissi, Claudia; Mancin, Fabrizio; Gatos, Maddalena; Palumbo, Manlio; Tecilla, Paolo; Tonellato, Umberto

    2005-04-04

    The Cu(II) complex of the ligand all-cis-2,4,6-triamino-1,3,5-trihydroxycyclohexane (TACI) is a very efficient catalyst of the cleavage of plasmid DNA in the absence of any added cofactor. The maximum rate of degradation of the supercoiled plasmid DNA form, obtained at pH 8.1 and 37 degrees C, in the presence of 48 microM TACI.Cu(II), is 2.3 x 10(-3) s(-1), corresponding to a half-life time of only 5 min for the cleavage of form I (supercoiled) to form II (relaxed circular). The dependence of the rate of plasmid DNA cleavage from the TACI.Cu(II) complex concentration follows an unusual and very narrow bell-like profile, which suggests an high DNA affinity of the complexes but also a great tendency to form unreactive dimers. The reactivity of the TACI.Cu(II) complexes is not affected by the presence of several scavengers for reactive oxygen species or when measured under anaerobic conditions. Moreover, no degradation of the radical reporter Rhodamine B is observed in the presence of such complexes. These results are consistent with the operation of a prevailing hydrolytic pathway under the normal conditions used, although the failure to obtain enzymatic religation of the linearized DNA does not allow one to rule out the occurrence of a nonhydrolytic oxygen-independent cleavage. A concurrent oxidative mechanism becomes competitive upon addition of reductants or in the presence of high levels of molecular oxygen: under such conditions, in fact, a remarkable increase in the rate of DNA cleavage is observed.

  7. Paramagnetic 19F NMR and Electrospray Ionization Mass Spectrometric Studies of Substituted Pyridine Complexes of Chromium(III): Models for Potential Use of 19F NMR to Probe Cr(III)-Nucleotide Interaction1

    PubMed Central

    Rhodes, Nicholas R.; Belmore, Ken; Cassady, Carolyn J.; Vincent, John B.

    2013-01-01

    The synthesis and characterization of chromium basic carboxylate complexes, [Cr3(O2CR)6L3]+, containing trifluoroacetate, 3-fluoropyridine, 3-trifluoromethylpyridine, and 4-trifluoromethylpyridine are described. The substituted pyridine ligands are used as models of DNA bases to determine whether 19F NMR would be a potentially useful probe of the binding of Cr3+ to DNA. The 19F NMR resonances of the coordinated ligands, while broadened by delocalization of unpaired electron density from the S=3/2 chromic centers, are readily discernable, and the contact shifts are of sufficient magnitude that the signals from coordinated and free ligands can easily be differentiated. Thus, 19F NMR appears to be a potentially useful probe of the binding of Cr3+ to DNA containing F-labeled bases. Additionally, electrospray MS is shown to be a convenient method to establish the identity of chromium basic carboxylate assemblies. PMID:24222929

  8. DNA-encapsulated silver nanodots as ratiometric luminescent probes for hypochlorite detection

    NASA Astrophysics Data System (ADS)

    Park, Soonyoung; Choi, Sungmoon; Yu, Junhua

    2014-03-01

    DNA-encapsulated silver nanodots are noteworthy candidates for bio-imaging probes, thanks to their excellent photophysical properties. The spectral shift of silver nanodot emitters from red to blue shows excellent correlations with the concentration of reactive oxygen species, which makes it possible to develop new types of probes for reactive oxygen species (ROS), such as hypochlorous acid (HOCl), given the outstanding stability of the blue in oxidizing environments. HOCl plays a role as a microbicide in immune systems but, on the other hand, is regarded as a disease contributor. Moreover, it is a common ingredient in household cleaners. There are still great demands to detect HOCl fluxes and their physiological pathways. We introduce a new ratiometric luminescence imaging method based on silver nanodots to sensitively detect hypochlorite. The factors that influence the accuracy of the detection are investigated. Its availability has also been demonstrated by detecting the active component in cleaners.

  9. DNA Meter: Energy Tunable, Quantitative Hybridization Assay

    PubMed Central

    Braunlin, William; Völker, Jens; Plum, G. Eric; Breslauer, Kenneth J.

    2015-01-01

    We describe a novel hybridization assay that employs a unique class of energy tunable, bulge loop-containing competitor strands (C*) that hybridize to a probe strand (P). Such initial “pre-binding” of a probe strand modulates its effective “availability” for hybridizing to a target site (T). More generally, the assay described here is based on competitive binding equilibria for a common probe strand (P) between such tunable competitor strands (C*) and a target strand (T). We demonstrate that loop variable, energy tunable families of C*P complexes exhibit enhanced discrimination between targets and mismatched targets, thereby reducing false positives/negatives. We refer to a C*P complex between a C* competitor single strand and the probe strand as a “tuning fork,” since the C* strand exhibits branch points (forks) at the duplex-bulge interfaces within the complex. By varying the loop to create families of such “tuning forks,” one can construct C*P “energy ladders” capable of resolving small differences within the target that may be of biological/functional consequence. The methodology further allows quantification of target strand concentrations, a determination heretofore not readily available by conventional hybridization assays. The dual ability of this tunable assay to discriminate and quantitate targets provides the basis for developing a technology we refer to as a “DNA Meter.” Here we present data that establish proof-of-principle for an in solution version of such a DNA Meter. We envision future applications of this tunable assay that incorporate surface bound/spatially resolved DNA arrays to yield enhanced discrimination and sensitivity. PMID:23529692

  10. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. II. Isothermal signal amplification in process of DNA analysis by minisequencing].

    PubMed

    Dmitrienko, E V; Khomiakova, E A; Pyshnaia; Bragin, A G; Vedernikov, V E; Pyshnyĭ, D V

    2010-01-01

    The isothermal amplification of reporter signal via limited probe extension (minisequencing) upon hybridization of nucleic acids has been studied. The intensity of reporter signal has been shown to increase due to enzymatic labeling of multiple probes upon consecutive hybridization with one DNA template both in homophase and heterophase assays using various kinds of detection signal: radioisotope label, fluorescent label, and enzyme-linked assay. The kinetic scheme of the process has been proposed and kinetic parameters for each step have been determined. The signal intensity has been shown to correlate with physicochemical characteristics of both complexes: probe/DNA and product/DNA. The maximum intensity has been observed at minimal difference between the thermodynamic stability of these complexes, provided the reaction temperature has been adjusted near their melting temperature values; rising or lowering the reaction temperature reduces the amount of reporting product. The signal intensity has been shown to decrease significantly upon hybridization with the DNA template containing single-nucleotide mismatches. Limited probe extension assay is useful not only for detection of DNA template but also for its quantitative characterization.

  11. DNA Probes Show Genetic Variation in Cyanobacterial Symbionts of the Azolla Fern and a Closer Relationship to Free-Living Nostoc Strains than to Free-Living Anabaena Strains

    PubMed Central

    Plazinski, Jacek; Zheng, Qi; Taylor, Rona; Croft, Lynn; Rolfe, Barry G.; Gunning, Brian E. S.

    1990-01-01

    Twenty-two isolates of Anabaena azollae derived from seven Azolla species from various geographic and ecological sources were characterized by DNA-DNA hybridization. Cloned DNA fragments derived from the genomic sequences of three different A. azollae isolates were used to detect restriction fragment length polymorphism among all symbiotic anabaenas. DNA clones were radiolabeled and hybridized against southern blot transfers of genomic DNAs of different isolates of A. azollae digested with restriction endonucleases. Eight DNA probes were selected to identify the Anabaena strains tested. Two were strain specific and hybridized only to A. azollae strains isolated from Azolla microphylla or Azolla caroliniana. One DNA probe was section specific (hybridized only to anabaenas isolated from Azolla ferns representing the section Euazolla), and five other probes gave finer discrimination among anabaenas representing various ecotypes of Azolla species. These cloned genomic DNA probes identified 11 different genotypes of A. azollae isolates. These included three endosymbiotic genotypes within Azolla filiculoides species and two genotypes within both A. caroliniana and Azolla pinnata endosymbionts. Although we were not able to discriminate among anabaenas extracted from different ecotypes of Azolla nilotica, Azolla mexicina, Azolla rubra and Azolla microphylla species, each of the endosymbionts was easily identified as a unique genotype. When total DNA isolated from free-living Anabaena sp. strain PCC7120 was screened, none of the genomic DNA probes gave detectable positive hybridization. Total DNA of Nostoc cycas PCC7422 hybridized with six of eight genomic DNA fragments. These data imply that the dominant symbiotic organism in association with Azolla spp. is more closely related to Nostoc spp. than to free-living Anabaena spp. Images PMID:16348182

  12. Optimization of a reusable, DNA pseudoknot-based electrochemical sensor for sequence-specific DNA detection in blood serum.

    PubMed

    Cash, Kevin J; Heeger, Alan J; Plaxco, Kevin W; Xiao, Yi

    2009-01-15

    We describe in detail a new electrochemical DNA (E-DNA) sensing platform based on target-induced conformation changes in an electrode-bound DNA pseudoknot. The pseudoknot, a DNA structure containing two stem-loops in which the first stem's loop forms part of the second stem, is modified with a methylene blue redox tag at its 3' terminus and covalently attached to a gold electrode via the 5' terminus. In the absence of a target, the structure of the pseudoknot probe minimizes collisions between the redox tag and the electrode, thus reducing faradaic current. Target binding disrupts the pseudoknot structure, liberating a flexible, single-stranded element that can strike the electrode and efficiently transfer electrons. In this article we report further characterization and optimization of this new E-DNA architecture. We find that optimal signaling is obtained at an intermediate probe density ( approximately 1.8 x 10(13) molecules/cm(2) apparent density), which presumably represents a balance between steric and electrostatic blocking at high probe densities and increased background currents arising from transfer from the pseudoknot probe at lower densities. We also find that optimal 3' stem length, which appears to be 7 base pairs, represents a balance between pseudoknot structural stability and target affinity. Finally, a 3' loop comprised of poly(A) exhibits better mismatch discrimination than the equivalent poly(T) loop, but at the cost of decreased gain. Optimization over this parameter space significantly improves the signaling of the pseudoknot-based E-DNA architecture, leading to the ability to sensitively and specifically detect DNA targets even when challenged in complex, multicomponent samples such as blood serum.

  13. Optimization of a Reusable, DNA Pseudoknot-Based Electrochemical Sensor for Sequence-Specific DNA Detection in Blood Serum

    PubMed Central

    Cash, Kevin J.; Heeger, Alan J.; Plaxco, Kevin W.; Xiao, Yi

    2010-01-01

    We describe in detail a new electrochemical DNA (E-DNA) sensing platform based on target-induced conformation changes in an electrode-bound DNA pseudoknot. The pseudoknot, a DNA structure containing two stem-loops in which the first stem’s loop forms part of the second stem, is modified with a methylene blue redox tag at its 3′ terminus and covalently attached to a gold electrode via the 5′ terminus. In the absence of a target, the structure of the pseudoknot probe minimizes collisions between the redox tag and the electrode, thus reducing faradaic current. Target binding disrupts the pseudoknot structure, liberating a flexible, single-stranded element that can strike the electrode and efficiently transfer electrons. In this article we report further characterization and optimization of this new E-DNA architecture. We find that optimal signaling is obtained at an intermediate probe density (~1.8 × 1013 molecules/cm2 apparent density), which presumably represents a balance between steric and electrostatic blocking at high probe densities and increased background currents arising from transfer from the pseudoknot probe at lower densities. We also find that optimal 3′ stem length, which appears to be 7 base pairs, represents a balance between pseudoknot structural stability and target affinity. Finally, a 3′ loop comprised of poly(A) exhibits better mismatch discrimination than the equivalent poly(T) loop, but at the cost of decreased gain. Optimization over this parameter space significantly improves the signaling of the pseudoknot-based E-DNA architecture, leading to the ability to sensitively and specifically detect DNA targets even when challenged in complex, multicomponent samples such as blood serum. PMID:19093760

  14. An electrochemiluminescent DNA sensor based on nano-gold enhancement and ferrocene quenching.

    PubMed

    Yao, Wu; Wang, Lun; Wang, Haiyan; Zhang, Xiaolei; Li, Ling; Zhang, Na; Pan, Le; Xing, Nannan

    2013-02-15

    An electrochemiluminescent DNA (ECL-DNA) sensor based on nano-gold signal enhancement (i.e. gold nanoparticles, GNP) and ferrocene signal quenching was investigated. The Au electrode was first modified with GNPs through electrodeposition method, followed by subsequent immobilization of single-stranded probe DNA labeled with ruthenium complex. The resulting sensor produced a higher ECL signal due to its higher density of self-assembled probe DNAs on the surface. Upon the hybridization of probe DNA with complementary target DNA labeled with ferrocene, ECL intensity decreased significantly due to spatial separation of ECL label from the electrode surface. As a result, the ECL signal was simultaneously quenched by ferrocene. The effects of both nano-gold electrodeposition time and ferrocene on the performance of ECL-DNA sensor were studied in detail and possible reasons for these effects were suggested as well. The reported ECL-DNA sensor showed great sensitivity and may provide an alternative approach for DNA detection in diagnostics and gene analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. A probe-based quantitative PCR assay for detecting Tetracapsuloides bryosalmonae in fish tissue and environmental DNA water samples

    USGS Publications Warehouse

    Hutchins, Patrick; Sepulveda, Adam; Martin, Renee; Hopper, Lacey

    2017-01-01

    A probe-based quantitative real-time PCR assay was developed to detect Tetracapsuloides bryosalmonae, which causes proliferative kidney disease in salmonid fish, in kidney tissue and environmental DNA (eDNA) water samples. The limits of detection and quantification were 7 and 100 DNA copies for calibration standards and T. bryosalmonae was reliably detected down to 100 copies in tissue and eDNA samples. The assay presented here is a highly sensitive and quantitative tool for detecting T. bryosalmonae with potential applications for tissue diagnostics and environmental detection.

  16. New concepts of fluorescent probes for specific detection of DNA sequences: bis-modified oligonucleotides in excimer and exciplex detection.

    PubMed

    Gbaj, A; Bichenkova, Ev; Walsh, L; Savage, He; Sardarian, Ar; Etchells, Ll; Gulati, A; Hawisa, S; Douglas, Kt

    2009-12-01

    The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5'-bispyrene and 3'-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5'-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5'-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing.

  17. Synthesis of trimethoprim metal complexes: Spectral, electrochemical, thermal, DNA-binding and surface morphology studies.

    PubMed

    Demirezen, Nihat; Tarınç, Derya; Polat, Duygu; Ceşme, Mustafa; Gölcü, Ayşegül; Tümer, Mehmet

    2012-08-01

    Complexes of trimethoprim (TMP), with Cu(II), Zn(II), Pt(II), Ru(III) and Fe(III) have been synthesized. Then, these complexes have been characterized by spectroscopic techniques involving UV-vis, IR, mass and (1)H NMR. CHN elemental analysis, electrochemical and thermal behavior of complexes have also been investigated. The electrochemical properties of all complexes have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV spectroscopy and cyclic voltammetry. UV studies of the interaction of the complexes with DNA have shown that these compounds can bind to CT DNA. The binding constants of the complexes with CT DNA have also been calculated. The cyclic voltammograms of the complexes in the presence of CT DNA have shown that the complexes can bind to CT DNA by both the intercalative and the electrostatic binding mode. The antimicrobial activity of these complexes has been evaluated against three Gram-positive and four Gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with the reference drug TMP. Almost all types of complexes show excellent activity against all type of bacteria and fungi. The morphology of the CT DNA, TMP, metal ions and metal complexes has been investigated by scanning electron microscopy (SEM). To get the SEM images, the interaction of compounds with CT DNA has been studied by means of differential pulse voltammetry (DPV) at CT DNA modified pencil graphite electrode (PGE). The decrease in intensity of the guanine oxidation signals has been used as an indicator for the interaction mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Development of a PCR/LDR/flow-through hybridization assay using a capillary tube, probe DNA-immobilized magnetic beads and chemiluminescence detection.

    PubMed

    Hommatsu, Manami; Okahashi, Hisamitsu; Ohta, Keisuke; Tamai, Yusuke; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko

    2013-01-01

    A polymerase chain reaction (PCR)/ligase detection reaction (LDR)/flow-through hybridization assay using chemiluminescence (CL) detection was developed for analyzing point mutations in gene fragments with high diagnostic value for colorectal cancers. A flow-through hybridization format using a capillary tube, in which probe DNA-immobilized magnetic beads were packed, provided accelerated hybridization kinetics of target DNA (i.e. LDR product) to the probe DNA. Simple fluid manipulations enabled both allele-specific hybridization and the removal of non-specifically bound DNA in the wash step. Furthermore, the use of CL detection greatly simplified the detection scheme, since CL does not require a light source for excitation of the fluorescent dye tags on the LDR products. Preliminary results demonstrated that this analytical system could detect both homozygous and heterozygous mutations, without the expensive instrumentation and cumbersome procedures required by conventional DNA microarray-based methods.

  19. Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pröpper, Kevin; Instituto de Biologia Molecular de Barcelona; Meindl, Kathrin

    2014-06-01

    The structure solution of DNA-binding protein structures and complexes based on the combination of location of DNA-binding protein motif fragments with density modification in a multi-solution frame is described. Protein–DNA interactions play a major role in all aspects of genetic activity within an organism, such as transcription, packaging, rearrangement, replication and repair. The molecular detail of protein–DNA interactions can be best visualized through crystallography, and structures emphasizing insight into the principles of binding and base-sequence recognition are essential to understanding the subtleties of the underlying mechanisms. An increasing number of high-quality DNA-binding protein structure determinations have been witnessed despite themore » fact that the crystallographic particularities of nucleic acids tend to pose specific challenges to methods primarily developed for proteins. Crystallographic structure solution of protein–DNA complexes therefore remains a challenging area that is in need of optimized experimental and computational methods. The potential of the structure-solution program ARCIMBOLDO for the solution of protein–DNA complexes has therefore been assessed. The method is based on the combination of locating small, very accurate fragments using the program Phaser and density modification with the program SHELXE. Whereas for typical proteins main-chain α-helices provide the ideal, almost ubiquitous, small fragments to start searches, in the case of DNA complexes the binding motifs and DNA double helix constitute suitable search fragments. The aim of this work is to provide an effective library of search fragments as well as to determine the optimal ARCIMBOLDO strategy for the solution of this class of structures.« less

  20. Development and physico-chemical characterization of cyclodextrin DNA complexes loaded liposomes

    NASA Astrophysics Data System (ADS)

    Tavares, Guilherme D.; Viana, Cristiane M.; Araújo, José G. V. C.; Ramaldes, Gilson A.; Carvalho, Wânia S.; Pesquero, Jorge L.; Vilela, José M. C.; Andrade, Margareth S.; de Oliveira, Mônica C.

    2006-10-01

    In the present study, anionic and pH-sensitive liposomes containing DNA were developed and characterized. These liposomes were obtained by binding the DNA with 6-monodeoxy-6-monoamine-β-cyclodextrin (Am-β-CD). This complex was encapsulated into the liposomes, which were characterized by encapsulation rate, diameter, zeta potential, and atomic force microscopy. The binding between Am-β-CD and the DNA was higher as of the +/- charge ratio. The amount of DNA encapsulated was approximately 10-14 μg/mL. The mean diameter and zeta potential were 186.0 nm and -56 mV, respectively. Liposomes which did not contain the complex were more prone to collapse over the mica surface. The vesicles containing the complex presented a narrower size distribution.

  1. Fluorescent Quantification of DNA Based on Core-Shell Fe3O4@SiO2@Au Nanocomposites and Multiplex Ligation-Dependent Probe Amplification.

    PubMed

    Fan, Jing; Yang, Haowen; Liu, Ming; Wu, Dan; Jiang, Hongrong; Zeng, Xin; Elingarami, Sauli; Ll, Zhiyang; Li, Song; Liu, Hongna; He, Nongyue

    2015-02-01

    In this research, a novel method for relative fluorescent quantification of DNA based on Fe3O4@SiO2@Au gold-coated magnetic nanocomposites (GMNPs) and multiplex ligation- dependent probe amplification (MLPA) has been developed. With the help of self-assembly, seed-mediated growth and chemical reduction method, core-shell Fe3O4@SiO2@Au GMNPs were synthesized. Through modified streptavidin on the GMNPs surface, we obtained a bead chip which can capture the biotinylated probes. Then we designed MLPA probes which were tagged with biotin or Cy3 and target DNA on the basis of human APP gene sequence. The products from the thermostable DNA ligase induced ligation reactions and PCR amplifications were incubated with SA-GMNPs. After washing, magnetic separation, spotting, the fluorescent scanning results showed our method can be used for the relative quantitative analysis of the target DNA in the concentration range of 03004~0.5 µM.

  2. A fluorescence method for detection of DNA and DNA methylation based on graphene oxide and restriction endonuclease HpaII.

    PubMed

    Wei, Wei; Gao, Chunyan; Xiong, Yanxiang; Zhang, Yuanjian; Liu, Songqin; Pu, Yuepu

    2015-01-01

    DNA methylation plays an important role in many biological events and is associated with various diseases. Most traditional methods for detection of DNA methylation are based on the complex and expensive bisulfite method. In this paper, we report a novel fluorescence method to detect DNA and DNA methylation based on graphene oxide (GO) and restriction endonuclease HpaII. The skillfully designed probe DNA labeled with 5-carboxyfluorescein (FAM) and optimized GO concentration keep the probe/target DNA still adsorbed on the GO. After the cleavage action of HpaII the labeled FAM is released from the GO surface and its fluorescence recovers, which could be used to detect DNA in the linear range of 50 pM-50 nM with a detection limit of 43 pM. DNA methylation induced by transmethylase (Mtase) or other chemical reagents prevents HpaII from recognizing and cleaving the specific site; as a result, fluorescence cannot recover. The fluorescence recovery efficiency is closely related to the DNA methylation level, which can be used to detect DNA methylation by comparing it with the fluorescence in the presence of intact target DNA. The method for detection of DNA and DNA methylation is simple, reliable and accurate. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. In situ detection of a PCR-synthesized human pancentromeric DNA hybridization probe by color pigment immunostaining: application for dicentric assay automation.

    PubMed

    Kolanko, C J; Pyle, M D; Nath, J; Prasanna, P G; Loats, H; Blakely, W F

    2000-03-01

    We report a low cost and efficient method for synthesizing a human pancentromeric DNA probe by the polymerase chain reaction (PRC) and an optimized protocol for in situ detection using color pigment immunostaining. The DNA template used in the PCR was a 2.4 kb insert containing human alphoid repeated sequences of pancentromeric DNA subcloned into pUC9 (Miller et al. 1988) and the primers hybridized to internal sequences of the 172 bp consensus tandem repeat associated with human centromeres. PCR was performed in the presence of biotin-11-dUTP, and the product was used for in situ hybridization to detect the pancentromeric region of human chromosomes in metaphase spreads. Detection of pancentromeric probe was achieved by immunoenzymatic color pigment painting to yield a permanent image detected at high resolution by bright field microscopy. The ability to synthesize the centromeric probe rapidly and to detect it with color pigment immunostaining will lead to enhanced identification and eventually to automation of various chromosome aberration assays.

  4. Antibacterial characteristics of newly developed amphiphilic lipids and DNA-lipid complexes against bacteria.

    PubMed

    Inoue, Y; Fukushima, T; Hayakawa, T; Takeuchi, H; Kaminishi, H; Miyazaki, K; Okahata, Y

    2003-05-01

    The purpose of this study was to investigate the antibacterial activity of newly developed amphiphilic lipids and DNA/lipid complexes against two types of oral bacteria and two types of hospital infection bacteria. Nine amphiphilic lipids were quantitatively prepared from the reaction of n-alkyl alcohol, alpha-amino acids, and p-toluenesulfonic acid. Nine DNA-lipid complexes were prepared by the simple mixing of DNA and amphiphilic lipids. The DNA-lipid complexes were insoluble in water. The antibacterial activity of lipids and DNA-lipid complexes against Porphyromonas gingivalis, Streptococcus mutans, Staphylococcus aureus, and Pseudomonas aeruginosa were evaluated by the disk-diffusion method. Seven artificial lipids showed antibacterial behavior; in particular, the lipids prepared from n-decyl alcohol and glycine and from n-decyl alcohol and L-alanine showed antibacterial activity against the four bacterial strains used in this study. On the other hand, the lipids of glutamic acid derivatives did not show any antibacterial activity against the four bacteria strains except for the lipid with an n-octyl group. Five DNA-lipid complexes also had an antibacterial effect. The complex prepared from DNA and glycine decyl ester p-toluenesulfonic acid salt exhibited antibacterial activity against the four types of bacteria strains. In this study it was found that lipids and DNA-lipid complexes with a mono-decyl group or a mono-dodecyl group have more favorable antibacterial activity. Copyright 2003 Wiley Periodicals, Inc.

  5. Assembly of Slx4 signaling complexes behind DNA replication forks.

    PubMed

    Balint, Attila; Kim, TaeHyung; Gallo, David; Cussiol, Jose Renato; Bastos de Oliveira, Francisco M; Yimit, Askar; Ou, Jiongwen; Nakato, Ryuichiro; Gurevich, Alexey; Shirahige, Katsuhiko; Smolka, Marcus B; Zhang, Zhaolei; Brown, Grant W

    2015-08-13

    Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress. © 2015 The Authors.

  6. Studies on interaction of an intramolecular charge transfer fluorescence probe: 4'-dimethylamino-2,5-dihydroxychalcone with DNA.

    PubMed

    Xu, Zhicheng; Bai, Guan; Dong, Chuan

    2005-10-15

    The interaction of a new intramolecular charge transfer probe, namely 4'-dimethylamino-2,5-dihydroxychalcone (DMADHC), with calf thymus DNA has been studied. Compared to the spectral characteristics of the free form in aqueous solution, the fluorescence of DMADHC enhanced dramatically accompanying a blueshift of the emission maxima in the presence of DNA. The absorption and fluorescence spectra, salt concentration effect, KI quenching, fluorescence polarization, and DNA denaturation experiments were given. These results give evidence that the DMADHC molecule is inserted into the base-stacking domain of the DNA double helix. The intrinsic binding constant and the binding site number were estimated. The analytical characteristics were also given.

  7. Dynamics of DNA/intercalator complexes

    NASA Astrophysics Data System (ADS)

    Schurr, J. M.; Wu, Pengguang; Fujimoto, Bryant S.

    1990-05-01

    Complexes of linear and supercoiled DNAs with different intercalating dyes are studied by time-resolved fluorescence polarization anisotropy using intercalated ethidium as the probe. Existing theory is generalized to take account of excitation transfer between intercalated ethidiums, and Forster theory is shown to be valid in this context. The effects of intercalated ethidium, 9-aminoacridine, and proflavine on the torsional rigidity of linear and supercoiled DNAs are studied up to rather high binding ratios. Evidence is presented that metastable secondary structure persists in dye-relaxed supercoiled DNAs, which contradicts the standard model of supercoiled DNAs.

  8. Measurement of locus copy number by hybridisation with amplifiable probes

    PubMed Central

    Armour, John A. L.; Sismani, Carolina; Patsalis, Philippos C.; Cross, Gareth

    2000-01-01

    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicroscopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader–Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications. PMID:10606661

  9. Measurement of locus copy number by hybridisation with amplifiable probes.

    PubMed

    Armour, J A; Sismani, C; Patsalis, P C; Cross, G

    2000-01-15

    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicro-scopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader-Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications.

  10. Protein dynamics during presynaptic complex assembly on individual ssDNA molecules

    PubMed Central

    Gibb, Bryan; Ye, Ling F.; Kwon, YoungHo; Niu, Hengyao; Sung, Patrick; Greene, Eric C.

    2014-01-01

    Homologous recombination is a conserved pathway for repairing double–stranded breaks, which are processed to yield single–stranded DNA overhangs that serve as platforms for presynaptic complex assembly. Here we use single–molecule imaging to reveal the interplay between Saccharomyce cerevisiae RPA, Rad52, and Rad51 during presynaptic complex assembly. We show that Rad52 binds RPA–ssDNA and suppresses RPA turnover, highlighting an unanticipated regulatory influence on protein dynamics. Rad51 binding extends the ssDNA, and Rad52–RPA clusters remain interspersed along the presynaptic complex. These clusters promote additional binding of RPA and Rad52. Together, our work illustrates the spatial and temporal progression of RPA and Rad52 association with the presynaptic complex, and reveals a novel RPA–Rad52–Rad51–ssDNA intermediate, which has implications for understanding how the activities of Rad52 and RPA are coordinated with Rad51 during the later stages recombination. PMID:25195049

  11. Novel strategies to construct complex synthetic vectors to produce DNA molecular weight standards.

    PubMed

    Chen, Zhe; Wu, Jianbing; Li, Xiaojuan; Ye, Chunjiang; Wenxing, He

    2009-05-01

    DNA molecular weight standards (DNA markers, nucleic acid ladders) are commonly used in molecular biology laboratories as references to estimate the size of various DNA samples in electrophoresis process. One method of DNA marker production is digestion of synthetic vectors harboring multiple DNA fragments of known sizes by restriction enzymes. In this article, we described three novel strategies-sequential DNA fragment ligation, screening of ligation products by polymerase chain reaction (PCR) with end primers, and "small fragment accumulation"-for constructing complex synthetic vectors and minimizing the mass differences between DNA fragments produced from restrictive digestion of synthetic vectors. The strategy could be applied to construct various complex synthetic vectors to produce any type of low-range DNA markers, usually available commercially. In addition, the strategy is useful for single-step ligation of multiple DNA fragments for construction of complex synthetic vectors and other applications in molecular biology field.

  12. Development of species-specific hybridization probes for marine luminous bacteria by using in vitro DNA amplification.

    PubMed Central

    Wimpee, C F; Nadeau, T L; Nealson, K H

    1991-01-01

    By using two highly conserved region of the luxA gene as primers, polymerase chain reaction amplification methods were used to prepare species-specific probes against the luciferase gene from four major groups of marine luminous bacteria. Laboratory studies with test strains indicated that three of the four probes cross-reacted with themselves and with one or more of the other species at low stringencies but were specific for members of their own species at high stringencies. The fourth probe, generated from Vibrio harveyi DNA, cross-reacted with DNAs from two closely related species, V. orientalis and V. vulnificus. When nonluminous cultures were tested with the species-specific probes, no false-positive results were observed, even at low stringencies. Two field isolates were correctly identified as Photobacterium phosphoreum by using the species-specific hybridization probes at high stringency. A mixed probe (four different hybridization probes) used at low stringency gave positive results with all of the luminous bacteria tested, including the terrestrial species, Xenorhabdus luminescens, and the taxonomically distinct marine bacterial species Shewanella hanedai; minimal cross-hybridization with these species was seen at higher stringencies. Images PMID:1854194

  13. Norrie disease: linkage analysis using a 4.2-kb RFLP detected by a human ornithine aminotransferase cDNA probe.

    PubMed

    Ngo, J T; Bateman, J B; Cortessis, V; Sparkes, R S; Mohandas, T; Inana, G; Spence, M A

    1989-05-01

    Previous study has shown that the usual DNA marker for Norrie disease, the L1.28 probe which identifies the DXS7 locus, can recombine with the disease locus. In this study, we used a human ornithine aminotransferase (OAT) cDNA which detects OAT-related DNA sequences mapped to the same region on the X chromosome as that of the L1.28 probe to investigate the family with Norrie disease who exhibited the recombinational event. When genomic DNA from this family was digested with the PvuII restriction endonuclease, we found a restriction fragment length polymorphism (RFLP) of 4.2 kb in size. This fragment was absent in the affected males and cosegregated with the disease locus; we calculated a lod score of 0.602, at theta = 0.00. No deletion could be detected by chromosomal analysis or on Southern blots with other enzymes. These results suggest that one of the OAT-related sequences on the X chromosome may be in close proximity to the Norrie disease locus and represent the first report which indicates that the OAT cDNA may be useful for the identification of carrier status and/or prenatal diagnosis.

  14. DNA ends alter the molecular composition and localization of Ku multicomponent complexes.

    PubMed

    Adelmant, Guillaume; Calkins, Anne S; Garg, Brijesh K; Card, Joseph D; Askenazi, Manor; Miron, Alex; Sobhian, Bijan; Zhang, Yi; Nakatani, Yoshihiro; Silver, Pamela A; Iglehart, J Dirk; Marto, Jarrod A; Lazaro, Jean-Bernard

    2012-08-01

    The Ku heterodimer plays an essential role in non-homologous end-joining and other cellular processes including transcription, telomere maintenance and apoptosis. While the function of Ku is regulated through its association with other proteins and nucleic acids, the specific composition of these macromolecular complexes and their dynamic response to endogenous and exogenous cellular stimuli are not well understood. Here we use quantitative proteomics to define the composition of Ku multicomponent complexes and demonstrate that they are dramatically altered in response to UV radiation. Subsequent biochemical assays revealed that the presence of DNA ends leads to the substitution of RNA-binding proteins with DNA and chromatin associated factors to create a macromolecular complex poised for DNA repair. We observed that dynamic remodeling of the Ku complex coincided with exit of Ku and other DNA repair proteins from the nucleolus. Microinjection of sheared DNA into live cells as a mimetic for double strand breaks confirmed these findings in vivo.

  15. DNA as a Target for Anticancer Phen-Imidazole Pd(II) Complexes.

    PubMed

    Heydari, Maryam; Moghadam, Mahboube Eslami; Tarlani, AliAkbar; Farhangian, Hossein

    2017-05-01

    Imidazole ring is a known structure in many natural or synthetic drug molecules and its metal complexes can interact with DNA and do the cleavage. Hence, to study the influence of the structure and size of the ligand on biological behavior of metal complexes, two water-soluble Pd(II) complexes of phen and FIP ligands (where phen is 1,10-phenanthroline and FIP is 2-(Furan-2-yl)-1H-Imidazo[4,5-f][1, 10]phenanthroline) with the formula of [Pd(phen)(FIP)](NO 3 ) 2 and [Pd(FIP) 2 ]Cl 2 , that were activated against chronic myelogenous leukemia cell line, K562, were selected. Also, the interaction of these anticancer Pd(II) complexes with highly polymerized calf thymus DNA was extensively studied by means of electronic absorption, fluorescence, and circular dichroism in Tris-buffer. The results showed that the binding was positive cooperation and [Pd(phen)(FIP)](NO 3 ) 2 (K f  = 127 M -1 G = 1.2) exhibited higher binding constant and number of binding sites than [Pd(FIP) 2 ]Cl 2 (K f  = 13 M -1 G = 1.03) upon binding to DNA. The fluorescence data indicates that quenching effect for [Pd(phen)(FIP)](NO 3 ) 2 (K SV  = 58 mM -1 ) was higher than [Pd(FIP) 2 ]Cl 2 (K SV  = 12 mM -1 ). Also, [Pd(FIP) 2 ]Cl 2 interacts with ethidium bromide-DNA, as non-competitive inhibition, and can bind to DNA via groove binding and [Pd(phen)(FIP)](NO 3 ) 2 can intercalate in DNA. These results were confirmed by circular dichroism spectra. Docking data revealed that longer complexes have higher interaction energy and bind to DNA via groove binding. Graphical Abstract Two anticancer Pd(II) complexes of imidazole derivative have been synthesized and interacted with calf thymus DNA. Modes of binding have been studied by electronic absorption, fluorescence, and CD measurements. [Pd(FIP) 2 ]Cl 2 can bind to DNA via groove binding while intercalation mode of binding is observed for [Pd(phen)(FIP)](NO 3 ) 2 .

  16. An asymmetric structure of the Bacillus subtilis replication terminator protein in complex with DNA.

    PubMed

    Vivian, J P; Porter, C J; Wilce, J A; Wilce, M C J

    2007-07-13

    In Bacillus subtilis, the termination of DNA replication via polar fork arrest is effected by a specific protein:DNA complex formed between the replication terminator protein (RTP) and DNA terminator sites. We report the crystal structure of a replication terminator protein homologue (RTP.C110S) of B. subtilis in complex with the high affinity component of one of its cognate DNA termination sites, known as the TerI B-site, refined at 2.5 A resolution. The 21 bp RTP:DNA complex displays marked structural asymmetry in both the homodimeric protein and the DNA. This is in contrast to the previously reported complex formed with a symmetrical TerI B-site homologue. The induced asymmetry is consistent with the complex's solution properties as determined using NMR spectroscopy. Concomitant with this asymmetry is variation in the protein:DNA binding pattern for each of the subunits of the RTP homodimer. It is proposed that the asymmetric "wing" positions, as well as other asymmetrical features of the RTP:DNA complex, are critical for the cooperative binding that underlies the mechanism of polar fork arrest at the complete terminator site.

  17. Novel Phenanthrene-Degrading Bacteria Identified by DNA-Stable Isotope Probing

    PubMed Central

    Luo, Chunling; Zhang, Dayi; Zhang, Gan

    2015-01-01

    Microorganisms responsible for the degradation of phenanthrene in a clean forest soil sample were identified by DNA-based stable isotope probing (SIP). The soil was artificially amended with either 12C- or 13C-labeled phenanthrene, and soil DNA was extracted on days 3, 6 and 9. Terminal restriction fragment length polymorphism (TRFLP) results revealed that the fragments of 219- and 241-bp in HaeIII digests were distributed throughout the gradient profile at three different sampling time points, and both fragments were more dominant in the heavy fractions of the samples exposed to the 13C-labeled contaminant. 16S rRNA sequencing of the 13C-enriched fraction suggested that Acidobacterium spp. within the class Acidobacteria, and Collimonas spp. within the class Betaproteobacteria, were directly involved in the uptake and degradation of phenanthrene at different times. To our knowledge, this is the first report that the genus Collimonas has the ability to degrade PAHs. Two PAH-RHDα genes were identified in 13C-labeled DNA. However, isolation of pure cultures indicated that strains of Staphylococcus sp. PHE-3, Pseudomonas sp. PHE-1, and Pseudomonas sp. PHE-2 in the soil had high phenanthrene-degrading ability. This emphasizes the role of a culture-independent method in the functional understanding of microbial communities in situ. PMID:26098417

  18. DNA–DNA kissing complexes as a new tool for the assembly of DNA nanostructures

    PubMed Central

    Barth, Anna; Kobbe, Daniela; Focke, Manfred

    2016-01-01

    Kissing-loop annealing of nucleic acids occurs in nature in several viruses and in prokaryotic replication, among other circumstances. Nucleobases of two nucleic acid strands (loops) interact with each other, although the two strands cannot wrap around each other completely because of the adjacent double-stranded regions (stems). In this study, we exploited DNA kissing-loop interaction for nanotechnological application. We functionalized the vertices of DNA tetrahedrons with DNA stem-loop sequences. The complementary loop sequence design allowed the hybridization of different tetrahedrons via kissing-loop interaction, which might be further exploited for nanotechnology applications like cargo transport and logical elements. Importantly, we were able to manipulate the stability of those kissing-loop complexes based on the choice and concentration of cations, the temperature and the number of complementary loops per tetrahedron either at the same or at different vertices. Moreover, variations in loop sequences allowed the characterization of necessary sequences within the loop as well as additional stability control of the kissing complexes. Therefore, the properties of the presented nanostructures make them an important tool for DNA nanotechnology. PMID:26773051

  19. New Concepts of Fluorescent Probes for Specific Detection of DNA Sequences: Bis-Modified Oligonucleotides in Excimer and Exciplex Detection

    PubMed Central

    Gbaj, A; Bichenkova, EV; Walsh, L; Savage, HE; Sardarian, AR; Etchells, LL; Gulati, A; Hawisa, S; Douglas, KT

    2009-01-01

    The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5′-bispyrene and 3′-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5′-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5′-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing. PMID:21483539

  20. Partial Purification of a Megadalton DNA Replication Complex by Free Flow Electrophoresis.

    PubMed

    Li, Caroline M; Miao, Yunan; Lingeman, Robert G; Hickey, Robert J; Malkas, Linda H

    2016-01-01

    We describe a gentle and rapid method to purify the intact multiprotein DNA replication complex using free flow electrophoresis (FFE). In particular, we applied FFE to purify the human cell DNA synthesome, which is a multiprotein complex that is fully competent to carry-out all phases of the DNA replication process in vitro using a plasmid containing the simian virus 40 (SV40) origin of DNA replication and the viral large tumor antigen (T-antigen) protein. The isolated native DNA synthesome can be of use in studying the mechanism by which mammalian DNA replication is carried-out and how anti-cancer drugs disrupt the DNA replication or repair process. Partially purified extracts from HeLa cells were fractionated in a native, liquid based separation by FFE. Dot blot analysis showed co-elution of many proteins identified as part of the DNA synthesome, including proliferating cell nuclear antigen (PCNA), DNA topoisomerase I (topo I), DNA polymerase δ (Pol δ), DNA polymerase ɛ (Pol ɛ), replication protein A (RPA) and replication factor C (RFC). Previously identified DNA synthesome proteins co-eluted with T-antigen dependent and SV40 origin-specific DNA polymerase activity at the same FFE fractions. Native gels show a multiprotein PCNA containing complex migrating with an apparent relative mobility in the megadalton range. When PCNA containing bands were excised from the native gel, mass spectrometric sequencing analysis identified 23 known DNA synthesome associated proteins or protein subunits.

  1. Nonisotopic detection of human papillomavirus DNA in clinical specimens using a consensus PCR and a generic probe mix in an enzyme-linked immunosorbent assay format.

    PubMed

    Kornegay, J R; Shepard, A P; Hankins, C; Franco, E; Lapointe, N; Richardson, H; Coutleé, F

    2001-10-01

    We assessed the value of a new digoxigenin (DIG)-labeled generic probe mix in a PCR-enzyme-linked immunosorbent assay format to screen for the presence of human papillomavirus (HPV) DNA amplified from clinical specimens. After screening with this new generic assay is performed, HPV DNA-positive samples can be directly genotyped using a reverse blotting method with product from the same PCR amplification. DNA from 287 genital specimens was amplified via PCR using biotin-labeled consensus primers directed to the L1 gene. HPV amplicons were captured on a streptavidin-coated microwell plate (MWP) and detected with a DIG-labeled HPV generic probe mix consisting of nested L1 fragments from types 11, 16, 18, and 51. Coamplification and detection of human DNA with biotinylated beta-globin primers served as a control for both sample adequacy and PCR amplification. All specimens were genotyped using a reverse line blot assay (13). Results for the generic assay using MWPs and a DIG-labeled HPV generic probe mix (DIG-MWP generic probe assay) were compared with results from a previous analysis using dot blots with a radiolabeled nested generic probe mix and type-specific probes for genotyping. The DIG-MWP generic probe assay resulted in high intralaboratory concordance in genotyping results (88% versus 73% agreement using traditional methods). There were 207 HPV-positive results using the DIG-MWP method and 196 positives using the radiolabeled generic probe technique, suggesting slightly improved sensitivity. Only one sample failed to test positive with the DIG-MWP generic probe assay in spite of a positive genotyping result. Concordance between the two laboratories was nearly 87%. Approximately 6% of samples that were positive or borderline when tested with the DIG-MWP generic probe assay were not detected with the HPV type-specific panel, perhaps representing very rare or novel HPV types. This new method is easier to perform than traditional generic probe techniques and uses

  2. Detection of DNA via the fluorescence quenching of Mn-doped ZnSe D-dots/doxorubicin/DNA ternary complexes system.

    PubMed

    Gao, Xue; Niu, Lu; Su, Xingguang

    2012-01-01

    This manuscript reports a method for the detection of double-stranded DNA, based on Mn:ZnSe d-dots and intercalating agent doxorubicin (DOX). DOX can quench the photoluminescence (PL) of Mn:ZnSe d-dots through photoinduced electron transfer process, after binding with Mn:ZnSe d-dots. The addition of DNA can result in the formation of the Mn:ZnSe d-dots-DOX-DNA ternary complexes, the fluorescence of the Mn:ZnSe d-dots-DOX complexes would be further quenched by the addition of DNA, thus allowing the detection of DNA. The formation mechanism of the Mn:ZnSe d-dots-DOX-DNA ternary complexes was studied in detail in this paper. Under optimal conditions, the quenched fluorescence intensity of Mn:ZnSe d-dots-DOX system are perfectly described by Stern-Volmer equation with the concentration of hsDNA ranging from 0.006 μg mL(-1) to 6.4 μg mL(-1). The detection limit (S/N = 3) for hsDNA is 0.5 ng mL(-1). The proposed method was successfully applied to the detection of DNA in synthetic samples and the results were satisfactory.

  3. The Human Ligase IIIα-XRCC1 Protein Complex Performs DNA Nick Repair after Transient Unwrapping of Nucleosomal DNA*

    PubMed Central

    Rashid, Ishtiaque; Tomkinson, Alan E.; Pederson, David S.

    2017-01-01

    Reactive oxygen species generate potentially cytotoxic and mutagenic lesions in DNA, both between and within the nucleosomes that package DNA in chromatin. The vast majority of these lesions are subject to base excision repair (BER). Enzymes that catalyze the first three steps in BER can act at many sites in nucleosomes without the aid of chromatin-remodeling agents and without irreversibly disrupting the host nucleosome. Here we show that the same is true for a protein complex comprising DNA ligase IIIα and the scaffolding protein X-ray repair cross-complementing protein 1 (XRCC1), which completes the fourth and final step in (short-patch) BER. Using in vitro assembled nucleosomes containing discretely positioned DNA nicks, our evidence indicates that the ligase IIIα-XRCC1 complex binds to DNA nicks in nucleosomes only when they are exposed by periodic, spontaneous partial unwrapping of DNA from the histone octamer; that the scaffolding protein XRCC1 enhances the ligation; that the ligation occurs within a complex that ligase IIIα-XRCC1 forms with the host nucleosome; and that the ligase IIIα-XRCC1-nucleosome complex decays when ligation is complete, allowing the host nucleosome to return to its native configuration. Taken together, our results illustrate ways in which dynamic properties intrinsic to nucleosomes may contribute to the discovery and efficient repair of base damage in chromatin. PMID:28184006

  4. Evaluation of a novel ultra-sensitive nanoparticle probe-based assay for ricin detection.

    PubMed

    Yin, Hui-qiong; Jia, Min-xian; Shi, Li-jun; Liu, Jun; Wang, Rui; Lv, Mao-min; Ma, Yu-yuan; Zhao, Xiong; Zhang, Jin-gang

    2014-01-01

    A gold nanoparticle (GNP) probe-based assay (GNPA) modified from the bio-barcode assay (BCA) was developed for ultrasensitive detection of ricin, a potential biothreat agent. In the GNPA, a chain of ricin was captured by a GNP probe coated with polyclonal antibodies and single-stranded signal DNA. A magnetic microparticle (MMP) probe coated with ricin A chain monoclonal antibody was then added to form an immuno-complex. After being magnetically separated, the immuno-complex containing the single-stranded signal DNA was characterized by PCR and real-time PCR. A detection limit of 10(-2) fg/ml was determined for the ricin A chain; this is eight orders of magnitude more sensitive than that achieved with an ELISA and two orders more sensitive than that obtained with the BCA. The coefficients of variation (CV) of the intra- and inter-assay values ranged from 3.82-6.46%. The results here show that this novel assay is an ultrasensitive method for detection of ricin proteins and may be suitable for the ultrasensitive detection of other proteins.

  5. Topological Behavior of Plasmid DNA

    PubMed Central

    Higgins, N. Patrick; Vologodskii, Alexander V.

    2015-01-01

    The discovery of the B-form structure of DNA by Watson and Crick led to an explosion of research on nucleic acids in the fields of biochemistry, biophysics, and genetics. Powerful techniques were developed to reveal a myriad of different structural conformations that change B-DNA as it is transcribed, replicated, and recombined and as sister chromosomes are moved into new daughter cell compartments during cell division. This article links the original discoveries of superhelical structure and molecular topology to non-B form DNA structure and contemporary biochemical and biophysical techniques. The emphasis is on the power of plasmids for studying DNA structure and function. The conditions that trigger the formation of alternative DNA structures such as left-handed Z-DNA, inter- and intra-molecular triplexes, triple-stranded DNA, and linked catenanes and hemicatenanes are explained. The DNA dynamics and topological issues are detailed for stalled replication forks and for torsional and structural changes on DNA in front of and behind a transcription complex and a replisome. The complex and interconnected roles of topoisomerases and abundant small nucleoid association proteins are explained. And methods are described for comparing in vivo and in vitro reactions to probe and understand the temporal pathways of DNA and chromosome chemistry that occur inside living cells. PMID:26104708

  6. Real-time electrochemical LAMP: a rational comparative study of different DNA intercalating and non-intercalating redox probes.

    PubMed

    Martin, Alexandra; Bouffier, Laurent; Grant, Kathryn B; Limoges, Benoît; Marchal, Damien

    2016-06-20

    We present a comparative study of ten redox-active probes for use in real-time electrochemical loop-mediated isothermal amplification (LAMP). Our main objectives were to establish the criteria that need to be fulfilled for minimizing some of the current limitations of the technique and to provide future guidelines in the search for ideal redox reporters. To ensure a reliable comparative study, each redox probe was tested under similar conditions using the same LAMP reaction and the same entirely automatized custom-made real-time electrochemical device (designed for electrochemically monitoring in real-time and in parallel up to 48 LAMP samples). Electrochemical melt curve analyses were recorded immediately at the end of each LAMP reaction. Our results show that there are a number of intercalating and non-intercalating redox compounds suitable for real-time electrochemical LAMP and that the best candidates are those able to intercalate strongly into ds-DNA but not too much to avoid inhibition of the LAMP reaction. The strongest intercalating redox probes were finally shown to provide higher LAMP sensitivity, speed, greater signal amplitude, and cleaner-cut DNA melting curves than the non-intercalating molecules.

  7. GENETIC DIVERSITY OF TYPHA LATIFOLIA (TYPHACEAE) AND THE IMPACT OF POLLUTANTS EXAMINED WITH TANDEM-REPETITIVE DNA PROBES

    EPA Science Inventory

    Genetic diversity at variable-number-tandem-repeat (VNTR) loci was examined in the common cattail, Typha latifolia (Typhaceae), using three synthetic DNA probes composed of tandemly repeated "core" sequences (GACA, GATA, and GCAC). The principal objectives of this investigation w...

  8. G-quadruplexes as sensing probes.

    PubMed

    Ruttkay-Nedecky, Branislav; Kudr, Jiri; Nejdl, Lukas; Maskova, Darina; Kizek, Rene; Adam, Vojtech

    2013-11-28

    Guanine-rich sequences of DNA are able to create tetrastranded structures known as G-quadruplexes; they are formed by the stacking of planar G-quartets composed of four guanines paired by Hoogsteen hydrogen bonding. G-quadruplexes act as ligands for metal ions and aptamers for various molecules. Interestingly, the G-quadruplexes form a complex with anionic porphyrin hemin and exhibit peroxidase-like activity. This review focuses on overview of sensing techniques based on G-quadruplex complexes with anionic porphyrins for detection of various analytes, including metal ions such as K+, Ca2+, Ag+, Hg2+, Cu2+, Pb2+, Sr2+, organic molecules, nucleic acids, and proteins. Principles of G-quadruplex-based detection methods involve DNA conformational change caused by the presence of analyte which leads to a decrease or an increase in peroxidase activity, fluorescence, or electrochemical signal of the used probe. The advantages of various detection techniques are also discussed.

  9. Nuclear magnetic resonance-based model of a TF1/HmU-DNA complex.

    PubMed

    Silva, M V; Pasternack, L B; Kearns, D R

    1997-12-15

    Transcription factor 1 (TF1), a type II DNA-binding protein encoded by the Bacillus subtilis bacteriophage SPO1, has the capacity for sequence-selective DNA binding and a preference for 5-hydroxymethyl-2'-deoxyuridine (HmU)-containing DNA. In NMR studies of the TF1/HmU-DNA complex, intermolecular NOEs indicate that the flexible beta-ribbon and C-terminal alpha-helix are involved in the DNA-binding site of TF1, placing it in the beta-sheet category of DNA-binding proteins proposed to bind by wrapping two beta-ribbon "arms" around the DNA. Intermolecular and intramolecular NOEs were used to generate an energy-minimized model of the protein-DNA complex in which both DNA bending and protein structure changes are evident.

  10. Human RAD50 makes a functional DNA-binding complex.

    PubMed

    Kinoshita, Eri; van Rossum-Fikkert, Sari; Sanchez, Humberto; Kertokalio, Aryandi; Wyman, Claire

    2015-06-01

    The MRE11-RAD50-NBS1 (MRN) complex has several distinct functions in DNA repair including important roles in both non-homologous end-joining (NHEJ) and homologous recombination (HR). The biochemical activities of MR(N) have been well characterized implying specific functional roles for the components. The arrangement of proteins in the complex implies interdependence of their biochemical activities making it difficult to separate specific functions. We obtained purified human RAD50 and observed that it binds ATP, undergoes ATP-dependent conformational changes as well as having ATPase activity. Scanning force microscopy analysis clearly showed that RAD50 binds DNA although not as oligomers. RAD50 alone was not functional in tethering DNA molecules. ATP increased formation of RAD50 multimers which were however globular lacking extended coiled coils, in contrast to the MR complex where ATP induced oligomers have obvious coiled coils protruding from a central domain. These results suggest that MRE11 is important in maintaining the structural arrangement of RAD50 in the protein complex and perhaps has a role in reinforcing proper alignment of the coiled coils in the ATP-bound state. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. A Ubiquitin-Proteasome Pathway for the Repair of Topoisomerase I-DNA Covalent Complexes*S⃞

    PubMed Central

    Lin, Chao-Po; Ban, Yi; Lyu, Yi Lisa; Desai, Shyamal D.; Liu, Leroy F.

    2008-01-01

    Reversible topoisomerase I (Top1)-DNA cleavage complexes are the key DNA lesion induced by anticancer camptothecins (e.g. topotecan and irinotecan) as well as structurally perturbed DNAs (e.g. oxidatively damaged DNA, UV-irradiated DNA, alkylated DNA, uracil-substituted DNA, mismatched DNA, gapped and nicked DNA, and DNA with abasic sites). Top1 cleavage complexes arrest transcription and trigger transcription-dependent degradation of Top1, a phenomenon termed Top1 down-regulation. In the current study, we have investigated the role of Top1 down-regulation in the repair of Top1 cleavage complexes. Using quiescent (serum-starved) human WI-38 cells, camptothecin (CPT) was shown to induce Top1 down-regulation, which paralleled the induction of DNA single-strand breaks (SSBs) (assayed by comet assays) and ATM autophosphorylation (at Ser-1981). Interestingly, Top1 down-regulation, induction of DNA SSBs and ATM autophosphorylation were all abolished by the proteasome inhibitor MG132. Furthermore, studies using immunoprecipitation and dominant-negative ubiquitin mutants have suggested a specific requirement for the assembly of Lys-48-linked polyubiquitin chains for CPT-induced Top1 down-regulation. In contrast to the effect of proteasome inhibition, inactivation of PARP1 was shown to increase the amount of CPT-induced SSBs and the level of ATM autophosphorylation. Together, these results support a model in which Top1 cleavage complexes arrest transcription and activate a ubiquitin-proteasome pathway leading to the degradation of Top1 cleavage complexes. Degradation of Top1 cleavage complexes results in the exposure of Top1-concealed SSBs for repair through a PARP1-dependent process. PMID:18515798

  12. Binding regularities in complexes of transcription factors with operator DNA: homeodomain family.

    PubMed

    Chirgadze, Yu N; Zheltukhin, E I; Polozov, R V; Sivozhelezov, V S; Ivanov, V V

    2009-06-01

    In order to disclose general regularities of binding in homeodomain-DNA complexes we considered five of them and extended the observed regularities over the entire homeodomain family. The five complexes have been selected by similarity of protein structures and patterns of contacting residues. Their long range interactions and interfaces were compared. The long-range stage of the recognition process was characterized by electrostatic potentials about 5 Angstrom away from molecular surfaces of protein or DNA. For proteins, clear positive potential is displayed only at the side contacting the DNA. The double-chained DNA molecule displays a rather strong negative potential, especially in their grooves. Thus, a functional role of electrostatics is a guiding of the protein into the DNA major groove, so the protein and DNA could form a loose non-specific complex. At the close-range stage, neutralization of the phosphate charges by positively charged residues is necessary for decreasing the strong electrostatic potential of DNA, allowing nucleotide bases to participate in the formation of protein-DNA atomic contacts in the interface. The recognizing alpha-helix of protein was shown to form both invariant and variable groups of contacts with DNA by means of certain specific side groups. The invariant contacts included highly specific protein-DNA hydrogen bonds between asparagine and adenine, nonpolar contacts of hydrophobic amino acids serving as a stereochemical barrier for fixing the protein factor on DNA, and an interface cluster of water molecules providing local conformational mobility necessary for the dissociation process. There is a unique water molecule within the interface that is conservative and located at the interface center. Invariant contacts of the proteins are mostly formed with the TAAT motif of the promoter DNA forward strand. While the invariant contacts specify the family of homeodomains, the variable contacts that are formed with the reverse strand

  13. A core hSSB1–INTS complex participates in the DNA damage response

    PubMed Central

    Zhang, Feng; Ma, Teng; Yu, Xiaochun

    2013-01-01

    Summary Human single-stranded DNA-binding protein 1 (hSSB1) plays an important role in the DNA damage response and the maintenance of genomic stability. It has been shown that the core hSSB1 complex contains hSSB1, INTS3 and C9orf80. Using protein affinity purification, we have identified integrator complex subunit 6 (INTS6) as a major subunit of the core hSSB1 complex. INTS6 forms a stable complex with INTS3 and hSSB1 both in vitro and in vivo. In this complex, INTS6 directly interacts with INTS3. In response to the DNA damage response, along with INTS3 and hSSB1, INTS6 relocates to the DNA damage sites. Moreover, the hSSB1–INTS complex regulates the accumulation of RAD51 and BRCA1 at DNA damage sites and the correlated homologous recombination. PMID:23986477

  14. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples.

    PubMed

    Thorson, Megan K; Ung, Phuc; Leaver, Franklin M; Corbin, Teresa S; Tuck, Kellie L; Graham, Bim; Barrios, Amy M

    2015-10-08

    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A Programmable DNA Double-Write Material: Synergy of Photolithography and Self-Assembly Nanofabrication.

    PubMed

    Song, Youngjun; Takahashi, Tsukasa; Kim, Sejung; Heaney, Yvonne C; Warner, John; Chen, Shaochen; Heller, Michael J

    2017-01-11

    We demonstrate a DNA double-write process that uses UV to pattern a uniquely designed DNA write material, which produces two distinct binding identities for hybridizing two different complementary DNA sequences. The process requires no modification to the DNA by chemical reagents and allows programmed DNA self-assembly and further UV patterning in the UV exposed and nonexposed areas. Multilayered DNA patterning with hybridization of fluorescently labeled complementary DNA sequences, biotin probe/fluorescent streptavidin complexes, and DNA patterns with 500 nm line widths were all demonstrated.

  16. Magnetic porous carbon nanocomposites derived from metal-organic frameworks as a sensing platform for DNA fluorescent detection.

    PubMed

    Tan, Hongliang; Tang, Gonge; Wang, Zhixiong; Li, Qian; Gao, Jie; Wu, Shimeng

    2016-10-12

    Metal-organic frameworks (MOFs) have emerged as very fascinating functional materials due to their tunable nature and diverse applications. In this work, we prepared a magnetic porous carbon (MPC) nanocomposite by employing iron-containing MOFs (MIL-88A) as precursors through a one-pot thermolysis method. It was found that the MPC can absorb selectively single-stranded DNA (ssDNA) probe to form MPC/ssDNA complex and subsequently quench the labelled fluorescent dye of the ssDNA probe, which is resulted from the synergetic effect of magnetic nanoparticles and carbon matrix. Upon the addition of complementary target DNA, however, the absorbed ssDNA probe could be released from MPC surface by forming double-stranded DNA with target DNA, and accompanied by the recovery of the fluorescence of ssDNA probe. Based on these findings, a sensing platform with low background signal for DNA fluorescent detection was developed. The proposed sensing platform exhibits high sensitivity with detection limit of 1 nM and excellent selectivity to specific target DNA, even single-base mismatched nucleotide can be distinguished. We envision that the presented study would provide a new perspective on the potential applications of MOF-derived nanocomposites in biomedical fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Structure of a preternary complex involving a prokaryotic NHEJ DNA polymerase.

    PubMed

    Brissett, Nigel C; Martin, Maria J; Pitcher, Robert S; Bianchi, Julie; Juarez, Raquel; Green, Andrew J; Fox, Gavin C; Blanco, Luis; Doherty, Aidan J

    2011-01-21

    In many prokaryotes, a specific DNA primase/polymerase (PolDom) is required for nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs). Here, we report the crystal structure of a catalytically active conformation of Mycobacterium tuberculosis PolDom, consisting of a polymerase bound to a DNA end with a 3' overhang, two metal ions, and an incoming nucleotide but, significantly, lacking a primer strand. This structure represents a polymerase:DNA complex in a preternary intermediate state. This polymerase complex occurs in solution, stabilizing the enzyme on DNA ends and promoting nucleotide extension of short incoming termini. We also demonstrate that the invariant Arg(220), contained in a conserved loop (loop 2), plays an essential role in catalysis by regulating binding of a second metal ion in the active site. We propose that this NHEJ intermediate facilitates extension reactions involving critically short or noncomplementary DNA ends, thus promoting break repair and minimizing sequence loss during DSB repair. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Electrochemical detection of sequence-specific DNA based on formation of G-quadruplex-hemin through continuous hybridization chain reaction.

    PubMed

    Sun, Xiaofan; Chen, Haohan; Wang, Shuling; Zhang, Yiping; Tian, Yaping; Zhou, Nandi

    2018-08-27

    A high-sensitive detection of sequence-specific DNA was established based on the formation of G-quadruplex-hemin complex through continuous hybridization chain reaction (HCR). Taking HIV DNA sequence as an example, a capture probe complementary to part of HIV DNA was firstly self-assembled onto the surface of Au electrode. Then a specially designed assistant probe with both terminals complementary to the target DNA and a G-quadruplex-forming sequence in the center was introduced into the detection solution. In the presence of both the target DNA and the assistant probe, the target DNA can be captured on the electrode surface and then a continuous HCR can be conducted due to the mutual recognition of the target DNA and the assistant probe, leading to the formation of a large number of G-quadruplex on the electrode surface. With the help of hemin, a pronounced electrochemical signal can be observed in differential pulse voltammetry (DPV), due to the formation of G-quadruplex-hemin complex. The peak current is linearly related with the logarithm of the concentration of the target DNA in the range from 10 fM to 10 pM. The electrochemical sensor has high selectivity to clearly discriminate single-base mismatched and three-base mismatched sequences from the original HIV DNA sequence. Moreover, the established DNA sensor was challenged by detection of HIV DNA in human serum samples, which showed the low detection limit of 6.3 fM. Thus it has great application prospect in the field of clinical diagnosis and environmental monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    NASA Astrophysics Data System (ADS)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  20. Downstream DNA Tension Regulates the Stability of the T7 RNA Polymerase Initiation Complex

    PubMed Central

    Skinner, Gary M.; Kalafut, Bennett S.; Visscher, Koen

    2011-01-01

    Gene transcription by the enzyme RNA polymerase is tightly regulated. In many cases, such as in the lac operon in Escherichia coli, this regulation is achieved through the action of protein factors on DNA. Because DNA is an elastic polymer, its response to enzymatic processing can lead to mechanical perturbations (e.g., linear stretching and supercoiling) that can affect the operation of other DNA processing complexes acting elsewhere on the same substrate molecule. Using an optical-tweezers assay, we measured the binding kinetics between single molecules of bacteriophage T7 RNA polymerase and DNA, as a function of tension. We found that increasing DNA tension under conditions that favor formation of the open complex results in destabilization of the preinitiation complex. Furthermore, with zero ribonucleotides present, when the closed complex is favored, we find reduced tension sensitivity, implying that it is predominantly the open complex that is sensitive. This result strongly supports the “scrunching” model for T7 transcription initiation, as the applied tension acts against the movement of the DNA into the scrunched state, and introduces linear DNA tension as a potential regulatory quantity for transcription initiation. PMID:21320448

  1. Electrochemical DNA sensor for anthrax toxin activator gene atxA-detection of PCR amplicons.

    PubMed

    Das, Ritu; Goel, Ajay K; Sharma, Mukesh K; Upadhyay, Sanjay

    2015-12-15

    We report the DNA probe functionalized electrochemical genosensor for the detection of Bacillus anthracis, specific towards the regulatory gene atxA. The DNA sensor is fabricated on electrochemically deposited gold nanoparticle on self assembled layer of (3-Mercaptopropyl) trimethoxysilane (MPTS) on GC electrode. DNA hybridization is monitored by differential pulse voltammogram (DPV). The modified GC electrode is characterized by atomic force microscopy (AFM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) method. We also quantified the DNA probe density on electrode surface by the chronocoulometric method. The detection is specific and selective for atxA gene by DNA probe on the electrode surface. No report is available for the detection of B. anthracis by using atxA an anthrax toxin activator gene. In the light of real and complex sample, we have studied the PCR amplicons of 303, 361 and 568 base pairs by using symmetric and asymmetric PCR approaches. The DNA probe of atxA gene efficiently hybridizes with different base pairs of PCR amplicons. The detection limit is found to be 1.0 pM (S/N ratio=3). The results indicate that the DNA sensor is able to detect synthetic target as well as PCR amplicons of different base pairs. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Analysis and Design of a Fiber-optic Probe for DNA Sensors Final Report CRADA No. TSB-1147-95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molau, Nicole; Vail, Curtis

    In 1995, a challenge in the field of genetics dealt with the acquisition of efficient DNA sequencing techniques for reading the 3 billion base-pairs that comprised the human genome. AccuPhotonics, Inc. proposed to develop and manufacture a state-of-the-art near-field scanning optical microscopy (NSOM) fiber-optic probe that was expected to increase probe efficiency by two orders of magnitude over the existing state-of-the-art and to improve resolution to 10Å. The detailed design calculation and optimization of electrical properties of the fiber-optic probe tip geometry would be performed at LLNL, using existing finite-difference time-domain (FDTD) electromagnetic (EM) codes.

  3. Characterization of human glucocorticoid receptor complexes formed with DNA fragments containing or lacking glucocorticoid response elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tully, D.B.; Cidlowski, J.A.

    1989-03-07

    Sucrose density gradient shift assays were used to study the interactions of human glucocorticoid receptors (GR) with small DNA fragments either containing or lacking glucocorticoid response element (GRE) DNA consensus sequences. When crude cytoplasmic extracts containing ({sup 3}H)triamcinolone acetonide (({sup 3}H)TA) labeled GR were incubated with unlabeled DNA under conditions of DNA excess, a GRE-containing DNA fragment obtained from the 5' long terminal repeat of mouse mammary tumor virus (MMTV LTR) formed a stable 12-16S complex with activated, but not nonactivated, ({sup 3}H)TA receptor. By contrast, if the cytosols were treated with calf thymus DNA-cellulose to deplete non-GR-DNA-binding proteins priormore » to heat activation, a smaller 7-10S complex was formed with the MMTV LTR DNA fragment. Activated ({sup 3}H)TA receptor from DNA-cellulose pretreated cytosols also interacted with two similarly sized fragments from pBR322 DNA. Stability of the complexes formed between GR and these three DNA fragments was strongly affected by even moderate alterations in either the salt concentration or the pH of the gradient buffer. Under all conditions tested, the complex formed with the MMTV LTR DNA fragment was more stable than the complexes formed with either of the pBR322 DNA fragments. Together these observations indicate that the formation of stable complexes between activated GR and isolated DNA fragments requires the presence of GRE consensus sequences in the DNA.« less

  4. Vibrational dynamics of hydrogen-bonded complexes in solutions studied with ultrafast infrared pump-probe spectroscopy.

    PubMed

    Banno, Motohiro; Ohta, Kaoru; Yamaguchi, Sayuri; Hirai, Satori; Tominaga, Keisuke

    2009-09-15

    In aqueous solution, the basis of all living processes, hydrogen bonding exerts a powerful effect on chemical reactivity. The vibrational energy relaxation (VER) process in hydrogen-bonded complexes in solution is sensitive to the microscopic environment around the oscillator and to the geometrical configuration of the hydrogen-bonded complexes. In this Account, we describe the use of time-resolved infrared (IR) pump-probe spectroscopy to study the vibrational dynamics of (i) the carbonyl CO stretching modes in protic solvents and (ii) the OH stretching modes of phenol and carboxylic acid. In these cases, the carbonyl group acts as a hydrogen-bond acceptor, whereas the hydroxyl group acts as a hydrogen-bond donor. These vibrational modes have different properties depending on their respective chemical bonds, suggesting that hydrogen bonding may have different mechanisms and effects on the VER of the CO and OH modes than previously understood. The IR pump-probe signals of the CO stretching mode of 9-fluorenone and methyl acetate in alcohol, as well as that of acetic acid in water, include several components with different time constants. Quantum chemical calculations indicate that the dynamical components are the result of various hydrogen-bonded complexes that form between solute and solvent molecules. The acceleration of the VER is due to the increasing vibrational density of states caused by the formation of hydrogen bonds. The vibrational dynamics of the OH stretching mode in hydrogen-bonded complexes were studied in several systems. For phenol-base complexes, the decay time constant of the pump-probe signal decreases as the band peak of the IR absorption spectrum shifts to lower wavenumbers (the result of changing the proton acceptor). For phenol oligomers, the decay time constant of the pump-probe signal decreases as the probe wavenumber decreases. These observations show that the VER time strongly correlates with the strength of hydrogen bonding. This

  5. Comparing the Properties of Electrochemical-Based DNA Sensors Employing Different Redox Tags

    PubMed Central

    Kang, Di; Zuo, Xiaolei; Yang, Renqiang; Xia, Fan; Plaxco, Kevin W.; White, Ryan J.

    2009-01-01

    Many electrochemical biosensor approaches developed in recent years utilize redox labeled (most commonly methylene blue or ferrocene) oligonucleotide probes site-specifically attached to an interrogating electrode. Sensors in this class have been reported employing a range of probe architectures, including single- and double-stranded DNA, more complex DNA structures, DNA and RNA aptamers and, most recently, DNA-small molecule chimeras. Signaling in this class of sensors is generally predicated on binding-induced changes in the efficiency with which the covalently attached redox label transfers electrons with the interrogating electrode. Here we have investigated how the properties of the redox tag affect the performance of such sensors. Specifically, we compare the differences in signaling and stability of electrochemical DNA sensors (E-DNA sensors) fabricated using either ferrocene or methylene blue as the signaling redox moiety. We find that while both tags support efficient E-DNA signaling, ferrocene produces slightly improved signal gain and target affinity. These small advantages, however, come at a potentially significant price: the ferrocene-based sensors are far less stable than their methylene blue counterparts, particularly with regards to stability to long-term storage, repeated electrochemical interrogations, repeated sensing/regeneration iterations, and employment in complex sample matrices such as blood serum. PMID:19810694

  6. Synthesis of novel Eu(III) luminescent probe based on 9- acridinecarboxylic acid skelton for sensing of ds-DNA.

    PubMed

    Azab, Hassan A; Hussein, Belal H M; El-Falouji, Abdullah I

    2012-03-01

    Eu(III)-9-acridinecarboxylate (9-ACA) complex was synthesized and characterized by elemental analysis, conductivity measurement, IR spectroscopy, thermal analysis, mass spectroscopy, (1)H-NMR, fluorescence and ultraviolet spectra. The results indicated that the composition of this complex is [Eu(III)-(9-ACA)(2)(NCS)(C(2)H(5)OH)(2)] 2.5 H(2)O and the oxygen of the carbonyl group coordinated to Eu(III). The interaction between the complex with nucleotides guanosine 5'- monophosphate (5'-GMP), adenosine 5'-diphosphates (5'-ADP), inosine (5'-IMP) and CT-DNA was studied by fluorescence spectroscopy. The fluorescence intensity of Eu(III)-9-acridinecarboxylate complex was enhanced with the addition of CT-DNA. The effect of pH values on the fluorescence intensity of Eu(III) complex was investigated. Under experimental conditions, the linear range was 9-50 ng mL(-1) for calf thymus DNA (CT- DNA) and the corresponding detection limit was 5 ng mL(-1). The results showed that Eu(III)-(9-ACA)(2) complex binds to CT-DNA with stability constant of 2.41 × 10(4) M.

  7. Self-organized, highly luminescent CdSe nanorod-DNA complexes.

    PubMed

    Artemyev, Mikhail; Kisiel, Dmitry; Abmiotko, Sergey; Antipina, Maria N; Khomutov, Gennady B; Kislov, Vladimir V; Rakhnyanskaya, Anna A

    2004-09-01

    DNA molecules are useful building blocks and nanotemplates for controllable fabrication of various bioinorganic nanostructures due to their unique physical-chemical properties and recognition capabilities and the synthetic availability of desired nucleotide sequences and length. We have synthesized novel DNA complexes with positively charged, highly luminescent CdSe nanorods that can be self-organized into filamentary, netlike, or spheroidal nanostructures. DNA-CdSe-nanorod filaments possess strongly linearly polarized photoluminescence due to the unidirectional orientation of nanorods along the filaments. Copyright 2004 American Chemical Society

  8. Spectrophotometric and ultrasensitive DNA bioassay by circular-strand displacement polymerization reaction.

    PubMed

    Yu, Luxin; Wu, Wei; Chen, Junhua; Xiao, Zhuo; Ge, Chenchen; Lie, Puchang; Fang, Zhiyuan; Chen, Lingbo; Zhang, Ya; Zeng, Lingwen

    2013-12-07

    We demonstrated a new spectrophotometric DNA detection approach based on a circular strand-displacement polymerization reaction for the quantitative detection of sequence specific DNA. In this assay, the hybridization of an immobilized hairpin probe on the microtiter plate, to target DNA, results in a conformational change and leads to a stem separation. A short primer thus anneals with the open stem and triggers a polymerization reaction, allowing a cyclic reaction comprising the release of target DNA and hybridization of the target with the remaining immobilized hairpin probe. Through this cyclical process, a large number of duplex DNA complexes are produced. Finally, the biotin modified duplex DNA products can be detected via the HRP catalyzed substrate 3,3',5,5'-tetramethylbenzidine using a spectrophotometer. As a proof of concept, a short DNA sequence (20-nt) related to the South East Asia (SEA) type deletion of α-thalassemia was chosen as the model target. This proposed assay has a very high sensitivity and selectivity with a dynamic response ranging from 0.1 fM to 10 nM and the detection limit was 8 aM. It can be performed within 2 hours, and it can differentiate target SEA DNA from wild-type DNA. By substituting the hairpin probes used in the present work, this assay can be used to detect other subtypes of genetic disorders.

  9. Replication of DNA containing apurinic sites in human and mouse cells probed with parvoviruses MVM and H-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vos, J.M.; Rommelaere, J.

    We studied the effect of apurinic sites on DNA replication in mouse and human cells, using parvoviruses MVM (minute virus of mice) and H-1 as probes. Although apurinic sites are efficient blocks to the replication of these single-stranded DNA viruses in vivo, depurinated parvoviruses can be reactivated if host cells have been preexposed to a subtoxic dose of UV light. The target of this conditional reactivation process is the conversion of depurinated input DNA into double-stranded replicative forms; the concomitant increase in viral mutagenesis strongly suggests that apurinic sites can be bypassed in mammalian cells.

  10. PARACEST Properties of a Dinuclear Neodymium(III) Complex Bound to DNA or Carbonate

    PubMed Central

    Nwe, Kido; Andolina, Christopher M.; Huang, Ching-Hui; Morrow, Janet R.

    2009-01-01

    A dinuclear Nd(III) macrocyclic complex of 1 (1,4-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-p-xylene) and mononuclear complexes of 1,4,7-tris-1,4,7,10-tetraazacyclododecane 2, and 1,4,7-tris[(N-N-diethyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane, 3, are prepared. Complexes of 1 and 2 give rise to a PARACEST (paramagnetic chemical exchange saturation transfer) peak from exchangeable amide protons that resonate approximately 12 ppm downfield from the bulk water proton resonance. The dinuclear Nd(III) complex is promising as a PARACEST contrast agent for MRI applications because it has an optimal pH of 7.5 and the rate constant for amide proton exchange (2700 s−1) is nearly as large as it can be within slow exchange conditions with bulk water. Dinuclear Ln2(1) complexes (Ln(III) = Nd(III), Eu(III)) bind tightly to anionic ligands including carbonate, diethylphosphate and DNA. The CEST amide peak of Nd2(1) is enhanced by certain DNA sequences that contain hairpin loops, but decreases in the presence of diethyl phosphate or carbonate. Direct excitation luminescence studies of Eu2(1) show that double-stranded and hairpin loop DNA sequences displace one water ligand on each Eu(III) center. DNA displaces carbonate ion despite the low dissociation constant for the Eu2(1) carbonate complex (Kd = 15 µM). Enhancement of the CEST effect of a lanthanide complex by binding to DNA is a promising step toward the preparation of PARACEST agents containing DNA scaffolds. PMID:19555071

  11. PARACEST properties of a dinuclear neodymium(III) complex bound to DNA or carbonate.

    PubMed

    Nwe, Kido; Andolina, Christopher M; Huang, Ching-Hui; Morrow, Janet R

    2009-07-01

    A dinuclear Nd(III) macrocyclic complex of 1 (1,4-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-p-xylene) and mononuclear complexes of 1,4,7-tris-1,4,7,10-tetraazacyclododecane, 2, and 1,4,7-tris[(N-N-diethyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane, 3, are prepared. Complexes of 1 and 2 give rise to a PARACEST (paramagnetic chemical exchange saturation transfer) peak from exchangeable amide protons that resonate approximately 12 ppm downfield from the bulk water proton resonance. The dinuclear Nd(III) complex is promising as a PARACEST contrast agent for MRI applications, because it has an optimal pH of 7.5 and the rate constant for amide proton exchange (2700 s(-1)) is nearly as large as it can be within slow exchange conditions with bulk water. Dinuclear Ln(2)(1) complexes (Ln(III) = Nd(III), Eu(III)) bind tightly to anionic ligands including carbonate, diethyl phosphate, and DNA. The CEST amide peak of Nd(2)(1) is enhanced by certain DNA sequences that contain hairpin loops, but decreases in the presence of diethyl phosphate or carbonate. Direct excitation luminescence studies of Eu(2)(1) show that double-stranded and hairpin-loop DNA sequences displace one water ligand on each Eu(III) center. DNA displaces carbonate ion despite the low dissociation constant for the Eu(2)(1) carbonate complex (K(d) = 15 microM). Enhancement of the CEST effect of a lanthanide complex by binding to DNA is a promising step toward the preparation of PARACEST agents containing DNA scaffolds.

  12. UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions.

    PubMed

    Hume, Maxwell A; Barrera, Luis A; Gisselbrecht, Stephen S; Bulyk, Martha L

    2015-01-01

    The Universal PBM Resource for Oligonucleotide Binding Evaluation (UniPROBE) serves as a convenient source of information on published data generated using universal protein-binding microarray (PBM) technology, which provides in vitro data about the relative DNA-binding preferences of transcription factors for all possible sequence variants of a length k ('k-mers'). The database displays important information about the proteins and displays their DNA-binding specificity data in terms of k-mers, position weight matrices and graphical sequence logos. This update to the database documents the growth of UniPROBE since the last update 4 years ago, and introduces a variety of new features and tools, including a new streamlined pipeline that facilitates data deposition by universal PBM data generators in the research community, a tool that generates putative nonbinding (i.e. negative control) DNA sequences for one or more proteins and novel motifs obtained by analyzing the PBM data using the BEEML-PBM algorithm for motif inference. The UniPROBE database is available at http://uniprobe.org. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Application of DNA probes for rRNA and vanA genes to investigation of a nosocomial cluster of vancomycin-resistant enterococci.

    PubMed Central

    Woodford, N; Morrison, D; Johnson, A P; Briant, V; George, R C; Cookson, B

    1993-01-01

    DNA probes specific for genes encoding rRNA and the glycopeptide resistance gene vanA were used to investigate a cluster of vancomycin-resistant (MICs, > 512 mg/liter) Enterococcus faecalis and Enterococcus faecium isolated from separate patients in a renal unit in a London hospital. When digested with BamHI, 12 of 13 vancomycin-resistant E. faecalis isolates exhibited a common restriction fragment length polymorphism pattern of rRNA genes (ribotype). A vanA probe hybridized with chromosomal DNA in these 12 isolates. The other isolate of vancomycin-resistant E. faecalis had a different ribotype and the vanA gene was located on plasmid DNA. These data suggest that cross-infection with a single strain of vancomycin-resistant E. faecalis occurred in most instances. In contrast, 23 vancomycin-resistant E. faecium isolates showed greater heterogeneity, comprising 8 ribotypes, suggesting that multiple strains were present in the unit. Twenty-one of these 23 isolates harbored a 24-MDa plasmid which hybridized with the vanA probe, implying that interstrain dissemination of a vancomycin resistance plasmid may have occurred among E. faecium isolates in the renal unit. Images PMID:8096216

  14. An Intrinsically Disordered APLF Links Ku, DNA-PKcs, and XRCC4-DNA Ligase IV in an Extended Flexible Non-homologous End Joining Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammel, Michal; Yu, Yaping; Radhakrishnan, Sarvan K.

    DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) in human cells is initiated by Ku heterodimer binding to a DSB, followed by recruitment of core NHEJ factors including DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XRCC4-like factor (XLF), and XRCC4 (X4)-DNA ligase IV (L4). Ku also interacts with accessory factors such as aprataxin and polynucleotide kinase/phosphatase-like factor (APLF). But, how these factors interact to tether, process, and ligate DSB ends while allowing regulation and chromatin interactions remains enigmatic. Here, small angle X-ray scattering (SAXS) and mutational analyses show APLF is largely an intrinsically disordered protein that binds Ku, Ku/DNA-PKcsmore » (DNA-PK), and X4L4 within an extended flexible NHEJ core complex. X4L4 assembles with Ku heterodimers linked to DNA-PKcs via flexible Ku80 C-terminal regions (Ku80CTR) in a complex stabilized through APLF interactions with Ku, DNA-PK, and X4L4. Our collective results unveil the solution architecture of the six-protein complex and suggest cooperative assembly of an extended flexible NHEJ core complex that supports APLF accessibility while possibly providing flexible attachment of the core complex to chromatin. The resulting dynamic tethering furthermore, provides geometric access of L4 catalytic domains to the DNA ends during ligation and of DNA-PKcs for targeted phosphorylation of other NHEJ proteins as well as trans-phosphorylation of DNA-PKcs on the opposing DSB without disrupting the core ligation complex. Overall the results shed light on evolutionary conservation of Ku, X4, and L4 activities, while explaining the observation that Ku80CTR and DNA-PKcs only occur in a subset of higher eukaryotes.« less

  15. An Intrinsically Disordered APLF Links Ku, DNA-PKcs, and XRCC4-DNA Ligase IV in an Extended Flexible Non-homologous End Joining Complex

    DOE PAGES

    Hammel, Michal; Yu, Yaping; Radhakrishnan, Sarvan K.; ...

    2016-11-14

    DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) in human cells is initiated by Ku heterodimer binding to a DSB, followed by recruitment of core NHEJ factors including DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XRCC4-like factor (XLF), and XRCC4 (X4)-DNA ligase IV (L4). Ku also interacts with accessory factors such as aprataxin and polynucleotide kinase/phosphatase-like factor (APLF). But, how these factors interact to tether, process, and ligate DSB ends while allowing regulation and chromatin interactions remains enigmatic. Here, small angle X-ray scattering (SAXS) and mutational analyses show APLF is largely an intrinsically disordered protein that binds Ku, Ku/DNA-PKcsmore » (DNA-PK), and X4L4 within an extended flexible NHEJ core complex. X4L4 assembles with Ku heterodimers linked to DNA-PKcs via flexible Ku80 C-terminal regions (Ku80CTR) in a complex stabilized through APLF interactions with Ku, DNA-PK, and X4L4. Our collective results unveil the solution architecture of the six-protein complex and suggest cooperative assembly of an extended flexible NHEJ core complex that supports APLF accessibility while possibly providing flexible attachment of the core complex to chromatin. The resulting dynamic tethering furthermore, provides geometric access of L4 catalytic domains to the DNA ends during ligation and of DNA-PKcs for targeted phosphorylation of other NHEJ proteins as well as trans-phosphorylation of DNA-PKcs on the opposing DSB without disrupting the core ligation complex. Overall the results shed light on evolutionary conservation of Ku, X4, and L4 activities, while explaining the observation that Ku80CTR and DNA-PKcs only occur in a subset of higher eukaryotes.« less

  16. Combing Chromosomal DNA Mediated by the SMC Complex: Structure and Mechanisms.

    PubMed

    Kamada, Katsuhiko; Barillà, Daniela

    2018-02-01

    Genome maintenance requires various nucleoid-associated factors in prokaryotes. Among them, the SMC (Structural Maintenance of Chromosomes) protein has been thought to play a static role in the organization and segregation of the chromosome during cell division. However, recent studies have shown that the bacterial SMC is required to align left and right arms of the emerging chromosome and that the protein dynamically travels from origin to Ter region. A rod form of the SMC complex mediates DNA bridging and has been recognized as a machinery responsible for DNA loop extrusion, like eukaryotic condensin or cohesin complexes, which act as chromosome organizers. Attention is now turning to how the prototype of the complex is loaded on the entry site and translocated on chromosomal DNA, explaining its overall conformational changes at atomic levels. Here, we review and highlight recent findings concerning the prokaryotic SMC complex and discuss possible mechanisms from the viewpoint of protein architecture. © 2017 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  17. Chemical mapping of cytosines enzymatically flipped out of the DNA helix

    PubMed Central

    Liutkevičiūtė, Zita; Tamulaitis, Gintautas; Klimašauskas, Saulius

    2008-01-01

    Haloacetaldehydes can be employed for probing unpaired DNA structures involving cytosine and adenine residues. Using an enzyme that was structurally proven to flip its target cytosine out of the DNA helix, the HhaI DNA methyltransferase (M.HhaI), we demonstrate the suitability of the chloroacetaldehyde modification for mapping extrahelical (flipped-out) cytosine bases in protein–DNA complexes. The generality of this method was verified with two other DNA cytosine-5 methyltransferases, M.AluI and M.SssI, as well as with two restriction endonucleases, R.Ecl18kI and R.PspGI, which represent a novel class of base-flipping enzymes. Our results thus offer a simple and convenient laboratory tool for detection and mapping of flipped-out cytosines in protein–DNA complexes. PMID:18450817

  18. Chromosome 16 inversion-associated translocations in acute myeloid leukemia elucidated using a dual-color CBFB DNA probe.

    PubMed

    Aventín, Anna; Espadaler, Montserrat; Casas, Sílvia; Duarte, José; Nomdedéu, Josep; Sierra, Jorge

    2002-04-15

    We describe two cases of acute myelomonocytic leukemia with eosinophilia (AML-M4Eo) that were diagnosed with an inv(16)(p13q22) based on conventional cytogenetics (CC) and fluorescence in situ hybridization (FISH) technique using a chromosome 16p arm specific paint probe. Additional FISH analysis with a dual-color CBFB DNA probe showed that the 3' portion of the CBFB gene was translocated to chromosome 10p13 in the first patient and 1p36 in the other. These two cases indicate that some inv(16)(p13q22) identified by CC and FISH with chromosome arm-specific painting probe may represent cases of inversion-associated translocation. We suggest that all cases with inv(16)(p13q22) should be investigated by FISH with appropriate probes for a possible translocation of 16q22-->qter to another chromosome.

  19. Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA

    PubMed Central

    Oberstrass, Florian C.; Fernandes, Louis E.; Bryant, Zev

    2012-01-01

    B-DNA becomes unstable under superhelical stress and is able to adopt a wide range of alternative conformations including strand-separated DNA and Z-DNA. Localized sequence-dependent structural transitions are important for the regulation of biological processes such as DNA replication and transcription. To directly probe the effect of sequence on structural transitions driven by torque, we have measured the torsional response of a panel of DNA sequences using single molecule assays that employ nanosphere rotational probes to achieve high torque resolution. The responses of Z-forming d(pGpC)n sequences match our predictions based on a theoretical treatment of cooperative transitions in helical polymers. “Bubble” templates containing 50–100 bp mismatch regions show cooperative structural transitions similar to B-DNA, although less torque is required to disrupt strand–strand interactions. Our mechanical measurements, including direct characterization of the torsional rigidity of strand-separated DNA, establish a framework for quantitative predictions of the complex torsional response of arbitrary sequences in their biological context. PMID:22474350

  20. Evidence of an inverted hexagonal phase in self-assembled phospholipid-DNA-metal complexes

    NASA Astrophysics Data System (ADS)

    Francescangeli, O.; Pisani, M.; Stanic, V.; Bruni, P.; Weiss, T. M.

    2004-08-01

    We report the first observation of an inverted hexagonal phase of phospholipid-DNA-metal complexes. These ternary complexes are formed in a self-assembled manner when water solutions of neutral lipid dioleoylphosphatidylethanolamine (DOPE), DNA and divalent metal cations (Me2+; Me=Fe, Co, Mg, Mn) are mixed, which represents a striking example of supramolecular chemistry. The structure, derived from synchrotron X-ray diffraction, consists of cylindrical DNA strands coated by neutral lipid monolayers and arranged on a two-dimensional hexagonal lattice (HIIc). Besides the fundamental aspects, DOPE-DNA-Me2+ complexes may be of great interest as efficient nonviral delivery systems in gene therapy applications because of the low inherent cytotoxicity and the potential high transfection efficiency.

  1. Crystal Structure of the Chromodomain Helicase DNA-binding Protein 1 (Chd1) DNA-binding Domain in Complex with DNA*

    PubMed Central

    Sharma, Amit; Jenkins, Katherine R.; Héroux, Annie; Bowman, Gregory D.

    2011-01-01

    Chromatin remodelers are ATP-dependent machines that dynamically alter the chromatin packaging of eukaryotic genomes by assembling, sliding, and displacing nucleosomes. The Chd1 chromatin remodeler possesses a C-terminal DNA-binding domain that is required for efficient nucleosome sliding and believed to be essential for sensing the length of DNA flanking the nucleosome core. The structure of the Chd1 DNA-binding domain was recently shown to consist of a SANT and SLIDE domain, analogous to the DNA-binding domain of the ISWI family, yet the details of how Chd1 recognized DNA were not known. Here we present the crystal structure of the Saccharomyces cerevisiae Chd1 DNA-binding domain in complex with a DNA duplex. The bound DNA duplex is straight, consistent with the preference exhibited by the Chd1 DNA-binding domain for extranucleosomal DNA. Comparison of this structure with the recently solved ISW1a DNA-binding domain bound to DNA reveals that DNA lays across each protein at a distinct angle, yet contacts similar surfaces on the SANT and SLIDE domains. In contrast to the minor groove binding seen for Isw1 and predicted for Chd1, the SLIDE domain of the Chd1 DNA-binding domain contacts the DNA major groove. The majority of direct contacts with the phosphate backbone occur only on one DNA strand, suggesting that Chd1 may not strongly discriminate between major and minor grooves. PMID:22033927

  2. Antimalarial, antimicrobial, cytotoxic, DNA interaction and SOD like activities of tetrahedral copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Mehta, Jugal V.; Gajera, Sanjay B.; Patel, Mohan N.

    2015-02-01

    The mononuclear copper(II) complexes with P, O-donor ligand and different fluoroquinolones have been synthesized and characterized by elemental analysis, electronic spectra, TGA, EPR, FT-IR and LC-MS spectroscopy. An antimicrobial efficiency of the complexes has been tested against five different microorganisms in terms of minimum inhibitory concentration (MIC) and displays very good antimicrobial activity. The binding strength and binding mode of the complexes with Herring Sperm DNA (HS DNA) have been investigated by absorption titration and viscosity measurement studies. The studies suggest the classical intercalative mode of DNA binding. Gel electrophoresis assay determines the ability of the complexes to cleave the supercoiled form of pUC19 DNA. Synthesized complexes have been tested for their SOD mimic activity using nonenzymatic NBT/NADH/PMS system and found to have good antioxidant activity. All the complexes show good cytotoxic and in vitro antimalarial activities.

  3. Synthesis, characterization, DNA-binding and cleavage studies of polypyridyl copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Gubendran, Ammavasi; Rajesh, Jegathalaprathaban; Anitha, Kandasamy; Athappan, Periyakaruppan

    2014-10-01

    Six new mixed-ligand copper(II) complexes were synthesized namely [Cu(phen)2OAc]ClO4ṡH2O(1), [Cu(bpy)2OAc]ClO4ṡH2O(2), [Cu(o-ampacac)(phen)]ClO4(3), [Cu(o-ampbzac)(phen)]ClO4(4), [Cu(o-ampacac)(bpy)]ClO4(5), and [Cu(o-ampbzac)(bpy)]ClO4(6) (phen = 1,10-phenanthroline, bpy = 2, 2‧-bipyridine, o-ampacac = (Z)-4-(2-hydroxylamino)pent-3-ene-2-one,o-ampbzac = (Z)-4-(2-hydroxylamino)-4-phenylbut-3-ene-2-one)and characterized by UV-Vis, IR, EPR and cyclic voltammetry. Ligands were characterized by NMR spectra. Single crystal X-ray studies of the complex 1 shows Cu(II) ions are located in a highly distorted octahedral environment. Absorption spectral studies reveal that the complexes 1-6 exhibit hypochromicity during the interaction with DNA and binding constant values derived from spectral and electrochemical studies indicate that complexes 1, 2 and 3 bind strongly with DNA possibly by an intercalative mode. Electrochemical studies reveal that the complexes 1-4 prefer to bind with DNA in Cu(I) rather than Cu(II) form. The shift in the formal potentials E1/2 and CD spectral studies suggest groove or electrostatic binding mode for the complexes 4-6. Complex 1 can cleave supercoiled (SC) pUC18 DNA efficiently into nicked form II under photolytic conditions and into an open circular form (form II) and linear form (form III) in the presence of H2O2 at pH 8.0 and 37 °C, while the complex 2 does not cleave DNA under similar conditions.

  4. Walking of antitumor bifunctional trinuclear PtII complex on double-helical DNA

    PubMed Central

    Malina, Jaroslav; Kasparkova, Jana; Farrell, Nicholas P.; Brabec, Viktor

    2011-01-01

    The trinuclear BBR3464 ([{trans-PtCl(NH3)2}2µ-(trans-Pt(NH3)2(H2N(CH2)6NH2)2)]4+) belongs to the polynuclear class of platinum-based anticancer agents. DNA adducts of this complex differ significantly in structure and type from those of clinically used mononuclear platinum complexes, especially, long-range (Pt, Pt) intrastrand and interstrand cross-links are formed in both 5′–5′ and 3′–3′ orientations. We show employing short oligonucleotide duplexes containing single, site-specific cross-links of BBR3464 and gel electrophoresis that in contrast to major DNA adducts of clinically used platinum complexes, under physiological conditions the coordination bonds between platinum and N7 of G residues involved in the cross-links of BBR3464 can be cleaved. This cleavage may lead to the linkage isomerization reactions between this metallodrug and double-helical DNA. Differential scanning calorimetry of duplexes containing single, site-specific cross-links of BBR3464 reveals that one of the driving forces that leads to the lability of DNA cross-links of this metallodrug is a difference between the thermodynamic destabilization induced by the cross-link and by the adduct into which it could isomerize. The rearrangements may proceed in the way that cross-links originally formed in one strand of DNA can spontaneously translocate from one DNA strand to its complementary counterpart, which may evoke walking of the platinum complex on DNA molecule. PMID:20833634

  5. Vertical-probe-induced asymmetric dust oscillation in complex plasma.

    PubMed

    Harris, B J; Matthews, L S; Hyde, T W

    2013-05-01

    A complex plasma vertical oscillation experiment which modifies the bulk is presented. Spherical, micron-sized particles within a Coulomb crystal levitated in the sheath above the powered lower electrode in a GEC reference cell are perturbed using a probe attached to a Zyvex S100 Nanomanipulator. By oscillating the probe potential sinusoidally, particle motion is found to be asymmetric, exhibiting superharmonic response in one case. Using a simple electric field model for the plasma sheath, including a nonzero electric field at the sheath edge, dust particle charges are found by employing a balance of relevant forces and emission analysis. Adjusting the parameters of the electric field model allowed the change predicted in the levitation height to be compared with experiment. A discrete oscillator Green's function is applied using the derived force, which accurately predicts the particle's motion and allows the determination of the electric field at the sheath edge.

  6. Direct electronic probing of biological complexes formation

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Magliulo, Maria; Manoli, Kyriaki; Giordano, Francesco; Palazzo, Gerardo; Torsi, Luisa

    2014-10-01

    Functional bio-interlayer organic field - effect transistors (FBI-OFET), embedding streptavidin, avidin and neutravidin as bio-recognition element, have been studied to probe the electronic properties of protein complexes. The threshold voltage control has been achieved modifying the SiO2 gate diaelectric surface by means of the deposition of an interlayer of bio-recognition elements. A threshold voltage shift with respect to the unmodified dielectric surface toward more negative potential values has been found for the three different proteins, in agreement with their isoelectric points. The relative responses in terms of source - drain current, mobility and threshold voltage upon exposure to biotin of the FBI-OFET devices have been compared for the three bio-recognition elements.

  7. Synthesis, characterization and DNA-binding studies of mono and heterobimetallic complexes Cu sbnd Sn 2/Zn sbnd Sn 2 and their DNA cleavage activity

    NASA Astrophysics Data System (ADS)

    Arjmand, Farukh; Sayeed, Fatima

    2010-02-01

    Heterobimetallic complexes C 6H 24N 4O 6CuSn 2Cl 63, C 6H 24N 4O 6ZnSn 2Cl 64 have been synthesized from their monometallic analogs C 6H 16N 4O 2CuCl 21, C 6H 16N 4O 2ZnCl 22, and were characterized by various spectroscopic and analytical methods. The complexes 1-4 reveal an octahedral geometry for both central metal ions Cu/Zn as well as for Sn metal ion. The interaction of complexes 1-4 with CT-DNA, were investigated by using absorption, emission, cyclic voltammetry, viscometry and DNA cleavage studies. The emission quenching of 3 and 4 by [Fe(CN) 6] 4- depressed greatly when bound to CT-DNA. The results of spectroscopic, viscometric and cyclic voltammetry of complexes 3 and 4 revealed electrostatic mode of binding of the complexes with CT-DNA. These results revealed that 4 bind more avidly in comparison to 3 with CT-DNA. Gel electrophoresis of DNA with complexes 3 and 4 demonstrated that the complexes exhibit excellent cleavage activity under physiological conditions.

  8. Thin film DNA-complex-based dye lasers fabricated by immersion and conventional processes

    NASA Astrophysics Data System (ADS)

    Kawabe, Yutaka; Suzuki, Yuki

    2017-08-01

    DNA based thin film dye laser is one of promising optical devices for future technology. Laser oscillation and amplified spontaneous emission (ASE) were demonstrated by hemicyanine-doped DNA complex films prepared with `immersion method' as well as those made by a conventional way. In the immersion process, DNA-surfactant complex films were stained by immersion into an acetone solution including the dyes. In this study, three types of hemicyanines were incorporated with both methods, and laser oscillation was achieved with optically induced population grating formed in all of the complex films. The laser threshold values for six cases ranged in 0.07 - 0.18 mJ/cm2 , which was close to the best values made in DNA complex matrices. Continual pumping showed that laser oscillation persisted for 4 - 10 minutes. Immersion process gave superior laser capability especially for output efficiency over the conventional counterparts.

  9. Hairpin-shaped tetranuclear palladium(II) complex: synthesis, crystal structure, DNA binding and cytotoxicity activity studies.

    PubMed

    Gao, En-Jun; Wang, Ke-Hua; Zhu, Ming-Chang; Liu, Lei

    2010-07-01

    A novel tetranuclear palladium(II) complex [Pd(4)(phen)(4) (micro-pydc)(4)].10H(2)O (phen = 1,10-phenanthroline, pydc = pyridine-3,4-dicarboxylate) has been synthesized and characterized. In the tetranuclear complex, two pairs of dipalladated [Pd(phen)] moieties are bridged together by four pydc, presenting a hairpin molecular shape. The binding of the title complex with fish sperm DNA (FS-DNA) has been investigated by UV spectrum and fluorescence spectrum. All the results indicate that the complex bind to DNA in an intercalative mode and considerating the molecular shape and size, the dipalladated phenanthroline moieties bisintercalate to the base pairs of DNA. Agarose gel electrophoresis assay demonstrates the ability of the complex to cleave the pBR322 plasmid DNA. Cytotoxic activity studies show the complex exhibited good cytotoxic activity against four different cancer cell lines. Crown Copyright (c) 2010. Published by Elsevier Masson SAS. All rights reserved.

  10. Synergistic effect of ATP for RuvA-RuvB-Holliday junction DNA complex formation.

    PubMed

    Iwasa, Takuma; Han, Yong-Woon; Hiramatsu, Ryo; Yokota, Hiroaki; Nakao, Kimiko; Yokokawa, Ryuji; Ono, Teruo; Harada, Yoshie

    2015-12-14

    The Escherichia coli RuvB hexameric ring motor proteins, together with RuvAs, promote branch migration of Holliday junction DNA. Zero mode waveguides (ZMWs) constitute of nanosized holes and enable the visualization of a single fluorescent molecule under micromolar order of the molecules, which is applicable to characterize the formation of RuvA-RuvB-Holliday junction DNA complex. In this study, we used ZMWs and counted the number of RuvBs binding to RuvA-Holliday junction DNA complex. Our data demonstrated that different nucleotide analogs increased the amount of Cy5-RuvBs binding to RuvA-Holliday junction DNA complex in the following order: no nucleotide, ADP, ATPγS, and mixture of ADP and ATPγS. These results suggest that not only ATP binding to RuvB but also ATP hydrolysis by RuvB facilitates a stable RuvA-RuvB-Holliday junction DNA complex formation.

  11. Synthesis, spectroscopic characterization and in vitro cytotoxicities of new organometallic palladium complexes with biologically active β-diketones; Biological evaluation probing of the interaction mechanism with DNA/Protein and molecular docking

    NASA Astrophysics Data System (ADS)

    Karami, Kazem; Rafiee, Mina; Lighvan, Zohreh Mehri; Zakariazadeh, Mostafa; Faal, Ali Yeganeh; Esmaeili, Seyed-Alireza; Momtazi-Borojeni, Amir Abbas

    2018-02-01

    [Pd{(C,N)sbnd C6H4CH (CH3)NH}(CUR)] (3) and [Pd2{(C,N)sbnd C6H4CH(CH3)NH2}2(μ-N3CS2)] (4) [cur = 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dion] novel organometallic complexes with biologically active ligands have been prepared and characterized via elemental analysis, multinuclear spectroscopic techniques (1H, and 13C NMR and IR) and their biological activities, including antitumoral activity and DNA-protein interactions have been investigated. Fluorescence spectroscopy used to study the interaction of the complexes with BSA have shown the affinity of the complexes for these proteins with relatively high binding constant values and the changed secondary structure of BSA in the presence of the complexes. In the meantime, spectroscopy and competitive titration have been applied to investigate the interaction of complexes with Warfarin and Ibuprofen site markers for sites I and II, respectively, with BSA. The results have suggested that the locations of complexes 3 and 4 are sites II and I, respectively. UV-Vis spectroscopy, emission titration and helix melting methods have been used to study the interaction of these complexes with CT-DNA, indicating that complexes are bound to CT-DNA by intercalation binding mode. In addition, good cytotoxic activity against MCF-7 (human breast cancer) and JURKAT (human leukemia) cell line has been shown by both complexes whereas low cytotoxicity was exerted on normal peripheral blood mononuclear cells.

  12. Combined subtraction hybridization and polymerase chain reaction amplification procedure for isolation of strain-specific Rhizobium DNA sequences.

    PubMed Central

    Bjourson, A J; Stone, C E; Cooper, J E

    1992-01-01

    A novel subtraction hybridization procedure, incorporating a combination of four separation strategies, was developed to isolate unique DNA sequences from a strain of Rhizobium leguminosarum bv. trifolii. Sau3A-digested DNA from this strain, i.e., the probe strain, was ligated to a linker and hybridized in solution with an excess of pooled subtracter DNA from seven other strains of the same biovar which had been restricted, ligated to a different, biotinylated, subtracter-specific linker, and amplified by polymerase chain reaction to incorporate dUTP. Subtracter DNA and subtracter-probe hybrids were removed by phenol-chloroform extraction of a streptavidin-biotin-DNA complex. NENSORB chromatography of the sequences remaining in the aqueous layer captured biotinylated subtracter DNA which may have escaped removal by phenol-chloroform treatment. Any traces of contaminating subtracter DNA were removed by digestion with uracil DNA glycosylase. Finally, remaining sequences were amplified by polymerase chain reaction with a probe strain-specific primer, labelled with 32P, and tested for specificity in dot blot hybridizations against total genomic target DNA from each strain in the subtracter pool. Two rounds of subtraction-amplification were sufficient to remove cross-hybridizing sequences and to give a probe which hybridized only with homologous target DNA. The method is applicable to the isolation of DNA and RNA sequences from both procaryotic and eucaryotic cells. Images PMID:1637166

  13. Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions.

    PubMed

    Yang, Shengyuan; Wu, Chao; Tan, Hui; Wu, Yan; Liao, Shuzhen; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin

    2013-01-02

    In this study, to enhance the capability of metal ions disturbing the orientation of liquid crystals (LCs), we designed a new label-free LC biosensor for the highly selective and sensitive detection of heavy metal ions. This strategy makes use of the target-induced DNA conformational change to enhance the disruption of target molecules for the orientation of LC leading to an amplified optical signal. The Hg(2+) ion, which possesses a unique property to bind specifically to two DNA thymine (T) bases, is used as a model heavy metal ion. In the presence of Hg(2+), the specific oligonucleotide probes form a conformational reorganization of the oligonucleotide probes from hairpin structure to duplex-like complexes. The duplex-like complexes are then bound on the triethoxysilylbutyraldehyde/N,N-dimethyl-N-octadecyl (3-aminopropyl) trimethoxysilyl chloride (TEA/DMOAP)-coated substrate modified with capture probes, which can greatly distort the orientational profile of LC, making the optical image of LC cell birefringent as a result. The optical signal of LC sensor has a visible change at the Hg(2+) concentration of low to 0.1 nM, showing good detection sensitivity. The cost-effective LC sensing method can translate the concentration signal of heavy metal ions in solution into the presence of DNA duplexes and is expected to be a sensitive detection platform for heavy metal ions and other small molecule monitors.

  14. Experimental mapping of DNA duplex shape enabled by global lineshape analyses of a nucleotide-independent nitroxide probe

    PubMed Central

    Ding, Yuan; Zhang, Xiaojun; Tham, Kenneth W.; Qin, Peter Z.

    2014-01-01

    Sequence-dependent variation in structure and dynamics of a DNA duplex, collectively referred to as ‘DNA shape’, critically impacts interactions between DNA and proteins. Here, a method based on the technique of site-directed spin labeling was developed to experimentally map shapes of two DNA duplexes that contain response elements of the p53 tumor suppressor. An R5a nitroxide spin label, which was covalently attached at a specific phosphate group, was scanned consecutively through the DNA duplex. X-band continuous-wave electron paramagnetic resonance spectroscopy was used to monitor rotational motions of R5a, which report on DNA structure and dynamics at the labeling site. An approach based on Pearson's coefficient analysis was developed to collectively examine the degree of similarity among the ensemble of R5a spectra. The resulting Pearson's coefficients were used to generate maps representing variation of R5a mobility along the DNA duplex. The R5a mobility maps were found to correlate with maps of certain DNA helical parameters, and were capable of revealing similarity and deviation in the shape of the two closely related DNA duplexes. Collectively, the R5a probe and the Pearson's coefficient-based lineshape analysis scheme yielded a generalizable method for examining sequence-dependent DNA shapes. PMID:25092920

  15. Clinical utility of a DNA probe to 17p11.2 in screening of patients with a peripheral neuropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blancato, J.; Precht, K.; Meck, J.

    1994-09-01

    We assessed the usefulness of in situ hybridization with a DNA probe to the area of chromosome 17 at p11.2 as a diagnostic tool for screening for Charcot Marte Tooth 1A (CMT 1A). In situ hybridization with a probe to 17p11.2 was performed on fixed lymphocytes from the following groups of individuals: (1) normal controls; (2) patients evoking a strong clinical suspicion of CMT 1A; and (3) 3 families with an apparent autosomal dominant peripheral neuropathy of unknown diagnoses. Group 2 patients had evidence of demyelination as defined by nerve conduction of less that 50% of the normal mean ormore » terminal latency greater than 50% of the normal mean in conduction studies. Analysis of interphase cells hybridized with a cosmid DNA probe to 17p11.2 requires inclusion of a normal control with each trial and masked observer. Due to the size of the target DNA and the nature of the centromeric heterochromatin, the scoring of this probe is more subjective than centromere probes. For example, if the two 17 chromosomes are decondensed as in interphase, two tandem signals may be visualized as one. Results from duplication positive patients demonstrate a large proportion of cells with two closely aligned, but separate, signals with an additional single signal. Normal results demonstrate a majority of cells with two separate signals representing both normal homologues. None of the 3 families with questionable diagnosis revealed a duplication at the region, reinforcing our belief that a clinical diagnosis is the most discriminating tool available for diagnosis of CMT 1A. We concur with Boylan that molecular analysis for CMT 1A is useful for establishing a diagnosis of CMT 1A, but is not a primary differential diagnostic test. The yield in screening patients without physiologic evidence of demyelination is likely to be low. We further find that the use of in situ hybridization is a simple method of performing the duplication analysis.« less

  16. Superimposed Code Theoretic Analysis of DNA Codes and DNA Computing

    DTIC Science & Technology

    2008-01-01

    complements of one another and the DNA duplex formed is a Watson - Crick (WC) duplex. However, there are many instances when the formation of non-WC...that the user’s requirements for probe selection are met based on the Watson - Crick probe locality within a target. The second type, called...AFRL-RI-RS-TR-2007-288 Final Technical Report January 2008 SUPERIMPOSED CODE THEORETIC ANALYSIS OF DNA CODES AND DNA COMPUTING

  17. Method and apparatus for synthesis of arrays of DNA probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerrina, Francesco; Sussman, Michael R.; Blattner, Frederick R.

    The synthesis of arrays of DNA probes sequences, polypeptides, and the like is carried out using a patterning process on an active surface of a substrate. An image is projected onto the active surface of the substrate utilizing an image former that includes a light source that provides light to a micromirror device comprising an array of electronically addressable micromirrors, each of which can be selectively tilted between one of at least two positions. Projection optics receives the light reflected from the micromirrors along an optical axis and precisely images the micromirrors onto the active surface of the substrate, whichmore » may be used to activate the surface of the substrate. The first level of bases may then be applied to the substrate, followed by development steps, and subsequent exposure of the substrate utilizing a different pattern of micromirrors, with further repeats until the elements of a two dimensional array on the substrate surface have an appropriate base bound thereto. The micromirror array can be controlled in conjunction with a DNA synthesizer supplying appropriate reagents to a flow cell containing the active substrate to control the sequencing of images presented by the micromirror array in coordination of the reagents provided to the substrate.« less

  18. Dissolving microneedles for DNA vaccination: Improving functionality via polymer characterization and RALA complexation

    PubMed Central

    Cole, Grace; McCaffrey, Joanne; Ali, Ahlam A.; McBride, John W.; McCrudden, Cian M.; Vincente-Perez, Eva M.; Donnelly, Ryan F.; McCarthy, Helen O.

    2017-01-01

    ABSTRACT DNA vaccination holds the potential to treat or prevent nearly any immunogenic disease, including cancer. To date, these vaccines have demonstrated limited immunogenicity in vivo due to the absence of a suitable delivery system which can protect DNA from degradation and improve transfection efficiencies in vivo. Recently, microneedles have been described as a novel physical delivery technology to enhance DNA vaccine immunogenicity. Of these devices, dissolvable microneedles promise a safe, pain-free delivery system which may simultaneously improve DNA stability within a solid matrix and increase DNA delivery compared to solid arrays. However, to date little work has directly compared the suitability of different dissolvable matrices for formulation of DNA-loaded microneedles. Therefore, the current study examined the ability of 4 polymers to formulate mechanically robust, functional DNA loaded dissolvable microneedles. Additionally, complexation of DNA to a cationic delivery peptide, RALA, prior to incorporation into the dissolvable matrix was explored as a means to improve transfection efficacies following release from the polymer matrix. Our data demonstrates that DNA is degraded following incorporation into PVP, but not PVA matrices. The complexation of DNA to RALA prior to incorporation into polymers resulted in higher recovery from dissolvable matrices, and increased transfection efficiencies in vitro. Additionally, RALA/DNA nanoparticles released from dissolvable PVA matrices demonstrated up to 10-fold higher transfection efficiencies than the corresponding complexes released from PVP matrices, indicating that PVA is a superior polymer for this microneedle application. PMID:27846370

  19. RNA polymerase gate loop guides the nontemplate DNA strand in transcription complexes.

    PubMed

    NandyMazumdar, Monali; Nedialkov, Yuri; Svetlov, Dmitri; Sevostyanova, Anastasia; Belogurov, Georgiy A; Artsimovitch, Irina

    2016-12-27

    Upon RNA polymerase (RNAP) binding to a promoter, the σ factor initiates DNA strand separation and captures the melted nontemplate DNA, whereas the core enzyme establishes interactions with the duplex DNA in front of the active site that stabilize initiation complexes and persist throughout elongation. Among many core RNAP elements that participate in these interactions, the β' clamp domain plays the most prominent role. In this work, we investigate the role of the β gate loop, a conserved and essential structural element that lies across the DNA channel from the clamp, in transcription regulation. The gate loop was proposed to control DNA loading during initiation and to interact with NusG-like proteins to lock RNAP in a closed, processive state during elongation. We show that the removal of the gate loop has large effects on promoter complexes, trapping an unstable intermediate in which the RNAP contacts with the nontemplate strand discriminator region and the downstream duplex DNA are not yet fully established. We find that although RNAP lacking the gate loop displays moderate defects in pausing, transcript cleavage, and termination, it is fully responsive to the transcription elongation factor NusG. Together with the structural data, our results support a model in which the gate loop, acting in concert with initiation or elongation factors, guides the nontemplate DNA in transcription complexes, thereby modulating their regulatory properties.

  20. Probing DNA in nanopores via tunneling: from sequencing to ``quantum'' analogies

    NASA Astrophysics Data System (ADS)

    di Ventra, Massimiliano

    2012-02-01

    Fast and low-cost DNA sequencing methods would revolutionize medicine: a person could have his/her full genome sequenced so that drugs could be tailored to his/her specific illnesses; doctors could know in advance patients' likelihood to develop a given ailment; cures to major diseases could be found faster [1]. However, this goal of ``personalized medicine'' is hampered today by the high cost and slow speed of DNA sequencing methods. In this talk, I will discuss the sequencing protocol we suggest which requires the measurement of the distributions of transverse currents during the translocation of single-stranded DNA into nanopores [2-5]. I will support our conclusions with a combination of molecular dynamics simulations coupled to quantum mechanical calculations of electrical current in experimentally realizable systems [2-5]. I will also discuss recent experiments that support these theoretical predictions. In addition, I will show how this relatively unexplored area of research at the interface between solids, liquids, and biomolecules at the nanometer length scale is a fertile ground to study quantum phenomena that have a classical counterpart, such as ionic quasi-particles, ionic ``quantized'' conductance [6,7] and Coulomb blockade [8]. Work supported in part by NIH. [4pt] [1] M. Zwolak, M. Di Ventra, Physical Approaches to DNA Sequencing and Detection, Rev. Mod. Phys. 80, 141 (2008).[0pt] [2] M. Zwolak and M. Di Ventra, Electronic signature of DNA nucleotides via transverse transport, Nano Lett. 5, 421 (2005).[0pt] [3] J. Lagerqvist, M. Zwolak, and M. Di Ventra, Fast DNA sequencing via transverse electronic transport, Nano Lett. 6, 779 (2006).[0pt] [4] J. Lagerqvist, M. Zwolak, and M. Di Ventra, Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport, Biophys. J. 93, 2384 (2007).[0pt] [5] M. Krems, M. Zwolak, Y.V. Pershin, and M. Di Ventra, Effect of noise on DNA sequencing via transverse electronic transport

  1. Assessing the oral microbiota of healthy and alcohol-treated rats using whole-genome DNA probes from human bacteria.

    PubMed

    Jabbour, Zaher; do Nascimento, Cássio; Kotake, Bruna Gabriela Dos Santos; El-Hakim, Michel; Henderson, Janet E; de Albuquerque Junior, Rubens Ferreira

    2013-03-01

    This study aimed to evaluate the capacity of whole-genome DNA probes prepared from human oral bacteria to cross-react with bacteria from the oral cavity of rats, and to assess the influence of alcohol ingestion on the animals' oral biofilm. Twenty four mature Wistar rats were equally divided in two groups. One group (control) was fed balanced diet of rat pellets and water. The alcohol-treated group (AT) received the same diet and 20% ethanol solution. Upon euthanasia after 30 days, bacterial samples from the oral biofilm covering the animals' teeth were collected using microbrushes. Bacteria identification and quantification were performed using the DNA checkerboard hybridization method with 33 probes prepared from human oral bacteria. Signals corresponding to bacterial genome counts and percentages were compared using a Mann-Whitney U test with a significance level <0.05. Cross-reaction for all targeted species, except Streptococcus mutans and Streptococcus mitis-like species, occurred in the control group. Escherichia coli, Pseudomonas aeruginosa, Porphyromonas endodontalis, and Veillonella parvula-like species only produced detectable signals in the AT group. Significantly more signals were detected in the control group compared to the AT group (p=0.001). The percentage of E. coli-like species was highest in both groups. Whole-genome DNA probes prepared from human oral bacteria can cross-react with rats' oral bacterial species. Alcohol consumption is associated with lower levels and diversity of bacterial species in the oral cavity of rats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Thermodynamic and structural insights into CSL-DNA complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedmann, David R.; Kovall, Rhett A.

    The Notch pathway is an intercellular signaling mechanism that plays important roles in cell fates decisions throughout the developing and adult organism. Extracellular complexation of Notch receptors with ligands ultimately results in changes in gene expression, which is regulated by the nuclear effector of the pathway, CSL (C-promoter binding factor 1 (CBF-1), suppressor of hairless (Su(H)), lin-12 and glp-1 (Lag-1)). CSL is a DNA binding protein that is involved in both repression and activation of transcription from genes that are responsive to Notch signaling. One well-characterized Notch target gene is hairy and enhancer of split-1 (HES-1), which is regulated bymore » a promoter element consisting of two CSL binding sites oriented in a head-to-head arrangement. Although previous studies have identified in vivo and consensus binding sites for CSL, and crystal structures of these complexes have been determined, to date, a quantitative description of the energetics that underlie CSL-DNA binding is unknown. Here, we provide a thermodynamic and structural analysis of the interaction between CSL and the two individual sites that comprise the HES-1 promoter element. Our comprehensive studies that analyze binding as a function of temperature, salt, and pH reveal moderate, but distinct, differences in the affinities of CSL for the two HES-1 binding sites. Similarly, our structural results indicate that overall CSL binds both DNA sites in a similar manner; however, minor changes are observed in both the conformation of CSL and DNA. Taken together, our results provide a quantitative and biophysical basis for understanding how CSL interacts with DNA sites in vivo.« less

  3. Investigation of the complex structure, comparative DNA-binding and DNA cleavage of two water-soluble mono-nuclear lanthanum(III) complexes and cytotoxic activity of chitosan-coated magnetic nanoparticles as drug delivery for the complexes

    NASA Astrophysics Data System (ADS)

    Asadi, Zahra; Nasrollahi, Neda; Karbalaei-Heidari, Hamidreza; Eigner, Vaclav; Dusek, Michal; Mobaraki, Nabiallah; Pournejati, Roya

    2017-05-01

    Two water-soluble mono-nuclear macrocyclic lanthanum(III) complexes of 2,6-diformyl-4-methylphenol with 1,3-diamino-2-propanol (C1) or 1,3-propylenediamine (C2) were synthesized and characterized by UV-Vis, FT-IR, 13C and 1H NMR spectroscopy and elemental analysis. C1 complex was structurally characterized by single-crystal X-ray diffraction, which revealed that the complex was mononuclear and ten-coordinated. The coordination sites around lanthanum(III) were occupied with a five-dentate ligand, two bidentate nitrates, and one water molecule. The interaction of complexes with DNA was studied in buffered aqueous solution at pH 7.4. UV-Vis absorption spectroscopy, emission spectroscopy, circular dichroism (CD) and viscometric measurements provided clear evidence of the intercalation mechanism of binding. The obtained intrinsic binding constants (Kb) 9.3 × 103 and 1.2 × 103 M- 1 for C1 and C2, respectively confirmed that C1 is better intercalator than C2. The DNA docking studies suggested that the complexes bind with DNA in a groove binding mode with the binding affinity of C1 > C2. Moreover, agarose gel electrophoresis study of the DNA-complex for both compounds revealed that the C1 intercalation cause ethidium bromide replacement in a competitive manner which confirms the suggested mechanism of binding. Finally, the anticancer experiments for the treated cancerous cell lines with both synthesized compounds show that these hydrophilic molecules need a suitable carrier to pass through the hydrophobic nature of cell membrane efficiently.

  4. Impact of point-mutations on the hybridization affinity of surface-bound DNA/DNA and RNA/DNA oligonucleotide-duplexes: Comparison of single base mismatches and base bulges

    PubMed Central

    Naiser, Thomas; Ehler, Oliver; Kayser, Jona; Mai, Timo; Michel, Wolfgang; Ott, Albrecht

    2008-01-01

    Background The high binding specificity of short 10 to 30 mer oligonucleotide probes enables single base mismatch (MM) discrimination and thus provides the basis for genotyping and resequencing microarray applications. Recent experiments indicate that the underlying principles governing DNA microarray hybridization – and in particular MM discrimination – are not completely understood. Microarrays usually address complex mixtures of DNA targets. In order to reduce the level of complexity and to study the problem of surface-based hybridization with point defects in more detail, we performed array based hybridization experiments in well controlled and simple situations. Results We performed microarray hybridization experiments with short 16 to 40 mer target and probe lengths (in situations without competitive hybridization) in order to systematically investigate the impact of point-mutations – varying defect type and position – on the oligonucleotide duplex binding affinity. The influence of single base bulges and single base MMs depends predominantly on position – it is largest in the middle of the strand. The position-dependent influence of base bulges is very similar to that of single base MMs, however certain bulges give rise to an unexpectedly high binding affinity. Besides the defect (MM or bulge) type, which is the second contribution in importance to hybridization affinity, there is also a sequence dependence, which extends beyond the defect next-neighbor and which is difficult to quantify. Direct comparison between binding affinities of DNA/DNA and RNA/DNA duplexes shows, that RNA/DNA purine-purine MMs are more discriminating than corresponding DNA/DNA MMs. In DNA/DNA MM discrimination the affected base pair (C·G vs. A·T) is the pertinent parameter. We attribute these differences to the different structures of the duplexes (A vs. B form). Conclusion We have shown that DNA microarrays can resolve even subtle changes in hybridization affinity for

  5. Effect of Fe3+ on Curcumin-DNA Complex Studied by FT-Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Senthil, K.; Sarojini, R.

    2008-11-01

    Curcumin is a non toxic and natural antioxidant. The interaction of curcumin with DNA is widely used in clinical treatment of a variety of different forms of cancer, but its antioxidant property turns into proxidant in the presence of high Fe3+ concentrations. However, the relevance of the pro-oxidant nature of curcumin at molecular level is not clearly determined. Thus, in the present study the interaction of Fe(III) on Curcumin DNA complexes were investigated at physiological pH with Fe(III)/drug/DNA (Phosphate) molar ratios (r) 1:10:50, 1:5:25, 1:2:10 and 1:1:5. FT-Raman Spectroscopy was used to establish correlation between spectral changes and drug binding mode, sequence selectivity, DNA Conformation and Structural properties of Fe(III)/drug/DNA complexes in aqueous solution. Spectroscopic results showed that the major spectral changes were observed at 688 cm-1(G), 835 cm-1 (O-P-O), 1092 cm-1 (PO2-), 1485 cm-1 (G,A,T) and 1683 cm-1 (T), 1723 cm-1 (G) in Fe(III)/drug/DNA complex indicating affinity of Fe(III)/drug with the phosphate and DNA base pairs. The present result showed that the combination of Fe-curcumin induced significant DNA damage in a concentration dependent manner.

  6. Dissociation free-energy profiles of specific and nonspecific DNA-protein complexes.

    PubMed

    Yonetani, Yoshiteru; Kono, Hidetoshi

    2013-06-27

    DNA-binding proteins recognize DNA sequences with at least two different binding modes: specific and nonspecific. Experimental structures of such complexes provide us a static view of the bindings. However, it is difficult to reveal further mechanisms of their target-site search and recognition only from static information because the transition process between the bound and unbound states is not clarified by static information. What is the difference between specific and nonspecific bindings? Here we performed adaptive biasing force molecular dynamics simulations with the specific and nonspecific structures of DNA-Lac repressor complexes to investigate the dissociation process. The resultant free-energy profiles showed that the specific complex has a sharp, deep well consistent with tight binding, whereas the nonspecific complex has a broad, shallow well consistent with loose binding. The difference in the well depth, ~5 kcal/mol, was in fair agreement with the experimentally obtained value and was found to mainly come from the protein conformational difference, particularly in the C-terminal tail. Also, the free-energy profiles were found to be correlated with changes in the number of protein-DNA contacts and that of surface water molecules. The derived protein spatial distributions around the DNA indicate that any large dissociation occurs rarely, regardless of the specific and nonspecific sites. Comparison of the free-energy barrier for sliding [~8.7 kcal/mol; Furini J. Phys. Chem. B 2010, 114, 2238] and that for dissociation (at least ~16 kcal/mol) calculated in this study suggests that sliding is much preferred to dissociation.

  7. Characterization of Cytokinetic Mutants Using Small Fluorescent Probes.

    PubMed

    Smertenko, Andrei; Moschou, Panagiotis; Zhang, Laining; Fahy, Deirdre; Bozhkov, Peter

    2016-01-01

    Cytokinesis is a powerful paradigm for addressing fundamental questions of plant biology including molecular mechanisms of development, cell division, cell signaling, membrane trafficking, cell wall synthesis, and cytoskeletal dynamics. Genetics was instrumental in identification of proteins regulating cytokinesis. Characterization of mutant lines generated using forward or reverse genetics includes microscopic analysis for defects in cell division. Typically, failure of cytokinesis results in appearance of multinucleate cells, formation of cell wall stubs, and isotropic cell expansion in the root elongation zone. Small fluorescent probes served as a very effective tool for the detection of cytokinetic defects. Such probes stain living or formaldehyde-fixed specimens avoiding complex preparatory steps. Although resolution of the fluorescence probes is inferior to electron microscopy, the procedure is fast, easy, and does not require expensive materials or equipment. This chapter describes techniques for staining DNA with the probes DAPI and SYTO82, for staining membranes with FM4-64, and for staining cell wall with propidium iodide.

  8. Synthesis, structure, DNA/BSA binding and antibacterial studies of NNO tridentate Schiff base metal complexes

    NASA Astrophysics Data System (ADS)

    Sakthi, Marimuthu; Ramu, Andy

    2017-12-01

    A new salicylaldehyde derived 2,4-diiodo-6-((2-phenylaminoethylimino)methyl)phenol Schiff base(L) and its transition metal complexes of the type MLCl where, M = Cu(II), Ni(II), Co(II), Mn(II) and Zn(II) have been synthesized. The coordination mode of Schiff base holding NNO donor atoms with metal ions was well investigated by elemental analysis, ESI-mass as well as IR, UV-vis, CV and NMR spectral studies. The binding efficiency and mode of these complexes with biological macromolecules viz., herring sperm DNA (HS- DNA) and bovine serum albumin (BSA) have been explored through various spectroscopic techniques. The characteristic changes in absorption, emission and, circular dichroism spectra of the complexes with DNA indicate the noticeable interaction between them. From the all spectral information complexes could interact with DNA via non-intercalation mode of binding. The hyperchromisim in absorption band and hypochromisim in emission intensity of BSA with different complex concentrations shown significant information, and the binding affinity value has been predicted from Stern-Volmer plots. Further, all the complexes could cleave the circular plasmid pUC19 DNA efficiently by using an activator H2O2. The ligand and all metal(II) complexes showed good antibacterial activities. The molecular docking studies of the complexes with DNA were performed in order to make a comparison and conclusion with spectral technic results.

  9. Spectral investigations on binding of DNA-CTMA complex with tetrameric copper phthalocyanines

    NASA Astrophysics Data System (ADS)

    Venkat, Narayanan; Haley, Joy E.; Swiger, Rachel; Zhu, Lei; Wei, Xiaoliang; Ouchen, Fahima; Grote, James G.

    2013-10-01

    The binding of DNA-CTMA (Deoxyribonucleic acid-cetyltrimethylammonium) complex with two tetrameric Copper Phthalocyanine (CuPc) systems, substituted with carboxylic acid (CuPc-COOH) and derivatized further as an imidazolium salt (CuPc-COOR), was investigated in dimethylsulfoxide (DMSO) solutions using UV/Visible Spectroscopy. Absorbance changes at 685 nm (Q band of the CuPc) were monitored as a function of DNA-CTMA added to the dye solution and stock concentrations of DNA-CTMA in DMSO were varied to facilitate observation of the full binding process. Our findings indicated that while binding with DNA-CTMA was more well-defined in the case of CuPc-COOH, the binding profile of the CuPc-COOR showed initial growth followed by decay in its Q-band absorbance which was indicative of a more complex binding mechanism involving the dye and DNA-CTMA. Preliminary findings from photophysical studies involving the CuPc tetramers and DNA-CTMA are also discussed in this paper.

  10. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization

    NASA Astrophysics Data System (ADS)

    Peng, Jun; Ling, Jian; Zhang, Xiu-Qing; Bai, Hui-Ping; Zheng, Liyan; Cao, Qiu-E.; Ding, Zhong-Tao

    2015-02-01

    In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs.

  11. The application of magnetic bead hybridization for the recovery and STR amplification of degraded and inhibited forensic DNA.

    PubMed

    Wang, Jing; McCord, Bruce

    2011-06-01

    A common problem in the analysis of forensic DNA evidence is the presence of environmentally degraded and inhibited DNA. Such samples produce a variety of interpretational problems such as allele imbalance, allele dropout and sequence specific inhibition. In an attempt to develop methods to enhance the recovery of this type of evidence, magnetic bead hybridization has been applied to extract and preconcentrate DNA sequences containing short tandem repeat (STR) alleles of interest. In this work, genomic DNA was fragmented by heating, and sequences associated with STR alleles were selectively hybridized to allele-specific biotinylated probes. Each particular biotinylated probe-DNA complex was bound to streptavidin-coated magnetic beads using enabling enrichment of target DNA sequences. Experiments conducted using degraded DNA samples, as well as samples containing a large concentration of inhibitory substances, showed good specificity and recovery of missing alleles. Based on the favorable results obtained with these specific probes, this method should prove useful as a tool to improve the recovery of alleles from degraded and inhibited DNA samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Homo- and Heterobimetallic Ruthenium(II) and Osmium(II) Complexes Based on a Pyrene-Biimidazolate Spacer as Efficient DNA-Binding Probes in the Near-Infrared Domain.

    PubMed

    Mardanya, Sourav; Karmakar, Srikanta; Mondal, Debiprasad; Baitalik, Sujoy

    2016-04-04

    We report in this work a new family of homo- and heterobimetallic complexes of the type [(bpy)2M(Py-Biimz)M'(II)(bpy)2](2+) (M = M' = Ru(II) or Os(II); M = Ru(II) and M' = Os(II)) derived from a pyrenyl-biimidazole-based bridge, 2-imidazolylpyreno[4,5-d]imidazole (Py-BiimzH2). The homobimetallic Ru(II) and Os(II) complexes were found to crystallize in monoclinic form with space group P21/n. All the complexes exhibit strong absorptions throughout the entire UV-vis region and also exhibit luminescence at room temperature. For osmium-containing complexes (2 and 3) both the absorption and emission band stretched up to the NIR region and thus afford more biofriendly conditions for probable applications in infrared imaging and phototherapeutic studies. Detailed luminescence studies indicate that the emission originates from the respective (3)MLCT excited state mainly centered in the [M(bpy)2](2+) moiety of the complexes and is only slightly affected by the pyrene moiety. The bimetallic complexes show two successive one-electron reversible metal-centered oxidations in the positive potential window and several reduction processes in the negative potential window. An efficient intramolecular electronic energy transfer is found to occur from the Ru center to the Os-based component in the heterometallic dyad. The binding studies of the complexes with DNA were thoroughly studied through different spectroscopic techniques such as UV-vis absorption, steady-state and time-resolved emission, circular dichroism, and relative DNA binding study using ethidium bromide. The intercalative mode of binding was suggested to be operative in all cases. Finally, computational studies employing DFT and TD-DFT were also carried out to interpret the experimentally observed absorption and emission bands of the complexes.

  13. Systematic spatial bias in DNA microarray hybridization is caused by probe spot position-dependent variability in lateral diffusion.

    PubMed

    Steger, Doris; Berry, David; Haider, Susanne; Horn, Matthias; Wagner, Michael; Stocker, Roman; Loy, Alexander

    2011-01-01

    The hybridization of nucleic acid targets with surface-immobilized probes is a widely used assay for the parallel detection of multiple targets in medical and biological research. Despite its widespread application, DNA microarray technology still suffers from several biases and lack of reproducibility, stemming in part from an incomplete understanding of the processes governing surface hybridization. In particular, non-random spatial variations within individual microarray hybridizations are often observed, but the mechanisms underpinning this positional bias remain incompletely explained. This study identifies and rationalizes a systematic spatial bias in the intensity of surface hybridization, characterized by markedly increased signal intensity of spots located at the boundaries of the spotted areas of the microarray slide. Combining observations from a simplified single-probe block array format with predictions from a mathematical model, the mechanism responsible for this bias is found to be a position-dependent variation in lateral diffusion of target molecules. Numerical simulations reveal a strong influence of microarray well geometry on the spatial bias. Reciprocal adjustment of the size of the microarray hybridization chamber to the area of surface-bound probes is a simple and effective measure to minimize or eliminate the diffusion-based bias, resulting in increased uniformity and accuracy of quantitative DNA microarray hybridization.

  14. Systematic Spatial Bias in DNA Microarray Hybridization Is Caused by Probe Spot Position-Dependent Variability in Lateral Diffusion

    PubMed Central

    Haider, Susanne; Horn, Matthias; Wagner, Michael; Stocker, Roman; Loy, Alexander

    2011-01-01

    Background The hybridization of nucleic acid targets with surface-immobilized probes is a widely used assay for the parallel detection of multiple targets in medical and biological research. Despite its widespread application, DNA microarray technology still suffers from several biases and lack of reproducibility, stemming in part from an incomplete understanding of the processes governing surface hybridization. In particular, non-random spatial variations within individual microarray hybridizations are often observed, but the mechanisms underpinning this positional bias remain incompletely explained. Methodology/Principal Findings This study identifies and rationalizes a systematic spatial bias in the intensity of surface hybridization, characterized by markedly increased signal intensity of spots located at the boundaries of the spotted areas of the microarray slide. Combining observations from a simplified single-probe block array format with predictions from a mathematical model, the mechanism responsible for this bias is found to be a position-dependent variation in lateral diffusion of target molecules. Numerical simulations reveal a strong influence of microarray well geometry on the spatial bias. Conclusions Reciprocal adjustment of the size of the microarray hybridization chamber to the area of surface-bound probes is a simple and effective measure to minimize or eliminate the diffusion-based bias, resulting in increased uniformity and accuracy of quantitative DNA microarray hybridization. PMID:21858215

  15. Physical mapping of complex genomes

    DOEpatents

    Evans, Glen A.

    1993-01-01

    Method for simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts int he pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert int he common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed. In other preferred

  16. Probing Conformational Changes of Human DNA Polymerase λ Using Mass Spectrometry-Based Protein Footprinting

    PubMed Central

    Fowler, Jason D.; Brown, Jessica A.; Kvaratskhelia, Mamuka; Suo, Zucai

    2009-01-01

    SUMMARY Crystallographic studies of the C-terminal, DNA polymerase β-like domain of human DNA polymerase lambda (fPolλ) suggested that the catalytic cycle might not involve a large protein domain rearrangement as observed with several replicative DNA polymerases and DNA polymerase β. To examine solution-phase protein conformation changes in fPolλ, which also contains a breast cancer susceptibility gene 1 C-terminal domain and a Proline-rich domain at its N-terminus, we used a mass spectrometry - based protein footprinting approach. In parallel experiments, surface accessibility maps for Arg residues were compared for the free fPolλ versus the binary complex of enzyme•gapped DNA and the ternary complex of enzyme•gapped DNA•dNTP. These experiments suggested that fPolλ does not undergo major conformational changes during the catalysis in the solution phase. Furthermore, the mass spectrometry-based protein footprinting experiments revealed that active site residue R386 was shielded from the surface only in the presence of both a gapped DNA substrate and an incoming nucleotide dNTP. Site-directed mutagenesis and pre-steady state kinetic studies confirmed the importance of R386 for the enzyme activity, and indicated the key role for its guanidino group in stabilizing the negative charges of an incoming nucleotide and the leaving pyrophosphate product. We suggest that such interactions could be shared by and important for catalytic functions of other DNA polymerases. PMID:19467241

  17. Evolution of DNA Replication Protein Complexes in Eukaryotes and Archaea

    PubMed Central

    Chia, Nicholas; Cann, Isaac; Olsen, Gary J.

    2010-01-01

    Background The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA), replication factor C (RFC), and the minichromosome maintenance (MCM) complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. Methodology/Principal Findings While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex—all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. Conclusion/Significance This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota. PMID:20532250

  18. DNA interaction, antioxidant activity, and bioactivity studies of two ruthenium(II) complexes

    NASA Astrophysics Data System (ADS)

    Han, Bing-Jie; Jiang, Guang-Bin; Yao, Jun-Hua; Li, Wei; Wang, Ji; Huang, Hong-Liang; Liu, Yun-Jun

    2015-01-01

    Two new ruthenium(II) polypyridyl complexes [Ru(dmb)2(dcdppz)](ClO4)2 (1) and [Ru(bpy)2(dcdppz)](ClO4)2 (2) were prepared and characterized. The crystal structure of the complex 2 was solved by single crystal X-ray diffraction. The complex crystallizes in the monoclinic system, space group P21/n with a = 12.9622(14) Å, b = 17.1619(19) Å, c = 22.7210(3) Å, β = 100.930(2)°, R = 0.0536, Rω = 0.1111. The DNA-binding constants for complexes 1 and 2 were determined to be 1.92 × 105 (s = 1.72) and 2.24 × 105 (s = 1.86) M-1, respectively. The DNA-binding behaviors showed that complexes 1 and 2 interact with DNA by intercalative mode. The antioxidant activities of the ligand and the complexes were performed. Ligand, dcdppz, has no cytotoxicity against the selected cell lines. Complex 1 shows higher cytotoxicity than complex 2, but lower than cisplatin toward selected cell lines. The apoptosis and cell cycle arrest were investigated, and the apoptotic mechanism of BEL-7402 cells was studied by reactive oxygen species (ROS), mitochondrial membrane potential and western blot analysis. Complex 1 induces apoptosis in BEL-7402 cells through ROS-mediated mitochondrial dysfunction pathway and by regulating the expression of Bcl-2 family proteins.

  19. DNA Binding Hydroxyl Radical Probes.

    PubMed

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2012-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different chromophores which produce fluorescent products when hydroxylated. Of these, the coumarin system suffers from the fewest disadvantages. We have therefore examined its behavior when linked to a cationic peptide ligand designed to bind strongly to DNA.

  20. The centromeric nucleosome-like CENP–T–W–S–X complex induces positive supercoils into DNA

    PubMed Central

    Takeuchi, Kozo; Nishino, Tatsuya; Mayanagi, Kouta; Horikoshi, Naoki; Osakabe, Akihisa; Tachiwana, Hiroaki; Hori, Tetsuya; Kurumizaka, Hitoshi; Fukagawa, Tatsuo

    2014-01-01

    The centromere is a specific genomic region upon which the kinetochore is formed to attach to spindle microtubules for faithful chromosome segregation. To distinguish this chromosomal region from other genomic loci, the centromere contains a specific chromatin structure including specialized nucleosomes containing the histone H3 variant CENP–A. In addition to CENP–A nucleosomes, we have found that centromeres contain a nucleosome-like structure comprised of the histone-fold CENP–T–W–S–X complex. However, it is unclear how the CENP–T–W–S–X complex associates with centromere chromatin. Here, we demonstrate that the CENP–T–W–S–X complex binds preferentially to ∼100 bp of linker DNA rather than nucleosome-bound DNA. In addition, we find that the CENP–T–W–S–X complex primarily binds to DNA as a (CENP–T–W–S–X)2 structure. Interestingly, in contrast to canonical nucleosomes that negatively supercoil DNA, the CENP–T–W–S–X complex induces positive DNA supercoils. We found that the DNA-binding regions in CENP–T or CENP–W, but not CENP–S or CENP–X, are required for this positive supercoiling activity and the kinetochore targeting of the CENP–T–W–S–X complex. In summary, our work reveals the structural features and properties of the CENP–T–W–S–X complex for its localization to centromeres. PMID:24234442

  1. Cryo-EM Structures Reveal Mechanism and Inhibition of DNA Targeting by a CRISPR-Cas Surveillance Complex.

    PubMed

    Guo, Tai Wei; Bartesaghi, Alberto; Yang, Hui; Falconieri, Veronica; Rao, Prashant; Merk, Alan; Eng, Edward T; Raczkowski, Ashleigh M; Fox, Tara; Earl, Lesley A; Patel, Dinshaw J; Subramaniam, Sriram

    2017-10-05

    Prokaryotic cells possess CRISPR-mediated adaptive immune systems that protect them from foreign genetic elements, such as invading viruses. A central element of this immune system is an RNA-guided surveillance complex capable of targeting non-self DNA or RNA for degradation in a sequence- and site-specific manner analogous to RNA interference. Although the complexes display considerable diversity in their composition and architecture, many basic mechanisms underlying target recognition and cleavage are highly conserved. Using cryoelectron microscopy (cryo-EM), we show that the binding of target double-stranded DNA (dsDNA) to a type I-F CRISPR system yersinia (Csy) surveillance complex leads to large quaternary and tertiary structural changes in the complex that are likely necessary in the pathway leading to target dsDNA degradation by a trans-acting helicase-nuclease. Comparison of the structure of the surveillance complex before and after dsDNA binding, or in complex with three virally encoded anti-CRISPR suppressors that inhibit dsDNA binding, reveals mechanistic details underlying target recognition and inhibition. Published by Elsevier Inc.

  2. Atomistic Simulations of Complex DNA DSBs and the Interactions with Ku70/80 Heterodimer

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2011-01-01

    Compared to DNA with simple DSBs, the complex lesions can enhance the hydrogen bonds opening rate at the DNA terminus, and increase the mobility of the whole duplex. Binding of Ku drastically reduces the structural disruption and flexibility caused by the complex lesions. In all complex DSBs systems, the binding of DSB terminus with Ku70 is softened while the binding of the middle duplex with Ku80 is tightened. Binding of Ku promotes the rigidity of DNA duplexes, due to the clamp structure of the inner surface of the rings of Ku70/80.

  3. On Docking, Scoring and Assessing Protein-DNA Complexes in a Rigid-Body Framework

    PubMed Central

    Parisien, Marc; Freed, Karl F.; Sosnick, Tobin R.

    2012-01-01

    We consider the identification of interacting protein-nucleic acid partners using the rigid body docking method FTdock, which is systematic and exhaustive in the exploration of docking conformations. The accuracy of rigid body docking methods is tested using known protein-DNA complexes for which the docked and undocked structures are both available. Additional tests with large decoy sets probe the efficacy of two published statistically derived scoring functions that contain a huge number of parameters. In contrast, we demonstrate that state-of-the-art machine learning techniques can enormously reduce the number of parameters required, thereby identifying the relevant docking features using a miniscule fraction of the number of parameters in the prior works. The present machine learning study considers a 300 dimensional vector (dependent on only 15 parameters), termed the Chemical Context Profile (CCP), where each dimension reflects a specific type of protein amino acid-nucleic acid base interaction. The CCP is designed to capture the chemical complementarities of the interface and is well suited for machine learning techniques. Our objective function is the Chemical Context Discrepancy (CCD), which is defined as the angle between the native system's CCP vector and the decoy's vector and which serves as a substitute for the more commonly used root mean squared deviation (RMSD). We demonstrate that the CCP provides a useful scoring function when certain dimensions are properly weighted. Finally, we explore how the amino acids on a protein's surface can help guide DNA binding, first through long-range interactions, followed by direct contacts, according to specific preferences for either the major or minor grooves of the DNA. PMID:22393431

  4. The evaluation of anoxia responsive E2F DNA binding activity in the red eared slider turtle, Trachemys scripta elegans.

    PubMed

    Biggar, Kyle K; Storey, Kenneth B

    2018-01-01

    In many cases, the DNA-binding activity of a transcription factor does not change, while its transcriptional activity is greatly influenced by the make-up of bound proteins. In this study, we assessed the protein composition and DNA-binding ability of the E2F transcription factor complex to provide insight into cell cycle control in an anoxia tolerant turtle through the use of a modified ELISA protocol. This modification also permits the use of custom DNA probes that are tailored to a specific DNA binding region, introducing the ability to design capture probes for non-model organisms. Through the use of EMSA and ELISA DNA binding assays, we have successfully determined the in vitro DNA binding activity and complex dynamics of the Rb/E2F cell cycle regulatory mechanisms in an anoxic turtle, Trachemys scripta elegans . Repressive cell cycle proteins (E2F4, Rb, HDAC4 and Suv39H1) were found to significantly increase at E2F DNA-binding sites upon anoxic exposure in anoxic turtle liver. The lack of p130 involvement in the E2F DNA-bound complex indicates that anoxic turtle liver may maintain G 1 arrest for the duration of stress survival.

  5. The evaluation of anoxia responsive E2F DNA binding activity in the red eared slider turtle, Trachemys scripta elegans

    PubMed Central

    Biggar, Kyle K.

    2018-01-01

    In many cases, the DNA-binding activity of a transcription factor does not change, while its transcriptional activity is greatly influenced by the make-up of bound proteins. In this study, we assessed the protein composition and DNA-binding ability of the E2F transcription factor complex to provide insight into cell cycle control in an anoxia tolerant turtle through the use of a modified ELISA protocol. This modification also permits the use of custom DNA probes that are tailored to a specific DNA binding region, introducing the ability to design capture probes for non-model organisms. Through the use of EMSA and ELISA DNA binding assays, we have successfully determined the in vitro DNA binding activity and complex dynamics of the Rb/E2F cell cycle regulatory mechanisms in an anoxic turtle, Trachemys scripta elegans. Repressive cell cycle proteins (E2F4, Rb, HDAC4 and Suv39H1) were found to significantly increase at E2F DNA-binding sites upon anoxic exposure in anoxic turtle liver. The lack of p130 involvement in the E2F DNA-bound complex indicates that anoxic turtle liver may maintain G1 arrest for the duration of stress survival. PMID:29770276

  6. DNA Interactions Probed by Hydrogen-Deuterium Exchange (HDX) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Confirm External Binding Sites on the Minichromosomal Maintenance (MCM) Helicase*

    PubMed Central

    Graham, Brian W.; Tao, Yeqing; Dodge, Katie L.; Thaxton, Carly T.; Olaso, Danae; Young, Nicolas L.; Marshall, Alan G.

    2016-01-01

    The archaeal minichromosomal maintenance (MCM) helicase from Sulfolobus solfataricus (SsoMCM) is a model for understanding structural and mechanistic aspects of DNA unwinding. Although interactions of the encircled DNA strand within the central channel provide an accepted mode for translocation, interactions with the excluded strand on the exterior surface have mostly been ignored with regard to DNA unwinding. We have previously proposed an extension of the traditional steric exclusion model of unwinding to also include significant contributions with the excluded strand during unwinding, termed steric exclusion and wrapping (SEW). The SEW model hypothesizes that the displaced single strand tracks along paths on the exterior surface of hexameric helicases to protect single-stranded DNA (ssDNA) and stabilize the complex in a forward unwinding mode. Using hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance MS, we have probed the binding sites for ssDNA, using multiple substrates targeting both the encircled and excluded strand interactions. In each experiment, we have obtained >98.7% sequence coverage of SsoMCM from >650 peptides (5–30 residues in length) and are able to identify interacting residues on both the interior and exterior of SsoMCM. Based on identified contacts, positively charged residues within the external waist region were mutated and shown to generally lower DNA unwinding without negatively affecting the ATP hydrolysis. The combined data globally identify binding sites for ssDNA during SsoMCM unwinding as well as validating the importance of the SEW model for hexameric helicase unwinding. PMID:27044751

  7. DNA Interactions Probed by Hydrogen-Deuterium Exchange (HDX) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Confirm External Binding Sites on the Minichromosomal Maintenance (MCM) Helicase.

    PubMed

    Graham, Brian W; Tao, Yeqing; Dodge, Katie L; Thaxton, Carly T; Olaso, Danae; Young, Nicolas L; Marshall, Alan G; Trakselis, Michael A

    2016-06-10

    The archaeal minichromosomal maintenance (MCM) helicase from Sulfolobus solfataricus (SsoMCM) is a model for understanding structural and mechanistic aspects of DNA unwinding. Although interactions of the encircled DNA strand within the central channel provide an accepted mode for translocation, interactions with the excluded strand on the exterior surface have mostly been ignored with regard to DNA unwinding. We have previously proposed an extension of the traditional steric exclusion model of unwinding to also include significant contributions with the excluded strand during unwinding, termed steric exclusion and wrapping (SEW). The SEW model hypothesizes that the displaced single strand tracks along paths on the exterior surface of hexameric helicases to protect single-stranded DNA (ssDNA) and stabilize the complex in a forward unwinding mode. Using hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance MS, we have probed the binding sites for ssDNA, using multiple substrates targeting both the encircled and excluded strand interactions. In each experiment, we have obtained >98.7% sequence coverage of SsoMCM from >650 peptides (5-30 residues in length) and are able to identify interacting residues on both the interior and exterior of SsoMCM. Based on identified contacts, positively charged residues within the external waist region were mutated and shown to generally lower DNA unwinding without negatively affecting the ATP hydrolysis. The combined data globally identify binding sites for ssDNA during SsoMCM unwinding as well as validating the importance of the SEW model for hexameric helicase unwinding. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Hairpin DNA Switch for Ultrasensitive Spectrophotometric Detection of DNA Hybridization Based on Gold Nanoparticles and Enzyme Signal Amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Youyu; Tang, Zhiwen; Wang, Jun

    2010-08-01

    A novel DNA detection platform based on a hairpin-DNA switch, nanoparticles, and enzyme signal amplification for ultrasensitive detection of DNA hybridization has been developed in this work. In this DNA assay, a “stem-loop” DNA probe dually labeled with a thiol at its 5’ end and a biotin at its 3’ end, respectively, was used. This probe was immobilized on the gold nanoparticles (AuNPs) anchored by a protein, globulin, on a 96-well microplate. In the absence of target DNA, the immobilized probe with the stem-loop structure shields the biotin from being approached by a bulky horseradish peroxidase linked-avidin (avidin-HRP) conjugate duemore » to the steric hindrance. However, in the presence of target DNA, the hybridization between the hairpin DNA probe and the target DNA causes significant conformational change of the probe, which forces biotin away from the surface of AuNPs. As a result, the biotin becomes accessible by the avidin-HRP, and the target hybridization event can be sensitively detected via the HRP catalyzed substrate 3, 3', 5, 5'-tetramethylbenzidine using spectrophometric method. Some experimental parameters governing the performance of the assay have been optimized. At optimal conditions, this DNA assay can detect DNA at the concentration of femtomolar level by means of a signal amplification strategy based on the combination of enzymes and nanoparticles. This approach also has shown excellent specificity to distinguish single-base mismatches of DNA targets because of the intrinsic high selectivity of the hairpin DNA probe.« less

  9. Detection of beer spoilage bacteria Pectinatus and Megasphaera with acridinium ester labelled DNA probes using a hybridisation protection assay.

    PubMed

    Paradh, A D; Hill, A E; Mitchell, W J

    2014-01-01

    DNA probes specific for rRNA of selected target species were utilised for the detection of beer spoilage bacteria of the genera Pectinatus and Megasphaera using a hybridisation protection assay (HPA). All the probes were modified during synthesis by addition of an amino linker arm at the 5' end or were internally modified by inserting an amine modified thymidine base. Synthesised probes then were labelled with acridinium ester (AE) and purified using reverse phase HPLC. The internally AE labelled probes were able to detect target RNA within the range of 0.016-0.0032pmol. All the designed probes showed high specificity towards target RNA and could detect bacterial contamination within the range of ca. 5×10(2)1×10(3) CFU using the HPA. The developed assay was also compatible with MRS, NBB and SMMP beer enrichment media, routinely used in brewing laboratories. © 2013 Elsevier B.V. All rights reserved.

  10. Multiplexed target detection using DNA-binding dye chemistry in droplet digital PCR.

    PubMed

    McDermott, Geoffrey P; Do, Duc; Litterst, Claudia M; Maar, Dianna; Hindson, Christopher M; Steenblock, Erin R; Legler, Tina C; Jouvenot, Yann; Marrs, Samuel H; Bemis, Adam; Shah, Pallavi; Wong, Josephine; Wang, Shenglong; Sally, David; Javier, Leanne; Dinio, Theresa; Han, Chunxiao; Brackbill, Timothy P; Hodges, Shawn P; Ling, Yunfeng; Klitgord, Niels; Carman, George J; Berman, Jennifer R; Koehler, Ryan T; Hiddessen, Amy L; Walse, Pramod; Bousse, Luc; Tzonev, Svilen; Hefner, Eli; Hindson, Benjamin J; Cauly, Thomas H; Hamby, Keith; Patel, Viresh P; Regan, John F; Wyatt, Paul W; Karlin-Neumann, George A; Stumbo, David P; Lowe, Adam J

    2013-12-03

    Two years ago, we described the first droplet digital PCR (ddPCR) system aimed at empowering all researchers with a tool that removes the substantial uncertainties associated with using the analogue standard, quantitative real-time PCR (qPCR). This system enabled TaqMan hydrolysis probe-based assays for the absolute quantification of nucleic acids. Due to significant advancements in droplet chemistry and buoyed by the multiple benefits associated with dye-based target detection, we have created a "second generation" ddPCR system compatible with both TaqMan-probe and DNA-binding dye detection chemistries. Herein, we describe the operating characteristics of DNA-binding dye based ddPCR and offer a side-by-side comparison to TaqMan probe detection. By partitioning each sample prior to thermal cycling, we demonstrate that it is now possible to use a DNA-binding dye for the quantification of multiple target species from a single reaction. The increased resolution associated with partitioning also made it possible to visualize and account for signals arising from nonspecific amplification products. We expect that the ability to combine the precision of ddPCR with both DNA-binding dye and TaqMan probe detection chemistries will further enable the research community to answer complex and diverse genetic questions.

  11. Assessment of Telomere Length, Phenotype, and DNA Content

    PubMed Central

    Kelesidis, Theodoros; Schmid, Ingrid

    2017-01-01

    Telomere sequences at the end of chromosomes control somatic cell division; therefore, telomere length in a given cell population provides information about its replication potential. This unit describes a method for flow cytometric measurement of telomere length in subpopulations using fluorescence in situ hybridization of fluorescently-labeled probes (Flow-FISH) without prior cell separation. After cells are stained for surface immunofluorescence, antigen-antibody complexes are covalently cross-linked onto cell membranes before FISH with a telomere-specific probe. Cells with long telomeres are included as internal standards. Addition of a DNA dye permits exclusion of proliferating cells during data analysis. DNA ploidy measurements of cells of interest and internal standard are performed on separate aliquots in parallel to Flow-FISH. Telomere fluorescence of G0/1 cells of subpopulations and internal standards obtained from Flow-FISH are normalized for DNA ploidy, and telomere length in subsets of interest is expressed as a fraction of the internal standard telomere length. PMID:28055113

  12. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples.

    PubMed

    Cui, Liang; Zou, Yuan; Lin, Ninghang; Zhu, Zhi; Jenkins, Gareth; Yang, Chaoyong James

    2012-07-03

    Fluorescence anisotropy (FA) is a reliable and excellent choice for fluorescence sensing. One of the key factors influencing the FA value for any molecule is the molar mass of the molecule being measured. As a result, the FA method with functional nucleic acid aptamers has been limited to macromolecules such as proteins and is generally not applicable for the analysis of small molecules because their molecular masses are relatively too small to produce observable FA value changes. We report here a molecular mass amplifying strategy to construct anisotropy aptamer probes for small molecules. The probe is designed in such a way that only when a target molecule binds to the probe does it activate its binding ability to an anisotropy amplifier (a high molecular mass molecule such as protein), thus significantly increasing the molecular mass and FA value of the probe/target complex. Specifically, a mass amplifying probe (MAP) consists of a targeting aptamer domain against a target molecule and molecular mass amplifying aptamer domain for the amplifier protein. The probe is initially rendered inactive by a small blocking strand partially complementary to both target aptamer and amplifier protein aptamer so that the mass amplifying aptamer domain would not bind to the amplifier protein unless the probe has been activated by the target. In this way, we prepared two probes that constitute a target (ATP and cocaine respectively) aptamer, a thrombin (as the mass amplifier) aptamer, and a fluorophore. Both probes worked well against their corresponding small molecule targets, and the detection limits for ATP and cocaine were 0.5 μM and 0.8 μM, respectively. More importantly, because FA is less affected by environmental interferences, ATP in cell media and cocaine in urine were directly detected without any tedious sample pretreatment. Our results established that our molecular mass amplifying strategy can be used to design aptamer probes for rapid, sensitive, and selective

  13. Restriction fragment length polymorphism of the major histocompatibility complex of the dog.

    PubMed

    Sarmiento, U M; Storb, R F

    1988-01-01

    Human major histocompatibility complex (HLA) cDNA probes were used to analyze the restriction fragment length polymorphism (RFLP) of the DLA-D region in dogs. Genomic DNA from peripheral blood leucocytes of 23 unrelated DLA-D-homozygous dogs representing nine DLA-D types (defined by mixed leucocyte reaction) was digested with restriction enzymes (Bam HI, Eco RI, Hind III, Pvu II, Taq I, Rsa I, Msp I, Pst I, and Bgl II), separated by agarose gel electrophoresis, and transferred onto Biotrace membrane. The Southern blots were successively hybridized with radiolabeled HLA cDNA probes corresponding to DR, DQ, DP, and DO beta genes. The autoradiograms for all nine enzyme digests displayed multiple bands with the DRb, DQb, and DPb probes while the DOb probe hybridized with one to two bands. The RFLP patterns were highly polymorphic but consistent within each DLA-D type. Standard RFLP patterns were established for nine DLA-D types which could be discriminated from each other by using two enzymes (Rsa I and Pst I) and the HLA-DPb probe. Cluster analysis of the polymorphic restriction fragments detected by the DRb probe revealed four closely related supertypic groups or DLA-DR families: Dw3 + Dw4 + D1, Dw8 + D10, D7 + D16 + D9, and Dw1. This study provides the basis for DLA-D genotyping at a population level by RFLP analysis. These results also suggest that the genetic organization of the DLA-D region may closely resemble that of the HLA complex.

  14. Colloidal silica films for high-capacity DNA arrays

    NASA Astrophysics Data System (ADS)

    Glazer, Marc Irving

    The human genome project has greatly expanded the amount of genetic information available to researchers, but before this vast new source of data can be fully utilized, techniques for rapid, large-scale analysis of DNA and RNA must continue to develop. DNA arrays have emerged as a powerful new technology for analyzing genomic samples in a highly parallel format. The detection sensitivity of these arrays is dependent on the quantity and density of immobilized probe molecules. We have investigated substrates with a porous, "three-dimensional" surface layer as a means of increasing the surface area available for the synthesis of oligonucleotide probes, thereby increasing the number of available probes and the amount of detectable bound target. Porous colloidal silica films were created by two techniques. In the first approach, films were deposited by spin-coating silica colloid suspensions onto flat glass substrates, with the pores being formed by the natural voids between the solid particles (typically 23nm pores, 35% porosity). In the second approach, latex particles were co-deposited with the silica and then pyrolyzed, creating films with larger pores (36 nm), higher porosity (65%), and higher surface area. For 0.3 mum films, enhancements of eight to ten-fold and 12- to 14-fold were achieved with the pure silica films and the films "templated" with polymer latex, respectively. In gene expression assays for up to 7,000 genes using complex biological samples, the high-capacity films provided enhanced signals and performed equivalently or better than planar glass on all other functional measures, confirming that colloidal silica films are a promising platform for high-capacity DNA arrays. We have also investigated the kinetics of hybridization on planar glass and high-capacity substrates. Adsorption on planar arrays is similar to ideal Langmuir-type adsorption, although with an "overshoot" at high solution concentration. Hybridization on high-capacity films is

  15. Quantifying quality in DNA self-assembly

    PubMed Central

    Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik

    2014-01-01

    Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids. PMID:24751596

  16. Development of propidium iodide as a fluorescence probe for the on-line screening of non-specific DNA-intercalators in Fufang Banbianlian Injection.

    PubMed

    Niu, Yanyan; Li, Sensen; Lin, Zongtao; Liu, Meixian; Wang, Daidong; Wang, Hong; Chen, Shizhong

    2016-09-09

    Fufang Banbianlian Injection (FBI) has been widely used as an anti-inflammatory and anti-tumor prescription. To understand the relationships between its bioactive ingredients and pharmacological efficacies, our previous study has been successfully identified some DNA-binding compounds in FBI using an established on-line screening system, in which 4',6-diamidino-2-phenylindole (DAPI) was developed as a probe. However, DAPI can be only used to screen ATT-specific DNA minor groove binders, leaving the potential active intercalators unknown in FBI. As a continuation of our studies on FBI, here we present a sensitive analytical method for rapid identification and evaluation of DNA-intercalators using propidium iodide (PI) as a fluorescent probe. We have firstly established the technique of high-performance liquid chromatography-diode-array detector-multistage mass spectrometry-deoxyribonucleic acid-propidium iodide-fluorescence detector (HPLC-DAD-MS(n)-DNA-PI-FLD) system. As a result, 38 of 58 previously identified compounds in FBI were DNA-intercalation active. Interestingly, all previously reported DNA-binders also showed intercalative activities, suggesting they are dual-mode DNA-binders. Quantitative study showed that flavonoid glycosides and chlorogenic acids were the main active compounds in FBI, and displayed similar DNA-binding ability using either DAPI or PI. In addition, 13 active compounds were used to establish the structure-activity relationships. In this study, PI was developed into an on-line method for identifying DNA-intercalators for the first time, and thus it will be a useful high-throughput screening technique for other related samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Impedimetric genosensor for detection of hepatitis C virus (HCV1) DNA using viral probe on methylene blue doped silica nanoparticles.

    PubMed

    Singhal, Chaitali; Ingle, Aviraj; Chakraborty, Dhritiman; Pn, Anoop Krishna; Pundir, C S; Narang, Jagriti

    2017-05-01

    An impedimetric genosensor was fabricated for detection of hepatitis C virus (HCV) genotype 1 in serum, based on hybridization of the probe with complementary target cDNA from sample. To achieve it, probe DNA complementary to HCVgene was immobilized on the surface of methylene blue (MB) doped silica nanoparticles MB@SiNPs) modified fluorine doped tin oxide (FTO) electrode. The synthesized MB@SiNPs was characterized using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) pattern. This modified electrode (ssDNA/MB@SiNPs/FTO) served both as a signal amplification platform (due to silica nanoparticles (SiNPs) as well as an electrochemical indicator (due to methylene blue (MB)) for the detection of the HCV DNA in patient serum sample. The genosensor was optimized and evaluated. The sensor showed a dynamic linear range 100-10 6 copies/mL, with a detection limit of 90 copies/mL. The sensor was applied for detection of HCV in sera of hepatitis patient and could be renewed. The half life of the sensor was 4 weeks. The MB@SiNPs/FTO electrode could be used for preparation of other gensensors also. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The interaction of DiaA and DnaA regulates the replication cycle in E. coli by directly promoting ATP–DnaA-specific initiation complexes

    PubMed Central

    Keyamura, Kenji; Fujikawa, Norie; Ishida, Takuma; Ozaki, Shogo; Su’etsugu, Masayuki; Fujimitsu, Kazuyuki; Kagawa, Wataru; Yokoyama, Shigeyuki; Kurumizaka, Hitoshi; Katayama, Tsutomu

    2007-01-01

    Escherichia coli DiaA is a DnaA-binding protein that is required for the timely initiation of chromosomal replication during the cell cycle. In this study, we determined the crystal structure of DiaA at 1.8 Å resolution. DiaA forms a homotetramer consisting of a symmetrical pair of homodimers. Mutational analysis revealed that the DnaA-binding activity and formation of homotetramers are required for the stimulation of initiation by DiaA. DiaA tetramers can bind multiple DnaA molecules simultaneously. DiaA stimulated the assembly of multiple DnaA molecules on oriC, conformational changes in ATP–DnaA-specific initiation complexes, and unwinding of oriC duplex DNA. The mutant DiaA proteins are defective in these stimulations. DiaA associated also with ADP–DnaA, and stimulated the assembly of inactive ADP–DnaA–oriC complexes. Specific residues in the putative phosphosugar-binding motif of DiaA were required for the stimulation of initiation and formation of ATP–DnaA-specific–oriC complexes. Our data indicate that DiaA regulates initiation by a novel mechanism, in which DiaA tetramers most likely bind to multiple DnaA molecules and stimulate the assembly of specific ATP–DnaA–oriC complexes. These results suggest an essential role for DiaA in the promotion of replication initiation in a cell cycle coordinated manner. PMID:17699754

  19. Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joo, Woo; Xu, Guozhou; Persky, Nicole S.

    2011-08-29

    Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the {approx}300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each proteinmore » has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.« less

  20. Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W Joo; G Xu; n Persky

    2011-12-31

    Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the {approx}300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each proteinmore » has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.« less

  1. Single nucleotide polymorphism analysis using different colored dye dimer probes

    NASA Astrophysics Data System (ADS)

    Marmé, Nicole; Friedrich, Achim; Denapaite, Dalia; Hakenbeck, Regine; Knemeyer, Jens-Peter

    2006-09-01

    Fluorescence quenching by dye dimer formation has been utilized to develop hairpin-structured DNA probes for the detection of a single nucleotide polymorphism (SNP) in the penicillin target gene pbp2x, which is implicated in the penicillin resistance of Streptococcus pneumoniae. We designed two specific DNA probes for the identification of the pbp2x genes from a penicillin susceptible strain R6 and a resistant strain Streptococcus mitis 661 using green-fluorescent tetramethylrhodamine (TMR) and red-fluorescent DY-636, respectively. Hybridization of each of the probes to its respective target DNA sequence opened the DNA hairpin probes, consequently breaking the nonfluorescent dye dimers into fluorescent species. This hybridization of the target with the hairpin probe achieved single nucleotide specific detection at nanomolar concentrations via increased fluorescence.

  2. A label-free DNA hairpin biosensor for colorimetric detection of target with suitable functional DNA partners.

    PubMed

    Nie, Ji; Zhang, De-Wen; Tie, Cai; Zhou, Ying-Lin; Zhang, Xin-Xiang

    2013-11-15

    The combination of aptamer and peroxidase-mimicking DNAzyme within a hairpin structure can form a functional DNA probe. The activities of both aptamer (as biorecognition element) and DNAzyme (as signal amplification element) are blocked via base pairing in the hairpin structure. The presence of target triggers the opening of the hairpin to form target/aptamer complex and releases G-quadruplex sequence which can generate amplified colorimetric signals. In this work, we elaborated a universal and simple procedure to design an efficient and sensitive hairpin probe with suitable functional DNA partners. A fill-in-the-blank process was developed for sequence design, and two key points including the pretreatment of the hairpin probe and the selection of suitable signal transducer sequence were proved to enhance the detection sensitivity. Cocaine was chosen as a model target for a proof of concept. A series of hairpins with different numbers of base pairs in the stem region were prepared. Hairpin-C10 with ten base pairs was screened out and a lowest detectable cocaine concentration of 5 μM by colorimetry was obtained. The proposed functional DNA hairpin showed good selectivity and satisfactory analysis in spiked biologic fluid. The whole "mix-and-measure" detection based on DNA hairpin without the need of immobilization and labeling was indicated to be time and labor saving. The strategy has potential to be transplanted into more smart hairpins toward other targets for general application in bioanalytical chemistry. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. DNA methylation in complex disease: applications in nursing research, practice, and policy.

    PubMed

    Wright, Michelle L; Ralph, Jody L; Ohm, Joyce E; Anderson, Cindy M

    2013-01-01

    DNA methylation is an epigenomic modification that is essential to normal human development and biological processes. DNA methylation patterns are heritable and dynamic throughout the life span. Environmental exposures can alter DNA methylation patterns, contributing to the development of complex disease. Identification and modulation of environmental factors influencing disease susceptibility through alterations in DNA methylation are amenable to nursing intervention and form the basis for individualized patient care. Here we describe the evidence supporting the translation of DNA methylation analyses as a tool for screening, diagnosis, and treatment of complex disease in nursing research and practice. The ethical, legal, social, and economic considerations of advances in genomics are considered as a model for epigenomic policy. We conclude that contemporary and informed nurse scientists and clinicians are uniquely poised to apply innovations in epigenomic research to clinical populations and develop appropriate policies that guide equitable and ethical use of new strategies to improve patient care. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Complexities of bloom dynamics in the toxic dinoflagellate Alexandrium fundyense revealed through DNA measurements by imaging flow cytometry coupled with species-specific rRNA probes

    NASA Astrophysics Data System (ADS)

    Brosnahan, Michael L.; Farzan, Shahla; Keafer, Bruce A.; Sosik, Heidi M.; Olson, Robert J.; Anderson, Donald M.

    2014-05-01

    Measurements of the DNA content of different protist populations can shed light on a variety of processes, including cell division, sex, prey ingestion, and parasite invasion. Here, we modified an Imaging FlowCytobot (IFCB), a custom-built flow cytometer that records images of microplankton, to measure the DNA content of large dinoflagellates and other high-DNA content species. The IFCB was also configured to measure fluorescence from Cy3-labeled rRNA probes, aiding the identification of Alexandrium fundyense (syn. A. tamarense Group I), a photosynthetic dinoflagellate that causes paralytic shellfish poisoning (PSP). The modified IFCB was used to analyze samples from the development, peak and termination phases of an inshore A. fundyense bloom (Salt Pond, Eastham, MA, USA), and from a rare A. fundyense ‘red tide’ that occurred in the western Gulf of Maine, offshore of Portsmouth, NH (USA). Diploid or G2 phase (‘2C’) A. fundyense cells were frequently enriched at the near-surface, suggesting an important role for aggregation at the air-sea interface during sexual events. Also, our analysis showed that large proportions of A. fundyense cells in both the Salt Pond and red tide blooms were planozygotes during bloom decline, highlighting the importance of sexual fusion to bloom termination. At Salt Pond, bloom decline also coincided with a dramatic rise in infections by the parasite genus Amoebophrya. The samples that were most heavily infected contained many large cells with higher DNA-associated fluorescence than 2C vegetative cells, but these cells' nuclei were also frequently consumed by Amoebophrya trophonts. Neither large cell size nor increased DNA-associated fluorescence could be replicated by infecting an A. fundyense culture of vegetative cells. Therefore, we attribute these characteristics of the large Salt Pond cells to planozygote maturation rather than Amoebophrya infection, though an interaction between infection and planozygote maturation may

  5. Complexities of bloom dynamics in the toxic dinoflagellate Alexandrium fundyense revealed through DNA measurements by imaging flow cytometry coupled with species-specific rRNA probes

    PubMed Central

    Brosnahan, Michael L.; Farzan, Shahla; Keafer, Bruce A.; Sosik, Heidi M.; Olson, Robert J.; Anderson, Donald M.

    2013-01-01

    Measurements of the DNA content of different protist populations can shed light on a variety of processes, including cell division, sex, prey ingestion, and parasite invasion. Here, we modified an Imaging FlowCytobot (IFCB), a custom-built flow cytometer that records images of microplankton, to measure the DNA content of large dinoflagellates and other high-DNA content species. The IFCB was also configured to measure fluorescence from Cy3-labeled rRNA probes, aiding the identification of Alexandrium fundyense (syn. A. tamarense Group I), a photosynthetic dinoflagellate that causes paralytic shellfish poisoning (PSP). The modified IFCB was used to analyze samples from the development, peak and termination phases of an inshore A. fundyense bloom (Salt Pond, Eastham, MA USA), and from a rare A. fundyense ‘red tide’ that occurred in the western Gulf of Maine, offshore of Portsmouth, NH (USA). Diploid or G2 phase (‘2C’) A. fundyense cells were frequently enriched at the near-surface, suggesting an important role for aggregation at the air-sea interface during sexual events. Also, our analysis showed that large proportions of A. fundyense cells in both the Salt Pond and red tide blooms were planozygotes during bloom decline, highlighting the importance of sexual fusion to bloom termination. At Salt Pond, bloom decline also coincided with a dramatic rise in infections by the parasite genus Amoebophrya. The samples that were most heavily infected contained many large cells with higher DNA-associated fluorescence than 2C vegetative cells, but these cells’ nuclei were also frequently consumed by Amoebophrya trophonts. Neither large cell size nor increased DNA-associated fluorescence could be replicated by infecting an A. fundyense culture of vegetative cells. Therefore we attribute these characteristics of the large Salt Pond cells to planozygote maturation rather than Amoebophrya infection, though an interaction between infection and planozygote maturation may

  6. Development of a novel europium complex-based luminescent probe for time-gated luminescence imaging of hypochlorous acid in living samples

    NASA Astrophysics Data System (ADS)

    Liu, Xiangli; Guo, Lianying; Song, Bo; Tang, Zhixin; Yuan, Jingli

    2017-03-01

    Luminescent lanthanide complexes are key reagents used in the time-gated luminescence bioassay technique, but functional lanthanide complexes that can act as luminescent probes for specifically responding to analytes are very limited. In this work, we designed and synthesized a novel Eu3+ complex-based luminescence probe for hypochlorous acid (HOCl), NPPTTA-Eu3+, by using terpyridine polyacid-Eu3+, dinitrophenyl, and hydrazine as luminophore, quencher and HOCl-recognizer moieties, respectively. In the absence of HOCl, the probe is non-luminescent due to the strong luminescence quenching of the dinitrophenyl group in the complex. However, upon reaction with HOCl, the dinitrophenyl moiety is rapidly cleaved from the probe, which affords a strongly luminescent Eu3+ complex CPTTA-Eu3+, accompanied by a ˜900-fold luminescence enhancement with a long luminescence lifetime of 1.41 ms. This unique luminescence response of NPPTTA-Eu3+ to HOCl allowed NPPTTA-Eu3+ to be conveniently used as a probe for highly selective and sensitive detection of HOCl under the time-gated luminescence mode. In addition, by loading NPPTTA-Eu3+ into RAW 264.7 macrophage cells and Daphnia magna, the generation of endogenous HOCl in RAW 264.7 cells and the uptake of exogenous HOCl by Daphnia magna were successfully imaged on a true-color time-gated luminescence microscope. The results demonstrated the practical applicability of NPPTTA-Eu3+ as an efficient probe for time-gated luminescence imaging of HOCl in living cells and organisms.

  7. Probing the structure of RecA-DNA filaments. Advantages of a fluorescent guanine analog.

    PubMed

    Singleton, Scott F; Roca, Alberto I; Lee, Andrew M; Xiao, Jie

    2007-04-23

    The RecA protein of Escherichia coli plays a crucial roles in DNA recombination and repair, as well as various aspects of bacterial pathogenicity. The formation of a RecA-ATP-ssDNA complex initiates all RecA activities and yet a complete structural and mechanistic description of this filament has remained elusive. An analysis of RecA-DNA interactions was performed using fluorescently labeled oligonucleotides. A direct comparison was made between fluorescein and several fluorescent nucleosides. The fluorescent guanine analog 6-methylisoxanthopterin (6MI) demonstrated significant advantages over the other fluorophores and represents an important new tool for characterizing RecA-DNA interactions.

  8. Exploration of cellular DNA lesion, DNA-binding and biocidal ordeal of novel curcumin based Knoevenagel Schiff base complexes incorporating tryptophan: Synthesis and structural validation

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Thiravidamani; Raman, Natarajan

    2016-07-01

    A few novel Schiff base transition metal complexes of general formula [MLCl] (where, L = Schiff base, obtained by the condensation reaction of Knoevenagel condensate of curcumin, L-tryptophan and M = Cu(II), Ni(II), Co(II), and Zn(II)), were prepared by stencil synthesis. They were typified using UV-vis, IR, EPR spectral techniques, micro analytical techniques, magnetic susceptibility and molar conductivity. Geometry of the metal complexes was examined and recognized as square planar. DNA binding and viscosity studies revealed that the metal(II) complexes powerfully bound via an intercalation mechanism with the calf thymus DNA. Gel-electrophoresis technique was used to investigate the DNA cleavage competence of the complexes and they establish to approve the cleavage of pBR322 DNA in presence of oxidant H2O2. This outcome inferred that the synthesized complexes showed better nuclease activity. Moreover, the complexes were monitored for antimicrobial activities. The results exposed that the synthesized compounds were forceful against all the microbes under exploration.

  9. Hybridization behavior of mixed DNA/alkylthiol monolayers on gold: characterization by surface plasmon resonance and 32P radiometric assay.

    PubMed

    Gong, Ping; Lee, Chi-Ying; Gamble, Lara J; Castner, David G; Grainger, David W

    2006-05-15

    Nucleic acid assay from a complex biological milieu is attractive but currently difficult and far from routine. In this study, DNA hybridization from serum dilutions into mixed DNA/mercaptoundecanol (MCU) adlayers on gold was monitored by surface plasmon resonance (SPR). Immobilized DNA probe and hybridized target densities on these surfaces were quantified using 32P-radiometric assays as a function of MCU diluent exposure. SPR surface capture results correlated with radiometric analysis for hybridization performance, demonstrating a maximum DNA hybridization on DNA/MCU mixed adlayers. The maximum target surface capture produced by MCU addition to the DNA probe layer correlates with structural and conformational data on identical mixed DNA/MCU adlayers on gold derived from XPS, NEXAFS, and fluorescence intensity measurements reported in a related study (Lee, C.-Y.; Gong, P.; Harbers, G. M.; Grainger, D. W.; Castner, D. G.; Gamble, L. J. Anal. Chem. 2006, 78, 3316-3325.). MCU addition into the DNA adlayer on gold also improved surface resistance to both nonspecific DNA and serum protein adsorption. Target DNA hybridization from serum dilutions was monitored with SPR on the optimally mixed DNA/MCU adlayers. Both hybridization kinetics and efficiency were strongly affected by nonspecific protein adsorption from a complex milieu even at a minimal serum concentration (e.g., 1%). No target hybridization was detected in SPR assays from serum concentrations above 30%, indicating nonspecific protein adsorption interference of DNA capture and hybridization from complex milieu. Removal of nonsignal proteins from nucleic acid targets prior to assay represents a significant issue for direct sample-to-assay nucleic acid diagnostics from food, blood, tissue, PCR mixtures, and many other biologically complex sample formats.

  10. A common anchor facilitated GO-DNA nano-system for multiplex microRNA analysis in live cells.

    PubMed

    Yu, Jiantao; He, Sihui; Shao, Chen; Zhao, Haoran; Li, Jing; Tian, Leilei

    2018-04-19

    The design of a nano-system for the detection of intracellular microRNAs is challenging as it must fulfill complex requirements, i.e., it must have a high sensitivity to determine the dynamic expression level, a good reliability for multiplex and simultaneous detection, and a satisfactory biostability to work in biological environments. Instead of employing a commonly used physisorption or a full-conjugation strategy, here, a GO-DNA nano-system was developed under graft/base-pairing construction. The common anchor sequence was chemically grafted to GO to base-pair with various microRNA probes; and the hybridization with miRNAs drives the dyes on the probes to leave away from GO, resulting in "turned-on" fluorescence. This strategy not only simplifies the synthesis but also efficiently balances the loading yields of different probes. Moreover, the conjugation yield of GO with a base-paired hybrid has been improved by more than two-fold compared to that of the conjugation with a single strand. We demonstrated that base-paired DNA probes could be efficiently delivered into cells along with GO and are properly stabilized by the conjugated anchor sequence. The resultant GO-DNA nano-system exhibited high stability in a complex biological environment and good resistance to nucleases, and was able to accurately discriminate various miRNAs without cross-reaction. With all of these positive features, the GO-DNA nano-system can simultaneously detect three miRNAs and monitor their dynamic expression levels.

  11. Probing the dynamics of restriction endonuclease NgoMIV-DNA interaction by single-molecule FRET.

    PubMed

    Tutkus, Marijonas; Sasnauskas, Giedrius; Rutkauskas, Danielis

    2017-12-01

    Many type II restriction endonucleases require two copies of their recognition sequence for optimal activity. Concomitant binding of two DNA sites by such an enzyme produces a DNA loop. Here we exploit single-molecule Förster resonance energy transfer (smFRET) of surface-immobilized DNA fragments to study the dynamics of DNA looping induced by tetrameric endonuclease NgoMIV. We have employed a DNA fragment with two NgoMIV recognition sites and a FRET dye pair such that upon protein-induced DNA looping the dyes are brought to close proximity resulting in a FRET signal. The dynamics of DNA-NgoMIV interactions proved to be heterogeneous, with individual smFRET trajectories exhibiting broadly different average looped state durations. Distinct types of the dynamics were attributed to different types of DNA-protein complexes, mediated either by one NgoMIV tetramer simultaneously bound to two specific sites ("slow" trajectories) or by semi-specific interactions of two DNA-bound NgoMIV tetramers ("fast" trajectories), as well as to conformational heterogeneity of individual NgoMIV molecules. © 2017 Wiley Periodicals, Inc.

  12. Structural dynamics of the lac repressor-DNA complex revealed by a multiscale simulation.

    PubMed

    Villa, Elizabeth; Balaeff, Alexander; Schulten, Klaus

    2005-05-10

    A multiscale simulation of a complex between the lac repressor protein (LacI) and a 107-bp-long DNA segment is reported. The complex between the repressor and two operator DNA segments is described by all-atom molecular dynamics; the size of the simulated system comprises either 226,000 or 314,000 atoms. The DNA loop connecting the operators is modeled as a continuous elastic ribbon, described mathematically by the nonlinear Kirchhoff differential equations with boundary conditions obtained from the coordinates of the terminal base pairs of each operator. The forces stemming from the looped DNA are included in the molecular dynamics simulations; the loop structure and the forces are continuously recomputed because the protein motions during the simulations shift the operators and the presumed termini of the loop. The simulations reveal the structural dynamics of the LacI-DNA complex in unprecedented detail. The multiple domains of LacI exhibit remarkable structural stability during the simulation, moving much like rigid bodies. LacI is shown to absorb the strain from the looped DNA mainly through its mobile DNA-binding head groups. Even with large fluctuating forces applied, the head groups tilt strongly and keep their grip on the operator DNA, while the remainder of the protein retains its V-shaped structure. A simulated opening of the cleft of LacI by 500-pN forces revealed the interactions responsible for locking LacI in the V-conformation.

  13. A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction.

    PubMed

    Han, Wenyuan; Li, Yingjun; Deng, Ling; Feng, Mingxia; Peng, Wenfang; Hallstrøm, Søren; Zhang, Jing; Peng, Nan; Liang, Yun Xiang; White, Malcolm F; She, Qunxin

    2017-02-28

    The CRISPR (clustered regularly interspaced short palindromic repeats) system protects archaea and bacteria by eliminating nucleic acid invaders in a crRNA-guided manner. The Sulfolobus islandicus type III-B Cmr-α system targets invading nucleic acid at both RNA and DNA levels and DNA targeting relies on the directional transcription of the protospacer in vivo. To gain further insight into the involved mechanism, we purified a native effector complex of III-B Cmr-α from S. islandicus and characterized it in vitro. Cmr-α cleaved RNAs complementary to crRNA present in the complex and its ssDNA destruction activity was activated by target RNA. The ssDNA cleavage required mismatches between the 5΄-tag of crRNA and the 3΄-flanking region of target RNA. An invader plasmid assay showed that mutation either in the histidine-aspartate acid (HD) domain (a quadruple mutation) or in the GGDD motif of the Cmr-2α protein resulted in attenuation of the DNA interference in vivo. However, double mutation of the HD motif only abolished the DNase activity in vitro. Furthermore, the activated Cmr-α binary complex functioned as a highly active DNase to destroy a large excess DNA substrate, which could provide a powerful means to rapidly degrade replicating viral DNA. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction

    NASA Astrophysics Data System (ADS)

    Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin

    2014-01-01

    DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag+-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science.

  15. Physical mapping of complex genomes

    DOEpatents

    Evans, G.A.

    1993-06-15

    A method for the simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts in the pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert in the common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed.

  16. FISH-aimed karyotyping and characterization of Renner complexes in permanent heterozygote Rhoeo spathacea.

    PubMed

    Golczyk, Hieronim; Hasterok, Robert; Joachimiak, Andrzej J

    2005-02-01

    Fluorescence in situ hybridization (FISH) using 25S rDNA, 5S rDNA, and telomere sequences as probes was carried out in the complex permanent heterozygote Rhoeo spathacea. Telomere sites were exclusively terminal. All 10 25S rDNA loci were located distally and appeared transcriptionally active after silver staining. Six distal and 2 interstitial 5S rDNA sites were detected; 2 of the distal sites strictly colocalized with 25S rDNA loci. The 2 intercalary 5S rDNA loci occurred in short arms of 2 chromosomes that conjoined at meiosis. Chromosomes differed as to the amount of AT-rich centric heterochromatin, suggesting involvement of pericentromeric regions in translocations. The possibility of Robertsonian-like rearrangements was discussed. Double target FISH with ribosomal probes along with DAPI fluorescence gave the basis for full chromosome identification in mitosis. The 2 Renner complexes are structurally balanced, both having 5 25S and 4 5S rDNA sites. Centromere clustering, telomere association, a high number of NOR sites, and a strong tendency for formation of joint nucleoli contribute to the preservation of highly polarized Rabl arrangement at interphase. These findings were discussed in relation to meiotic catenation in Rhoeo.

  17. Oligomerization of the E. coli Core RNA Polymerase: Formation of (α2ββ'ω)2–DNA Complexes and Regulation of the Oligomerization by Auxiliary Subunits

    PubMed Central

    Kansara, Seema G.; Sukhodolets, Maxim V.

    2011-01-01

    In this work, using multiple, dissimilar physico-chemical techniques, we demonstrate that the Escherichia coli RNA polymerase core enzyme obtained through a classic purification procedure forms stable (α2ββ'ω)2 complexes in the presence or absence of short DNA probes. Multiple control experiments indicate that this self-association is unlikely to be mediated by RNA polymerase-associated non-protein molecules. We show that the formation of (α2ββ'ω)2 complexes is subject to regulation by known RNA polymerase interactors, such as the auxiliary SWI/SNF subunit of RNA polymerase RapA, as well as NusA and σ70. We also demonstrate that the separation of the core RNA polymerase and RNA polymerase holoenzyme species during Mono Q chromatography is likely due to oligomerization of the core enzyme. We have analyzed the oligomeric state of the polymerase in the presence or absence of DNA, an aspect that was missing from previous studies. Importantly, our work demonstrates that RNA polymerase oligomerization is compatible with DNA binding. Through in vitro transcription and in vivo experiments (utilizing a RapAR599/Q602 mutant lacking transcription-stimulatory function), we demonstrate that the formation of tandem (α2ββ'ω)2–DNA complexes is likely functionally significant and beneficial for the transcriptional activity of the polymerase. Taken together, our findings suggest a novel structural aspect of the E. coli elongation complex. We hypothesize that transcription by tandem RNA polymerase complexes initiated at hypothetical bidirectional “origins of transcription” may explain recurring switches of the direction of transcription in bacterial genomes. PMID:21533049

  18. Recognition of thymine in DNA bulges by a Zn(II) macrocyclic complex.

    PubMed

    del Mundo, Imee Marie A; Fountain, Matthew A; Morrow, Janet R

    2011-08-14

    A Zn(II) macrocyclic complex with appended quinoline is a bifunctional recognition agent that uses both the Zn(II) center and the pendent aromatic group to bind to thymine in bulges with good selectivity over DNA containing G, C or A bulges. Spectroscopic studies show that the stem containing the bulge stays largely intact in a DNA hairpin with the Zn(II) complex bound to the thymine bulge. This journal is © The Royal Society of Chemistry 2011

  19. DNA Binding and Antitumor Activity of α-Diimineplatinum(II) and Palladium(II) Dithiocarbamate Complexes

    PubMed Central

    Mansouri-Torshizi, Hassan; Saeidifar, Maryam; Khosravi, Fatemeh; Divsalar, Adeleh; Saboury, Ali Akbar; Hassani, Fatemeh

    2011-01-01

    The two water-soluble designed platinum(II) complex, [Pt(Oct-dtc)(bpy)]NO3 (Oct-dtc = Octyldithiocarbamate and bpy = 2,2′ -bipyridine) and palladium(II) complex, [Pd(Oct-dtc)(bpy)]NO3, have been synthesized and characterized by elemental analyses, molar conductivity measurements, IR, 1H NMR, and electronic spectra studies. Studies of antitumor activity of these complexes against human cell tumor lines (K562) have been carried out. They show Ic50 values lower than that of cisplatin. The complexes have been investigated for their interaction with calf thymus DNA (CT-DNA) by utilizing the electronic absorption spectroscopy, fluorescence spectra, and ethidium bromide displacement and gel filtration techniques. Both of these water-soluble complexes bound cooperatively and intercalatively to the CT-DNA at very low concentrations. Several binding and thermodynamic parameters are also described. PMID:22110410

  20. Interaction study of some macrocyclic inorganic schiff base complexes with calf thymus DNA using spectroscopic and voltammetric methods

    NASA Astrophysics Data System (ADS)

    Bordbar, Maryam; Tavoosi, Fariba; Yeganeh-Faal, Ali; Zebarjadian, Mohammad Hasan

    2018-01-01

    The interaction of Cd(II), Zn(II) and Mn(II)-L (4,8-bis(2-pyridylmethyl)-4,8-diazaundecane-1,11-diamine) transition metal complexes with calf thymus DNA (CT-DNA) has been investigated using electronic, fluorescence and circular dichroism (CD) spectroscopy, thermal denaturation and cyclic voltammetry (CV). Based on the UV-Vis study, binding constants of the complexes with CT-DNA were calculated. Changes in the band of the CD spectrum, DNA melting temperature and in the ipa and ipc of the complexes in the presenceCT-DNA, overall, showed that the studied complex exhibited good DNA interaction ability with partial intercalation mode.

  1. Design, synthesis, DNA-binding affinity, cytotoxicity, apoptosis, and cell cycle arrest of Ru(II) polypyridyl complexes.

    PubMed

    Venkat Reddy, Putta; Reddy, Mallepally Rajender; Avudoddi, Srishailam; Praveen Kumar, Yata; Nagamani, Chintakuntla; Deepika, Nancherla; Nagasuryaprasad, K; Singh, Surya Satyanarayana; Satyanarayana, Sirasani

    2015-09-15

    A novel polypyridyl ligand CNPFIP (CNPFIP=2-(5(4-chloro-2-nitrophenyl)furan-2-yl)-1H-imidazo[4,5f][1,10]phenanthroline) and its mononuclear Ru(II) polypyridyl complexes of [Ru(phen)2CNPFIP](2+)(1) (phen=1,10-phenanthroline), [Ru(bpy)2CNPFIP](2+)(2) (bpy=2,2'-bipyridine), and [Ru(dmb)2CNPFIP](2+)(3) (dmb=4,4'-dimethyl-2,2'-bipyridine) have been synthesized successfully and characterized thoroughly by elemental analysis, UV/Vis, IR, NMR, and ESI-MS. The interaction of the Ru(II) complexes with calf thymus DNA (CT-DNA) was investigated by absorption titration, fluorescence, viscosity measurements. The experimental results suggest that three complexes bind to CT-DNA through an intercalative mode and the DNA-binding affinity of complex 1 is greater than that of complexes 2 and 3. The photocleavage of plasmid pBR322 DNA by ruthenium complexes 1, 2, and 3 was investigated. We have also tested three complexes for their antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. The in vitro cytotoxicity of these complexes was evaluated by MTT assay, and complex 1 shows higher cytotoxicity than 2 and 3 on HeLa cells. The induced apoptosis and cell cycle arrest of HeLa cells were investigated by flow cytometry for 24h. The molecular docking of ruthenium complexes 1, 2, and 3 with the active site pocket residues of human DNA TOP1 was performed using LibDock. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Two sides of the same coin: TFIIH complexes in transcription and DNA repair.

    PubMed

    Zhovmer, Alexander; Oksenych, Valentyn; Coin, Frédéric

    2010-04-13

    TFIIH is organized into a seven-subunit core associated with a three-subunit Cdk-activating kinase (CAK) module. TFIIH has roles in both transcription initiation and DNA repair. During the last 15 years, several studies have been conducted to identify the composition of the TFIIH complex involved in DNA repair. Recently, a new technique combining chromatin immunoprecipitation and western blotting resolved the hidden nature of the TFIIH complex participating in DNA repair. Following the recruitment of TFIIH to the damaged site, the CAK module is released from the core TFIIH, and the core subsequently associates with DNA repair factors. The release of the CAK is specifically driven by the recruitment of the DNA repair factor XPA and is required to promote the incision/excision of the damaged DNA. Once the DNA lesions have been repaired, the CAK module returns to the core TFIIH on the chromatin, together with the release of the repair factors. These data highlight the dynamic composition of a fundamental cellular factor that adapts its subunit composition to the cell needs.

  3. Double probing of human spermatozoa for persistent histones, surplus cytoplasm, apoptosis and DNA fragmentation.

    PubMed

    Sati, Leyla; Ovari, Laszlo; Bennett, David; Simon, Stephen D; Demir, Ramazan; Huszar, Gabor

    2008-04-01

    Individual spermatozoa were assessed with pairs of probes for persistent histones and cytoplasmic retention, persistent histones and DNA fragmentation, and persistent histones and apoptotic markers. The individual spermatozoa were treated sequentially with combinations of probes for these cytoplasmic and nuclear biochemical markers. Sperm fields were recorded with computer-assisted imaging, and staining patterns with the two probes in the same spermatozoa were examined and scored as light, intermediate or dark (mature to arrested-maturity spermatozoa). The effects of arrested sperm maturation were similar with respect to the cytoplasmic and nuclear characteristics of spermatozoa in 84% of cells, indicating that cytoplasmic and nuclear attributes of arrested sperm maturation are related. However, there were moderate (intermediate-dark or intermediate-light patterns, 14.5% of cells) or major (light-dark patterns, 1.6% of cells) discrepancies in the intensity of the double staining patterns. Thus, testing with single maturity markers may not be fully reliable. These findings are important with respect to: (i) arrested sperm maturation; (ii) potential efficacy of antioxidant and similar therapeutic strategies in subfertile men, as spermatozoa with infrastructure defects due to mismaturation or maturation arrest are unlikely to respond to interventions; and (iii) detection of adverse male environmental exposures.

  4. Biochemical investigation of yttrium(III) complex containing 1,10-phenanthroline: DNA binding and antibacterial activity.

    PubMed

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Moodi, Asieh; Niroomand, Sona

    2013-03-05

    Characterization of the interaction between yttrium(III) complex containing 1,10-phenanthroline as ligand, [Y(phen)2Cl(OH2)3]Cl2⋅H2O, and DNA has been carried out by UV absorption, fluorescence spectra and viscosity measurements in order to investigate binding mode. The experimental results indicate that the yttrium(III) complex binds to DNA and absorption is decreasing in charge transfer band with the increase in amount of DNA. The binding constant (Kb) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°), were calculated according to relevant fluorescent data and Vant' Hoff equation. The results of interaction mechanism studies, suggested that groove binding plays a major role in the binding of the complex and DNA. The activity of yttrium(III) complex against some bacteria was tested and antimicrobial screening tests shown growth inhibitory activity in the presence of yttrium(III) complex. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Study of base pair mutations in proline-rich homeodomain (PRH)-DNA complexes using molecular dynamics.

    PubMed

    Jalili, Seifollah; Karami, Leila; Schofield, Jeremy

    2013-06-01

    Proline-rich homeodomain (PRH) is a regulatory protein controlling transcription and gene expression processes by binding to the specific sequence of DNA, especially to the sequence 5'-TAATNN-3'. The impact of base pair mutations on the binding between the PRH protein and DNA is investigated using molecular dynamics and free energy simulations to identify DNA sequences that form stable complexes with PRH. Three 20-ns molecular dynamics simulations (PRH-TAATTG, PRH-TAATTA and PRH-TAATGG complexes) in explicit solvent water were performed to investigate three complexes structurally. Structural analysis shows that the native TAATTG sequence forms a complex that is more stable than complexes with base pair mutations. It is also observed that upon mutation, the number and occupancy of the direct and water-mediated hydrogen bonds decrease. Free energy calculations performed with the thermodynamic integration method predict relative binding free energies of 0.64 and 2 kcal/mol for GC to AT and TA to GC mutations, respectively, suggesting that among the three DNA sequences, the PRH-TAATTG complex is more stable than the two mutated complexes. In addition, it is demonstrated that the stability of the PRH-TAATTA complex is greater than that of the PRH-TAATGG complex.

  6. Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction.

    PubMed

    Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin

    2014-01-24

    DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag(+)-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A simple and cost-effective molecular diagnostic system and DNA probes synthesized by light emitting diode photolithography

    NASA Astrophysics Data System (ADS)

    Oleksandrov, Sergiy; Kwon, Jung Ho; Lee, Ki-chang; Sujin-Ku; Paek, Mun Cheol

    2014-09-01

    This work introduces a novel chip to be used in the future as a simple and cost-effective method for creating DNA arrays using light emission diode (LED) photolithography. The DNA chip platform contains 24 independent reaction sites, which allows for the testing of a corresponding amount of patients' samples in hospital. An array of commercial UV LEDs and lens systems was combined with a microfluidic flow system to provide patterning of 24 individual reaction sites, each with 64 independent probes. Using the LED array instead of conventional laser exposure systems or micro-mirror systems significantly reduces the cost of equipment. The microfluidic system together with microfluidic flow cells drastically reduces the amount of used reagents, which is important due to the high cost of commercial reagents. The DNA synthesis efficiency was verified by fluorescence labeling and conventional hybridization.

  8. Development and application of a ruthenium(II) complex-based photoluminescent and electrochemiluminescent dual-signaling probe for nitric oxide.

    PubMed

    Zhang, Wenzhu; Zhang, Jingmei; Zhang, Hailei; Cao, Liyan; Zhang, Run; Ye, Zhiqiang; Yuan, Jingli

    2013-11-15

    A ruthenium(II) complex, [Ru(bpy)2(DA-phen)](PF6)2 (bpy: 2,2'-bipyridine; DA-phen: 5,6-diamino-1,10-phenanthroline), has been developed as a photoluminescent (PL) and electrochemiluminescent (ECL) dual-signaling probe for the highly sensitive and selective detection of nitric oxide (NO) in aqueous and biological samples. Due to the presence of electron transfer process from diamino group to the excited-state of the Ru(II) complex, the PL and ECL intensities of the probe are very weak. After the probe was reacted with NO in physiological pH aqueous media under aerobic conditions to afford its triazole derivative, [Ru(bpy)2(TA-phen)](2+) (TA-phen: 5,6-triazole-1,10-phenanthroline), the electron transfer process was inhibited, so that the PL and ECL efficiency of the Ru(II) complex was remarkably increased. The PL and ECL responses of the probe to NO in physiological pH media are highly sensitive with the detection limits at low micromolar concentration level, and highly specific without the interferences of other reactive oxygen/nitrogen species (ROS/RNS) and metal ions. Moreover, the probe has good cell-membrane permeability, and can be rapidly transferred into living cells for trapping the intracellular NO molecules. These features enabled the probe to be successfully used for the monitoring of the endogenous NO production in living biological cell and tissue samples with PL and ECL dual-modes. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. A Novel Cassette Method for Probe Evaluation in the Designed Biochips

    PubMed Central

    Zinkevich, Vitaly; Sapojnikova, Nelly; Mitchell, Julian; Kartvelishvili, Tamar; Asatiani, Nino; Alkhalil, Samia; Bogdarina, Irina; Al-Humam, Abdulmohsen A.

    2014-01-01

    A critical step in biochip design is the selection of probes with identical hybridisation characteristics. In this article we describe a novel method for evaluating DNA hybridisation probes, allowing the fine-tuning of biochips, that uses cassettes with multiple probes. Each cassette contains probes in equimolar proportions so that their hybridisation performance can be assessed in a single reaction. The model used to demonstrate this method was a series of probes developed to detect TORCH pathogens. DNA probes were designed for Toxoplasma gondii, Chlamidia trachomatis, Rubella, Cytomegalovirus, and Herpes virus and these were used to construct the DNA cassettes. Five cassettes were constructed to detect TORCH pathogens using a variety of genes coding for membrane proteins, viral matrix protein, an early expressed viral protein, viral DNA polymerase and the repetitive gene B1 of Toxoplasma gondii. All of these probes, except that for the B1 gene, exhibited similar profiles under the same hybridisation conditions. The failure of the B1 gene probe to hybridise was not due to a position effect, and this indicated that the probe was unsuitable for inclusion in the biochip. The redesigned probe for the B1 gene exhibited identical hybridisation properties to the other probes, suitable for inclusion in a biochip. PMID:24897111

  10. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity

    PubMed Central

    Zhang, Jin; Ruhlman, Tracey A.; Sabir, Jamal S. M.; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K.

    2016-01-01

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear–plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. PMID:26893456

  11. Conformational control and DNA-binding mechanism of the metazoan origin recognition complex.

    PubMed

    Bleichert, Franziska; Leitner, Alexander; Aebersold, Ruedi; Botchan, Michael R; Berger, James M

    2018-06-26

    In eukaryotes, the heterohexameric origin recognition complex (ORC) coordinates replication onset by facilitating the recruitment and loading of the minichromosome maintenance 2-7 (Mcm2-7) replicative helicase onto DNA to license origins. Drosophila ORC can adopt an autoinhibited configuration that is predicted to prevent Mcm2-7 loading; how the complex is activated and whether other ORC homologs can assume this state are not known. Using chemical cross-linking and mass spectrometry, biochemical assays, and electron microscopy (EM), we show that the autoinhibited state of Drosophila ORC is populated in solution, and that human ORC can also adopt this form. ATP binding to ORC supports a transition from the autoinhibited state to an active configuration, enabling the nucleotide-dependent association of ORC with both DNA and Cdc6. An unstructured N-terminal region adjacent to the conserved ATPase domain of Orc1 is shown to be required for high-affinity ORC-DNA interactions, but not for activation. ORC optimally binds DNA duplexes longer than the predicted footprint of the ORC ATPases associated with a variety of cellular activities (AAA + ) and winged-helix (WH) folds; cryo-EM analysis of Drosophila ORC bound to DNA and Cdc6 indicates that ORC contacts DNA outside of its central core region, bending the DNA away from its central DNA-binding channel. Our findings indicate that ORC autoinhibition may be common to metazoans and that ORC-Cdc6 remodels origin DNA before Mcm2-7 recruitment and loading.

  12. MD simulations of papillomavirus DNA-E2 protein complexes hints at a protein structural code for DNA deformation.

    PubMed

    Falconi, M; Oteri, F; Eliseo, T; Cicero, D O; Desideri, A

    2008-08-01

    The structural dynamics of the DNA binding domains of the human papillomavirus strain 16 and the bovine papillomavirus strain 1, complexed with their DNA targets, has been investigated by modeling, molecular dynamics simulations, and nuclear magnetic resonance analysis. The simulations underline different dynamical features of the protein scaffolds and a different mechanical interaction of the two proteins with DNA. The two protein structures, although very similar, show differences in the relative mobility of secondary structure elements. Protein structural analyses, principal component analysis, and geometrical and energetic DNA analyses indicate that the two transcription factors utilize a different strategy in DNA recognition and deformation. Results show that the protein indirect DNA readout is not only addressable to the DNA molecule flexibility but it is finely tuned by the mechanical and dynamical properties of the protein scaffold involved in the interaction.

  13. Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity

    USDA-ARS?s Scientific Manuscript database

    The extensive use of DNA barcoding technology in a large inventory of Macrolepidoptera and their parasitoids is documented. The methodology used and its practical applications are summarized, and numerous examples of how DNA barcoding has untangled complexes of cryptic species of butterflies, moths...

  14. RNF168 forms a functional complex with RAD6 during the DNA damage response

    PubMed Central

    Liu, Chao; Wang, Degui; Wu, Jiaxue; Keller, Jennifer; Ma, Teng; Yu, Xiaochun

    2013-01-01

    Summary Protein ubiquitination plays an important role in initiating the DNA damage response. Following DNA damage, E2 ubiquitin conjugating enzymes are crucial for catalyzing substrate ubiquitination that recruits downstream DNA repair factors to DNA lesions. To identify novel E2 conjugating enzymes important for initiating the DNA-damage-induced ubiquitination cascade, we screened most of the known E2 enzymes and found that RAD6A and RAD6B function together with RNF168 in the ionizing radiation (IR)-induced DNA damage response. Similarly to RNF168-deficient cells, RAD6A- or RAD6B-deficient cells exhibit a reduction in DNA-damage-induced protein ubiquitination. Correspondingly, DNA-damage-induced foci formation of DNA damage repair proteins, such as BRCA1 and 53BP1, is impaired in the absence of RAD6A or RAD6B. Moreover, the RNF168–RAD6 complex targeted histone H1.2 for ubiquitination in vitro and regulated DNA-damage-induced histone H1.2 ubiquitination in vivo. Collectively, these data demonstrate that RNF168, in complex with RAD6A or RAD6B, is activated in the DNA-damage-induced protein ubiquitination cascade. PMID:23525009

  15. Efficient enzymatic synthesis and dual-colour fluorescent labelling of DNA probes using long chain azido-dUTP and BCN dyes

    PubMed Central

    Ren, Xiaomei; El-Sagheer, Afaf H.; Brown, Tom

    2016-01-01

    A sterically undemanding azide analogue of dTTP (AHP dUTP) with an alkyl chain and ethynyl attachment to the nucleobase was designed and incorporated into DNA by primer extension, reverse transcription and polymerase chain reaction (PCR). An azide-modified 523 bp PCR amplicon with all 335 thymidines replaced by AHP dU was shown to be a perfect copy of the template from which it was amplified. Replacement of thymidine with AHP dU increases duplex stability, accounting in part for the high incorporation efficiency of the azide-modified triphosphate. Single-stranded azide-labelled DNA was conveniently prepared from PCR products by λ-exonuclease digestion and streptavidin magnetic bead isolation. Efficient fluorescent labelling of single and double-stranded DNA was carried out using dyes functionalized with bicyclo[6.1.0]non-4-yne (BCN) via the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction. This revealed that the degree of labelling must be carefully controlled to achieve optimum fluorescence and avoid fluorescence quenching. Dual-coloured probes were obtained in a single tube fluorescent labelling reaction; and varying the ratios of the two dyes provides a simple method to prepare DNA probes with unique fluorescent signatures. AHP dUTP is a versatile clickable nucleotide with potentially wide applications in biology and nanotechnology including single molecule studies and synthesis of modified aptamer libraries via SELEX. PMID:26819406

  16. Uracil DNA glycosylase BKRF3 contributes to Epstein-Barr virus DNA replication through physical interactions with proteins in viral DNA replication complex.

    PubMed

    Su, Mei-Tzu; Liu, I-Hua; Wu, Chia-Wei; Chang, Shu-Ming; Tsai, Ching-Hwa; Yang, Pei-Wen; Chuang, Yu-Chia; Lee, Chung-Pei; Chen, Mei-Ru

    2014-08-01

    Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmuno-precipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme activity executes at

  17. Combined effects of metal complexation and size expansion in the electronic structure of DNA base pairs

    NASA Astrophysics Data System (ADS)

    Brancolini, Giorgia; Di Felice, Rosa

    2011-05-01

    Novel DNA derivatives have been recently investigated in the pursuit of modified DNA duplexes to tune the electronic structure of DNA-based assemblies for nanotechnology applications. Size-expanded DNAs (e.g., xDNA) and metalated DNAs (M-DNA) may enhance stacking interactions and induce metallic conductivity, respectively. Here we explore possible ways of tailoring the DNA electronic structure by combining the aromatic size expansion with the metal-doping. We select the salient structures from our recent study on natural DNA pairs complexed with transition metal ions and consider the equivalent model configurations for xDNA pairs. We present the results of density functional theory electronic structure calculations of the metalated expanded base-pairs with various localized basis sets and exchange-correlation functionals. Implicit solvent and coordination water molecules are also included. Our results indicate that the effect of base expansion is largest in Ag-xGC complexes, while Cu-xGC complexes are the most promising candidates for nanowires with enhanced electron transfer and also for on-purpose modification of the DNA double-helix for signal detection.

  18. Pea amyloplast DNA is qualitatively similar to pea chloroplast DNA

    NASA Technical Reports Server (NTRS)

    Gaynor, J. J.

    1984-01-01

    Amyloplast DNA (apDNA), when subjected to digestion with restriction endonucleases, yields patterns nearly identical to that of DNA from mature pea chloroplasts (ctDNA). Southern transfers of apDNA and ctDNA, probed with the large subunit (LS) gene of ribulose-1,5-bisphosphate carboxylase (Rubisco), shows hybridization to the expected restriction fragments for both apDNA and ctDNA. However, Northern transfers of total RNA from chloroplasts and amyloplasts, probed again with the LS gene of Rubisco, shows that no detectable LS meggage is found in amyloplasts although LS expression in mature chloroplasts is high. Likewise, two dimensional polyacrylamide gel electrophoresis of etiolated gravisensitive pea tissue shows that both large and small subunits of Rubisco are conspicuously absent; however, in greening tissue these two constitute the major soluble proteins. These findings suggest that although the informational content of these two organelle types is equivalent, gene expression is quite different and is presumably under nuclear control.

  19. Method to detect the end-point for PCR DNA amplification using an ionically labeled probe and measuring impedance change

    DOEpatents

    Miles, Robin R [Danville, CA; Belgrader, Phillip [Severna Park, MD; Fuller, Christopher D [Oakland, CA

    2007-01-02

    Impedance measurements are used to detect the end-point for PCR DNA amplification. A pair of spaced electrodes are located on a surface of a microfluidic channel and an AC or DC voltage is applied across the electrodes to produce an electric field. An ionically labeled probe will attach to a complementary DNA segment, and a polymerase enzyme will release the ionic label. This causes the conductivity of the solution in the area of the electrode to change. This change in conductivity is measured as a change in the impedance been the two electrodes.

  20. Light amplification and lasing from dyes doped in DNA-complex thin films prepared by soaking method

    NASA Astrophysics Data System (ADS)

    Kawabe, Yutaka; Suzuki, Takemasa; Iisaka, You

    2014-08-01

    An alternative fabrication method for dye-doped DNA-surfactant complex films was developed and amplified spontaneous emission (ASE) and lasing under low energy optical pumping were demonstrated. In this new preparation technique, thin DNA-cethyltrimethylammonium (CTMA) complex films made by a spin coating method were stained with a hemicyanine dye by soaking them in acetone solution of the dye for one day. Molar ratio of the dye to DNA base pair for the final products was estimated to be 0.2, the value was much higher than those achieved via usual mixing method. ASE threshold value under pumping of a pulsed frequency-doubled YAG laser was about 0.3 mJ/cm2. Laser emission was also attained under the excitation with two interfering beams forming a dynamic grating of gain coefficient. Durability test indicated that 70% of their initial performance was maintained after 1 hour of continuous pumping. The technique was applied to water soluble dyes because the DNA complex was insoluble to water as well as acetone. We employed anionic Eosin Y dye, succeeding in sample formation and ASE emission. Different types of surfactants were also complexed with DNA, showing variation of emission peak wavelength. These results give a clue about the structure of the complex or interaction modes between DNA and surfactants, strongly suggesting that dye molecules are not intercalated into nor bound to DNA double strand directly, but are incorporated in the complex system via ion-exchange process or aggregating with cationic surfactants.

  1. Molecular mechanism of DNA replication-coupled inactivation of the initiator protein in Escherichia coli: interaction of DnaA with the sliding clamp-loaded DNA and the sliding clamp-Hda complex.

    PubMed

    Su'etsugu, Masayuki; Takata, Makoto; Kubota, Toshio; Matsuda, Yusaku; Katayama, Tsutomu

    2004-06-01

    In Escherichia coli, the ATP-DnaA protein initiates chromosomal replication. After the DNA polymerase III holoenzyme is loaded on to DNA, DnaA-bound ATP is hydrolysed in a manner depending on Hda protein and the DNA-loaded form of the DNA polymerase III sliding clamp subunit, which yields ADP-DnaA, an inactivated form for initiation. This regulatory DnaA-inactivation represses extra initiation events. In this study, in vitro replication intermediates and structured DNA mimicking replicational intermediates were first used to identify structural prerequisites in the process of DnaA-ATP hydrolysis. Unlike duplex DNA loaded with sliding clamps, primer RNA-DNA heteroduplexes loaded with clamps were not associated with DnaA-ATP hydrolysis, and duplex DNA provided in trans did not rescue this defect. At least 40-bp duplex DNA is competent for the DnaA-ATP hydrolysis when a single clamp was loaded. The DnaA-ATP hydrolysis was inhibited when ATP-DnaA was tightly bound to a DnaA box-bearing oligonucleotide. These results imply that the DnaA-ATP hydrolysis involves the direct interaction of ATP-DnaA with duplex DNA flanking the sliding clamp. Furthermore, Hda protein formed a stable complex with the sliding clamp. Based on these, we suggest a mechanical basis in the DnaA-inactivation that ATP-DnaA interacts with the Hda-clamp complex with the aid of DNA binding. Copyright Blackwell Publishing Limited

  2. Multiple and cooperative binding of fluorescence light-up probe thioflavin T with human telomere DNA G-quadruplex.

    PubMed

    Gabelica, Valérie; Maeda, Ryuichi; Fujimoto, Takeshi; Yaku, Hidenobu; Murashima, Takashi; Sugimoto, Naoki; Miyoshi, Daisuke

    2013-08-20

    Thioflavin T (ThT), a typical probe for protein fibrils, also binds human telomeric G-quadruplexes with a fluorescent light-up signal change and high specificity against DNA duplexes. Cell penetration and low cytotoxicity of fibril probes having been widely established, modifying ThT and other fibril probes is an attractive means of generating new G-quadruplex ligands. Thus, elucidating the binding mechanism is important for the design of new drugs and fluorescent probes based on ThT. Here, we investigated the binding mechanism of ThT with several variants of the human telomeric sequence in the presence of monovalent cations. Fluorescence titrations and electrospray ionization mass spectrometry (ESI-MS) analyses demonstrated that each G-quadruplex unit cooperatively binds to several ThT molecules. ThT brightly fluoresces when a single ligand is bound to the G-quadruplex and is quenched as ligand binding stoichiometry increases. Both the light-up signal and the dissociation constants are exquisitely sensitive to the base sequence and to the G-quadruplex structure. These results are crucial for the sensible design and interpretation of G-quadruplex detection assays using fluorescent ligands in general and ThT in particular.

  3. Studies of interaction of emodin and DNA in the presence of ethidium bromide by spectroscopic method

    NASA Astrophysics Data System (ADS)

    Bi, Shuyun; Zhang, Hanqi; Qiao, Chunyu; Sun, Ying; Liu, Chunming

    2008-01-01

    Emodin interacting with deoxyribonucleic acid (DNA) has been studied by different spectroscopic techniques, such as fluorescence, ultraviolet and visible (UV-vis), and fourier transform infared (FT-IR) spectroscopies, using ethidium bromide (EB) as a fluorescence probe of DNA. The decrease in the fluorescence of DNA-EB system on addition of emodin shows that the fluorescence quenching of DNA-EB complex by emodin occurs. The binding constants of emodin with DNA in the presence of EB are 6.02 × 10 4, 9.20 × 10 4 and 1.17 × 10 5 L mol -1 at 20, 35 and 50 °C, respectively. FT-IR spectrum further suggests that both the phosphate groups and the bases of DNA react with emodin. The reaction of DNA with emodin in the presence of EB is affected by ionic strength and temperature. The values of melting temperature ( Tm) of DNA-EB complex and emodin-DNA-EB complexes were determined, respectively. From the experiment evidences, the major binding mode of emodin with DNA should be the groove binding.

  4. Structural basis for recognition and remodeling of the TBP:DNA:NC2 complex by Mot1

    PubMed Central

    Butryn, Agata; Schuller, Jan M; Stoehr, Gabriele; Runge-Wollmann, Petra; Förster, Friedrich; Auble, David T; Hopfner, Karl-Peter

    2015-01-01

    Swi2/Snf2 ATPases remodel substrates such as nucleosomes and transcription complexes to control a wide range of DNA-associated processes, but detailed structural information on the ATP-dependent remodeling reactions is largely absent. The single subunit remodeler Mot1 (modifier of transcription 1) dissociates TATA box-binding protein (TBP):DNA complexes, offering a useful system to address the structural mechanisms of Swi2/Snf2 ATPases. Here, we report the crystal structure of the N-terminal domain of Mot1 in complex with TBP, DNA, and the transcription regulator negative cofactor 2 (NC2). Our data show that Mot1 reduces DNA:NC2 interactions and unbends DNA as compared to the TBP:DNA:NC2 state, suggesting that Mot1 primes TBP:NC2 displacement in an ATP-independent manner. Electron microscopy and cross-linking data suggest that the Swi2/Snf2 domain of Mot1 associates with the upstream DNA and the histone fold of NC2, thereby revealing parallels to some nucleosome remodelers. This study provides a structural framework for how a Swi2/Snf2 ATPase interacts with its substrate DNA:protein complex. DOI: http://dx.doi.org/10.7554/eLife.07432.001 PMID:26258880

  5. The In-Situ Structure of Cationic Lipid/DNA Complexes in Animal Cells: Applications to Gene Therapy

    NASA Astrophysics Data System (ADS)

    Lin, Alison J.; Slack, Nelle L.; Idziak, S. H. J.; George, C. X.; Samuel, C. E.; Safinya, C. R.

    1997-03-01

    Gene therapy has been the focus of many recent investigations. One promising technique is to use cationic lipids as vectors for DNA transfection. However, the exact mechanism of DNA uptake is unknown, due to a lack of knowledge regarding interactions and structures of DNA and cationic lipids. We are developing x-ray and optical microscopy techniques to directly image the temporal and spatial distribution of cationic lipid/DNA complexes (CL-DNA) during the various stages of transfection in mouse L-cells. The structure of these complexes in water have been shown by x-ray studies to consist of alternating lipid bilayers and DNA monolayers.(J. Radler, I. Koltover, T. Salditt, C. R. Safinya, Science (January 1997)) We demonstrate the feasibility of in-situ x-ray diffraction studies of CL-DNA complexes in L-cells. The x-ray data implies that complexes are taken up by endocytosis and DOPE destabilizes the endosomal membrane. Results from optical microscopy studies and X-Gal staining of transfected cells support the x-ray data. Funded in part by NSF grant DMR-9624091, PRF (No. 31352-AC7), Los Alamos CULAR grant No. STB/UC: 96-118.

  6. DNA/RNA binding and anticancer/antimicrobial activities of polymer-copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Riyasdeen, Anvarbatcha; Dhivya, Rajakumar; Vignesh, Sivanandham; Akbarsha, Mohammad Abdulkader; James, Rathinam Arthur

    2013-05-01

    Water soluble polymer-copper(II) complexes with various degrees of coordination in the polymer chain were synthesized and characterized by elemental analysis, IR, UV-visible and EPR spectra. The DNA/RNA binding behavior of these polymer-copper(II) complexes was examined by UV-visible absorption, emission and circular dichroism spectroscopic methods, and cyclic voltammetry techniques. The binding of the polymer-copper(II) complexes with DNA/RNA was mainly through intercalation but some amount of electrostatic interaction was also observed. This binding capacity increased with the degree of coordination of the complexes. The polymer-copper(II) complex having the highest degree of coordination was subjected to analysis of cytotoxic and antimicrobial properties. The cytotoxicity study indicated that the polymer-copper(II) complexes affected the viability of MCF-7 mammary carcinoma cells, and the cells responded to the treatment with mostly through apoptosis although a few cells succumbed to necrosis. The antimicrobial screening showed activity against some human pathogens.

  7. Importance of the efficiency of double-stranded DNA formation in cDNA synthesis for the imprecision of microarray expression analysis.

    PubMed

    Thormar, Hans G; Gudmundsson, Bjarki; Eiriksdottir, Freyja; Kil, Siyoen; Gunnarsson, Gudmundur H; Magnusson, Magnus Karl; Hsu, Jason C; Jonsson, Jon J

    2013-04-01

    The causes of imprecision in microarray expression analysis are poorly understood, limiting the use of this technology in molecular diagnostics. Two-dimensional strandness-dependent electrophoresis (2D-SDE) separates nucleic acid molecules on the basis of length and strandness, i.e., double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and RNA·DNA hybrids. We used 2D-SDE to measure the efficiency of cDNA synthesis and its importance for the imprecision of an in vitro transcription-based microarray expression analysis. The relative amount of double-stranded cDNA formed in replicate experiments that used the same RNA sample template was highly variable, ranging between 0% and 72% of the total DNA. Microarray experiments showed an inverse relationship between the difference between sample pairs in probe variance and the relative amount of dsDNA. Approximately 15% of probes showed between-sample variation (P < 0.05) when the dsDNA percentage was between 12% and 35%. In contrast, only 3% of probes showed between-sample variation when the dsDNA percentage was 69% and 72%. Replication experiments of the 35% dsDNA and 72% dsDNA samples were used to separate sample variation from probe replication variation. The estimated SD of the sample-to-sample variation and of the probe replicates was lower in 72% dsDNA samples than in 35% dsDNA samples. Variation in the relative amount of double-stranded cDNA synthesized can be an important component of the imprecision in T7 RNA polymerase-based microarray expression analysis. © 2013 American Association for Clinical Chemistry

  8. Probing the elastic limit of DNA bending

    PubMed Central

    Le, Tung T.; Kim, Harold D.

    2014-01-01

    Sharp bending of double-stranded DNA (dsDNA) plays an essential role in genome structure and function. However, the elastic limit of dsDNA bending remains controversial. Here, we measured the opening rates of small dsDNA loops with contour lengths ranging between 40 and 200 bp using single-molecule Fluorescence Resonance Energy Transfer. The relationship of loop lifetime to loop size revealed a critical transition in bending stress. Above the critical loop size, the loop lifetime changed with loop size in a manner consistent with elastic bending stress, but below it, became less sensitive to loop size, indicative of softened dsDNA. The critical loop size increased from ∼60 bp to ∼100 bp with the addition of 5 mM magnesium. We show that our result is in quantitative agreement with the kinkable worm-like chain model, and furthermore, can reproduce previously reported looping probabilities of dsDNA over the range between 50 and 200 bp. Our findings shed new light on the energetics of sharply bent dsDNA. PMID:25122748

  9. Retrosynthetic Analysis-Guided Breaking Tile Symmetry for the Assembly of Complex DNA Nanostructures.

    PubMed

    Wang, Pengfei; Wu, Siyu; Tian, Cheng; Yu, Guimei; Jiang, Wen; Wang, Guansong; Mao, Chengde

    2016-10-11

    Current tile-based DNA self-assembly produces simple repetitive or highly symmetric structures. In the case of 2D lattices, the unit cell often contains only one basic tile because the tiles often are symmetric (in terms of either the backbone or the sequence). In this work, we have applied retrosynthetic analysis to determine the minimal asymmetric units for complex DNA nanostructures. Such analysis guides us to break the intrinsic structural symmetries of the tiles to achieve high structural complexities. This strategy has led to the construction of several DNA nanostructures that are not accessible from conventional symmetric tile designs. Along with previous studies, herein we have established a set of four fundamental rules regarding tile-based assembly. Such rules could serve as guidelines for the design of DNA nanostructures.

  10. TFIIA changes the conformation of the DNA in TBP/TATA complexes and increases their kinetic stability.

    PubMed

    Hieb, Aaron R; Halsey, Wayne A; Betterton, Meredith D; Perkins, Thomas T; Kugel, Jennifer F; Goodrich, James A

    2007-09-21

    Eukaryotic mRNA transcription by RNA polymerase II is a highly regulated complex reaction involving numerous proteins. In order to control tissue and promoter specific gene expression, transcription factors must work in concert with each other and with the promoter DNA to form the proper architecture to activate the gene of interest. The TATA binding protein (TBP) binds to TATA boxes in core promoters and bends the TATA DNA. We have used quantitative solution fluorescence resonance energy transfer (FRET) and gel-based FRET (gelFRET) to determine the effect of TFIIA on the conformation of the DNA in TBP/TATA complexes and on the kinetic stability of these complexes. Our results indicate that human TFIIA decreases the angle to which human TBP bends consensus TATA DNA from 104 degrees to 80 degrees when calculated using a two-kink model. The kinetic stability of TBP/TATA complexes was greatly reduced by increasing the KCl concentration from 50 mM to 140 mM, which is more physiologically relevant. TFIIA significantly enhanced the kinetic stability of TBP/TATA complexes, thereby attenuating the effect of higher salt concentrations. We also found that TBP bent non-consensus TATA DNA to a lesser degree than consensus TATA DNA and complexes between TBP and a non-consensus TATA box were kinetically unstable even at 50 mM KCl. Interestingly, TFIIA increased the calculated bend angle and kinetic stability of complexes on a non-consensus TATA box, making them similar to those on a consensus TATA box. Our data show that TFIIA induces a conformational change within the TBP/TATA complex that enhances its stability under both in vitro and physiological salt conditions. Furthermore, we present a refined model for the effect that TFIIA has on DNA conformation that takes into account potential changes in bend angle as well as twist angle.

  11. Assessment of DNA complexation onto polyelectrolyte-coated magnetic silica nanoparticles.

    PubMed

    Dávila-Ibáñez, Ana B; Buurma, Niklaas J; Salgueiriño, Verónica

    2013-06-07

    The polyelectrolyte-DNA complexation method to form magnetoplexes using silica-coated iron oxide magnetic nanoparticles as inorganic substrates is an attractive and promising process in view of the potential applications including magnetofection, DNA extraction and purification, and directed assembly of nanostructures. Herein, we present a systematic physico-chemical study that provides clear evidence of the type of interactions established, reflects the importance of the DNA length, the nanoparticle size and the ionic strength, and permits the identification of the parameters controlling both the stability and the type of magnetoplexes formed. This information can be used to develop targeted systems with properties optimized for the various proposed applications of magnetoplexes.

  12. Perturbations in DNA structure upon interaction with porphyrins revealed by chemical probes, DNA footprinting and molecular modelling.

    PubMed

    Ford, K G; Neidle, S

    1995-06-01

    The interactions of several porphyrins with a 74 base-pair DNA sequence have been examined by footprinting and chemical protection methods. Tetra-(4-N-methyl-(pyridyl)) porphyrin (TMPy), two of its metal complexes and tetra-(4-trimethylanilinium) porphyrin (TMAP) bind to closely similar AT-rich sequences. The three TMPy ligands produce modest changes in DNA structure and base accessibility on binding, in contrast to the large-scale conformational changes observed with TMAP. Molecular modelling studies have been performed on TMPy and TMAP bound in the AT-rich minor groove of an oligonucleotide. These have shown that significant structural change is needed to accommodate the bulky trimethyl substituent groups of TMAP, in contrast to the facile minor groove fit of TMPy.

  13. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm

    NASA Astrophysics Data System (ADS)

    Fu, Jinglin; Yang, Yuhe Renee; Johnson-Buck, Alexander; Liu, Minghui; Liu, Yan; Walter, Nils G.; Woodbury, Neal W.; Yan, Hao

    2014-07-01

    Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex. Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision and can also provide nanomechanical control. Until now, protein-DNA assemblies have been used to organize cascades of enzymatic reactions by controlling the relative distance and orientation of enzymatic components or by facilitating the interface between enzymes/cofactors and electrode surfaces. Here, we show that a DNA nanostructure can be used to create a multi-enzyme complex in which an artificial swinging arm facilitates hydride transfer between two coupled dehydrogenases. By exploiting the programmability of DNA nanostructures, key parameters including position, stoichiometry and inter-enzyme distance can be manipulated for optimal activity.

  14. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm.

    PubMed

    Fu, Jinglin; Yang, Yuhe Renee; Johnson-Buck, Alexander; Liu, Minghui; Liu, Yan; Walter, Nils G; Woodbury, Neal W; Yan, Hao

    2014-07-01

    Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex. Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision and can also provide nanomechanical control. Until now, protein-DNA assemblies have been used to organize cascades of enzymatic reactions by controlling the relative distance and orientation of enzymatic components or by facilitating the interface between enzymes/cofactors and electrode surfaces. Here, we show that a DNA nanostructure can be used to create a multi-enzyme complex in which an artificial swinging arm facilitates hydride transfer between two coupled dehydrogenases. By exploiting the programmability of DNA nanostructures, key parameters including position, stoichiometry and inter-enzyme distance can be manipulated for optimal activity.

  15. Assessment of Telomere Length, Phenotype, and DNA Content.

    PubMed

    Kelesidis, Theodoros; Schmid, Ingrid

    2017-01-05

    Telomere sequences at the end of chromosomes control somatic cell division; therefore, telomere length in a given cell population provides information about its replication potential. This unit describes a method for flow cytometric measurement of telomere length in subpopulations using fluorescence in situ hybridization of fluorescently-labeled probes (Flow-FISH) without prior cell separation. After cells are stained for surface immunofluorescence, antigen-antibody complexes are covalently cross-linked onto cell membranes before FISH with a telomere-specific probe. Cells with long telomeres are included as internal standards. Addition of a DNA dye permits exclusion of proliferating cells during data analysis. DNA ploidy measurements of cells of interest and internal standard are performed on separate aliquots in parallel to Flow-FISH. Telomere fluorescence of G 0/1 cells of subpopulations and internal standards obtained from Flow-FISH are normalized for DNA ploidy, and telomere length in subsets of interest is expressed as a fraction of the internal standard telomere length. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  16. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity.

    PubMed

    Zhang, Jin; Ruhlman, Tracey A; Sabir, Jamal S M; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K

    2016-02-17

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Strong DNA deformation required for extremely slow DNA threading intercalation by a binuclear ruthenium complex

    PubMed Central

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Lincoln, Per; Rouzina, Ioulia; Westerlund, Fredrik; Williams, Mark C.

    2014-01-01

    DNA intercalation by threading is expected to yield high affinity and slow dissociation, properties desirable for DNA-targeted therapeutics. To measure these properties, we utilize single molecule DNA stretching to quantify both the binding affinity and the force-dependent threading intercalation kinetics of the binuclear ruthenium complex Δ,Δ-[μ‐bidppz‐(phen)4Ru2]4+ (Δ,Δ-P). We measure the DNA elongation at a range of constant stretching forces using optical tweezers, allowing direct characterization of the intercalation kinetics as well as the amount intercalated at equilibrium. Higher forces exponentially facilitate the intercalative binding, leading to a profound decrease in the binding site size that results in one ligand intercalated at almost every DNA base stack. The zero force Δ,Δ-P intercalation Kd is 44 nM, 25-fold stronger than the analogous mono-nuclear ligand (Δ-P). The force-dependent kinetics analysis reveals a mechanism that requires DNA elongation of 0.33 nm for association, relaxation to an equilibrium elongation of 0.19 nm, and an additional elongation of 0.14 nm from the equilibrium state for dissociation. In cells, a molecule with binding properties similar to Δ,Δ-P may rapidly bind DNA destabilized by enzymes during replication or transcription, but upon enzyme dissociation it is predicted to remain intercalated for several hours, thereby interfering with essential biological processes. PMID:25245944

  18. Structural Insights into the HIV-1 Minus-strand Strong-stop DNA*

    PubMed Central

    Chen, Yingying; Maskri, Ouerdia; Chaminade, Françoise; René, Brigitte; Benkaroun, Jessica; Godet, Julien; Mély, Yves; Mauffret, Olivier; Fossé, Philippe

    2016-01-01

    An essential step of human immunodeficiency virus type 1 (HIV-1) reverse transcription is the first strand transfer that requires base pairing of the R region at the 3′-end of the genomic RNA with the complementary r region at the 3′-end of minus-strand strong-stop DNA (ssDNA). HIV-1 nucleocapsid protein (NC) facilitates this annealing process. Determination of the ssDNA structure is needed to understand the molecular basis of NC-mediated genomic RNA-ssDNA annealing. For this purpose, we investigated ssDNA using structural probes (nucleases and potassium permanganate). This study is the first to determine the secondary structure of the full-length HIV-1 ssDNA in the absence or presence of NC. The probing data and phylogenetic analysis support the folding of ssDNA into three stem-loop structures and the presence of four high-affinity binding sites for NC. Our results support a model for the NC-mediated annealing process in which the preferential binding of NC to four sites triggers unfolding of the three-dimensional structure of ssDNA, thus facilitating interaction of the r sequence of ssDNA with the R sequence of the genomic RNA. In addition, using gel retardation assays and ssDNA mutants, we show that the NC-mediated annealing process does not rely on a single pathway (zipper intermediate or kissing complex). PMID:26668324

  19. Imparting the unique properties of DNA into complex material architectures and functions.

    PubMed

    Xu, Phyllis F; Noh, Hyunwoo; Lee, Ju Hun; Domaille, Dylan W; Nakatsuka, Matthew A; Goodwin, Andrew P; Cha, Jennifer N

    2013-07-01

    While the remarkable chemical and biological properties of DNA have been known for decades, these properties have only been imparted into materials with unprecedented function much more recently. The inimitable ability of DNA to form programmable, complex assemblies through stable, specific, and reversible molecular recognition has allowed the creation of new materials through DNA's ability to control a material's architecture and properties. In this review we discuss recent progress in how DNA has brought unmatched function to materials, focusing specifically on new advances in delivery agents, devices, and sensors.

  20. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis.

    PubMed

    Mavragani, Ifigeneia V; Nikitaki, Zacharenia; Souli, Maria P; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy; Georgakilas, Alexandros G

    2017-07-18

    Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15-20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent "danger" signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.

  1. Diagnosis of skin cancer by correlation and complexity analyses of damaged DNA

    PubMed Central

    Namazi, Hamidreza; Kulish, Vladimir V.; Delaviz, Fatemeh; Delaviz, Ali

    2015-01-01

    Skin cancer is a common, low-grade cancerous (malignant) growth of the skin. It starts from cells that begin as normal skin cells and transform into those with the potential to reproduce in an out-of-control manner. Cancer develops when DNA, the molecule found in cells that encodes genetic information, becomes damaged and the body cannot repair the damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to diagnose the skin cancer, first DNA walk plots of genomes of patients with skin cancer were generated. Then, the data so obtained was checked for complexity by computing the fractal dimension. Furthermore, the Hurst exponent has been employed in order to study the correlation of damaged DNA. By analysing different samples it has been found that the damaged DNA sequences are exhibiting higher degree of complexity and less correlation compared to normal DNA sequences. This investigation confirms that this method can be used for diagnosis of skin cancer. The method discussed in this research is useful not only for diagnosis of skin cancer but can be applied for diagnosis and growth analysis of different types of cancers. PMID:26497203

  2. Addition of DNA to CrVI and Cytochrome b5 Containing Proteoliposomes Leads to Generation of DNA Strand Breaks and CrIII Complexes

    PubMed Central

    Borthiry, Griselda R.; Antholine, William E.; Myers, Judith M.; Myers, Charles R.

    2009-01-01

    Chromium (Cr) is a cytotoxic metal that can be associated with a variety of types of DNA damage, including Cr-DNA adducts and strand breaks. Prior studies with purified human cytochrome b5 and NADPH :P450 reductase in reconstituted proteoliposomes (PLs) demonstrated rapid reduction of CrVI (hexavalent chromium, as CrO42− ), and the generation of CrV, superoxide (O2·−) , and hydroxyl radical (HO˙). Studies reported here examined the potential for the species produced by this system to interact with DNA. Strand breaks of purified plasmid DNA increased over time aerobically, but were not observed in the absence of O2. CrV is formed under both conditions, so the breaks are not mediated directly by CrV. The aerobic strand breaks were significantly prevented by catalase and EtOH, but not by the metal chelator diethylenetriaminepentaacetic acid (DTPA), suggesting that they are largely due to HO˙ from Cr-mediated redox cycling. EPR was used to assess the formation of Cr-DNA complexes. Following a 10-min incubation of PLs, CrO42− , and plasmid DNA, intense EPR signals at g = 5.7and g = 5.0 were observed. These signals are attributed to specific CrIII complexes with large zero field splitting (ZFS). Without DNA, the signals in the g = 5 region were weak. The large ZFS signals were not seen, when CrIIICl3 was incubated with DNA, suggesting that the CrIII–DNA interactions are different when generated by the PLs. After 24 h, a broad signal at g = 2 is attributed to CrIII complexes with a small ZFS. This g = 2 signal was observed without DNA, but it was different from that seen with plasmid. It is concluded that EPR can detect specific CrIII complexes that depend on the presence of plasmid DNA and the manner in which the CrIII is formed. PMID:18729091

  3. DNA curtains for high-throughput single-molecule optical imaging.

    PubMed

    Greene, Eric C; Wind, Shalom; Fazio, Teresa; Gorman, Jason; Visnapuu, Mari-Liis

    2010-01-01

    Single-molecule approaches provide a valuable tool in the arsenal of the modern biologist, and new discoveries continue to be made possible through the use of these state-of-the-art technologies. However, it can be inherently difficult to obtain statistically relevant data from experimental approaches specifically designed to probe individual reactions. This problem is compounded with more complex biochemical reactions, heterogeneous systems, and/or reactions requiring the use of long DNA substrates. Here we give an overview of a technology developed in our laboratory, which relies upon simple micro- or nanofabricated structures in combination with "bio-friendly" lipid bilayers, to align thousands of long DNA molecules into defined patterns on the surface of a microfluidic sample chamber. We call these "DNA curtains," and we have developed several different versions varying in complexity and DNA substrate configuration, which are designed to meet different experimental needs. This novel approach to single-molecule imaging provides a powerful experimental platform that offers the potential for concurrent observation of hundreds or even thousands of protein-DNA interactions in real time. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Differences in DNA Binding Specificity of Floral Homeotic Protein Complexes Predict Organ-Specific Target Genes.

    PubMed

    Smaczniak, Cezary; Muiño, Jose M; Chen, Dijun; Angenent, Gerco C; Kaufmann, Kerstin

    2017-08-01

    Floral organ identities in plants are specified by the combinatorial action of homeotic master regulatory transcription factors. However, how these factors achieve their regulatory specificities is still largely unclear. Genome-wide in vivo DNA binding data show that homeotic MADS domain proteins recognize partly distinct genomic regions, suggesting that DNA binding specificity contributes to functional differences of homeotic protein complexes. We used in vitro systematic evolution of ligands by exponential enrichment followed by high-throughput DNA sequencing (SELEX-seq) on several floral MADS domain protein homo- and heterodimers to measure their DNA binding specificities. We show that specification of reproductive organs is associated with distinct binding preferences of a complex formed by SEPALLATA3 and AGAMOUS. Binding specificity is further modulated by different binding site spacing preferences. Combination of SELEX-seq and genome-wide DNA binding data allows differentiation between targets in specification of reproductive versus perianth organs in the flower. We validate the importance of DNA binding specificity for organ-specific gene regulation by modulating promoter activity through targeted mutagenesis. Our study shows that intrafamily protein interactions affect DNA binding specificity of floral MADS domain proteins. Differential DNA binding of MADS domain protein complexes plays a role in the specificity of target gene regulation. © 2017 American Society of Plant Biologists. All rights reserved.

  5. Atomic Simulation of Complex DNA DSBs and the Interactions with the Ku70/80 Heterodimer

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2011-01-01

    DNA double strand breaks (DSBs) induced by ionizing radiation (IR) usually contain modified bases such as 8-oxo-7,8-dihydroguanine (8-oxoG) and thymine glycol, apurinic/apyrimidinic (AP) sites, 2-deoxyribonolactone, or single-strand breaks (SSBs). The presence of such lesions in close proximity to the DSB terminus makes the DNA nicks more difficult to repair and rejoin than endogenously induced simple DSBs, and as such a major determinant of the biological effects of high linear energy transfer (LET) radiation as encountered in space travel. In this study we conducted molecular dynamics simulations on a series of DNA duplexes with various complex lesions of 8-oxoG and AP sites, in an effort to investigate the effects of such lesions to the structural integrity and stability of DNA after insulted by IR. We also simulated the interaction of such complex DSBs with the Ku70/80 heterodimer, the first protein in mammalian cells to embark the non-homologous end joining (NHEJ) DNA repair pathway. The results indicate, compared to DNA with simple DSBs, the complex lesions can enhance the hydrogen bonds opening rate at the DNA terminus, and increase the mobility of the whole duplex, thus they present more deleterious effects to the genome integrity if not captured and repaired promptly in cells. Simulations also demonstrate the binding of Ku drastically reduces structural disruption and flexibility caused by the complex lesions, and the interactions of Ku with complex DSBs have a different potential energy landscape from the bound structure with simple DSB. In all complex DSBs systems, the binding of DSB terminus with Ku70 is softened while the binding of the middle duplex with Ku80 is tightened. This energy shift may help the Ku protein to secure at the DSB terminus for a longer time, so that other end processing factors or repair pathways can proceed at the lesions before NHEJ repair process starts. These atomic simulations may provide valuable new insight into the

  6. Activation of the DnaK-ClpB Complex is Regulated by the Properties of the Bound Substrate.

    PubMed

    Fernández-Higuero, Jose Angel; Aguado, Alejandra; Perales-Calvo, Judit; Moro, Fernando; Muga, Arturo

    2018-04-11

    The chaperone ClpB in bacteria is responsible for the reactivation of aggregated proteins in collaboration with the DnaK system. Association of these chaperones at the aggregate surface stimulates ATP hydrolysis, which mediates substrate remodeling. However, a question that remains unanswered is whether the bichaperone complex can be selectively activated by substrates that require remodeling. We find that large aggregates or bulky, native-like substrates activates the complex, whereas a smaller, permanently unfolded protein or extended, short peptides fail to stimulate it. Our data also indicate that ClpB interacts differently with DnaK in the presence of aggregates or small peptides, displaying a higher affinity for aggregate-bound DnaK, and that DnaK-ClpB collaboration requires the coupled ATPase-dependent remodeling activities of both chaperones. Complex stimulation is mediated by residues at the β subdomain of DnaK substrate binding domain, which become accessible to the disaggregase when the lid is allosterically detached from the β subdomain. Complex activation also requires an active NBD2 and the integrity of the M domain-ring of ClpB. Disruption of the M-domain ring allows the unproductive stimulation of the DnaK-ClpB complex in solution. The ability of the DnaK-ClpB complex to discrimínate different substrate proteins might allow its activation when client proteins require remodeling.

  7. Cryo-EM of dynamic protein complexes in eukaryotic DNA replication.

    PubMed

    Sun, Jingchuan; Yuan, Zuanning; Bai, Lin; Li, Huilin

    2017-01-01

    DNA replication in Eukaryotes is a highly dynamic process that involves several dozens of proteins. Some of these proteins form stable complexes that are amenable to high-resolution structure determination by cryo-EM, thanks to the recent advent of the direct electron detector and powerful image analysis algorithm. But many of these proteins associate only transiently and flexibly, precluding traditional biochemical purification. We found that direct mixing of the component proteins followed by 2D and 3D image sorting can capture some very weakly interacting complexes. Even at 2D average level and at low resolution, EM images of these flexible complexes can provide important biological insights. It is often necessary to positively identify the feature-of-interest in a low resolution EM structure. We found that systematically fusing or inserting maltose binding protein (MBP) to selected proteins is highly effective in these situations. In this chapter, we describe the EM studies of several protein complexes involved in the eukaryotic DNA replication over the past decade or so. We suggest that some of the approaches used in these studies may be applicable to structural analysis of other biological systems. © 2016 The Protein Society.

  8. GINS complex protein Sld5 recruits SIK1 to activate MCM helicase during DNA replication.

    PubMed

    Joshi, Kiranmai; Shah, Varun Jayeshkumar; Maddika, Subbareddy

    2016-12-01

    In eukaryotes, proper loading and activation of MCM helicase at chromosomal origins plays a central role in DNA replication. Activation of MCM helicase requires its association with CDC45-GINS complex, but the mechanism of how this complex activates MCM helicase is poorly understood. Here we identified SIK1 (salt-inducible kinase 1), an AMPK related protein kinase, as a molecular link that connects GINS complex with MCM helicase activity. We demonstrated that Sld5 a component of GINS complex interacts with SIK1 and recruits it to the sites of DNA replication at the onset of S phase. Depletion of SIK1 leads to defective DNA replication. Further, we showed that SIK1 phosphorylates MCM2 at five conserved residues at its N-terminus, which is essential for the activation of MCM helicase. Collectively, our results suggest SIK1 as a novel integral component of CMG replicative helicase during eukaryotic DNA replication. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. DNA-stabilized silver nanoclusters and carbon nanoparticles oxide: A sensitive platform for label-free fluorescence turn-on detection of HIV-DNA sequences.

    PubMed

    Ye, Yu-Dan; Xia, Li; Xu, Dang-Dang; Xing, Xiao-Jing; Pang, Dai-Wen; Tang, Hong-Wu

    2016-11-15

    Based on the remarkable difference between the interactions of carbon nanoparticles (CNPs) oxide with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), and the fact that fluorescence of DNA-stabilized silver nanoclusters (AgNCs) can be quenched by CNPs oxide, DNA-functionalized AgNCs were applied as label-free fluorescence probes and a novel fluorescence resonance energy transfer (FRET) sensor was successfully constructed for the detection of human immunodeficiency virus (HIV) DNA sequences. CNPs oxide were prepared with the oxidation of candle soot, hence it is simple, time-saving and low-cost. The strategy of dual AgNCs probes was applied to improve the detection sensitivity by using dual- probe capturing the same target DNA in a sandwich mode and as the fluorescence donor, and using CNPs oxide as the acceptor. In the presence of target DNA, a dsDNA hybrid forms, leading to the desorption of the ssDNA-AgNCs probes from CNPs oxide, and the recovering of fluorescence of the AgNCs in a HIV-DNA concentration-dependent manner. The results show that HIV-DNA can be detected in the range of 1-50nM with a detection limit of 0.40nM in aqueous buffer. The method is simple, rapid and sensitive with no need of labeled fluorescent probes, and moreover, the design of fluorescent dual-probe makes full use of the excellent fluorescence property of AgNCs and further improves the detection sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Replication-mediated disassociation of replication protein A-XPA complex upon DNA damage: implications for RPA handing off.

    PubMed

    Jiang, Gaofeng; Zou, Yue; Wu, Xiaoming

    2012-08-01

    RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA-XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA-XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA-XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed.

  11. Replication-mediated disassociation of replication protein A–XPA complex upon DNA damage: implications for RPA handing off

    PubMed Central

    Jiang, Gaofeng; Zou, Yue; Wu, Xiaoming

    2013-01-01

    RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA–XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA–XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA–XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed. PMID:22578086

  12. Coarse-grained molecular dynamics simulations for giant protein-DNA complexes

    NASA Astrophysics Data System (ADS)

    Takada, Shoji

    Biomolecules are highly hierarchic and intrinsically flexible. Thus, computational modeling calls for multi-scale methodologies. We have been developing a coarse-grained biomolecular model where on-average 10-20 atoms are grouped into one coarse-grained (CG) particle. Interactions among CG particles are tuned based on atomistic interactions and the fluctuation matching algorithm. CG molecular dynamics methods enable us to simulate much longer time scale motions of much larger molecular systems than fully atomistic models. After broad sampling of structures with CG models, we can easily reconstruct atomistic models, from which one can continue conventional molecular dynamics simulations if desired. Here, we describe our CG modeling methodology for protein-DNA complexes, together with various biological applications, such as the DNA duplication initiation complex, model chromatins, and transcription factor dynamics on chromatin-like environment.

  13. Comparison of the Gen-Probe Aptima HIV-1 and Abbott HIV-1 qualitative assays with the Roche Amplicor HIV-1 DNA assay for early infant diagnosis using dried blood spots.

    PubMed

    Nelson, Julie A E; Hawkins, J Tyler; Schanz, Maria; Mollan, Katie; Miller, Melissa B; Schmitz, John L; Fiscus, Susan A

    2014-08-01

    The current gold standard for infant diagnosis of HIV-1 is the Roche Amplicor Qualitative DNA assay, but it is being phased out. Compare the Abbott qualitative assay and the Gen-Probe Aptima assay to the gold standard Roche DNA assay using dried blood spots (DBS). The Gen-Probe Aptima and Abbott qualitative HIV-1 assays were compared to the Roche DNA assay for early infant diagnosis. Specificity and sensitivity were determined for the three assays using DBS from 50 HIV-exposed uninfected infants and 269 HIV-1 infected adults from North Carolina, respectively. All of the negative and 151 of the positive DBS had valid results on the 3 different assays, and an additional 118 positive DBS had valid results on the Roche DNA and Aptima assays. All three assays were very specific. The Roche DNA assay was the most sensitive (96.7%) over a wide range of HIV PVL, including samples with PVL<400 copies/ml. Restricted to samples with PVL>400 copies/ml, the Gen-Probe Aptima assay had sensitivity (96.5%) comparable to the Roche DNA assay (98.8%). The Abbott Qualitative assay was the least sensitive and only had sensitivity above 95% among samples with PVL over 1000 copies/ml. The Abbott HIV-1 Qualitative assay was not as sensitive as the comparator assays, so it would not be a useful replacement assay, especially for infants taking antiretroviral prophylaxis. The Gen-Probe Aptima assay is an adequate replacement option for infant diagnosis using DBS. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Discrimination of three types of homopolymers in single-stranded DNA with solid-state nanopores through external control of the DNA motion.

    PubMed

    Akahori, Rena; Yanagi, Itaru; Goto, Yusuke; Harada, Kunio; Yokoi, Takahide; Takeda, Ken-Ichi

    2017-08-22

    To achieve DNA sequencing with solid-state nanopores, the speed of the DNA in the nanopore must be controlled to obtain sequence-specific signals. In this study, we fabricated a nanopore-sensing system equipped with a DNA motion controller. DNA strands were immobilized on a Si probe, and approach of this probe to the nanopore vicinity could be controlled using a piezo actuator and stepper motor. The area of the Si probe was larger than the area of the membrane, which meant that the immobilized DNA could enter the nanopore without the need for the probe to scan to determine the location of the nanopore in the membrane. We demonstrated that a single-stranded DNA could be inserted into and removed from a nanopore in our experimental system. The number of different ionic-current levels observed while DNA remained in the nanopore corresponded to the number of different types of homopolymers in the DNA.

  15. Study of intermolecular contacts in the proline-rich homeodomain (PRH)-DNA complex using molecular dynamics simulations.

    PubMed

    Jalili, Seifollah; Karami, Leila

    2012-03-01

    The proline-rich homeodomain (PRH)-DNA complex consists of a protein with 60 residues and a 13-base-pair DNA. The PRH protein is a transcription factor that plays a key role in the regulation of gene expression. PRH is a significant member of the Q50 class of homeodomain proteins. The homeodomain section of PRH is essential for binding to DNA and mediates sequence-specific DNA binding. Three 20-ns molecular dynamics (MD) simulations (free protein, free DNA and protein-DNA complex) in explicit solvent water were performed to elucidate the intermolecular contacts in the PRH-DNA complex and the role of dynamics of water molecules forming water-mediated contacts. The simulation provides a detailed explanation of the trajectory of hydration water molecules. The simulations show that some water molecules in the protein-DNA interface exchange with bulk waters. The simulation identifies that most of the contacts consisted of direct interactions between the protein and DNA including specific and non-specific contacts, but several water-mediated polar contacts were also observed. The specific interaction between Gln50 and C18 and water-mediated hydrogen bond between Gln50 and T7 were found to be present during almost the entire time of the simulation. These results show good consistency with experimental and previous computational studies. Structural properties such as root-mean-square deviations (RMSD), root-mean-square fluctuations (RMSF) and secondary structure were also analyzed as a function of time. Analyses of the trajectories showed that the dynamic fluctuations of both the protein and the DNA were lowered by the complex formation.

  16. Silver(I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis.

    PubMed Central

    Arakawa, H; Neault, J F; Tajmir-Riahi, H A

    2001-01-01

    Ag(I) is a strong nucleic acids binder and forms several complexes with DNA such as types I, II, and III. However, the details of the binding mode of silver(I) in the Ag-polynucleotides remains unknown. Therefore, it was of interest to examine the binding of Ag(I) with calf-thymus DNA and bakers yeast RNA in aqueous solutions at pH 7.1-6.6 with constant concentration of DNA or RNA and various concentrations of Ag(I). Fourier transform infrared spectroscopy and capillary electrophoresis were used to analyze the Ag(I) binding mode, the binding constant, and the polynucleotides' structural changes in the Ag-DNA and Ag-RNA complexes. The spectroscopic results showed that in the type I complex formed with DNA, Ag(I) binds to guanine N7 at low cation concentration (r = 1/80) and adenine N7 site at higher concentrations (r = 1/20 to 1/10), but not to the backbone phosphate group. At r = 1/2, type II complexes formed with DNA in which Ag(I) binds to the G-C and A-T base pairs. On the other hand, Ag(I) binds to the guanine N7 atom but not to the adenine and the backbone phosphate group in the Ag-RNA complexes. Although a minor alteration of the sugar-phosphate geometry was observed, DNA remained in the B-family structure, whereas RNA retained its A conformation. Scatchard analysis following capillary electrophoresis showed two binding sites for the Ag-DNA complexes with K(1) = 8.3 x 10(4) M(-1) for the guanine and K(2) = 1.5 x 10(4) M(-1) for the adenine bases. On the other hand, Ag-RNA adducts showed one binding site with K = 1.5 x 10(5) M(-1) for the guanine bases. PMID:11509371

  17. Direct electrochemical stripping detection of cystic-fibrosis-related DNA linked through cadmium sulfide quantum dots

    NASA Astrophysics Data System (ADS)

    Marin, Sergio; Merkoçi, Arben

    2009-02-01

    Electrochemical detection of a cadmium sulfide quantum dots (CdS QDs)-DNA complex connected to paramagnetic microbeads (MB) was performed without the need for chemical dissolving. The method is based on dropping 20 µl of CdS QD-DNA-MB suspension on the surface of a screen-printed electrode. It is followed by magnetic collection on the surface of the working electrode and electrochemical detection using square-wave voltammetry (SWV), giving a well-shaped and sensitive analytical signal. A cystic-fibrosis-related DNA sequence was sandwiched between the two DNA probes. One DNA probe is linked via biotin-streptavidin bonding with MB and the other one via thiol groups with the CdS QD used as tags. Nonspecific signals of DNA were minimized using a blocking agent and the results obtained were successfully employed in a model DNA sensor with an interest in future applications in the clinical field. The developed nanoparticle biosensing system may offer numerous opportunities in other fields where fast, low cost and efficient detection of small volume samples is required.

  18. Fluorescent probes for nucleic Acid visualization in fixed and live cells.

    PubMed

    Boutorine, Alexandre S; Novopashina, Darya S; Krasheninina, Olga A; Nozeret, Karine; Venyaminova, Alya G

    2013-12-11

    This review analyses the literature concerning non-fluorescent and fluorescent probes for nucleic acid imaging in fixed and living cells from the point of view of their suitability for imaging intracellular native RNA and DNA. Attention is mainly paid to fluorescent probes for fluorescence microscopy imaging. Requirements for the target-binding part and the fluorophore making up the probe are formulated. In the case of native double-stranded DNA, structure-specific and sequence-specific probes are discussed. Among the latest, three classes of dsDNA-targeting molecules are described: (i) sequence-specific peptides and proteins; (ii) triplex-forming oligonucleotides and (iii) polyamide oligo(N-methylpyrrole/N-methylimidazole) minor groove binders. Polyamides seem to be the most promising targeting agents for fluorescent probe design, however, some technical problems remain to be solved, such as the relatively low sequence specificity and the high background fluorescence inside the cells. Several examples of fluorescent probe applications for DNA imaging in fixed and living cells are cited. In the case of intracellular RNA, only modified oligonucleotides can provide such sequence-specific imaging. Several approaches for designing fluorescent probes are considered: linear fluorescent probes based on modified oligonucleotide analogs, molecular beacons, binary fluorescent probes and template-directed reactions with fluorescence probe formation, FRET donor-acceptor pairs, pyrene excimers, aptamers and others. The suitability of all these methods for living cell applications is discussed.

  19. On the binding of indeno[1,2-c]isoquinolines in the DNA-topoisomerase I cleavage complex.

    PubMed

    Xiao, Xiangshu; Antony, Smitha; Pommier, Yves; Cushman, Mark

    2005-05-05

    An ab initio quantum mechanics calculation is reported which predicts the orientation of indenoisoquinoline 4 in the ternary cleavage complex formed from DNA and topoisomerase I (top1). The results of this calculation are consistent with the hypothetical structures previously proposed for the indenoisoquinoline-DNA-top1 ternary complexes based on molecular modeling, the crystal structure of a recently reported ternary complex, and the biological results obtained with a pair of diaminoalkyl-substituted indenoisoquinoline enantiomers. The results of these studies indicate that the pi-pi stacking interactions between the indenoisoquinolines and the neighboring DNA base pairs play a major role in determining binding orientation. The calculation of the electrostatic potential surface maps of the indenoisoquinolines and the adjacent DNA base pairs shows electrostatic complementarity in the observed binding orientation, leading to the conclusion that electrostatic attraction between the intercalators and the base pairs in the cleavage complex plays a major stabilizing role. On the other hand, the calculation of LUMO and HOMO energies of indenoisoquinoline 13b and neighboring DNA base pairs in conjunction with NBO analysis indicates that charge transfer complex formation plays a relatively minor role in stabilizing the ternary complexes derived from indenoisoquinolines, DNA, and top1. The results of these studies are important in understanding the existing structure-activity relationships for the indenoisoquinolines as top1 inhibitors and as anticancer agents, and they will be important in the future design of indenoisoquinoline-based top1 inhibitors.

  20. Models for the Binary Complex of Bacteriophage T4 Gp59 Helicase Loading Protein. GP32 Single-Stranded DNA-Binding Protein and Ternary Complex with Pseudo-Y Junction DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinerman, Jennifer M.; Dignam, J. David; Mueser, Timothy C.

    2012-04-05

    The bacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA. Sedimentation velocity experiments with gp59 protein and gp32ΔB protein (an N-terminal B-domain deletion) show that these proteins are monomers but form a 1:1 complex with a dissociation constant comparable withmore » that determined by isothermal titration calorimetry. Small angle x-ray scattering (SAXS) studies indicate that the gp59 protein is a prolate monomer, consistent with the crystal structure and hydrodynamic properties determined from sedimentation velocity experiments. SAXS experiments also demonstrate that gp32ΔB protein is a prolate monomer with an elongated A-domain protruding from the core. Moreover, fitting structures of gp59 protein and the gp32 core into the SAXS-derived molecular envelope supports a model for the gp59 protein-gp32ΔB protein complex. Our earlier work demonstrated that gp59 protein attracts full-length gp32 protein to pseudo-Y junctions. A model of the gp59 protein-DNA complex, modified to accommodate new SAXS data for the binary complex together with mutational analysis of gp59 protein, is presented in the accompanying article (Dolezal, D., Jones, C. E., Lai, X., Brister, J. R., Mueser, T. C., Nossal, N. G., and Hinton, D. M. (2012) J. Biol. Chem. 287, 18596–18607).« less

  1. Twin target self-amplification-based DNA machine for highly sensitive detection of cancer-related gene.

    PubMed

    Xu, Huo; Jiang, Yifan; Liu, Dengyou; Liu, Kai; Zhang, Yafeng; Yu, Suhong; Shen, Zhifa; Wu, Zai-Sheng

    2018-06-29

    The sensitive detection of cancer-related genes is of great significance for early diagnosis and treatment of human cancers, and previous isothermal amplification sensing systems were often based on the reuse of target DNA, the amplification of enzymatic products and the accumulation of reporting probes. However, no reporting probes are able to be transformed into target species and in turn initiate the signal of other probes. Herein we reported a simple, isothermal and highly sensitive homogeneous assay system for tumor suppressor p53 gene detection based on a new autonomous DNA machine, where the signaling probe, molecular beacon (MB), was able to execute the function similar to target DNA besides providing the common signal. In the presence of target p53 gene, the operation of DNA machine can be initiated, and cyclical nucleic acid strand-displacement polymerization (CNDP) and nicking/polymerization cyclical amplification (NPCA) occur, during which the MB was opened by target species and cleaved by restriction endonuclease. In turn, the cleaved fragments could activate the next signaling process as target DNA did. According to the functional similarity, the cleaved fragment was called twin target, and the corresponding fashion to amplify the signal was named twin target self-amplification. Utilizing this newly-proposed DNA machine, the target DNA could be detected down to 0.1 pM with a wide dynamic range (6 orders of magnitude) and single-base mismatched targets were discriminated, indicating a very high assay sensitivity and good specificity. In addition, the DNA machine was not only used to screen the p53 gene in complex biological matrix but also was capable of practically detecting genomic DNA p53 extracted from A549 cell line. This indicates that the proposed DNA machine holds the potential application in biomedical research and early clinical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Experimental studies on the nature of bonding of DNA/bipyridyl-(ethylenediamine)platinum(II) and DNA/netropsin complexes in solution and oriented wet-spun films

    NASA Astrophysics Data System (ADS)

    Marlowe, R. L.; Szabo, A.; Lee, S. A.; Rupprecht, A.

    2002-03-01

    The stability of complexes of NaDNA with bipyridyl-(ethylenediamine)platinum(II) (abbreviated [(bipy)Pt(en)]) and with netropsin has been studied using two techniques: (i) ultraviolet melting experiments were done on NaDNA/[(bipy)Pt(en)], showing that the [(bipy)Pt(en)] ligand stabilizes the DNA double helix structure; and (ii) swelling measurements (via optical microscopy) as a function of relative humidity were done on wet-spun oriented films of NaDNA/[(bipy)Pt(en)] and of NaDNA/netropsin. The swelling data shows that an irreversible transition of the films occurs at high relative humidity, first for the NaDNA/netropsin, then for pure NaDNA, and lastly for the NaDNA/[(bipy)Pt(en)]. These results are indicative that the [(bipy)Pt(en)] complex stabilizes the intermolecular bonds which mediate the film swelling characteristics. A model is suggested for the binding of [(bipy)Pt(en)] to DNA to explain why the swelling experiments show this ligand as increasing the intermolecular bond strength between the DNA double helices, while netropsin decreases this degree of stabilization.

  3. DNA nanotechnology from the test tube to the cell.

    PubMed

    Chen, Yuan-Jyue; Groves, Benjamin; Muscat, Richard A; Seelig, Georg

    2015-09-01

    The programmability of Watson-Crick base pairing, combined with a decrease in the cost of synthesis, has made DNA a widely used material for the assembly of molecular structures and dynamic molecular devices. Working in cell-free settings, researchers in DNA nanotechnology have been able to scale up system complexity and quantitatively characterize reaction mechanisms to an extent that is infeasible for engineered gene circuits or other cell-based technologies. However, the most intriguing applications of DNA nanotechnology - applications that best take advantage of the small size, biocompatibility and programmability of DNA-based systems - lie at the interface with biology. Here, we review recent progress in the transition of DNA nanotechnology from the test tube to the cell. We highlight key successes in the development of DNA-based imaging probes, prototypes of smart therapeutics and drug delivery systems, and explore the future challenges and opportunities for cellular DNA nanotechnology.

  4. A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157:H7 DNA detection.

    PubMed

    Wang, Lijiang; Liu, Qingjun; Hu, Zhaoying; Zhang, Yuanfan; Wu, Chunsheng; Yang, Mo; Wang, Ping

    2009-05-15

    A novel biosensor based on single-stranded DNA (ssDNA) probe functionalized aluminum anodized oxide (AAO) nanopore membranes was demonstrated for Escherichia coli O157:H7 DNA detection. An original and dynamic polymerase-extending (PE) DNA hybridization procedure is proposed, where hybridization happens in the existence of Taq DNA polymerase and dNTPs under controlled reaction temperature. The probe strand would be extended as long as the target DNA strand, then the capability to block the ionic flow in the pores has been prominently enhanced by the double strand complex. We have investigated the variation of ionic conductivity during the fabrication of the film and the hybridization using cyclic voltammetry and impedance spectroscopy. The present approach provides low detection limit for DNA (a few hundreds of pmol), rapid label-free and easy-to-use bacteria detection, which holds the potential for future use in various ss-DNA analyses by integrated into a self-contained biochip.

  5. Electrical potential-assisted DNA hybridization. How to mitigate electrostatics for surface DNA hybridization.

    PubMed

    Tymoczko, Jakub; Schuhmann, Wolfgang; Gebala, Magdalena

    2014-12-24

    Surface-confined DNA hybridization reactions are sensitive to the number and identity of DNA capture probes and experimental conditions such as the nature and the ionic strength of the electrolyte solution. When the surface probe density is high or the concentration of bulk ions is much lower than the concentration of ions within the DNA layer, hybridization is significantly slowed down or does not proceed at all. However, high-density DNA monolayers are attractive for designing high-sensitivity DNA sensors. Thus, circumventing sluggish DNA hybridization on such interfaces allows a high surface concentration of target DNA and improved signal/noise ratio. We present potential-assisted hybridization as a strategy in which an external voltage is applied to the ssDNA-modified interface during the hybridization process. Results show that a significant enhancement of hybridization can be achieved using this approach.

  6. AgI -Induced Switching of DNA Binding Modes via Formation of a Supramolecular Metallacycle.

    PubMed

    Basak, Shibaji; Léon, J Christian; Ferranco, Annaleizle; Sharma, Renu; Hebenbrock, Marian; Lough, Alan; Müller, Jens; Kraatz, Heinz-Bernhard

    2018-03-12

    The histidine derivative L1 of the DNA intercalator naphthalenediimide (NDI) forms a triangular Ag I complex (C2). The interactions of L1 and of C2 with DNA were studied by circular dichroism (CD) and UV/Vis spectroscopy and by viscosity studies. Different binding modes were observed for L1 and for C2, as the Ag I complex C2 is too large in size to act as an intercalator. If Ag I is added to the NDI molecule that is already intercalated into a duplex, higher order complexes are formed within the DNA duplex and cause disruptions in the helical duplex structure, which leads to a significant decrease in the characteristic CD features of B-DNA. Thus, via addition of a metal we show how a classic and well-known organic intercalator unit can be turned into a partial metallo insertor. We also show how electrochemical impedance spectroscopy (EIS) can be used to probe DNA binding modes on DNA films that are immobilized on gold surfaces. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Influence of chitosan structure on the formation and stability of DNA-chitosan polyelectrolyte complexes.

    PubMed

    Strand, Sabina P; Danielsen, Signe; Christensen, Bjørn E; Vårum, Kjell M

    2005-01-01

    The interactions between DNA and chitosans varying in fractional content of acetylated units (FA), degree of polymerization (DP), and degree of ionization were investigated by several techniques, including an ethidium bromide (EtBr) fluorescence assay, gel retardation, atomic force microscopy, and dynamic and electrophoretic light scattering. The charge density of the chitosan and the number of charges per chain were found to be the dominating factors for the structure and stability of DNA-chitosan complexes. All high molecular weight chitosans condensed DNA into physically stable polyplexes; however, the properties of the complexes were strongly dependent on FA, and thereby the charge density of chitosan. By employing fully charged oligomers of constant charge density, it was shown that the complexation of DNA and stability of the polyplexes is governed by the number of cationic residues per chain. A minimum of 6-9 positive charges appeared necessary to provide interaction strength comparable to that of polycations. In contrast, further increase in the number of charges above 9 did not increase the apparent binding affinity as judged from the EtBr displacement assay. The chitosan oligomers exhibited a pH-dependent interaction with DNA, reflecting the number of ionized amino groups. The complexation of DNA and the stability of oligomer-based polyplexes became reduced above pH 7.4. Such pH-dependent dissociation of polyplexes around the physiological pH is highly relevant in gene delivery applications and might be one of the reasons for the high transfection activity of oligomer-based polyplexes observed.

  8. Ultrahigh-resolution crystal structures of Z-DNA in complex with Mn(2+) and Zn(2+) ions.

    PubMed

    Drozdzal, Pawel; Gilski, Miroslaw; Kierzek, Ryszard; Lomozik, Lechoslaw; Jaskolski, Mariusz

    2013-06-01

    X-ray crystal structures of the spermine(4+) form of the Z-DNA duplex with the self-complementary d(CG)3 sequence in complexes with Mn(2+) and Zn(2+) cations have been determined at the ultrahigh resolutions of 0.75 and 0.85 Å, respectively. Stereochemical restraints were only used for the sperminium cation (in both structures) and for nucleotides with dual conformation in the Zn(2+) complex. The Mn(2+) and Zn(2+) cations at the major site, designated M(2+)(1), bind at the N7 position of G6 by direct coordination. The coordination geometry of this site was octahedral, with complete hydration shells. An additional Zn(2+)(2) cation was bis-coordinated in a tetrahedral fashion by the N7 atoms of G10 and G12 from a symmetry-related molecule. The coordination distances of Zn(2+)(1) and Zn(2+)(2) to the O6 atom of the guanine residues were 3.613 (6) and 3.258 (5) Å, respectively. Moreover, a chloride ion was also identified in the coordination sphere of Zn(2+)(2). Alternate conformations were observed in the Z-DNA-Zn(2+) structure not only at internucleotide linkages but also at the terminal C3'-OH group of G12. The conformation of the sperminium chain in the Z-DNA-Mn(2+) complex is similar to the spermine(4+) conformation in analogous Z-DNA-Mg(2+) structures. In the Z-DNA-Zn(2+) complex the sperminium cation is disordered and partially invisible in electron-density maps. In the Z-DNA-Zn(2+) complex the sperminium cation only interacts with the phosphate groups of the Z-DNA molecules, while in the Z-DNA-Mn(2+) structure it forms hydrogen bonds to both the phosphate groups and DNA bases.

  9. Photochemical methods to assay DNA photocleavage using supercoiled pUC18 DNA and LED or xenon arc lamp excitation.

    PubMed

    Prussin, Aaron J; Zigler, David F; Jain, Avijita; Brown, Jared R; Winkel, Brenda S J; Brewer, Karen J

    2008-04-01

    Methods for the study of DNA photocleavage are illustrated using a mixed-metal supramolecular complex [{(bpy)(2)Ru(dpp)}(2)RhCl(2)]Cl(5). The methods use supercoiled pUC18 plasmid as a DNA probe and either filtered light from a xenon arc lamp source or monochromatic light from a newly designed, high-intensity light-emitting diode (LED) array. Detailed methods for performing the photochemical experiments and analysis of the DNA photoproduct are delineated. Detailed methods are also given for building an LED array to be used for DNA photolysis experiments. The Xe arc source has a broad spectral range and high light flux. The LEDs have a high-intensity, nearly monochromatic output. Arrays of LEDs have the advantage of allowing tunable, accurate output to multiple samples for high-throughput photochemistry experiments at relatively low cost.

  10. Highly sensitive DNA sensors based on cerium oxide nanorods

    NASA Astrophysics Data System (ADS)

    Nguyet, Nguyen Thi; Hai Yen, Le Thi; Van Thu, Vu; lan, Hoang; Trung, Tran; Vuong, Pham Hung; Tam, Phuong Dinh

    2018-04-01

    In this work, a CeO2 nanorod (NR)-based electrochemical DNA sensor was developed to identify Salmonella that causes food-borne infections. CeO2 NRs were synthesized without templates via a simple and unexpensive hydrothermal approach at 170 °C for 12 h by using CeO(NO3)3·6H2O as a Ce source. The DNA probe was immobilized onto the CeO2 NR-modified electrode through covalent attachment. The characteristics of the hybridized DNA were analyzed through electrochemical impedance spectroscopy (EIS) with [Fe(CN)6]3-/4- as a redox probe. Experimental results showed that electron transfer resistance (Ret) increased after the DNA probe was attached to the electrode surface and increased further after the DNA probe hybridized with its complementary sequence. A linear response of Ret to the target DNA concentration was found from 0.01 μM to 2 μM. The detection limit and sensitivity of the DNA sensor were 0.01 μM and 3362.1 Ω μM-1 cm-2, respectively. Various parameters, such as pH value, ionic strength, DNA probe concentration, and hybridization time, influencing DNA sensor responses were also investigated.

  11. Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes

    DOE PAGES

    Li, Y.; Zakharov, D.; Zhao, S.; ...

    2015-06-29

    Understanding how heterogeneous catalysts change size, shape and structure during chemical reactions is limited by the paucity of methods for studying catalytic ensembles in working state, that is, in operando conditions. Here by a correlated use of synchrotron X-ray absorption spectroscopy and scanning transmission electron microscopy in operando conditions, we quantitatively describe the complex structural dynamics of supported Pt catalysts exhibited during an exemplary catalytic reaction—ethylene hydrogenation. This work exploits a microfabricated catalytic reactor compatible with both probes. The results demonstrate dynamic transformations of the ensemble of Pt clusters that spans a broad size range throughout changing reaction conditions. Lastly,more » this method is generalizable to quantitative operando studies of complex systems using a wide variety of X-ray and electron-based experimental probes.« less

  12. Kits for Characterization of Chromosomal Inversions Using Probes

    NASA Technical Reports Server (NTRS)

    Ray, F. Andrew (Inventor)

    2017-01-01

    A kit for the characterization of chromosomal inversions using single-stranded probes that are either all identical or all complementary to a single-stranded chromatid is described. Reporter species are attached to oligonucleotide strands designed such that they may hybridize to portions of only one of a pair of single-stranded sister chromatids which may be prepared by the CO-FISH procedure. If an inversion has occurred, these marker probes will be detected on the second sister chromatid at the same location as the inversion on the first chromatid. The kit includes non-repetitive probes that are either all identical or all complementary to at least a portion of a target DNA sequence of only one DNA strand of only one chromatid and may in some embodiments include reagents suitable for performing CO-FISH and/or reagents for hybridizing the probes to the target DNA sequence.

  13. Study binding of Al-curcumin complex to ds-DNA, monitoring by multispectroscopic and voltammetric techniques

    NASA Astrophysics Data System (ADS)

    Ahmadi, F.; Alizadeh, A. A.; Shahabadi, N.; Rahimi-Nasrabadi, M.

    2011-09-01

    In this work a complex of Al 3+ with curcumin ([Al(curcumin) (EtOH) 2](NO 3) 2) was synthesized and characterized by UV-vis, FT-IR, elemental analysis and spectrophotometric titration techniques. The mole ratio plot revealed a 1:1 complex between Al 3+ and curcumin in solution. For binding studies of this complex to calf thymus-DNA various methods such as: UV-vis, fluorescence, circular dichroism (CD), FT-IR spectroscopy and cyclic voltammetry were used. The intrinsic binding constant of ACC with DNA at 25 °C was calculated by UV-vis and cyclic voltammetry as 2.1 × 10 4 and 2.6 × 10 4, respectively. The thermodynamic studies showed that the reaction is enthalpy and entropy favored. The CD results showed that only the Δ-ACC interacts with DNA and the Δ-ACC form has not any tendency to interact with DNA, also the pure curcumin has not any stereoselective interaction with CT-DNA. Fluorimetric studies showed that fluorescence enhancement was initiated by a static process in the ground state. The cyclic voltammetry showed that ACC interact with DNA with a binding site size of 2. From the FT-IR we concluded that the Δ-ACC interacts with DNA via partial electrostatic and minor groove binding. In comparison with previous works it was concluded that curcumin significantly reduced the affinity of Al 3+ to the DNA.

  14. Arrays of nucleic acid probes on biological chips

    DOEpatents

    Chee, Mark; Cronin, Maureen T.; Fodor, Stephen P. A.; Huang, Xiaohua X.; Hubbell, Earl A.; Lipshutz, Robert J.; Lobban, Peter E.; Morris, MacDonald S.; Sheldon, Edward L.

    1998-11-17

    DNA chips containing arrays of oligonucleotide probes can be used to determine whether a target nucleic acid has a nucleotide sequence identical to or different from a specific reference sequence. The array of probes comprises probes exactly complementary to the reference sequence, as well as probes that differ by one or more bases from the exactly complementary probes.

  15. A model of binding on DNA microarrays: understanding the combined effect of probe synthesis failure, cross-hybridization, DNA fragmentation and other experimental details of affymetrix arrays

    PubMed Central

    2012-01-01

    Background DNA microarrays are used both for research and for diagnostics. In research, Affymetrix arrays are commonly used for genome wide association studies, resequencing, and for gene expression analysis. These arrays provide large amounts of data. This data is analyzed using statistical methods that quite often discard a large portion of the information. Most of the information that is lost comes from probes that systematically fail across chips and from batch effects. The aim of this study was to develop a comprehensive model for hybridization that predicts probe intensities for Affymetrix arrays and that could provide a basis for improved microarray analysis and probe development. The first part of the model calculates probe binding affinities to all the possible targets in the hybridization solution using the Langmuir isotherm. In the second part of the model we integrate details that are specific to each experiment and contribute to the differences between hybridization in solution and on the microarray. These details include fragmentation, wash stringency, temperature, salt concentration, and scanner settings. Furthermore, the model fits probe synthesis efficiency and target concentration parameters directly to the data. All the parameters used in the model have a well-established physical origin. Results For the 302 chips that were analyzed the mean correlation between expected and observed probe intensities was 0.701 with a range of 0.88 to 0.55. All available chips were included in the analysis regardless of the data quality. Our results show that batch effects arise from differences in probe synthesis, scanner settings, wash strength, and target fragmentation. We also show that probe synthesis efficiencies for different nucleotides are not uniform. Conclusions To date this is the most complete model for binding on microarrays. This is the first model that includes both probe synthesis efficiency and hybridization kinetics/cross-hybridization. These

  16. The Mini-Chromosome Maintenance (Mcm) Complexes Interact with DNA Polymerase α-Primase and Stimulate Its Ability to Synthesize RNA Primers

    PubMed Central

    You, Zhiying; De Falco, Mariarosaria; Kamada, Katsuhiko; Pisani, Francesca M.; Masai, Hisao

    2013-01-01

    The Mini-chromosome maintenance (Mcm) proteins are essential as central components for the DNA unwinding machinery during eukaryotic DNA replication. DNA primase activity is required at the DNA replication fork to synthesize short RNA primers for DNA chain elongation on the lagging strand. Although direct physical and functional interactions between helicase and primase have been known in many prokaryotic and viral systems, potential interactions between helicase and primase have not been explored in eukaryotes. Using purified Mcm and DNA primase complexes, a direct physical interaction is detected in pull-down assays between the Mcm2∼7 complex and the hetero-dimeric DNA primase composed of the p48 and p58 subunits. The Mcm4/6/7 complex co-sediments with the primase and the DNA polymerase α-primase complex in glycerol gradient centrifugation and forms a Mcm4/6/7-primase-DNA ternary complex in gel-shift assays. Both the Mcm4/6/7 and Mcm2∼7 complexes stimulate RNA primer synthesis by DNA primase in vitro. However, primase inhibits the Mcm4/6/7 helicase activity and this inhibition is abolished by the addition of competitor DNA. In contrast, the ATP hydrolysis activity of Mcm4/6/7 complex is not affected by primase. Mcm and primase proteins mutually stimulate their DNA-binding activities. Our findings indicate that a direct physical interaction between primase and Mcm proteins may facilitate priming reaction by the former protein, suggesting that efficient DNA synthesis through helicase-primase interactions may be conserved in eukaryotic chromosomes. PMID:23977294

  17. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis

    PubMed Central

    Mavragani, Ifigeneia V.; Nikitaki, Zacharenia; Souli, Maria P.; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy

    2017-01-01

    Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair. PMID:28718816

  18. Usefulness of hepatitis C virus RNA counts by second generation HCV bDNA-probe in chronic hepatitis C based on the HCV genotype.

    PubMed

    Kobayashi, M; Kumada, H; Arase, Y; Chayama, K; Kobayashi, M; Tsubota, A; Koida, I; Saitoh, S; Suzuki, Y; Murashima, N; Ikeda, K; Miyano, Y; Mizoshita, K; Matsuda, M; Koike, H; Hashimoto, M

    1998-04-01

    Detection of hepatitis C virus (HCV) RNA by a second generation (ver 2) HCV bDNA-probe method (bDNA-probe) was compared with detection by the first generation (ver 1) assay. The two assays were performed simultaneously with the same serum samples of HCV genotypes 1b, 2a, 2b, 3a, and 3b. The positive rates with ver 1 were 82% for HCV genotype 1b (type 1b), 57.6% for HCV genotype 2a (type 2a), 75.0% for HCV genotype 2b (type 2b), 55.6% for HCV genotype 3a (type 3a), and 93.8% for HCV genotype 3b (type 3b). The positive rates with ver 2 were 95.0% for type 1b, 93.9% for type 2a, 83.3% for type 2b, 100% for type 3a, and 93.8% for type 3b. With Fisher's exact test, the detection rate for type 2a was significantly higher (P = 0.001) with ver 2 than with ver 1. We obtained regression lines using the HCV counts measured by bDNA-probe on the y axis and the HCV counts obtained by an HCV reverse transcriptase (RT)-competitive polymerase chain reaction method (competitive PCR) on the x axis. The gradients for types 1b, 2a, and 3b were greater with ver 2 compared to ver 1. The gradients for types 2a and 3b were the highest: for type 2a, y = 0.135x + 0.6 with ver 1 and y = 0.248x + 0.1 with ver 2; for type 3b, y = 0.366x + 0.1 with ver 1 and y = 0.727x + 0.3 for ver 2. In addition, HCV-RNA counts for all the genotypes tested in this study were significantly higher with ver 2 than with ver 1. Hence, we conclude that ver 2 of the bDNA-probe measures HCV-RNA counts closer to those obtained with competitive PCR than the ver 1 assay.

  19. Parallel and Multivalued Logic by the Two-Dimensional Photon-Echo Response of a Rhodamine–DNA Complex

    PubMed Central

    2015-01-01

    Implementing parallel and multivalued logic operations at the molecular scale has the potential to improve the miniaturization and efficiency of a new generation of nanoscale computing devices. Two-dimensional photon-echo spectroscopy is capable of resolving dynamical pathways on electronic and vibrational molecular states. We experimentally demonstrate the implementation of molecular decision trees, logic operations where all possible values of inputs are processed in parallel and the outputs are read simultaneously, by probing the laser-induced dynamics of populations and coherences in a rhodamine dye mounted on a short DNA duplex. The inputs are provided by the bilinear interactions between the molecule and the laser pulses, and the output values are read from the two-dimensional molecular response at specific frequencies. Our results highlights how ultrafast dynamics between multiple molecular states induced by light–matter interactions can be used as an advantage for performing complex logic operations in parallel, operations that are faster than electrical switching. PMID:25984269

  20. Mechano-genetic DNA hydrogels as a simple, reconstituted model to probe the effect of active fluctuations on gene transcription

    NASA Astrophysics Data System (ADS)

    Nguyen, Dan; Saleh, Omar

    Active fluctuations - non-directed fluctuations attributable, not to thermal energy, but to non-equilibrium processes - are thought to influence biology by increasing the diffusive motion of biomolecules. Dense DNA regions within cells (i.e. chromatin) are expected to exhibit such phenomena, as they are cross-linked networks that continually experience propagating forces arising from dynamic cellular activity. Additional agitation within these gene-encoding DNA networks could have potential genetic consequences. By changing the local mobility of transcriptional machinery and regulatory proteins towards/from their binding sites, and thereby influencing transcription rates, active fluctuations could prove to be a physical means of modulating gene expression. To begin probing this effect, we construct genetic DNA hydrogels, as a simple, reconstituted model of chromatin, and quantify transcriptional output from these hydrogels in the presence/absence of active fluctuations.

  1. Directing folding pathways for multi-component DNA origami nanostructures with complex topology

    NASA Astrophysics Data System (ADS)

    Marras, A. E.; Zhou, L.; Kolliopoulos, V.; Su, H.-J.; Castro, C. E.

    2016-05-01

    Molecular self-assembly has become a well-established technique to design complex nanostructures and hierarchical mesoscale assemblies. The typical approach is to design binding complementarity into nucleotide or amino acid sequences to achieve the desired final geometry. However, with an increasing interest in dynamic nanodevices, the need to design structures with motion has necessitated the development of multi-component structures. While this has been achieved through hierarchical assembly of similar structural units, here we focus on the assembly of topologically complex structures, specifically with concentric components, where post-folding assembly is not feasible. We exploit the ability to direct folding pathways to program the sequence of assembly and present a novel approach of designing the strand topology of intermediate folding states to program the topology of the final structure, in this case a DNA origami slider structure that functions much like a piston-cylinder assembly in an engine. The ability to program the sequence and control orientation and topology of multi-component DNA origami nanostructures provides a foundation for a new class of structures with internal and external moving parts and complex scaffold topology. Furthermore, this work provides critical insight to guide the design of intermediate states along a DNA origami folding pathway and to further understand the details of DNA origami self-assembly to more broadly control folding states and landscapes.

  2. Effects of cytotoxic cis- and trans-diammine monochlorido platinum(II) complexes on selenium-dependent redox enzymes and DNA.

    PubMed

    Lemmerhirt, Heidi; Behnisch, Steven; Bodtke, Anja; Lillig, Christopher H; Pazderova, Lucia; Kasparkova, Jana; Brabec, Viktor; Bednarski, Patrick J

    2018-01-01

    Here we present the preparation of 14 pairs of cis- and trans-diammine monochlorido platinum(II) complexes, coordinated to heterocycles (i.e., imidazole, 2-methylimidazole and pyrazole) and linked to various acylhydrazones, which were designed as potential inhibitors of the selenium-dependent enzymes glutathione peroxidase 1 (GPx-1) and thioredoxin reductase 1 (TrxR-1). However, no inhibition of bovine GPx-1 and only weak inhibition of murine TrxR-1 was observed in in vitro assays. Nonetheless, the cis configured diammine monochlorido Pt(II) complexes exhibited cytotoxic and apoptotic properties on various human cancer cell lines, whereas the trans configured complexes generally showed weaker potency with a few exceptions. On the other hand, the trans complexes were generally more likely to lack cross-resistance to cisplatin than the cis analogues. Platinum was found bound to the nuclear DNA of cancer cells treated with representative Pt complexes, suggesting that DNA might be a possible target. Thus, detailed in vitro binding experiments with DNA were conducted. Interactions of the compounds with calf thymus DNA were investigated, including Pt binding kinetics, circular dichroism (CD) spectral changes, changes in DNA melting temperatures, unwinding of supercoiled plasmids and ethidium bromide displacement in DNA. The CD results indicate that the most active cis configured pyrazole-derived complex causes unique structural changes in the DNA compared to the other complexes as well as to those caused by cisplatin, suggesting a denaturation of the DNA structure. This may be important for the antiproliferative activity of this compound in the cancer cells. Copyright © 2017. Published by Elsevier Inc.

  3. Investigation of the electrostatic and hydration properties of DNA minor groove-binding by a heterocyclic diamidine by osmotic pressure.

    PubMed

    Erlitzki, Noa; Huang, Kenneth; Xhani, Suela; Farahat, Abdelbasset A; Kumar, Arvind; Boykin, David W; Poon, Gregory M K

    2017-12-01

    Previous investigations of sequence-specific DNA binding by model minor groove-binding compounds showed that the ligand/DNA complex was destabilized in the presence of compatible co-solutes. Inhibition was interpreted in terms of osmotic stress theory as the uptake of significant numbers of excess water molecules from bulk solvent upon complex formation. Here, we interrogated the AT-specific DNA complex formed with the symmetric heterocyclic diamidine DB1976 as a model for minor groove DNA recognition using both ionic (NaCl) and non-ionic cosolutes (ethylene glycol, glycine betaine, maltose, nicotinamide, urea). While the non-ionic cosolutes all destabilized the ligand/DNA complex, their quantitative effects were heterogeneous in a cosolute- and salt-dependent manner. Perturbation with NaCl in the absence of non-ionic cosolute showed that preferential hydration water was released upon formation of the DB1976/DNA complex. As salt probes counter-ion release from charged groups such as the DNA backbone, we propose that the preferential hydration uptake in DB1976/DNA binding observed in the presence of osmolytes reflects the exchange of preferentially bound cosolute with hydration water in the environs of the bound DNA, rather than a net uptake of hydration waters by the complex. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Time-Resolved DNA Stable Isotope Probing Links Desulfobacterales- and Coriobacteriaceae-Related Bacteria to Anaerobic Degradation of Benzene under Methanogenic Conditions

    PubMed Central

    Noguchi, Mana; Kurisu, Futoshi; Kasuga, Ikuro; Furumai, Hiroaki

    2014-01-01

    To identify the microorganisms involved in benzene degradation, DNA-stable isotope probing (SIP) with 13C-benzene was applied to a methanogenic benzene-degrading enrichment culture. Pyrosequencing of ribosomal RNA (rRNA) gene sequences revealed that the community structure was highly complex in spite of a 3-year incubation only with benzene. The culture degraded 98% of approximately 1 mM 13C-benzene and mineralized 72% of that within 63 d. The terminal restriction fragment length polymorphism (T-RFLP) profiles of the buoyant density fractions revealed the incorporation of 13C into two phylotypes after 64 d. These two phylotypes were determined to be Desulfobacterales- and Coriobacteriaceae-related bacteria by cloning and sequencing of the 16S rRNA gene in the 13C-labeled DNA abundant fraction. Comparative pyrosequencing analysis of the buoyant density fractions of 12C- and 13C-labeled samples indicated the incorporation of 13C into three bacterial and one archaeal OTUs related to Desulfobacterales, Coriobacteriales, Rhodocyclaceae, and Methanosarcinales. The first two OTUs included the bacteria detected by T-RFLP-cloning-sequencing analysis. Furthermore, time-resolved SIP analysis confirmed that the activity of all these microbes appeared at the earliest stage of degradation. In this methanogenic culture, Desulfobacterales- and Coriobacteriaceae-related bacteria were most likely to be the major benzene degraders. PMID:24909708

  5. Probing the Potential Role of Non-B DNA Structures at Yeast Meiosis-Specific DNA Double-Strand Breaks.

    PubMed

    Kshirsagar, Rucha; Khan, Krishnendu; Joshi, Mamata V; Hosur, Ramakrishna V; Muniyappa, K

    2017-05-23

    A plethora of evidence suggests that different types of DNA quadruplexes are widely present in the genome of all organisms. The existence of a growing number of proteins that selectively bind and/or process these structures underscores their biological relevance. Moreover, G-quadruplex DNA has been implicated in the alignment of four sister chromatids by forming parallel guanine quadruplexes during meiosis; however, the underlying mechanism is not well defined. Here we show that a G/C-rich motif associated with a meiosis-specific DNA double-strand break (DSB) in Saccharomyces cerevisiae folds into G-quadruplex, and the C-rich sequence complementary to the G-rich sequence forms an i-motif. The presence of G-quadruplex or i-motif structures upstream of the green fluorescent protein-coding sequence markedly reduces the levels of gfp mRNA expression in S. cerevisiae cells, with a concomitant decrease in green fluorescent protein abundance, and blocks primer extension by DNA polymerase, thereby demonstrating the functional significance of these structures. Surprisingly, although S. cerevisiae Hop1, a component of synaptonemal complex axial/lateral elements, exhibits strong affinity to G-quadruplex DNA, it displays a much weaker affinity for the i-motif structure. However, the Hop1 C-terminal but not the N-terminal domain possesses strong i-motif binding activity, implying that the C-terminal domain has a distinct substrate specificity. Additionally, we found that Hop1 promotes intermolecular pairing between G/C-rich DNA segments associated with a meiosis-specific DSB site. Our results support the idea that the G/C-rich motifs associated with meiosis-specific DSBs fold into intramolecular G-quadruplex and i-motif structures, both in vitro and in vivo, thus revealing an important link between non-B form DNA structures and Hop1 in meiotic chromosome synapsis and recombination. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Synthesis, Structural, DNA Binding and Cleavage Studies of Cu(II) Complexes Containing Benzothiazole Cored Schiff Bases.

    PubMed

    Tejaswi, Somapangu; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Shivaraj

    2016-11-01

    Novel benzothiazole Schiff bases L 1 [1-((4,6-difluorobenzo[d]thiazol-2-ylimino)methyl) naphthalen-2-ol], L 2 [3-((4,6-difluorobenzo[d]thiazol-2-ylimino) methyl)benzene-1,2-diol], L 3 [2-((4,6-difluorobenzo[d]thiazol-2-ylimino)methyl)-5-methoxyphenol], L 4 [2-((4,6-difluorobenzo[d]thiazol-2-ylimino)methyl)-4-chlorophenol] and their binary Cu(II) complexes were synthesized. The structures of all the compounds have been discussed on the basis of elemental analysis, FT-IR, NMR, UV-Visible, ESI-Mass, TGA, ESR, SEM, powder XRD and magnetic moments. Based on the analytical and spectral data a square planar geometry has been assigned to all complexes in which the Schiff bases act as monobasic bidentate ligands, coordinating through the azomethine nitrogen and phenolic oxygen atom. DNA binding ability of these complexes was studied on CT-DNA by using UV-Vis absorption, fluorescence and viscometry. DNA cleavage ability of the complexes was examined on pBR322 DNA by using gel electrophoresis method. All the DNA binding studies reveal that they are good intercalators. The bioefficacy of the ligands and their complexes was examined against the growth of bacteria and fungi in vitro to evaluate their antimicrobial potential. The screening data revealed that the complexes showed more antimicrobial activity than the corresponding free ligands.

  7. Stepwise nanoassembly of a single hairpin probe and its biosensing.

    PubMed

    Xu, Jianguo; Zheng, Tingting; Le, Jingqing; Jia, Lee

    2018-09-01

    Herein, we describe a novel trigger-induced DNA nanoassembly method using only one loop-stem shaped hairpin probe (HP) that consists of three different functional regions as a single building unit. The Region I is designed complementary to the trigger, while the Region II and Region III are projected to complementary with each other. When hybridized with the trigger, a toehold mediated strand displacement (TMSD) occurred on the strand of Region I, leading to the release of Region III for further hybridization with the Region II on another HP molecule and in turn inducing a stepwise growth of HP with the aid of polymerase. Unlike the conventional assembly approaches that rely on the sophisticated sequence design and complex operation, the single-HP nanoassembly is easy and fast. Moreover, because many HPs are opened during the assembly process, we exemplified the nanoassembly strategy by re-designing a new labeled hairpin probe to analyze the Kras oncogene with a high sensitivity and specificity. The present study demonstrated a novel promising DNA nanoassembly strategy for biological applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. GENETIC VARIATION IN RED RASPBERRIES (RUBUS IDAEUS L.; ROSACEAE) FROM SITES DIFFERING IN ORGANIC POLLUTANTS COMPARED WITH SYNTHETIC TANDEM REPEAT DNA PROBES

    EPA Science Inventory

    Two synthetic tandem repetitive DNA probes were used to compare genetic variation at variable-number-tandem-repeat (VNTR) loci among Rubus idaeus L. var. strigosus (Michx.) Maxim. (Rosaceae) individuals sampled at eight sites contaminated by pollutants (N = 39) and eight adjacent...

  9. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Spaun, Ben; Changala, P. Bryan; Patterson, David; Bjork, Bryce J.; Heckl, Oliver H.; Doyle, John M.; Ye, Jun

    2016-05-01

    For more than half a century, high-resolution infrared spectroscopy has played a crucial role in probing molecular structure and dynamics. Such studies have so far been largely restricted to relatively small and simple systems, because at room temperature even molecules of modest size already occupy many millions of rotational/vibrational states, yielding highly congested spectra that are difficult to assign. Targeting more complex molecules requires methods that can record broadband infrared spectra (that is, spanning multiple vibrational bands) with both high resolution and high sensitivity. However, infrared spectroscopic techniques have hitherto been limited either by narrow bandwidth and long acquisition time, or by low sensitivity and resolution. Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) combines the inherent broad bandwidth and high resolution of an optical frequency comb with the high detection sensitivity provided by a high-finesse enhancement cavity, but it still suffers from spectral congestion. Here we show that this problem can be overcome by using buffer gas cooling to produce continuous, cold samples of molecules that are then subjected to CE-DFCS. This integration allows us to acquire a rotationally resolved direct absorption spectrum in the C-H stretching region of nitromethane, a model system that challenges our understanding of large-amplitude vibrational motion. We have also used this technique on several large organic molecules that are of fundamental spectroscopic and astrochemical relevance, including naphthalene, adamantane and hexamethylenetetramine. These findings establish the value of our approach for studying much larger and more complex molecules than have been probed so far, enabling complex molecules and their kinetics to be studied with orders-of-magnitude improvements in efficiency, spectral resolution and specificity.

  10. Improved understanding of protein complex offers insight into DNA

    Science.gov Websites

    replication - through its crystal structure offers new insight into fundamental mechanisms of DNA replication Advanced Photon Source (APS), a U.S. Department of Energy User Facility based at Argonne National Laboratory, to obtain the first atomic-level resolution picture of this complex. The structure shows that

  11. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA.

    PubMed

    Takalkar, Sunitha; Baryeh, Kwaku; Liu, Guodong

    2017-12-15

    We report a fluorescent carbon nanoparticle (FCN)-based lateral flow biosensor for ultrasensitive detection of DNA. Fluorescent carbon nanoparticle with a diameter of around 15nm was used as a tag to label a detection DNA probe, which was complementary with the part of target DNA. A capture DNA probe was immobilized on the test zone of the lateral flow biosensor. Sandwich-type hybridization reactions among the FCN-labeled DNA probe, target DNA and capture DNA probe were performed on the lateral flow biosensor. In the presence of target DNA, FCNs were captured on the test zone of the biosensor and the fluorescent intensity of the captured FCNs was measured with a portable fluorescent reader. After systematic optimizations of experimental parameters (the components of running buffers, the concentration of detection DNA probe used in the preparation of FCN-DNA conjugates, the amount of FCN-DNA dispensed on the conjugate pad and the dispensing cycles of the capture DNA probes on the test-zone), the biosensor could detect a minimum concentration of 0.4 fM DNA. This study provides a rapid and low-cost approach for DNA detection with high sensitivity, showing great promise for clinical application and biomedical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system.

    PubMed

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    2015-11-19

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database in which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. This database will facilitate the analysis of protein-DNA interactions and the development of

  13. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the

  14. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system

    DOE PAGES

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    2015-11-19

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the

  15. Glycosaminoglycan-resistant and pH-sensitive lipid-coated DNA complexes produced by detergent removal method.

    PubMed

    Lehtinen, Julia; Hyvönen, Zanna; Subrizi, Astrid; Bunjes, Heike; Urtti, Arto

    2008-10-21

    Cationic polymers are efficient gene delivery vectors in in vitro conditions, but these carriers can fail in vivo due to interactions with extracellular polyanions, i.e. glycosaminoglycans (GAG). The aim of this study was to develop a stable gene delivery vector that is activated at the acidic endosomal pH. Cationic DNA/PEI complexes were coated by 1,2-dioleylphosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS) (3:2 mol/mol) using two coating methods: detergent removal and mixing with liposomes prepared by ethanol injection. Only detergent removal produced lipid-coated DNA complexes that were stable against GAGs, but were membrane active at low pH towards endosome mimicking liposomes. In relation to the low cellular uptake of the coated complexes, their transfection efficacy was relatively high. PEGylation of the coated complexes increased their cellular uptake but reduced the pH-sensitivity. Detergent removal was thus a superior method for the production of stable, but acid activatable, lipid-coated DNA complexes.

  16. An Adenovirus DNA Replication Factor, but Not Incoming Genome Complexes, Targets PML Nuclear Bodies.

    PubMed

    Komatsu, Tetsuro; Nagata, Kyosuke; Wodrich, Harald

    2016-02-01

    Promyelocytic leukemia protein nuclear bodies (PML-NBs) are subnuclear domains implicated in cellular antiviral responses. Despite the antiviral activity, several nuclear replicating DNA viruses use the domains as deposition sites for the incoming viral genomes and/or as sites for viral DNA replication, suggesting that PML-NBs are functionally relevant during early viral infection to establish productive replication. Although PML-NBs and their components have also been implicated in the adenoviral life cycle, it remains unclear whether incoming adenoviral genome complexes target PML-NBs. Here we show using immunofluorescence and live-cell imaging analyses that incoming adenovirus genome complexes neither localize at nor recruit components of PML-NBs during early phases of infection. We further show that the viral DNA binding protein (DBP), an early expressed viral gene and essential DNA replication factor, independently targets PML-NBs. We show that DBP oligomerization is required to selectively recruit the PML-NB components Sp100 and USP7. Depletion experiments suggest that the absence of one PML-NB component might not affect the recruitment of other components toward DBP oligomers. Thus, our findings suggest a model in which an adenoviral DNA replication factor, but not incoming viral genome complexes, targets and modulates PML-NBs to support a conducive state for viral DNA replication and argue against a generalized concept that PML-NBs target incoming viral genomes. The immediate fate upon nuclear delivery of genomes of incoming DNA viruses is largely unclear. Early reports suggested that incoming genomes of herpesviruses are targeted and repressed by PML-NBs immediately upon nuclear import. Genome localization and/or viral DNA replication has also been observed at PML-NBs for other DNA viruses. Thus, it was suggested that PML-NBs may immediately sense and target nuclear viral genomes and hence serve as sites for deposition of incoming viral genomes and

  17. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, B.D.; Fought, E.R.

    1987-11-10

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface. 8 figs.

  18. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, Brian D.; Fought, Eric R.

    1987-01-01

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.

  19. Simple horizontal magnetic tweezers for micromanipulation of single DNA molecules and DNA–protein complexes

    PubMed Central

    McAndrew, Christopher P.; Tyson, Christopher; Zischkau, Joseph; Mehl, Patrick; Tuma, Pamela L.; Pegg, Ian L.; Sarkar, Abhijit

    2016-01-01

    We report the development of a simple-to-implement magnetic force transducer that can apply a wide range of piconewton (pN) scale forces on single DNA molecules and DNA–protein complexes in the horizontal plane. The resulting low-noise force-extension data enable very high-resolution detection of changes in the DNA tether’s extension: ~0.05 pN in force and <10 nm change in extension. We have also verified that we can manipulate DNA in near equilibrium conditions through the wide range of forces by ramping the force from low to high and back again, and observing minimal hysteresis in the molecule’s force response. Using a calibration technique based on Stokes’ drag law, we have confirmed our force measurements from DNA force-extension experiments obtained using the fluctuation-dissipation theorem applied to transverse fluctuations of the magnetic microsphere. We present data on the force-distance characteristics of a DNA molecule complexed with histones. The results illustrate how the tweezers can be used to study DNA binding proteins at the single molecule level. PMID:26757808

  20. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis.

    PubMed

    MacConnell, Andrew B; McEnaney, Patrick J; Cavett, Valerie J; Paegel, Brian M

    2015-09-14

    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS's utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10(4) molecules/bead and sequencing allowed for elucidation of each compound's synthetic history. We applied DESPS to the combinatorial synthesis of a 75,645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR