Science.gov

Sample records for dna ligase iv

  1. DNA Ligase IV regulates XRCC4 nuclear localization

    PubMed Central

    Francis, Dailia B.; Kozlov, Mikhail; Chavez, Jose; Chu, Jennifer; Malu, Shruti; Hanna, Mary; Cortes, Patricia

    2014-01-01

    DNA Ligase IV, along with its interacting partner XRCC4, are essential for repairing DNA double strand breaks by non-homologous end joining (NHEJ). Together, they complete the final ligation step resolving the DNA break. Ligase IV is regulated by XRCC4 and XLF. However, the mechanism(s) by which Ligase IV control the NHEJ reaction and other NHEJ factor(s) remains poorly characterized. Here, we show that a C-terminal region of Ligase IV (aa 620 to 800), which encompasses a NLS, the BRCT I, and the XRCC4 interacting region (XIR), is essential for nuclear localization of its co-factor XRCC4. In Ligase IV deficient cells, XRCC4 showed deregulated localization remaining in the cytosol even after induction of DNA double strand breaks. DNA Ligase IV was also required for efficient localization of XLF into the nucleus. Additionally, human fibroblasts that harbor hypomorphic mutations within the Ligase IV gene displayed decreased levels of XRCC4 protein, implicating that DNA Ligase IV is also regulating XRCC4 stability. Our results provide evidence for a role of DNA Ligase IV in controlling the cellular localization and protein levels of XRCC4. PMID:24984242

  2. C-terminal region of DNA ligase IV drives XRCC4/DNA ligase IV complex to chromatin

    SciTech Connect

    Liu, Sicheng; Liu, Xunyue; Kamdar, Radhika Pankaj; Wanotayan, Rujira; Sharma, Mukesh Kumar; Adachi, Noritaka; Matsumoto, Yoshihisa

    2013-09-20

    Highlights: •Chromatin binding of XRCC4 is dependent on the presence of DNA ligase IV. •C-terminal region of DNA ligase IV alone can recruit itself and XRCC4 to chromatin. •Two BRCT domains of DNA ligase IV are essential for the chromatin binding of XRCC4. -- Abstract: DNA ligase IV (LIG4) and XRCC4 form a complex to ligate two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). It is not fully understood how these proteins are recruited to DSBs. We recently demonstrated radiation-induced chromatin binding of XRCC4 by biochemical fractionation using detergent Nonidet P-40. In the present study, we examined the role of LIG4 in the recruitment of XRCC4/LIG4 complex to chromatin. The chromatin binding of XRCC4 was dependent on the presence of LIG4. The mutations in two BRCT domains (W725R and W893R, respectively) of LIG4 reduced the chromatin binding of LIG4 and XRCC4. The C-terminal fragment of LIG4 (LIG4-CT) without N-terminal catalytic domains could bind to chromatin with XRCC4. LIG4-CT with W725R or W893R mutation could bind to chromatin but could not support the chromatin binding of XRCC4. The ability of C-terminal region of LIG4 to interact with chromatin might provide us with an insight into the mechanisms of DSB repair through NHEJ.

  3. Defining interactions between DNA-PK and ligase IV/XRCC4

    SciTech Connect

    Hsu, Hsin-Ling; Yannone, Steven M.; Chen, David J.

    2001-04-10

    Non-homologous end joining (NHEJ) is a major pathway for the repair of DNA double-strand breaks in mammalian cells. DNA-dependent protein kinase (DNA-PK), ligase IV, and XRCC4 are all critical components of the NHEJ repair pathway. DNA-PK is composed of a heterodimeric DNA-binding component, Ku, and a large catalytic subunit, DNA-PKcs. Ligase IV and XRCC4 associate to form a multimeric complex that is also essential for NHEJ. DNA-PK and ligase IV/XRCC4 interact at DNA termini which results in stimulated ligase activity. Here we define interactions between the components of these two essential complexes, DNA-PK and ligase IV/XRCC4. We find that ligase IV/XRCC4 associates with DNA-PK in a DNA-independent manner. The specific protein-protein interactions that mediate the interaction between these two complexes are further identified. Direct physical interactions between ligase IV and Ku as well as between XRCC4 and DNA-PKcs are shown. No direct interactions are observed between ligase IV and DNA-PKcs or between XRCC4 and Ku. Our data defines the specific protein pairs involved in the association of DNA-PK and ligase IV/XRCC4, and suggests a molecular mechanism for coordinating the assembly of the DNA repair complex at DNA breaks.

  4. Structural and Functional Interaction Between the Human DNA Repair Proteins DNA ligase IV and XRCC4

    SciTech Connect

    Wu, P.; Meesala, S; Dauvillier, S; Modesti, M; Andres, S; Huang, Y; Sekiguchi, J; Calsou, P; Salles, B; Junop, M

    2009-01-01

    Nonhomologous end-joining represents the major pathway used by human cells to repair DNA double-strand breaks. It relies on the XRCC4/DNA ligase IV complex to reseal DNA strands. Here we report the high-resolution crystal structure of human XRCC4 bound to the carboxy-terminal tandem BRCT repeat of DNA ligase IV. The structure differs from the homologous Saccharomyces cerevisiae complex and reveals an extensive DNA ligase IV binding interface formed by a helix-loop-helix structure within the inter-BRCT linker region, as well as significant interactions involving the second BRCT domain, which induces a kink in the tail region of XRCC4. We further demonstrate that interaction with the second BRCT domain of DNA ligase IV is necessary for stable binding to XRCC4 in cells, as well as to achieve efficient dominant-negative effects resulting in radiosensitization after ectopic overexpression of DNA ligase IV fragments in human fibroblasts. Together our findings provide unanticipated insight for understanding the physical and functional architecture of the nonhomologous end-joining ligation complex.

  5. SCR7 is neither a selective nor a potent inhibitor of human DNA ligase IV.

    PubMed

    Greco, George E; Matsumoto, Yoshihiro; Brooks, Rhys C; Lu, Zhengfei; Lieber, Michael R; Tomkinson, Alan E

    2016-07-01

    DNA ligases are attractive therapeutics because of their involvement in completing the repair of almost all types of DNA damage. A series of DNA ligase inhibitors with differing selectivity for the three human DNA ligases were identified using a structure-based approach with one of these inhibitors being used to inhibit abnormal DNA ligase IIIα-dependent repair of DNA double-strand breaks (DSB)s in breast cancer, neuroblastoma and leukemia cell lines. Raghavan and colleagues reported the characterization of a derivative of one of the previously identified DNA ligase inhibitors, which they called SCR7 (designated SCR7-R in our experiments using SCR7). SCR7 appeared to show increased selectivity for DNA ligase IV, inhibit the repair of DSBs by the DNA ligase IV-dependent non-homologous end-joining (NHEJ) pathway, reduce tumor growth, and increase the efficacy of DSB-inducing therapeutic modalities in mouse xenografts. In attempting to synthesize SCR7, we encountered problems with the synthesis procedures and discovered discrepancies in its reported structure. We determined the structure of a sample of SCR7 and a related compound, SCR7-G, that is the major product generated by the published synthesis procedure for SCR7. We also found that SCR7-G has the same structure as the compound (SCR7-X) available from a commercial vendor (XcessBio). The various SCR7 preparations had similar activity in DNA ligation assay assays, exhibiting greater activity against DNA ligases I and III than DNA ligase IV. Furthermore, SCR7-R failed to inhibit DNA ligase IV-dependent V(D)J recombination in a cell-based assay. Based on our results, we conclude that SCR7 and the SCR7 derivatives are neither selective nor potent inhibitors of DNA ligase IV. PMID:27235626

  6. Molecular and immunological characterization of DNA ligase IV deficiency.

    PubMed

    Jiang, Jinqiu; Tang, Wenjing; An, Yunfei; Tang, Maozhi; Wu, Junfeng; Qin, Tao; Zhao, Xiaodong

    2016-02-01

    DNA ligase IV (LIG4) deficiency is an extremely rare autosomal recessive primary immunodeficiency disease caused by the LIG4 mutation. To date, fewer than 30 cases of patients have been reported worldwide. No reversion mutations have been previously identified in LIG4. This study enrolled seven Chinese patients with LIG4 deficiency who presented with combined immunodeficiency, microcephaly, and growth retardation. One patient (P1) acquired non-Hodgkin lymphoma. Four patients had impaired T cell proliferation function and skewed T cell receptor diversity. Five novel mutations in LIG4 and a potential hotspot mutation (c.833G>T; p.R278L) in the Chinese population were identified. TA cloning analysis of T cells, NK cells, granulocytes, and oral mucosa cells in P6 revealed wild-type clones and clones that contained both maternally and paternally inherited mutations, indicating possible somatic reversion which need further investigation since no functional or protein assays were possible for all the patients died and no cell lines were available. PMID:26762768

  7. Low levels of DNA ligases III and IV sufficient for effective NHEJ.

    PubMed

    Windhofer, Frank; Wu, Wenqi; Iliakis, George

    2007-11-01

    Cells of higher eukaryotes rejoin double strand breaks (DSBs) in their DNA predominantly by a non-homologous DNA end joining (NHEJ) pathway that utilizes the products of DNA-PKcs, Ku, LIG4, XRCC4, XLF/Cernunnos, Artemis as well as DNA polymerase lambda (termed D-NHEJ). Mutants with defects in these proteins remove a large proportion of DSBs from their genome utilizing an alternative pathway of NHEJ that operates as a backup (B-NHEJ). While D-NHEJ relies exclusively on DNA ligase IV, recent work points to DNA ligase III as a component of B-NHEJ. Here, we use RNA interference (RNAi) to further investigate the activity requirements for DNA ligase III and IV in the pathways of NHEJ. We report that 70-80% knock down of LIG3 expression has no detectable effect on DSB rejoining, either in D-NHEJ proficient cells, or in cells where D-NHEJ has been chemically or genetically compromised. Surprisingly, also LIG4 knock down has no effect on repair proficient cells, but inhibits DSB rejoining in a radiosensitive cell line with a hypomorphic LIG4 mutation that severely compromises its activity. The results suggest that complete coverage for D-NHEJ or B-NHEJ is afforded by very low ligase levels and demonstrate residual end joining by DNA ligase IV in cells of patients with mutations in LIG4. PMID:17492771

  8. DNA ligase III and DNA ligase IV carry out genetically distinct forms of end joining in human somatic cells

    PubMed Central

    Oh, Sehyun; Harvey, Adam; Zimbric, Jacob; Wang, Yongbao; Nguyen, Thanh; Jackson, Pauline J.; Hendrickson, Eric A.

    2014-01-01

    Ku-dependent C-NHEJ (classic non-homologous end joining) is the primary DNA EJing (end joining) repair pathway in mammals. Recently, an additional EJing repair pathway (A-NHEJ; alternative-NHEJ) has been described. Currently, the mechanism of A-NHEJ is obscure although a dependency on LIGIII (DNA ligase III) is often implicated. To test the requirement for LIGIII in A-NHEJ we constructed a LIGIII conditionally-null human cell line using gene targeting. Nuclear EJing activity appeared unaffected by a deficiency in LIGIII as, surprisingly, so were random gene targeting integration events. In contrast, LIGIII was required for mitochondrial function and this defined the gene’s essential activity. Human Ku:LIGIII and Ku:LIGIV (DNA ligase IV) double knockout cell lines, however, demonstrated that LIGIII is required for the enhanced A-NHEJ activity that is observed in Ku-deficient cells. Most unexpectedly, however, the majority of EJing events remained LIGIV-dependent. In conclusion, although human LIGIII has an essential function in mitochondrial maintenance, it is dispensable for most types of nuclear DSB repair, except for the A-NHEJ events that are normally suppressed by Ku. Moreover, we describe that a robust Ku-independent, LIGIV-dependent repair pathway exists in human somatic cells. PMID:24837021

  9. DNA ligase IV as a new molecular target for temozolomide

    SciTech Connect

    Kondo, Natsuko; Department of Neurosurgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 ; Takahashi, Akihisa; Mori, Eiichiro; Ohnishi, Ken; McKinnon, Peter J.; Sakaki, Toshisuke; Nakase, Hiroyuki; Ohnishi, Takeo

    2009-10-02

    Temozolomide (TMZ) is a methylating agent used in chemotherapy against glioblastoma. This work was designed to clarify details in repair pathways acting to remove DNA double-strand breaks (DSBs) induced by TMZ. Cultured mouse embryonic fibroblasts were used which were deficient in DSB repair genes such as homologous recombination repair-related genes X-ray repair cross-complementing group 2 (XRCC2)and radiation sensitive mutant54 (Rad54), non-homologous end joining repair-related gene DNAligase IV (Lig4). Cell sensitivity to drug treatments was assessed using colony forming assays. The most effective molecular target which was correlated with TMZ cell sensitivity was Lig4. In addition, it was found that small interference RNAs (siRNA) for Lig4 efficiently enhanced cell lethality induced by TMZ in human glioblastoma A172 cells. These findings suggest that down regulation of Lig4 might provide a useful tool for cell sensitization during TMZ chemotherapy.

  10. DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.

    PubMed

    Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji

    2016-03-01

    Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV. PMID:26573366

  11. Structural insights into the role of domain flexibility in human DNA ligase IV.

    PubMed

    Ochi, Takashi; Wu, Qian; Chirgadze, Dimitri Y; Grossmann, J Günter; Bolanos-Garcia, Victor M; Blundell, Tom L

    2012-07-01

    Knowledge of the architecture of DNA ligase IV (LigIV) and interactions with XRCC4 and XLF-Cernunnos is necessary for understanding its role in the ligation of double-strand breaks during nonhomologous end joining. Here we report the structure of a subdomain of the nucleotidyltrasferase domain of human LigIV and provide insights into the residues associated with LIG4 syndrome. We use this structural information together with the known structures of the BRCT/XRCC4 complex and those of LigIV orthologs to interpret small-angle X-ray scattering of LigIV in complex with XRCC4 and size exclusion chromatography of LigIV, XRCC4, and XLF-Cernunnos. Our results suggest that the flexibility of the catalytic region is limited in a manner that affects the formation of the LigIV/XRCC4/XLF-Cernunnos complex. PMID:22658747

  12. Structural Insights into the Role of Domain Flexibility in Human DNA Ligase IV

    PubMed Central

    Ochi, Takashi; Wu, Qian; Chirgadze, Dimitri Y.; Grossmann, J. Günter; Bolanos-Garcia, Victor M.; Blundell, Tom L.

    2012-01-01

    Summary Knowledge of the architecture of DNA ligase IV (LigIV) and interactions with XRCC4 and XLF-Cernunnos is necessary for understanding its role in the ligation of double-strand breaks during nonhomologous end joining. Here we report the structure of a subdomain of the nucleotidyltrasferase domain of human LigIV and provide insights into the residues associated with LIG4 syndrome. We use this structural information together with the known structures of the BRCT/XRCC4 complex and those of LigIV orthologs to interpret small-angle X-ray scattering of LigIV in complex with XRCC4 and size exclusion chromatography of LigIV, XRCC4, and XLF-Cernunnos. Our results suggest that the flexibility of the catalytic region is limited in a manner that affects the formation of the LigIV/XRCC4/XLF-Cernunnos complex. PMID:22658747

  13. Single-stranded DNA ligation and XLF-stimulated incompatible DNA end ligation by the XRCC4-DNA ligase IV complex: influence of terminal DNA sequence.

    PubMed

    Gu, Jiafeng; Lu, Haihui; Tsai, Albert G; Schwarz, Klaus; Lieber, Michael R

    2007-01-01

    The double-strand DNA break repair pathway, non-homologous DNA end joining (NHEJ), is distinctive for the flexibility of its nuclease, polymerase and ligase activities. Here we find that the joining of ends by XRCC4-ligase IV is markedly influenced by the terminal sequence, and a steric hindrance model can account for this. XLF (Cernunnos) stimulates the joining of both incompatible DNA ends and compatible DNA ends at physiologic concentrations of Mg2+, but only of incompatible DNA ends at higher concentrations of Mg2+, suggesting charge neutralization between the two DNA ends within the ligase complex. XRCC4-DNA ligase IV has the distinctive ability to ligate poly-dT single-stranded DNA and long dT overhangs in a Ku- and XLF-independent manner, but not other homopolymeric DNA. The dT preference of the ligase is interesting given the sequence bias of the NHEJ polymerase. These distinctive properties of the XRCC4-DNA ligase IV complex explain important aspects of its in vivo roles. PMID:17717001

  14. Length-dependent binding of human XLF to DNA and stimulation of XRCC4.DNA ligase IV activity.

    PubMed

    Lu, Haihui; Pannicke, Ulrich; Schwarz, Klaus; Lieber, Michael R

    2007-04-13

    An XRCC4-like factor, called XLF or Cernunnos, was recently identified as another important factor in the non-homologous DNA end joining (NHEJ) process. NHEJ is the major pathway for the repair of double-strand DNA breaks. The similarity in the putative secondary structures of XLF and XRCC4 as well as the association of XLF with XRCC4.DNA ligase IV in vivo suggested a role in the final ligation step of NHEJ. Here, we find that purified XLF directly interacts with purified XRCC4.DNA ligase IV complex and stimulates the ligase complex in a direct assay for ligation activity. Purified XLF has DNA binding activity, but this binding is dependent on DNA length in a manner most consistent with orientation of the C-terminal alpha helices parallel to the DNA helix. To better understand the function of XLF, we purified an XLF mutant (R57G), which was identified in patients with NHEJ deficiency and severe combined immunodeficiency. Surprisingly, the mutant protein retained its ability to stimulate XRCC4.DNA ligase IV but failed to translocate to the nucleus, and this appears to be the basis for the NHEJ defect in this patient. PMID:17317666

  15. XLF-Cernunnos promotes DNA ligase IV-XRCC4 re-adenylation following ligation.

    PubMed

    Riballo, Enriqueta; Woodbine, Lisa; Stiff, Thomas; Walker, Sarah A; Goodarzi, Aaron A; Jeggo, Penny A

    2009-02-01

    XLF-Cernunnos (XLF) is a component of the DNA ligase IV-XRCC4 (LX) complex, which functions during DNA non-homologous end joining (NHEJ). Here, we use biochemical and cellular approaches to probe the impact of XLF on LX activities. We show that XLF stimulates adenylation of LX complexes de-adenylated by pyrophosphate or following LX decharging during ligation. XLF enhances LX ligation activity in an ATP-independent and dependent manner. ATP-independent stimulation can be attributed to enhanced end-bridging. Whilst ATP alone fails to stimulate LX ligation activity, addition of XLF and ATP promotes ligation in a manner consistent with XLF-stimulated readenylation linked to ligation. We show that XLF is a weakly bound partner of the tightly associated LX complex and, unlike XRCC4, is dispensable for LX stability. 2BN cells, which have little, if any, residual XLF activity, show a 3-fold decreased ability to repair DNA double strand breaks covering a range of complexity. These findings strongly suggest that XLF is not essential for NHEJ but promotes LX adenylation and hence ligation. We propose a model in which XLF, by in situ recharging DNA ligase IV after the first ligation event, promotes double stranded ligation by a single LX complex. PMID:19056826

  16. Distinct kinetics of human DNA ligases I, IIIalpha, IIIbeta, and IV reveal direct DNA sensing ability and differential physiological functions in DNA repair

    SciTech Connect

    Chen, Xi; Ballin, Jeff D.; Della-Maria, Julie; Tsai, Miaw-Sheue; White, Elizabeth J.; Tomkinson, Alan E.; Wilson, Gerald M.

    2009-05-11

    The three human LIG genes encode polypeptides that catalyze phosphodiester bond formation during DNA replication, recombination and repair. While numerous studies have identified protein partners of the human DNA ligases (hLigs), there has been little characterization of the catalytic properties of these enzymes. In this study, we developed and optimized a fluorescence-based DNA ligation assay to characterize the activities of purified hLigs. Although hLigI joins DNA nicks, it has no detectable activity on linear duplex DNA substrates with short, cohesive single-strand ends. By contrast, hLigIII{beta} and the hLigIII{alpha}/XRCC1 and hLigIV/XRCC4 complexes are active on both nicked and linear duplex DNA substrates. Surprisingly, hLigIV/XRCC4, which is a key component of the major non-homologous end joining (NHEJ) pathway, is significantly less active than hLigIII on a linear duplex DNA substrate. Notably, hLigIV/XRCC4 molecules only catalyze a single ligation event in the absence or presence of ATP. The failure to catalyze subsequent ligation events reflects a defect in the enzyme-adenylation step of the next ligation reaction and suggests that, unless there is an in vivo mechanism to reactivate DNA ligase IV/XRCC4 following phosphodiester bond formation, the cellular NHEJ capacity will be determined by the number of adenylated DNA ligaseIV/XRCC4 molecules.

  17. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining.

    PubMed

    Ahnesorg, Peter; Smith, Philippa; Jackson, Stephen P

    2006-01-27

    DNA nonhomologous end-joining (NHEJ) is a predominant pathway of DNA double-strand break repair in mammalian cells, and defects in it cause radiosensitivity at the cellular and whole-organism levels. Central to NHEJ is the protein complex containing DNA Ligase IV and XRCC4. By searching for additional XRCC4-interacting factors, we identified a previously uncharacterized 33 kDa protein, XRCC4-like factor (XLF, also named Cernunnos), that has weak sequence homology with XRCC4 and is predicted to display structural similarity to XRCC4. We show that XLF directly interacts with the XRCC4-Ligase IV complex in vitro and in vivo and that siRNA-mediated downregulation of XLF in human cell lines leads to radiosensitivity and impaired NHEJ. Furthermore, we establish that NHEJ-deficient 2BN cells derived from a radiosensitive and immune-deficient patient lack XLF due to an inactivating frameshift mutation in its gene, and that reintroduction of wild-type XLF into such cells corrects their radiosensitivity and NHEJ defects. XLF thus constitutes a novel core component of the mammalian NHEJ apparatus. PMID:16439205

  18. Structure-Based Virtual Ligand Screening on the XRCC4/DNA Ligase IV Interface

    PubMed Central

    Menchon, Grégory; Bombarde, Oriane; Trivedi, Mansi; Négrel, Aurélie; Inard, Cyril; Giudetti, Brigitte; Baltas, Michel; Milon, Alain; Modesti, Mauro; Czaplicki, Georges; Calsou, Patrick

    2016-01-01

    The association of DNA Ligase IV (Lig4) with XRCC4 is essential for repair of DNA double-strand breaks (DSBs) by Non-homologous end-joining (NHEJ) in humans. DSBs cytotoxicity is largely exploited in anticancer therapy. Thus, NHEJ is an attractive target for strategies aimed at increasing the sensitivity of tumors to clastogenic anticancer treatments. However the high affinity of the XRCC4/Lig4 interaction and the extended protein-protein interface make drug screening on this target particularly challenging. Here, we conducted a pioneering study aimed at interfering with XRCC4/Lig4 assembly. By Molecular Dynamics simulation using the crystal structure of the complex, we first delineated the Lig4 clamp domain as a limited suitable target. Then, we performed in silico screening of ~95,000 filtered molecules on this Lig4 subdomain. Hits were evaluated by Differential Scanning Fluorimetry, Saturation Transfer Difference - NMR spectroscopy and interaction assays with purified recombinant proteins. In this way we identified the first molecule able to prevent Lig4 binding to XRCC4 in vitro. This compound has a unique tripartite interaction with the Lig4 clamp domain that suggests a starting chemotype for rational design of analogous molecules with improved affinity. PMID:26964677

  19. Structure-Based Virtual Ligand Screening on the XRCC4/DNA Ligase IV Interface

    NASA Astrophysics Data System (ADS)

    Menchon, Grégory; Bombarde, Oriane; Trivedi, Mansi; Négrel, Aurélie; Inard, Cyril; Giudetti, Brigitte; Baltas, Michel; Milon, Alain; Modesti, Mauro; Czaplicki, Georges; Calsou, Patrick

    2016-03-01

    The association of DNA Ligase IV (Lig4) with XRCC4 is essential for repair of DNA double-strand breaks (DSBs) by Non-homologous end-joining (NHEJ) in humans. DSBs cytotoxicity is largely exploited in anticancer therapy. Thus, NHEJ is an attractive target for strategies aimed at increasing the sensitivity of tumors to clastogenic anticancer treatments. However the high affinity of the XRCC4/Lig4 interaction and the extended protein-protein interface make drug screening on this target particularly challenging. Here, we conducted a pioneering study aimed at interfering with XRCC4/Lig4 assembly. By Molecular Dynamics simulation using the crystal structure of the complex, we first delineated the Lig4 clamp domain as a limited suitable target. Then, we performed in silico screening of ~95,000 filtered molecules on this Lig4 subdomain. Hits were evaluated by Differential Scanning Fluorimetry, Saturation Transfer Difference - NMR spectroscopy and interaction assays with purified recombinant proteins. In this way we identified the first molecule able to prevent Lig4 binding to XRCC4 in vitro. This compound has a unique tripartite interaction with the Lig4 clamp domain that suggests a starting chemotype for rational design of analogous molecules with improved affinity.

  20. DNA Ligase IV and Artemis Act Cooperatively to Suppress Homologous Recombination in Human Cells: Implications for DNA Double-Strand Break Repair

    PubMed Central

    Kurosawa, Aya; Saito, Shinta; So, Sairei; Hashimoto, Mitsumasa; Iwabuchi, Kuniyoshi; Watabe, Haruka; Adachi, Noritaka

    2013-01-01

    Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are two major pathways for repairing DNA double-strand breaks (DSBs); however, their respective roles in human somatic cells remain to be elucidated. Here we show using a series of human gene-knockout cell lines that NHEJ repairs nearly all of the topoisomerase II- and low-dose radiation-induced DNA damage, while it negatively affects survival of cells harbouring replication-associated DSBs. Intriguingly, we find that loss of DNA ligase IV, a critical NHEJ ligase, and Artemis, an NHEJ factor with endonuclease activity, independently contribute to increased resistance to replication-associated DSBs. We also show that loss of Artemis alleviates hypersensitivity of DNA ligase IV-null cells to low-dose radiation- and topoisomerase II-induced DSBs. Finally, we demonstrate that Artemis-null human cells display increased gene-targeting efficiencies, particularly in the absence of DNA ligase IV. Collectively, these data suggest that DNA ligase IV and Artemis act cooperatively to promote NHEJ, thereby suppressing HR. Our results point to the possibility that HR can only operate on accidental DSBs when NHEJ is missing or abortive, and Artemis may be involved in pathway switching from incomplete NHEJ to HR. PMID:23967291

  1. Cernunnos interacts with the XRCC4 x DNA-ligase IV complex and is homologous to the yeast nonhomologous end-joining factor Nej1.

    PubMed

    Callebaut, Isabelle; Malivert, Laurent; Fischer, Alain; Mornon, Jean-Paul; Revy, Patrick; de Villartay, Jean-Pierre

    2006-05-19

    DNA double strand breaks are considered as the most harmful DNA lesions and are repaired by either homologous recombination or nonhomologous end joining (NHEJ). A new NHEJ factor, Cernunnos, has been identified, the defect of which leads to a severe immunodeficiency condition associated with microcephaly and other developmental defects in humans. This presentation is reminiscent to that of DNA-ligase IV deficiency and suggests a possible interplay between Cernunnos and the XRCC4 x DNA-ligase IV complex. We show here that Cernunnos physically interacts with the XRCC4 x DNA-ligase IV complex. Moreover, a combination of sensitive methods of sequence analysis revealed that Cernunnos can be associated with the XRCC4 family of proteins and that it corresponds to the genuine homolog of the yeast Nej1 protein. Altogether these results shed new lights on the last step, the DNA religation, of the NHEJ pathway. PMID:16571728

  2. XRCC4/XLF Interaction Is Variably Required for DNA Repair and Is Not Required for Ligase IV Stimulation

    PubMed Central

    Roy, Sunetra; de Melo, Abinadabe J.; Xu, Yao; Tadi, Satish K.; Négrel, Aurélie; Hendrickson, Eric; Modesti, Mauro

    2015-01-01

    The classic nonhomologous end-joining (c-NHEJ) pathway is largely responsible for repairing double-strand breaks (DSBs) in mammalian cells. XLF stimulates the XRCC4/DNA ligase IV complex by an unknown mechanism. XLF interacts with XRCC4 to form filaments of alternating XRCC4 and XLF dimers that bridge DNA ends in vitro, providing a mechanism by which XLF might stimulate ligation. Here, we characterize two XLF mutants that do not interact with XRCC4 and cannot form filaments or bridge DNA in vitro. One mutant is fully sufficient in stimulating ligation by XRCC4/Lig4 in vitro; the other is not. This separation-of-function mutant (which must function as an XLF homodimer) fully complements the c-NHEJ deficits of some XLF-deficient cell strains but not others, suggesting a variable requirement for XRCC4/XLF interaction in living cells. To determine whether the lack of XRCC4/XLF interaction (and potential bridging) can be compensated for by other factors, candidate repair factors were disrupted in XLF- or XRCC4-deficient cells. The loss of either ATM or the newly described XRCC4/XLF-like factor, PAXX, accentuates the requirement for XLF. However, in the case of ATM/XLF loss (but not PAXX/XLF loss), this reflects a greater requirement for XRCC4/XLF interaction. PMID:26100018

  3. Deletion of the DNA Ligase IV Gene in Candida glabrata Significantly Increases Gene-Targeting Efficiency

    PubMed Central

    Cen, Yuke; Fiori, Alessandro

    2015-01-01

    Candida glabrata is reported as the second most prevalent human opportunistic fungal pathogen in the United States. Over the last decades, its incidence increased, whereas that of Candida albicans decreased slightly. One of the main reasons for this shift is attributed to the inherent tolerance of C. glabrata toward the commonly used azole antifungal drugs. Despite a close phylogenetic distance to Saccharomyces cerevisiae, homologous recombination works with poor efficiency in C. glabrata compared to baker's yeast, in fact limiting targeted genetic alterations of the pathogen's genome. It has been shown that nonhomologous DNA end joining is dominant over specific gene targeting in C. glabrata. To improve the homologous recombination efficiency, we have generated a strain in which the LIG4 gene has been deleted, which resulted in a significant increase in correct gene targeting. The very specific function of Lig4 in mediating nonhomologous end joining is the reason for the absence of clear side effects, some of which affect the ku80 mutant, another mutant with reduced nonhomologous end joining. We also generated a LIG4 reintegration cassette. Our results show that the lig4 mutant strain may be a valuable tool for the C. glabrata research community. PMID:26048009

  4. The DNA Ligase IV Syndrome R278H Mutation Impairs B Lymphopoiesis via Error-Prone Nonhomologous End-Joining.

    PubMed

    Park, Jihye; Welner, Robert S; Chan, Mei-Yee; Troppito, Logan; Staber, Philipp B; Tenen, Daniel G; Yan, Catherine T

    2016-01-01

    Hypomorphic mutations in the nonhomologous end-joining (NHEJ) DNA repair protein DNA ligase IV (LIG4) lead to immunodeficiency with varying severity. In this study, using a murine knock-in model, we investigated the mechanisms underlying abnormalities in class switch recombination (CSR) associated with the human homozygous Lig4 R278H mutation. Previously, we found that despite the near absence of Lig4 end-ligation activity and severely reduced mature B cell numbers, Lig4(R278H/R278H) (Lig4(R/R)) mice exhibit only a partial CSR block, producing near normal IgG1 and IgE but substantially reduced IgG3, IgG2b, and IgA serum levels. In this study, to address the cause of these abnormalities, we assayed CSR in Lig4(R/R) B cells generated via preassembled IgH and IgK V region exons (HL). This revealed that Lig4(R278H) protein levels while intact exhibited a higher turnover rate during activation of switching to IgG3 and IgG2b, as well as delays in CSR kinetics associated with defective proliferation during activation of switching to IgG1 and IgE. Activated Lig4(R/R)HL B cells consistently accumulated high frequencies of activation-induced cytidine deaminase-dependent IgH locus chromosomal breaks and translocations and were more prone to apoptosis, effects that appeared to be p53-independent, as p53 deficiency did not markedly influence these events. Importantly, NHEJ instead of alternative end-joining (A-EJ) was revealed as the predominant mechanism catalyzing robust CSR. Defective CSR was linked to failed NHEJ and residual A-EJ access to unrepaired double-strand breaks. These data firmly demonstrate that Lig4(R278H) activity renders NHEJ to be more error-prone, and they predict increased error-prone NHEJ activity and A-EJ suppression as the cause of the defective B lymphopoiesis in Lig4 patients. PMID:26608917

  5. Cadmium delays non-homologous end joining (NHEJ) repair via inhibition of DNA-PKcs phosphorylation and downregulation of XRCC4 and Ligase IV.

    PubMed

    Li, Weiwei; Gu, Xueyan; Zhang, Xiaoning; Kong, Jinxin; Ding, Nan; Qi, Yongmei; Zhang, Yingmei; Wang, Jufang; Huang, Dejun

    2015-09-01

    Although studies have shown that cadmium (Cd) interfered with DNA damage repair (DDR), whether Cd could affect non-homologous end joining (NHEJ) repair remains elusive. To further understand the effect of Cd on DDR, we used X-ray irradiation of Hela cells as an in vitro model system, along with γH2AX and 53BP1 as markers for DNA damage. Results showed that X-ray significantly increased γH2AX and 53BP1 foci in Hela cells (p < 0.01), all of which are characteristic of accrued DNA damage. The number of foci declined rapidly over time (1-8h postirradiation), indicating an initiation of NHEJ process. However, the disappearance of γH2AX and 53BP1 foci was remarkably slowed by Cd pretreatment (p < 0.01), suggesting that Cd reduced the efficiency of NHEJ. To further elucidate the mechanisms of Cd toxicity, several markers of NHEJ pathway including Ku70, DNA-PKcs, XRCC4 and Ligase IV were examined. Our data showed that Cd altered the phosphorylation of DNA-PKcs, and reduced the expression of both XRCC4 and Ligase IV in irradiated cells. These observations are indicative of the impairment of NHEJ-dependent DNA repair pathways. In addition, zinc (Zn) mitigated the effects of Cd on NHEJ, suggesting that the Cd-induced NHEJ alteration may partly result from the displacement of Zn or from an interference with the normal function of Zn-containing proteins by Cd. Our findings provide a new insight into the toxicity of Cd on NHEJ repair and its underlying mechanisms in human cells. PMID:26201248

  6. Functional redundancy between DNA ligases I and III in DNA replication in vertebrate cells

    PubMed Central

    Arakawa, Hiroshi; Bednar, Theresa; Wang, Minli; Paul, Katja; Mladenov, Emil; Bencsik-Theilen, Alena A.; Iliakis, George

    2012-01-01

    In eukaryotes, the three families of ATP-dependent DNA ligases are associated with specific functions in DNA metabolism. DNA ligase I (LigI) catalyzes Okazaki-fragment ligation at the replication fork and nucleotide excision repair (NER). DNA ligase IV (LigIV) mediates repair of DNA double strand breaks (DSB) via the canonical non-homologous end-joining (NHEJ) pathway. The evolutionary younger DNA ligase III (LigIII) is restricted to higher eukaryotes and has been associated with base excision (BER) and single strand break repair (SSBR). Here, using conditional knockout strategies for LIG3 and concomitant inactivation of the LIG1 and LIG4 genes, we show that in DT40 cells LigIII efficiently supports semi-conservative DNA replication. Our observations demonstrate a high functional versatility for the evolutionary new LigIII in DNA replication and mitochondrial metabolism, and suggest the presence of an alternative pathway for Okazaki fragment ligation. PMID:22127868

  7. Lysine 271 but not lysine 210 of XRCC4 is required for the nuclear localization of XRCC4 and DNA ligase IV.

    PubMed

    Fukuchi, Mikoto; Wanotayan, Rujira; Liu, Sicheng; Imamichi, Shoji; Sharma, Mukesh Kumar; Matsumoto, Yoshihisa

    2015-06-12

    XRCC4 and DNA Ligase IV (LIG4) cooperate to join two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). However, it is not fully understood how these proteins are localized to the nucleus. Here we created XRCC4(K271R) mutant, as Lys271 lies within the putative nuclear localization signal (NLS), and XRCC4(K210R) mutant, as Lys210 was reported to undergo SUMOylation, implicated in the nuclear localization of XRCC4. Wild-type and mutated XRCC4 with EGFP tag were introduced into HeLa cell, in which endogenous XRCC4 had been knocked down using siRNA directed to 3'-untranslated region, and tested for the nuclear localization function by fluorescence microscopy. XRCC4(K271R) was defective in the nuclear localization of itself and LIG4, whereas XRCC4(K210R) was competent for the nuclear localization with LIG4. To examine DSB repair function, wild-type and mutated XRCC4 were introduced into XRCC4-deficient M10. M10-XRCC4(K271R), but not M10-XRCC4(K210R), showed significantly reduced surviving fraction after 2 Gy γ-ray irradiation as compared to M10-XRCC4(WT). The number of γ-H2AX foci remaining 2 h after 2 Gy γ-ray irradiation was significantly greater in M10-XRCC4(K271R) than in M10-XRCC4(WT), whereas it was only marginally increased in M10-XRCC4(K210R) as compared to M10-XRCC4(WT). The present results collectively indicated that Lys271, but not Lys210, of XRCC4 is required for the nuclear localization of XRCC4 and LIG4 and that the nuclear localizing ability is essential for DSB repair function of XRCC4. PMID:25934149

  8. The Drosophila melanogaster DNA Ligase IV gene plays a crucial role in the repair of radiation-induced DNA double-strand breaks and acts synergistically with Rad54.

    PubMed Central

    Gorski, Marcin M; Eeken, Jan C J; de Jong, Anja W M; Klink, Ilse; Loos, Marjan; Romeijn, Ron J; van Veen, Bert L; Mullenders, Leon H; Ferro, Wouter; Pastink, Albert

    2003-01-01

    DNA Ligase IV has a crucial role in double-strand break (DSB) repair through nonhomologous end joining (NHEJ). Most notably, its inactivation leads to embryonic lethality in mammals. To elucidate the role of DNA Ligase IV (Lig4) in DSB repair in a multicellular lower eukaryote, we generated viable Lig4-deficient Drosophila strains by P-element-mediated mutagenesis. Embryos and larvae of mutant lines are hypersensitive to ionizing radiation but hardly so to methyl methanesulfonate (MMS) or the crosslinking agent cis-diamminedichloroplatinum (cisDDP). To determine the relative contribution of NHEJ and homologous recombination (HR) in Drosophila, Lig4; Rad54 double-mutant flies were generated. Survival studies demonstrated that both HR and NHEJ have a major role in DSB repair. The synergistic increase in sensitivity seen in the double mutant, in comparison with both single mutants, indicates that both pathways partially overlap. However, during the very first hours after fertilization NHEJ has a minor role in DSB repair after exposure to ionizing radiation. Throughout the first stages of embryogenesis of the fly, HR is the predominant pathway in DSB repair. At late stages of development NHEJ also becomes less important. The residual survival of double mutants after irradiation strongly suggests the existence of a third pathway for the repair of DSBs in Drosophila. PMID:14704177

  9. Genetic effects of XRCC4 and ligase IV genes on human glioma.

    PubMed

    Jiao, Keping; Qin, Juan; Zhao, Yumei; Zhang, Honglian

    2016-09-28

    Ligase IV and XRCC4 genes, important molecules in the nonhomologous end-joining pathway for repairing DNA double-strand breaks, may play crucial roles in carcinogenesis. To detect their effects on the risk of human glioma, their gene expression differences between 110 human glioma tissues and 50 healthy brain tissues were determined using quantitative real-time PCR. Furthermore, two tagging single nucleotide polymorphisms (SNPs) in ligase IV and four SNPs in XRCC4 genes were genotyped in 317 glioma patients and 352 healthy controls. The association of glioma and ligase IV/XRCC4 was evaluated using methods for SNP, haplotype, and gene-gene interaction analysis. Compared with those in normal brain tissues, the relative gene expression levels of ligase IV and XRCC4 were significantly downregulated in glioma tissue (P=0.0017 and 0.0006, respectively). Single SNP analysis indicated that only rs10131 in ligase IV remained significantly associated with glioma (P=0.0036) after 10 000 permutation tests. Haplotype analysis showed that the haplotype profiles of ligase IV and XRCC4 were significantly different between glioma patients and healthy controls (P=0.004 and 3.13E-6, respectively). Finally, the gene-gene interaction analysis suggested that the three-locus model (rs1805388, rs10131, and rs2075685) was the best model for ligase IV and XRCC4 to have interaction effects on the risk of glioma. In conclusion, both ligase IV and XRCC4 may act in concert to modulate the development of glioma. PMID:27508978

  10. Lysine 271 but not lysine 210 of XRCC4 is required for the nuclear localization of XRCC4 and DNA ligase IV

    SciTech Connect

    Fukuchi, Mikoto; Wanotayan, Rujira; Liu, Sicheng; Imamichi, Shoji; Sharma, Mukesh Kumar; Matsumoto, Yoshihisa

    2015-06-12

    XRCC4 and DNA Ligase IV (LIG4) cooperate to join two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). However, it is not fully understood how these proteins are localized to the nucleus. Here we created XRCC4{sup K271R} mutant, as Lys271 lies within the putative nuclear localization signal (NLS), and XRCC4{sup K210R} mutant, as Lys210 was reported to undergo SUMOylation, implicated in the nuclear localization of XRCC4. Wild-type and mutated XRCC4 with EGFP tag were introduced into HeLa cell, in which endogenous XRCC4 had been knocked down using siRNA directed to 3′-untranslated region, and tested for the nuclear localization function by fluorescence microscopy. XRCC4{sup K271R} was defective in the nuclear localization of itself and LIG4, whereas XRCC4{sup K210R} was competent for the nuclear localization with LIG4. To examine DSB repair function, wild-type and mutated XRCC4 were introduced into XRCC4-deficient M10. M10-XRCC4{sup K271R}, but not M10-XRCC4{sup K210R}, showed significantly reduced surviving fraction after 2 Gy γ-ray irradiation as compared to M10-XRCC4{sup WT}. The number of γ-H2AX foci remaining 2 h after 2 Gy γ-ray irradiation was significantly greater in M10-XRCC4{sup K271R} than in M10-XRCC4{sup WT}, whereas it was only marginally increased in M10-XRCC4{sup K210R} as compared to M10-XRCC4{sup WT}. The present results collectively indicated that Lys271, but not Lys210, of XRCC4 is required for the nuclear localization of XRCC4 and LIG4 and that the nuclear localizing ability is essential for DSB repair function of XRCC4. - Highlights: • XRCC4{sup K271R} is defective in the nuclear localization of itself and LIG4. • XRCC4{sup K210R} is competent for the nuclear localization of itself and LIG4. • XRCC4{sup K271R} is deficient in DSB repair function. • XRCC4{sup K210R} is mostly normal in DSB repair function.

  11. Yeast DNA ligase IV mutations reveal a nonhomologous end joining function of BRCT1 distinct from XRCC4/Lif1 binding

    PubMed Central

    Chiruvella, Kishore K.; Renard, Brian M.; Birkeland, Shanda R.; Sunder, Sham; Liang, Zhuobin; Wilson, Thomas E.

    2014-01-01

    LIG4/Dnl4 is the DNA ligase that (re)joins DNA double-strand breaks (DSBs) via nonhomologous end joining (NHEJ), an activity supported by binding of its tandem BRCT domains to the ligase accessory protein XRCC4/Lif1. We screened a panel of 88 distinct ligase mutants to explore the structure-function relationships of the yeast Dnl4 BRCT domains and inter-BRCT linker in NHEJ. Screen results suggested two distinct classes of BRCT mutations with differential effects on Lif1 interaction as compared to NHEJ completion. Validated constructs confirmed that D800K and GG(868:869)AA mutations, which target the Lif1 binding interface, showed a severely defective Dnl4-Lif1 interaction but a less consistent and often small decrease in NHEJ activity in some assays, as well as nearly normal levels of Dnl4 accumulation at DSBs. In contrast, mutants K742A and KTT(742:744)ATA, which target the β3-α2 region of the first BRCT domain, substantially decreased NHEJ function commensurate with a large defect in Dnl4 recruitment to DSBs, despite a comparatively greater preservation of the Lif1 interaction. Together, these separation-of-function mutants indicate that Dnl4 BRCT1 supports DSB recruitment and NHEJ in a manner distinct from Lif1 binding and reveal a complexity of Dnl4 BRCT domain functions in support of stable DSB association. PMID:25457772

  12. Engineered DNA ligases with improved activities in vitro.

    PubMed

    Wilson, Robert H; Morton, Susan K; Deiderick, Heather; Gerth, Monica L; Paul, Hayden A; Gerber, Ilana; Patel, Ankita; Ellington, Andrew D; Hunicke-Smith, Scott P; Patrick, Wayne M

    2013-07-01

    The DNA ligase from bacteriophage T4 is one of the most widely used enzymes in molecular biology. It has evolved to seal single-stranded nicks in double-stranded DNA, but not to join double-stranded fragments with cohesive or blunt ends. Its poor activity in vitro, particularly with blunt-ended substrates, can lead to failed or sub-optimal experimental outcomes. We have fused T4 DNA ligase to seven different DNA-binding proteins, including eukaryotic transcription factors, bacterial DNA repair proteins and archaeal DNA-binding domains. Representatives from each of these classes improved the activity of T4 DNA ligase, by up to 7-fold, in agarose gel-based screens for cohesive- and blunt-ended fragment joining. Overall, the most active variants were p50-ligase (i.e. NF-κB p50 fused to T4 DNA ligase) and ligase-cTF (T4 DNA ligase fused to an artificial, chimeric transcription factor). Ligase-cTF out-performed T4 DNA ligase by ∼160% in blunt end 'vector + insert' cloning assays, and p50-ligase showed an improvement of a similar magnitude when it was used to construct a library for Illumina sequencing. The activity of the Escherichia coli DNA ligase was also enhanced by fusion to p50. Together, these results suggest that our protein design strategy is a generalizable one for engineering improved DNA ligases. PMID:23754529

  13. DNA ligase I mediates essential functions in mammalian cells.

    PubMed Central

    Petrini, J H; Xiao, Y; Weaver, D T

    1995-01-01

    DNA replication, repair, and recombination are essential processes in mammalian cells. Hence, the application of gene targeting to the study of these DNA metabolic pathways requires the creation of nonnull mutations. We have developed a method for introducing partially defective mutants in murine embryonic stem cells that circumvents the problem of cellular lethality of targeted mutations at essential loci. Using this approach, we have determined that mammalian DNA ligase I is essential for cell viability. Thus, DNA ligases II and III are not redundant with DNA ligase I for the function(s) associated with cell proliferation. Partial complementation of the lethal DNA ligase I null mutation allowed the creation of deficient embryonic stem cell lines. We found that a wild-type DNA ligase I cDNA, as well as a variant DNA ligase I cDNA, was able to rescue the lethality of the homozygous null mutation, whereas an N-terminal deletion mutant consisting of the minimal DNA ligase I catalytic domain was not. This observation demonstrates that sequences outside the DNA ligase I catalytic domain are essential for DNA ligase I function in vivo. PMID:7623824

  14. Ligase I and ligase III mediate the DNA double-strand break ligation in alternative end-joining.

    PubMed

    Lu, Guangqing; Duan, Jinzhi; Shu, Sheng; Wang, Xuxiang; Gao, Linlin; Guo, Jing; Zhang, Yu

    2016-02-01

    In eukaryotes, DNA double-strand breaks (DSBs), one of the most harmful types of DNA damage, are repaired by homologous repair (HR) and nonhomologous end-joining (NHEJ). Surprisingly, in cells deficient for core classic NHEJ factors such as DNA ligase IV (Lig4), substantial end-joining activities have been observed in various situations, suggesting the existence of alternative end-joining (A-EJ) activities. Several putative A-EJ factors have been proposed, although results are mostly controversial. By using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, we generated mouse CH12F3 cell lines in which, in addition to Lig4, either Lig1 or nuclear Lig3, representing the cells containing a single DNA ligase (Lig3 or Lig1, respectively) in their nucleus, was completely ablated. Surprisingly, we found that both Lig1- and Lig3-containing complexes could efficiently catalyze A-EJ for class switching recombination (CSR) in the IgH locus and chromosomal deletions between DSBs generated by CRISPR/Cas9 in cis-chromosomes. However, only deletion of nuclear Lig3, but not Lig1, could significantly reduce the interchromosomal translocations in Lig4(-/-) cells, suggesting the unique role of Lig3 in catalyzing chromosome translocation. Additional sequence analysis of chromosome translocation junction microhomology revealed the specificity of different ligase-containing complexes. The data suggested the existence of multiple DNA ligase-containing complexes in A-EJ. PMID:26787905

  15. Structural alterations of DNA ligase I in Bloom syndrome.

    PubMed Central

    Willis, A E; Weksberg, R; Tomlinson, S; Lindahl, T

    1987-01-01

    Cell lines derived from seven patients with Bloom syndrome all contain a DNA ligase I with unusual properties. Six lines were shown to have a reduced level of this enzyme activity and the residual enzyme was anomalously heat-labile. The seventh line contained a dimeric rather than monomeric form of ligase I. Several cell lines representative of other inherited human syndromes have apparently normal DNA ligases. The data indicate that Bloom syndrome is due to a defect in the structure of DNA ligase I caused by a "leaky" point mutation occurring at one of at least two alternative sites. PMID:3479778

  16. Human DNA Ligase III Recognizes DNA Ends by Dynamic Switching between Two DNA-Bound States

    SciTech Connect

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A.; Tomkinson, Alan E.; Ellenberger, Tom

    2010-09-13

    Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a 'jackknife model' in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers.

  17. Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states.

    PubMed

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A; Tomkinson, Alan E; Ellenberger, Tom

    2010-07-27

    Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a "jackknife model" in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers. PMID:20518483

  18. Polynucleotide 3'-terminal phosphate modifications by RNA and DNA ligases.

    PubMed

    Zhelkovsky, Alexander M; McReynolds, Larry A

    2014-11-28

    RNA and DNA ligases catalyze the formation of a phosphodiester bond between the 5'-phosphate and 3'-hydroxyl ends of nucleic acids. In this work, we describe the ability of the thermophilic RNA ligase MthRnl from Methanobacterium thermoautotrophicum to recognize and modify the 3'-terminal phosphate of RNA and single-stranded DNA (ssDNA). This ligase can use an RNA 3'p substrate to generate an RNA 2',3'-cyclic phosphate or convert DNA3'p to ssDNA(3')pp(5')A. An RNA ligase from the Thermus scotoductus bacteriophage TS2126 and a predicted T4 Rnl1-like protein from Thermovibrio ammonificans, TVa, were also able to adenylate ssDNA 3'p. These modifications of RNA and DNA 3'-phosphates are similar to the activities of RtcA, an RNA 3'-phosphate cyclase. The initial step involves adenylation of the enzyme by ATP, which is then transferred to either RNA 3'p or DNA 3'p to generate the adenylated intermediate. For RNA (3')pp(5')A, the third step involves attack of the adjacent 2' hydroxyl to generate the RNA 2',3'-cyclic phosphate. These steps are analogous to those in classical 5' phosphate ligation. MthRnl and TS2126 RNA ligases were not able to modify a 3'p in nicked double-stranded DNA. However, T4 DNA ligase and RtcA can use 3'-phosphorylated nicks in double-stranded DNA to produce a 3'-adenylated product. These 3'-terminal phosphate-adenylated intermediates are substrates for deadenylation by yeast 5'Deadenylase. Our findings that classic ligases can duplicate the adenylation and phosphate cyclization activity of RtcA suggests that they have an essential role in metabolism of nucleic acids with 3'-terminal phosphates. PMID:25324547

  19. Functional domains of an ATP-dependent DNA ligase.

    PubMed

    Doherty, A J; Wigley, D B

    1999-01-01

    The crystal structure of an ATP-dependent DNA ligase from bacteriophage T7 revealed that the protein comprised two structural domains. In order to investigate the biochemical activities of these domains, we have overexpressed them separately and purified them to homogeneity. The larger N-terminal domain retains adenylation and ligase activities, though both at a reduced level. The adenylation activity of the large domain is stimulated by the presence of the smaller domain, suggesting that a conformational change is required for adenylation in the full length protein. The DNA binding properties of the two fragments have also been studied. The larger domain is able to band shift both single and double-stranded DNA, while the smaller fragment is only able to bind to double-stranded DNA. These data suggest that the specificity of DNA ligases for nick sites in DNA is produced by a combination of these different DNA binding activities in the intact enzyme. PMID:9878388

  20. Human DNA ligase I cDNA: Cloning and functional expression in Saccharomyces cerevisiae

    SciTech Connect

    Barnes, D.E.; Kodama, Kenichi; Tomkinson, A.E.; Lindahl, T.; Lasko, D.D. ); Johnston, L.H. )

    1990-09-01

    Human cDNA clones encoding the major DNA ligase activity in proliferating cells, DNA ligase I, were isolated by two independent methods. In one approach, a human cDNA library was screened by hybridization with oligonucleotides deduced from partial amino acid sequence of purified bovine DNA ligase I. In an alternative approach, a human cDNA library was screened for functional expression of a polypeptide able to complement a cdc9 temperature-sensitive DNA ligase mutant of Saccharomuces cerevisiae. The sequence of an apparently full-length cDNA encodes a 102-kDa protein, indistinguishable in size from authentic human DNA ligase I. The deduced amino acid sequence of the human DNA ligase I cDNA is 40% homologous to the smaller DNA ligases of S. cerevisiae and Schizosaccharomyces pombe, homology being confined to the carboxyl-terminal regions of the respective proteins. Hybridization between the cloned sequences and mRNA and genomic DNA indicates that the human enzyme is transcribed from a single-copy gene on chromosome 19.

  1. Fluorogenic DNA ligase and base excision repair enzyme assays using substrates labeled with single fluorophores.

    PubMed

    Nikiforov, Theo T; Roman, Steven

    2015-05-15

    Continuing our work on fluorogenic substrates labeled with single fluorophores for nucleic acid modifying enzymes, here we describe the development of such substrates for DNA ligases and some base excision repair enzymes. These substrates are hairpin-type synthetic DNA molecules with a single fluorophore located on a base close to the 3' ends, an arrangement that results in strong fluorescence quenching. When such substrates are subjected to an enzymatic reaction, the position of the dyes relative to that end of the molecules is altered, resulting in significant fluorescence intensity changes. The ligase substrates described here were 5' phosphorylated and either blunt-ended or carrying short, self-complementary single-stranded 5' extensions. The ligation reactions resulted in the covalent joining of the ends of the molecules, decreasing the quenching effect of the terminal bases on the dyes. To generate fluorogenic substrates for the base excision repair enzymes formamido-pyrimidine-DNA glycosylase (FPG), human 8-oxo-G DNA glycosylase/AP lyase (hOGG1), endonuclease IV (EndoIV), and apurinic/apyrimidinic endonuclease (APE1), we introduced abasic sites or a modified nucleotide, 8-oxo-dG, at such positions that their enzymatic excision would result in the release of a short fluorescent fragment. This was also accompanied by strong fluorescence increases. Overall fluorescence changes ranged from approximately 4-fold (ligase reactions) to more than 20-fold (base excision repair reactions). PMID:25728944

  2. A wild-type DNA ligase I gene is expressed in Bloom's syndrome cells

    SciTech Connect

    Petrini, J.H.J.; Huwiler, K.G.; Weaver, D.T. )

    1991-09-01

    Alteration of DNA ligase I activity is a consistent biochemical feature of Bloom's syndrome (BS) cells. DNA ligase I activity in BS cells either is reduced and abnormally thermolabile or is present in an anomalously dimeric form. To assess the role of DNA ligase function in the etiology of BS, the authors have cloned the DNA ligase I cDNA from normal human cells by a PCR strategy using degenerate oligonucleotide primers based on conserved regions of the Saccharomyces cerevisiae and Schizosaccharomyces pombe DNA ligase genes. Human DNA ligase I cDNAs from normal and BS cells complemented a S. cerevisiae DNA ligase mutation, and protein extracts prepared from S. cerevisiae transformants expressing normal and BS cDNA contained comparable levels of DNA ligase I activity. DNA sequencing and Northern blot analysis of DNA ligase I expression in two BS human fibroblast lines representing each of the two aberrant DNA ligase I molecular phenotypes demonstrated that this gene was unchanged in BS cells. Thus, another factor may be responsible for the observed reduction in DNA ligase I activity associated with this chromosomal breakage syndrome.

  3. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    PubMed Central

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L.; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom

    2015-01-01

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. PMID:26130724

  4. Evidence that a single DNA ligase is involved in replication and recombination in yeast.

    PubMed Central

    Fabre, F; Roman, H

    1979-01-01

    The possible existence in yeast of different nuclear DNA ligase enzymes led us to ask whether induced recombination (gene conversion) involves the same ligase as that involved in DNA replication. The conditional cdc9 mutant is known to be defective, under restrictive conditions, in the rejoining of Okazaki fragments. We show here that under the same conditions, x-ray-induced convertants within the cdc9 locus are produced with kinetics indicating that most, if not all, of the conversion events require the participation of the cdc9-controlled ligase. Thus, the same DNA ligase is involved in DNA replication and in induced gene conversion. PMID:388446

  5. From Structure-Function Analyses to Protein Engineering for Practical Applications of DNA Ligase

    PubMed Central

    Tanabe, Maiko; Ishino, Yoshizumi; Nishida, Hirokazu

    2015-01-01

    DNA ligases are indispensable in all living cells and ubiquitous in all organs. DNA ligases are broadly utilized in molecular biology research fields, such as genetic engineering and DNA sequencing technologies. Here we review the utilization of DNA ligases in a variety of in vitro gene manipulations, developed over the past several decades. During this period, fewer protein engineering attempts for DNA ligases have been made, as compared to those for DNA polymerases. We summarize the recent progress in the elucidation of the DNA ligation mechanisms obtained from the tertiary structures solved thus far, in each step of the ligation reaction scheme. We also present some examples of engineered DNA ligases, developed from the viewpoint of their three-dimensional structures. PMID:26508902

  6. Molecular characterisation of a DNA ligase gene of the extremely thermophilic archaeon Desulfurolobus ambivalens shows close phylogenetic relationship to eukaryotic ligases.

    PubMed Central

    Kletzin, A

    1992-01-01

    A 3382 bp fragment containing a gene for a DNA ligase from the extremely thermophilic, acidophilic, and facultatively anaerobic archaeon (archaebacterium) Desulfurolobus ambivalens was cloned and sequenced. The deduced amino acid sequence (600 amino acids, 67619 molecular weight) showed 30-34% sequence identity with the ATP-dependent eucaryal (eukaryotic) DNA ligases of Schizosaccharomyces pombe, Saccharomyces cerevisiae, the human DNA ligase I, and with the Vaccinia DNA ligase. Distant similarity to the DNA ligases from the bacteriophages T3, T4, T6, T7 and the African swine fever virus was found, whereas no similarities were detectable to the NAD-dependent DNA ligases from the bacteria (eubacteria) Escherichia coli and Thermus thermophilus, to the ATP-dependent RNA-ligase of bacteriophage T4, and to the tRNA-Ligase from S.cerevisiae. A detailed comparison of the phylogenetic relationship of the amino acid sequences of all known DNA and RNA ligases is presented including a complete alignment of the ATP-dependent DNA ligases. The in vivo-transcription initiation and termination sites of the D.ambivalens gene were mapped. The calculated transcript length was 1904-1911 nt. Images PMID:1437556

  7. Structure of the adenylation domain of NAD[superscript +]-dependent DNA ligase from Staphylococcus aureus

    SciTech Connect

    Han, Seungil; Chang, Jeanne S.; Griffor, Matt; Pfizer

    2010-09-17

    DNA ligase catalyzes phosphodiester-bond formation between immediately adjacent 5'-phosphate and 3''-hydroxyl groups in double-stranded DNA and plays a central role in many cellular and biochemical processes, including DNA replication, repair and recombination. Bacterial NAD{sup +}-dependent DNA ligases have been extensively characterized as potential antibacterial targets because of their essentiality and their structural distinction from human ATP-dependent DNA ligases. The high-resolution structure of the adenylation domain of Staphylococcus aureus NAD{sup +}-dependent DNA ligase establishes the conserved domain architecture with other bacterial adenylation domains. Two apo crystal structures revealed that the active site possesses the preformed NAD{sup +}-binding pocket and the 'C2 tunnel' lined with hydrophobic residues: Leu80, Phe224, Leu287, Phe295 and Trp302. The C2 tunnel is unique to bacterial DNA ligases and the Leu80 side chain at the mouth of the tunnel points inside the tunnel and forms a narrow funnel in the S. aureus DNA ligase structure. Taken together with other DNA ligase structures, the S. aureus DNA ligase structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will be also be of help in the development of small-molecule inhibitors.

  8. Nucleotide sequence, heterologous expression and novel purification of DNA ligase from Bacillus stearothermophilus(1).

    PubMed

    Brannigan, J A; Ashford, S R; Doherty, A J; Timson, D J; Wigley, D B

    1999-07-13

    The gene for DNA ligase (EC 6.5.1.2) from thermophilic bacterium Bacillus stearothermophilus NCA1503 has been cloned and the complete nucleotide sequence determined. The ligase gene encodes a protein 670 amino acids in length. The gene was overexpressed in Escherichia coli and the enzyme has been purified to homogeneity. Preliminary characterisation confirms that it is a thermostable, NAD(+)-dependent DNA ligase. PMID:10407164

  9. DNA ligase III is the major high molecular weight DNA joining activity in SV40-transformed human fibroblasts: normal levels of DNA ligase III activity in Bloom syndrome cells.

    PubMed Central

    Tomkinson, A E; Starr, R; Schultz, R A

    1993-01-01

    The phenotypes of cultured cell lines established from individuals with Bloom syndrome (BLM), including an elevated spontaneous frequency of sister chromatid exchanges (SCEs), are consistent with a defect in DNA joining. We have investigated the levels of DNA ligase I and DNA ligase III in an SV40-transformed control and BLM fibroblast cell line, as well as clonal derivatives of the BLM cell line complemented or not for the elevated SCE phenotype. No differences in either DNA ligase I or DNA ligase III were detected in extracts from these cell lines. Furthermore, the data indicate that in dividing cultures of SV40-transformed fibroblasts, DNA ligase III contributes > 85% of high molecular weight DNA joining activity. This observation contrasts with previous studies in which DNA ligase I was reported to be the major DNA joining activity in extracts from proliferating mammalian cells. Images PMID:8265359

  10. An African swine fever virus gene with homology to DNA ligases.

    PubMed Central

    Hammond, J M; Kerr, S M; Smith, G L; Dixon, L K

    1992-01-01

    Sequence analysis of the SalI g region of the genome of a virulent isolate of ASFV (Malawi Lil 20/1) has revealed an open reading frame with the potential to encode a 48 kilodalton (kD) polypeptide which has significant homology with eukaryotic and prokaryotic DNA ligases. This ASFV encoded gene also contains the putative active site region of DNA ligases including the lysine residue which is necessary for enzyme-adenylate adduct formation, but lacks the C-terminal basic region conserved in other eukaryotic DNA ligases. A novel [32P]-labelled potential DNA ligase-adenylate adduct of M(r) 45 kD was observed upon incubation of ASFV infected cell cytoplasmic extracts with alpha-[32P]-ATP and subsequent analysis of products by SDS/PAGE. These data together suggest that ASFV encodes its own DNA ligase. Images PMID:1614852

  11. Structural Basis for Nick Recognition by a Minimal Pluripotent DNA Ligase

    SciTech Connect

    Nair,P.; Nandakumar, J.; Smith, P.; Odell, M.; Lima, C.; Shuman, S.

    2007-01-01

    Chlorella virus DNA ligase, the smallest eukaryotic ligase known, has pluripotent biological activity and an intrinsic nick-sensing function, despite having none of the accessory domains found in cellular ligases. A 2.3-{angstrom} crystal structure of the Chlorella virus ligase-AMP intermediate bound to duplex DNA containing a 3'-OH-5'-PO{sub 4} nick reveals a new mode of DNA envelopment, in which a short surface loop emanating from the OB domain forms a {beta}-hairpin 'latch' that inserts into the DNA major groove flanking the nick. A network of interactions with the 3'-OH and 5'-PO{sub 4} termini in the active site illuminates the DNA adenylylation mechanism and the crucial roles of AMP in nick sensing and catalysis. Addition of a divalent cation triggered nick sealing in crystallo, establishing that the nick complex is a bona fide intermediate in the DNA repair pathway.

  12. Fragment-based discovery of 6-azaindazoles as inhibitors of bacterial DNA ligase.

    PubMed

    Howard, Steven; Amin, Nader; Benowitz, Andrew B; Chiarparin, Elisabetta; Cui, Haifeng; Deng, Xiaodong; Heightman, Tom D; Holmes, David J; Hopkins, Anna; Huang, Jianzhong; Jin, Qi; Kreatsoulas, Constantine; Martin, Agnes C L; Massey, Frances; McCloskey, Lynn; Mortenson, Paul N; Pathuri, Puja; Tisi, Dominic; Williams, Pamela A

    2013-12-12

    Herein we describe the application of fragment-based drug design to bacterial DNA ligase. X-ray crystallography was used to guide structure-based optimization of a fragment-screening hit to give novel, nanomolar, AMP-competitive inhibitors. The lead compound 13 showed antibacterial activity across a range of pathogens. Data to demonstrate mode of action was provided using a strain of S. aureus, engineered to overexpress DNA ligase. PMID:24900632

  13. Fragment-Based Discovery of 6-Azaindazoles As Inhibitors of Bacterial DNA Ligase

    PubMed Central

    2013-01-01

    Herein we describe the application of fragment-based drug design to bacterial DNA ligase. X-ray crystallography was used to guide structure-based optimization of a fragment-screening hit to give novel, nanomolar, AMP-competitive inhibitors. The lead compound 13 showed antibacterial activity across a range of pathogens. Data to demonstrate mode of action was provided using a strain of S. aureus, engineered to overexpress DNA ligase. PMID:24900632

  14. Overexpression, purification and crystallization of an archaeal DNA ligase from Pyrococcus furiosus

    SciTech Connect

    Nishida, Hirokazu; Tsuchiya, Daisuke; Ishino, Yoshizumi; Morikawa, Kosuke

    2005-12-01

    Crystals of the archaeal DNA ligase from Pyrococcus furiosus were obtained using 6.6%(v/v) ethanol as a precipitant and diffracted X-rays to 1.7 Å resolution. DNA ligases seal single-strand breaks in double-stranded DNA and their function is essential to maintain the integrity of the genome during various aspects of DNA metabolism, such as replication, excision repair and recombination. DNA-strand breaks are frequently generated as reaction intermediates in these events and the sealing of these breaks depends solely on the proper function of DNA ligase. Crystals of the archaeal DNA ligase from Pyrococcus furiosus were obtained using 6.6%(v/v) ethanol as a precipitant and diffracted X-rays to 1.7 Å resolution. They belong to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 61.1, b = 88.3, c = 63.4 Å, β = 108.9°. The asymmetric unit contains one ligase molecule.

  15. Discovery and design of DNA and RNA ligase inhibitors in infectious microorganisms

    PubMed Central

    Swift, Robert V.; Amaro, Rommie E.

    2009-01-01

    Background Members of the nucleotidyltransferase superfamily known as DNA and RNA ligases carry out the enzymatic process of polynucleotide ligation. These guardians of genomic integrity share a three-step ligation mechanism, as well as common core structural elements. Both DNA and RNA ligases have experienced a surge of recent interest as chemotherapeutic targets for the treatment of a range of diseases, including bacterial infection, cancer, and the diseases caused by the protozoan parasites known as trypanosomes. Objective In this review, we will focus on efforts targeting pathogenic microorganisms; specifically, bacterial NAD+-dependent DNA ligases, which are promising broad-spectrum antibiotic targets, and ATP-dependent RNA editing ligases from Trypanosoma brucei, the species responsible for the devastating neurodegenerative disease, African sleeping sickness. Conclusion High quality crystal structures of both NAD+-dependent DNA ligase and the Trypanosoma brucei RNA editing ligase have facilitated the development of a number of promising leads. For both targets, further progress will require surmounting permeability issues and improving selectivity and affinity. PMID:20354588

  16. Defects in DNA ligase I trigger PCNA ubiquitylation at Lys 107.

    PubMed

    Das-Bradoo, Sapna; Nguyen, Hai Dang; Wood, Jamie L; Ricke, Robin M; Haworth, Justin C; Bielinsky, Anja-Katrin

    2010-01-01

    In all eukaryotes, the ligation of newly synthesized DNA, also known as Okazaki fragments, is catalysed by DNA ligase I (ref. 1). An individual with a DNA ligase I deficiency exhibits growth retardation, sunlight sensitivity and severe immunosuppression, probably due to accumulation of DNA damage. Surprisingly, not much is known about the DNA damage response (DDR) in DNA ligase I-deficient cells. As DNA replication and DDR pathways are highly conserved in eukaryotes, we used Saccharomyces cerevisiae as a model system to address this issue. We uncovered a new pathway, which facilitates ubiquitylation at Lys 107 of proliferating cell nuclear antigen (PCNA). Unlike ubiquitylation at Lys 164 of PCNA in response to UV irradiation, which triggers translesion synthesis, modification of Lys 107 is not dependent on the ubiquitin conjugating enzyme (E2) Rad6 (ref. 4) nor the ubiquitin ligase (E3) Rad18 (ref. 5), but requires the E2 variant Mms2 (ref. 6) in conjunction with Ubc4 (ref. 7) and the E3 Rad5 (Refs 8, 9). Surprisingly, DNA ligase I-deficient S. cerevisiae cdc9-1 cells that carry a PCNAK107R mutation are inviable, because they cannot activate a robust DDR. Furthermore, we show that ubiquitylation of PCNA in response to DNA ligase I deficiency is conserved in humans, yet the lysine residue that is modified remains to be determined. We propose that PCNA ubiquitylation provides a 'DNA damage code' that allows cells to categorize different types of defects that arise during DNA replication. PMID:20010813

  17. Structure of the DNA Ligase-Adenylate Intermediate: Lysine (ε-amino)-Linked Adenosine Monophosphoramidate*

    PubMed Central

    Gumport, Richard I.; Lehman, I. R.

    1971-01-01

    Proteolytic degradation of the Escherichia coli DNA ligase-adenylate intermediate releases adenosine 5′-monophosphate linked to the ε-amino group of lysine by a phosphoamide bond. Measurements of the rate of hydroxylaminolysis of the ligase-adenylate provide further support for a phosphoamide linkage in the native enzyme. Lysine (ε-amino)-linked adenosine monophosphoramidate has also been isolated from the T4 phage-induced ligase-adenylate intermediate. These results indicate that an initial step of the DNA ligase reaction consists of the nucleophilic attack of the ε-amino group of a lysine residue of the enzyme on the adenylyl phosphorus of DPN or ATP that leads to the formation of enzyme-bound lysine (εamino)-linked adenosine monophosphoramidate. PMID:4944632

  18. In vitro mutagenesis and functional expression in Escherichia coli of a cDNA encoding the catalytic domain of human DNA ligase I.

    PubMed Central

    Kodama, K; Barnes, D E; Lindahl, T

    1991-01-01

    Human cDNAs encoding fragments of DNA ligase I, the major replicative DNA ligase in mammalian cells, have been expressed as lacZ fusion proteins in Escherichia coli. A cDNA encoding the carboxyl-terminal catalytic domain of human DNA ligase I was able to complement a conditional-lethal DNA ligase mutation in E. coli as measured by growth of the mutant strain at the non-permissive temperature. Targeted deletions of the amino and carboxyl termini of the catalytic domain identified a minimum size necessary for catalytic function and a maximum size for optimal complementing activity in E. coli. The human cDNA was subjected to systematic site-directed mutagenesis in vitro and mutant polypeptides assayed for functional expression in the E. coli DNA ligase mutant. Such functional analysis of the active site of DNA ligase I identified specific residues required for the formation of an enzyme-adenylate reaction intermediate. Images PMID:1956768

  19. Ubiquitin ligase activity of TFIIH and the transcriptional response to DNA damage.

    PubMed

    Takagi, Yuichiro; Masuda, Claudio A; Chang, Wei-Hau; Komori, Hirofumi; Wang, Dong; Hunter, Tony; Joazeiro, Claudio A P; Kornberg, Roger D

    2005-04-15

    Core transcription factor (TF) IIH purified from yeast possesses an E3 ubiquitin (Ub) ligase activity, which resides, at least in part, in a RING finger (RNF) domain of the Ssl1 subunit. Yeast strains mutated in the Ssl1 RNF domain are sensitive to ultraviolet (UV) light and to methyl methanesulfonate (MMS). This increased sensitivity to DNA-damaging agents does not reflect a deficiency in nucleotide excision repair. Rather, it correlates with reduced transcriptional induction of genes involved in DNA repair, suggesting that the E3 Ub ligase activity of TFIIH mediates the transcriptional response to DNA damage. PMID:15837426

  20. Structural insight into β-Clamp and its interaction with DNA Ligase in Helicobacter pylori.

    PubMed

    Pandey, Preeti; Tarique, Khaja Faisal; Mazumder, Mohit; Rehman, Syed Arif Abdul; Kumari, Nilima; Gourinath, Samudrala

    2016-01-01

    Helicobacter pylori, a gram-negative and microaerophilic bacterium, is the major cause of chronic gastritis, gastric ulcers and gastric cancer. Owing to its central role, DNA replication machinery has emerged as a prime target for the development of antimicrobial drugs. Here, we report 2Å structure of β-clamp from H. pylori (Hpβ-clamp), which is one of the critical components of DNA polymerase III. Despite of similarity in the overall fold of eubacterial β-clamp structures, some distinct features in DNA interacting loops exists that have not been reported previously. The in silico prediction identified the potential binders of β-clamp such as alpha subunit of DNA pol III and DNA ligase with identification of β-clamp binding regions in them and validated by SPR studies. Hpβ-clamp interacts with DNA ligase in micromolar binding affinity. Moreover, we have successfully determined the co-crystal structure of β-clamp with peptide from DNA ligase (not reported earlier in prokaryotes) revealing the region from ligase that interacts with β-clamp. PMID:27499105

  1. Structural insight into β-Clamp and its interaction with DNA Ligase in Helicobacter pylori

    PubMed Central

    Pandey, Preeti; Tarique, Khaja Faisal; Mazumder, Mohit; Rehman, Syed Arif Abdul; kumari, Nilima; Gourinath, Samudrala

    2016-01-01

    Helicobacter pylori, a gram-negative and microaerophilic bacterium, is the major cause of chronic gastritis, gastric ulcers and gastric cancer. Owing to its central role, DNA replication machinery has emerged as a prime target for the development of antimicrobial drugs. Here, we report 2Å structure of β-clamp from H. pylori (Hpβ-clamp), which is one of the critical components of DNA polymerase III. Despite of similarity in the overall fold of eubacterial β-clamp structures, some distinct features in DNA interacting loops exists that have not been reported previously. The in silico prediction identified the potential binders of β-clamp such as alpha subunit of DNA pol III and DNA ligase with identification of β-clamp binding regions in them and validated by SPR studies. Hpβ-clamp interacts with DNA ligase in micromolar binding affinity. Moreover, we have successfully determined the co-crystal structure of β-clamp with peptide from DNA ligase (not reported earlier in prokaryotes) revealing the region from ligase that interacts with β-clamp. PMID:27499105

  2. Redundant function of DNA ligase 1 and 3 in alternative end-joining during immunoglobulin class switch recombination.

    PubMed

    Masani, Shahnaz; Han, Li; Meek, Katheryn; Yu, Kefei

    2016-02-01

    Nonhomologous end-joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammals and resolves the DSBs generated during both V(D)J recombination in developing lymphocytes and class switch recombination (CSR) in antigen-stimulated B cells. In contrast to the absolute requirement for NHEJ to resolve DSBs associated with V(D)J recombination, DSBs associated with CSR can be resolved in NHEJ-deficient cells (albeit at a reduced level) by a poorly defined alternative end-joining (A-EJ) pathway. Deletion of DNA ligase IV (Lig4), a core component of the NHEJ pathway, reduces CSR efficiency in a mouse B-cell line capable of robust cytokine-stimulated CSR in cell culture. Here, we report that CSR levels are not further reduced by deletion of either of the two remaining DNA ligases (Lig1 and nuclear Lig3) in Lig4(-/-) cells. We conclude that in the absence of Lig4, Lig1, and Lig3 function in a redundant manner in resolving switch region DSBs during CSR. PMID:26787901

  3. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity.

    PubMed

    Lohman, Gregory J S; Bauer, Robert J; Nichols, Nicole M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C

    2016-01-29

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. PMID:26365241

  4. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity

    PubMed Central

    Lohman, Gregory J. S.; Bauer, Robert J.; Nichols, Nicole M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C.

    2016-01-01

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. PMID:26365241

  5. Synthesis of bisphosphonate derivatives of ATP by T4 DNA ligase, ubiquitin activating enzyme (E1) and other ligases.

    PubMed

    Günther Sillero, María A; de Diego, Anabel; Pérez-Zúñiga, Francisco J; Sillero, Antonio

    2008-05-15

    T4 DNA ligase and the ubiquitin activating enzyme (E1), catalyze the synthesis of ATP beta,gamma-bisphosphonate derivatives. Concerning T4 DNA ligase: (i) etidronate (pC(OH)(CH(3))p) displaced the AMP moiety of the complex E-AMP in a concentration dependent manner; (ii) the K(m) values and the rate of synthesis k(cat) (s(-1)), determined for the following compounds were, respectively: etidronate, 0.73+/-0.09 mM and (70+/-10)x10(-3) s(-1); clodronate (pCCl(2)p), 0.08+/-0.01 mM and (4.1+/-0.3)x10(-3) s(-1); methylenebisphosphonate (pCH(2)p), 0.024+/-0.001 mM and (0.6+/-0.1)x10(-3) s(-1); tripolyphosphate (P(3)) (in the synthesis of adenosine 5'-tetraphosphate, p(4)A), 1.30+/-0.30 mM and (6.2+/-1.1)x10(-3) s(-1); (iii) in the presence of GTP and ATP, inhibition of the synthesis of Ap(4)G was observed with clodronate but not with pamidronate (pC(OH)(CH(2)-CH(2)-NH(3))p). Concerning the ubiquitin activating enzyme (E1): methylenebisphosphonate was the only bisphosphonate, out of the ones tested, that served as substrate for the synthesis of an ATP derivative (K(m)=0.36+/-0.09 mM and k(cat)=0.15+/-0.02 s(-1)). None of the above bisphosphonates were substrates of the reaction catalyzed by luciferase or by acyl-CoA synthetase. The ability of acetyl-CoA synthetase to use methylenebisphosphonate as substrate depended on the commercial source of the enzyme. In our view this report widens our knowledge of the enzymes able to metabolize bisphosphonates, a therapeutic tool widely used in the treatment of osteoporosis. PMID:18378215

  6. Effective interaction studies for inhibition of DNA ligase protein from Staphylococcus aureus.

    PubMed

    Vijayalakshmi, Periyasamy; Daisy, Pitchai

    2015-02-01

    Staphylococcus aureus has been recognized as an important human pathogen for more than 100 years. It is among the most important causative agent of human infections in the twenty-first century. DNA ligase is the main protein responsible for the replication of S. aureus. In order to control the replication mechanism, DNA ligase is a successive drug target, hence we have chosen this protein for this study. We performed virtual screening using ZINC database for identification of potent inhibitor against DNA ligase. Based on the scoring methods, we have selected best five compounds from the ZINC database. In order to improve the accuracy, selected compounds were subjected into Quantum Polarized Ligand Docking (QPLD) docking, for which the results showed high docking score, compared to glide docking score. QPLD is more accurate as it includes charges in the scoring function, which was not available in the glide docking. Binding energy calculation results also indicated that selected compounds have good binding capacity with the target protein. In addition, these compounds on screening have good absorption, distribution, metabolism, excretion and toxicity property. In this study, we identified few compounds that particularly work against DNA ligase protein, having better interaction phenomenon and it would help further the experimental analysis. PMID:25055026

  7. In vitro selection of optimal DNA substrates for T4 RNA ligase

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1993-01-01

    We have used in vitro selection techniques to characterize DNA sequences that are ligated efficiently by T4 RNA ligase. We find that the ensemble of selected sequences ligated about 10 times as efficiently as the random mixture of sequences used as the input for selection. Surprisingly, the majority of the selected sequences approximated a well-defined consensus sequence.

  8. Cell cycle-dependent localization and properties of a second mitochondrial DNA ligase in Crithidia fasciculata.

    PubMed

    Sinha, Krishna Murari; Hines, Jane C; Ray, Dan S

    2006-01-01

    The mitochondrial DNA in kinetoplastid protozoa is contained in a single highly condensed structure consisting of thousands of minicircles and approximately 25 maxicircles. The disk-shaped structure is termed kinetoplast DNA (kDNA) and is located in the mitochondrial matrix near the basal body. We have previously identified a mitochondrial DNA ligase (LIG kbeta) in the trypanosomatid Crithidia fasciculata that localizes to antipodal sites flanking the kDNA disk where several other replication proteins are localized. We describe here a second mitochondrial DNA ligase (LIG kalpha). LIG kalpha localizes to the kinetoplast primarily in cells that have completed mitosis and contain either a dividing kinetoplast or two newly divided kinetoplasts. Essentially all dividing or newly divided kinetoplasts show localization of LIG kalpha. The ligase is present on both faces of the kDNA disk and at a high level in the kinetoflagellar zone of the mitochondrial matrix. Cells containing a single nucleus show localization of the LIG kalpha to the kDNA but at a much lower frequency. The mRNA level of LIG kalpha varies during the cell cycle out of phase with that of LIG kbeta. LIG kalpha transcript levels are maximal during the phase when cells contain two nuclei, whereas LIG kbeta transcript levels are maximal during S phase. The LIG kalpha protein decays with a half-life of 100 min in the absence of protein synthesis. The periodic expression of the LIG kalpha transcript and the instability of the LIG kalpha protein suggest a possible role of the ligase in regulating minicircle replication. PMID:16400168

  9. Unexpected substrate specificity of T4 DNA ligase revealed by in vitro selection

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1993-01-01

    We have used in vitro selection techniques to characterize DNA sequences that are ligated efficiently by T4 DNA ligase. We find that the ensemble of selected sequences ligates about 50 times as efficiently as the random mixture of sequences used as the input for selection. Surprisingly many of the selected sequences failed to produce a match at or close to the ligation junction. None of the 20 selected oligomers that we sequenced produced a match two bases upstream from the ligation junction.

  10. Solving the SAT problem using a DNA computing algorithm based on ligase chain reaction.

    PubMed

    Wang, Xiaolong; Bao, Zhenmin; Hu, Jingjie; Wang, Shi; Zhan, Aibin

    2008-01-01

    A new DNA computing algorithm based on a ligase chain reaction is demonstrated to solve an SAT problem. The proposed DNA algorithm can solve an n-variable m-clause SAT problem in m steps and the computation time required is O (3m+n). Instead of generating the full-solution DNA library, we start with an empty test tube and then generate solutions that partially satisfy the SAT formula. These partial solutions are then extended step by step by the ligation of new variables using Taq DNA ligase. Correct strands are amplified and false strands are pruned by a ligase chain reaction (LCR) as soon as they fail to satisfy the conditions. If we score and sort the clauses, we can use this algorithm to markedly reduce the number of DNA strands required throughout the computing process. In a computer simulation, the maximum number of DNA strands required was 2(0.48n) when n=50, and the exponent ratio varied inversely with the number of variables n and the clause/variable ratio m/n. This algorithm is highly space-efficient and error-tolerant compared to conventional brute-force searching, and thus can be scaled-up to solve large and hard SAT problems. PMID:17904730

  11. Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number

    PubMed Central

    Spadafora, Domenico; Kozhukhar, Natalia; Alexeyev, Mikhail F.

    2016-01-01

    Due to the essential role played by mitochondrial DNA (mtDNA) in cellular physiology and bioenergetics, methods for establishing cell lines with altered mtDNA content are of considerable interest. Here, we report evidence for the existence in mammalian cells of a novel, low- efficiency, presequence-independent pathway for mitochondrial protein import, which facilitates mitochondrial uptake of such proteins as Chlorella virus ligase (ChVlig) and Escherichia coli LigA. Mouse cells engineered to depend on this pathway for mitochondrial import of the LigA protein for mtDNA maintenance had severely (up to >90%) reduced mtDNA content. These observations were used to establish a method for the generation of mouse cell lines with reduced mtDNA copy number by, first, transducing them with a retrovirus encoding LigA, and then inactivating in these transductants endogenous Lig3 with CRISPR-Cas9. Interestingly, mtDNA depletion to an average level of one copy per cell proceeds faster in cells engineered to maintain mtDNA at low copy number. This makes a low-mtDNA copy number phenotype resulting from dependence on mitochondrial import of DNA ligase through presequence-independent pathway potentially useful for rapidly shifting mtDNA heteroplasmy through partial mtDNA depletion. PMID:27031233

  12. The ubiquitin ligase APC/CCdh1 puts the brakes on DNA-end resection

    PubMed Central

    Lafranchi, Lorenzo; Sartori, Alessandro A

    2015-01-01

    DNA double-strand breaks (DSBs) are highly deleterious lesions and their misrepair can promote genomic instability, a hallmark of cancer. DNA-end resection is a cell cycle-regulated mechanism that is required for the faithful repair of DSBs. We recently discovered that the anaphase-promoting complex/cyclosome-Cdh1 (APC/CCdh1) ubiquitin ligase is responsible for the timely degradation of CtBP-interacting protein (CtIP), a key DNA-end resection factor, providing a new layer of regulation of DSB repair in human cells. PMID:27308488

  13. Discovery of bacterial NAD⁺-dependent DNA ligase inhibitors: improvements in clearance of adenosine series.

    PubMed

    Stokes, Suzanne S; Gowravaram, Madhusudhan; Huynh, Hoan; Lu, Min; Mullen, George B; Chen, Brendan; Albert, Robert; O'Shea, Thomas J; Rooney, Michael T; Hu, Haiqing; Newman, Joseph V; Mills, Scott D

    2012-01-01

    Optimization of clearance of adenosine inhibitors of bacterial NAD(+)-dependent DNA ligase is discussed. To reduce Cytochrome P-450-mediated metabolic clearance, many strategies were explored; however, most modifications resulted in compounds with reduced antibacterial activity and/or unchanged total clearance. The alkyl side chains of the 2-cycloalkoxyadenosines were fluorinated, and compounds with moderate antibacterial activity and favorable pharmacokinetic properties in rat and dog were identified. PMID:22154350

  14. The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase

    PubMed Central

    Bauer, Robert J.; Evans, Thomas C.; Lohman, Gregory J. S.

    2016-01-01

    DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site. PMID:26954034

  15. Derivatized versions of ligase enzymes for constructing DNA sequences

    DOEpatents

    Mariella, Jr., Raymond P.; Christian, Allen T.; Tucker, James D.; Dzenitis, John M.; Papavasiliou, Alexandros P.

    2006-08-15

    A method of making very long, double-stranded synthetic poly-nucleotides. A multiplicity of short oligonucleotides is provided. The short oligonucleotides are sequentially hybridized to each other. Enzymatic ligation of the oligonucleotides provides a contiguous piece of PCR-ready DNA of predetermined sequence.

  16. Both V(D)J coding ends but neither signal end can recombine at the bcl-2 major breakpoint region, and the rejoining is ligase IV dependent.

    PubMed

    Raghavan, Sathees C; Hsieh, Chih-Lin; Lieber, Michael R

    2005-08-01

    The t(14;18) chromosomal translocation is the most common translocation in human cancer, and it occurs in all follicular lymphomas. The 150-bp bcl-2 major breakpoint region (Mbr) on chromosome 18 is a fragile site, because it adopts a non-B DNA conformation that can be cleaved by the RAG complex. The non-B DNA structure and the chromosomal translocation can be recapitulated on intracellular human minichromosomes where immunoglobulin 12- and 23-signals are positioned downstream of the bcl-2 Mbr. Here we show that either of the two coding ends in these V(D)J recombination reactions can recombine with either of the two broken ends of the bcl-2 Mbr but that neither signal end can recombine with the Mbr. Moreover, we show that the rejoining is fully dependent on DNA ligase IV, indicating that the rejoining phase relies on the nonhomologous DNA end-joining pathway. These results permit us to formulate a complete model for the order and types of cleavage and rejoining events in the t(14;18) translocation. PMID:16024785

  17. [The applications of thermostable ligase chain reaction in facilitating DNA recombination].

    PubMed

    Xiangda, Zhou; Xiao, Song; Cong, Huai; Haiyan, Sun; Hongyan, Chen; Daru, Lu

    2016-02-01

    The traditional Type Ⅱ restriction enzyme-based method is restricted by the purification steps, and therefore, cannot be applied to specific DNA assembly in chaotic system. To solve this problem, Thermostable Ligase Chain Reaction (TLCR) was introduced in the process of DNA assembly and capture. This technique combines the feature of thermostable DNA ligase and sequence specific oligo ligation template, "Helper", to achieve specific assembly of target fragments and exponential increase of products in multiple thermocyclings. Two plasmid construction experiments were carried out in order to test the feasibility and practical performance of TLCR. One was that, TLCR was used to specifically capture a 1.5 kb fragment into vector from an unpurified chaotic system which contained 7 different sizes of fragments. The results showed that the capturing accuracy was around 80%, which proved the feasibility and accuracy of using TLCR to specific assembly of DNA fragments in a complicated mixed system. In the other experiment, TLCR was used to capture two fragments (total length was 27 kb) from Hind Ⅲ digestion of Lambda genome into vector by order. The results also showed an accuracy of around 80%. As demonstrated in the results, TLCR can simplify the process of DNA recombination experiments and is suitable for the assembly of multiple and large DNA fragments. This technique can provide convenience to biological experiments. PMID:26907780

  18. Detection of low abundant mutations in DNA using single-molecule FRET and ligase detection reactions

    NASA Astrophysics Data System (ADS)

    Wabuyele, Musundi B.; Farquar, Hannah; Stryjewski, Wieslaw J.; Hammer, Robert P.; Soper, Steven A.; Cheng, Yu-Wei; Barany, Francis

    2003-06-01

    New strategies for analyzing molecular signatures of disease states in real time using single pair fluorescence resonance energy transfer (spFRET) were developed to rapidly detect point mutations in unamplified genomic DNA (DNA diagnostics). The assay was carried out using allele-specific primers, which flanked the point mutation in the target gene fragment and were ligated using a thremostable ligase enzyme only when the genomic DNA carried this mutation (ligase detection reaction, LDR). We coupled LDR with spFRET to identify a single base mutation in codon 12 of a K-ras oncogene that has high diagnostic value for colorectal cancers. A simple diode laser-based fluorescence system capable of interrogating single fluorescent molecules undergoing FRET was used to detect photon bursts generated from the MB probes formed upon ligation. We demonstrated the ability to rapidly discriminate single base differences in heterogeneous populations having as little as 600 copies of human genomic DNA without PCR amplification. Single base difference in the K-ras gene was discriminated in less than 5 min at a frequency of 1 mutant DNA per 10 normals using only a single LDR thermal cycle of genomic DNA. Real time analyses of point mutations were also performed in PMMA microfluidic device.

  19. Human BRCA1-BARD1 ubiquitin ligase activity counteracts chromatin barriers to DNA resection.

    PubMed

    Densham, Ruth M; Garvin, Alexander J; Stone, Helen R; Strachan, Joanna; Baldock, Robert A; Daza-Martin, Manuel; Fletcher, Alice; Blair-Reid, Sarah; Beesley, James; Johal, Balraj; Pearl, Laurence H; Neely, Robert; Keep, Nicholas H; Watts, Felicity Z; Morris, Joanna R

    2016-07-01

    The opposing activities of 53BP1 and BRCA1 influence pathway choice in DNA double-strand-break repair. How BRCA1 counteracts the inhibitory effect of 53BP1 on DNA resection and homologous recombination is unknown. Here we identify the site of BRCA1-BARD1 required for priming ubiquitin transfer from E2∼ubiquitin and demonstrate that BRCA1-BARD1's ubiquitin ligase activity is required for repositioning 53BP1 on damaged chromatin. We confirm H2A ubiquitination by BRCA1-BARD1 and show that an H2A-ubiquitin fusion protein promotes DNA resection and repair in BARD1-deficient cells. BRCA1-BARD1's function in homologous recombination requires the chromatin remodeler SMARCAD1. SMARCAD1 binding to H2A-ubiquitin and optimal localization to sites of damage and activity in DNA repair requires its ubiquitin-binding CUE domains. SMARCAD1 is required for 53BP1 repositioning, and the need for SMARCAD1 in olaparib or camptothecin resistance is alleviated by 53BP1 loss. Thus, BRCA1-BARD1 ligase activity and subsequent SMARCAD1-dependent chromatin remodeling are critical regulators of DNA repair. PMID:27239795

  20. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks.

    PubMed

    Dantuma, Nico P; Pfeiffer, Annika

    2016-01-01

    Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process. PMID:27148355

  1. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks

    PubMed Central

    Dantuma, Nico P.; Pfeiffer, Annika

    2016-01-01

    Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process. PMID:27148355

  2. Chronic Replication Problems Impact Cell Morphology and Adhesion of DNA Ligase I Defective Cells

    PubMed Central

    Leva, Valentina; Bione, Silvia; Carriero, Roberta; Mazzucco, Giulia; Palamidessi, Andrea; Scita, Giorgio; Biamonti, Giuseppe; Montecucco, Alessandra

    2015-01-01

    Moderate DNA damage resulting from metabolic activities or sub-lethal doses of exogenous insults may eventually lead to cancer onset. Human 46BR.1G1 cells bear a mutation in replicative DNA ligase I (LigI) which results in low levels of replication-dependent DNA damage. This replication stress elicits a constitutive phosphorylation of the ataxia telangiectasia mutated (ATM) checkpoint kinase that fails to arrest cell cycle progression or to activate apoptosis or cell senescence. Stable transfection of wild type LigI, as in 7A3 cells, prevents DNA damage and ATM activation. Here we show that parental 46BR.1G1 and 7A3 cells differ in important features such as cell morphology, adhesion and migration. Comparison of gene expression profiles in the two cell lines detects Bio-Functional categories consistent with the morphological and migration properties of LigI deficient cells. Interestingly, ATM inhibition makes 46BR.1G1 more similar to 7A3 cells for what concerns morphology, adhesion and expression of cell-cell adhesion receptors. These observations extend the influence of the DNA damage response checkpoint pathways and unveil a role for ATM kinase activity in modulating cell biology parameters relevant to cancer progression. PMID:26151554

  3. Segregation of relaxed replicated dimers when DNA ligase and DNA polymerase I are limited during oriC-specific DNA replication.

    PubMed Central

    Munson, B R; Maier, P G; Greene, R S

    1989-01-01

    An in vitro Escherichia coli oriC-specific DNA replication system was used to investigate the DNA replication pathways of oriC plasmids. When this system was perturbed by the DNA ligase inhibitor nicotinamide mononucleotide (NMN), alterations occurred in the initiation of DNA synthesis and processing of intermediates and DNA products. Addition of high concentrations of NMN soon after initiation resulted in the accumulation of open circular dimers (OC-OC). These dimers were decatenated to open circular monomers (form II or OC), which were then processed to closed circular supercoiled monomers (form I or CC) products. After a delay, limited ligation of the interlinked dimers (OC-OC to CC-OC and CC-CC) also occurred. Similar results were obtained with replication protein extracts from polA mutants. The presence of NMN before any initiation events took place prolonged the existence of nicked template DNA and promoted, without a lag period, limited incorporation into form II molecules. This DNA synthesis was nonspecific with respect to oriC, as judged by DnaA protein dependence, and presumably occurred at nicks in the template DNA. These results are consistent with oriC-specific initiation requiring closed supercoiled molecules dependent on DNA ligase activity. The results also show that decatenation of dimers occurs readily on nicked dimer and represents an efficient pathway for processing replication intermediates in vitro. Images PMID:2544556

  4. In vitro construction of bacteriophage lambda carrying segments of the Escherichia coli chromosome: selection of hybrids containing the gene for DNA ligase.

    PubMed Central

    Cameron, J R; Panasenko, S M; Lehman, I R; Davis, R W

    1975-01-01

    DNA from lambdagt-lambdaB bacteriophage was cleaved with EcoRI endonuclease and fragments from EcoRI-digested E. coli DNA were inserted. This DNA was used to infect E. coli, and phages containing the gene for DNA ligase were isolated by genetic selection. Two different hybrids were found with the same E. coli segment inserted in opposite orientations. Both hybrids produced similar levels of ligase as measured in crude extracts of infected cells. Images PMID:1103146

  5. A human iPSC model of Ligase IV deficiency reveals an important role for NHEJ-mediated-DSB repair in the survival and genomic stability of induced pluripotent stem cells and emerging haematopoietic progenitors

    PubMed Central

    Tilgner, K; Neganova, I; Moreno-Gimeno, I; AL-Aama, J Y; Burks, D; Yung, S; Singhapol, C; Saretzki, G; Evans, J; Gorbunova, V; Gennery, A; Przyborski, S; Stojkovic, M; Armstrong, L; Jeggo, P; Lako, M

    2013-01-01

    DNA double strand breaks (DSBs) are the most common form of DNA damage and are repaired by non-homologous-end-joining (NHEJ) or homologous recombination (HR). Several protein components function in NHEJ, and of these, DNA Ligase IV is essential for performing the final ‘end-joining' step. Mutations in DNA Ligase IV result in LIG4 syndrome, which is characterised by growth defects, microcephaly, reduced number of blood cells, increased predisposition to leukaemia and variable degrees of immunodeficiency. In this manuscript, we report the creation of a human induced pluripotent stem cell (iPSC) model of LIG4 deficiency, which accurately replicates the DSB repair phenotype of LIG4 patients. Our findings demonstrate that impairment of NHEJ-mediated-DSB repair in human iPSC results in accumulation of DSBs and enhanced apoptosis, thus providing new insights into likely mechanisms used by pluripotent stem cells to maintain their genomic integrity. Defects in NHEJ-mediated-DSB repair also led to a significant decrease in reprogramming efficiency of human cells and accumulation of chromosomal abnormalities, suggesting a key role for NHEJ in somatic cell reprogramming and providing insights for future cell based therapies for applications of LIG4-iPSCs. Although haematopoietic specification of LIG4-iPSC is not affected per se, the emerging haematopoietic progenitors show a high accumulation of DSBs and enhanced apoptosis, resulting in reduced numbers of mature haematopoietic cells. Together our findings provide new insights into the role of NHEJ-mediated-DSB repair in the survival and differentiation of progenitor cells, which likely underlies the developmental abnormalities observed in many DNA damage disorders. In addition, our findings are important for understanding how genomic instability arises in pluripotent stem cells and for defining appropriate culture conditions that restrict DNA damage and result in ex vivo expansion of stem cells with intact genomes. PMID

  6. A human iPSC model of Ligase IV deficiency reveals an important role for NHEJ-mediated-DSB repair in the survival and genomic stability of induced pluripotent stem cells and emerging haematopoietic progenitors.

    PubMed

    Tilgner, K; Neganova, I; Moreno-Gimeno, I; Al-Aama, J Y; Burks, D; Yung, S; Singhapol, C; Saretzki, G; Evans, J; Gorbunova, V; Gennery, A; Przyborski, S; Stojkovic, M; Armstrong, L; Jeggo, P; Lako, M

    2013-08-01

    DNA double strand breaks (DSBs) are the most common form of DNA damage and are repaired by non-homologous-end-joining (NHEJ) or homologous recombination (HR). Several protein components function in NHEJ, and of these, DNA Ligase IV is essential for performing the final 'end-joining' step. Mutations in DNA Ligase IV result in LIG4 syndrome, which is characterised by growth defects, microcephaly, reduced number of blood cells, increased predisposition to leukaemia and variable degrees of immunodeficiency. In this manuscript, we report the creation of a human induced pluripotent stem cell (iPSC) model of LIG4 deficiency, which accurately replicates the DSB repair phenotype of LIG4 patients. Our findings demonstrate that impairment of NHEJ-mediated-DSB repair in human iPSC results in accumulation of DSBs and enhanced apoptosis, thus providing new insights into likely mechanisms used by pluripotent stem cells to maintain their genomic integrity. Defects in NHEJ-mediated-DSB repair also led to a significant decrease in reprogramming efficiency of human cells and accumulation of chromosomal abnormalities, suggesting a key role for NHEJ in somatic cell reprogramming and providing insights for future cell based therapies for applications of LIG4-iPSCs. Although haematopoietic specification of LIG4-iPSC is not affected per se, the emerging haematopoietic progenitors show a high accumulation of DSBs and enhanced apoptosis, resulting in reduced numbers of mature haematopoietic cells. Together our findings provide new insights into the role of NHEJ-mediated-DSB repair in the survival and differentiation of progenitor cells, which likely underlies the developmental abnormalities observed in many DNA damage disorders. In addition, our findings are important for understanding how genomic instability arises in pluripotent stem cells and for defining appropriate culture conditions that restrict DNA damage and result in ex vivo expansion of stem cells with intact genomes. PMID

  7. Expression, purification, crystallization and preliminary crystallographic analysis of a thermostable DNA ligase from the archaeon Thermococcus sibiricus.

    PubMed

    Petrova, T E; Bezsudnova, E Y; Dorokhov, B D; Slutskaya, E S; Polyakov, K M; Dorovatovskiy, P V; Ravin, N V; Skryabin, K G; Kovalchuk, M V; Popov, V O

    2012-02-01

    DNA ligases join single-strand breaks in double-stranded DNA by catalyzing the formation of a phosphodiester bond between adjacent 5'-phosphate and 3'-hydroxyl termini. Their function is essential to maintain the integrity of the genome in DNA replication, recombination and repair. A recombinant ATP-dependent DNA ligase from the hyperthermophilic anaerobic archaeon Thermococcus sibiricus was expressed in Escherichia coli and purified. Crystals were grown by vapour diffusion using the hanging-drop method with 17%(w/v) PEG 4000 and 8.5%(v/v) 2-propanol as precipitants. A diffraction experiment was performed with a single crystal, which diffracted X-rays to 3.0 Å resolution. The crystal belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 58.590, b = 87.540, c = 126.300 Å. PMID:22297989

  8. Highly sensitive DNA methylation analysis at CpG resolution by surface-enhanced Raman scattering via ligase chain reaction.

    PubMed

    Wang, Yuling; Wee, Eugene J H; Trau, Matt

    2015-07-11

    Sensitive and accurate DNA methylation analysis at CpG resolution was demonstrated using surface-enhanced Raman scattering (SERS) via ligase chain reaction (LCR). The method was sensitive to 10% changes in methylation and the accuracy of methylation estimates in cells and serum DNA validated with sequencing. The LCR/SERS approach may have broad applications as an alternative (epi)genetic detection method. PMID:26063626

  9. The C-Terminal Domain of Yeast PCNA Is Required for Physical And Functional Interactions With Cdc9 DNA Ligase

    SciTech Connect

    Vijayakumar, S.; Chapados, B.R.; Schmidt, K.H.; Kolodner, R.D.; Tainer, J.A.; Tomkinson, A.E.

    2007-07-13

    There is compelling evidence that proliferating cell nuclear antigen (PCNA), a DNA sliding clamp, co-ordinates the processing and joining of Okazaki fragments during eukaryotic DNA replication. However, a detailed mechanistic understanding of functional PCNA:ligase I interactions has been incomplete. Here we present the co-crystal structure of yeast PCNA with a peptide encompassing the conserved PCNA interaction motif of Cdc9, yeast DNA ligase I. The Cdc9 peptide contacts both the inter-domain connector loop (IDCL) and residues near the C-terminus of PCNA. Complementary mutational and biochemical results demonstrate that these two interaction interfaces are required for complex formation both in the absence of DNA and when PCNA is topologically linked to DNA. Similar to the functionally homologous human proteins, yeast RFC interacts with and inhibits Cdc9 DNA ligase whereas the addition of PCNA alleviates inhibition by RFC. Here we show that the ability of PCNA to overcome RFC-mediated inhibition of Cdc9 is dependent upon both the IDCL and the C-terminal interaction interfaces of PCNA. Together these results demonstrate the functional significance of the {beta}-zipper structure formed between the C-terminal domain of PCNA and Cdc9 and reveal differences in the interactions of FEN-1 and Cdc9 with the two PCNA interfaces that may contribute to the coordinated, sequential action of these enzymes.

  10. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response

    PubMed Central

    Poulsen, Sara L.; Hansen, Rebecca K.; Wagner, Sebastian A.; van Cuijk, Loes; van Belle, Gijsbert J.; Streicher, Werner; Wikström, Mats; Choudhary, Chunaram; Houtsmuller, Adriaan B.; Marteijn, Jurgen A.; Bekker-Jensen, Simon

    2013-01-01

    Protein modifications by ubiquitin and small ubiquitin-like modifier (SUMO) play key roles in cellular signaling pathways. SUMO-targeted ubiquitin ligases (STUbLs) directly couple these modifications by selectively recognizing SUMOylated target proteins through SUMO-interacting motifs (SIMs), promoting their K48-linked ubiquitylation and degradation. Only a single mammalian STUbL, RNF4, has been identified. We show that human RNF111/Arkadia is a new STUbL, which used three adjacent SIMs for specific recognition of poly-SUMO2/3 chains, and used Ubc13–Mms2 as a cognate E2 enzyme to promote nonproteolytic, K63-linked ubiquitylation of SUMOylated target proteins. We demonstrate that RNF111 promoted ubiquitylation of SUMOylated XPC (xeroderma pigmentosum C) protein, a central DNA damage recognition factor in nucleotide excision repair (NER) extensively regulated by ultraviolet (UV)-induced SUMOylation and ubiquitylation. Moreover, we show that RNF111 facilitated NER by regulating the recruitment of XPC to UV-damaged DNA. Our findings establish RNF111 as a new STUbL that directly links nonproteolytic ubiquitylation and SUMOylation in the DNA damage response. PMID:23751493

  11. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response.

    PubMed

    Poulsen, Sara L; Hansen, Rebecca K; Wagner, Sebastian A; van Cuijk, Loes; van Belle, Gijsbert J; Streicher, Werner; Wikström, Mats; Choudhary, Chunaram; Houtsmuller, Adriaan B; Marteijn, Jurgen A; Bekker-Jensen, Simon; Mailand, Niels

    2013-06-10

    Protein modifications by ubiquitin and small ubiquitin-like modifier (SUMO) play key roles in cellular signaling pathways. SUMO-targeted ubiquitin ligases (STUbLs) directly couple these modifications by selectively recognizing SUMOylated target proteins through SUMO-interacting motifs (SIMs), promoting their K48-linked ubiquitylation and degradation. Only a single mammalian STUbL, RNF4, has been identified. We show that human RNF111/Arkadia is a new STUbL, which used three adjacent SIMs for specific recognition of poly-SUMO2/3 chains, and used Ubc13-Mms2 as a cognate E2 enzyme to promote nonproteolytic, K63-linked ubiquitylation of SUMOylated target proteins. We demonstrate that RNF111 promoted ubiquitylation of SUMOylated XPC (xeroderma pigmentosum C) protein, a central DNA damage recognition factor in nucleotide excision repair (NER) extensively regulated by ultraviolet (UV)-induced SUMOylation and ubiquitylation. Moreover, we show that RNF111 facilitated NER by regulating the recruitment of XPC to UV-damaged DNA. Our findings establish RNF111 as a new STUbL that directly links nonproteolytic ubiquitylation and SUMOylation in the DNA damage response. PMID:23751493

  12. Sensitive detection of point mutation by electrochemiluminescence and DNA ligase-based assay

    NASA Astrophysics Data System (ADS)

    Zhou, Huijuan; Wu, Baoyan

    2008-12-01

    The technology of single-base mutation detection plays an increasingly important role in diagnosis and prognosis of genetic-based diseases. Here we reported a new method for the analysis of point mutations in genomic DNA through the integration of allele-specific oligonucleotide ligation assay (OLA) with magnetic beads-based electrochemiluminescence (ECL) detection scheme. In this assay the tris(bipyridine) ruthenium (TBR) labeled probe and the biotinylated probe are designed to perfectly complementary to the mutant target, thus a ligation can be generated between those two probes by Taq DNA Ligase in the presence of mutant target. If there is an allele mismatch, the ligation does not take place. The ligation products are then captured onto streptavidin-coated paramagnetic beads, and detected by measuring the ECL signal of the TBR label. Results showed that the new method held a low detection limit down to 10 fmol and was successfully applied in the identification of point mutations from ASTC-α-1, PANC-1 and normal cell lines in codon 273 of TP53 oncogene. In summary, this method provides a sensitive, cost-effective and easy operation approach for point mutation detection.

  13. DNA break-induced sumoylation is enabled by collaboration between a SUMO ligase and the ssDNA-binding complex RPA

    PubMed Central

    Chung, Inn; Zhao, Xiaolan

    2015-01-01

    Upon genome damage, large-scale protein sumoylation occurs from yeast to humans to promote DNA repair. Currently, the underlying mechanism is largely unknown. Here we show that, upon DNA break induction, the budding yeast SUMO ligase Siz2 collaborates with the ssDNA-binding complex RPA (replication protein A) to induce the sumoylation of recombination factors and confer damage resistance. Both RPA and nuclease-generated ssDNA promote Siz2-mediated sumoylation. Mechanistically, the conserved Siz2 interaction with RPA enables Siz2 localization to damage sites. These findings provide a molecular basis for recruiting SUMO ligases to the vicinity of their substrates to induce sumoylation upon DNA damage. PMID:26253534

  14. Interactions and Localization of Escherichia coli Error-Prone DNA Polymerase IV after DNA Damage

    PubMed Central

    Mallik, Sarita; Popodi, Ellen M.; Hanson, Andrew J.

    2015-01-01

    ABSTRACT Escherichia coli's DNA polymerase IV (Pol IV/DinB), a member of the Y family of error-prone polymerases, is induced during the SOS response to DNA damage and is responsible for translesion bypass and adaptive (stress-induced) mutation. In this study, the localization of Pol IV after DNA damage was followed using fluorescent fusions. After exposure of E. coli to DNA-damaging agents, fluorescently tagged Pol IV localized to the nucleoid as foci. Stepwise photobleaching indicated ∼60% of the foci consisted of three Pol IV molecules, while ∼40% consisted of six Pol IV molecules. Fluorescently tagged Rep, a replication accessory DNA helicase, was recruited to the Pol IV foci after DNA damage, suggesting that the in vitro interaction between Rep and Pol IV reported previously also occurs in vivo. Fluorescently tagged RecA also formed foci after DNA damage, and Pol IV localized to them. To investigate if Pol IV localizes to double-strand breaks (DSBs), an I-SceI endonuclease-mediated DSB was introduced close to a fluorescently labeled LacO array on the chromosome. After DSB induction, Pol IV localized to the DSB site in ∼70% of SOS-induced cells. RecA also formed foci at the DSB sites, and Pol IV localized to the RecA foci. These results suggest that Pol IV interacts with RecA in vivo and is recruited to sites of DSBs to aid in the restoration of DNA replication. IMPORTANCE DNA polymerase IV (Pol IV/DinB) is an error-prone DNA polymerase capable of bypassing DNA lesions and aiding in the restart of stalled replication forks. In this work, we demonstrate in vivo localization of fluorescently tagged Pol IV to the nucleoid after DNA damage and to DNA double-strand breaks. We show colocalization of Pol IV with two proteins: Rep DNA helicase, which participates in replication, and RecA, which catalyzes recombinational repair of stalled replication forks. Time course experiments suggest that Pol IV recruits Rep and that RecA recruits Pol IV. These findings

  15. A single amino acid substitution in the DNA-binding domain of Aeropyrum pernix DNA ligase impairs its interaction with proliferating cell nuclear antigen.

    PubMed

    Kiyonari, Shinichi; Kamigochi, Toru; Ishino, Yoshizumi

    2007-09-01

    Proliferating cell nuclear antigen (PCNA) is known as a DNA sliding clamp that acts as a platform for the assembly of enzymes involved in DNA replication and repair. Previously, it was reported that a crenarchaeal PCNA formed a heterotrimeric structure, and that each PCNA subunit has distinct binding specificity to PCNA-binding proteins. Here we describe the PCNA-binding properties of a DNA ligase from the hyperthermophilic crenarchaeon Aeropyrum pernix K1. Based on our findings on the Pyrococcus furiosus DNA ligase-PCNA interaction, we predicted that the aromatic residue, Phe132, in the DNA-binding domain of A. pernix DNA ligase (ApeLig) would play a critical role in binding to A. pernix PCNA (ApePCNA). Surface plasmon resonance analyses revealed that the ApeLig F132A mutant does not interact with an immobilized subunit of ApePCNA. Furthermore, we could not detect any stimulation of the ligation activity of the ApeLig F132A protein by ApePCNA in vitro. These results indicated that the phenylalanine, which is located in our predicted PCNA-binding region in ApeLig, has a critical role for the physical and functional interaction with ApePCNA. PMID:17487442

  16. The Structural Basis for Partitioning of the XRCC1/DNA Ligase III-alpha BRCT-mediated Dimer Complexes

    SciTech Connect

    M Cuneo; S Gabel; J Krahn; M Ricker; R London

    2011-12-31

    The ultimate step common to almost all DNA repair pathways is the ligation of the nicked intermediate to form contiguous double-stranded DNA. In the mammalian nucleotide and base excision repair pathways, the ligation step is carried out by ligase III-{alpha}. For efficient ligation, ligase III-{alpha} is constitutively bound to the scaffolding protein XRCC1 through interactions between the C-terminal BRCT domains of each protein. Although structural data for the individual domains has been available, no structure of the complex has been determined and several alternative proposals for this interaction have been advanced. Interpretation of the models is complicated by the formation of homodimers that, depending on the model, may either contribute to, or compete with heterodimer formation. We report here the structures of both homodimer complexes as well as the heterodimer complex. Structural characterization of the heterodimer formed from a longer XRCC1 BRCT domain construct, including residues comprising the interdomain linker region, revealed an expanded heterodimer interface with the ligase III-{alpha} BRCT domain. This enhanced linker-mediated binding interface plays a significant role in the determination of heterodimer/homodimer selectivity. These data provide fundamental insights into the structural basis of BRCT-mediated dimerization, and resolve questions related to the organization of this important repair complex.

  17. The structural basis for partitioning of the XRCC1/DNA ligase III-[alpha] BRCT-mediated dimer complexes

    SciTech Connect

    Cuneo, Matthew J.; Gabel, Scott A.; Krahn, Joseph M.; Ricker, Melissa A.; London, Robert E.

    2011-11-17

    The ultimate step common to almost all DNA repair pathways is the ligation of the nicked intermediate to form contiguous double-stranded DNA. In the mammalian nucleotide and base excision repair pathways, the ligation step is carried out by ligase III-{alpha}. For efficient ligation, ligase III-{alpha} is constitutively bound to the scaffolding protein XRCC1 through interactions between the C-terminal BRCT domains of each protein. Although structural data for the individual domains has been available, no structure of the complex has been determined and several alternative proposals for this interaction have been advanced. Interpretation of the models is complicated by the formation of homodimers that, depending on the model, may either contribute to, or compete with heterodimer formation. We report here the structures of both homodimer complexes as well as the heterodimer complex. Structural characterization of the heterodimer formed from a longer XRCC1 BRCT domain construct, including residues comprising the interdomain linker region, revealed an expanded heterodimer interface with the ligase III-{alpha} BRCT domain. This enhanced linker-mediated binding interface plays a significant role in the determination of heterodimer/homodimer selectivity. These data provide fundamental insights into the structural basis of BRCT-mediated dimerization, and resolve questions related to the organization of this important repair complex.

  18. C-terminal region of bacterial Ku controls DNA bridging, DNA threading and recruitment of DNA ligase D for double strand breaks repair

    PubMed Central

    McGovern, Stephen; Baconnais, Sonia; Roblin, Pierre; Nicolas, Pierre; Drevet, Pascal; Simonson, Héloïse; Piétrement, Olivier; Charbonnier, Jean-Baptiste; Le Cam, Eric; Noirot, Philippe; Lecointe, François

    2016-01-01

    Non-homologous end joining is a ligation process repairing DNA double strand breaks in eukaryotes and many prokaryotes. The ring structured eukaryotic Ku binds DNA ends and recruits other factors which can access DNA ends through the threading of Ku inward the DNA, making this protein a key ingredient for the scaffolding of the NHEJ machinery. However, this threading ability seems unevenly conserved among bacterial Ku. As bacterial Ku differ mainly by their C-terminus, we evaluate the role of this region in the loading and the threading abilities of Bacillus subtilis Ku and the stimulation of the DNA ligase LigD. We identify two distinct sub-regions: a ubiquitous minimal C-terminal region and a frequent basic C-terminal extension. We show that truncation of one or both of these sub-regions in Bacillus subtilis Ku impairs the stimulation of the LigD end joining activity in vitro. We further demonstrate that the minimal C-terminus is required for the Ku-LigD interaction, whereas the basic extension controls the threading and DNA bridging abilities of Ku. We propose that the Ku basic C-terminal extension increases the concentration of Ku near DNA ends, favoring the recruitment of LigD at the break, thanks to the minimal C-terminal sub-region. PMID:26961308

  19. The α-thio and/or β-γ-hypophosphate analogs of ATP as cofactors of T4 DNA ligase.

    PubMed

    Pawlowska, Roza; Korczynski, Dariusz; Nawrot, Barbara; Stec, Wojciech J; Chworos, Arkadiusz

    2016-08-01

    T4 DNA ligase is one of the most commonly used enzymes for in vitro molecular research and a useful model for testing the ligation mechanism of ATP-dependent DNA ligation. To better understand the influence of phosphate group modifications in the ligation process, a series of ATP analogs were tested as cofactors. P-diastereomers of newly developed β,γ-hypo-ATPαS (thio) and β,γ-hypo-ATP (oxo) were synthesized and their activity was compared to ATPαS and their natural precursors. The evaluation of presented ATP analogs revealed the importance of the α-phosphate stereogenic center in ATPαS for the T4 DNA ligase activity and sheds new light on the interaction between ATP-dependent DNA ligases and cofactors. PMID:27337226

  20. Staphylococcus aureus DNA ligase: characterization of its kinetics of catalysis and development of a high-throughput screening compatible chemiluminescent hybridization protection assay

    PubMed Central

    2004-01-01

    DNA ligases are key enzymes involved in the repair and replication of DNA. Prokaryotic DNA ligases uniquely use NAD+ as the adenylate donor during catalysis, whereas eukaryotic enzymes use ATP. This difference in substrate specificity makes the bacterial enzymes potential targets for therapeutic intervention. We have developed a homogeneous chemiluminescence-based hybridization protection assay for Staphylococcus aureus DNA ligase that uses novel acridinium ester technology and demonstrate that it is an alternative to the commonly used radiometric assays for ligases. The assay has been used to determine a number of kinetic constants for S. aureus DNA ligase catalysis. These included the Km values for NAD+ (2.75±0.1 μM) and the acridinium-ester-labelled DNA substrate (2.5±0.2 nM). A study of the pH-dependencies of kcat, Km and kcat/Km has revealed values of kinetically influential ionizations within the enzyme–substrate complexes (kcat) and free enzyme (kcat/Km). In each case, the curves were shown to be composed of one kinetically influential ionization, for kcat, pKa=6.6±0.1 and kcat/Km, pKa=7.1±0.1. Inhibition characteristics of the enzyme against two Escherichia coli DNA ligase inhibitors have also been determined with IC50 values for these being 3.30±0.86 μM for doxorubicin and 1.40±0.07 μM for chloroquine diphosphate. The assay has also been successfully miniaturized to a sufficiently low volume to allow it to be utilized in a high-throughput screen (384-well format; 20 μl reaction volume), enabling the assay to be used in screening campaigns against libraries of compounds to discover leads for further drug development. PMID:15283677

  1. Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner.

    PubMed

    Moser, Jill; Kool, Hanneke; Giakzidis, Ioannis; Caldecott, Keith; Mullenders, Leon H F; Fousteri, Maria I

    2007-07-20

    Impaired gap filling and sealing of chromosomal DNA in nucleotide excision repair (NER) leads to genome instability. XRCC1-DNA ligase IIIalpha (XRCC1-Lig3) plays a central role in the repair of DNA single-strand breaks but has never been implicated in NER. Here we show that XRCC1-Lig3 is indispensable for ligation of NER-induced breaks and repair of UV lesions in quiescent cells. Furthermore, our results demonstrate that two distinct complexes differentially carry out gap filling in NER. XRCC1-Lig3 and DNA polymerase delta colocalize and interact with NER components in a UV- and incision-dependent manner throughout the cell cycle. In contrast, DNA ligase I and DNA polymerase epsilon are recruited to UV-damage sites only in proliferating cells. This study reveals an unexpected and key role for XRCC1-Lig3 in maintenance of genomic integrity by NER in both dividing and nondividing cells and provides evidence for cell-cycle regulation of NER-mediated repair synthesis in vivo. PMID:17643379

  2. SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage.

    PubMed

    Yin, Yili; Seifert, Anne; Chua, Joy Shijia; Maure, Jean-François; Golebiowski, Filip; Hay, Ronald T

    2012-06-01

    Here we demonstrate that RNF4, a highly conserved small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, plays a critical role in the response of mammalian cells to DNA damage. Human cells in which RNF4 expression was ablated by siRNA or chicken DT40 cells with a homozygous deletion of the RNF4 gene displayed increased sensitivity to DNA-damaging agents. Recruitment of RNF4 to double-strand breaks required its RING and SUMO interaction motif (SIM) domains and DNA damage factors such as NBS1, mediator of DNA damage checkpoint 1 (MDC1), RNF8, 53BP1, and BRCA1. In the absence of RNF4, these factors were still recruited to sites of DNA damage, but 53BP1, RNF8, and RNF168 displayed delayed clearance from such foci. SILAC-based proteomics of SUMO substrates revealed that MDC1 was SUMO-modified in response to ionizing radiation. As a consequence of SUMO modification, MDC1 recruited RNF4, which mediated ubiquitylation at the DNA damage site. Failure to recruit RNF4 resulted in defective loading of replication protein A (RPA) and Rad51 onto ssDNA. This appeared to be a consequence of reduced recruitment of the CtIP nuclease, resulting in inefficient end resection. Thus, RNF4 is a novel DNA damage-responsive protein that plays a role in homologous recombination and integrates SUMO modification and ubiquitin signaling in the cellular response to genotoxic stress. PMID:22661230

  3. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair.

    PubMed

    Galanty, Yaron; Belotserkovskaya, Rimma; Coates, Julia; Jackson, Stephen P

    2012-06-01

    Protein ubiquitylation and sumoylation play key roles in regulating cellular responses to DNA double-strand breaks (DSBs). Here, we show that human RNF4, a small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, is recruited to DSBs in a manner requiring its SUMO interaction motifs, the SUMO E3 ligases PIAS1 and PIAS4, and various DSB-responsive proteins. Furthermore, we reveal that RNF4 depletion impairs ubiquitin adduct formation at DSB sites and causes persistent histone H2AX phosphorylation (γH2AX) associated with defective DSB repair, hypersensitivity toward DSB-inducing agents, and delayed recovery from radiation-induced cell cycle arrest. We establish that RNF4 regulates turnover of the DSB-responsive factors MDC1 and replication protein A (RPA) at DNA damage sites and that RNF4-depleted cells fail to effectively replace RPA by the homologous recombination factors BRCA2 and RAD51 on resected DNA. Consistent with previous data showing that RNF4 targets proteins to the proteasome, we show that the proteasome component PSMD4 is recruited to DNA damage sites in a manner requiring its ubiquitin-interacting domains, RNF4 and RNF8. Finally, we establish that PSMD4 binds MDC1 and RPA1 in a DNA damage-induced, RNF4-dependent manner and that PSMD4 depletion cause MDC1 and γH2AX persistence in irradiated cells. RNF4 thus operates as a DSB response factor at the crossroads between the SUMO and ubiquitin systems. PMID:22661229

  4. Efficient synthesis of stably adenylated DNA and RNA adapters for microRNA capture using T4 RNA ligase 1.

    PubMed

    Song, Yunke; Liu, Kelvin J; Wang, Tza-Huei

    2015-01-01

    MicroRNA profiling methods have become increasingly important due to the rapid rise of microRNA in both basic and translational sciences. A critical step in many microRNA profiling assays is adapter ligation using pre-adenylated adapters. While pre-adenylated adapters can be chemically or enzymatically prepared, enzymatic adenylation is preferred due to its ease and high yield. However, previously reported enzymatic methods either require tedious purification steps or use thermostable ligases that can generate side products during the subsequent ligation step. We have developed a highly efficient, template- and purification-free, adapter adenylation method using T4 RNA ligase 1. This method is capable of adenylating large amounts of adapter at ~100% efficiency and can efficiently adenylate both DNA and RNA bases. We find that the adenylation reaction speed can differ between DNA and RNA and between terminal nucleotides, leading to bias if reactions are not allowed to run to completion. We further find that the addition of high PEG levels can effectively suppress these differences. PMID:26500066

  5. The E3 ubiquitin ligase EDD regulates S-phase and G(2)/M DNA damage checkpoints.

    PubMed

    Munoz, Marcia A; Saunders, Darren N; Henderson, Michelle J; Clancy, Jennifer L; Russell, Amanda J; Lehrbach, Gillian; Musgrove, Elizabeth A; Watts, Colin K W; Sutherland, Robert L

    2007-12-15

    The cellular response to DNA damage is critical for maintenance of genomic integrity and inhibition of tumorigenesis. Mutations or aberrant expression of the E3 ubiquitin ligase EDD have been observed in a number of carcinomas and we recently reported that EDD modulates activity of the DNA damage checkpoint kinase, CHK2. Here, we demonstrate that EDD is necessary for G(1)/S and intra S phase DNA damage checkpoint activation and for the maintenance of G(2)/M arrest after double strand DNA breaks. Defective checkpoint activation in EDD-depleted cells led to radio-resistant DNA synthesis, premature entry into mitosis, accumulation of polyploid cells, and cell death via mitotic catastrophe. In addition to decreased CHK2 activation in EDD-depleted cells, the expression of several key cell cycle mediators including Cdc25A/C and E2F1 was altered, suggesting that these checkpoint defects may be both CHK2-dependent and -independent. These data support a role for EDD in the maintenance of genomic stability, emphasising the potential importance of dysregulated EDD expression and/or function in the evolution of cancer. PMID:18073532

  6. Identification of a conserved 5'-dRP lyase activity in bacterial DNA repair ligase D and its potential role in base excision repair.

    PubMed

    de Ory, Ana; Nagler, Katja; Carrasco, Begoña; Raguse, Marina; Zafra, Olga; Moeller, Ralf; de Vega, Miguel

    2016-02-29

    Bacillus subtilis is one of the bacterial members provided with a nonhomologous end joining (NHEJ) system constituted by the DNA-binding Ku homodimer that recruits the ATP-dependent DNA Ligase D (BsuLigD) to the double-stranded DNA breaks (DSBs) ends. BsuLigD has inherent polymerization and ligase activities that allow it to fill the short gaps that can arise after realignment of the broken ends and to seal the resulting nicks, contributing to genome stability during the stationary phase and germination of spores. Here we show that BsuLigD also has an intrinsic 5'-2-deoxyribose-5-phosphate (dRP) lyase activity located at the N-terminal ligase domain that in coordination with the polymerization and ligase activities allows efficient repairing of 2'-deoxyuridine-containing DNA in an in vitro reconstituted Base Excision Repair (BER) reaction. The requirement of a polymerization, a dRP removal and a final sealing step in BER, together with the joint participation of BsuLigD with the spore specific AP endonuclease in conferring spore resistance to ultrahigh vacuum desiccation suggest that BsuLigD could actively participate in this pathway. We demonstrate the presence of the dRP lyase activity also in the homolog protein from the distantly related bacterium Pseudomonas aeruginosa, allowing us to expand our results to other bacterial LigDs. PMID:26826709

  7. Identification of a conserved 5′-dRP lyase activity in bacterial DNA repair ligase D and its potential role in base excision repair

    PubMed Central

    de Ory, Ana; Nagler, Katja; Carrasco, Begoña; Raguse, Marina; Zafra, Olga; Moeller, Ralf; de Vega, Miguel

    2016-01-01

    Bacillus subtilis is one of the bacterial members provided with a nonhomologous end joining (NHEJ) system constituted by the DNA-binding Ku homodimer that recruits the ATP-dependent DNA Ligase D (BsuLigD) to the double-stranded DNA breaks (DSBs) ends. BsuLigD has inherent polymerization and ligase activities that allow it to fill the short gaps that can arise after realignment of the broken ends and to seal the resulting nicks, contributing to genome stability during the stationary phase and germination of spores. Here we show that BsuLigD also has an intrinsic 5′-2-deoxyribose-5-phosphate (dRP) lyase activity located at the N-terminal ligase domain that in coordination with the polymerization and ligase activities allows efficient repairing of 2′-deoxyuridine-containing DNA in an in vitro reconstituted Base Excision Repair (BER) reaction. The requirement of a polymerization, a dRP removal and a final sealing step in BER, together with the joint participation of BsuLigD with the spore specific AP endonuclease in conferring spore resistance to ultrahigh vacuum desiccation suggest that BsuLigD could actively participate in this pathway. We demonstrate the presence of the dRP lyase activity also in the homolog protein from the distantly related bacterium Pseudomonas aeruginosa, allowing us to expand our results to other bacterial LigDs. PMID:26826709

  8. Synthesis of ATP derivatives of compounds of the mevalonate pathway (isopentenyl di- and triphosphate; geranyl di- and triphosphate, farnesyl di- and triphosphate, and dimethylallyl diphosphate) catalyzed by T4 RNA ligase, T4 DNA ligase and other ligases Potential relationship with the effect of bisphosphonates on osteoclasts.

    PubMed

    Sillero, Maria A Günther; de Diego, Anabel; Tavares, Janeth E F; Silva, Joana A D Catanho da; Pérez-Zúñiga, Francisco J; Sillero, Antonio

    2009-08-15

    Compounds of the mevalonate pathway containing a terminal di- or triphosphate (mev-PP or mev-PPP) were tested as substrates of several enzyme ligases (T4 RNA ligase, T4 DNA ligase, firefly luciferase and other ligases) for the synthesis of ATP derivatives of the mev-pppA or mev-ppppA type. T4 RNA ligase, in the presence of ATP and the substrates: geranyl, farnesyl or isopentenyl triphosphates, and geranyl, farnesyl, dimethylallyl or isopentenyl diphosphates, all at 0.3 mM concentration, catalyzed the synthesis of the corresponding ATP derivatives at a relative rate of activity of: 7.6+/-1.4 mU/mg or 100%; 39%; 42%; 24%; 18%; 12% and 6%, respectively. Inhibition (%) of the synthesis by excess of substrate (0.8 mM vs. 0.3 mM) was observed with farnesyl diphosphate (99%); farnesyl triphosphate (96%) and geranyl triphosphate (32%). V(max), K(m), K(cat) and K(cat)/K(m) values were also determined. The K(cat)/K(m) values calculated were for: farnesyl triphosphate, 166; geranyl triphosphate, 52.2; farnesyl diphosphate, 12.1; geranyl diphosphate, 8.6; isopentenyl triphosphate, 6.7; dimethylallyl diphosphate, 3.1 and isopentenyl diphosphate, 0.9. Similar results were obtained with T4 DNA ligase. The above-mentioned compounds were also substrates of firefly luciferase synthesizing the mev-pppA or mev-ppppA derivatives. In our hands, neither the acyl- or acetyl-CoA synthetases nor the ubiquiting activating enzyme (E1) catalyzed the synthesis of ATP derivatives of these compounds. The results here presented could be related with the mechanism of action of bisphosphonates on osteoclasts or tumor cells. PMID:19414000

  9. Cullin3-KLHL15 ubiquitin ligase mediates CtIP protein turnover to fine-tune DNA-end resection

    PubMed Central

    Ferretti, Lorenza P.; Himmels, Sarah-Felicitas; Trenner, Anika; Walker, Christina; von Aesch, Christine; Eggenschwiler, Aline; Murina, Olga; Enchev, Radoslav I.; Peter, Matthias; Freire, Raimundo; Porro, Antonio; Sartori, Alessandro A.

    2016-01-01

    Human CtIP is a decisive factor in DNA double-strand break repair pathway choice by enabling DNA-end resection, the first step that differentiates homologous recombination (HR) from non-homologous end-joining (NHEJ). To coordinate appropriate and timely execution of DNA-end resection, CtIP function is tightly controlled by multiple protein–protein interactions and post-translational modifications. Here, we identify the Cullin3 E3 ligase substrate adaptor Kelch-like protein 15 (KLHL15) as a new interaction partner of CtIP and show that KLHL15 promotes CtIP protein turnover via the ubiquitin-proteasome pathway. A tripeptide motif (FRY) conserved across vertebrate CtIP proteins is essential for KLHL15-binding; its mutation blocks KLHL15-dependent CtIP ubiquitination and degradation. Consequently, DNA-end resection is strongly attenuated in cells overexpressing KLHL15 but amplified in cells either expressing a CtIP-FRY mutant or lacking KLHL15, thus impacting the balance between HR and NHEJ. Collectively, our findings underline the key importance and high complexity of CtIP modulation for genome integrity. PMID:27561354

  10. Cullin3-KLHL15 ubiquitin ligase mediates CtIP protein turnover to fine-tune DNA-end resection.

    PubMed

    Ferretti, Lorenza P; Himmels, Sarah-Felicitas; Trenner, Anika; Walker, Christina; von Aesch, Christine; Eggenschwiler, Aline; Murina, Olga; Enchev, Radoslav I; Peter, Matthias; Freire, Raimundo; Porro, Antonio; Sartori, Alessandro A

    2016-01-01

    Human CtIP is a decisive factor in DNA double-strand break repair pathway choice by enabling DNA-end resection, the first step that differentiates homologous recombination (HR) from non-homologous end-joining (NHEJ). To coordinate appropriate and timely execution of DNA-end resection, CtIP function is tightly controlled by multiple protein-protein interactions and post-translational modifications. Here, we identify the Cullin3 E3 ligase substrate adaptor Kelch-like protein 15 (KLHL15) as a new interaction partner of CtIP and show that KLHL15 promotes CtIP protein turnover via the ubiquitin-proteasome pathway. A tripeptide motif (FRY) conserved across vertebrate CtIP proteins is essential for KLHL15-binding; its mutation blocks KLHL15-dependent CtIP ubiquitination and degradation. Consequently, DNA-end resection is strongly attenuated in cells overexpressing KLHL15 but amplified in cells either expressing a CtIP-FRY mutant or lacking KLHL15, thus impacting the balance between HR and NHEJ. Collectively, our findings underline the key importance and high complexity of CtIP modulation for genome integrity. PMID:27561354

  11. Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication

    PubMed Central

    De Piccoli, Giacomo; Labib, Karim

    2015-01-01

    Chromosome replication is initiated by a universal mechanism in eukaryotic cells, involving the assembly and activation at replication origins of the CMG (Cdc45-MCM-GINS) DNA helicase, which is essential for the progression of replication forks. Disassembly of CMG is likely to be a key regulated step at the end of chromosome replication, but the mechanism was unknown until now. Here we show that the ubiquitin ligase known as SCFDia2 promotes ubiquitylation of CMG during the final stages of chromosome replication in Saccharomyces cerevisiae. The Cdc48/p97 segregase then associates with ubiquitylated CMG, leading rapidly to helicase disassembly. These findings indicate that the end of chromosome replication in eukaryotes is controlled in a similarly complex fashion to the much-better-characterized initiation step. PMID:25342810

  12. Characterization of Mycobacterium smegmatis PolD2 and PolD1 as RNA/DNA polymerases homologous to the POL domain of bacterial DNA ligase D

    PubMed Central

    Zhu, Hui; Bhattarai, Hitesh; Yan, Han-Guang; Shuman, Stewart; Glickman, Michael S.

    2013-01-01

    Mycobacteria exploit nonhomologous end-joining (NHEJ) to repair DNA double-strand breaks. The core NHEJ machinery comprises the homodimeric DNA end-binding protein Ku and DNA ligase D (LigD), a modular enzyme composed of a C-terminal ATP-dependent ligase domain (LIG), a central 3’-phosphoesterase domain (PE), and an N-terminal polymerase domain (POL). LigD POL is proficient at adding templated and nontemplated deoxynucleotide and ribonucleotides to DNA ends in vitro and is the catalyst in vivo of unfaithful NHEJ events involving nontemplated single-nucleotide additions to blunt DSB ends. Here, we identify two mycobacterial proteins, PolD1 and PolD2, as stand-alone homologs of the LigD POL domain. Biochemical characterization of PolD1 and PolD2 shows that they resemble LigD POL in their monomeric quaternary structures, their ability to add templated and nontemplated nucleotides to primer-templates and blunt ends, and their preference for rNTPs versus dNTPs. Deletion of polD1, polD2, or both, in an M. smegmatis strain carrying an inactivating mutation in LigD POL failed to reveal a role for PolD1 or PolD2 in templated nucleotide additions during NHEJ of 5’-overhang DSBs or in clastogen resistance. Whereas our results document the existence and characteristics of new stand-alone members of the LigD POL family of RNA/DNA polymerases, they imply that other polymerases can perform fill-in synthesis during mycobacterial NHEJ. PMID:23198659

  13. Circadian control of XPA and excision repair of cisplatin-DNA damage by cryptochrome and HERC2 ubiquitin ligase.

    PubMed

    Kang, Tae-Hong; Lindsey-Boltz, Laura A; Reardon, Joyce T; Sancar, Aziz

    2010-03-16

    Cisplatin is one of the most commonly used anticancer drugs. It kills cancer cells by damaging their DNA, and hence cellular DNA repair capacity is an important determinant of its efficacy. Here, we investigated the repair of cisplatin-induced DNA damage in mouse liver and testis tissue extracts prepared at regular intervals over the course of a day. We find that the XPA protein, which plays an essential role in repair of cisplatin damage by nucleotide excision repair, exhibits circadian oscillation in the liver but not in testis. Consequently, removal of cisplatin adducts in liver extracts, but not in testis extracts, exhibits a circadian pattern with zenith at approximately 5 pm and nadir at approximately 5 am. Furthermore, we find that the circadian oscillation of XPA is achieved both by regulation of transcription by the core circadian clock proteins including cryptochrome and by regulation at the posttranslational level by the HERC2 ubiquitin ligase. These findings may be used as a guide for timing of cisplatin chemotherapy. PMID:20304803

  14. Analysis of the distribution and evolution of the ATP-dependent DNA ligases of bacteria delineates a distinct phylogenetic group 'Lig E'.

    PubMed

    Williamson, Adele; Hjerde, Erik; Kahlke, Tim

    2016-01-01

    Prior to the discovery of a minimal ATP-dependent DNA ligase in Haemophilus influenzae, bacteria were thought to only possess a NAD-dependent ligase, which was involved in sealing of Okazaki fragments. We now know that a diverse range of bacterial species possess up to six of these accessory bacterial ATP-dependent DNA ligases (b-ADLs), which vary in size and enzymatic domain associations. Here we compare the domain structure of different types of b-ADLs and investigate their distribution among the bacterial domain to describe possible evolutionary trajectories that gave rise to the sequence and structural diversity of these enzymes. Previous biochemical and genetic analyses have delineated three main classes of these enzymes: Lig B, Lig C and Lig D, which appear to have descended from a common ancestor within the bacterial domain. In the present study, we delineate a fourth group of b-ADLs, Lig E, which possesses a number of unique features at the primary and tertiary structural levels. The biochemical characteristics, domain structure and inferred extracellular location sets this group apart from the other b-ADLs. The results presented here indicate that the Lig E type ligases were horizontally transferred into bacteria in a separate event from other b-ADLs possibly from a bacteriophage. PMID:26412580

  15. Kinetic mechanism and fidelity of nick sealing by Escherichia coli NAD+-dependent DNA ligase (LigA)

    PubMed Central

    Chauleau, Mathieu; Shuman, Stewart

    2016-01-01

    Escherichia coli DNA ligase (EcoLigA) repairs 3′-OH/5′-PO4 nicks in duplex DNA via reaction of LigA with NAD+ to form a covalent LigA-(lysyl-Nζ)–AMP intermediate (step 1); transfer of AMP to the nick 5′-PO4 to form an AppDNA intermediate (step 2); and attack of the nick 3′-OH on AppDNA to form a 3′-5′ phosphodiester (step 3). A distinctive feature of EcoLigA is its stimulation by ammonium ion. Here we used rapid mix-quench methods to analyze the kinetic mechanism of single-turnover nick sealing by EcoLigA–AMP. For substrates with correctly base-paired 3′-OH/5′-PO4 nicks, kstep2 was fast (6.8–27 s−1) and similar to kstep3 (8.3–42 s−1). Absent ammonium, kstep2 and kstep3 were 48-fold and 16-fold slower, respectively. EcoLigA was exquisitely sensitive to 3′-OH base mispairs and 3′ N:abasic lesions, which elicited 1000- to >20000-fold decrements in kstep2. The exception was the non-canonical 3′ A:oxoG configuration, which EcoLigA accepted as correctly paired for rapid sealing. These results underscore: (i) how EcoLigA requires proper positioning of the nick 3′ nucleoside for catalysis of 5′ adenylylation; and (ii) EcoLigA's potential to embed mutations during the repair of oxidative damage. EcoLigA was relatively tolerant of 5′-phosphate base mispairs and 5′ N:abasic lesions. PMID:26857547

  16. Kinetic mechanism and fidelity of nick sealing by Escherichia coli NAD+-dependent DNA ligase (LigA).

    PubMed

    Chauleau, Mathieu; Shuman, Stewart

    2016-03-18

    Escherichia coli DNA ligase (EcoLigA) repairs 3'-OH/5'-PO4 nicks in duplex DNA via reaction of LigA with NAD(+) to form a covalent LigA-(lysyl-Nζ)-AMP intermediate (step 1); transfer of AMP to the nick 5'-PO4 to form an AppDNA intermediate (step 2); and attack of the nick 3'-OH on AppDNA to form a 3'-5' phosphodiester (step 3). A distinctive feature of EcoLigA is its stimulation by ammonium ion. Here we used rapid mix-quench methods to analyze the kinetic mechanism of single-turnover nick sealing by EcoLigA-AMP. For substrates with correctly base-paired 3'-OH/5'-PO4 nicks, kstep2 was fast (6.8-27 s(-1)) and similar to kstep3 (8.3-42 s(-1)). Absent ammonium, kstep2 and kstep3 were 48-fold and 16-fold slower, respectively. EcoLigA was exquisitely sensitive to 3'-OH base mispairs and 3' N:abasic lesions, which elicited 1000- to >20000-fold decrements in kstep2. The exception was the non-canonical 3' A:oxoG configuration, which EcoLigA accepted as correctly paired for rapid sealing. These results underscore: (i) how EcoLigA requires proper positioning of the nick 3' nucleoside for catalysis of 5' adenylylation; and (ii) EcoLigA's potential to embed mutations during the repair of oxidative damage. EcoLigA was relatively tolerant of 5'-phosphate base mispairs and 5' N:abasic lesions. PMID:26857547

  17. Sister chromatid telomere fusions, but not NHEJ-mediated inter-chromosomal telomere fusions, occur independently of DNA ligases 3 and 4

    PubMed Central

    Liddiard, Kate; Ruis, Brian; Takasugi, Taylor; Harvey, Adam; Ashelford, Kevin E.; Hendrickson, Eric A.; Baird, Duncan M.

    2016-01-01

    Telomeres shorten with each cell division and can ultimately become substrates for nonhomologous end-joining repair, leading to large-scale genomic rearrangements of the kind frequently observed in human cancers. We have characterized more than 1400 telomere fusion events at the single-molecule level, using a combination of high-throughput sequence analysis together with experimentally induced telomeric double-stranded DNA breaks. We show that a single chromosomal dysfunctional telomere can fuse with diverse nontelomeric genomic loci, even in the presence of an otherwise stable genome, and that fusion predominates in coding regions. Fusion frequency was markedly increased in the absence of TP53 checkpoint control and significantly modulated by the cellular capacity for classical, versus alternative, nonhomologous end joining (NHEJ). We observed a striking reduction in inter-chromosomal fusion events in cells lacking DNA ligase 4, in contrast to a remarkably consistent profile of intra-chromosomal fusion in the context of multiple genetic knockouts, including DNA ligase 3 and 4 double-knockouts. We reveal distinct mutational signatures associated with classical NHEJ-mediated inter-chromosomal, as opposed to alternative NHEJ-mediated intra-chromosomal, telomere fusions and evidence for an unanticipated sufficiency of DNA ligase 1 for these intra-chromosomal events. Our findings have implications for mechanisms driving cancer genome evolution. PMID:26941250

  18. A Defect in DNA Ligase4 Enhances the Frequency of TALEN-Mediated Targeted Mutagenesis in Rice.

    PubMed

    Nishizawa-Yokoi, Ayako; Cermak, Tomas; Hoshino, Tomoki; Sugimoto, Kazuhiko; Saika, Hiroaki; Mori, Akiko; Osakabe, Keishi; Hamada, Masao; Katayose, Yuichi; Starker, Colby; Voytas, Daniel F; Toki, Seiichi

    2016-02-01

    We have established methods for site-directed mutagenesis via transcription activator-like effector nucleases (TALENs) in the endogenous rice (Oryza sativa) waxy gene and demonstrated stable inheritance of TALEN-induced somatic mutations to the progeny. To analyze the role of classical nonhomologous end joining (cNHEJ) and alternative nonhomologous end joining (altNHEJ) pathways in TALEN-induced mutagenesis in plant cells, we investigated whether a lack of DNA Ligase4 (Lig4) affects the kinetics of TALEN-induced double-strand break repair in rice cells. Deep-sequencing analysis revealed that the frequency of all types of mutations, namely deletion, insertion, combination of insertion with deletion, and substitution, in lig4 null mutant calli was higher than that in a lig4 heterozygous mutant or the wild type. In addition, the ratio of large deletions (greater than 10 bp) and deletions repaired by microhomology-mediated end joining (MMEJ) to total deletion mutations in lig4 null mutant calli was higher than that in the lig4 heterozygous mutant or wild type. Furthermore, almost all insertions (2 bp or greater) were shown to be processed via copy and paste of one or more regions around the TALENs cleavage site and rejoined via MMEJ regardless of genetic background. Taken together, our findings indicate that the dysfunction of cNHEJ leads to a shift in the repair pathway from cNHEJ to altNHEJ or synthesis-dependent strand annealing. PMID:26668331

  19. Relationship between genetic polymorphisms of DNA ligase 1 and non-small cell lung cancer susceptibility and radiosensitivity.

    PubMed

    Tian, H; He, X; Yin, L; Guo, W J; Xia, Y Y; Jiang, Z X

    2015-01-01

    The aim of this study was to examine the relationship between genetic polymorphisms in DNA ligase 1 (LIG1) and non-small cell lung cancer (NSCLC) susceptibility and radiosensitivity in a Chinese population. This was a case-control study that included 352 NSCLC patients and 448 healthy controls. Polymerase chain reaction-restriction fragment length polymorphism analysis was conducted to detect HaeIII polymorphisms in exon 6 of the LIG1 gene in this popula-tion. This information was used to observe the effects of radiation in pa-tients with different genotypes in order to determine the genotypes as-sociated with radiosensitivity. The CC genotype and C allele frequency were significantly higher in the NSCLC group than in the control group (P = 0.012 and P = 0.023, respectively). The relative risk of experienc-ing NSCLC was 2.55 [95% confidence interval (CI), 1.12-3.98] for CC homozygous patients and 0.87 (95%CI, 0.46-1.88) for AA homozygous patients. Analysis of LIG1 genetic polymorphisms and radiosensitiv-ity of NSCLC patients showed that AA homozygous patients were sig-nificantly more radiosensitive than the control group (AA vs AC, P = 0.014; AA vs CC, P < 0.001; AC vs CC, P = 0.023). Therefore, the LIG1 CC genotype was associated with susceptibility to NSCLC, and the AA genotype demonstrated increased radiosensitivity compared to the AC and CC genotypes. PMID:26125914

  20. A Defect in DNA Ligase4 Enhances the Frequency of TALEN-Mediated Targeted Mutagenesis in Rice1[OPEN

    PubMed Central

    Cermak, Tomas; Sugimoto, Kazuhiko; Saika, Hiroaki; Mori, Akiko; Osakabe, Keishi; Hamada, Masao; Katayose, Yuichi; Voytas, Daniel F.

    2016-01-01

    We have established methods for site-directed mutagenesis via transcription activator-like effector nucleases (TALENs) in the endogenous rice (Oryza sativa) waxy gene and demonstrated stable inheritance of TALEN-induced somatic mutations to the progeny. To analyze the role of classical nonhomologous end joining (cNHEJ) and alternative nonhomologous end joining (altNHEJ) pathways in TALEN-induced mutagenesis in plant cells, we investigated whether a lack of DNA Ligase4 (Lig4) affects the kinetics of TALEN-induced double-strand break repair in rice cells. Deep-sequencing analysis revealed that the frequency of all types of mutations, namely deletion, insertion, combination of insertion with deletion, and substitution, in lig4 null mutant calli was higher than that in a lig4 heterozygous mutant or the wild type. In addition, the ratio of large deletions (greater than 10 bp) and deletions repaired by microhomology-mediated end joining (MMEJ) to total deletion mutations in lig4 null mutant calli was higher than that in the lig4 heterozygous mutant or wild type. Furthermore, almost all insertions (2 bp or greater) were shown to be processed via copy and paste of one or more regions around the TALENs cleavage site and rejoined via MMEJ regardless of genetic background. Taken together, our findings indicate that the dysfunction of cNHEJ leads to a shift in the repair pathway from cNHEJ to altNHEJ or synthesis-dependent strand annealing. PMID:26668331

  1. DNA Ligases I and III Cooperate in Alternative Non-Homologous End-Joining in Vertebrates

    PubMed Central

    Mladenov, Emil; Bencsik-Theilen, Alena; Bednar, Theresa; Wu, Wenqi; Arakawa, Hiroshi; Iliakis, George

    2013-01-01

    Biochemical and genetic studies suggest that vertebrates remove double-strand breaks (DSBs) from their genomes predominantly by two non-homologous end joining (NHEJ) pathways. While canonical NHEJ depends on the well characterized activities of DNA-dependent protein kinase (DNA-PK) and LIG4/XRCC4/XLF complexes, the activities and the mechanisms of the alternative, backup NHEJ are less well characterized. Notably, the contribution of LIG1 to alternative NHEJ remains conjectural and although biochemical, cytogenetic and genetic experiments implicate LIG3, this contribution has not been formally demonstrated. Here, we take advantage of the powerful genetics of the DT40 chicken B-cell system to delineate the roles of LIG1 and LIG3 in alternative NHEJ. Our results expand the functions of LIG1 to alternative NHEJ and demonstrate a remarkable ability for LIG3 to backup DSB repair by NHEJ in addition to its essential function in the mitochondria. Together with results on DNA replication, these observations uncover a remarkable and previously unappreciated functional flexibility and interchangeability between LIG1 and LIG3. PMID:23555685

  2. Interplay between Cernunnos-XLF and nonhomologous end-joining proteins at DNA ends in the cell.

    PubMed

    Wu, Peï-Yu; Frit, Philippe; Malivert, Laurent; Revy, Patrick; Biard, Denis; Salles, Bernard; Calsou, Patrick

    2007-11-01

    Cernunnos-XLF is the most recently identified core component in the nonhomologous end-joining (NHEJ) pathway for the repair of DNA double strand breaks (DSBs) in mammals. It associates with the XRCC4/ligase IV ligation complex and stimulates its activity in a still unknown manner. NHEJ also requires the DNA-dependent protein kinase that contains a Ku70/Ku80 heterodimer and the DNA-dependent protein kinase catalytic subunit. To understand the interplay between Cernunnos-XLF and the other proteins implicated in the NHEJ process, we have analyzed the interactions of Cernunnos-XLF and NHEJ proteins in cells after treatment with DNA double strand-breaking agents by means of a detergent-based cellular fractionation protocol. We report that Cernunnos-XLF is corecruited with the core NHEJ components on chromatin damaged with DSBs in human cells and is phosphorylated by the DNA-dependent protein kinase catalytic subunit. Our data show a pivotal role for DNA ligase IV in the NHEJ ligation complex assembly and recruitment to DSBs because the association of Cernunnos-XLF with the XRCC4/ligase IV complex relies primarily on the DNA ligase IV component, and an intact XRCC4/ligase IV complex is necessary for Cernunnos-XLF mobilization to damaged chromatin. Conversely, a Cernunnos-XLF defect has no apparent impact on the XRCC4/ligase IV association and recruitment to the DSBs or on the stimulation of the DNA-dependent protein kinase on DNA ends. PMID:17720816

  3. Dual-color detection of DNA sequence variants by ligase-mediated analysis

    SciTech Connect

    Samiotaki, M.; Kwiatkowski, M.; Parik, J.; Landegren, U. )

    1994-03-15

    Genetic screening for sequence variants associated with disease is assuming increasing importance in clinical medicine as well as in research. The authors describe an efficient method for such analyses, comprising a combination of practical features: (1) Amplified DNA samples are analyzed for their ability to serve as templates in standardized allele-specific ligation reactions between oligonucleotide probes; (2) Two allele-specific probes, differentially labeled with either of two lanthanide labels, compete for ligation to a third oligonucleotide (the signal from the two labeled probes can thus be directly compared in a sensitive time-resolved fluorescence detection reaction); and (3) Large sets of analyses are processed in parallel using a 96-pin capture manifold, serving to reduce pipetting steps and the risk of contamination. The authors present here the basis of the technique and its application to the screening for two common mutations causing cystic fibrosis and [alpha][sub 1]-antiytrypsin deficiency. 19 refs., 4 figs.

  4. Homology Modeling of NAD+-Dependent DNA Ligase of the Wolbachia Endosymbiont of Brugia malayi and Its Drug Target Potential Using Dispiro-Cycloalkanones

    PubMed Central

    Shrivastava, Nidhi; Nag, Jeetendra K.; Pandey, Jyoti; Tripathi, Rama Pati; Shah, Priyanka; Siddiqi, Mohammad Imran

    2015-01-01

    Lymphatic filarial nematodes maintain a mutualistic relationship with the endosymbiont Wolbachia. Depletion of Wolbachia produces profound defects in nematode development, fertility, and viability and thus has great promise as a novel approach for treating filarial diseases. NAD+-dependent DNA ligase is an essential enzyme of DNA replication, repair, and recombination. Therefore, in the present study, the antifilarial drug target potential of the NAD+-dependent DNA ligase of the Wolbachia symbiont of Brugia malayi (wBm-LigA) was investigated using dispiro-cycloalkanone compounds. Dispiro-cycloalkanone specifically inhibited the nick-closing and cohesive-end ligation activities of the enzyme without inhibiting human or T4 DNA ligase. The mode of inhibition was competitive with the NAD+ cofactor. Docking studies also revealed the interaction of these compounds with the active site of the target enzyme. The adverse effects of these inhibitors were observed on adult and microfilarial stages of B. malayi in vitro, and the most active compounds were further monitored in vivo in jirds and mastomys rodent models. Compounds 1, 2, and 5 had severe adverse effects in vitro on the motility of both adult worms and microfilariae at low concentrations. Compound 2 was the best inhibitor, with the lowest 50% inhibitory concentration (IC50) (1.02 μM), followed by compound 5 (IC50, 2.3 μM) and compound 1 (IC50, 2.9 μM). These compounds also exhibited the same adverse effect on adult worms and microfilariae in vivo (P < 0.05). These compounds also tremendously reduced the wolbachial load, as evident by quantitative real-time PCR (P < 0.05). wBm-LigA thus shows great promise as an antifilarial drug target, and dispiro-cycloalkanone compounds show great promise as antifilarial lead candidates. PMID:25845868

  5. A Comparative Structure/Function Analysis of Two Type IV Pilin DNA Receptors Defines a Novel Mode of DNA Binding.

    PubMed

    Berry, Jamie-Lee; Xu, Yingqi; Ward, Philip N; Lea, Susan M; Matthews, Stephen J; Pelicic, Vladimir

    2016-06-01

    DNA transformation is a widespread process allowing bacteria to capture free DNA by using filamentous nano-machines composed of type IV pilins. These proteins can act as DNA receptors as demonstrated by the finding that Neisseria meningitidis ComP minor pilin has intrinsic DNA-binding ability. ComP binds DNA better when it contains the DNA-uptake sequence (DUS) motif abundant in this species genome, playing a role in its trademark ability to selectively take up its own DNA. Here, we report high-resolution structures for meningococcal ComP and Neisseria subflava ComPsub, which recognize different DUS motifs. We show that they are structurally identical type IV pilins that pack readily into filament models and display a unique DD region delimited by two disulfide bonds. Functional analysis of ComPsub defines a new mode of DNA binding involving the DD region, adapted for exported DNA receptors. PMID:27161979

  6. The role of HERC2 and RNF8 ubiquitin E3 ligases in the promotion of translesion DNA synthesis in the chicken DT40 cell line.

    PubMed

    Mohiuddin; Kobayashi, Shunsuke; Keka, Islam Shamima; Guilbaud, Guillaume; Sale, Julian; Narita, Takeo; Abdel-Aziz, H Ismail; Wang, Xin; Ogawa, Saki; Sasanuma, Hiroyuki; Chiu, Roland; Oestergaard, Vibe H; Lisby, Michael; Takeda, Shunichi

    2016-04-01

    The replicative DNA polymerases are generally blocked by template DNA damage. The resulting replication arrest can be released by one of two post-replication repair (PRR) pathways, translesion DNA synthesis (TLS) and template switching by homologous recombination (HR). The HERC2 ubiquitin ligase plays a role in homologous recombination by facilitating the assembly of the Ubc13 ubiquitin-conjugating enzyme with the RNF8 ubiquitin ligase. To explore the role of HERC2 and RNF8 in PRR, we examined immunoglobulin diversification in chicken DT40 cells deficient in HERC2 and RNF8. Unexpectedly, the HERC2(-/-) and RNF8(-/-) cells and HERC2(-/-)/RNF8(-/-) double mutant cells exhibit a significant reduction in the rate of immunoglobulin (Ig) hypermutation, compared to wild-type cells. Further, the HERC2(-/-) and RNF8(-/-) mutants exhibit defective maintenance of replication fork progression immediately after exposure to UV while retaining proficient post-replicative gap filling. These mutants are both proficient in mono-ubiquitination of PCNA. Taken together, these results suggest that HERC2 and RNF8 promote TLS past abasic sites and UV-lesions at or very close to stalled replication forks. PMID:26994443

  7. Screen for abnormal mitochondrial phenotypes in mouse embryonic stem cells identifies a model for succinyl-CoA ligase deficiency and mtDNA depletion

    PubMed Central

    Donti, Taraka R.; Stromberger, Carmen; Ge, Ming; Eldin, Karen W.; Craigen, William J.; Graham, Brett H.

    2014-01-01

    ABSTRACT Mutations in subunits of succinyl-CoA synthetase/ligase (SCS), a component of the citric acid cycle, are associated with mitochondrial encephalomyopathy, elevation of methylmalonic acid (MMA), and mitochondrial DNA (mtDNA) depletion. A FACS-based retroviral-mediated gene trap mutagenesis screen in mouse embryonic stem (ES) cells for abnormal mitochondrial phenotypes identified a gene trap allele of Sucla2 (Sucla2SAβgeo), which was used to generate transgenic mice. Sucla2 encodes the ADP-specific β-subunit isoform of SCS. Sucla2SAβgeo homozygotes exhibited recessive lethality, with most mutants dying late in gestation (e18.5). Mutant placenta and embryonic (e17.5) brain, heart and muscle showed varying degrees of mtDNA depletion (20–60%). However, there was no mtDNA depletion in mutant liver, where the gene is not normally expressed. Elevated levels of MMA were observed in embryonic brain. SCS-deficient mouse embryonic fibroblasts (MEFs) demonstrated a 50% reduction in mtDNA content compared with wild-type MEFs. The mtDNA depletion resulted in reduced steady state levels of mtDNA encoded proteins and multiple respiratory chain deficiencies. mtDNA content could be restored by reintroduction of Sucla2. This mouse model of SCS deficiency and mtDNA depletion promises to provide insights into the pathogenesis of mitochondrial diseases with mtDNA depletion and into the biology of mtDNA maintenance. In addition, this report demonstrates the power of a genetic screen that combines gene trap mutagenesis and FACS analysis in mouse ES cells to identify mitochondrial phenotypes and to develop animal models of mitochondrial dysfunction. PMID:24271779

  8. Concerted action of the ubiquitin-fusion degradation protein 1 (Ufd1) and Sumo-targeted ubiquitin ligases (STUbLs) in the DNA-damage response.

    PubMed

    Køhler, Julie Bonne; Jørgensen, Maria Louise Mønster; Beinoraité, Gabriele; Thorsen, Michael; Thon, Geneviève

    2013-01-01

    In eukaryotes many players in the DNA-damage response (DDR) catalyze protein sumoylation or ubiquitylation. Emphasis has been placed on how these modifications orchestrate the sequential recruitment of repair factors to sites of DNA damage or stalled replication forks. Here, we shed light on a pathway in which sumoylated factors are eliminated through the coupled action of Sumo-targeted ubiquitin ligases (STUbLs) and the ubiquitin-fusion degradation protein 1 (Ufd1). Ufd1 is a subunit of the Cdc48-Ufd1-Npl4 complex implicated in the sorting of ubiquitylated substrates for degradation by the proteasome. We find that in fission yeast, Ufd1 interacts physically and functionally with the Sumo-targeted ubiquitin ligase (STUbL) Rfp1, homologous to human RNF4, and with the Sumo E3 ligase Pli1, homologous to human PIAS1. Deleting a C-terminal domain of Ufd1 that mediates the interaction of Ufd1 with Rfp1, Pli1, and Sumo (ufd1ΔCt(213-342) ) lead to an accumulation of high-molecular-weight Sumo conjugates and caused severe genomic instabilities. The spectrum of sensitivity of ufd1ΔCt(213-342) cells to genotoxins, the epistatic relationships of ufd1ΔCt(213-342) with mutations in DNA repair factors, and the localization of the repair factor Rad22 in ufd1ΔCt(213-342) cells point to ufd1ΔCt(213-342) cells accumulating aberrant structures during replication that require homologous recombination (HR) for their repair. We present evidence that HR is however often not successful in ufd1ΔCt(213-342) cells and we identify Rad22 as one of the high-molecular-weight conjugates accumulating in the ufd1ΔCt(213-342) mutant consistent with Rad22 being a STUbL/Ufd1 substrate. Suggesting a direct role of Ufd1 in the processing of Sumo-conjugates, Ufd1 formed nuclear foci colocalizing with Sumo during the DDR, and Sumo-conjugates accumulated in foci in the ufd1ΔCt(213-342) mutant. Broader functional relationships between Ufd1 and STUbLs conceivably affect numerous cellular processes

  9. Differential response between the p53 ubiquitin-protein ligases Pirh2 and MdM2 following DNA damage in human cancer cells

    SciTech Connect

    Duan Wenrui; Gao, Li; Wu Xin; Zhang Yang; Otterson, Gregory A.; Villalona-Calero, Miguel A. . E-mail: Miguel.villalona@osumc.edu

    2006-10-15

    Pirh2, a recently identified ubiquitin-protein ligase, has been reported to promote p53 degradation. Pirh2 physically interacts with p53 and promotes ubiquitination of p53 independently of MDM2. Like MDM2, Pirh2 is thought to participate in an autoregulatory feedback loop that controls p53 function. We have previously reported that Pirh2 was overexpressed in human and murine lung cancers as compared to uninvolved lung tissue. Pirh2 increase could potentially cause degradation of wildtype p53 and reduce its tumor suppression function in the lung tumor cells. Since Pirh2 has been reported to be transactivated by p53, however, the mechanisms by which a high level of Pirh2 expression is maintained in tumor cells despite low level of wildtype p53 protein are unclear. In order to evaluate p53 involvement in the transactivation of Pirh2, we evaluated Pirh2, MDM2, p53 and p21 expression with Western blot analysis and real time PCR after {gamma} irradiation or cisplatin DNA damage treatment using human cancer cell lines containing wildtype (A549, MCF-7), mutant (H719) and null (H1299) p53. Surprisingly, Pirh2 expression was not affected by the presence of wildtype p53 in the cancer cells. In contrast, MDM2 was upregulated by wildtype p53 in A549 and MCF-7 cells and was absent from the H1299 and the H719 cells. We conclude that Pirh2 operates in a distinct manner from MDM2 in response to DNA damage in cancer cells. Pirh2 elevation in p53 null cells indicates the existence of additional molecular mechanisms for Pirh2 upregulation and suggests that p53 is not the sole target of Pirh2 ubiquitin ligase activity.

  10. Quantitative Lys-ϵ-Gly-Gly (diGly) Proteomics Coupled with Inducible RNAi Reveals Ubiquitin-mediated Proteolysis of DNA Damage-inducible Transcript 4 (DDIT4) by the E3 Ligase HUWE1

    PubMed Central

    Thompson, Joel W.; Nagel, Jane; Hoving, Sjouke; Gerrits, Bertran; Bauer, Andreas; Thomas, Jason R.; Kirschner, Marc W.; Schirle, Markus; Luchansky, Sarah J.

    2014-01-01

    Targeted degradation of proteins through the ubiquitin-proteasome system (UPS) via the activities of E3 ubiquitin ligases regulates diverse cellular processes, and misregulation of these enzymes contributes to the pathogenesis of human diseases. One of the challenges facing the UPS field is to delineate the complete cohort of substrates for a particular E3 ligase. Advances in mass spectrometry and the development of antibodies recognizing the Lys-ϵ-Gly-Gly (diGly) remnant from ubiquitinated proteins following trypsinolysis have provided a tool to address this question. We implemented an inducible loss of function approach in combination with quantitative diGly proteomics to find novel substrates of HUWE1 (HECT, UBA, and WWE domain containing 1, E3 ubiquitin protein ligase), an E3 ligase implicated in cancer and intellectual disabilities. diGly proteomics results led to the identification of DNA damage-inducible transcript 4 (DDIT4) as a putative HUWE1 substrate. Cell-based assays demonstrated that HUWE1 interacts with and regulates ubiquitination and stability of DDIT4. Together these data suggest a model in which HUWE1 mediates DDIT4 proteasomal degradation. Our results demonstrate proof of concept that inducible knockdown of an E3 ligase in combination with diGly proteomics provides a potentially advantageous method for identifying novel E3 substrates that may help to identify candidates for therapeutic modulation in the UPS. PMID:25147182

  11. TRIM24 Is a p53-Induced E3-Ubiquitin Ligase That Undergoes ATM-Mediated Phosphorylation and Autodegradation during DNA Damage

    PubMed Central

    Jain, Abhinav K.; Allton, Kendra; Duncan, Aundrietta D.

    2014-01-01

    Tumor suppressor p53 protects cells from genomic insults and is a target of mutation in more than 50% of human cancers. Stress-mediated modification and increased stability of p53 promote p53 interaction with chromatin, which results in transcription of target genes that are critical for the maintenance of genomic integrity. We recently discovered that TRIM24, an E3-ubiquitin ligase, ubiquitinates and promotes proteasome-mediated degradation of p53. Here, we show that TRIM24 is destabilized by ATM-mediated phosphorylation of TRIM24S768 in response to DNA damage, which disrupts TRIM24-p53 interactions and promotes the degradation of TRIM24. Transcription of TRIM24 is directly induced by damage-activated p53, which binds p53 response elements and activates expression of TRIM24. Newly synthesized TRIM24 interacts with phosphorylated p53 to target it for degradation and termination of the DNA damage response. These studies indicate that TRIM24, like MDM2, controls p53 levels in an autoregulatory feedback loop. However, unlike MDM2, TRIM24 also targets activated p53 to terminate p53-regulated response to DNA damage. PMID:24820418

  12. The SUMO-targeted ubiquitin ligase RNF4 localizes to etoposide-exposed mitotic chromosomes: implication for a novel DNA damage response during mitosis.

    PubMed

    Saito, Masayuki; Fujimitsu, Yuka; Sasano, Takeshi; Yoshikai, Yushi; Ban-Ishihara, Reiko; Nariai, Yuko; Urano, Takeshi; Saitoh, Hisato

    2014-04-25

    RNF4, a SUMO-targeted ubiquitin ligase (STUbL), localizes to the nucleus and functions in the DNA damage response during interphase of the cell cycle. RNF4 also exists in cells undergoing mitosis, where its regulation and function remain poorly understood. Here we showed that administration of etoposide, an anticancer DNA topoisomerase II poison, to mitotic human cervical cancer HeLa cells induced SUMO-2/3-dependent localization of RNF4 to chromosomes. The FK2 antibody signals, indicative of poly/multi-ubiquitin assembly, were detected on etoposide-exposed mitotic chromosomes, whereas the signals were negligible in cells depleted for RNF4 by RNA interference. This suggests that RNF4 functions as a STUbL in the etoposide-induced damage response during mitosis. Indeed, RNF4-depletion sensitized mitotic HeLa cells to etoposide and increased cells with micronuclei. These results indicate the importance of the RNF4-mediated STUbL pathway during mitosis for the maintenance of chromosome integrity and further implicate RNF4 as a target for topo II poison-based therapy for cancer patients. PMID:24695317

  13. Archaeal Nucleic Acid Ligases and Their Potential in Biotechnology

    PubMed Central

    Chambers, Cecilia R.; Patrick, Wayne M.

    2015-01-01

    With their ability to catalyse the formation of phosphodiester linkages, DNA ligases and RNA ligases are essential tools for many protocols in molecular biology and biotechnology. Currently, the nucleic acid ligases from bacteriophage T4 are used extensively in these protocols. In this review, we argue that the nucleic acid ligases from Archaea represent a largely untapped pool of enzymes with diverse and potentially favourable properties for new and emerging biotechnological applications. We summarise the current state of knowledge on archaeal DNA and RNA ligases, which makes apparent the relative scarcity of information on in vitro activities that are of most relevance to biotechnologists (such as the ability to join blunt- or cohesive-ended, double-stranded DNA fragments). We highlight the existing biotechnological applications of archaeal DNA ligases and RNA ligases. Finally, we draw attention to recent experiments in which protein engineering was used to modify the activities of the DNA ligase from Pyrococcus furiosus and the RNA ligase from Methanothermobacter thermautotrophicus, thus demonstrating the potential for further work in this area. PMID:26494982

  14. Novel Organotin(IV)-Schiff Base Complexes: Synthesis, Characterization, Antimicrobial Activity, and DNA Interaction Studies

    PubMed Central

    Prasad, K. Shiva; Kumar, L. Shiva; Prasad, Melvin; Revanasiddappa, Hosakere D.

    2010-01-01

    Four organotin(IV) complexes with 2-(2-hydroxybenzylideneamino)isoindoline-1,3-dione (L1), and 4-(4-hydroxy-3-methoxybenzylideneamino-N-(pyrimidin-2-yl)benzenesulfonamide (L2) were synthesized and well characterized by analytical and spectral studies. The synthesized compounds were tested for antimicrobial activity by disc diffusion method. The DNA binding of the complexes 1 and 3 with CT-DNA has been performed with absorption spectroscopy, which showed that both the complexes are avid binders of CT-DNA. Also the nuclease activity of complexes 1 and 3 with plasmid DNA (pUC19) was studied using agarose gel electrophoresis. The complex 1 can act as effective DNA cleaving agent when compared to complex 3 resulting in the nicked form of DNA under physiological conditions. The gel was run both in the absence and presence of the oxidizing agent. PMID:21253533

  15. Chromosome demise in the wake of ligase-deficient replication

    PubMed Central

    Kouzminova, Elena A.; Kuzminov, Andrei

    2012-01-01

    Summary Bacterial DNA ligases, NAD+-dependent enzymes, are distinct from eukaryotic ATP-dependent ligases, representing promising targets for broad-spectrum antimicrobials. Yet, the chromosomal consequences of ligase-deficient DNA replication, during which Okazaki fragments accumulate, are still unclear. Using ligA251(Ts), the strongest ligase mutant of Escherichia coli, we studied ligase-deficient DNA replication by genetic and physical approaches. Here we show that replication without ligase kills after a short resistance period. We found that double-strand break repair via RecA, RecBCD, RuvABC and RecG explains the transient resistance, whereas irreparable chromosomal fragmentation explains subsequent cell death. Remarkably, death is mostly prevented by elimination of linear DNA degradation activity of ExoV, suggesting that non-allelic double-strand breaks behind replication forks precipitate DNA degradation that enlarge them into allelic double-strand gaps. Marker frequency profiling of synchronized replication reveals stalling of ligase-deficient forks with subsequent degradation of the DNA synthesized without ligase. The mechanism that converts unsealed nicks behind replication forks first into repairable double-strand breaks and then into irreparable double-strand gaps may be behind lethality of any DNA damaging treatment. PMID:22582878

  16. How topoisomerase IV can efficiently unknot and decatenate negatively supercoiled DNA molecules without causing their torsional relaxation.

    PubMed

    Rawdon, Eric J; Dorier, Julien; Racko, Dusan; Millett, Kenneth C; Stasiak, Andrzej

    2016-06-01

    Freshly replicated DNA molecules initially form multiply interlinked right-handed catenanes. In bacteria, these catenated molecules become supercoiled by DNA gyrase before they undergo a complete decatenation by topoisomerase IV (Topo IV). Topo IV is also involved in the unknotting of supercoiled DNA molecules. Using Metropolis Monte Carlo simulations, we investigate the shapes of supercoiled DNA molecules that are either knotted or catenated. We are especially interested in understanding how Topo IV can unknot right-handed knots and decatenate right-handed catenanes without acting on right-handed plectonemes in negatively supercoiled DNA molecules. To this end, we investigate how the topological consequences of intersegmental passages depend on the geometry of the DNA-DNA juxtapositions at which these passages occur. We observe that there are interesting differences between the geometries of DNA-DNA juxtapositions in the interwound portions and in the knotted or catenated portions of the studied molecules. In particular, in negatively supercoiled, multiply interlinked, right-handed catenanes, we detect specific regions where DNA segments belonging to two freshly replicated sister DNA molecules form left-handed crossings. We propose that, due to its geometrical preference to act on left-handed crossings, Topo IV can specifically unknot supercoiled DNA, as well as decatenate postreplicative catenanes, without causing their torsional relaxation. PMID:27106058

  17. How topoisomerase IV can efficiently unknot and decatenate negatively supercoiled DNA molecules without causing their torsional relaxation

    PubMed Central

    Rawdon, Eric J.; Dorier, Julien; Racko, Dusan; Millett, Kenneth C.; Stasiak, Andrzej

    2016-01-01

    Freshly replicated DNA molecules initially form multiply interlinked right-handed catenanes. In bacteria, these catenated molecules become supercoiled by DNA gyrase before they undergo a complete decatenation by topoisomerase IV (Topo IV). Topo IV is also involved in the unknotting of supercoiled DNA molecules. Using Metropolis Monte Carlo simulations, we investigate the shapes of supercoiled DNA molecules that are either knotted or catenated. We are especially interested in understanding how Topo IV can unknot right-handed knots and decatenate right-handed catenanes without acting on right-handed plectonemes in negatively supercoiled DNA molecules. To this end, we investigate how the topological consequences of intersegmental passages depend on the geometry of the DNA-DNA juxtapositions at which these passages occur. We observe that there are interesting differences between the geometries of DNA-DNA juxtapositions in the interwound portions and in the knotted or catenated portions of the studied molecules. In particular, in negatively supercoiled, multiply interlinked, right-handed catenanes, we detect specific regions where DNA segments belonging to two freshly replicated sister DNA molecules form left-handed crossings. We propose that, due to its geometrical preference to act on left-handed crossings, Topo IV can specifically unknot supercoiled DNA, as well as decatenate postreplicative catenanes, without causing their torsional relaxation. PMID:27106058

  18. Separation of cordycepin from Cordyceps militaris fermentation supernatant using preparative HPLC and evaluation of its antibacterial activity as an NAD+-dependent DNA ligase inhibitor

    PubMed Central

    Zhou, Xiaofeng; Cai, Guoqiang; He, Yi; Tong, Guotong

    2016-01-01

    Cordycepin exhibits various bio-activities, including anticancer, antibacterial, antiviral and immune regulation activities, and is a significant focus of research. However, the preparation of high-purity cordycepin remains challenging. Also, the molecular target with which cordycepin interacts to cause an antibacterial effect remains unknown. In the present study, cordycepin was prepared by preparative high-performance liquid chromatography (prep-HPLC) and the purity obtained was 99.6%, indicating that this technique may be useful for the large-scale isolation of cordycepin in the future. The results of computational molecular docking analysis indicated that the interaction energy between cordycepin and NAD+-dependent DNA ligase (LigA) was lower than that between cordycepin and other common antibacterial targets. The highly pure cordycepin obtained by prep-HPLC demonstrated inhibitory activity against LigA from various bacteria in vitro. In conclusion, cordycepin may be useful as a broad-spectrum antibiotic targeting LigA in various bacteria. PMID:27588098

  19. Streptococcus pneumoniae DNA Gyrase and Topoisomerase IV: Overexpression, Purification, and Differential Inhibition by Fluoroquinolones

    PubMed Central

    Pan, Xiao-Su; Fisher, L. Mark

    1999-01-01

    Streptococcus pneumoniae gyrA and gyrB genes specifying the DNA gyrase subunits have been cloned into pET plasmid vectors under the control of an inducible T7 promoter and have been separately expressed in Escherichia coli. Soluble 97-kDa GyrA and 72-kDa GyrB proteins bearing polyhistidine tags at their respective C-terminal and N-terminal ends were purified to apparent homogeneity by one-step nickel chelate column chromatography and were free of host E. coli topoisomerase activity. Equimolar amounts of the gyrase subunits reconstituted ATP-dependent DNA supercoiling with comparable activity to gyrase of E. coli and Staphylococcus aureus. In parallel, S. pneumoniae topoisomerase IV ParC and ParE subunits were similarly expressed in E. coli, purified to near homogeneity as 93- and 73-kDa proteins, and shown to generate efficient ATP-dependent DNA relaxation and DNA decatenation activities. Using the purified enzymes, we examined the inhibitory effects of three paradigm fluoroquinolones—ciprofloxacin, sparfloxacin, and clinafloxacin—which previous genetic studies with S. pneumoniae suggested act preferentially through topoisomerase IV, through gyrase, and through both enzymes, respectively. Surprisingly, all three quinolones were more active in inhibiting purified topoisomerase IV than gyrase, with clinafloxacin showing the greatest inhibitory potency. Moreover, the tested agents were at least 25-fold more effective in stabilizing a cleavable complex (the relevant cytotoxic lesion) with topoisomerase IV than with gyrase, with clinafloxacin some 10- to 32-fold more potent against either enzyme, in line with its superior activity against S. pneumoniae. The uniform target preference of the three fluoroquinolones for topoisomerase IV in vitro is in apparent contrast to the genetic data. We interpret these results in terms of a model for bacterial killing by quinolones in which cellular factors can modulate the effects of target affinity to determine the cytotoxic

  20. Endonuclease IV cleaves apurinic/apyrimidinic sites in single-stranded DNA and its application for biosensing.

    PubMed

    Kong, Xiang-Juan; Wu, Shuang; Cen, Yao; Chen, Ting-Ting; Yu, Ru-Qin; Chu, Xia

    2016-07-21

    Endonuclease IV (Endo IV), as a DNA repairing enzyme, plays a crucial role in repairing damaged DNA comprising abasic sites to maintain genomic integrity. The cleaving capability of Endo IV to apurinic/apyrimidinic sites (AP) in single-stranded DNA (ssDNA) was demonstrated. It was found that Endo IV has considerably high cleaving activity to AP sites in ssDNA compared with that in double-stranded DNA (dsDNA). The unique feature of Endo IV in cleaving AP sites in ssDNA was further applied to construct a novel dual signal amplified sensing system for highly sensitive enzyme and protein detection by a combination of exonuclease III (Exo III)-aided cyclic amplification reaction and a rolling circle replication (RCR) technique, which showed a good sensing performance with a detection limit of 0.008 U mL(-1) for Endo IV and 2.5 pM for streptavidin. In addition, the developed method had considerably high specificity for Endo IV and streptavidin over other potential interferences. The developed strategy indeed provides a novel platform for protein and enzyme assays and may find a broad spectrum of applications in bioanalysis, disease diagnosis, and drug development. PMID:27186607

  1. DNA Apurinic-Apyrimidinic Site Binding And Excision By Endonuclease IV

    SciTech Connect

    Garcin, E.D.; Hosfield, D.J.; Desai, S.A.; Haas, B.J.; Bjoras, M.; Cunningham, R.P.; Tainer, J.A.

    2009-05-18

    Escherichia coli endonuclease IV is an archetype for an abasic or apurinic-apyrimidinic endonuclease superfamily crucial for DNA base excision repair. Here biochemical, mutational and crystallographic characterizations reveal a three-metal ion mechanism for damage binding and incision. The 1.10-{angstrom} resolution DNA-free and the 2.45-{angstrom} resolution DNA-substrate complex structures capture substrate stabilization by Arg37 and reveal a distorted Zn{sub 3}-ligand arrangement that reverts, after catalysis, to an ideal geometry suitable to hold rather than release cleaved DNA product. The 1.45-{angstrom} resolution DNA-product complex structure shows how Tyr72 caps the active site, tunes its dielectric environment and promotes catalysis by Glu261-activated hydroxide, bound to two Zn{sup 2+} ions throughout catalysis. These structural, mutagenesis and biochemical results suggest general requirements for abasic site removal in contrast to features specific to the distinct endonuclease IV alpha-beta triose phosphate isomerase (TIM) barrel and APE1 four-layer alpha-beta folds of the apurinic-apyrimidinic endonuclease families.

  2. Quinolone-resistant mutants of escherichia coli DNA topoisomerase IV parC gene.

    PubMed Central

    Kumagai, Y; Kato, J I; Hoshino, K; Akasaka, T; Sato, K; Ikeda, H

    1996-01-01

    Escherichia coli quinolone-resistant strains with mutations of the parC gene, which codes for a subunit of topoisomerase IV, were isolated from a quinolone-resistant gyrA mutant of DNA gyrase. Quinolone-resistant parC mutants were also identified among the quinolone-resistant clinical strains. The parC mutants became susceptible to quinolones by introduction of a parC+ plasmid. Introduction of the multicopy plasmids carrying the quinolone-resistant parC mutant gene resulted in an increase in MICs of quinolones for the parC+ and quinolone-resistant gyrA strain. Nucleotide sequences of the quinolone-resistant parC mutant genes were determined, and missense mutations at position Gly-78, Ser-80, or Glu-84, corresponding to those in the quinolone-resistance-determining region of DNA gyrase, were identified. These results indicate that topoisomerase IV is a target of quinolones in E. coli and suggest that the susceptibility of E. coli cells to quinolones is determined by sensitivity of the targets, DNA gyrase and topoisomerase IV. PMID:8851598

  3. Investigation of DNA binding, DNA photocleavage, topoisomerase I inhibition and antioxidant activities of water soluble titanium(IV) phthalocyanine compounds.

    PubMed

    Özel, Arzu; Barut, Burak; Demirbaş, Ümit; Biyiklioglu, Zekeriya

    2016-04-01

    The binding mode of water soluble peripherally tetra-substituted titanium(IV) phthalocyanine (Pc) compounds Pc1, Pc2 and Pc3 with calf thymus (CT) DNA was investigated by using UV-Vis spectroscopy and thermal denaturation studies in this work. The results of DNA binding constants (Kb) and the changes in the thermal denaturation profile of DNA with the addition of Pc compounds indicated that Pc1, Pc2 and Pc3 are able to bind to CT-DNA with different binding affinities. DNA photocleavage studies of Pc compounds were performed in the absence and presence of oxidizing agents such as hydrogen peroxide (H2O2), ascorbic acid (AA) and 2-mercaptoethanol (ME) using the agarose gel electrophoresis method at irradiation 650nm. According to the results of electrophoresis studies, Pc1, Pc2 and Pc3 cleaved of supercoiled pBR322 DNA via photocleavage pathway. The Pc1, Pc2 and Pc3 compounds were examined for topoisomerase I inhibition by measuring the relaxation of supercoiled pBR322 DNA. The all of Pc compounds inhibited topoisomerase I at 20μM concentration. A series of antioxidant assays, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, superoxide radical scavenging (SOD) assay and metal chelating effect assay were performed for Pc1, Pc2 and Pc3 compounds. The results of antioxidant assays indicated that Pc1, Pc2 and Pc3 compounds have remarkable superoxide radical scavenging activities, moderate 2,2-diphenyl-1-picrylhydrazyl activities and metal chelating effect activities. All the experimental studies showed that Pc1, Pc2 and Pc3 compounds bind to CT-DNA via minor groove binding, cleave of supercoiled pBR322 DNA via photocleavage pathway, inhibit topoisomerase I and have remarkable superoxide radical scavenging activities. Thanks to these properties the Pc1, Pc2 and Pc3 compounds are suitable agents for photo dynamic therapy. PMID:26882290

  4. Interplay of RNA Pol IV and ROS1 during post-embryonic 5S rDNA chromatin remodeling.

    PubMed

    Douet, Julien; Blanchard, Bertrand; Cuvillier, Claudine; Tourmente, Sylvette

    2008-12-01

    We have investigated the chromatin structure of 5S rDNA, a heterochromatic pericentromeric tandemly repeated family, at 2, 3, 4 and 5 days post-germination. Our results revealed a large-scale reorganization of 5S rDNA chromatin that occurs during the first days of development. Unexpectedly, there is a decondensation followed by a 're'condensation of 5S rDNA chromatin, to obtain almost mature nuclei 5 d post-germination. The reorganization of 5S rDNA chromatin is accompanied by a rapid and active demethylation of 5S rDNA mediated by the ROS1 (repressor of silencing 1) demethylase, whereas the plant-specific RNA polymerase IV (Pol IV) is essential to the 5S chromatin 're'condensation. In conclusion, Pol IV and ROS1 collaborate to unlock the 5S rDNA chromatin inherited from the seed, and establish adult features. PMID:18845569

  5. Development of a ligase detection reaction/CGE method using a LIF dual-channel detection system for direct identification of allelic composition of mutated DNA in a mixed population of excess wild-type DNA.

    PubMed

    Hamada, Mariko; Shimase, Koji; Noda, Keiichi; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko

    2013-05-01

    We developed an inexpensive LIF dual-channel detection system and applied it to a ligase detection reaction (LDR)/CGE method to identify the allelic composition of low-abundance point mutations in a large excess of wild-type DNA in a single reaction with a high degree of certainty. Ligation was performed in a tube with a nonlabeled common primer and multiplex discriminating primers, each labeled with a different standard fluorophore. The discriminating primers were directed against three mutant variations in codon 12 of the K-ras oncogene that have a high diagnostic value for colorectal cancer. LDR products generated from a particular K-ras mutation through successful ligation events were separated from remaining discriminating primers by CGE, followed by LIF detection using the new system, which consists of two photomultiplier tubes, each with a unique optical filter. Each fluorophore label conjugated to the corresponding LDR product produced a distinct fluorescence signal intensity ratio from the two detection channels, allowing spectral discrimination of the three labels. The ability of this system to detect point mutations in a wild-type sequence-dominated population, and to disclose their allelic composition, was thus demonstrated successfully. PMID:23463388

  6. ct-DNA Binding and Antibacterial Activity of Octahedral Titanium (IV) Heteroleptic (Benzoylacetone and Hydroxamic Acids) Complexes

    PubMed Central

    Kaushal, Raj; Thakur, Sheetal; Nehra, Kiran

    2016-01-01

    Five structurally related titanium (IV) heteroleptic complexes, [TiCl2(bzac)(L1–4)] and [TiCl3(bzac)(HL5)]; bzac = benzoylacetonate; L1–5 = benzohydroximate (L1), salicylhydroximate (L2), acetohydroximate (L3), hydroxyurea (L4), and N-benzoyl-N-phenyl hydroxylamine (L5), were used for the assessment of their antibacterial activities against ten pathogenic bacterial strains. The titanium (IV) complexes (1–5) demonstrated significant level of antibacterial properties as measured using agar well diffusion method. UV-Vis absorption spectroscopic technique was applied, to get a better insight into the nature of binding between titanium (IV) complexes with calf thymus DNA (ct-DNA). On the basis of the results of UV-Vis absorption spectroscopy, the interaction between ct-DNA and the titanium (IV) complexes is likely to occur through the same mode. Results indicated that titanium (IV) complex can bind to calf thymus DNA (ct-DNA) via an intercalative mode. The intrinsic binding constant (Kb) was calculated by absorption spectra by using Benesi-Hildebrand equation. Further, Gibbs free energy was also calculated for all the complexes. PMID:27119022

  7. ct-DNA Binding and Antibacterial Activity of Octahedral Titanium (IV) Heteroleptic (Benzoylacetone and Hydroxamic Acids) Complexes.

    PubMed

    Kaushal, Raj; Thakur, Sheetal; Nehra, Kiran

    2016-01-01

    Five structurally related titanium (IV) heteroleptic complexes, [TiCl2(bzac)(L(1-4))] and [TiCl3(bzac)(HL(5))]; bzac = benzoylacetonate; L(1-5) = benzohydroximate (L(1)), salicylhydroximate (L(2)), acetohydroximate (L(3)), hydroxyurea (L(4)), and N-benzoyl-N-phenyl hydroxylamine (L(5)), were used for the assessment of their antibacterial activities against ten pathogenic bacterial strains. The titanium (IV) complexes (1-5) demonstrated significant level of antibacterial properties as measured using agar well diffusion method. UV-Vis absorption spectroscopic technique was applied, to get a better insight into the nature of binding between titanium (IV) complexes with calf thymus DNA (ct-DNA). On the basis of the results of UV-Vis absorption spectroscopy, the interaction between ct-DNA and the titanium (IV) complexes is likely to occur through the same mode. Results indicated that titanium (IV) complex can bind to calf thymus DNA (ct-DNA) via an intercalative mode. The intrinsic binding constant (K b ) was calculated by absorption spectra by using Benesi-Hildebrand equation. Further, Gibbs free energy was also calculated for all the complexes. PMID:27119022

  8. Photocytotoxic oxovanadium(IV) complexes showing light-induced DNA and protein cleavage activity.

    PubMed

    Sasmal, Pijus K; Saha, Sounik; Majumdar, Ritankar; Dighe, Rajan R; Chakravarty, Akhil R

    2010-02-01

    Oxovanadium(IV) complexes [VO(L)(B)]Cl(2) (1-3), where L is bis(2-benzimidazolylmethyl)amine and B is 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) or dipyrido[3,2-a:2',3'-c]phenazine (dppz), have been prepared, characterized, and their photo-induced DNA and protein cleavage activity studied. The photocytotoxicity of complex 3 has been studied using adenocarcinoma A549 cells. The phen complex 1, structurally characterized by single-crystal X-ray crystallography, shows the presence of a vanadyl group in six-coordinate VON(5) coordination geometry. The ligands L and phen display tridentate and bidentate N-donor chelating binding modes, respectively. The complexes exhibit a d-d band near 740 nm in 15% DMF-Tris-HCl buffer (pH 7.2). The phen and dpq complexes display an irreversible cathodic cyclic voltammetric response near -0.8 V in 20% DMF-Tris-HCl buffer having 0.1 M KCl as supporting electrolyte. The dppz complex 3 exhibits a quasi-reversible voltammogram near -0.6 V (vs SCE) that is assignable to the V(IV)-V(III) couple. The complexes bind to calf thymus DNA giving binding constant values in the range of 6.6 x 10(4)-2.9 x 10(5) M(-1). The binding site size, thermal melting and viscosity binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor "chemical nuclease" activity in dark in the presence of 3-mercaptopropionic acid or hydrogen peroxide. The dpq and dppz complexes are efficient photocleavers of plasmid DNA in UV-A light of 365 nm via a mechanistic pathway that involves formation of both singlet oxygen and hydroxyl radicals. The complexes show significant photocleavage of DNA in near-IR light (>750 nm) via hydroxyl radical pathway. Among the three complexes, the dppz complex 3 shows significant BSA and lysozyme protein cleavage activity in UV-A light of 365 nm via hydroxyl radical pathway. The dppz complex 3 also exhibits photocytotoxicity in non-small cell lung carcinoma/human lung

  9. Isolation of ubiquitinated substrates by tandem affinity purification of E3 ligase-polyubiquitin-binding domain fusions (ligase traps).

    PubMed

    Mark, Kevin G; Loveless, Theresa B; Toczyski, David P

    2016-02-01

    Ubiquitination is an essential protein modification that influences eukaryotic processes ranging from substrate degradation to nonproteolytic pathway alterations, including DNA repair and endocytosis. Previous attempts to analyze substrates via physical association with their respective ubiquitin ligases have had some success. However, because of the transient nature of enzyme-substrate interactions and rapid protein degradation, detection of substrates remains a challenge. Ligase trapping is an affinity purification approach in which ubiquitin ligases are fused to a polyubiquitin-binding domain, which allows the isolation of ubiquitinated substrates. Immunoprecipitation is first used to enrich for proteins that are bound to the ligase trap. Subsequently, affinity purification is used under denaturing conditions to capture proteins conjugated with hexahistidine-tagged ubiquitin. By using this protocol, ubiquitinated substrates that are specific for a given ligase can be isolated for mass spectrometry or western blot analysis. After cells have been collected, the described protocol can be completed in 2-3 d. PMID:26766115

  10. Optimal numbers of residues in linkers of DNA polymerase I, T7 primase and DNA polymerase IV.

    PubMed

    Fu, Yi-Ben; Wang, Zhan-Feng; Wang, Peng-Ye; Xie, Ping

    2016-01-01

    DNA polymerase I (PolI), T7 primase and DNA polymerase IV (Dpo4) have a common feature in their structures that the two main domains are connected by an unstructured polypeptide linker. To perform their specific enzymatic activities, the enzymes are required to rearrange the position and orientation of one domain relative to the other into an active mode. Here, we show that the three enzymes share the same mechanism of the transition from the inert to active modes and use the minimum numbers of residues in their linkers to achieve the most efficient transitions. The transition time to the finally active mode is sensitively dependent on the stretched length of the linker in the finally active mode while is insensitive to the position and orientation in the initially inert state. Moreover, we find that for any enzyme whose two domains are connected by an unstructured flexible linker, the stretched length (L) of the linker in the finally active mode and the optimal number (Nopt) of the residues in the linker satisfy relation L ≈ αNopt, with α = 0.24-0.27 nm being a constant insensitive to the system. PMID:27364863

  11. Optimal numbers of residues in linkers of DNA polymerase I, T7 primase and DNA polymerase IV

    PubMed Central

    Fu, Yi-Ben; Wang, Zhan-Feng; Wang, Peng-Ye; Xie, Ping

    2016-01-01

    DNA polymerase I (PolI), T7 primase and DNA polymerase IV (Dpo4) have a common feature in their structures that the two main domains are connected by an unstructured polypeptide linker. To perform their specific enzymatic activities, the enzymes are required to rearrange the position and orientation of one domain relative to the other into an active mode. Here, we show that the three enzymes share the same mechanism of the transition from the inert to active modes and use the minimum numbers of residues in their linkers to achieve the most efficient transitions. The transition time to the finally active mode is sensitively dependent on the stretched length of the linker in the finally active mode while is insensitive to the position and orientation in the initially inert state. Moreover, we find that for any enzyme whose two domains are connected by an unstructured flexible linker, the stretched length (L) of the linker in the finally active mode and the optimal number (Nopt) of the residues in the linker satisfy relation L ≈ αNopt, with α = 0.24–0.27 nm being a constant insensitive to the system. PMID:27364863

  12. Temperature and Magnetic Field Driven Modifications in the I-V Features of Gold-DNA-Gold Structure

    PubMed Central

    Khatir, Nadia Mahmoudi; Abdul-Malek, Zulkurnain; Banihashemian, Seyedeh Maryam

    2014-01-01

    The fabrication of Metal-DNA-Metal (MDM) structure-based high sensitivity sensors from DNA micro-and nanoarray strands is a key issue in their development. The tunable semiconducting response of DNA in the presence of external electromagnetic and thermal fields is a gift for molecular electronics. The impact of temperatures (25–55 °C) and magnetic fields (0–1200 mT) on the current-voltage (I-V) features of Au-DNA-Au (GDG) structures with an optimum gap of 10 μm is reported. The I-V characteristics acquired in the presence and absence of magnetic fields demonstrated the semiconducting diode nature of DNA in GDG structures with high temperature sensitivity. The saturation current in the absence of magnetic field was found to increase sharply with the increase of temperature up to 45 °C and decrease rapidly thereafter. This increase was attributed to the temperature-assisted conversion of double bonds into single bond in DNA structures. Furthermore, the potential barrier height and Richardson constant for all the structures increased steadily with the increase of external magnetic field irrespective of temperature variations. Our observation on magnetic field and temperature sensitivity of I-V response in GDG sandwiches may contribute towards the development of DNA-based magnetic sensors. PMID:25320908

  13. Synthesis, spectral characterization and eukaryotic DNA degradation of thiosemicarbazones and their platinum(IV) complexes

    NASA Astrophysics Data System (ADS)

    Al-Hazmi, G. A.; El-Metwally, N. M.; El-Gammal, O. A.; El-Asmy, A. A.

    2008-01-01

    The condensation products of acetophenone (or its derivatives), salicylaldehyde and o-hydroxy- p-methoxybenzophenone with thiosemicarbazide and ethyl- or phenyl-thiosemicarbazide are the investigated thiosemicarbazones. Their reactions with H 2PtCl 6 produced Pt(IV) complexes characterized by elemental, thermal, mass, IR and electronic spectral studies. The coordination modes were found mononegative bidentate in the acetophenone derivatives and binegative tridentate in the salicylaldehyde derivatives. The complexes were analyzed thermogravimetrically and found highly stable. Some ligands and their complexes were screened against Sarcina sp. and E. coli using the cup-diffusion technique. [Pt( oHAT)(OH)Cl] shows higher activity against E. coli than the other compounds. The degradation power of the tested compounds on the calf thymus DNA supports their selectivity against bacteria and not against the human or related eukaryotic organisms.

  14. A novel relaxase homologue is involved in chromosomal DNA processing for type IV secretion in Neisseria gonorrhoeae.

    PubMed

    Salgado-Pabón, Wilmara; Jain, Samta; Turner, Nicholas; van der Does, Chris; Dillard, Joseph P

    2007-11-01

    The Neisseria gonorrhoeae type IV secretion system secretes chromosomal DNA that acts in natural transformation. To examine the mechanism of DNA processing for secretion, we made mutations in the putative relaxase gene traI and used nucleases to characterize the secreted DNA. The nuclease experiments demonstrated that the secreted DNA is single-stranded and blocked at the 5' end. Mutation of traI identified Tyr93 as required for DNA secretion, while substitution of Tyr201 resulted in intermediate levels of DNA secretion. TraI exhibits features of relaxases, but also has features that are absent in previously characterized relaxases, including an HD phosphohydrolase domain and an N-terminal hydrophobic region. The HD domain residue Asp120 was required for wild-type levels of DNA secretion. Subcellular localization studies demonstrated that the TraI N-terminal region promotes membrane interaction. We propose that Tyr93 initiates DNA processing and Tyr201 is required for termination or acts in DNA binding. Disruption of an inverted-repeat sequence eliminated DNA secretion, suggesting that this sequence may serve as the origin of transfer for chromosomal DNA secretion. The TraI domain architecture, although not previously described, is present in 53 uncharacterized proteins, suggesting that the mechanism of TraI function is a widespread process for DNA donation. PMID:17927698

  15. Evolutionary and functional conservation of the DNA non-homologous end-joining protein, XLF/Cernunnos.

    PubMed

    Hentges, Pierre; Ahnesorg, Peter; Pitcher, Robert S; Bruce, Chris K; Kysela, Boris; Green, Andrew J; Bianchi, Julie; Wilson, Thomas E; Jackson, Stephen P; Doherty, Aidan J

    2006-12-01

    Non-homologous end-joining is a major pathway of DNA double-strand break repair in mammalian cells, deficiency in which confers radiosensitivity and immune deficiency at the whole organism level. A core protein complex comprising the Ku70/80 heterodimer together with a complex between DNA ligase IV and XRCC4 is conserved throughout eukaryotes and assembles at double-strand breaks to mediate ligation of broken DNA ends. In Saccharomyces cerevisiae an additional NHEJ protein, Nej1p, physically interacts with the ligase IV complex and is required in vivo for ligation of DNA double-strand breaks. Recent studies with cells derived from radiosensitive and immune-deficient patients have identified the human protein, XLF (also named Cernunnos), as a crucial NHEJ protein. Here we show that XLF and Nej1p are members of the same protein superfamily and that this family has members in diverse eukaryotes. Indeed, we show that a member of this family encoded by a previously uncharacterized open-reading frame in the Schizosaccharomyces pombe genome is required for NHEJ in this organism. Furthermore, our data reveal that XLF family proteins can bind to DNA and directly interact with the ligase IV-XRCC4 complex to promote DSB ligation. We therefore conclude that XLF family proteins interact with the ligase IV-XRCC4 complex to constitute the evolutionarily conserved enzymatic core of the NHEJ machinery. PMID:17038309

  16. Characterization of Mutations in DNA Gyrase and Topoisomerase IV Involved in Quinolone Resistance of Mycoplasma gallisepticum Mutants Obtained In Vitro

    PubMed Central

    Reinhardt, A. K.; Bébéar, C. M.; Kobisch, M.; Kempf, I.; Gautier-Bouchardon, A. V.

    2002-01-01

    Mycoplasma gallisepticum enrofloxacin-resistant mutants were generated by stepwise selection in increasing concentrations of enrofloxacin. Alterations were found in the quinolone resistance-determining regions of the four target genes encoding DNA gyrase and topoisomerase IV from these mutants. This is the first description of such mutations in an animal mycoplasma species. PMID:11796386

  17. Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation.

    PubMed

    Braithwaite, E C; Kundakovic, M; Ramchandani, P G; Murphy, S E; Champagne, F A

    2015-01-01

    Prenatal maternal psychological distress increases risk for adverse infant outcomes. However, the biological mechanisms underlying this association remain unclear. Prenatal stress can impact fetal epigenetic regulation that could underlie changes in infant stress responses. It has been suggested that maternal glucocorticoids may mediate this epigenetic effect. We examined this hypothesis by determining the impact of maternal cortisol and depressive symptoms during pregnancy on infant NR3C1 and BDNF DNA methylation. Fifty-seven pregnant women were recruited during the second or third trimester. Participants self-reported depressive symptoms and salivary cortisol samples were collected diurnally and in response to a stressor. Buccal swabs for DNA extraction and DNA methylation analysis were collected from each infant at 2 months of age, and mothers were assessed for postnatal depressive symptoms. Prenatal depressive symptoms significantly predicted increased NR3C1 1F DNA methylation in male infants (β = 2.147, P = 0.044). Prenatal depressive symptoms also significantly predicted decreased BDNF IV DNA methylation in both male and female infants (β = -3.244, P = 0.013). No measure of maternal cortisol during pregnancy predicted infant NR3C1 1F or BDNF promoter IV DNA methylation. Our findings highlight the susceptibility of males to changes in NR3C1 DNA methylation and present novel evidence for altered BDNF IV DNA methylation in response to maternal depression during pregnancy. The lack of association between maternal cortisol and infant DNA methylation suggests that effects of maternal depression may not be mediated directly by glucocorticoids. Future studies should consider other potential mediating mechanisms in the link between maternal mood and infant outcomes. PMID:25875334

  18. DNA binding studies of new valine derived chiral complexes of tin(IV) and zirconium(IV)

    NASA Astrophysics Data System (ADS)

    Arjmand, Farukh; Jamsheera, A.

    2011-01-01

    Valine derived chiral complexes of SnCl 4 ( 1) and ZrCl 4 ( 2) were designed as potent antitumor agents. These complexes were characterized by elemental analysis, IR, 1H NMR, 119Sn NMR and ESI mass spectroscopy. In vitro binding studies of complexes 1 and 2 under physiological conditions at room temperature with CT-DNA were carried out employing UV-vis absorption titration, fluorescence studies and viscosity measurements. The extent of binding was quantified by Kb values of complexes 1 and 2 which were found to be 1.97 × 10 4 and 1.17 × 10 3 M -1, respectively, suggesting that complex 1 has significantly greater DNA binding propensity in contrast to the complex 2. The mode of action at the molecular level was ascertained by the interaction of complex 1 with 5'GMP and 5'TMP which revealed that complex 1 binds via electrostatic mode with the oxygen of the negatively charged surface phosphate group of the DNA helix. The supercoiled pBR322 plasmid DNA cleavage activity of complex 1 was ascertained by gel electrophoresis assay.

  19. Structural Insights into the Fluoroquinolone Resistance Mechanism of Shigella flexneri DNA Gyrase and Topoisomerase IV.

    PubMed

    Tamanna; Ramana, Jayashree

    2016-07-01

    Traveler's diarrhea (TD) is an important public health concern that can result from a variety of intestinal pathogens, including bacteria, parasites, and virus. A number of antibiotics are being used to cure TD, but due to widespread use of these antibiotics, the pathogens are becoming resistant to them. In this work, we performed docking studies of DNA gyraseA (GyrA) and topoisomerase IV (ParC) of Shigella flexneri and their mutants with two different fluoroquinolones, ciprofloxacin and norfloxacin, to understand their resistance mechanism at the structural level. S. flexneri strains with mutations at serine 83 to leucine and aspartic acid 87 to glutamate or asparagine of GyrA and that of serine 80 to isoleucine in ParC have decreased susceptibility to fluoroquinolones. This analysis revealed that interaction of ciprofloxacin/norfloxacin with all the mutants was weaker than the interaction of ciprofloxacin/norfloxacin with the wild type. This study highlights the importance of aspartic acid and serine in GyrA and that of serine in ParC, forming bonds with ciprofloxacin/norfloxacin, which may play a crucial role in antibiotic resistance. This work corelates very well with the experimental outcomes and gives a good explanation for fluoroquinolone resistance in S. flexneri. PMID:26859259

  20. Active site of the mRNA-capping enzyme guanylyltransferase from Saccharomyces cerevisiae: similarity to the nucleotidyl attachment motif of DNA and RNA ligases.

    PubMed Central

    Fresco, L D; Buratowski, S

    1994-01-01

    Nascent mRNA chains are capped at the 5' end by the addition of a guanylyl residue to form a G(5')ppp(5')N ... structure. During the capping reaction, the guanylyltransferase (GTP:mRNA guanylyltransferase, EC 2.7.7.50) is reversibly and covalently guanylylated. In this enzyme-GMP (E-GMP) intermediate, GMP is linked to the epsilon-amino group of a lysine residue via a phosphoamide bond. Lys-70 was identified as the GMP attachment site of the Saccharomyces cerevisiae guanylyltransferase (encoded by the CEG1 gene) by guanylylpeptide sequencing. CEG1 genes with substitutions at Lys-70 were unable to support viability in yeast and produced proteins that were not guanylylated in vitro. The CEG1 active site exhibits sequence similarity to the active sites of viral guanylyltransferases and polynucleotide ligases, suggesting similarity in the mechanisms of nucleotidyl transfer catalyzed by these enzymes. Images PMID:8022828

  1. In Vitro Effect of Aqueous Extract and Fraction IV Portion of Ximenia americana Stem Bark on Trypanosoma congolense DNA

    PubMed Central

    Maikai, Victor Ambrose; Maikai, Beatty Viv; Kobo, Patricia Ishyaku

    2014-01-01

    Trypanosomosis is a debilitating disease affecting mainly livestock and humans in tropical Africa. Chemically synthesized drugs and medicinal plants have been used in the treatment and control of this disease. In this study, the in vitro effect of aqueous extracts and fraction IV extract of Ximenia americana stem bark on Trypanosoma congolense DNA was investigated. The extracts were incubated with the parasites in vitro at 300 mg/mL aqueous extract and 25 mg/mL fraction IV portion for 30, 60, and 120 mins. The DNA of the trypanosomes was isolated and digested using ECOR1 enzyme and subsequently PCR was carried out. Results showed that aqueous extract and fraction IV portion immobilized 55% and 90% of the trypanosomes after 30-minute incubation. Subsequent isolation of the parasite DNA and agarose gel electrophoresis did not reveal that cell death was as a result of DNA fragmentation. This suggests that cell death was by another mechanism of action. PMID:24587898

  2. Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends.

    PubMed

    Tsai, Chun J; Kim, Sunny A; Chu, Gilbert

    2007-05-01

    Nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks created by ionizing radiation or V(D)J recombination of the immunoglobulin genes. The breaks often leave mismatched or nonligatable ends, and NHEJ must repair the breaks with high efficiency and minimal nucleotide loss. Here, the NHEJ proteins Ku, DNA-dependent protein kinase catalytic subunit, XRCC4/Ligase IV, and Cernunnos/XRCC4-like factor joined mismatched and noncohesive DNA ends in the absence of processing factors. Depending on the mismatch, Cernunnos stimulated joining 8- to 150-fold. For substrates with a blunt end and a 3' overhanging end, Ku, XRCC4/Ligase IV, and Cernunnos ligated the 3' overhanging hydroxyl group to the 5' phosphate of the blunt end, leaving the other strand unjoined. This activity provides a mechanism for retaining 3' overhang sequences, as observed during V(D)J recombination in vivo. Thus, Cernunnos/XRCC4-like factor promotes a mismatched end (MEnd) DNA ligase activity to facilitate joining and to preserve DNA sequence. Furthermore, MEnd ligase activity may have applications in recombinant DNA technology. PMID:17470781

  3. Exploration of DNA binding mode, chemical nuclease, cytotoxic and apoptotic potentials of diketone based oxovanadium(IV) complexes.

    PubMed

    Inamdar, Poonam Rajiv; Sheela, Angappan

    2015-05-01

    Two diketone based oxovanadium complexes, viz., bis(4,4,4-trifluoro-1-phenylbutane-1,3-dionato)oxovanadium(IV) (1) and bis(1,1,1-trifluoropentane-2,4-dionato)oxovanadium(IV) (2), have been synthesized and characterized by spectroscopic and analytical techniques. The DNA binding and the cleaving ability of the complexes is assessed by UV-vis spectroscopy, fluorescence spectroscopy, viscometry and gel electrophoretic studies. The DNA binding constant values (Kb) are found to be 1.95 ± 0.16 × 10(3)M(-1) for complex 1 and 1.064 ± 0.17 × 10(3)M(-1) for complex 2, respectively. Based on the results of the spectral and viscosity studies, it is observed that the complexes, interestingly, have preferred minor groove binding with DNA. Further, the concentration-dependent oxidative cleavage pattern of pBR322 in the presence of the activating reagent, hydrogen peroxide, has also been discussed. In addition, the complexes have shown moderate cytotoxic activity by inducing apoptosis against the cervical cancer cell line, HeLa. The results of in silico analysis and logP predictions are found to be in good agreement with the experimental observations. Thus, synthesized oxovanadium complexes have displayed promising DNA binding behavior and DNA cleavage activity with moderately cytotoxic nature. PMID:25720830

  4. Synthesis, structure, DNA binding and DNA cleavage activity of oxovanadium(IV) N-salicylidene-S-methyldithiocarbazate complexes of phenanthroline bases.

    PubMed

    Sasmal, Pijus K; Patra, Ashis K; Chakravarty, Akhil R

    2008-07-01

    Ternary oxovanadium(IV) complexes [VO(salmdtc)(B)] (1-3), where salmdtc is dianionic N-salicylidene-S-methyldithiocarbazate and B is N,N-donor phenanthroline bases like 1,10-phenanthroline (phen, 1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 2) and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 3), are prepared, characterized and their DNA binding and DNA cleavage activity studied. Complex 3 is structurally characterized by single-crystal X-ray crystallography. The molecular structure shows the presence of a vanadyl group in six-coordinate VN(3)O(2)S coordination geometry. The S-methyldithiocarbazate Schiff base acts as a tridentate NSO-donor ligand in a meridional binding mode. The N,N-donor heterocyclic base displays a chelating mode of binding with an N-donor site trans to the vanadyl oxo-group. The complexes show a d-d band in the range of 675-707 nm in DMF. They exhibit an irreversible oxidative cyclic voltammetric response near 0.9 V due to the V(V)/V(IV) couple and a quasi-reversible reductive V(IV)/V(III) redox couple near -1.0 V vs. SCE in DMF-0.1M TBAP. The complexes show good binding propensity to calf thymus DNA giving binding constant values in the range of 7.4 x 10(4)-2.3 x 10(5)M(-1). The thermal denaturation and viscosity binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor chemical nuclease activity in dark in the presence of 3-mercaptopropionic acid (MPA) or hydrogen peroxide. The dpq and dppz complexes show efficient DNA cleavage activity in UV-A light of 365 nm via a type-II mechanistic pathway involving formation of singlet oxygen ((1)O(2)) as the reactive species. PMID:18279964

  5. Interplay between Ku, Artemis, and the DNA-dependent protein kinase catalytic subunit at DNA ends.

    PubMed

    Drouet, Jérôme; Frit, Philippe; Delteil, Christine; de Villartay, Jean-Pierre; Salles, Bernard; Calsou, Patrick

    2006-09-22

    Repair of DNA double strand breaks (DSB) by the nonhomologous end-joining pathway in mammals requires at least seven proteins involved in a simplified two-step process: (i) recognition and synapsis of the DNA ends dependent on the DNA-dependent protein kinase (DNA-PK) formed by the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs in association with Artemis; (ii) ligation dependent on the DNA ligase IV.XRCC4.Cernunnos-XLF complex. The Artemis protein exhibits exonuclease and endonuclease activities that are believed to be involved in the processing of a subclass of DSB. Here, we have analyzed the interactions of Artemis and nonhomologous end-joining pathway proteins both in a context of human nuclear cell extracts and in cells. DSB-inducing agents specifically elicit the mobilization of Artemis to damaged chromatin together with DNA-PK and XRCC4/ligase IV proteins. DNA-PKcs is necessary for the loading of Artemis on damaged DNA and is the main kinase that phosphorylates Artemis in cells damaged with highly efficient DSB producers. Under kinase-preventive conditions, both in vitro and in cells, Ku-mediated assembly of DNA-PK on DNA ends is responsible for a dissociation of the DNA-PKcs. Artemis complex. Conversely, DNA-PKcs kinase activity prevents Artemis dissociation from the DNA-PK.DNA complex. Altogether, our data allow us to propose a model in which a DNA-PKcs-mediated phosphorylation is necessary both to activate Artemis endonuclease activity and to maintain its association with the DNA end site. This tight functional coupling between the activation of both DNA-PKcs and Artemis may avoid improper processing of DNA. PMID:16857680

  6. Assembly of nuclear DNA-encoded subunits into mitochondrial complex IV, and their preferential integration into supercomplex forms in patient mitochondria.

    PubMed

    Lazarou, Michael; Smith, Stacey M; Thorburn, David R; Ryan, Michael T; McKenzie, Matthew

    2009-11-01

    Complex IV is the terminal enzyme of the mitochondrial respiratory chain. In humans, biogenesis of complex IV involves the coordinated assembly of 13 subunits encoded by both mitochondrial and nuclear genomes. The early stages of complex IV assembly involving mitochondrial DNA-encoded subunits CO1 and CO2 have been well studied. However, the latter stages, during which many of the nuclear DNA-encoded subunits are incorporated, are less well understood. Using in vitro import and assembly assays, we found that subunits Cox6a, Cox6b and Cox7a assembled into pre-existing complex IV, while Cox4-1 and Cox6c subunits assembled into subcomplexes that may represent rate-limiting intermediates. We also found that Cox6a and Cox7a are incorporated into a novel intermediate complex of approximately 250 kDa, and that transition of subunits from this complex to the mature holoenzyme had stalled in the mitochondria of patients with isolated complex IV deficiency. A number of complex IV subunits were also found to integrate into supercomplexes containing combinations of complex I, dimeric complex III and complex IV. Subunit assembly into these supercomplexes was also observed in mitochondria of patients in whom monomeric complex IV was selectively reduced. We conclude that newly imported nuclear DNA-encoded subunits can integrate into the complex IV holoenzyme and supercomplex forms by associating with pre-existing subunits and intermediate assembly complexes. PMID:19843159

  7. DNA Substrate-Induced Activation of the Agrobacterium VirB/VirD4 Type IV Secretion System

    PubMed Central

    Cascales, Eric; Atmakuri, Krishnamohan; Sarkar, Mayukh K.

    2013-01-01

    The bitopic membrane protein VirB10 of the Agrobacterium VirB/VirD4 type IV secretion system (T4SS) undergoes a structural transition in response to sensing of ATP binding or hydrolysis by the channel ATPases VirD4 and VirB11. This transition, detectable as a change in protease susceptibility, is required for DNA substrate passage through the translocation channel. Here, we present evidence that DNA substrate engagement with VirD4 and VirB11 also is required for activation of VirB10. Several DNA substrates (oncogenic T-DNA and plasmids RSF1010 and pCloDF13) induced the VirB10 conformational change, each by mechanisms requiring relaxase processing at cognate oriT sequences. VirD2 relaxase deleted of its translocation signal or any of the characterized relaxases produced in the absence of cognate DNA substrates did not induce the structural transition. Translocated effector proteins, e.g., VirE2, VirE3, and VirF, also did not induce the transition. By mutational analyses, we supplied evidence that the N-terminal periplasmic loop of VirD4, in addition to its catalytic site, is essential for early-stage DNA substrate transfer and the VirB10 conformational change. Further studies of VirB11 mutants established that three T4SS-mediated processes, DNA transfer, protein transfer, and pilus production, can be uncoupled and that the latter two processes proceed independently of the VirB10 conformational change. Our findings support a general model whereby DNA ligand binding with VirD4 and VirB11 stimulates ATP binding/hydrolysis, which in turn activates VirB10 through a structural transition. This transition confers an open-channel configuration enabling passage of the DNA substrate to the cell surface. PMID:23564169

  8. Discovery and Characterization of a Water-Soluble Prodrug of a Dual Inhibitor of Bacterial DNA Gyrase and Topoisomerase IV

    PubMed Central

    2015-01-01

    Benzimidazole 1 is the lead compound resulting from an antibacterial program targeting dual inhibitors of bacterial DNA gyrase and topoisomerase IV. With the goal of improving key drug-like properties, namely, the solubility and the formulability of 1, an effort to identify prodrugs was undertaken. This has led to the discovery of a phosphate ester prodrug 2. This prodrug is rapidly cleaved to the parent drug molecule upon both oral and intravenous administration. The prodrug achieved equivalent exposure of 1 compared to dosing the parent in multiple species. The prodrug 2 has improved aqueous solubility, simplifying both intravenous and oral formulation. PMID:26191374

  9. Discovery of a novel azaindole class of antibacterial agents targeting the ATPase domains of DNA gyrase and Topoisomerase IV.

    PubMed

    Manchester, John I; Dussault, Daemian D; Rose, Jonathan A; Boriack-Sjodin, P Ann; Uria-Nickelsen, Maria; Ioannidis, Georgine; Bist, Shanta; Fleming, Paul; Hull, Kenneth G

    2012-08-01

    We present the discovery and optimization of a novel series of bacterial topoisomerase inhibitors. Starting from a virtual screening hit, activity was optimized through a combination of structure-based design and physical property optimization. Synthesis of fewer than a dozen compounds was required to achieve inhibition of the growth of methicillin-resistant Staphyloccus aureus (MRSA) at compound concentrations of 1.56 μM. These compounds simultaneously inhibit DNA gyrase and Topoisomerase IV at similar nanomolar concentrations, reducing the likelihood of the spontaneous occurrence of target-based mutations resulting in antibiotic resistance, an increasing threat in the treatment of serious infections. PMID:22814212

  10. DNA Polymerase III, but Not Polymerase IV, Must Be Bound to a τ-Containing DnaX Complex to Enable Exchange into Replication Forks.

    PubMed

    Yuan, Quan; Dohrmann, Paul R; Sutton, Mark D; McHenry, Charles S

    2016-05-27

    Examples of dynamic polymerase exchange have been previously characterized in model systems provided by coliphages T4 and T7. Using a dominant negative D403E polymerase (Pol) III α that can form initiation complexes and sequester primer termini but not elongate, we investigated the possibility of exchange at the Escherichia coli replication fork on a rolling circle template. Unlike other systems, addition of polymerase alone did not lead to exchange. Only when D403E Pol III was bound to a τ-containing DnaX complex did exchange occur. In contrast, addition of Pol IV led to rapid exchange in the absence of bound DnaX complex. Examination of Pol III* with varying composition of τ or the alternative shorter dnaX translation product γ showed that τ-, τ2-, or τ3-DnaX complexes supported equivalent levels of synthesis, identical Okazaki fragment size, and gaps between fragments, possessed the ability to challenge pre-established replication forks, and displayed equivalent susceptibility to challenge by exogenous D403E Pol III*. These findings reveal that redundant interactions at the replication fork must stabilize complexes containing only one τ. Previously, it was thought that at least two τs in the trimeric DnaX complex were required to couple the leading and lagging strand polymerases at the replication fork. Possible mechanisms of exchange are discussed. PMID:27056333

  11. A comprehensive package for DNA sequence analysis in FORTRAN IV for the PDP-11.

    PubMed Central

    Arnold, J; Eckenrode, V K; Lemke, K; Phillips, G J; Schaeffer, S W

    1986-01-01

    A computer package written in Fortran-IV for the PDP-11 minicomputer is described. The package's novel features are: software for voice-entry of sequence data; a less memory intensive algorithm for optimal sequence alignment; and programs that fit statistical models to nucleic acid and protein sequences. PMID:3003673

  12. Site-selective DNA hydrolysis by Ce(IV)-EDTA with the use of one oligonucleotide additive bearing two monophosphates.

    PubMed

    Chen, Wen; Komiyama, Makoto

    2005-10-01

    Two deoxyuridine derivatives each bearing a monophosphate group at the 5-position with a C3 linker, were incorporated into an oligonucleotide. By using this modified oligonucleotide, a bulge was formed at a predetermined position in a DNA substrate, and two monophosphate groups were placed at both junctions of the bulge. Upon treatment of the mixture with Ce(IV)-EDTA at pH 7.0, the phosphodiester linkages at the bulge site were selectively and efficiently hydrolyzed. The monophosphate groups introduced into the bulge site greatly accelerated site-selective DNA scission. Compared with the previously reported two-additive system, which combines two oligonucleotide additives each with a monophosphate at their termini, the present one-additive system is simpler and more convenient. Furthermore, site-selective DNA hydrolysis by using this one-additive system is successful even at high reaction temperatures (e.g., 55 degrees C). This reflects the thermodynamic stability of the duplexes formed between the substrate and the additive DNA. PMID:16196014

  13. A Photoactivatable Platinum(IV) Complex Targeting Genomic DNA and Histone Deacetylases.

    PubMed

    Kasparkova, Jana; Kostrhunova, Hana; Novakova, Olga; Křikavová, Radka; Vančo, Ján; Trávníček, Zdeněk; Brabec, Viktor

    2015-11-23

    We report toxic effects of a photoactivatable platinum(IV) complex conjugated with suberoyl-bis-hydroxamic acid in tumor cells. The conjugate exerts, after photoactivation, two functions: activity as both a platinum(II) anticancer drug and histone deacetylase (HDAC) inhibitor in cancer cells. This approach relies on the use of a Pt(IV) pro-drug, acting by two independent mechanisms of biological action in a cooperative manner, which can be selectively photoactivated to a cytotoxic species in and around a tumor, thereby increasing selectivity towards cancer cells. These results suggest that this strategy is a valuable route to design new platinum agents with higher efficacy for photodynamic anticancer chemotherapy. PMID:26458068

  14. Targeting abnormal DNA repair in therapy-resistant breast cancers

    PubMed Central

    Tobin, Lisa A.; Robert, Carine; Nagaria, Pratik; Chumsri, Saranya; Twaddell, William; Ioffe, Olga B.; Greco, George E.; Brodie, Angela H.; Tomkinson, Alan E.; Rassool, Feyruz V.

    2012-01-01

    Although hereditary breast cancers have defects in the DNA damage response that result in genomic instability, DNA repair abnormalities in sporadic breast cancers have not been extensively characterized. Recently we showed that, relative to non-tumorigenic breast epithelial MCF10A cells, estrogen receptor- and progesterone receptor-positive (ER/PR+) MCF7 breast cancer cells have reduced steady state levels of DNA ligase IV, a component of the major DNA-PK dependent non-homologous end-joining (NHEJ) pathway, whereas the steady state level of DNA ligase IIIα, a component of the highly error-prone alternative NHEJ (ALT NHEJ) pathway, is increased. Here we show that tamoxifen- and aromatase-resistant derivatives of MCF7 cells and ER/PR- cells have even higher steady state levels of DNA ligase IIIα and increased levels of poly (ADP-ribose) polymerase (PARP1), another ALT NHEJ component. This results in increased dependence upon microhomology-mediated ALT NHEJ to repair DNA double strand breaks (DSB)s and the accumulation of chromosomal deletions. Notably, therapy-resistant derivatives of MCF7 cells and ER/PR- cells exhibited significantly increased sensitivity to a combination of PARP and DNA ligase III inhibitors that increased the number of DSBs. Biopsies from ER/PR- tumors had elevated levels of ALT NHEJ and reduced levels of DNA-PK-dependent NHEJ factors. Thus, our results show that ALT NHEJ is a novel therapeutic target in breast cancers that are resistant to frontline therapies and suggest that changes in NHEJ protein levels may serve as biomarkers to identify tumors that are candidates for this therapeutic approach. PMID:22112941

  15. SCF-FBXO31 E3 Ligase Targets DNA Replication Factor Cdt1 for Proteolysis in the G2 Phase of Cell Cycle to Prevent Re-replication*

    PubMed Central

    Johansson, Pegah; Jeffery, Jessie; Al-Ejeh, Fares; Schulz, Renèe B.; Callen, David F.; Kumar, Raman; Khanna, Kum Kum

    2014-01-01

    FBXO31 was originally identified as a putative tumor suppressor gene in breast, ovarian, hepatocellular, and prostate cancers. By screening a set of cell cycle-regulated proteins as potential FBXO31 interaction partners, we have now identified Cdt1 as a novel substrate. Cdt1 DNA replication licensing factor is part of the pre-replication complex and essential for the maintenance of genomic integrity. We show that FBXO31 specifically interacts with Cdt1 and regulates its abundance by ubiquitylation leading to subsequent degradation. We also show that Cdt1 regulation by FBXO31 is limited to the G2 phase of the cell cycle and is independent of the pathways previously described for Cdt1 proteolysis in S and G2 phase. FBXO31 targeting of Cdt1 is mediated through the N terminus of Cdt1, a region previously shown to be responsible for its cell cycle regulation. Finally, we show that Cdt1 stabilization due to FBXO31 depletion results in re-replication. Our data present an additional pathway that contributes to the FBXO31 function as a tumor suppressor. PMID:24828503

  16. Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer

    PubMed Central

    Nacerddine, Karim; Beaudry, Jean-Bernard; Ginjala, Vasudeva; Westerman, Bart; Mattiroli, Francesca; Song, Ji-Ying; van der Poel, Henk; Ponz, Olga Balagué; Pritchard, Colin; Cornelissen-Steijger, Paulien; Zevenhoven, John; Tanger, Ellen; Sixma, Titia K.; Ganesan, Shridar; van Lohuizen, Maarten

    2012-01-01

    Prostate cancer (PCa) is a major lethal malignancy in men, but the molecular events and their interplay underlying prostate carcinogenesis remain poorly understood. Epigenetic events and the upregulation of polycomb group silencing proteins including Bmi1 have been described to occur during PCa progression. Here, we found that conditional overexpression of Bmi1 in mice induced prostatic intraepithelial neoplasia, and elicited invasive adenocarcinoma when combined with PTEN haploinsufficiency. In addition, Bmi1 and the PI3K/Akt pathway were coactivated in a substantial fraction of human high-grade tumors. We found that Akt mediated Bmi1 phosphorylation, enhancing its oncogenic potential in an Ink4a/Arf-independent manner. This process also modulated the DNA damage response and affected genomic stability. Together, our findings demonstrate the etiological role of Bmi1 in PCa, unravel an oncogenic collaboration between Bmi1 and the PI3K/Akt pathway, and provide mechanistic insights into the modulation of Bmi1 function by phosphorylation during prostate carcinogenesis. PMID:22505453

  17. Sensitive and specific miRNA detection method using SplintR Ligase.

    PubMed

    Jin, Jingmin; Vaud, Sophie; Zhelkovsky, Alexander M; Posfai, Janos; McReynolds, Larry A

    2016-07-27

    We describe a simple, specific and sensitive microRNA (miRNA) detection method that utilizes Chlorella virus DNA ligase (SplintR(®) Ligase). This two-step method involves ligation of adjacent DNA oligonucleotides hybridized to a miRNA followed by real-time quantitative PCR (qPCR). SplintR Ligase is 100X faster than either T4 DNA Ligase or T4 RNA Ligase 2 for RNA splinted DNA ligation. Only a 4-6 bp overlap between a DNA probe and miRNA was required for efficient ligation by SplintR Ligase. This property allows more flexibility in designing miRNA-specific ligation probes than methods that use reverse transcriptase for cDNA synthesis of miRNA. The qPCR SplintR ligation assay is sensitive; it can detect a few thousand molecules of miR-122. For miR-122 detection the SplintR qPCR assay, using a FAM labeled double quenched DNA probe, was at least 40× more sensitive than the TaqMan assay. The SplintR method, when coupled with NextGen sequencing, allowed multiplex detection of miRNAs from brain, kidney, testis and liver. The SplintR qPCR assay is specific; individual let-7 miRNAs that differ by one nucleotide are detected. The rapid kinetics and ability to ligate DNA probes hybridized to RNA with short complementary sequences makes SplintR Ligase a useful enzyme for miRNA detection. PMID:27154271

  18. SCF ubiquitin ligase targeted therapies

    PubMed Central

    Skaar, Jeffrey R.; Pagan, Julia K.; Pagano, Michele

    2015-01-01

    Summary The recent clinical successes of inhibitors of the proteasome for the treatment of cancer have highlighted the therapeutic potential of this protein degradation system. Proteasome inhibitors prevent the degradation of numerous proteins, so increased specificity could be achieved by inhibiting the components of the ubiquitin-proteasome system that target specific subsets of proteins for degradation. F-box proteins are the substrate-targeting subunits of SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complexes. Through the degradation of a plethora of diverse substrates, SCF ubiquitin ligases control a large number of processes at the cellular and organismal levels, and their misregulation is implicated in many pathologies. SCF ligases are characterized by a high specificity for their substrates, so they represent promising drug targets. However, the potential for therapeutic manipulation of SCF complexes remains an underdeveloped area. This review will explore and discuss potential strategies to target SCF-mediated biology to treat human diseases. PMID:25394868

  19. SUMO-targeted ubiquitin ligases.

    PubMed

    Sriramachandran, Annie M; Dohmen, R Jürgen

    2014-01-01

    Covalent posttranslational modification with SUMO (small ubiquitin-related modifier) modulates functions of a wide range of proteins in eukaryotic cells. Sumoylation affects the activity, interaction properties, subcellular localization and the stability of its substrate proteins. The recent discovery of a novel class of ubiquitin ligases (E3), termed ULS (E3-S) or STUbL, that recognize sumoylated proteins, links SUMO modification to the ubiquitin/proteasome system. Here we review recent insights into the properties and function of these ligases and their roles in regulating sumoylated proteins. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf. PMID:24018209

  20. Urinary tract infection drives genome instability in uropathogenic Escherichia coli and necessitates translesion synthesis DNA polymerase IV for virulence

    PubMed Central

    Gawel, Damian

    2011-01-01

    Uropathogenic Escherichia coli (UPEC) produces ∼80% of community-acquired UTI, the second most common infection in humans. During UTI, UPEC has a complex life cycle, replicating and persisting in intracellular and extracellular niches. Host and environmental stresses may affect the integrity of the UPEC genome and threaten its viability. We determined how the host inflammatory response during UTI drives UPEC genome instability and evaluated the role of multiple factors of genome replication and repair for their roles in the maintenance of genome integrity and thus virulence during UTI. The urinary tract environment enhanced the mutation frequency of UPEC ∼100-fold relative to in vitro levels. Abrogation of inflammation through a host TLR4-signaling defect significantly reduced the mutation frequency, demonstrating in the importance of the host response as a driver of UPEC genome instability. Inflammation induces the bacterial SOS response, leading to the hypothesis that the UPEC SOS-inducible translesion synthesis (TLS) DNA polymerases would be key factors in UPEC genome instability during UTI. However, while the TLS DNA polymerases enhanced in vitro, they did not increase in vivo mutagenesis. Although it is not a source of enhanced mutagenesis in vivo, the TLS DNA polymerase IV was critical for the survival of UPEC during UTI during an active inflammatory assault. Overall, this study provides the first evidence of a TLS DNA polymerase being critical for UPEC survival during urinary tract infection and points to independent mechanisms for genome instability and the maintenance of genome replication of UPEC under host inflammatory stress. PMID:21597325

  1. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions

    PubMed Central

    Tadi, Satish Kumar; Sebastian, Robin; Dahal, Sumedha; Babu, Ravi K.; Choudhary, Bibha; Raghavan, Sathees C.

    2016-01-01

    Mitochondrial DNA (mtDNA) deletions are associated with various mitochondrial disorders. The deletions identified in humans are flanked by short, directly repeated mitochondrial DNA sequences; however, the mechanism of such DNA rearrangements has yet to be elucidated. In contrast to nuclear DNA (nDNA), mtDNA is more exposed to oxidative damage, which may result in double-strand breaks (DSBs). Although DSB repair in nDNA is well studied, repair mechanisms in mitochondria are not characterized. In the present study, we investigate the mechanisms of DSB repair in mitochondria using in vitro and ex vivo assays. Whereas classical NHEJ (C-NHEJ) is undetectable, microhomology-mediated alternative NHEJ efficiently repairs DSBs in mitochondria. Of interest, robust microhomology-mediated end joining (MMEJ) was observed with DNA substrates bearing 5-, 8-, 10-, 13-, 16-, 19-, and 22-nt microhomology. Furthermore, MMEJ efficiency was enhanced with an increase in the length of homology. Western blotting, immunoprecipitation, and protein inhibition assays suggest the involvement of CtIP, FEN1, MRE11, and PARP1 in mitochondrial MMEJ. Knockdown studies, in conjunction with other experiments, demonstrated that DNA ligase III, but not ligase IV or ligase I, is primarily responsible for the final sealing of DSBs during mitochondrial MMEJ. These observations highlight the central role of MMEJ in maintenance of mammalian mitochondrial genome integrity and is likely relevant for deletions observed in many human mitochondrial disorders. PMID:26609070

  2. Crystallization and preliminary X-ray diffraction analysis of two N-terminal fragments of the DNA-cleavage domain of topoisomerase IV from Staphylococcus aureus

    SciTech Connect

    Carr, Stephen B.; Makris, George; Phillips, Simon E. V.; Thomas, Christopher D.

    2006-11-01

    The crystallization and data collection of topoisomerase IV from S. aureus is described. Phasing by molecular replacement proved difficult owing to the presence of translational NCS and strategies used to overcome this are discussed. DNA topoisomerase IV removes undesirable topological features from DNA molecules in order to help maintain chromosome stability. Two constructs of 56 and 59 kDa spanning the DNA-cleavage domain of the A subunit of topoisomerase IV from Staphylococcus aureus (termed GrlA56 and GrlA59) have been crystallized. Crystals were grown at 291 K using the sitting-drop vapour-diffusion technique with PEG 3350 as a precipitant. Preliminary X-ray analysis revealed that GrlA56 crystals belong to space group P2{sub 1}, diffract to a resolution of 2.9 Å and possess unit-cell parameters a = 83.6, b = 171.5, c = 87.8 Å, β = 90.1°, while crystals of GrlA59 belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 41.5, b = 171.89, c = 87.9 Å. These crystals diffract to a resolution of 2.8 Å. This is the first report of the crystallization and preliminary X-ray analysis of the DNA-cleavage domain of a topoisomerase IV from a Gram-positive organism.

  3. Repair of gaps in retroviral DNA integration intermediates.

    PubMed

    Yoder, K E; Bushman, F D

    2000-12-01

    Diverse mobile DNA elements are believed to pirate host cell enzymes to complete DNA transfer. Prominent examples are provided by retroviral cDNA integration and transposon insertion. These reactions initially involve the attachment of each element 3' DNA end to staggered sites in the host DNA by element-encoded integrase or transposase enzymes. Unfolding of such intermediates yields DNA gaps at each junction. It has been widely assumed that host DNA repair enzymes complete attachment of the remaining DNA ends, but the enzymes involved have not been identified for any system. We have synthesized DNA substrates containing the expected gap and 5' two-base flap structure present in retroviral integration intermediates and tested candidate enzymes for the ability to support repair in vitro. We find three required activities, two of which can be satisfied by multiple enzymes. These are a polymerase (polymerase beta, polymerase delta and its cofactor PCNA, or reverse transcriptase), a nuclease (flap endonuclease), and a ligase (ligase I, III, or IV and its cofactor XRCC4). A proposed pathway involving retroviral integrase and reverse transcriptase did not carry out repair under the conditions tested. In addition, prebinding of integrase protein to gapped DNA inhibited repair reactions, indicating that gap repair in vivo may require active disassembly of the integrase complex. PMID:11070016

  4. The Ser176 of T4 endonuclease IV is crucial for the restricted and polarized dC-specific cleavage of single-stranded DNA implicated in restriction of dC-containing DNA in host Escherichia coli

    PubMed Central

    Hirano, Nobutaka; Ohshima, Hiroyuki; Sakashita, Hidenori; Takahashi, Hideo

    2007-01-01

    Endonuclease (Endo) IV encoded by denB of bacteriophage T4 is an enzyme that cleaves single-stranded (ss) DNA in a dC-specific manner. Also the growth of dC-substituted T4 phage and host Escherichia coli cells is inhibited by denB expression presumably because of the inhibitory effect on replication of dC-containing DNA. Recently, we have demonstrated that an efficient cleavage by Endo IV occurs exclusively at the 5′-proximal dC (dC1) within a hexameric or an extended sequence consisting of dC residues at the 5′-proximal and the 3′-proximal positions (dCs tract), in which a third dC residue within the tract affects the polarized cleavage and cleavage rate. Here we isolate and characterize two denB mutants, denB(W88R) and denB(S176N). Both mutant alleles have lost the detrimental effect on the host cell. Endo IV(W88R) shows no enzymatic activity (<0.4% of that of wild-type Endo IV). On the other hand, Endo IV(S176N) retains cleavage activity (17.5% of that of wild-type Endo IV), but has lost the polarized and restricted cleavage of a dCs tract, indicating that the Ser176 residue of Endo IV is implicated in the polarized cleavage of a dCs tract which brings about a detrimental effect on the replication of dC-containing DNA. PMID:17913749

  5. A unique dual recognition hairpin probe mediated fluorescence amplification method for sensitive detection of uracil-DNA glycosylase and endonuclease IV activities.

    PubMed

    Wu, Yushu; Yan, Ping; Xu, Xiaowen; Jiang, Wei

    2016-03-01

    Uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV) play cooperative roles in uracil base-excision repair (UBER) and inactivity of either will interrupt the UBER to cause disease. Detection of UDG and Endo IV activities is crucial to evaluate the UBER process in fundamental research and diagnostic application. Here, a unique dual recognition hairpin probe mediated fluorescence amplification method was developed for sensitively and selectively detecting UDG and Endo IV activities. For detecting UDG activity, the uracil base in the probe was excised by the target enzyme to generate an apurinic/apyrimidinic (AP) site, achieving the UDG recognition. Then, the AP site was cleaved by a tool enzyme Endo IV, releasing a primer to trigger rolling circle amplification (RCA) reaction. Finally, the RCA reaction produced numerous repeated G-quadruplex sequences, which interacted with N-methyl-mesoporphyrin IX to generate an enhanced fluorescence signal. Alternatively, for detecting Endo IV activity, the uracil base in the probe was first converted into an AP site by a tool enzyme UDG. Next, the AP site was cleaved by the target enzyme, achieving the Endo IV recognition. The signal was then generated and amplified in the same way as those in the UDG activity assay. The detection limits were as low as 0.00017 U mL(-1) for UDG and 0.11 U mL(-1) for Endo IV, respectively. Moreover, UDG and Endo IV can be well distinguished from their analogs. This method is beneficial for properly evaluating the UBER process in function studies and disease prognoses. PMID:26899234

  6. Metal A and Metal B Sites of Nuclear RNA Polymerases Pol IV and Pol V Are Required for siRNA-Dependent DNA Methylation and Gene Silencing

    PubMed Central

    Haag, Jeremy R.; Pontes, Olga; Pikaard, Craig S.

    2009-01-01

    Plants are unique among eukaryotes in having five multi-subunit nuclear RNA polymerases: the ubiquitous RNA polymerases I, II and III plus two plant-specific activities, nuclear RNA polymerases IV and V (previously known as Polymerases IVa and IVb). Pol IV and Pol V are not required for viability but play non-redundant roles in small interfering RNA (siRNA)-mediated pathways, including a pathway that silences retrotransposons and endogenous repeats via siRNA-directed DNA methylation. RNA polymerase activity has not been demonstrated for Polymerases IV or V in vitro, making it unclear whether they are catalytically active enzymes. Their largest and second-largest subunit sequences have diverged considerably from Pol I, II and III in the vicinity of the catalytic center, yet retain the invariant Metal A and Metal B amino acid motifs that bind magnesium ions essential for RNA polymerization. By using site-directed mutagenesis in conjunction with in vivo functional assays, we show that the Metal A and Metal B motifs of Polymerases IV and V are essential for siRNA production, siRNA-directed DNA methylation, retrotransposon silencing, and the punctate nuclear localization patterns typical of both polymerases. Collectively, these data show that the minimal core sequences of polymerase active sites, the Metal A and B sites, are essential for Pol IV and Pol V biological functions, implying that both are catalytically active. PMID:19119310

  7. Probing transient protein-mediated DNA linkages using nanoconfinement

    PubMed Central

    Roushan, Maedeh; Kaur, Parminder; Karpusenko, Alena; Countryman, Preston J.; Ortiz, Carlos P.; Fang Lim, Shuang; Wang, Hong; Riehn, Robert

    2014-01-01

    We present an analytic technique for probing protein-catalyzed transient DNA loops that is based on nanofluidic channels. In these nanochannels, DNA is forced in a linear configuration that makes loops appear as folds whose size can easily be quantified. Using this technique, we study the interaction between T4 DNA ligase and DNA. We find that T4 DNA ligase binding changes the physical characteristics of the DNA polymer, in particular persistence length and effective width. We find that the rate of DNA fold unrolling is significantly reduced when T4 DNA ligase and ATP are applied to bare DNA. Together with evidence of T4 DNA ligase bridging two different segments of DNA based on AFM imaging, we thus conclude that ligase can transiently stabilize folded DNA configurations by coordinating genetically distant DNA stretches. PMID:25379073

  8. Circulating Tumor DNA in Predicting Outcomes in Patients With Stage IV Head and Neck Cancer or Stage III-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2016-04-11

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Salivary Gland Squamous Cell Carcinoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Salivary Gland Cancer; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Salivary Gland Cancer; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Salivary Gland Cancer; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Verrucous Carcinoma of the Larynx; Stage IVC Verrucous Carcinoma of the Oral Cavity; Tongue Cancer; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  9. Structural biology of DNA repair: spatial organisation of the multicomponent complexes of nonhomologous end joining.

    PubMed

    Ochi, Takashi; Sibanda, Bancinyane Lynn; Wu, Qian; Chirgadze, Dimitri Y; Bolanos-Garcia, Victor M; Blundell, Tom L

    2010-01-01

    Nonhomologous end joining (NHEJ) plays a major role in double-strand break DNA repair, which involves a series of steps mediated by multiprotein complexes. A ring-shaped Ku70/Ku80 heterodimer forms first at broken DNA ends, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) binds to mediate synapsis and nucleases process DNA overhangs. DNA ligase IV (LigIV) is recruited as a complex with XRCC4 for ligation, with XLF/Cernunnos, playing a role in enhancing activity of LigIV. We describe how a combination of methods-X-ray crystallography, electron microscopy and small angle X-ray scattering-can give insights into the transient multicomponent complexes that mediate NHEJ. We first consider the organisation of DNA-PKcs/Ku70/Ku80/DNA complex (DNA-PK) and then discuss emerging evidence concerning LigIV/XRCC4/XLF/DNA and higher-order complexes. We conclude by discussing roles of multiprotein systems in maintaining high signal-to-noise and the value of structural studies in developing new therapies in oncology and elsewhere. PMID:20862368

  10. Structure and two-metal mechanism of a eukaryal nick-sealing RNA ligase

    PubMed Central

    Unciuleac, Mihaela-Carmen; Goldgur, Yehuda; Shuman, Stewart

    2015-01-01

    ATP-dependent RNA ligases are agents of RNA repair that join 3′-OH and 5′-PO4 RNA ends. Naegleria gruberi RNA ligase (NgrRnl) exemplifies a family of RNA nick-sealing enzymes found in bacteria, viruses, and eukarya. Crystal structures of NgrRnl at three discrete steps along the reaction pathway—covalent ligase-(lysyl-Nζ)–AMP•Mn2+ intermediate; ligase•ATP•(Mn2+)2 Michaelis complex; and ligase•Mn2+ complex—highlight a two-metal mechanism of nucleotidyl transfer, whereby (i) an enzyme-bound “catalytic” metal coordination complex lowers the pKa of the lysine nucleophile and stabilizes the transition state of the ATP α phosphate; and (ii) a second metal coordination complex bridges the β- and γ-phosphates. The NgrRnl N domain is a distinctively embellished oligonucleotide-binding (OB) fold that engages the γ-phosphate and associated metal complex and orients the pyrophosphate leaving group for in-line catalysis with stereochemical inversion at the AMP phosphate. The unique domain architecture of NgrRnl fortifies the theme that RNA ligases have evolved many times, and independently, by fusions of a shared nucleotidyltransferase domain to structurally diverse flanking modules. The mechanistic insights to lysine adenylylation gained from the NgrRnl structures are likely to apply broadly to the covalent nucleotidyltransferase superfamily of RNA ligases, DNA ligases, and RNA capping enzymes. PMID:26512110

  11. Discrimination of Listeria monocytogenes from other Listeria species by ligase chain reaction.

    PubMed Central

    Wiedmann, M; Czajka, J; Barany, F; Batt, C A

    1992-01-01

    A ligase chain reaction assay based on a single-base-pair difference in the V9 region of the 16S rRNA gene (16S rDNA) was developed to distinguish between Listeria monocytogenes and other Listeria species. For this purpose, two pairs of primers were designed, with one primer of each pair being radioactively labeled. The ligated product was separated from the primers by denaturing polyacrylamide gel electrophoresis and then detected by autoradiography. To achieve a higher sensitivity, the 16S rDNA was initially amplified by polymerase chain reaction prior to the ligase chain reaction. The ligase chain reaction was tested on 19 different Listeria species and strains and proved to be a highly specific diagnostic method for the detection of L. monocytogenes. Images PMID:1482171

  12. Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae

    PubMed Central

    Schröder, Gunnar; Schuelein, Ralf; Quebatte, Maxime; Dehio, Christoph

    2011-01-01

    Bacterial type IV secretion systems (T4SS) mediate interbacterial conjugative DNA transfer and transkingdom protein transfer into eukaryotic host cells in bacterial pathogenesis. The sole bacterium known to naturally transfer DNA into eukaryotic host cells via a T4SS is the plant pathogen Agrobacterium tumefaciens. Here we demonstrate T4SS-mediated DNA transfer from a human bacterial pathogen into human cells. We show that the zoonotic pathogen Bartonella henselae can transfer a cryptic plasmid occurring in the bartonellae into the human endothelial cell line EA.hy926 via its T4SS VirB/VirD4. DNA transfer into EA.hy926 cells was demonstrated by using a reporter derivative of this Bartonella-specific mobilizable plasmid generated by insertion of a eukaryotic egfp-expression cassette. Fusion of the C-terminal secretion signal of the endogenous VirB/VirD4 protein substrate BepD with the plasmid-encoded DNA-transport protein Mob resulted in a 100-fold increased DNA transfer rate. Expression of the delivered egfp gene in EA.hy926 cells required cell division, suggesting that nuclear envelope breakdown may facilitate passive entry of the transferred ssDNA into the nucleus as prerequisite for complementary strand synthesis and transcription of the egfp gene. Addition of an eukaryotic neomycin phosphotransferase expression cassette to the reporter plasmid facilitated selection of stable transgenic EA.hy926 cell lines that display chromosomal integration of the transferred plasmid DNA. Our data suggest that T4SS-dependent DNA transfer into host cells may occur naturally during human infection with Bartonella and that these chronically infecting pathogens have potential for the engineering of in vivo gene-delivery vectors with applications in DNA vaccination and therapeutic gene therapy. PMID:21844337

  13. DNA cleavage by new oxovanadium(IV) complexes of N-salicylidene alpha-amino acids and phenanthroline bases in the photodynamic therapy window.

    PubMed

    Sasmal, Pijus K; Patra, Ashis K; Nethaji, Munirathinam; Chakravarty, Akhil R

    2007-12-24

    Oxovanadium(IV) complexes [VO(salmet)(B)] (1-3) and [VO(saltrp)(B)] (4-6), where salmet and saltrp are N-salicylidene-l-methionate and N-salicylidene-l-tryptophanate, respectively, and B is a N,N-donor heterocyclic base (viz. 1,10-phenanthroline (phen, 1, 4), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 2, 5), and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 3, 6)) are prepared and characterized and their DNA binding and photoinduced DNA cleavage activity studied. Complexes 1, 2, and 4 are structurally characterized by single-crystal X-ray crystallography. The molecular structure shows the presence of a vanadyl group in the VO3N3 coordination geometry. The dianionic alpha-amino acid Schiff base acts as a tridentate O,N,O-donor ligand in a meridional binding mode. The N,N-donor heterocyclic base displays a chelating mode of bonding with a N-donor site trans to the oxo group. The complexes show a d-d band in the range of 680-710 nm in DMF with a shoulder near 840 nm. They exhibit an irreversible oxidative cyclic voltammetric response near 0.8 V assignable to the V(V)/V(IV) couple and a quasi-reversible V(IV)/V(III) redox couple near -1.1 V vs SCE in DMF-0.1 M TBAP. The complexes show good binding propensity to calf thymus DNA giving binding constant values in the range from 5.2 x 10(4) to 7.2 x 10(5) M(-1). The binding site size, thermal melting, and viscosity data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor "chemical nuclease" activity in the dark in the presence of 3-mercaptopropionic acid or hydrogen peroxide. The dpq and dppz complexes show efficient DNA cleavage activity on irradiation with UV-A light of 365 nm via a mechanistic pathway involving formation of singlet oxygen as the reactive species. They also show significant DNA cleavage activity on photoexcitation in red light (>750 nm) by (1)O2 species. Observation of red-light-induced cleavage of DNA is unprecedented in the vanadium chemistry. The DNA cleavage activity is

  14. Characterization and Promoter Analysis of a Cotton Ring-Type Ubiquitin Ligase (E3) Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cotton fiber cDNA, GhRING1, and its corresponding gene have been cloned and characterized. The GhRING1 gene encodes a RING-type ubiquitin ligase (E3) containing 337 amino acids (aa). The GhRING1 protein contains a RING finger motif with conserved cysteine and histine residues at the C-terminus a...

  15. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways.

    PubMed

    Wang, Minli; Wu, Weizhong; Wu, Wenqi; Rosidi, Bustanur; Zhang, Lihua; Wang, Huichen; Iliakis, George

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer. PMID:17088286

  16. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways

    PubMed Central

    Wang, Minli; Wu, Weizhong; Wu, Wenqi; Rosidi, Bustanur; Zhang, Lihua; Wang, Huichen; Iliakis, George

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer. PMID:17088286

  17. Mating pair formation homologue TraG is a variable membrane protein essential for contact-independent type IV secretion of chromosomal DNA by Neisseria gonorrhoeae.

    PubMed

    Kohler, Petra L; Chan, Yolande A; Hackett, Kathleen T; Turner, Nicholas; Hamilton, Holly L; Cloud-Hansen, Karen A; Dillard, Joseph P

    2013-04-01

    Neisseria gonorrhoeae uses a type IV secretion system (T4SS) to secrete chromosomal DNA into the surrounding milieu. The DNA is effective in transforming gonococci in the population, and this mechanism of DNA donation may contribute to the high degree of genetic diversity in this species. Similar to other F-like T4SSs, the gonococcal T4SS requires a putative membrane protein, TraG, for DNA transfer. In F-plasmid and related systems, the homologous protein acts in pilus production, mating pair stabilization, and entry exclusion. We characterized the localization, membrane topology, and variation of TraG in N. gonorrhoeae. TraG was found to be an inner-membrane protein with one large periplasmic region and one large cytoplasmic region. Each gonococcal strain carried one of three different alleles of traG. Strains that carried the smallest allele of traG were found to lack the peptidoglycanase gene atlA but carried a peptidoglycan endopeptidase gene in place of atlA. The purified endopeptidase degraded gonococcal peptidoglycan in vitro, cutting the peptide cross-links. Although the other two traG alleles functioned for DNA secretion in strain MS11, the smallest traG did not support DNA secretion. Despite the requirement for a mating pair stabilization homologue, static coculture transformation experiments demonstrated that DNA transfer was nuclease sensitive and required active uptake by the recipient, thus demonstrating that transfer occurred by transformation and not conjugation. Together, these results demonstrate the TraG acts in a process of DNA export not specific to conjugation and that different forms of TraG affect what substrates can be transported. PMID:23378511

  18. DNA-PK and ATM phosphorylation sites in XLF/Cernunnos are not required for repair of DNA double strand breaks.

    PubMed

    Yu, Yaping; Mahaney, Brandi L; Yano, Ken-Ichi; Ye, Ruiqiong; Fang, Shujuan; Douglas, Pauline; Chen, David J; Lees-Miller, Susan P

    2008-10-01

    Nonhomologous end joining (NHEJ) is the major pathway for the repair of DNA double strand breaks (DSBs) in human cells. NHEJ requires the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku70, Ku80, XRCC4, DNA ligase IV and Artemis, as well as DNA polymerases mu and lambda and polynucleotide kinase. Recent studies have identified an additional participant, XLF, for XRCC4-like factor (also called Cernunnos), which interacts with the XRCC4-DNA ligase IV complex and stimulates its activity in vitro, however, its precise role in the DNA damage response is not fully understood. Since the protein kinase activity of DNA-PKcs is required for NHEJ, we asked whether XLF might be a physiological target of DNA-PK. Here, we have identified two major in vitro DNA-PK phosphorylation sites in the C-terminal region of XLF, serines 245 and 251. We show that these represent the major phosphorylation sites in XLF in vivo and that serine 245 is phosphorylated in vivo by DNA-PK, while serine 251 is phosphorylated by Ataxia-Telangiectasia Mutated (ATM). However, phosphorylation of XLF did not have a significant effect on the ability of XLF to interact with DNA in vitro or its recruitment to laser-induced DSBs in vivo. Similarly, XLF in which the identified in vivo phosphorylation sites were mutated to alanine was able to complement the DSB repair defect as well as radiation sensitivity in XLF-deficient 2BN cells. We conclude that phosphorylation of XLF at these sites does not play a major role in the repair of IR-induced DSBs in vivo. PMID:18644470

  19. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage.

    PubMed

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Samarth, Ravindra Mahadeo; Tomita, Masanori; Matsumoto, Yoshihisa

    2016-03-01

    XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells. PMID:26666690

  20. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage

    PubMed Central

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Samarth, Ravindra Mahadeo; Tomita, Masanori; Matsumoto, Yoshihisa

    2016-01-01

    XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells. PMID:26666690

  1. Photocytotoxicity and DNA cleavage activity of L-arg and L-lys Schiff base oxovanadium(IV) complexes having phenanthroline bases.

    PubMed

    Sasmal, Pijus K; Majumdar, Ritankar; Dighe, Rajan R; Chakravarty, Akhil R

    2010-08-14

    Oxovanadium(IV) complexes [VO(sal-argH)(B)]Cl (1-3) and [VO(sal-lysH)(B)]Cl (4-6), where sal-argH2 and sal-lysH2 are N-salicylidene-L-arginine and N-salicylidene-L-lysine Schiff bases and B is a phenanthroline base, viz. 1,10-phenanthroline (phen in 1 and 4); dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 2 and 5) and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 3 and 6), have been prepared, characterized and their DNA photocleavage activity studied. Complex 1, characterized by X-ray crystallography, shows the presence of a vanadyl group in V(IV)O3N3 coordination geometry with a tridentate Schiff base having a pendant guanidinium moiety and bidentate phen ligand. The complexes exhibit a d-d band at 715 nm in 20% DMF-Tris-HCl buffer. The complexes are redox active showing cathodic and anodic responses near -1.0 V and 0.85 V (vs. SCE) for the V(IV)-V(III) and V(V)-V(IV) couples, respectively, in DMF-Tris-HCl buffer. The complexes bind to calf thymus DNA giving Kb values in the range of 3.8 x 10(4) to 1.6 x 10(5) M(-1). Thermal denaturation and viscosity data suggest DNA groove binding nature of the complexes. The complexes do not show any "chemical nuclease" activity in dark in the presence of 3-mercaptopropionic acid or H2O2. The dpq and dppz complexes are efficient photocleavers of plasmid DNA in UV-A (365 nm) and red light (676 nm) via singlet oxygen pathway. The dppz complexes exhibit photocytotoxicity in HeLa cancer cells giving IC50 values of 15.4 microM for 3 and 17.5 microM for 6 in visible light while being non-toxic in dark giving IC50 values of >100 microM. PMID:20563340

  2. Biochemical Properties and Biological Function of a Monofunctional Microbial Biotin Protein Ligase

    PubMed Central

    Daniels, Kyle G.; Beckett, Dorothy

    2010-01-01

    Biotin protein ligases constitute a family of enzymes that catalyze biotin linkage to biotin-dependent carboxylases. In bacteria these enzymes are functionally divided into two classes; the monofunctional enzymes that only catalyze biotin addition and the bifunctional enzymes that also bind to DNA to regulate transcription initiation. Biochemical and biophysical studies of the bifunctional Escherichia coli ligase suggest that several properties of the enzyme have evolved to support its additional regulatory role. Included among these properties are the order of substrate binding and linkage between oligomeric state and ligand binding. PMID:20499837

  3. Assembly of the Elongin A Ubiquitin Ligase Is Regulated by Genotoxic and Other Stresses.

    PubMed

    Weems, Juston C; Slaughter, Brian D; Unruh, Jay R; Hall, Shawn M; McLaird, Merry B; Gilmore, Joshua M; Washburn, Michael P; Florens, Laurence; Yasukawa, Takashi; Aso, Teijiro; Conaway, Joan W; Conaway, Ronald C

    2015-06-12

    Elongin A performs dual functions in cells as a component of RNA polymerase II (Pol II) transcription elongation factor Elongin and as the substrate recognition subunit of a Cullin-RING E3 ubiquitin ligase that has been shown to target Pol II stalled at sites of DNA damage. Here we investigate the mechanism(s) governing conversion of the Elongin complex from its elongation factor to its ubiquitin ligase form. We report the discovery that assembly of the Elongin A ubiquitin ligase is a tightly regulated process. In unstressed cells, Elongin A is predominately present as part of Pol II elongation factor Elongin. Assembly of Elongin A into the ubiquitin ligase is strongly induced by genotoxic stress; by transcriptional stresses that lead to accumulation of stalled Pol II; and by other stimuli, including endoplasmic reticulum and nutrient stress and retinoic acid signaling, that activate Elongin A-dependent transcription. Taken together, our findings shed new light on mechanisms that control the Elongin A ubiquitin ligase and suggest that it may play a role in Elongin A-dependent transcription. PMID:25878247

  4. Assembly of the Elongin A Ubiquitin Ligase Is Regulated by Genotoxic and Other Stresses*

    PubMed Central

    Weems, Juston C.; Slaughter, Brian D.; Unruh, Jay R.; Hall, Shawn M.; McLaird, Merry B.; Gilmore, Joshua M.; Washburn, Michael P.; Florens, Laurence; Yasukawa, Takashi; Aso, Teijiro; Conaway, Joan W.; Conaway, Ronald C.

    2015-01-01

    Elongin A performs dual functions in cells as a component of RNA polymerase II (Pol II) transcription elongation factor Elongin and as the substrate recognition subunit of a Cullin-RING E3 ubiquitin ligase that has been shown to target Pol II stalled at sites of DNA damage. Here we investigate the mechanism(s) governing conversion of the Elongin complex from its elongation factor to its ubiquitin ligase form. We report the discovery that assembly of the Elongin A ubiquitin ligase is a tightly regulated process. In unstressed cells, Elongin A is predominately present as part of Pol II elongation factor Elongin. Assembly of Elongin A into the ubiquitin ligase is strongly induced by genotoxic stress; by transcriptional stresses that lead to accumulation of stalled Pol II; and by other stimuli, including endoplasmic reticulum and nutrient stress and retinoic acid signaling, that activate Elongin A-dependent transcription. Taken together, our findings shed new light on mechanisms that control the Elongin A ubiquitin ligase and suggest that it may play a role in Elongin A-dependent transcription. PMID:25878247

  5. Physical organization of the 1.709 satellite IV DNA family in Bovini and Tragelaphini tribes of the Bovidae: sequence and chromosomal evolution.

    PubMed

    Adega, F; Chaves, R; Guedes-Pinto, H; Heslop-Harrison, J S

    2006-01-01

    Repetitive DNA in the mammalian genome is a valuable record and marker for evolution, providing information about the order and driving forces related to evolutionary events. The evolutionarily young 1.709 satellite IV DNA family is present near the centromeres of many chromosomes in the Bovidae. Here, we isolated 1.709 satellite DNA sequences from five Bovidae species belonging to Bovini: Bos taurus (BTA, cattle), Bos indicus (BIN, zebu), Bubalus bubalis (BBU, water buffalo) and Tragelaphini tribes: Taurotragus oryx (TOR, eland) and Tragelaphus euryceros (TEU, bongo). Its presence in both tribes shows the sequence predates the evolutionary separation of the two tribes (more than 10 million years ago), and primary sequence shows increasing divergence with evolutionary distance. Genome organization (Southern hybridization) and physical distribution (in situ hybridization) revealed differences in the molecular organization of these satellite DNA sequences. The data suggest that the sequences on the sex chromosomes and the autosomes evolve as relatively independent groups, with the repetitive sequences suggesting that Bovini autosomes and the Tragelaphini sex chromosomes represent the more primitive chromosome forms. PMID:16825766

  6. A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia.

    PubMed

    Bouquet, Fanny; Ousset, Marielle; Biard, Denis; Fallone, Frédérique; Dauvillier, Stéphanie; Frit, Philippe; Salles, Bernard; Muller, Catherine

    2011-06-01

    DNA-dependent protein kinase (DNA-PK) is involved in DNA double-strand break (DSB) signalling and repair. We report that DNA-PK is activated by mild hypoxia conditions (0.1-1% O₂) as shown by (1) its autophosphorylation on Ser2056, and (2) its mobilisation from a soluble nucleoplasmic compartment to a less extractable nuclear fraction. The recruitment of DNA-PK was not followed by activation and recruitment of the XRCC4-DNA-ligase-IV complex, suggesting that DSBs are not responsible for activation of DNA-PK. To unravel the mechanism of DNA-PK activation, we show that exposure of cells to trichostatin A, a histone deacetylase inhibitor, leads to DNA-PK autophosphorylation and relocalisation to DNA. Histone acetylation (mainly H3K14) is increased in hypoxic cells and treatment with anacardic acid, an inhibitor of histone acetyl transferase, prevented both histone modifications and DNA-PK activation in hypoxic conditions. Importantly, in using either silenced DNA-PK cells or cells exposed to a specific DNA-PK inhibitor (NU7026), we demonstrated that hypoxic DNA-PK activation positively regulates the key transcription factor HIF-1 and one subsequent target gene, GLUT1. Our results show that hypoxia initiates chromatin modification and consequently DNA-PK activation, which positively regulate cellular oxygen-sensing and oxygen-signalling pathways. PMID:21576354

  7. Characterization of Family IV UDG from Aeropyrum pernix and Its Application in Hot-Start PCR by Family B DNA Polymerase

    PubMed Central

    Liu, Xi-Peng; Liu, Jian-Hua

    2011-01-01

    Recombinant uracil-DNA glycosylase (UDG) from Aeropyrum pernix (A. pernix) was expressed in E. coli. The biochemical characteristics of A. pernix UDG (ApeUDG) were studied using oligonucleotides carrying a deoxyuracil (dU) base. The optimal temperature range and pH value for dU removal by ApeUDG were 55–65°C and pH 9.0, respectively. The removal of dU was inhibited by the divalent ions of Zn, Cu, Co, Ni, and Mn, as well as a high concentration of NaCl. The opposite base in the complementary strand affected the dU removal by ApeUDG as follows: U/C≈U/G>U/T≈U/AP≈U/->U/U≈U/I>U/A. The phosphorothioate around dU strongly inhibited dU removal by ApeUDG. Based on the above biochemical characteristics and the conservation of amino acid residues, ApeUDG was determined to belong to the IV UDG family. ApeUDG increased the yield of PCR by Pfu DNA polymerase via the removal of dU in amplified DNA. Using the dU-carrying oligonucleotide as an inhibitor and ApeUDG as an activator of Pfu DNA polymerase, the yield of undesired DNA fragments, such as primer-dimer, was significantly decreased, and the yield of the PCR target fragment was increased. This strategy, which aims to amplify the target gene with high specificity and yield, can be applied to all family B DNA polymerases. PMID:22087273

  8. Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2.

    PubMed

    Roscic, Ana; Möller, Andreas; Calzado, Marco A; Renner, Florian; Wimmer, Verena C; Gresko, Ekaterina; Lüdi, Katharina Schmid; Schmitz, M Lienhard

    2006-10-01

    Sumoylation serves to control key cellular functions, but the regulation of SUMO E3 ligase activity is largely unknown. Here we show that the polycomb group protein Pc2 binds to and colocalizes with homeodomain interacting protein kinase 2 (HIPK2) and serves as a SUMO E3 ligase for this kinase. DNA damage-induced HIPK2 directly phosphorylates Pc2 at multiple sites, which in turn controls Pc2 sumoylation and intranuclear localization. Inducible phosphorylation of Pc2 at threonine 495 is required for its ability to increase HIPK2 sumoylation in response to DNA damage, thereby establishing an autoregulatory feedback loop between a SUMO substrate and its cognate E3 ligase. Sumoylation enhances the ability of HIPK2 to mediate transcriptional repression, thus providing a mechanistic link for DNA damage-induced transcriptional silencing. PMID:17018294

  9. Lithium chloride protects retinal neurocytes from nutrient deprivation by promoting DNA non-homologous end-joining

    SciTech Connect

    Zhuang Jing; Li Fan; Liu Xuan; Liu Zhiping; Lin Jianxian; Ge Yihong; Kaminski, Joseph M.; Summers, James Bradley; Wang Zhichong; Ge Jian Yu Keming

    2009-03-13

    Lithium chloride is a therapeutic agent for treatment of bipolar affective disorders. Increasing numbers of studies have indicated that lithium has neuroprotective effects. However, the molecular mechanisms underlying the actions of lithium have not been fully elucidated. This study aimed to investigate whether lithium chloride produces neuroprotective function by improving DNA repair pathway in retinal neurocyte. In vitro, the primary cultured retinal neurocytes (85.7% are MAP-2 positive cells) were treated with lithium chloride, then cultured with serum-free media to simulate the nutrient deprived state resulting from ischemic insult. The neurite outgrowth of the cultured cells increased significantly in a dose-dependent manner when exposed to different levels of lithium chloride. Genomic DNA electrophoresis demonstrated greater DNA integrity of retinal neurocytes when treated with lithium chloride as compared to the control. Moreover, mRNA and protein levels of Ligase IV (involved in DNA non-homologous end-joining (NHEJ) pathway) in retinal neurocytes increased with lithium chloride. The end joining activity assay was performed to determine the role of lithium on NHEJ in the presence of extract from retinal neurocytes. The rejoining levels in retinal neurocytes treated with lithium were significantly increased as compared to the control. Furthermore, XRCC4, the Ligase IV partner, and the transcriptional factor, CREB and CTCF, were up-regulated in retinal cells after treating with 1.0 mM lithium chloride. Therefore, our data suggest that lithium chloride protects the retinal neural cells from nutrient deprivation in vitro, which may be similar to the mechanism of cell death in glaucoma. The improvement in DNA repair pathway involving in Ligase IV might have an important role in lithium neuroprotection. This study provides new insights into the neural protective mechanisms of lithium chloride.

  10. The C-terminal domain of Cernunnos/XLF is dispensable for DNA repair in vivo.

    PubMed

    Malivert, Laurent; Callebaut, Isabelle; Rivera-Munoz, Paola; Fischer, Alain; Mornon, Jean-Paul; Revy, Patrick; de Villartay, Jean-Pierre

    2009-03-01

    The core nonhomologous end-joining DNA repair pathway is composed of seven factors: Ku70, Ku80, DNA-PKcs, Artemis, XRCC4 (X4), DNA ligase IV (L4), and Cernunnos/XLF (Cernunnos). Although Cernunnos and X4 are structurally related and participate in the same complex together with L4, they have distinct functions during DNA repair. L4 relies on X4 but not on Cernunnos for its stability, and L4 is required for optimal interaction of Cernunnos with X4. We demonstrate here, using in vitro-generated Cernunnos mutants and a series of functional assays in vivo, that the C-terminal region of Cernunnos is dispensable for its activity during DNA repair. PMID:19103754

  11. Biochemical analysis of the substrate specificity and sequence preference of endonuclease IV from bacteriophage T4, a dC-specific endonuclease implicated in restriction of dC-substituted T4 DNA synthesis

    PubMed Central

    Hirano, Nobutaka; Ohshima, Hiroyuki; Takahashi, Hideo

    2006-01-01

    Endonuclease IV encoded by denB of bacteriophage T4 is implicated in restriction of deoxycytidine (dC)-containing DNA in the host Escherichia coli. The enzyme was synthesized with the use of a wheat germ cell-free protein synthesis system, given a lethal effect of its expression in E.coli cells, and was purified to homogeneity. The purified enzyme showed high activity with single-stranded (ss) DNA and denatured dC-substituted T4 genomic double-stranded (ds) DNA but exhibited no activity with dsDNA, ssRNA or denatured T4 genomic dsDNA containing glucosylated deoxyhydroxymethylcytidine. Characterization of Endo IV activity revealed that the enzyme catalyzed specific endonucleolytic cleavage of the 5′ phosphodiester bond of dC in ssDNA with an efficiency markedly dependent on the surrounding nucleotide sequence. The enzyme preferentially targeted 5′-dTdCdA-3′ but tolerated various combinations of individual nucleotides flanking this trinucleotide sequence. These results suggest that Endo IV preferentially recognizes short nucleotide sequences containing 5′-dTdCdA-3′, which likely accounts for the limited digestion of ssDNA by the enzyme and may be responsible in part for the indispensability of a deficiency in denB for stable synthesis of dC-substituted T4 genomic DNA. PMID:16971463

  12. An inhibitor of DNA binding and uptake events dictates the proficiency of genetic transformation in Neisseria gonorrhoeae: mechanism of action and links to Type IV pilus expression.

    PubMed

    Aas, Finn Erik; Løvold, Cecilia; Koomey, Michael

    2002-12-01

    Although natural genetic transformation is a widely disseminated form of genetic exchange in prokaryotic species, the proficiencies with which DNA recognition, uptake and processing occur in nature vary greatly. However, the molecular factors and interactions underlying intra- and interspecies diversity in levels of competence for natural genetic transformation are poorly understood. In Neisseria gonorrhoeae, the Gram-negative aetiologic agent of gonorrhoea, DNA binding and uptake involve components required for Type IV pilus (Tfp) biogenesis as well as those which are structurally related to Tfp biogenesis components but dispensable for organelle expression. We demonstrate here that the gonococcal PilV protein, structurally related to Tfp pilin subunits, is an intrinsic inhibitor of natural genetic transformation which acts ultimately by reducing the levels of sequence-specific DNA uptake into the cell. Specifically, we show that DNA uptake is enhanced in strains bearing pilV mutations and reduced in strains overexpressing PilV. Furthermore, we show that PilV exerts its effect by acting as an antagonist of ComP, a positive effector of sequence-specific DNA binding. As it prevents the accumulation of ComP at a site where it can be purified by shear extraction of intact cells, the data are most consistent with PilV either obstructing ComP trafficking or altering ComP stability. In addition, we report that ComP and PilV play overlapping and partially redundant roles in Tfp biogenesis and document other genetic interactions between comP and pilV together with the pilE and pilT genes required for the expression of retractile Tfp. Together, the results reveal a novel mechanism by which the levels of competence are governed in prokaryotic species and suggest unique ways by which competence might be modulated. PMID:12453228

  13. Endonuclease IV Is the Main Base Excision Repair Enzyme Involved in DNA Damage Induced by UVA Radiation and Stannous Chloride

    PubMed Central

    Motta, Ellen S.; Souza-Santos, Paulo Thiago; Cassiano, Tuany R.; Dantas, Flávio J. S.; Caldeira-de-Araujo, Adriano; De Mattos, José Carlos P.

    2010-01-01

    Stannous chloride (SnCl2) and UVA induce DNA lesions through ROS. The aim of this work was to study the toxicity induced by UVA preillumination, followed by SnCl2 treatment. E. coli BER mutants were used to identify genes which could play a role in DNA lesion repair generated by these agents. The survival assays showed (i) The nfo mutant was the most sensitive to SnCl2; (ii) lethal synergistic effect was observed after UVA pre-illumination, plus SnCl2 incubation, the nfo mutant being the most sensitive; (iii) wild type and nfo mutants, transformed with pBW21 plasmid (nfo+) had their survival increased following treatments. The alkaline agarose gel electrophoresis assays pointed that (i) UVA induced DNA breaks and fpg mutant was the most sensitive; (ii) SnCl2-induced DNA strand breaks were higher than those from UVA and nfo mutant had the slowest repair kinetics; (iii) UVA + SnCl2 promoted an increase in DNA breaks than SnCl2 and, again, nfo mutant displayed the slowest repair kinetics. In summary, Nfo protects E. coli cells against damage induced by SnCl2 and UVA + SnCl2. PMID:20300433

  14. TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress

    PubMed Central

    Hoffmann, Saskia; Smedegaard, Stine; Nakamura, Kyosuke; Mortuza, Gulnahar B.; Räschle, Markus; Ibañez de Opakua, Alain; Oka, Yasuyoshi; Feng, Yunpeng; Blanco, Francisco J.; Mann, Matthias; Montoya, Guillermo; Groth, Anja; Bekker-Jensen, Simon

    2016-01-01

    Cellular genomes are highly vulnerable to perturbations to chromosomal DNA replication. Proliferating cell nuclear antigen (PCNA), the processivity factor for DNA replication, plays a central role as a platform for recruitment of genome surveillance and DNA repair factors to replication forks, allowing cells to mitigate the threats to genome stability posed by replication stress. We identify the E3 ubiquitin ligase TRAIP as a new factor at active and stressed replication forks that directly interacts with PCNA via a conserved PCNA-interacting peptide (PIP) box motif. We show that TRAIP promotes ATR-dependent checkpoint signaling in human cells by facilitating the generation of RPA-bound single-stranded DNA regions upon replication stress in a manner that critically requires its E3 ligase activity and is potentiated by the PIP box. Consequently, loss of TRAIP function leads to enhanced chromosomal instability and decreased cell survival after replication stress. These findings establish TRAIP as a PCNA-binding ubiquitin ligase with an important role in protecting genome integrity after obstacles to DNA replication. PMID:26711499

  15. The SUMO (Small Ubiquitin-like Modifier) Ligase PIAS3 Primes ATR for Checkpoint Activation.

    PubMed

    Wu, Ching-Shyi; Zou, Lee

    2016-01-01

    The maintenance of genomic stability relies on the concerted action of DNA repair and DNA damage signaling pathways. The PIAS (protein inhibitor of activated STAT) family of SUMO (small ubiquitin-like modifier) ligases has been implicated in DNA repair, but whether it plays a role in DNA damage signaling is still unclear. Here, we show that the PIAS3 SUMO ligase is important for activation of the ATR (ataxia telangiectasia and Rad3 related)-regulated DNA damage signaling pathway. PIAS3 is the only member of the PIAS family that is indispensable for ATR activation. In response to different types of DNA damage and replication stress, PIAS3 plays multiple roles in ATR activation. In cells treated with camptothecin (CPT), PIAS3 contributes to formation of DNA double-stranded breaks. In UV (ultraviolet light)- or HU (hydroxyurea)-treated cells, PIAS3 is required for efficient ATR autophosphorylation, one of the earliest events during ATR activation. Although PIAS3 is dispensable for ATRIP (ATR-interacting protein) SUMOylation and the ATR-ATRIP interaction, it is required for maintaining the basal kinase activity of ATR prior to DNA damage. In the absence of PIAS3, ATR fails to display normal kinase activity after DNA damage, which accompanies with reduced phosphorylation of ATR substrates. Together, these results suggest that PIAS3 primes ATR for checkpoint activation by sustaining its basal kinase activity, revealing a new function of the PIAS family in DNA damage signaling. PMID:26565033

  16. DNA templated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kinsella, Joseph M.

    Recent discoveries in nanoscience are predicted to potentially revolutionize future technologies in an extensive number of fields. These developments are contingent upon discovering new and often unconventional methods to synthesize and control nanoscale components. Nature provides several examples of working nanotechnology such as the use of programmed self assembly to build and deconstruct complex molecular systems. We have adopted a method to control the one dimensional assembly of magnetic nanoparticles using DNA as a scaffold molecule. With this method we have demonstrated the ability to organize 5 nm particles into chains that stretch up to ˜20 mum in length. One advantage of using DNA compared is the ability of the molecule to interact with other biomolecules. After assembling particles onto DNA we have been able to cleave the molecule into smaller fragments using restriction enzymes. Using ligase enzymes we have re-connected these fragments, coated with either gold or iron oxide, to form long one-dimensional arrangements of the two different types of nanoparticles on a single molecular guide. We have also created a sensitive magnetic field sensor by incorporating magnetic nanoparticle coated DNA strands with microfabricated electrodes. The IV characteristics of the aligned nanoparticles are dependant on the magnitude of an externally applied magnetic field. This transport phenomenon known as tunneling magnetoresistance (TMR) shows room temperature resistance of our devices over 80% for cobalt ferrite coated DNA when a field of 20 kOe is applied. In comparison, studies using two dimensional nanoparticle films of irox oxides xii only exhibit a 35% MR effect. Confinement into one dimension using the DNA guide produces a TMR mechanism which produces significant increases in magnetoresistance. This property can be utilized for applications in magnetic field sensing, data storage, and logic elements.

  17. Synthesis, spectroscopic, X-ray crystal structure, biological and DNA interaction studies of organotin(IV) complexes of 2-(4-ethoxybenzylidene) butanoic acid.

    PubMed

    Tariq, Muhammad; Muhammad, Niaz; Ali, Saqib; Shirazi, Jafir Hussain; Tahir, Muhammad Nawaz; Khalid, Nasir

    2014-03-25

    Six organotin(IV) carboxylates of the type R2SnL2 [R=CH3 (1), n-C4H9 (2), n-C8H17 (3)] and R3SnL [R=CH3 (4), n-C4H9 (5), C6H5 (6), where L=2-(4-ethoxybenzylidene) butanoic acid, have been synthesized and characterized by elemental analysis, FT-IR and NMR ((1)H, (13)C). The complex (1) was also analyzed by single crystal X-ray analysis. The complexes were screened for antimicrobial, cytotoxic and anti-tumor activities. The results showed significant activity in each area of the activity with few exceptions. DNA interactions studies of ligand HL and representative complex 2 were investigated by UV-Visible absorption spectroscopy and viscosity measurements. The results showed that both ligand HL and complex 2 interact with SS-DNA via intercalation as well as minor groove binding. PMID:24322756

  18. RPA Antagonizes Microhomology-Mediated Repair of DNA Double-Strand Breaks

    PubMed Central

    Deng, Sarah K; Gibb, Bryan; de Almeida, Mariana Justino; Greene, Eric C; Symington, Lorraine S

    2014-01-01

    Microhomology-mediated end joining (MMEJ) is a Ku and Ligase IV independent mechanism for repair of DNA double-strand breaks, which contributes to chromosome rearrangements. Here we used a chromosomal end-joining assay to determine the genetic requirements for MMEJ in Saccharomyces cerevisiae. We found that end resection influences the ability to expose microhomologies; however, it is not rate limiting for MMEJ in wild-type cells. The frequency of MMEJ increased by up to 350-fold in rfa1 hypomorphic mutants, suggesting that replication protein A (RPA) bound to the ssDNA overhangs formed by resection prevents spontaneous annealing between microhomologies. In vitro, the mutant RPA complexes were unable to fully extend ssDNA and were compromised in their ability to prevent spontaneous annealing. We propose the helix-destabilizing activity of RPA channels ssDNA intermediates from mutagenic MMEJ to error-free homologous recombination, thus preserving genome integrity. PMID:24608368

  19. Analysis of a 26,756 bp segment from the left arm of yeast chromosome IV.

    PubMed

    Wölfl, S; Hanemann, V; Saluz, H P

    1996-12-01

    The nucleotide sequence of a 26.7 kb DNA segment from the left arm of Saccharomyces cerevisiae chromosome IV is presented. An analysis of this segment revealed 11 open reading frames (ORFs) longer than 300 bp and one split gene. These ORFs include the genes encoding the large subunit of RNA polymerase II, the biotin apo-protein ligase, an ADP-ribosylation factor (ARF 2), the 'L35'-ribosomal protein, a rho GDP dissociation factor, and the sequence encoding the protein phosphatase 2A. Further sequence analysis revealed a short ORF encoding the ribosomal protein YL41B, an intron in a 5' untranslated region and an extended homology with another cosmid (X83276) located on the same chromosome. The potential biological relevance of these findings is discussed. PMID:8972577

  20. Genome-wide DNA methylation identifies trophoblast invasion-related genes: Claudin-4 and Fucosyltransferase IV control mobility via altering matrix metalloproteinase activity.

    PubMed

    Hu, Yuxiang; Blair, John D; Yuen, Ryan K C; Robinson, Wendy P; von Dadelszen, Peter

    2015-05-01

    Previously we showed that extravillous cytotrophoblast (EVT) outgrowth and migration on a collagen gel explant model were affected by exposure to decidual natural killer cells (dNK). This study investigates the molecular causes behind this phenomenon. Genome wide DNA methylation of exposed and unexposed EVT was assessed using the Illumina Infinium HumanMethylation450 BeadChip array (450 K array). We identified 444 differentially methylated CpG loci in dNK-treated EVT compared with medium control (P < 0.05). The genes associated with these loci had critical biological roles in cellular development, cellular growth and proliferation, cell signaling, cellular assembly and organization by Ingenuity Pathway Analysis (IPA). Furthermore, 23 mobility-related genes were identified by IPA from dNK-treated EVT. Among these genes, CLDN4 (encoding claudin-4) and FUT4 (encoding fucosyltransferase IV) were chosen for follow-up studies because of their biological relevance from research on tumor cells. The results showed that the mRNA and protein expressions of both CLDN4 and FUT4 in dNK-treated EVT were significantly reduced compared with control (P < 0.01 for both CLDN4 and FUT4 mRNA expression; P < 0.001 for CLDN4 and P < 0.01 for FUT4 protein expression), and were inversely correlated with DNA methylation. Knocking down CLDN4 and FUT4 by small interfering RNA reduced trophoblast invasion, possibly through the altered matrix metalloproteinase (MMP)-2 and/or MMP-9 expression and activity. Taken together, dNK alter EVT mobility at least partially in association with an alteration of DNA methylation profile. Hypermethylation of CLDN4 and FUT4 reduces protein expression. CLDN4 and FUT4 are representative genes that participate in modulating trophoblast mobility. PMID:25697377

  1. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    SciTech Connect

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen; Tang, De-Wei; Liu, Xiang-Yu; Zhao, Xiaojun; Liang, Yu-He Su, Xiao-Dong

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.

  2. THE ROLE OF E3 LIGASES IN THE UBIQUITIN-DEPENDENT REGULATION OF SPERMATOGENESIS*

    PubMed Central

    Richburg, John H.; Myers, Jessica L.; Bratton, Shawn B.

    2014-01-01

    The ubiquitination of proteins is a post-translational modification that was first described as a means to target misfolded or unwanted proteins for degradation by the proteasome. It is now appreciated that the ubiquitination of proteins also serves as a mechanism to modify protein function and cellular functions such as protein trafficking, cell signaling, DNA repair, chromatin modifications, cell-cycle progression and cell death. The ubiquitination of proteins occurs through the hierarchal transfer of ubiquitin from an E1 ubiquitin-activating enzyme to an E2 ubiquitin-conjugating enzyme and finally to an E3 ubiquitin ligase that transfers the ubiquitin to its target protein. It is the final E3 ubiquitin ligase that confers the substrate specificity for ubiquitination and is the focus of this review. Spermatogenesis is a complex and highly regulated process by which spermatogonial stem cells undergo mitotic proliferation and expansion of the diploid spermatogonial population, differentiate into spermatocytes and progress through two meiotic divisions to produce haploid spermatids that proceed through a final morphogenesis to generate mature spermatozoa. The ubiquitination of proteins in the cells of the testis occurs in many of the processes required for the progression of mature spermatozoa. Since it is the E3 ubiquitin ligase that recognizes the target protein and provides the specificity and selectivity for ubiquitination, this review highlights known examples of E3 ligases in the testis and the differing roles that they play in maintaining functional spermatogenesis. PMID:24632385

  3. Conventional and microwave-assisted synthesis, characterization, DFT calculations, in vitro DNA binding and cleavage studies of potential chemotherapeutic diorganotin(IV) mandelates.

    PubMed

    Mridula; Nath, Mala

    2016-09-01

    Diorganotin(IV) complexes of the general formulae {[R2Sn(L)]2O}(R=Me (1), n-Bu (2), and n-Oct (3); L=anion of mandelic acid) and {[R2Sn(L)]2Cl2}(R=Ph (4)) have been synthesized by conventional thermal method (1a-3a), except 4a and by microwave-assisted reactions (1b-4b). The elemental analysis, IR, NMR ((1)H, (13)C and (119)Sn) and ESI-MS/DART-mass spectral studies revealed that dimeric 1:1 complexes with SnOSn bridges (1-3) are formed possessing distorted trigonal bipyramidal geometry around the Sn atoms, except 4b which exhibits octahedral geometry with SnClSn bridges. The proposed geometries have been validated by density functional theory calculations. Thermal behavior of 1b-4b, studied by using thermogravimetry (TG), differential thermal analysis (DTA) and derivative thermogravimetric (DTG) techniques, indicated that all except 4b are stable up to 200°C. In vitro interaction studies of 1b-4b with CT-DNA were performed by UV-Vis, fluorescence titrations and results suggest that the complexes are binding to DNA via an intercalative mode. The binding affinity and quenching ability were quantified in terms of intrinsic binding constant (Kb) (3.74×10(4)M(-1), 2b; >3.67×10(4)M(-1), 4b; >3.03×10(4)M(-1), 3b; >0.72×10(4)M(-1), 1b) and Stern-Volmer quenching constant (Ksv) (2.16×10(5), 2b; >1.73×10(5), 4b; >1.66×10(5)3b; >1.51×10(5), 1b) which showed high binding affinity of 2b with CT-DNA. The cleavage studies of 1b-4b with pBR322 plasmid DNA was ascertained by agarose gel electrophoresis. They exhibited effective cleavage of supercoiled plasmid DNA into its nicked form (1b, 3b, 4b) and even into its linear form in presence of 2b. PMID:27423117

  4. Regulation of 4CL, encoding 4-coumarate: coenzyme A ligase, expression in kenaf under diverse stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We cloned the full length 4CL ortholog encoding 4-coumarate: coenzymeA ligase from kenaf (Hibiscus cannabiuns) using degenerate primers and RACE (rapid amplification of cDNA ends) systems. The 4CL is a key regulatory enzyme of the phenylpropanoid pathway that regulates the activation of cinnamic ac...

  5. Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair

    PubMed Central

    Reid, Dylan A.; Keegan, Sarah; Leo-Macias, Alejandra; Watanabe, Go; Strande, Natasha T.; Chang, Howard H.; Oksuz, Betul Akgol; Fenyo, David; Lieber, Michael R.; Ramsden, Dale A.; Rothenberg, Eli

    2015-01-01

    Nonhomologous end-joining (NHEJ) is a major repair pathway for DNA double-strand breaks (DSBs), involving synapsis and ligation of the broken strands. We describe the use of in vivo and in vitro single-molecule methods to define the organization and interaction of NHEJ repair proteins at DSB ends. Super-resolution fluorescence microscopy allowed the precise visualization of XRCC4, XLF, and DNA ligase IV filaments adjacent to DSBs, which bridge the broken chromosome and direct rejoining. We show, by single-molecule FRET analysis of the Ku/XRCC4/XLF/DNA ligase IV NHEJ ligation complex, that end-to-end synapsis involves a dynamic positioning of the two ends relative to one another. Our observations form the basis of a new model for NHEJ that describes the mechanism whereby filament-forming proteins bridge DNA DSBs in vivo. In this scheme, the filaments at either end of the DSB interact dynamically to achieve optimal configuration and end-to-end positioning and ligation. PMID:25941401

  6. Crystal structure of human XLF: a twist in nonhomologous DNA end-joining.

    PubMed

    Andres, Sara N; Modesti, Mauro; Tsai, Chun J; Chu, Gilbert; Junop, Murray S

    2007-12-28

    DNA double-strand breaks represent one of the most severe forms of DNA damage in mammalian cells. One pathway for repairing these breaks occurs via nonhomologous end-joining (NHEJ) and depends on XRCC4, LigaseIV, and Cernunnos, also called XLF. Although XLF stimulates XRCC4/LigaseIV to ligate mismatched and noncohesive DNA ends, the mechanistic basis for this function remains unclear. Here we report the structure of a partially functional 224 residue N-terminal fragment of human XLF. Despite only weak sequence similarity, XLF(1-170) shares structural homology with XRCC4(1-159). However, unlike the highly extended 130 A helical domain observed in XRCC4, XLF adopts a more compact, folded helical C-terminal region involving two turns and a twist, wrapping back to the structurally conserved N terminus. Mutational analysis of XLF and XRCC4 reveals a potential interaction interface, suggesting a mechanism for how XLF stimulates the ligation of mismatched ends. PMID:18158905

  7. Crystal Structure of Human XLF: A Twist in Nonhomologous DNA End-Joining

    SciTech Connect

    Andres,S.; Modesit, M.; Tsai, C.; Chu, G.; Junop, M.

    2007-01-01

    DNA double-strand breaks represent one of the most severe forms of DNA damage in mammalian cells. One pathway for repairing these breaks occurs via nonhomologous end-joining (NHEJ) and depends on XRCC4, LigaseIV, and Cernunnos, also called XLF. Although XLF stimulates XRCC4/LigaseIV to ligate mismatched and noncohesive DNA ends, the mechanistic basis for this function remains unclear. Here we report the structure of a partially functional 224 residue N-terminal fragment of human XLF. Despite only weak sequence similarity, XLF1-170 shares structural homology with XRCC41-159. However, unlike the highly extended 130 Angstroms helical domain observed in XRCC4, XLF adopts a more compact, folded helical C-terminal region involving two turns and a twist, wrapping back to the structurally conserved N terminus. Mutational analysis of XLF and XRCC4 reveals a potential interaction interface, suggesting a mechanism for how XLF stimulates the ligation of mismatched ends.

  8. TGF-β1 accelerates the DNA damage response in epithelial cells via Smad signaling.

    PubMed

    Lee, Jeeyong; Kim, Mi-Ra; Kim, Hyun-Ji; An, You Sun; Yi, Jae Youn

    2016-08-01

    The evidence suggests that transforming growth factor-beta (TGF-β) regulates the DNA-damage response (DDR) upon irradiation, and we previously reported that TGF-β1 induced DNA ligase IV (Lig4) expression and enhanced the nonhomologous end-joining repair pathway in irradiated cells. In the present study, we investigated the effects of TGF-β1 on the irradiation-induced DDRs of A431 and HaCaT cells. Cells were pretreated with or without TGF-β1 and irradiated. At 30 min post-irradiation, DDRs were detected by immunoblotting of phospho-ATM, phospho-Chk2, and the presence of histone foci (γH2AX). The levels of all three factors were similar right after irradiation regardless of TGF-β1 pretreatment. However, they soon thereafter exhibited downregulation in TGF-β1-pretreated cells, indicating the acceleration of the DDR. Treatment with a TGF-β type I receptor inhibitor (SB431542) or transfections with siRNAs against Smad2/3 or DNA ligase IV (Lig4) reversed this acceleration of the DDR. Furthermore, the frequency of irradiation-induced apoptosis was decreased by TGF-β1 pretreatment in vivo, but this effect was abrogated by SB431542. These results collectively suggest that TGF-β1 could enhance cell survival by accelerating the DDR via Smad signaling and Lig4 expression. PMID:27237972

  9. ParC subunit of DNA topoisomerase IV of Streptococcus pneumoniae is a primary target of fluoroquinolones and cooperates with DNA gyrase A subunit in forming resistance phenotype.

    PubMed Central

    Muñoz, R; De La Campa, A G

    1996-01-01

    The genes encoding the ParC and ParE subunits of topoisomerase IV of Streptococcus pneumoniae, together with the region encoding amino acids 46 to 172 (residue numbers are as in Escherichia coli) of the pneumococcal GyrA subunit, were partially characterized. The gyrA gene maps to a physical location distant from the gyrB and parC loci on the chromosome, whereas parC is closely linked to parE. Ciprofloxacin-resistant (Cpr) clinical isolates of S. pneumoniae had mutations affecting amino acid residues of the quinolone resistance-determining region of ParC (low-level Cpr) or in both quinolone resistance-determining regions of ParC and GyrA (high-level Cpr). Mutations were found in residue positions equivalent to the serine at position 83 and the aspartic acid at position 87 of the E. coli GyrA subunit. Transformation experiments suggest that ParC is the primary target of ciprofloxacin. Mutation in parC appears to be a prerequisite before mutations in gyrA can influence resistance levels. PMID:8891124

  10. The E3 ubiquitin ligase RNF8 stabilizes TPP1 to promote telomere end protection

    PubMed Central

    Rai, Rekha; Li, Ju-Mei; Zheng, Hong; Lok, Gabriel Tsz-Mei; Deng, Yu; Huen, Michael; Chen, Junjie; Jin, Jianping; Chang, Sandy

    2013-01-01

    TPP1, a component of the mammalian shelterin complex, plays essential roles in telomere maintenance. It forms a heterodimer with POT1 to repress ATR-dependent DNA damage signaling at telomeres, and recruits telomerase to chromosome ends. Here we show that the E3 ubiquitin ligase RNF8 localizes to and promotes the accumulation of DNA damage proteins 53BP1 and γ-H2AX to uncapped telomeres. TPP1 is unstable in the absence of RNF8, resulting in telomere shortening and chromosome fusions via the alternative non-homologous end joining (A-NHEJ)-mediated DNA repair pathway. The RNF8 ubiquitin ligase RING domain is essential for TPP1 stability and retention at telomeres. RNF8 physically interacts with TPP1 to generate Ubc13-dependent K63 polyubiquitin chains that stabilizes TPP1 at telomeres. The conserved TPP1 lysine residue 233 is essential for RNF8-mediated TPP1 ubiquitylation and localization to telomeres. Our results demonstrate that TPP1 is a novel substrate for RNF8, and suggest a previously unrecognized role for RNF8 in telomere end protection. We propose a model in which engagement of classical vs. A-NHEJ repair pathways at dysfunctional telomeres is controlled by the ubiquitin ligase functions of RNF8. PMID:22101936

  11. Protein neddylation: beyond cullin-RING ligases.

    PubMed

    Enchev, Radoslav I; Schulman, Brenda A; Peter, Matthias

    2015-01-01

    NEDD8 (neural precursor cell expressed developmentally downregulated protein 8) is a ubiquitin-like protein that activates the largest ubiquitin E3 ligase family, the cullin-RING ligases. Many non-cullin neddylation targets have been proposed in recent years. However, overexpression of exogenous NEDD8 can trigger NEDD8 conjugation through the ubiquitylation machinery, which makes validating potential NEDD8 targets challenging. Here, we re-evaluate studies of non-cullin targets of NEDD8 in light of the current understanding of the neddylation pathway, and suggest criteria for identifying genuine neddylation substrates under homeostatic conditions. We describe the biological processes that might be regulated by non-cullin neddylation, and the utility of neddylation inhibitors for research and as potential therapies. Understanding the biological significance of non-cullin neddylation is an exciting research prospect primed to reveal fundamental insights. PMID:25531226

  12. Small ubiquitin-related modifier ligase activity of Mms21 is required for maintenance of chromosome integrity during the unperturbed mitotic cell division cycle in Saccharomyces cerevisiae.

    PubMed

    Rai, Ragini; Varma, Satya P M V; Shinde, Nikhil; Ghosh, Shilpa; Kumaran, Srikala P; Skariah, Geena; Laloraya, Shikha

    2011-04-22

    The SUMO ligase activity of Mms21/Nse2, a conserved member of the Smc5/6 complex, is required for resisting extrinsically induced genotoxic stress. We report that the Mms21 SUMO ligase activity is also required during the unchallenged mitotic cell cycle in Saccharomyces cerevisiae. SUMO ligase-defective cells were slow growing and spontaneously incurred DNA damage. These cells required caffeine-sensitive Mec1 kinase-dependent checkpoint signaling for survival even in the absence of extrinsically induced genotoxic stress. SUMO ligase-defective cells were sensitive to replication stress and displayed synthetic growth defects with DNA damage checkpoint-defective mutants such as mec1, rad9, and rad24. MMS21 SUMO ligase and mediator of replication checkpoint 1 gene (MRC1) were epistatic with respect to hydroxyurea-induced replication stress or methyl methanesulfonate-induced DNA damage sensitivity. Subjecting Mms21 SUMO ligase-deficient cells to transient replication stress resulted in enhancement of cell cycle progression defects such as mitotic delay and accumulation of hyperploid cells. Consistent with the spontaneous activation of the DNA damage checkpoint pathway observed in the Mms21-mediated sumoylation-deficient cells, enhanced frequency of chromosome breakage and loss was detected in these mutant cells. A mutation in the conserved cysteine 221 that is engaged in coordination of the zinc ion in Loop 2 of the Mms21 SPL-RING E3 ligase catalytic domain resulted in strong replication stress sensitivity and also conferred slow growth and Mec1 dependence to unchallenged mitotically dividing cells. Our findings establish Mms21-mediated sumoylation as a determinant of cell cycle progression and maintenance of chromosome integrity during the unperturbed mitotic cell division cycle in budding yeast. PMID:21324902

  13. The ubiquitin–protein ligase Itch regulates p73 stability

    PubMed Central

    Rossi, Mario; De Laurenzi, Vincenzo; Munarriz, Eliana; Green, Douglas R; Liu, Yun-Cai; Vousden, Karen H; Cesareni, Gianni; Melino, Gerry

    2005-01-01

    p73, a member of the p53 family of transcription factors, is upregulated in response to DNA damage, inducing cell cycle arrest and apoptosis. Besides indications that this p73 response is post-transcriptional, little is known about the underlying molecular mechanisms of p73 protein degradation. Ubiquitination and proteasomal-dependent degradation of p53 are regulated by its transcriptional target MDM2. However, unlike p53, p73 binds to, but is not degraded by, MDM2. Here we describe the binding of p73 to Itch, a Hect ubiquitin–protein ligase. Itch selectively binds and ubiquitinates p73 but not p53; this results in the rapid proteasome-dependent degradation of p73. Upon DNA damage Itch itself is downregulated, allowing p73 protein levels to rise and thus interfere with p73 function. In conclusion, we have identified a key mechanism in the control of p73 protein levels both in normal as well as in stress conditions. PMID:15678106

  14. Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2)

    PubMed Central

    Pommier, Yves; Huang, Shar-yin N.; Gao, Rui; Das, Benu Brata; Murai, Junko; Marchand, Christophe

    2014-01-01

    TDP1 and TDP2 were discovered and named based on the fact they process 3′- and 5′-DNA ends by excising irreversible protein tyrosyl-DNA complexes involving topoisomerases I and II, respectively. Yet, both enzymes have an extended spectrum of activities. TDP1 not only excises trapped topoisomerases I (Top1 in the nucleus and Top1mt in mitochondria), but also repairs oxidative damage-induced 3′-phosphoglycolates and alkylation damage-induced DNA breaks, and excises chain terminating anticancer and antiviral nucleosides in the nucleus and mitochondria. The repair function of TDP2 is devoted to the excision of topoisomerase II- and potentially topoisomerases III-DNA adducts. TDP2 is also essential for the life cycle of picornaviruses (important human and bovine pathogens) as it unlinks VPg proteins from the 5′-end of the viral RNA genome. Moreover, TDP2 has been involved in signal transduction (under the former names of TTRAP or EAPII). The DNA repair partners of TDP1 include PARP1, XRCC1, ligase III and PNKP from the base excision repair (BER) pathway. By contrast, TDP2 repair functions are coordinated with Ku and ligase IV in the non-homologous end joining pathway (NHEJ). This article summarizes and compares the biochemistry, functions, and post-translational regulation of TDP1 and TDP2, as well as the relevance of TDP1 and TDP2 as determinants of response to anticancer agents. We discuss the rationale for developing TDP inhibitors for combinations with topoisomerase inhibitors (topotecan, irinotecan, doxorubicin, etoposide, mitoxantrone) and DNA damaging agents (temozolomide, bleomycin, cytarabine, and ionizing radiation), and as novel antiviral agents. PMID:24856239

  15. Asteroids IV

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.

    Asteroids are fascinating worlds. Considered the building blocks of our planets, many of the authors of this book have devoted their scientific careers to exploring them with the tools of our trade: ground- and spacebased observations, in situ space missions, and studies that run the gamut from theoretical modeling efforts to laboratory work. Like fossils for paleontologists, or DNA for geneticists, they allow us to construct a veritable time machine and provide us with tantalizing glimpses of the earliest nature of our solar system. By investigating them, we can probe what our home system was like before life or even the planets existed. The origin and evolution of life on our planet is also intertwined with asteroids in a different way. It is believed that impacts on the primordial Earth may have delivered the basic components for life, with biology favoring attributes that could more easily survive the aftermath of such energetic events. In this fashion, asteroids may have banished many probable avenues for life to relative obscurity. Similarly, they may have also prevented our biosphere from becoming more complex until more recent eras. The full tale of asteroid impacts on the history of our world, and how human life managed to emerge from myriad possibilities, has yet to be fully told. The hazard posed by asteroid impacts to our civilization is low but singular. The design of efficient mitigation strategies strongly relies on asteroid detection by our ground- and spacebased surveys as well as knowledge of their physical properties. A more positive motivation for asteroid discovery is that the proximity of some asteroids to Earth may allow future astronauts to harvest their water and rare mineral resources for use in exploration. A key goal of asteroid science is therefore to learn how humans and robotic probes can interact with asteroids (and extract their materials) in an efficient way. We expect that these adventures may be commonplace in the future

  16. Asteroids IV

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.

    Asteroids are fascinating worlds. Considered the building blocks of our planets, many of the authors of this book have devoted their scientific careers to exploring them with the tools of our trade: ground- and spacebased observations, in situ space missions, and studies that run the gamut from theoretical modeling efforts to laboratory work. Like fossils for paleontologists, or DNA for geneticists, they allow us to construct a veritable time machine and provide us with tantalizing glimpses of the earliest nature of our solar system. By investigating them, we can probe what our home system was like before life or even the planets existed. The origin and evolution of life on our planet is also intertwined with asteroids in a different way. It is believed that impacts on the primordial Earth may have delivered the basic components for life, with biology favoring attributes that could more easily survive the aftermath of such energetic events. In this fashion, asteroids may have banished many probable avenues for life to relative obscurity. Similarly, they may have also prevented our biosphere from becoming more complex until more recent eras. The full tale of asteroid impacts on the history of our world, and how human life managed to emerge from myriad possibilities, has yet to be fully told. The hazard posed by asteroid impacts to our civilization is low but singular. The design of efficient mitigation strategies strongly relies on asteroid detection by our ground- and spacebased surveys as well as knowledge of their physical properties. A more positive motivation for asteroid discovery is that the proximity of some asteroids to Earth may allow future astronauts to harvest their water and rare mineral resources for use in exploration. A key goal of asteroid science is therefore to learn how humans and robotic probes can interact with asteroids (and extract their materials) in an efficient way. We expect that these adventures may be commonplace in the future

  17. Ionizing radiation-induced XRCC4 phosphorylation is mediated through ATM in addition to DNA-PK

    PubMed Central

    SHARMA, Mukesh Kumar; KAMDAR, Radhika Pankaj; FUKUCHI, Mikoto; MATSUMOTO, Yoshihisa

    2014-01-01

    XRCC4 (X-ray cross-complementation group 4) is a protein associated with DNA ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end-joining. It has been shown that, in response to irradiation or treatment with DNA damaging agents, XRCC4 undergoes phosphorylation, requiring DNA-PK. Here we explored possible role of ATM, which is structurally related to DNA-PK, in the regulation of XRCC4. The radiosensitizing effects of DNA-PK inhibitor and/or ATM inhibitor were dependent on XRCC4. DNA-PK inhibitor and ATM inhibitor did not affect the ionizing radiation-induced chromatin recruitment of XRCC4. Ionizing radiation-induced phosphorylation of XRCC4 in the chromatin-bound fraction was largely inhibited by DNA-PK inhibitor but further diminished by the combination with ATM inhibitor. The present results indicated that XRCC4 phosphorylation is mediated through ATM as well as DNA-PK, although DNA-PK plays the major role. We would propose a possible model that DNA-PK and ATM acts in parallel upstream of XRCC4, regulating through phosphorylation. PMID:25391321

  18. Speciation Studies of Diorganotin(IV) Complexes with 3,3-Bis(1-methylimidazol-2-yl)propionate—Displacement Reaction by DNA Constituents

    PubMed Central

    Shoukry, Mohamed M.; Hassan, Safaa S.

    2013-01-01

    The interaction of 3,3-bis(1-methylimidazol-2-yl)propionate (BIMP) with dimethyltin(IV) dichloride (DMT), dibutyltin(IV) dichloride (DBT), and diphenyltin(IV) dichloride (DPT) is investigated at 25°C and 0.1 M ionic strength in water for dimethyltin(IV), and in a 50% dioxane-water mixture for dibutyltin(IV) and diphenyltin(IV). The stepwise formation constants of the 1 : 1 and 1 : 2 complexes formed in solution are calculated from potentiometric measurements using the nonlinear least-square program MINIQUAD-75. The concentration distribution of the various complex species is evaluated as a function of pH. Displacement reactions of the coordinated 3,3-bis(1-methylimidazol-2-yl)propionate by inosine and inosine-5′-monophosphate are investigated from calculations based upon equilibrium properties. PMID:24385867

  19. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases

    PubMed Central

    Riley, B.E.; Lougheed, J.C.; Callaway, K.; Velasquez, M.; Brecht, E.; Nguyen, L.; Shaler, T.; Walker, D.; Yang, Y.; Regnstrom, K.; Diep, L.; Zhang, Z.; Chiou, S.; Bova, M.; Artis, D.R.; Yao, N.; Baker, J.; Yednock, T.; Johnston, J.A.

    2013-01-01

    Parkin is a RING-between-RING E3 ligase that functions in the covalent attachment of ubiquitin to specific substrates, and mutations in Parkin are linked to Parkinson’s disease, cancer and mycobacterial infection. The RING-between-RING family of E3 ligases are suggested to function with a canonical RING domain and a catalytic cysteine residue usually restricted to HECT E3 ligases, thus termed ‘RING/HECT hybrid’ enzymes. Here we present the 1.58 Å structure of Parkin-R0RBR, revealing the fold architecture for the four RING domains, and several unpredicted interfaces. Examination of the Parkin active site suggests a catalytic network consisting of C431 and H433. In cells, mutation of C431 eliminates Parkin-catalysed degradation of mitochondria, and capture of an ubiquitin oxyester confirms C431 as Parkin’s cellular active site. Our data confirm that Parkin is a RING/HECT hybrid, and provide the first crystal structure of an RING-between-RING E3 ligase at atomic resolution, providing insight into this disease-related protein. PMID:23770887

  20. Interleukin-4 enhances PARP-dependent DNA repair activity in vitro.

    PubMed

    Ciszewski, Wojciech Michał; Wagner, Waldemar; Kania, Katarzyna Dominika; Dastych, Jarosław

    2014-09-01

    Eukaryotic cells possess several DNA repair mechanisms, including homologous recombination and the non-homologous end-joining (NHEJ) system. There are two known NHEJ systems. The major mechanism depends on the catalytic unit of DNA-dependent protein kinase (DNA-PKcs) and DNA ligase IV, and an alternative mechanism (B-NHEJ) depends on poly(ADP-ribose) polymerase (PARP). These systems are upregulated by genotoxic agents. Interleukin 4 (IL-4) is an immunoregulatory cytokine that is secreted by immune cells upon contact with certain genotoxic compounds and is known to regulate several genes encoding components of DNA repair systems in human monocytes. We have investigated the possible effects of IL-4 on the DNA repair process within murine and human cells exposed to selected genotoxic compounds. In a series of experiments, including the comet assay, cell surface annexin V staining, analysis of histone H2AX phosphorylation, and a DNA end-joining assay, we observed that IL-4 decreased DNA damage in murine fibroblasts and human glioblastoma cells exposed to genotoxic agents and increased DNA ligation activity in the nuclei of these cells in a process that depended on PARP. These observations suggest that IL-4 is capable of upregulating the alternative NHEJ DNA repair mechanism in murine and human cells. PMID:24724620

  1. CUL4-DDB1-CDT2 E3 Ligase Regulates the Molecular Clock Activity by Promoting Ubiquitination-Dependent Degradation of the Mammalian CRY1

    PubMed Central

    Tong, Xin; Zhang, Deqiang; Guha, Anirvan; Arthurs, Blake; Cazares, Victor; Gupta, Neil; Yin, Lei

    2015-01-01

    The CUL4-DDB1 E3 ligase complex serves as a critical regulator in various cellular processes, including cell proliferation, DNA damage repair, and cell cycle progression. However, whether this E3 ligase complex regulates clock protein turnover and the molecular clock activity in mammalian cells is unknown. Here we show that CUL4-DDB1-CDT2 E3 ligase ubiquitinates CRY1 and promotes its degradation both in vitro and in vivo. Depletion of the major components of this E3 ligase complex, including Ddb1, Cdt2, and Cdt2-cofactor Pcna, leads to CRY1 stabilization in cultured cells or in the mouse liver. CUL4A-DDB1-CDT2 E3 ligase targets lysine 585 within the C-terminal region of CRY1 protein, shown by the CRY1 585KA mutant’s resistance to ubiquitination and degradation mediated by the CUL4A-DDB1 complex. Surprisingly, both depletion of Ddb1 and over-expression of Cry1-585KA mutant enhance the oscillatory amplitude of the Bmal1 promoter activity without altering its period length, suggesting that CUL4A-DDB1-CDT2 E3 targets CRY1 for degradation and reduces the circadian amplitude. All together, we uncovered a novel biological role for CUL4A-DDB1-CDT2 E3 ligase that regulates molecular circadian behaviors via promoting ubiquitination-dependent degradation of CRY1. PMID:26431207

  2. KF-1 Ubiquitin Ligase: An Anxiety Suppressor

    PubMed Central

    Hashimoto-Gotoh, Tamotsu; Iwabe, Naoyuki; Tsujimura, Atsushi; Takao, Keizo; Miyakawa, Tsuyoshi

    2009-01-01

    Anxiety is an instinct that may have developed to promote adaptive survival by evading unnecessary danger. However, excessive anxiety is disruptive and can be a basic disorder of other psychiatric diseases such as depression. The KF-1, a ubiquitin ligase located on the endoplasmic reticulum (ER), may prevent excessive anxiety; kf-1−/− mice exhibit selectively elevated anxiety-like behavior against light or heights. It is surmised that KF-1 degrades some target proteins, responsible for promoting anxiety, through the ER-associated degradation pathway, similar to Parkin in Parkinson's disease (PD). Parkin, another ER-ubiquitin ligase, prevents the degeneration of dopaminergic neurons by degrading the target proteins responsible for PD. Molecular phylogenetic studies have revealed that the prototype of kf-1 appeared in the very early phase of animal evolution but was lost, unlike parkin, in the lineage leading up to Drosophila. Therefore, kf-1−/− mice may be a powerful tool for elucidating the molecular mechanisms involved in emotional regulation, and for screening novel anxiolytic/antidepressant compounds. PMID:19753093

  3. Evolution of Plant HECT Ubiquitin Ligases

    PubMed Central

    Marín, Ignacio

    2013-01-01

    HECT ubiquitin ligases are key components of the ubiquitin-proteasome system, which is present in all eukaryotes. In this study, the patterns of emergence of HECT genes in plants are described. Phylogenetic and structural data indicate that viridiplantae have six main HECT subfamilies, which arose before the split that separated green algae from the rest of plants. It is estimated that the common ancestor of all plants contained seven HECT genes. Contrary to what happened in animals, the number of HECT genes has been kept quite constant in all lineages, both in chlorophyta and streptophyta, although evolutionary recent duplications are found in some species. Several of the genes found in plants may have originated very early in eukaryotic evolution, given that they have clear similarities, both in sequence and structure, to animal genes. Finally, in Arabidopsis thaliana, we found significant correlations in the expression patterns of HECT genes and some ancient, broadly expressed genes that belong to a different ubiquitin ligase family, called RBR. These results are discussed in the context of the evolution of the gene families required for ubiquitination in plants. PMID:23869223

  4. NRPD4, a Protein Related to the RPB4 Subunit of RNA Polymerase II, is a Component of RNA Polymerases IV and V and is Required for RNA-directed DNA methylation

    SciTech Connect

    He, Xin-Jian; Hsu, Yi-Feng; Pontes, Olga; Zhu, Jianhua; Lu, Jian; Bressan, Ray A.; Pikaard, Craig S.; Wang, Co-Shine; Zhu, Jian-Kang

    2009-01-01

    RNA-directed DNA methylation (RdDM) is an RNAi-based mechanism for establishing transcriptional gene silencing in plants. The plant-specific RNA polymerases IV and V are required for the generation of 24-nucleotide (nt) siRNAs and for guiding sequence-specific DNA methylation by the siRNAs, respectively. However, unlike the extensively studied multisubunit Pol II, our current knowledge about Pol IV and Pol V is restricted to only the two largest subunits NRPD1a/NRPD1 and NRPD1b/NRPE1 and the one second-largest subunit NRPD2a. It is unclear whether other subunits may be required for the functioning of Pol IV and Pol V in RdDM. From a genetic screen for second-site suppressors of the DNA demethylase mutant ros1, we identified a new component (referred to as RDM2) as well as seven known components (NRPD1, NRPE1, NRPD2a, AGO4, HEN1, DRD1, and HDA6) of the RdDM pathway. The differential effects of the mutations on two mechanistically distinct transcriptional silencing reporters suggest that RDM2, NRPD1, NRPE1, NRPD2a, HEN1, and DRD1 function only in the siRNA-dependent pathway of transcriptional silencing, whereas HDA6 and AGO4 have roles in both siRNA-dependent and -independent pathways of transcriptional silencing. In the rdm2 mutants, DNA methylation and siRNA accumulation were reduced substantially at loci previously identified as endogenous targets of Pol IV and Pol V, including 5S rDNA, MEA-ISR, AtSN1, AtGP1, and AtMU1. The amino acid sequence of RDM2 is similar to that of RPB4 subunit of Pol II, but we show evidence that RDM2 has diverged significantly from RPB4 and cannot function in Pol II. An association of RDM2 with both NRPD1 and NRPE1 was observed by coimmunoprecipitation and coimmunolocalization assays. Our results show that RDM2/NRPD4/NRPE4 is a new component of the RdDM pathway in Arabidopsis and that it functions as part of Pol IV and Pol V.

  5. In vitro rejoining of double strand breaks in genomic DNA.

    PubMed

    Iliakis, George; Mladenov, Emil; Cheong, Nge

    2012-01-01

    Recent genetic and biochemical studies have provided important insights into the mechanism of nonhomologous end joining (NHEJ) pathways in higher eukaryotes, and have facilitated the functional characterization of several of its components including DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos, and Artemis. Nevertheless, there is evidence that as of yet uncharacterized repair factors may contribute to the efficiency of NHEJ, for example by modulating the activity of known factors. Also, the discovery of alternative pathways of NHEJ that function as backup to the classical DNA-PK-dependent pathway of NHEJ has added yet another dimension in the set of activities involved. The biochemical characterization of NHEJ in higher eukaryotes has benefited significantly from in vitro plasmid-based end joining assays. However, because of differences in the organization and sequence of genomic and plasmid DNA, and because multiple pathways of NHEJ are operational, it is possible that different factors are preferred for the rejoining of DSBs induced in plasmid versus genomic DNA organized in chromatin. Here, we describe an in vitro assay that allows the study of DSB rejoining in genomic DNA. The assay utilizes as a substrate DSBs induced by various means in genomic DNA prepared from agarose-embedded cells after appropriate lysis. Two extremes in terms of state of DNA organization are described: "naked" DNA and DNA organized in chromatin. We describe the protocols developed to carry out and analyze these in vitro reactions, including procedures for the preparation of cell extract and the preparation of the substrate DNA ("naked" DNA or nuclei). PMID:22941623

  6. 3-Hydroxybenzoate:coenzyme A ligase and 4-coumarate:coenzyme A ligase from cultured cells of Centaurium erythraea.

    PubMed

    Barillas, W; Beerhues, L

    1997-01-01

    3-Hydroxybenzoate:coenzyme A ligase, an enzyme involved in xanthone biosynthesis, was detected in cell-free extracts from cultured cells of Centaurium erythraea Rafn. The enzyme was separated from 4-coumarate:coenzyme A ligase by fractionated ammonium sulphate precipitation and hydrophobic interaction chromatography. The CoA ligases exhibited different substrate specificities. 3-Hydroxybenzoate:coenzyme A ligase activated 3-hydroxybenzoic acid most efficiently and lacked affinity for cinnamic acids. In contrast, 4-coumarate:CoA ligase mainly catalyzed the activation of 4-coumaric acid but did not act on benzoic acids. The two enzymes were similar with respect to their relative molecular weight, their pH and temperature optima, their specific activity and the changes in their activity during cell culture growth. PMID:9177055

  7. The Atypical Occurrence of Two Biotin Protein Ligases in Francisella novicida Is Due to Distinct Roles in Virulence and Biotin Metabolism

    PubMed Central

    Feng, Youjun; Chin, Chui-Yoke; Chakravartty, Vandana; Gao, Rongsui; Crispell, Emily K.

    2015-01-01

    ABSTRACT The physiological function of biotin requires biotin protein ligase activity in order to attach the coenzyme to its cognate proteins, which are enzymes involved in central metabolism. The model intracellular pathogen Francisella novicida is unusual in that it encodes two putative biotin protein ligases rather than the usual single enzyme. F. novicida BirA has a ligase domain as well as an N-terminal DNA-binding regulatory domain, similar to the prototypical BirA protein in E. coli. However, the second ligase, which we name BplA, lacks the N-terminal DNA binding motif. It has been unclear why a bacterium would encode these two disparate biotin protein ligases, since F. novicida contains only a single biotinylated protein. In vivo complementation and enzyme assays demonstrated that BirA and BplA are both functional biotin protein ligases, but BplA is a much more efficient enzyme. BirA, but not BplA, regulated transcription of the biotin synthetic operon. Expression of bplA (but not birA) increased significantly during F. novicida infection of macrophages. BplA (but not BirA) was required for bacterial replication within macrophages as well as in mice. These data demonstrate that F. novicida has evolved two distinct enzymes with specific roles; BplA possesses the major ligase activity, whereas BirA acts to regulate and thereby likely prevent wasteful synthesis of biotin. During infection BplA seems primarily employed to maximize the efficiency of biotin utilization without limiting the expression of biotin biosynthetic genes, representing a novel adaptation strategy that may also be used by other intracellular pathogens. PMID:26060274

  8. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  9. Repair of a minimal DNA double-strand break by NHEJ requires DNA-PKcs and is controlled by the ATM/ATR checkpoint

    PubMed Central

    Kühne, Christian; Tjörnhammar, Marie-Louise; Pongor, Sándor; Banks, Lawrence; Simoncsits, András

    2003-01-01

    Mammalian cells primarily rejoin DNA double-strand breaks (DSBs) by the non-homologous end-joining (NHEJ) pathway. The joining of the broken DNA ends appears directly without template and accuracy is ensured by the NHEJ factors that are under ATM/ATR regulated checkpoint control. In the current study we report the engineering of a mono-specific DNA damaging agent. This was used to study the molecular requirements for the repair of the least complex DSB in vivo. Single-chain PvuII restriction enzymes fused to protein delivery sequences transduce cells efficiently and induce blunt end DSBs in vivo. We demonstrate that beside XRCC4/LigaseIV and KU, the DNA-PK catalytic subunit (DNA-PKcs) is also essential for the joining of this low complex DSB in vivo. The appearance of blunt end 3′-hydroxyl and 5′-phosphate DNA DSBs induces a significantly higher frequency of anaphase bridges in cells that do not contain functional DNA-PKcs, suggesting an absolute requirement for DNA-PKcs in the control of chromosomal stability during end joining. Moreover, these minimal blunt end DSBs are sufficient to induce a p53 and ATM/ATR checkpoint function. PMID:14654698

  10. Identification of Erwinia stewartii by a ligase chain reaction assay.

    PubMed Central

    Wilson, W J; Wiedmann, M; Dillard, H R; Batt, C A

    1994-01-01

    A PCR-coupled ligase chain reaction (LCR) assay was developed to distinguish the plant pathogenic bacterium Erwinia stewartii from other erwiniae. This new technique allows discrimination to the species level on the basis of a single-base-pair difference in the 16S rRNA gene which is unique to E. stewartii. Portions of the 16S rRNA genes of E. stewartii and the closely related Erwinia herbicola were sequenced. From comparison of the two 16S rRNA gene regions, two primer pairs were constructed such that only E. stewartii DNA gave a product in the LCR assay. The ligated product was separated from the radioactively labelled primers by denaturing polyacrylamide gel electrophoresis and visualized by autoradiography. Twenty-four different Erwinia species and strains were tested by PCR-coupled LCR to verify the specificity of the assay, and only E. stewartii strains gave a positive reaction. In addition, infected and healthy plant material was also assayed. E. stewartii was detected in infected plant material, even when large populations of epiphytic bacteria were present. No enrichment was necessary for detection of the pathogen in corn leaves. This assay has potential as a diagnostic technique for the detection of E. stewartii in infected plant and vector material. Images PMID:7509585

  11. UHRF2, another E3 ubiquitin ligase for p53

    SciTech Connect

    Bai, Lu; Wang, Xiaohui; Jin, Fangmin; Yang, Yan; Qian, Guanhua; Duan, Changzhu

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer UHRF2 associates with p53 in vivo and in vitro. Black-Right-Pointing-Pointer UHRF2 interacts with p53 through its SRA/YDG domain. Black-Right-Pointing-Pointer UHRF2 ubiquitinates p53 in vivo and in vitro. -- Abstract: UHRF2, ubiquitin-like with PHD and ring finger domains 2, is a nuclear E3 ubiquitin ligase, which is involved in cell cycle and epigenetic regulation. UHRF2 interacts with multiple cell cycle proteins, including cyclins (A2, B1, D1, and E1), CDK2, and pRb; moreover, UHRF2 could ubiquitinate cyclin D1 and cyclin E1. Also, UHRF2 has been shown to be implicated in epigenetic regulation by associating with DNMTs, G9a, HDAC1, H3K9me2/3 and hemi-methylated DNA. We found that UHRF2 associates with tumor suppressor protein p53, and p53 is ubiquitinated by UHRF2 in vivo and in vitro. Given that both UHRF2 and p53 are involved in cell cycle regulation, this study may suggest a novel signaling pathway on cell proliferation.

  12. Prediction of treatment outcome by cisplatin-DNA adduct formation in patients with stage III/IV head and neck squamous cell carcinoma, treated by concurrent cisplatin-radiation (RADPLAT).

    PubMed

    Hoebers, Frank J P; Pluim, Dick; Verheij, Marcel; Balm, Alfons J M; Bartelink, Harry; Schellens, Jan H M; Begg, Adrian C

    2006-08-15

    The purpose of our study was to test the predictive value of cisplatin-DNA adduct levels in head and neck squamous cell carcinoma (HNSCC) patients treated with cisplatin-radiation. Patients with advanced-stage HNSCC were treated within a randomized trial, investigating the optimal route of cisplatin administration, concurrently with radiation. Cisplatin was administered intra-arterially (IA, 150 mg/m2, with systemic rescue by sodium thiosulfate) or intravenously (IV, 100 mg/m2). In a subgroup, adducts were quantified in normal tissue and tumor. 32P-postlabeling was used to quantify intrastrand guanosine-guanosine adducts (GG-adducts) and adenosine-guanosine adducts (AG-adducts). Adduct levels were correlated with treatment outcome. Thirty-five patients were included (21 IV and 14 IA). At median follow-up of 27 months, locoregional (LR) control was 75% at 1 and 70% at 2 years. Adduct levels in tumor were 4-5-fold higher than in white blood cells (WBC) for both IA and IV treatment (p = 0.01). Adduct formation in WBC and buccal cells was higher in IV treated patients compared with IA infusion (p = 0.049 and 0.005 for GG-adducts in WBC and buccal cells, respectively). Adducts in tumors after IA infusion were not statistically different from those after IV. A strong correlation was observed between GG- and AG-adduct formation (r = 0.86, p < 0.001). Patients with higher GG adduct levels (>median) in primary tumor had significantly better disease free survival (DFS) than patients with lower (< or = median) adduct levels (p = 0.02). For overall survival (OS), a nonsignificant trend was observed, again in favor of patients with higher adduct levels (p = 0.06). In conclusion, cisplatin-DNA adduct formation in primary tumor appears to be predictive for DFS in HNSCC. No differences were observed in intratumoral adduct levels between IA and IV treatments, despite selective infusion of high-dose cisplatin with the IA procedure. However, systemic adduct levels (WBC and buccal

  13. [Cloning and tissue expression of 4-coumarate coenzyme A ligase gene in Angelica sinensis].

    PubMed

    Wen, Sui-chao; Wang, Yin-quan; Luo, Jun; Xia, Qi; Fan, Qin; Li, Shu-nan; Wang, Zhen-heng

    2015-12-01

    4-coumarate coenzyme A ligase is a key enzyme of phenylpropanoid metabolic pathway in higher plant and may regulate the biosynthesis of ferulic acid in Angelica sinensis. In this study, the homology-based cloning and rapid amplification of cDNA ends (RACE) technique were used to clone a full length cDNA encoding 4-coumarate coenzyme A ligase gene (4CL), and then qRT-PCR was taken for analyzing 4CL gene expression levels in the root, stem and root tissue at different growth stages of seedlings of A. sinensis. The results showed that a full-length 4CL cDNA (1,815 bp) was obtained (GenBank accession number: KT880508) which shares an open reading frame (ORF) of 1 632 bp, encodes 544 amino acid polypeptides. We found 4CL gene was expressed in all tissues including leaf, stem and root of seedlings of A. sinensis. The expressions in the leave and stem were increased significantly with the growth of seedlings of A. sinensis (P < 0.05), while it in the root showed little change. It indicates a time-space pattern of 4CL gene expression in seedlings of A. sinensis. These findings will be useful for establishing an experiment basis for studying the structure and function of 4CL gene and elucidating mechanism of ferulic acid biosynthesis and space-time regulation in A. sinensis. PMID:27245029

  14. Discovery of Mdm2-MdmX E3 Ligase Inhibitors Using a Cell-Based Ubiquitination Assay

    PubMed Central

    Herman, Ariel G.; Hayano, Miki; Poyurovsky, Masha V.; Shimada, Kenichi; Skouta, Rachid; Prives, Carol; Stockwell, Brent R.

    2011-01-01

    E3 ubiquitin ligases are of interest as drug targets for their ability to regulate protein stability and function. The oncogene Mdm2 is an attractive E3 ligase to target, as it is the key negative regulator of the tumor suppressor p53, which controls the transcription of genes involved in cell fate. Overexpression of Mdm2 facilitates tumorigenesis by inactivating p53, and through p53-independent oncogenic effects. We developed a high-throughput cellular Mdm2 auto-ubiquitination assay, which we used to discover a class of small molecule Mdm2 ligase activity inhibitors. These compounds inhibit Mdm2 and p53 ubiquitination in cells, reduce viability of cells with wild-type p53, and synergize with DNA-damaging agents to cause cell death. We determined that these compounds effectively inhibit the E3 ligase activity of the Mdm2-MdmX hetero-complex. This mechanism may be exploitable to create a new class of anti-tumor agents. PMID:22586610

  15. Welding IV.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding IV, a competency-based course in advanced arc welding offered at the Community College of Allegheny County to provide students with proficiency in: (1) single vee groove welding using code specifications established by the American Welding Society…

  16. A SUMO-targeted ubiquitin ligase is involved in the degradation of the nuclear pool of the SUMO E3 ligase Siz1

    PubMed Central

    Westerbeck, Jason W.; Pasupala, Nagesh; Guillotte, Mark; Szymanski, Eva; Matson, Brooke C.; Esteban, Cecilia; Kerscher, Oliver

    2014-01-01

    The Slx5/Slx8 heterodimer constitutes a SUMO-targeted ubiquitin ligase (STUbL) with an important role in SUMO-targeted degradation and SUMO-dependent signaling. This STUbL relies on SUMO-interacting motifs in Slx5 to aid in substrate targeting and carboxy-terminal RING domains in both Slx5 and Slx8 for substrate ubiquitylation. In budding yeast cells, Slx5 resides in the nucleus, forms distinct foci, and can associate with double-stranded DNA breaks. However, it remains unclear how STUbLs interact with other proteins and their substrates. To examine the targeting and functions of the Slx5/Slx8 STUbL, we constructed and analyzed truncations of the Slx5 protein. Our structure–function analysis reveals a domain of Slx5 involved in nuclear localization and in the interaction with Slx5, SUMO, Slx8, and a novel interactor, the SUMO E3 ligase Siz1. We further analyzed the functional interaction of Slx5 and Siz1 in vitro and in vivo. We found that a recombinant Siz1 fragment is an in vitro ubiquitylation target of the Slx5/Slx8 STUbL. Furthermore, slx5∆ cells accumulate phosphorylated and sumoylated adducts of Siz1 in vivo. Specifically, we show that Siz1 can be ubiquitylated in vivo and is degraded in an Slx5-dependent manner when its nuclear egress is prevented in mitosis. In conclusion, our data provide a first look into the STUbL-mediated regulation of a SUMO E3 ligase. PMID:24196836

  17. Single Quantum Dot Analysis Enables Multiplexed Point Mutation Detection by Gap Ligase Chain Reaction

    PubMed Central

    Song, Yunke; Zhang, Yi; Wang, Tza-Huei

    2014-01-01

    Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and tedious assay processes. In this report, we propose an assay technology which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single molecule coincidence detection and superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. PMID:23239594

  18. The Replisome-Coupled E3 Ubiquitin Ligase Rtt101Mms22 Counteracts Mrc1 Function to Tolerate Genotoxic Stress

    PubMed Central

    Melnik, Andre; Wilson-Zbinden, Caroline; Schellhaas, René; Kastner, Lisa; Piwko, Wojciech; Dees, Martina; Picotti, Paola; Maric, Marija; Labib, Karim; Luke, Brian; Peter, Matthias

    2016-01-01

    Faithful DNA replication and repair requires the activity of cullin 4-based E3 ubiquitin ligases (CRL4), but the underlying mechanisms remain poorly understood. The budding yeast Cul4 homologue, Rtt101, in complex with the linker Mms1 and the putative substrate adaptor Mms22 promotes progression of replication forks through damaged DNA. Here we characterized the interactome of Mms22 and found that the Rtt101Mms22 ligase associates with the replisome progression complex during S-phase via the amino-terminal WD40 domain of Ctf4. Moreover, genetic screening for suppressors of the genotoxic sensitivity of rtt101Δ cells identified a cluster of replication proteins, among them a component of the fork protection complex, Mrc1. In contrast to rtt101Δ and mms22Δ cells, mrc1Δ rtt101Δ and mrc1Δ mms22Δ double mutants complete DNA replication upon replication stress by facilitating the repair/restart of stalled replication forks using a Rad52-dependent mechanism. Our results suggest that the Rtt101Mms22 E3 ligase does not induce Mrc1 degradation, but specifically counteracts Mrc1’s replicative function, possibly by modulating its interaction with the CMG (Cdc45-MCM-GINS) complex at stalled forks. PMID:26849847

  19. The All-Alpha Domains of Coupling Proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-Encoded Type IV Secretion Systems Confer Specificity to Binding of Cognate DNA Substrates

    PubMed Central

    Whitaker, Neal; Chen, Yuqing; Jakubowski, Simon J.; Sarkar, Mayukh K.; Li, Feng

    2015-01-01

    ABSTRACT Bacterial type IV coupling proteins (T4CPs) bind and mediate the delivery of DNA substrates through associated type IV secretion systems (T4SSs). T4CPs consist of a transmembrane domain, a conserved nucleotide-binding domain (NBD), and a sequence-variable helical bundle called the all-alpha domain (AAD). In the T4CP structural prototype, plasmid R388-encoded TrwB, the NBD assembles as a homohexamer resembling RecA and DNA ring helicases, and the AAD, which sits at the channel entrance of the homohexamer, is structurally similar to N-terminal domain 1 of recombinase XerD. Here, we defined the contributions of AADs from the Agrobacterium tumefaciens VirD4 and Enterococcus faecalis PcfC T4CPs to DNA substrate binding. AAD deletions abolished DNA transfer, whereas production of the AAD in otherwise wild-type donor strains diminished the transfer of cognate but not heterologous substrates. Reciprocal swaps of AADs between PcfC and VirD4 abolished the transfer of cognate DNA substrates, although strikingly, the VirD4-AADPcfC chimera (VirD4 with the PcfC AAD) supported the transfer of a mobilizable plasmid. Purified AADs from both T4CPs bound DNA substrates without sequence preference but specifically bound cognate processing proteins required for cleavage at origin-of-transfer sequences. The soluble domains of VirD4 and PcfC lacking their AADs neither exerted negative dominance in vivo nor specifically bound cognate processing proteins in vitro. Our findings support a model in which the T4CP AADs contribute to DNA substrate selection through binding of associated processing proteins. Furthermore, MOBQ plasmids have evolved a docking mechanism that bypasses the AAD substrate discrimination checkpoint, which might account for their capacity to promiscuously transfer through many different T4SSs. IMPORTANCE For conjugative transfer of mobile DNA elements, members of the VirD4/TraG/TrwB receptor superfamily bind cognate DNA substrates through mechanisms that are

  20. [Non-homologous DNA end joining--new proteins, new functions, new mechanisms].

    PubMed

    Popławski, Tomasz; Stoczyńska, Ewelina; Błasiak, Janusz

    2009-01-01

    Humans use primarily nonhomologous end joining (NHEJ) to repair DNA double strand breaks (DSBs), which are the most serious DNA damage, resulting in cell death if non-repaired or missrepaired. NHEJ directly joins together DNA ends resulted from DSBs. This pathway plays a key role in the development of vertebrate immune system through its involvement in the V(D)J recombination. Classical NHEJ in vertebrates involves a heterodimer of Ku proteins, the catalytic subunits of DNA-dependent protein kinase (DNA-PKCS), Artemis, Cernunnos-XLF and XRCC4/ligase DNA IV complex. This classical pathway may be assisted by DNA polymerases mu and lambda. Last 2 years brought new information on the mechanisms, proteins and functions of this DNA repair pathway. In 2006 Cernunnos-XLF was discovered, a protein playing a key role in NHEJ. Some alternative NHEJ pathways were also identified, lacking some of the main proteins of classical NHEJ, but involving other factors, including BRCA1, 53BP1, hPNK, WRN or MDC1. The results obtained so far suggest that not all key components and basic mechanisms of NHEJ have been identified. Future aspects of NHEJ research should include the determination of its role in cancer, aging, immune system development and basic nuclear metabolism. PMID:19514464

  1. A New-Class Antibacterial-Almost. Lessons in Drug Discovery and Development: A Critical Analysis of More than 50 Years of Effort toward ATPase Inhibitors of DNA Gyrase and Topoisomerase IV.

    PubMed

    Bisacchi, Gregory S; Manchester, John I

    2015-01-01

    The introduction into clinical practice of an ATPase inhibitor of bacterial DNA gyrase and topoisomerase IV (topo IV) would represent a new-class agent for the treatment of resistant bacterial infections. Novobiocin, the only historical member of this class, established the clinical proof of concept for this novel mechanism during the late 1950s, but its use declined rapidly and it was eventually withdrawn from the market. Despite significant and prolonged effort across the biopharmaceutical industry to develop other agents of this class, novobiocin remains the only ATPase inhibitor of gyrase and topo IV ever to progress beyond Phase I. In this review, we analyze the historical attempts to discover and develop agents within this class and highlight factors that might have hindered those efforts. Within the last 15 years, however, our technical understanding of the molecular details of the inhibition of the gyrase and topo IV ATPases, the factors governing resistance development to such inhibitors, and our knowledge of the physical properties required for robust clinical drug candidates have all matured to the point wherein the industry may now address this mechanism of action with greater confidence. The antibacterial spectrum within this class has recently been extended to begin to include serious Gram negative pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. In spite of this recent technical progress, adverse economics associated with antibacterial R&D over the last 20 years has diminished industry's ability to commit the resources and perseverance needed to bring new-class agents to launch. Consequently, a number of recent efforts in the ATPase class have been derailed by organizational rather than scientific factors. Nevertheless, within this context we discuss the unique opportunity for the development of ATPase inhibitors of gyrase and topo IV as new-class antibacterial agents with broad spectrum potential. PMID

  2. DNA polymorphism identity determination using flow cytometry

    DOEpatents

    Nolan, John P.; White, P. Scott; Cai, Hong

    2001-01-01

    DNA polymorphism identity determination using flow cytometry. Primers designed to be immobilized on microspheres are allowed to anneal to the DNA strand under investigation, and are extended by either DNA polymerase using fluorescent dideoxynucleotides or ligated by DNA ligase to fluorescent reporter oligonucleotides. The fluorescence of either the dideoxynucleotide or the reporter oligonucleotide attached to the immobilized primer is measured by flow cytometry, thereby identifying the nucleotide polymorphism on the DNA strand.

  3. Agrobacterium T-DNA integration into the plant genome can occur without the activity of key non-homologous end-joining proteins.

    PubMed

    Park, So-Yon; Vaghchhipawala, Zarir; Vasudevan, Balaji; Lee, Lan-Ying; Shen, Yunjia; Singer, Kamy; Waterworth, Wanda M; Zhang, Zhanyuan J; West, Christopher E; Mysore, Kirankumar S; Gelvin, Stanton B

    2015-03-01

    Non-homologous end joining (NHEJ) is the major model proposed for Agrobacterium T-DNA integration into the plant genome. In animal cells, several proteins, including KU70, KU80, ARTEMIS, DNA-PKcs, DNA ligase IV (LIG4), Ataxia telangiectasia mutated (ATM), and ATM- and Rad3-related (ATR), play an important role in 'classical' (c)NHEJ. Other proteins, including histone H1 (HON1), XRCC1, and PARP1, participate in a 'backup' (b)NHEJ process. We examined transient and stable transformation frequencies of Arabidopsis thaliana roots mutant for numerous NHEJ and other related genes. Mutants of KU70, KU80, and the plant-specific DNA Ligase VI (LIG6) showed increased stable transformation susceptibility. However, these mutants showed transient transformation susceptibility similar to that of wild-type plants, suggesting enhanced T-DNA integration in these mutants. These results were confirmed using a promoter-trap transformation vector that requires T-DNA integration into the plant genome to activate a promoterless gusA (uidA) gene, by virus-induced gene silencing (VIGS) of Nicotiana benthamiana NHEJ genes, and by biochemical assays for T-DNA integration. No alteration in transient or stable transformation frequencies was detected with atm, atr, lig4, xrcc1, or parp1 mutants. However, mutation of parp1 caused high levels of T-DNA integration and transgene methylation. A double mutant (ku80/parp1), knocking out components of both NHEJ pathways, did not show any decrease in stable transformation or T-DNA integration. Thus, T-DNA integration does not require known NHEJ proteins, suggesting an alternative route for integration. PMID:25641249

  4. IVS Organization

    NASA Technical Reports Server (NTRS)

    2004-01-01

    International VLBI Service (IVS) is an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLBI) components. The goals are: To provide a service to support geodetic, geophysical and astrometric research and operational activities. To promote research and development activities in all aspects of the geodetic and astrometric VLBI technique. To interact with the community of users of VLBI products and to integrate VLBI into a global Earth observing system.

  5. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining.

    PubMed

    Mahaney, Brandi L; Meek, Katheryn; Lees-Miller, Susan P

    2009-02-01

    DNA DSBs (double-strand breaks) are considered the most cytotoxic type of DNA lesion. They can be introduced by external sources such as IR (ionizing radiation), by chemotherapeutic drugs such as topoisomerase poisons and by normal biological processes such as V(D)J recombination. If left unrepaired, DSBs can cause cell death. If misrepaired, DSBs may lead to chromosomal translocations and genomic instability. One of the major pathways for the repair of IR-induced DSBs in mammalian cells is NHEJ (non-homologous end-joining). The main proteins required for NHEJ in mammalian cells are the Ku heterodimer (Ku70/80 heterodimer), DNA-PKcs [the catalytic subunit of DNA-PK (DNA-dependent protein kinase)], Artemis, XRCC4 (X-ray-complementing Chinese hamster gene 4), DNA ligase IV and XLF (XRCC4-like factor; also called Cernunnos). Additional proteins, including DNA polymerases mu and lambda, PNK (polynucleotide kinase) and WRN (Werner's Syndrome helicase), may also play a role. In the present review, we will discuss our current understanding of the mechanism of NHEJ in mammalian cells and discuss the roles of DNA-PKcs and DNA-PK-mediated phosphorylation in NHEJ. PMID:19133841

  6. TDP1 promotes assembly of non-homologous end joining protein complexes on DNA.

    PubMed

    Heo, Jinho; Li, Jing; Summerlin, Matthew; Hays, Annette; Katyal, Sachin; McKinnon, Peter J; Nitiss, Karin C; Nitiss, John L; Hanakahi, Leslyn A

    2015-06-01

    The repair of DNA double-strand breaks (DSB) is central to the maintenance of genomic integrity. In tumor cells, the ability to repair DSBs predicts response to radiation and many cytotoxic anti-cancer drugs. DSB repair pathways include homologous recombination and non-homologous end joining (NHEJ). NHEJ is a template-independent mechanism, yet many NHEJ repair products carry limited genetic changes, which suggests that NHEJ includes mechanisms to minimize error. Proteins required for mammalian NHEJ include Ku70/80, the DNA-dependent protein kinase (DNA-PKcs), XLF/Cernunnos and the XRCC4:DNA ligase IV complex. NHEJ also utilizes accessory proteins that include DNA polymerases, nucleases, and other end-processing factors. In yeast, mutations of tyrosyl-DNA phosphodiesterase (TDP1) reduced NHEJ fidelity. TDP1 plays an important role in repair of topoisomerase-mediated DNA damage and 3'-blocking DNA lesions, and mutation of the human TDP1 gene results in an inherited human neuropathy termed SCAN1. We found that human TDP1 stimulated DNA binding by XLF and physically interacted with XLF to form TDP1:XLF:DNA complexes. TDP1:XLF interactions preferentially stimulated TDP1 activity on dsDNA as compared to ssDNA. TDP1 also promoted DNA binding by Ku70/80 and stimulated DNA-PK activity. Because Ku70/80 and XLF are the first factors recruited to the DSB at the onset of NHEJ, our data suggest a role for TDP1 during the early stages of mammalian NHEJ. PMID:25841101

  7. Regulation of apo A-IV transcription by lipid in newborn swine is associated with a promoter DNA-binding protein.

    PubMed

    Lu, Song; Yao, Ying; Wang, Heng; Meng, Songmei; Cheng, Xiangying; Black, Dennis D

    2003-02-01

    Dietary lipid acutely upregulates apolipoprotein (apo) A-IV expression by sevenfold at the pretranslational level in neonatal swine jejunum. To determine the mechanism of this regulation, two-day-old female swine received intraduodenal infusions of low- and high-triacylglycerol (TG) isocaloric diets for 24 h. Nuclear runoff assay confirmed apo A-IV gene transcriptional regulation by the high-TG diet. Footprinting analysis using the swine apo A-IV proximal promoter sequence (+14 to -246 bp) demonstrated three regions protected by the low-TG extracts. Of these three motifs, only ACCTTC showed 100% homology to the human sequence and was further studied. EMSA was performed using probes containing wild-type (WT) and mutant (M) motifs. A shift was noted with the low-TG nuclear extracts with the WT probe but not with the M probe. Excess unlabeled free WT probe competed out the shift, whereas the M probe did not. No significant shift occurred with either probe using high-TG extracts. These results suggest that a repressor protein binds to the ACCTTC motif and becomes unbound during lipid absorption, allowing transcriptional activation of the apo A-IV gene in newborn swine small intestine. PMID:12388193

  8. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  9. Cytoplasmic CUL9/PARC ubiquitin ligase is a tumor suppressor and promotes p53-dependent apoptosis

    PubMed Central

    Pei, Xin-Hai; Bai, Feng; Li, Zhijun; Smith, Matthew D.; Whitewolf, Gabrielle; Jin, Ran; Xiong, Yue

    2011-01-01

    A wide range of cell stresses, including DNA damage, signal to p53 through post-translational modification of p53. The cytoplasmic functions of p53 are emerging as an important constituent of p53’s role in tumor suppression. Here we report that deletion of the Cul9 (formerly Parc) gene, which encodes an E3 ubiquitin ligase that binds to p53 and localizes in the cytoplasm, resulted in spontaneous tumor development, accelerated Eμ-Myc-induced lymphomagenesis and rendered mice susceptible to carcinogenesis. Cul9-p53 double mutant mice exhibited indistinguishable tumor phenotypes as p53 single mutant mice, indicating that the function of Cul9 in tumor suppression is largely mediated by p53. Deletion of Cul9 had no significant effect on cell cycle progression, but attenuated DNA damage-induced apoptosis. Ectopic expression of wild-type CUL9, but not a point mutant CUL9 deficient in p53 binding, promotes apoptosis. These results demonstrate CUL9 as a potential p53 activating E3 ligase in the cytoplasm. PMID:21487039

  10. Replication Bypass of the trans-4-Hydroxynonenal-Derived (6S,8R,11S)-1,N[superscript 2]-Deoxyguanosine DNA Adduct by the Sulfolobus solfataricus DNA Polymerase IV

    SciTech Connect

    Banerjee, Surajit; Christov, Plamen P.; Kozekova, Albena; Rizzo, Carmelo J.; Egli, Martin; Stone, Michael P.

    2014-10-02

    trans-4-Hydroxynonenal (HNE) is the major peroxidation product of {omega}-6 polyunsaturated fatty acids in vivo. Michael addition of the N{sub 2}-amino group of dGuo to HNE followed by ring closure of N1 onto the aldehyde results in four diastereomeric 1,N{sub 2}-dGuo (1,N{sub 2}-HNE-dGuo) adducts. The (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct was incorporated into the 18-mer templates 5'-d(TCATXGAATCCTTCCCCC)-3' and d(TCACXGAATCCTTCCCCC)-3', where X = (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct. These differed in the identity of the template 5'-neighbor base, which was either Thy or Cyt, respectively. Each of these templates was annealed with either a 13-mer primer 5'-d(GGGGGAAGGATTC)-3' or a 14-mer primer 5'-d(GGGGGAAGGATTCC)-3'. The addition of dNTPs to the 13-mer primer allowed analysis of dNTP insertion opposite to the (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct, whereas the 14-mer primer allowed analysis of dNTP extension past a primed (6S,8R,11S)-HNE-1,N{sub 2}-dGuo:dCyd pair. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) belongs to the Y-family of error-prone polymerases. Replication bypass studies in vitro reveal that this polymerase inserted dNTPs opposite the (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct in a sequence-specific manner. If the template 5'-neighbor base was dCyt, the polymerase inserted primarily dGTP, whereas if the template 5'-neighbor base was dThy, the polymerase inserted primarily dATP. The latter event would predict low levels of Gua {yields} Thy mutations during replication bypass when the template 5'-neighbor base is dThy. When presented with a primed (6S,8R,11S)-HNE-1,N{sub 2}-dGuo:dCyd pair, the polymerase conducted full-length primer extension. Structures for ternary (Dpo4-DNA-dNTP) complexes with all four template-primers were obtained. For the 18-mer:13-mer template-primers in which the polymerase was confronted with the (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct, the (6S,8R,11S)-1,N{sub 2}-dGuo lesion remained in the ring

  11. Double-strand DNA breaks recruit the centromeric histone CENP-A

    PubMed Central

    Zeitlin, Samantha G.; Baker, Norman M.; Chapados, Brian R.; Soutoglou, Evi; Wang, Jean Y. J.; Berns, Michael W.; Cleveland, Don W.

    2009-01-01

    The histone H3 variant CENP-A is required for epigenetic specification of centromere identity through a loading mechanism independent of DNA sequence. Using multiphoton absorption and DNA cleavage at unique sites by I-SceI endonuclease, we demonstrate that CENP-A is rapidly recruited to double-strand breaks in DNA, along with three components (CENP-N, CENP-T, and CENP-U) associated with CENP-A at centromeres. The centromere-targeting domain of CENP-A is both necessary and sufficient for recruitment to double-strand breaks. CENP-A accumulation at DNA breaks is enhanced by active non-homologous end-joining but does not require DNA-PKcs or Ligase IV, and is independent of H2AX. Thus, induction of a double-strand break is sufficient to recruit CENP-A in human and mouse cells. Finally, since cell survival after radiation-induced DNA damage correlates with CENP-A expression level, we propose that CENP-A may have a function in DNA repair. PMID:19717431

  12. The tumour antigen PRAME is a subunit of a Cul2 ubiquitin ligase and associates with active NFY promoters

    PubMed Central

    Costessi, Adalberto; Mahrour, Nawel; Tijchon, Esther; Stunnenberg, Rieka; Stoel, Marieke A; Jansen, Pascal W; Sela, Dotan; Martin-Brown, Skylar; Washburn, Michael P; Florens, Laurence; Conaway, Joan W; Conaway, Ronald C; Stunnenberg, Hendrik G

    2011-01-01

    The human tumour antigen PRAME (preferentially expressed antigen of melanoma) is frequently overexpressed in tumours. High PRAME levels correlate with poor clinical outcome of several cancers, but the mechanisms by which PRAME could be involved in tumourigenesis remain largely elusive. We applied protein-complex purification strategies and identified PRAME as a substrate recognition subunit of a Cullin2-based E3 ubiquitin ligase. PRAME can be recruited to DNA in vitro, and genome-wide chromatin immunoprecipitation experiments revealed that PRAME is specifically enriched at transcriptionally active promoters that are also bound by NFY and at enhancers. Our results are consistent with a role for the PRAME ubiquitin ligase complex in NFY-mediated transcriptional regulation. PMID:21822215

  13. Single-stranded DNA oligomers stimulate error-prone alternative repair of DNA double-strand breaks through hijacking Ku protein

    PubMed Central

    Yuan, Ying; Britton, Sébastien; Delteil, Christine; Coates, Julia; Jackson, Stephen P.; Barboule, Nadia; Frit, Philippe; Calsou, Patrick

    2015-01-01

    In humans, DNA double-strand breaks (DSBs) are repaired by two mutually-exclusive mechanisms, homologous recombination or end-joining. Among end-joining mechanisms, the main process is classical non-homologous end-joining (C-NHEJ) which relies on Ku binding to DNA ends and DNA Ligase IV (Lig4)-mediated ligation. Mostly under Ku- or Lig4-defective conditions, an alternative end-joining process (A-EJ) can operate and exhibits a trend toward microhomology usage at the break junction. Homologous recombination relies on an initial MRN-dependent nucleolytic degradation of one strand at DNA ends. This process, named DNA resection generates 3′ single-stranded tails necessary for homologous pairing with the sister chromatid. While it is believed from the current literature that the balance between joining and recombination processes at DSBs ends is mainly dependent on the initiation of resection, it has also been shown that MRN activity can generate short single-stranded DNA oligonucleotides (ssO) that may also be implicated in repair regulation. Here, we evaluate the effect of ssO on end-joining at DSB sites both in vitro and in cells. We report that under both conditions, ssO inhibit C-NHEJ through binding to Ku and favor repair by the Lig4-independent microhomology-mediated A-EJ process. PMID:26350212

  14. Single-stranded DNA oligomers stimulate error-prone alternative repair of DNA double-strand breaks through hijacking Ku protein.

    PubMed

    Yuan, Ying; Britton, Sébastien; Delteil, Christine; Coates, Julia; Jackson, Stephen P; Barboule, Nadia; Frit, Philippe; Calsou, Patrick

    2015-12-01

    In humans, DNA double-strand breaks (DSBs) are repaired by two mutually-exclusive mechanisms, homologous recombination or end-joining. Among end-joining mechanisms, the main process is classical non-homologous end-joining (C-NHEJ) which relies on Ku binding to DNA ends and DNA Ligase IV (Lig4)-mediated ligation. Mostly under Ku- or Lig4-defective conditions, an alternative end-joining process (A-EJ) can operate and exhibits a trend toward microhomology usage at the break junction. Homologous recombination relies on an initial MRN-dependent nucleolytic degradation of one strand at DNA ends. This process, named DNA resection generates 3' single-stranded tails necessary for homologous pairing with the sister chromatid. While it is believed from the current literature that the balance between joining and recombination processes at DSBs ends is mainly dependent on the initiation of resection, it has also been shown that MRN activity can generate short single-stranded DNA oligonucleotides (ssO) that may also be implicated in repair regulation. Here, we evaluate the effect of ssO on end-joining at DSB sites both in vitro and in cells. We report that under both conditions, ssO inhibit C-NHEJ through binding to Ku and favor repair by the Lig4-independent microhomology-mediated A-EJ process. PMID:26350212

  15. XRCC4 and XLF form long helical protein filaments suitable for DNA end protection and alignment to facilitate DNA double strand break repair.

    PubMed

    Mahaney, Brandi L; Hammel, Michal; Meek, Katheryn; Tainer, John A; Lees-Miller, Susan P

    2013-02-01

    DNA double strand breaks (DSBs), induced by ionizing radiation (IR) and endogenous stress including replication failure, are the most cytotoxic form of DNA damage. In human cells, most IR-induced DSBs are repaired by the nonhomologous end joining (NHEJ) pathway. One of the most critical steps in NHEJ is ligation of DNA ends by DNA ligase IV (LIG4), which interacts with, and is stabilized by, the scaffolding protein X-ray cross-complementing gene 4 (XRCC4). XRCC4 also interacts with XRCC4-like factor (XLF, also called Cernunnos); yet, XLF has been one of the least mechanistically understood proteins and precisely how XLF functions in NHEJ has been enigmatic. Here, we examine current combined structural and mutational findings that uncover integrated functions of XRCC4 and XLF and reveal their interactions to form long, helical protein filaments suitable to protect and align DSB ends. XLF-XRCC4 provides a global structural scaffold for ligating DSBs without requiring long DNA ends, thus ensuring accurate and efficient ligation and repair. The assembly of these XRCC4-XLF filaments, providing both DNA end protection and alignment, may commit cells to NHEJ with general biological implications for NHEJ and DSB repair processes and their links to cancer predispositions and interventions. PMID:23442139

  16. XRCC4 and XLF form long helical protein filaments suitable for DNA end protection and alignment to facilitate DNA double strand break repair

    PubMed Central

    Mahaney, Brandi L.; Hammel, Michal; Meek, Katheryn; Tainer, John A.; Lees-Miller, Susan P.

    2013-01-01

    DNA double strand breaks (DSBs), induced by ionizing radiation (IR) and endogenous stress including replication failure, are the most cytotoxic form of DNA damage. In human cells, most IR-induced DSBs are repaired by the non-homologous end joining (NHEJ) pathway. One of the most critical steps in NHEJ is ligation of DNA ends by DNA ligase IV (LIG4), which interacts with, and is stabilized by, the scaffolding protein X-ray cross-complementing gene 4 (XRCC4). XRCC4 also interacts with XRCC4-like factor (XLF, also called Cernunnos); yet, XLF has been one of the least mechanistically understood proteins and precisely how XLF functions in NHEJ has been enigmatic. Here, we examine current combined structural and mutational findings that uncover integrated functions of XRCC4 and XLF and reveal their interactions to form long, helical protein filaments suitable to protect and align DSB ends. XLF-XRCC4 provides a global structural scaffold for ligating DSBs without requiring long complementary DNA ends, thus ensuring accurate and efficient ligation and repair. The assembly of these XRCC4-XLF filaments, providing both DNA end protection and alignment, may commit cells to NHEJ with general biological implications for NHEJ and DSB repair processes and their links to cancer predispositions and interventions. PMID:23442139

  17. [DNA computing].

    PubMed

    Błasiak, Janusz; Krasiński, Tadeusz; Popławski, Tomasz; Sakowski, Sebastian

    2011-01-01

    Biocomputers can be an alternative for traditional "silicon-based" computers, which continuous development may be limited due to further miniaturization (imposed by the Heisenberg Uncertainty Principle) and increasing the amount of information between the central processing unit and the main memory (von Neuman bottleneck). The idea of DNA computing came true for the first time in 1994, when Adleman solved the Hamiltonian Path Problem using short DNA oligomers and DNA ligase. In the early 2000s a series of biocomputer models was presented with a seminal work of Shapiro and his colleguas who presented molecular 2 state finite automaton, in which the restriction enzyme, FokI, constituted hardware and short DNA oligomers were software as well as input/output signals. DNA molecules provided also energy for this machine. DNA computing can be exploited in many applications, from study on the gene expression pattern to diagnosis and therapy of cancer. The idea of DNA computing is still in progress in research both in vitro and in vivo and at least promising results of these research allow to have a hope for a breakthrough in the computer science. PMID:21735816

  18. Mapping L1 Ligase ribozyme conformational switch

    PubMed Central

    Giambaşu, George M.; Lee, Tai-Sung; Scott, William G.; York, Darrin M.

    2012-01-01

    L1 Ligase (L1L)molecular switch is an in vitro optimized synthetic allosteric ribozyme that catalyzes the regioselective formation of a 5’-to-3’ phosphodiester bond, a reaction for which there is no known naturally occurring RNA catalyst. L1L serves as a proof of principle that RNA can catalyze a critical reaction for prebiotic RNA self-replication according to the RNA World hypothesis. L1L crystal structure captures two distinct conformations that differ by a re-orientation of one of the stems by around 80 Å and are presumed to correspond to the active and inactive state, respectively. It is of great interest to understand the nature of these two states in solution, and the pathway for their interconversion. In this study, we use explicit solvent molecular simulation together with a novel enhanced sampling method that utilizes concepts from network theory to map out the conformational transition between active and inactive states of L1L. We find that the overall switching mechanism can be described as a 3-state/2-step process. The first step involves a large-amplitude swing that re-orients stem C. The second step involves the allosteric activation of the catalytic site through distant contacts with stem C. Using a conformational space network representation of the L1L switch transition, it is shown that the connection between the three states follows different topographical patterns: the stem C swing step passes through a narrow region of the conformational space network, whereas the allosteric activation step covers a much wider region and a more diverse set of pathways through the network. PMID:22771572

  19. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status

    PubMed Central

    Adam, M Gordian; Matt, Sonja; Christian, Sven; Hess-Stumpp, Holger; Haegebarth, Andrea; Hofmann, Thomas G; Algire, Carolyn

    2015-01-01

    Seven-in-absentia homolog (SIAH) proteins are evolutionary conserved RING type E3 ubiquitin ligases responsible for the degradation of key molecules regulating DNA damage response, hypoxic adaptation, apoptosis, angiogenesis, and cell proliferation. Many studies suggest a tumorigenic role for SIAH2. In breast cancer patients SIAH2 expression levels correlate with cancer aggressiveness and overall patient survival. In addition, SIAH inhibition reduced metastasis in melanoma. The role of SIAH1 in breast cancer is still ambiguous; both tumorigenic and tumor suppressive functions have been reported. Other studies categorized SIAH ligases as either pro- or antimigratory, while the significance for metastasis is largely unknown. Here, we re-evaluated the effects of SIAH1 and SIAH2 depletion in breast cancer cell lines, focusing on migration and invasion. We successfully knocked down SIAH1 and SIAH2 in several breast cancer cell lines. In luminal type MCF7 cells, this led to stabilization of the SIAH substrate Prolyl Hydroxylase Domain protein 3 (PHD3) and reduced Hypoxia-Inducible Factor 1α (HIF1α) protein levels. Both the knockdown of SIAH1 or SIAH2 led to increased apoptosis and reduced proliferation, with comparable effects. These results point to a tumor promoting role for SIAH1 in breast cancer similar to SIAH2. In addition, depletion of SIAH1 or SIAH2 also led to decreased cell migration and invasion in breast cancer cells. SIAH knockdown also controlled microtubule dynamics by markedly decreasing the protein levels of stathmin, most likely via p27Kip1. Collectively, these results suggest that both SIAH ligases promote a migratory cancer cell phenotype and could contribute to metastasis in breast cancer. PMID:26654769

  20. Identification of candidate mitochondrial RNA editing ligases from Trypanosoma brucei.

    PubMed Central

    McManus, M T; Shimamura, M; Grams, J; Hajduk, S L

    2001-01-01

    Most mitochondrial genes of Trypanosoma brucei do not contain the necessary information to make translatable mRNAs. These transcripts must undergo RNA editing, a posttranscriptional process by which uridine residues are added and deleted from mitochondrial mRNAs. RNA editing is believed to be catalyzed by a ribonucleoprotein complex containing endonucleolytic, terminal uridylyl transferase (TUTase), 3' uridine-specific exonucleolytic (U-exo), and ligase activities. None of the catalytic enzymes for RNA editing have been identified. Here we describe the identification of two candidate RNA ligases (48 and 52 kDa) that are core catalytic components of the T. brucei ribonucleoprotein editing complex. Both enzymes share homology to the covalent nucleotidyl transferase superfamily and contain five key signature motifs, including the active site KXXG. In this report, we present data on the proposed 48 kDa RNA editing ligase. We have prepared polyclonal antibodies against recombinant 48 kDa ligase that specifically recognize the trypanosome enzyme. When expressed in trypanosomes as an epitope-tagged fusion protein, the recombinant ligase localizes to the mitochondrion, associates with RNA editing complexes, and adenylates with ATP. These findings provide strong support for the enzymatic cascade model for kinetoplastid RNA editing. PMID:11233974

  1. A Generic Platform for Cellular Screening Against Ubiquitin Ligases

    PubMed Central

    Maculins, Timurs; Carter, Nikki; Dorval, Thierry; Hudson, Kevin; Nissink, J. Willem M.; Hay, Ronald T.; Alwan, Husam

    2016-01-01

    Ubiquitin signalling regulates most aspects of cellular life, thus deregulation of ubiquitylation has been linked with a number of diseases. E3 ubiquitin ligases provide substrate selectivity in ubiquitylation cascades and are therefore considered to be attractive targets for developing therapeutic molecules. In contrast to established drug target classes, such as protein kinases, GPCRs, hormone receptors and ion channels, ubiquitin drug discovery is in its early stages. This is, in part, due to the complexity of the ubiquitylation pathways and the lack of robust quantitative technologies that allow high-throughput screening of inhibitors. Here we report the development of a Ubiquitin Ligase Profiling system, which is a novel and generic cellular technology designed to facilitate identification of selective inhibitors against RING type E3 ubiquitin ligases. Utilization of this system requires a single co-transfection of cells with assay vectors, thereby enabling readout of E3 ubiquitin ligase catalytic activity within the cellular environment. Therefore, our robust high-throughput screening platform offers novel opportunities for the development of inhibitors against this difficult-to-target E3 ligase enzyme class. PMID:26743172

  2. Reprint of "Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair".

    PubMed

    Çağlayan, Melike; Wilson, Samuel H

    2015-12-01

    DNA lesions arise from many endogenous and environmental agents, and such lesions can promote deleterious events leading to genomic instability and cell death. Base excision repair (BER) is the main DNA repair pathway responsible for repairing single strand breaks, base lesions and abasic sites in mammalian cells. During BER, DNA substrates and repair intermediates are channeled from one step to the next in a sequential fashion so that release of toxic repair intermediates is minimized. This includes handoff of the product of gap-filling DNA synthesis to the DNA ligation step. The conformational differences in DNA polymerase β (pol β) associated with incorrect or oxidized nucleotide (8-oxodGMP) insertion could impact channeling of the repair intermediate to the final step of BER, i.e., DNA ligation by DNA ligase I or the DNA Ligase III/XRCC1 complex. Thus, modified DNA ligase substrates produced by faulty pol β gap-filling could impair coordination between pol β and DNA ligase. Ligation failure is associated with 5'-AMP addition to the repair intermediate and accumulation of strand breaks that could be more toxic than the initial DNA lesions. Here, we provide an overview of the consequences of ligation failure in the last step of BER. We also discuss DNA-end processing mechanisms that could play roles in reversal of impaired BER. PMID:26596511

  3. Bacteria-host relationship: ubiquitin ligases as weapons of invasion

    PubMed Central

    Maculins, Timurs; Fiskin, Evgenij; Bhogaraju, Sagar; Dikic, Ivan

    2016-01-01

    Eukaryotic cells utilize the ubiquitin (Ub) system for maintaining a balanced functioning of cellular pathways. Although the Ub system is exclusive to eukaryotes, prokaryotic bacteria have developed an armory of Ub ligase enzymes that are capable of employing the Ub systems of various hosts, ranging from plant to animal cells. These enzymes have been acquired through the evolution and can be classified into three main classes, RING (really interesting new gene), HECT (homologous to the E6-AP carboxyl terminus) and NEL (novel E3 ligases). In this review we describe the roles played by different classes of bacterial Ub ligases in infection and pathogenicity. We also provide an overview of the different mechanisms by which bacteria mimic specific components of the host Ub system and outline the gaps in our current understanding of their functions. Additionally, we discuss approaches and experimental tools for validating this class of enzymes as potential novel antibacterial therapy targets. PMID:26964724

  4. E3 ubiquitin ligases as novel targets for inflammatory diseases.

    PubMed

    Goru, Santosh Kumar; Pandey, Anuradha; Gaikwad, Anil Bhanudas

    2016-04-01

    Ubiquitination is one of the post translational modifications which decide the fate of various proteins in the cells, by either directing them towards proteasomal degradation or participation in several cell signalling pathways. Recently, the role of ubiquitination has been unravelled in pathogenesis and progression of various diseases, where inflammation is critical, like obesity, insulin resistance, atherosclerosis, angiotensin-II induced cardiac inflammation and asthma. E3 ligases are known to be instrumental in regulation of the inflammatory cascade. This review focuses on the role of different E3 ligases in the development of inflammatory diseases and thus may help us to target these E3 ligases in future drug discovery to prevent inflammation. PMID:26875639

  5. Bacteria-host relationship: ubiquitin ligases as weapons of invasion.

    PubMed

    Maculins, Timurs; Fiskin, Evgenij; Bhogaraju, Sagar; Dikic, Ivan

    2016-04-01

    Eukaryotic cells utilize the ubiquitin (Ub) system for maintaining a balanced functioning of cellular pathways. Although the Ub system is exclusive to eukaryotes, prokaryotic bacteria have developed an armory of Ub ligase enzymes that are capable of employing the Ub systems of various hosts, ranging from plant to animal cells. These enzymes have been acquired through the evolution and can be classified into three main classes, RING (really interesting new gene), HECT (homologous to the E6-AP carboxyl terminus) and NEL (novel E3 ligases). In this review we describe the roles played by different classes of bacterial Ub ligases in infection and pathogenicity. We also provide an overview of the different mechanisms by which bacteria mimic specific components of the host Ub system and outline the gaps in our current understanding of their functions. Additionally, we discuss approaches and experimental tools for validating this class of enzymes as potential novel antibacterial therapy targets. PMID:26964724

  6. Post-Transcriptional Coordination of the Arabidopsis Iron Deficiency Response is Partially Dependent on the E3 Ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2).

    PubMed

    Pan, I-Chun; Tsai, Huei-Hsuan; Cheng, Ya-Tan; Wen, Tuan-Nan; Buckhout, Thomas J; Schmidt, Wolfgang

    2015-10-01

    Acclimation to changing environmental conditions is mediated by proteins, the abundance of which is carefully tuned by an elaborate interplay of DNA-templated and post-transcriptional processes. To dissect the mechanisms that control and mediate cellular iron homeostasis, we conducted quantitative high-resolution iTRAQ proteomics and microarray-based transcriptomic profiling of iron-deficient Arabidopsis thaliana plants. A total of 13,706 and 12,124 proteins was identified with a quadrupole-Orbitrap hybrid mass spectrometer in roots and leaves, respectively. This deep proteomic coverage allowed accurate estimates of post-transcriptional regulation in response to iron deficiency. Similarly regulated transcripts were detected in only 13% (roots) and 11% (leaves) of the 886 proteins that differentially accumulated between iron-sufficient and iron-deficient plants, indicating that the majority of the iron-responsive proteins was post-transcriptionally regulated. Mutants harboring defects in the RING DOMAIN LIGASE1 (RGLG1)(1) and RING DOMAIN LIGASE2 (RGLG2) showed a pleiotropic phenotype that resembled iron-deficient plants with reduced trichome density and the formation of branched root hairs. Proteomic and transcriptomic profiling of rglg1 rglg2 double mutants revealed that the functional RGLG protein is required for the regulation of a large set of iron-responsive proteins including the coordinated expression of ribosomal proteins. This integrative analysis provides a detailed catalog of post-transcriptionally regulated proteins and allows the concept of a chiefly transcriptionally regulated iron deficiency response to be revisited. Protein data are available via ProteomeXchange with identifier PXD002126. PMID:26253232

  7. Genetically engineered mouse models for functional studies of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases

    PubMed Central

    Zhou, Weihua; Wei, Wenyi; Sun, Yi

    2013-01-01

    The SCF (SKP1 (S-phase-kinase-associated protein 1), Cullin-1, F-box protein) E3 ubiquitin ligases, the founding member of Cullin-RING ligases (CRLs), are the largest family of E3 ubiquitin ligases in mammals. Each individual SCF E3 ligase consists of one adaptor protein SKP1, one scaffold protein cullin-1 (the first family member of the eight cullins), one F-box protein out of 69 family members, and one out of two RING (Really Interesting New Gene) family proteins RBX1/ROC1 or RBX2/ROC2/SAG/RNF7. Various combinations of these four components construct a large number of SCF E3s that promote the degradation of many key regulatory proteins in cell-context, temporally, and spatially dependent manners, thus controlling precisely numerous important cellular processes, including cell cycle progression, apoptosis, gene transcription, signal transduction, DNA replication, maintenance of genome integrity, and tumorigenesis. To understand how the SCF E3 ligases regulate these cellular processes and embryonic development under in vivo physiological conditions, a number of mouse models with transgenic (Tg) expression or targeted deletion of components of SCF have been established and characterized. In this review, we will provide a brief introduction to the ubiquitin-proteasome system (UPS) and the SCF E3 ubiquitin ligases, followed by a comprehensive overview on the existing Tg and knockout (KO) mouse models of the SCF E3s, and discuss the role of each component in mouse embryogenesis, cell proliferation, apoptosis, carcinogenesis, as well as other pathogenic processes associated with human diseases. We will end with a brief discussion on the future directions of this research area and the potential applications of the knowledge gained to more effective therapeutic interventions of human diseases. PMID:23528706

  8. RAD5a ubiquitin ligase is involved in ubiquitination of Arabidopsis thaliana proliferating cell nuclear antigen.

    PubMed

    Strzalka, Wojciech; Bartnicki, Filip; Pels, Katarzyna; Jakubowska, Agata; Tsurimoto, Toshiki; Tanaka, Katsunori

    2013-02-01

    The proliferating cell nuclear antigen (PCNA) is post-translationally modified by ubiquitin in yeast and mammalian cells. It is widely accepted that in yeast mono- and polyubiquitinated PCNA is involved in distinct pathways of DNA postreplication repair. This study showed an interaction between plant ubiquitin and PCNA in the plant cell. Using different approaches, it was demonstrated that Arabidopsis RAD5a ubiquitin ligase is involved in the post-translational modification of plant PCNA. A detailed analysis of the properties of selected Arabidopsis ubiquitin-conjugating enzymes (AtUBC) has shown that a plant homologue of yeast RAD6 (AtUBC2) is sufficient to monoubiquitinate AtPCNA in the absence of ubiquitin ligase. Using different combinations of selected AtUBC proteins together with AtRAD5a, it was demonstrated that plants have potential to use different pathways to ubiquitinate PCNA. The analysis of Arabidopsis PCNA1 and PCNA2 did not demonstrate substantial differences in the ubiquitination pattern between these two proteins. The major ubiquitination target of Arabidopsis PCNA, conserved in eukaryotes, is lysine 164. Taken together, the presented results clearly demonstrate the involvement of Arabidopsis UBC and RAD5a proteins in the ubiquitination of plant PCNA at lysine 164. The data show the complexity of the plant ubiquitination system and open new questions about its regulation in the plant cell. PMID:23314815

  9. XLS (c9orf142) is a new component of mammalian DNA double-stranded break repair.

    PubMed

    Craxton, A; Somers, J; Munnur, D; Jukes-Jones, R; Cain, K; Malewicz, M

    2015-06-01

    Repair of double-stranded DNA breaks (DSBs) in mammalian cells primarily occurs by the non-homologous end-joining (NHEJ) pathway, which requires seven core proteins (Ku70/Ku86, DNA-PKcs (DNA-dependent protein kinase catalytic subunit), Artemis, XRCC4-like factor (XLF), XRCC4 and DNA ligase IV). Here we show using combined affinity purification and mass spectrometry that DNA-PKcs co-purifies with all known core NHEJ factors. Furthermore, we have identified a novel evolutionary conserved protein associated with DNA-PKcs-c9orf142. Computer-based modelling of c9orf142 predicted a structure very similar to XRCC4, hence we have named c9orf142-XLS (XRCC4-like small protein). Depletion of c9orf142/XLS in cells impaired DSB repair consistent with a defect in NHEJ. Furthermore, c9orf142/XLS interacted with other core NHEJ factors. These results demonstrate the existence of a new component of the NHEJ DNA repair pathway in mammalian cells. PMID:25941166

  10. XLS (c9orf142) is a new component of mammalian DNA double-stranded break repair

    PubMed Central

    Craxton, A; Somers, J; Munnur, D; Jukes-Jones, R; Cain, K; Malewicz, M

    2015-01-01

    Repair of double-stranded DNA breaks (DSBs) in mammalian cells primarily occurs by the non-homologous end-joining (NHEJ) pathway, which requires seven core proteins (Ku70/Ku86, DNA-PKcs (DNA-dependent protein kinase catalytic subunit), Artemis, XRCC4-like factor (XLF), XRCC4 and DNA ligase IV). Here we show using combined affinity purification and mass spectrometry that DNA-PKcs co-purifies with all known core NHEJ factors. Furthermore, we have identified a novel evolutionary conserved protein associated with DNA-PKcs—c9orf142. Computer-based modelling of c9orf142 predicted a structure very similar to XRCC4, hence we have named c9orf142—XLS (XRCC4-like small protein). Depletion of c9orf142/XLS in cells impaired DSB repair consistent with a defect in NHEJ. Furthermore, c9orf142/XLS interacted with other core NHEJ factors. These results demonstrate the existence of a new component of the NHEJ DNA repair pathway in mammalian cells. PMID:25941166

  11. RCAD/Ufl1, a Ufm1 E3 ligase, is essential for hematopoietic stem cell function and murine hematopoiesis.

    PubMed

    Zhang, M; Zhu, X; Zhang, Y; Cai, Y; Chen, J; Sivaprakasam, S; Gurav, A; Pi, W; Makala, L; Wu, J; Pace, B; Tuan-Lo, D; Ganapathy, V; Singh, N; Li, H

    2015-12-01

    The Ufm1 conjugation system is a novel ubiquitin-like modification system, consisting of Ufm1, Uba5 (E1), Ufc1 (E2) and poorly characterized E3 ligase(s). RCAD/Ufl1 (also known as KIAA0776, NLBP and Maxer) was reported to function as a Ufm1 E3 ligase in ufmylation (Ufm1-mediated conjugation) of DDRGK1 and ASC1 proteins. It has also been implicated in estrogen receptor signaling, unfolded protein response (UPR) and neurodegeneration, yet its physiological function remains completely unknown. In this study, we report that RCAD/Ufl1 is essential for embryonic development, hematopoietic stem cell (HSC) survival and erythroid differentiation. Both germ-line and somatic deletion of RCAD/Ufl1 impaired hematopoietic development, resulting in severe anemia, cytopenia and ultimately animal death. Depletion of RCAD/Ufl1 caused elevated endoplasmic reticulum stress and evoked UPR in bone marrow cells. In addition, loss of RCAD/Ufl1 blocked autophagic degradation, increased mitochondrial mass and reactive oxygen species, and led to DNA damage response, p53 activation and enhanced cell death of HSCs. Collectively, our study provides the first genetic evidence for the indispensable role of RCAD/Ufl1 in murine hematopoiesis and development. The finding of RCAD/Ufl1 as a key regulator of cellular stress response sheds a light into the role of a novel protein network including RCAD/Ufl1 and its associated proteins in regulating cellular homeostasis. PMID:25952549

  12. Allosteric Interactions by p53 mRNA Govern HDM2 E3 Ubiquitin Ligase Specificity under Different Conditions.

    PubMed

    Medina-Medina, Ixaura; García-Beltrán, Paola; de la Mora-de la Mora, Ignacio; Oria-Hernández, Jesús; Millot, Guy; Fahraeus, Robin; Reyes-Vivas, Horacio; Sampedro, José G; Olivares-Illana, Vanesa

    2016-08-15

    HDM2 and HDMX are key negative regulatory factors of the p53 tumor suppressor under normal conditions by promoting its degradation or preventing its trans activity, respectively. It has more recently been shown that both proteins can also act as positive regulators of p53 after DNA damage. This involves phosphorylation by ATM on serine residues HDM2(S395) and HDMX(S403), promoting their respective interaction with the p53 mRNA. However, the underlying molecular mechanisms of how these phosphorylation events switch HDM2 and HDMX from negative to positive regulators of p53 is not known. Our results show that these phosphorylation events reside within intrinsically disordered domains and change the conformation of the proteins. The modifications promote the exposition of N-terminal interfaces that support the formation of a new HDMX-HDM2 heterodimer independent of the C-terminal RING-RING interaction. The E3 ubiquitin ligase activity of this complex toward p53 is prevented by the p53 mRNA ligand but, interestingly, does not affect the capacity to ubiquitinate HDMX and HDM2. These results show how ATM-mediated modifications of HDMX and HDM2 switch HDM2 E3 ubiquitin ligase activity away from p53 but toward HDMX and itself and illustrate how the substrate specificity of HDM2 E3 ligase activity is regulated. PMID:27215386

  13. Azospirillum IV

    SciTech Connect

    Klingmuller, W.

    1988-01-01

    This book's contents include: Advances in the genetics of Azospirillum brasilense Sp7: Use of Tn5 mutagenesis for gene mapping and identification; Characterization of DNA segments adjacent to the nifHDK genes of Azospirillum brasilense by Sp7 Tn5 site-directed mutagenesis; Selection at the chemostat of Azospirillum brasilense Cd N/sub 2/-fixing at high O/sub 2/ pressure. Root hair deformation induced on maize and medicago by an Azospirillum transconjugant containing a Rhizobium meliloti nodulation region. Azospirilla are bacteria that live in association with the roots of many grain crops. Since these bacteria bind molecular nitrogen from the air and excrete plant growth substances, interest has focussed on their potential to increase crop yields.

  14. Characterization of three mycobacterial DinB (DNA polymerase IV) paralogs highlights DinB2 as naturally adept at ribonucleotide incorporation

    PubMed Central

    Ordonez, Heather; Uson, Maria Loressa; Shuman, Stewart

    2014-01-01

    This study unveils Mycobacterium smegmatis DinB2 as the founder of a clade of Y-family DNA polymerase that is naturally adept at incorporating ribonucleotides by virtue of a leucine in lieu of a canonical aromatic steric gate. DinB2 efficiently scavenges limiting dNTP and rNTP substrates in the presence of manganese. DinB2's sugar selectivity factor, gauged by rates of manganese-dependent dNMP versus rNMP addition, is 2.7- to 3.8-fold. DinB2 embeds ribonucleotides during DNA synthesis when rCTP and dCTP are at equimolar concentration. DinB2 can incorporate at least 16 consecutive ribonucleotides. In magnesium, DinB2 has a 26- to 78-fold lower affinity for rNTPs than dNTPs, but only a 2.6- to 6-fold differential in rates of deoxy versus ribo addition (kpol). Two other M. smegmatis Y-family polymerases, DinB1 and DinB3, are characterized here as template-dependent DNA polymerases that discriminate strongly against ribonucleotides, a property that, in the case of DinB1, correlates with its aromatic steric gate side chain. We speculate that the unique ability of DinB2 to utilize rNTPs might allow for DNA repair with a ‘ribo patch’ when dNTPs are limiting. Phylogenetic analysis reveals DinB2-like polymerases, with leucine, isoleucine or valine steric gates, in many taxa of the phylum Actinobacteria. PMID:25200080

  15. Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes.

    SciTech Connect

    Tsutakawa, Susan E.; Shin, David S.; Mol, Clifford D.; Izum, Tadahide; Arvai, Andrew S.; Mantha, Anil K.; Szczesny, Bartosz; Ivanov, Ivaylo N.; Hosfield, David J.; Maiti, Buddhadev; Pique, Mike E.; Frankel, Kenneth A.; Hitomi, Kenichi; Cunningham, Richard P.; Mitra, Sankar; Tainer, John A.

    2013-03-22

    Non-coding apurinic/apyrimidinic (AP) sites in DNA form spontaneously and as DNA base excision repair intermediates are the most common toxic and mutagenic in vivo DNA lesion. For repair, AP sites must be processed by 5' AP endonucleases in initial stages of base repair. Human APE1 and bacterial Nfo represent the two conserved 5' AP endonuclease families in the biosphere; they both recognize AP sites and incise the phosphodiester backbone 5' to the lesion, yet they lack similar structures and metal ion requirements. Here, we determined and analyzed crystal structures of a 2.4 ? resolution APE1-DNA product complex with Mg(2+) and a 0.92 Nfo with three metal ions. Structural and biochemical comparisons of these two evolutionarily distinct enzymes characterize key APE1 catalytic residues that are potentially functionally similar to Nfo active site components, as further tested and supported by computational analyses. We observe a magnesium-water cluster in the APE1 active site, with only Glu-96 forming the direct protein coordination to the Mg(2+). Despite differences in structure and metal requirements of APE1 and Nfo, comparison of their active site structures surprisingly reveals strong geometric conservation of the catalytic reaction, with APE1 catalytic side chains positioned analogously to Nfo metal positions, suggesting surprising functional equivalence between Nfo metal ions and APE1 residues. The finding that APE1 residues are positioned to substitute for Nfo metal ions is supported by the impact of mutations on activity. Collectively, the results illuminate the activities of residues, metal ions, and active site features for abasic site endonucleases.

  16. Ancient origin of animal U-box ubiquitin ligases

    PubMed Central

    2010-01-01

    Background The patterns of emergence and diversification of the families of ubiquitin ligases provide insights about the evolution of the eukaryotic ubiquitination system. U-box ubiquitin ligases (UULs) are proteins characterized by containing a peculiar protein domain known as U box. In this study, the origin of the animal UUL genes is described. Results Phylogenetic and structural data indicate that six of the seven main UUL-encoding genes found in humans (UBE4A, UBE4B, UIP5, PRP19, CHIP and CYC4) were already present in the ancestor of all current metazoans and the seventh (WDSUB1) is found in placozoans, cnidarians and bilaterians. The fact that only 4 - 5 genes orthologous to the human ones are present in the choanoflagellate Monosiga brevicollis suggests that several animal-specific cooptions of the U box to generate new genes occurred. Significantly, Monosiga contains five additional UUL genes that are not present in animals. One of them is also present in distantly-related protozoans. Along animal evolution, losses of UUL-encoding genes are rare, except in nematodes, which lack three of them. These general patterns are highly congruent with those found for other two families (RBR, HECT) of ubiquitin ligases. Conclusions Finding that the patterns of emergence, diversification and loss of three unrelated families of ubiquitin ligases (RBR, HECT and U-box) are parallel indicates that there are underlying, linage-specific evolutionary forces shaping the complexity of the animal ubiquitin system. PMID:20979629

  17. Nedd8 targets ubiquitin ligase Smurf2 for neddylation and promote its degradation.

    PubMed

    Shu, Jingyi; Liu, Chao; Wei, Rongfei; Xie, Ping; He, Shan; Zhang, Lingqiang

    2016-05-20

    E3 ubiquitin ligases are pivotal effectors of the ubiquitin-proteasome system as they determine the substrate specificity and transfer ubiquitin to the substrate. HECT-type ubiquitin ligase Smad ubiquitination regulatory factor 2 (Smurf2) has been demonstrated functions as a tumor suppressor. However, the mechanisms underlying regulation of Smurf2 is still unclear. Here we show that ubiquitin-like protein Nedd8 targets the HECT-type ubiquitin ligase Smurf2 for neddylation, and promotes Smurf2 degradation. Neddylation of Smurf1 activates its ubiquitin ligase activity and Smurf2 exerts Nedd8 ligase activity. This study provided new clues of Smurf2 activation regulation. PMID:27086113

  18. Ku recruits XLF to DNA double-strand breaks.

    PubMed

    Yano, Ken-ichi; Morotomi-Yano, Keiko; Wang, Shih-Ya; Uematsu, Naoya; Lee, Kyung-Jong; Asaithamby, Aroumougame; Weterings, Eric; Chen, David J

    2008-01-01

    XRCC4-like factor (XLF)--also known as Cernunnos--has recently been shown to be involved in non-homologous end-joining (NHEJ), which is the main pathway for the repair of DNA double-strand breaks (DSBs) in mammalian cells. XLF is likely to enhance NHEJ by stimulating XRCC4-ligase IV-mediated joining of DSBs. Here, we report mechanistic details of XLF recruitment to DSBs. Live cell imaging combined with laser micro-irradiation showed that XLF is an early responder to DSBs and that Ku is essential for XLF recruitment to DSBs. Biochemical analysis showed that Ku-XLF interaction occurs on DNA and that Ku stimulates XLF binding to DNA. Unexpectedly, XRCC4 is dispensable for XLF recruitment to DSBs, although photobleaching analysis showed that XRCC4 stabilizes the binding of XLF to DSBs. Our observations showed the direct involvement of XLF in the dynamic assembly of the NHEJ machinery and provide mechanistic insights into DSB recognition. PMID:18064046

  19. Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR.

    PubMed

    Winter, Melanie; Sombroek, Dirk; Dauth, Ilka; Moehlenbrink, Jutta; Scheuermann, Karin; Crone, Johanna; Hofmann, Thomas G

    2008-07-01

    The tumour suppressor HIPK2 is an important regulator of cell death induced by DNA damage, but how its activity is regulated remains largely unclear. Here we demonstrate that HIPK2 is an unstable protein that colocalizes and interacts with the E3 ubiquitin ligase Siah-1 in unstressed cells. Siah-1 knockdown increases HIPK2 stability and steady-state levels, whereas Siah-1 expression facilitates HIPK2 polyubiquitination, degradation and thereby inactivation. During recovery from sublethal DNA damage, HIPK2, which is stabilized on DNA damage, is degraded through a Siah-1-dependent, p53-controlled pathway. Downregulation of Siah-1 inhibits HIPK2 degradation and recovery from damage, driving the cells into apoptosis. We have also demonstrated that DNA damage triggers disruption of the HIPK2-Siah-1 complex, resulting in HIPK2 stabilization and activation. Disruption of the HIPK2-Siah-1 complex is mediated by the ATM/ATR pathway and involves ATM/ATR-dependent phosphorylation of Siah-1 at Ser 19. Our results provide a molecular framework for HIPK2 regulation in unstressed and damaged cells. PMID:18536714

  20. CRISPaint allows modular base-specific gene tagging using a ligase-4-dependent mechanism

    PubMed Central

    Schmid-Burgk, Jonathan L.; Höning, Klara; Ebert, Thomas S.; Hornung, Veit

    2016-01-01

    The site-specific insertion of heterologous genetic material into genomes provides a powerful means to study gene function. Here we describe a modular system entitled CRISPaint (CRISPR-assisted insertion tagging) that allows precise and efficient integration of large heterologous DNA cassettes into eukaryotic genomes. CRISPaint makes use of the CRISPR-Cas9 system to introduce a double-strand break (DSB) at a user-defined genomic location. A universal donor DNA, optionally provided as minicircle DNA, is cleaved simultaneously to be integrated at the genomic DSB, while processing the donor plasmid at three possible positions allows flexible reading-frame selection. Applying this system allows to create C-terminal tag fusions of endogenously encoded proteins in human cells with high efficiencies. Knocking out known DSB repair components reveals that site-specific insertion is completely dependent on canonical NHEJ (DNA-PKcs, XLF and ligase-4). A large repertoire of modular donor vectors renders CRISPaint compatible with a wide array of applications. PMID:27465542

  1. CRISPaint allows modular base-specific gene tagging using a ligase-4-dependent mechanism.

    PubMed

    Schmid-Burgk, Jonathan L; Höning, Klara; Ebert, Thomas S; Hornung, Veit

    2016-01-01

    The site-specific insertion of heterologous genetic material into genomes provides a powerful means to study gene function. Here we describe a modular system entitled CRISPaint (CRISPR-assisted insertion tagging) that allows precise and efficient integration of large heterologous DNA cassettes into eukaryotic genomes. CRISPaint makes use of the CRISPR-Cas9 system to introduce a double-strand break (DSB) at a user-defined genomic location. A universal donor DNA, optionally provided as minicircle DNA, is cleaved simultaneously to be integrated at the genomic DSB, while processing the donor plasmid at three possible positions allows flexible reading-frame selection. Applying this system allows to create C-terminal tag fusions of endogenously encoded proteins in human cells with high efficiencies. Knocking out known DSB repair components reveals that site-specific insertion is completely dependent on canonical NHEJ (DNA-PKcs, XLF and ligase-4). A large repertoire of modular donor vectors renders CRISPaint compatible with a wide array of applications. PMID:27465542

  2. Adenovirus-mediated downregulation of the ubiquitin ligase RNF8 sensitizes bladder cancer to radiotherapy

    PubMed Central

    Yang, Xu-Guang; Xie, Kun; Jing, Yu-Hong; Wang, De-Gui

    2016-01-01

    The ubiquitin ligase RNF8 promotes the DNA damage response (DDR). We observed that the expression of RNF8 was increased in bladder cancer cells and that this change in RNF8 expression could be reversed by adenovirus-mediated shRNA treatment. Moreover, we found that RNF8 knockdown sensitized bladder cancer cells to radiotherapy, as demonstrated by reduced cell survival. Additionally, the absence of RNF8 induced a high rate of apoptosis and impaired double-strand break repair signaling after radiotherapy. Furthermore, experiments on nude mice showed that combining shRNF8 treatment with radiotherapy suppressed implanted bladder tumor growth and enhanced apoptotic cell death in vivo. Altogether, our results indicated that RNF8 might be a novel target for bladder cancer treatment. PMID:26788910

  3. Detection of bovine leukocyte adhesion deficiency by nonisotopic ligase chain reaction.

    PubMed

    Batt, C A; Wagner, P; Wiedmann, M; Luo, J; Gilbert, R

    1994-04-01

    A nonisotopic ligase chain reaction (LCR) assay was developed to detect the mutation (D128G; Shuster et al. (1992) PNAS 89, 9225-9) for bovine leukocyte adhesion deficiency (BLAD). Two sets of diagonally opposed discriminating LCR primers that differentiate the normal and BLAD allele were designed so that the 3' end of each primer overlapped the D128G mutation. These discriminating primers were synthesized with a 5' biotin and could be captured using streptavidin-coated microtitre wells. A common set of primers that abut these discriminating primers were also synthesized and 3'-tailed with digoxigenin-ddUTP. Captured LCR products were then detected using antidigoxigenin antibodies coupled to alkaline phosphatase. The assay readout was a chemiluminescent signal generated by the hydrolysis of Lumi-Phos 530 and the entire assay including DNA isolation can be completed within 8 h. PMID:7912052

  4. 53BP1 mediates the fusion of mammalian telomeres rendered dysfunctional by DNA-PKcs loss or inhibition.

    PubMed

    Rybanska-Spaeder, Ivana; Ghosh, Rajib; Franco, Sonia

    2014-01-01

    Telomere dysfunction promotes genomic instability and carcinogenesis via inappropriate end-to-end chromosomal rearrangements, or telomere fusions. Previous work indicates that the DNA Damage Response (DDR) factor 53BP1 promotes the fusion of telomeres rendered dysfunctional by loss of TRF2, but is dispensable for the fusion of telomeres lacking Pot1 or critically shortened (in telomerase-deficient mice). Here, we examine a role for 53BP1 at telomeres rendered dysfunctional by loss or catalytic inhibition of DNA-PKcs. Using mouse embryonic fibroblasts lacking 53BP1 and/or DNA-PKcs, we show that 53BP1 deficiency suppresses G1-generated telomere fusions that normally accumulate in DNA-PKcs-deficient fibroblasts with passage. Likewise, we find that 53BP1 promotes telomere fusions during the replicative phases of the cell cycle in cells treated with the specific DNA-PKcs inhibitor NU7026. However, telomere fusions are not fully abrogated in DNA-PKcs-inhibited 53BP1-deficient cells, but occur with a frequency approximately 10-fold lower than in control 53BP1-proficient cells. Treatment with PARP inhibitors or PARP1 depletion abrogates residual fusions, while Ligase IV depletion has no measurable effect, suggesting that PARP1-dependent alternative end-joining operates at low efficiency at 53BP1-deficient, DNA-PKcs-inhibited telomeres. Finally, we have also examined the requirement for DDR factors ATM, MDC1 or H2AX in this context. We find that ATM loss or inhibition has no measurable effect on the frequency of NU7026-induced fusions in wild-type MEFs. Moreover, analysis of MEFs lacking both ATM and 53BP1 indicates that ATM is also dispensable for telomere fusions via PARP-dependent end-joining. In contrast, loss of either MDC1 or H2AX abrogates telomere fusions in response to DNA-PKcs inhibition, suggesting that these factors operate upstream of both 53BP1-dependent and -independent telomere rejoining. Together, these experiments define a novel requirement for 53BP1 in

  5. Akt-mediated Phosphorylation of XLF Impairs Non-homologous End Joining DNA Repair

    PubMed Central

    Liu, Pengda; Gan, Wenjian; Guo, Chunguang; Xie, Anyong; Gao, Daming; Guo, Jianping; Zhang, Jinfang; Willis, Nicholas; Su, Arthur; Asara, John M.; Scully, Ralph; Wei, Wenyi

    2015-01-01

    SUMMARY Deficiency in repair of damaged DNA leads to genomic instability and is closely associated with tumorigenesis. Most DNA double-strand-breaks (DSBs) are repaired by two major mechanisms, homologous-recombination (HR) and non-homologous-end-joining (NHEJ). Although Akt has been reported to suppress HR, its role in NHEJ remains elusive. Here, we report that Akt phosphorylates XLF at Thr181 to trigger its dissociation from the DNA ligase IV/XRCC4 complex, and promotes its interaction with 14-3-3β leading to XLF cytoplasmic retention, where cytosolic XLF is subsequently degraded by SCFβ-TRCP in a CKI-dependent manner. Physiologically, upon DNA damage, XLF-T181E expressing cells display impaired NHEJ and elevated cell death. Whereas a cancer-patient-derived XLF-R178Q mutant, deficient in XLF-T181 phosphorylation, exhibits an elevated tolerance of DNA damage. Together, our results reveal a pivotal role for Akt in suppressing NHEJ and highlight the tight connection between aberrant Akt hyper-activation and deficiency in timely DSB repair, leading to genomic instability and tumorigenesis. PMID:25661488

  6. Transcript profiling of jasmonate-elicited Taxus cells reveals a β-phenylalanine-CoA ligase.

    PubMed

    Ramírez-Estrada, Karla; Altabella, Teresa; Onrubia, Miriam; Moyano, Elisabeth; Notredame, Cedric; Osuna, Lidia; Vanden Bossche, Robin; Goossens, Alain; Cusido, Rosa M; Palazon, Javier

    2016-01-01

    Plant cell cultures constitute eco-friendly biotechnological platforms for the production of plant secondary metabolites with pharmacological activities, as well as a suitable system for extending our knowledge of secondary metabolism. Despite the high added value of taxol and the importance of taxanes as anticancer compounds, several aspects of their biosynthesis remain unknown. In this work, a genomewide expression analysis of jasmonate-elicited Taxus baccata cell cultures by complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) indicated a correlation between an extensive elicitor-induced genetic reprogramming and increased taxane production in the targeted cultures. Subsequent in silico analysis allowed us to identify 15 genes with a jasmonate-induced differential expression as putative candidates for genes encoding enzymes involved in five unknown steps of taxane biosynthesis. Among them, the TB768 gene showed a strong homology, including a very similar predicted 3D structure, with other genes previously reported to encode acyl-CoA ligases, thus suggesting a role in the formation of the taxol lateral chain. Functional analysis confirmed that the TB768 gene encodes an acyl-CoA ligase that localizes to the cytoplasm and is able to convert β-phenylalanine, as well as coumaric acid, into their respective derivative CoA esters. β-phenylalanyl-CoA is attached to baccatin III in one of the last steps of the taxol biosynthetic pathway. The identification of this gene will contribute to the establishment of sustainable taxol production systems through metabolic engineering or synthetic biology approaches. PMID:25899320

  7. Ring finger protein 146/Iduna is a Poly (ADP-ribose) polymer binding and PARsylation dependent E3 ubiquitin ligase

    PubMed Central

    Zhou, Zhi-dong; Chan, Christine Hui-shan; Xiao, Zhi-cheng

    2011-01-01

    Recent findings suggest that Ring finger protein 146 (RNF146), also called Iduna, have neuroprotective property due to its inhibition of Parthanatos via binding with Poly(ADP-ribose) (PAR). The Parthanatos is a PAR dependent cell death that has been implicated in many human diseases. RNF146/Iduna acts as a PARsylation-directed E3 ubquitin ligase to mediate tankyrase-dependent degradation of axin, thereby positively regulates Wnt signaling. RNF146/Iduna can also facilitate DNA repair and protect against cell death induced by DNA damaging agents or γ-irradiation. It can translocate to the nucleus after cellular injury and promote the ubiquitination and degradation of various nuclear proteins involved in DNA damage repair. The PARsylation-directed ubquitination mediated by RNF146/Iduna is analogous to the phosphorylation-directed ubquitination catalyzed by Skp1-Cul1-F-box (SCF) E3 ubiquitin complex. RNF146/Iduna has been found to be implicated in neurodegenerative disease and cancer development. Therefore modulation of the PAR-binding and PARsylation dependent E3 ligase activity of RNF146/Iduna could have therapeutic significance for diseases, in which PAR and PAR-binding proteins play key pathophysiologic roles. PMID:22274711

  8. Staphylococcus aureus β-Toxin Mutants Are Defective in Biofilm Ligase and Sphingomyelinase Activity, and Causation of Infective Endocarditis and Sepsis.

    PubMed

    Herrera, Alfa; Vu, Bao G; Stach, Christopher S; Merriman, Joseph A; Horswill, Alexander R; Salgado-Pabón, Wilmara; Schlievert, Patrick M

    2016-05-01

    β-Toxin is an important virulence factor of Staphylococcus aureus, contributing to colonization and development of disease [Salgado-Pabon, W., et al. (2014) J. Infect. Dis. 210, 784-792; Huseby, M. J., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 14407-14412; Katayama, Y., et al. (2013) J. Bacteriol. 195, 1194-1203]. This cytotoxin has two distinct mechanisms of action: sphingomyelinase activity and DNA biofilm ligase activity. However, the distinct mechanism that is most important for its role in infective endocarditis is unknown. We characterized the active site of β-toxin DNA biofilm ligase activity by examining deficiencies in site-directed mutants through in vitro DNA precipitation and biofilm formation assays. Possible conformational changes in mutant structure compared to that of wild-type toxin were assessed preliminarily by trypsin digestion analysis, retention of sphingomyelinase activity, and predicted structures based on the native toxin structure. We addressed the contribution of each mechanism of action to producing infective endocarditis and sepsis in vivo in a rabbit model. The H289N β-toxin mutant, lacking sphingomyelinase activity, exhibited lower sepsis lethality and infective endocarditis vegetation formation compared to those of the wild-type toxin. β-Toxin mutants with disrupted biofilm ligase activity did not exhibit decreased sepsis lethality but were deficient in infective endocarditis vegetation formation compared to the wild-type protein. Our study begins to characterize the DNA biofilm ligase active site of β-toxin and suggests β-toxin functions importantly in infective endocarditis through both of its mechanisms of action. PMID:27015018

  9. Transcription factor single-minded 2 (SIM2) is ubiquitinated by the RING-IBR-RING-type E3 ubiquitin ligases.

    PubMed

    Okui, Michiyo; Yamaki, Akiko; Takayanagi, Atsushi; Kudoh, Jun; Shimizu, Nobuyoshi; Shimizu, Yoshiko

    2005-09-10

    Human single-minded 2 (SIM2) is a member of the basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) family of transcription factors and is associated with the etiology of Down syndrome phenotype. Here, we examined a possibility of the post-translational modification of SIM2 protein by transfecting various expression constructs followed by the analysis with immunoprecipitation and Western blotting. In fact, transient expression of SIM2 cDNA in HEK293 cells revealed poly-ubiquitination of SIM2 protein. In the stable transfectants, a proteasome inhibitor MG132 protected the poly-ubiquitinated SIM2 protein from degradation. Furthermore, in the cells co-transfected with SIM2 and each of four different E3 ubiquitin ligases, SIM2 was immunoprecipitated with the RING-IBR-RING-type E3 ubiquitin ligases, Parkin and HHARI, but it was not immunoprecipitated with other E3 ligases, such as one RING-type Siah-1 and the PHD type AIRE. A series of deletion constructs revealed that Parkin actually binds to SIM2 with the IBR (294-377)-RING2 (378-465) domains and that the sites for poly-ubiquitination of SIM2 reside within the PAS1-PAS2 region (aa 141-289). We postulated that transcription factor SIM2 and E3 ubiquitin ligase Parkin may interact each other to play an important physiological role in the brain development which is controlled by ubiquitination. PMID:15963499

  10. TRF2/RAP1 and DNA-PK mediate a double protection against joining at telomeric ends.

    PubMed

    Bombarde, Oriane; Boby, Céline; Gomez, Dennis; Frit, Philippe; Giraud-Panis, Marie-Josèphe; Gilson, Eric; Salles, Bernard; Calsou, Patrick

    2010-05-01

    DNA-dependent protein kinase (DNA-PK) is a double-strand breaks repair complex, the subunits of which (KU and DNA-PKcs) are paradoxically present at mammalian telomeres. Telomere fusion has been reported in cells lacking these proteins, raising two questions: how is DNA-PK prevented from initiating classical ligase IV (LIG4)-dependent non-homologous end-joining (C-NHEJ) at telomeres and how is the backup end-joining (EJ) activity (B-NHEJ) that operates at telomeres under conditions of C-NHEJ deficiency controlled? To address these questions, we have investigated EJ using plasmid substrates bearing double-stranded telomeric tracks and human cell extracts with variable C-NHEJ or B-NHEJ activity. We found that (1) TRF2/RAP1 prevents C-NHEJ-mediated end fusion at the initial DNA-PK end binding and activation step and (2) DNA-PK counteracts a potent LIG4-independent EJ mechanism. Thus, telomeres are protected against EJ by a lock with two bolts. These results account for observations with mammalian models and underline the importance of alternative non-classical EJ pathways for telomere fusions in cells. PMID:20407424

  11. NIRF, a Novel Ubiquitin Ligase, Inhibits Hepatitis B Virus Replication Through Effect on HBV Core Protein and H3 Histones.

    PubMed

    Qian, Guanhua; Hu, Bin; Zhou, Danlin; Xuan, Yanyan; Bai, Lu; Duan, Changzhu

    2015-05-01

    Np95/ICBP90-like RING finger protein (NIRF), a novel E3 ubiquitin ligase, has been shown to interact with HBc and promote its degradation. This study investigated the effects of NIRF on replication of hepatitis B virus (HBV) and the mechanisms. We have shown that NIRF inhibits replication of HBV DNA and secretion of HBsAg and HBeAg in HepG2 cells transfected with pAAV-HBV1.3. NIRF also inhibits the replication and secretion of HBV in a mouse model that expressed HBV. NIRF reduces acetylation of HBV cccDNA-bound H3 histones. These results showed that NIRF is involved in the HBV replication cycle not only through direct interaction with HBc but also reduces acetylation of HBV cccDNA-bound H3 histones. PMID:25664994

  12. Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans.

    PubMed

    Lieber, Michael R; Gu, Jiafeng; Lu, Haihui; Shimazaki, Noriko; Tsai, Albert G

    2010-01-01

    Double-strand breaks (DSBs) arise in dividing cells about ten times per cell per day. Causes include replication across a nick, free radicals of oxidative metabolism, ionizing radiation, and inadvertent action by enzymes of DNA metabolism (such as failures of type II topoisomerases or cleavage by recombinases at off-target sites). There are two major double-strand break repair pathways. Homologous recombination (HR) can repair double-strand breaks, but only during S phase and typically only if there are hundreds of base pairs of homology. The more commonly used pathway is nonhomologous DNA end joining, abbreviated NHEJ. NHEJ can repair a DSB at any time during the cell cycle and does not require any homology, although a few nucleotides of terminal microhomology are often utilized by the NHEJ enzymes, if present. The proteins and enzymes of NHEJ include Ku, DNA-PKcs, Artemis, DNA polymerase mu (Pol micro), DNA polymerase lambda (Pol lambda), XLF (also called Cernunnos), XRCC4, and DNA ligase IV. These enzymes constitute what some call the classical NHEJ pathway, and in wild type cells, the vast majority of joining events appear to proceed using these components. NHEJ is present in many prokaryotes, as well as all eukaryotes, and very similar mechanistic flexibility evolved both convergently and divergently. When two double-strand breaks occur on different chromosomes, then the rejoining is almost always done by NHEJ. The causes of DSBs in lymphomas most often involve the RAG or AID enzymes that function in the specialized processes of antigen receptor gene rearrangement. PMID:20012587

  13. h-Goliath, paralog of GRAIL, is a new E3 ligase protein, expressed in human leukocytes.

    PubMed

    Guais, Adeline; Siegrist, Sylvie; Solhonne, Brigitte; Jouault, Hélène; Guellaën, Georges; Bulle, Frédérique

    2006-06-01

    In Drosophila, the RING finger protein d-Goliath was originally identified as a transcription factor involved in the embryo mesoderm formation [Bouchard, M.L., Cote, S., 1993. The Drosophila melanogaster developmental gene g1 encodes a variant zinc-finger-motif protein. Gene 125, 205-209]. In mouse, the m-Goliath mRNA level was shown to be increased in growth factor withdrawal-induced apoptosis of myeloid cells [Baker, S.J., Reddy, E.P., 2000. Cloning of murine G1RP, a novel gene related to Drosophila melanogaster g1. Gene 248, 33-40]. Due to its putative function of transcription factor in apoptosis, we cloned the human cDNA for h-Goliath and characterized the expression of the protein in blood and bone marrow cells. The human protein of 419 aa (44 kDa) contains a protease-associated domain, a transmembrane domain and a RING-H2 motif. This structure classifies h-Goliath as a new member of a human family of ubiquitin ligases with GRAIL (gene related to anergy in lymphocytes) as founder. This E3 ligase controls the development of T cell clonal anergy by ubiquitination [Anandasabapathy, N., Ford, G.S., Bloom, D., Holness, C., Paragas, V., Seroogy, C., Skrenta, H., Hollenhorst, M., Fathman, C.G., Soares, L., 2003. GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. Immunity 18, 535-547]. In vitro ubiquitination studies support the E3 ubiquitin ligase activity of h-Goliath. In human, the protein is expressed under 3 isoforms, a major one at 28 kDa and two others at 46 and 55 kDa. These proteins come from a common precursor (44 kDa) as we observed using in vitro transcription-translation. Using immunohistochemistry on blood or bone marrow smears, of healthy or leukemia samples, we found that the protein expression was restricted to the cytoplasm of progenitors and fully differentiated leukocyte populations. We did not observe any modification of h-Goliath expression or localization in leukemia. In these cells

  14. Aprataxin resolves adenylated RNA–DNA junctions to maintain genome integrity

    SciTech Connect

    Tumbale, Percy; Williams, Jessica S.; Schellenberg, Matthew J.; Kunkel, Thomas A.; Williams, R. Scott

    2013-12-22

    Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions used by ATP-dependent DNA ligases. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5'-adenylated (5'-AMP) DNA lesions. Aprataxin (APTX) reverses DNA adenylation but the context for deadenylation repair is unclear. Here we examine the importance of APTX to RNase-H2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5' ends containing a ribose characteristic of RNase H2 incision. APTX efficiently repairs adenylated RNA–DNA, and acting in an RNA–DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure–function studies of human APTX–RNA–DNA–AMP–Zn complexes define a mechanism for detecting and reversing adenylation at RNA–DNA junctions. This involves A-form RNA binding, proper protein folding and conformational changes, all of which are affected by heritable APTX mutations in ataxia with oculomotor apraxia 1. Together, these results indicate that accumulation of adenylated RNA–DNA may contribute to neurological disease.

  15. DNA damage induced by industrial solid waste leachates in Drosophila melanogaster: a mechanistic approach.

    PubMed

    Siddique, Hifzur R; Sharma, Anurag; Gupta, Subash C; Murthy, Ramesh C; Dhawan, Alok; Saxena, Daya K; Chowdhuri, Debapratim K

    2008-04-01

    Genomic stability requires that error-free genetic information be transmitted from generation to generation, a process that is dependent upon efficient DNA repair. Industrial leachates which contain mixtures of diverse chemicals are a major environmental concern. The interaction between these chemicals may have synergistic, antagonistic, or simply additive effects on biological systems. In the present study, the Comet assay was used to measure the DNA damage produced by leachates of solid wastes from flashlight battery, pigment, and tanning factories in the midgut cells and brain ganglia of Drosophila melanogaster mutants deficient in DNA repair proteins. Larvae were allowed to feed for 48 or 72 hr on diets containing 0.1, 0.5, and 2.0% (v/v) of the leachates. Physicochemical analysis run on the solid wastes, leachates, and treated larvae detected elevated levels of heavy metals. Leachates produced significantly greater levels of DNA damage in mutant strains mei41 (deficient in cell cycle check point protein), mus201 (deficient in excision repair protein), mus308 (deficient in postreplication repair protein), and rad54 (deficient in double strand break repair protein) than in the OregonR(+) wild-type strain. Larvae of the ligaseIV mutant (deficient in double strand break repair protein) were hypersensitive only to the pigment plant waste leachate. Conversely, the dnase2 mutant (deficient in protein responsible for degrading fragmented DNA) was more sensitive to DNA damage induction from the flashlight battery and tannery waste leachates. Our data demonstrate that repair of DNA damage in organisms exposed to leachates is dependent upon several DNA repair proteins, indicative of the involvement of multiple overlapping repair pathways. The study further suggests the usefulness of the Comet assay for studying the mechanisms of DNA repair in Drosophila. PMID:18240159

  16. Cinnamate:CoA Ligase Initiates the Biosynthesis of a Benzoate-Derived Xanthone Phytoalexin in Hypericum calycinum Cell Cultures1[W][OA

    PubMed Central

    Gaid, Mariam M.; Sircar, Debabrata; Müller, Andreas; Beuerle, Till; Liu, Benye; Ernst, Ludger; Hänsch, Robert; Beerhues, Ludger

    2012-01-01

    Although a number of plant natural products are derived from benzoic acid, the biosynthesis of this structurally simple precursor is poorly understood. Hypericum calycinum cell cultures accumulate a benzoic acid-derived xanthone phytoalexin, hyperxanthone E, in response to elicitor treatment. Using a subtracted complementary DNA (cDNA) library and sequence information about conserved coenzyme A (CoA) ligase motifs, a cDNA encoding cinnamate:CoA ligase (CNL) was isolated. This enzyme channels metabolic flux from the general phenylpropanoid pathway into benzenoid metabolism. HcCNL preferred cinnamic acid as a substrate but failed to activate benzoic acid. Enzyme activity was strictly dependent on the presence of Mg2+ and K+ at optimum concentrations of 2.5 and 100 mm, respectively. Coordinated increases in the Phe ammonia-lyase and HcCNL transcript levels preceded the accumulation of hyperxanthone E in cell cultures of H. calycinum after the addition of the elicitor. HcCNL contained a carboxyl-terminal type 1 peroxisomal targeting signal made up by the tripeptide Ser-Arg-Leu, which directed an amino-terminal reporter fusion to the peroxisomes. Masking the targeting signal by carboxyl-terminal reporter fusion led to cytoplasmic localization. A phylogenetic tree consisted of two evolutionarily distinct clusters. One cluster was formed by CoA ligases related to benzenoid metabolism, including HcCNL. The other cluster comprised 4-coumarate:CoA ligases from spermatophytes, ferns, and mosses, indicating divergence of the two clades prior to the divergence of the higher plant lineages. PMID:22992510

  17. MECHANISM OF CHEMICAL MUTAGENESIS IV.

    PubMed Central

    Lorkiewicz, Z.; Szybalski, Waclaw

    1961-01-01

    Lorkiewicz, Z. (University of Wisconsin, Madison), and Waclaw Szybalski. Mechanism of chemical mutagenesis. IV. Reaction between triethylene melamine and nucleic acid components. J. Bacteriol. 82: 195–201. 1961.—Triethylene melamine interacts primarily with phosphorylated intracellular deoxyribonucleic acid (DNA) precursors and not with DNA. It was found by direct chemical and chromatographic analysis that only pyrimidine precursors of nucleic acids are attacked by triethylene melamine. In the course of the triethylene melamine-deoxycytidine reaction the mutagenicity of the reaction mixture is lost, but the mutagenicity of the triethylene melamine-thymidine reaction products significantly increases above that of the reaction substrates. Several steps are postulated to explain the mechanism of the triethylene melamine-initiated mutagenic reaction: (i) Reaction I, semireversible uptake of triethylene melamine; (ii) reaction II, chemical interaction between triethylene melamine and intracellular thymidine mono- or triphosphate with the production of a functional analogue of the latter; (iii) incorporation of this fraudulent analogue into the newly formed DNA strand; (iv) occurrence of self-perpetuating errors in the sequence of natural bases during subsequent rounds of replication of the analogue-containing DNA strand. It is postulated that the mechanism of mutagenic responses to different types of mutagens can fit either a simplified (mutagenic base analogues) or extended version (radiation) of this schema. PMID:16561917

  18. Kinetic framework for ligation by an efficient RNA ligase ribozyme.

    PubMed

    Bergman, N H; Johnston, W K; Bartel, D P

    2000-03-21

    The class I RNA ligase ribozyme, isolated previously from random sequences, performs an efficient RNA ligation reaction. It ligates two substrate RNAs, promoting the attack of the 3'-hydroxyl of one substrate upon the 5'-triphosphate of the other substrate with release of pyrophosphate. This ligation reaction has similarities to the reaction catalyzed by RNA polymerases. Using data from steady-state kinetic measurements and pulse-chase/pH-jump experiments, we have constructed minimal kinetic frameworks for two versions of the class I ligase, named 207t and 210t. For both ligases, as well as for the self-ligating parent ribozyme, the rate constant for the chemical step (k(c)) is log-linear with pH in the range 5.7-8.0. At physiological pH, the k(c) is 100 min(-1), a value similar to those reported for the fastest naturally occurring ribozymes. At higher pH, product release is limiting for both 207t and 210t. The 210t ribozyme, with its faster product release, attains multiple-turnover rates (k(cat) = 360 min(-1), pH 9.0) exceeding those of 207t and other reported ribozyme reactions. The kinetic framework for the 210t ribozyme describes the limits of this catalysis and suggests how key steps can be targeted for improvement using design or combinatorial approaches. PMID:10715133

  19. Cullin E3 Ligases and Their Rewiring by Viral Factors

    PubMed Central

    Mahon, Cathal; Krogan, Nevan J.; Craik, Charles S.; Pick, Elah

    2014-01-01

    The ability of viruses to subvert host pathways is central in disease pathogenesis. Over the past decade, a critical role for the Ubiquitin Proteasome System (UPS) in counteracting host immune factors during viral infection has emerged. This counteraction is commonly achieved by the expression of viral proteins capable of sequestering host ubiquitin E3 ligases and their regulators. In particular, many viruses hijack members of the Cullin-RING E3 Ligase (CRL) family. Viruses interact in many ways with CRLs in order to impact their ligase activity; one key recurring interaction involves re-directing CRL complexes to degrade host targets that are otherwise not degraded within host cells. Removal of host immune factors by this mechanism creates a more amenable cellular environment for viral propagation. To date, a small number of target host factors have been identified, many of which are degraded via a CRL-proteasome pathway. Substantial effort within the field is ongoing to uncover the identities of further host proteins targeted in this fashion and the underlying mechanisms driving their turnover by the UPS. Elucidation of these targets and mechanisms will provide appealing anti-viral therapeutic opportunities. This review is focused on the many methods used by viruses to perturb host CRLs, focusing on substrate sequestration and viral regulation of E3 activity. PMID:25314029

  20. Reprint of "The clinical impact of deficiency in DNA non-homologous end-joining".

    PubMed

    Woodbine, Lisa; Gennery, Andrew R; Jeggo, Penny A

    2014-05-01

    DNA non-homologous end-joining (NHEJ) is the major DNA double strand break (DSB) repair pathway in mammalian cells. Defects in NHEJ proteins confer marked radiosensitivity in cell lines and mice models, since radiation potently induces DSBs. The process of V(D)J recombination functions during the development of the immune response, and involves the introduction and rejoining of programmed DSBs to generate an array of diverse T and B cells. NHEJ rejoins these programmed DSBs. Consequently, NHEJ deficiency confers (severe) combined immunodeficiency - (S)CID - due to a failure to carry out V(D)J recombination efficiently. NHEJ also functions in class switch recombination, another step enhancing T and B cell diversity. Prompted by these findings, a search for radiosensitivity amongst (S)CID patients revealed a radiosensitive sub-class, defined as RS-SCID. Mutations in NHEJ genes, defining human syndromes deficient in DNA ligase IV (LIG4 Syndrome), XLF-Cernunnos, Artemis or DNA-PKcs, have been identified in such patients. Mutations in XRCC4 or Ku70,80 in patients have not been identified. RS-SCID patients frequently display additional characteristics including microcephaly, dysmorphic facial features and growth delay. Here, we overview the clinical spectrum of RS-SCID patients and discuss our current understanding of the underlying biology. PMID:24780557

  1. Primary immunodeficiency syndromes associated with defective DNA double-strand break repair.

    PubMed

    Gennery, A R

    2006-01-01

    Damaging DNA double-strand breaks (DNA-DSBs) following ionizing radiation (IR) exposure, potentially lead to cell death or carcinogenesis. Non-homologous end-joining (NHEJ) is the main repair pathway employed by vertebrate cells to repair such damage. Many repair pathway proteins have been identified. The creation of many diverse lymphocyte receptors to identify potential pathogens has evolved by breaking and randomly re-sorting the gene segments coding for antigen receptors. Subsequent DNA-DSB repair utilizes the NHEJ proteins. Individuals with defective repair pathways are increasingly recognized with radiosensitivity and immunodeficiency. Patients with defects in ataxia-telangiectasia mutated, nibrin, MRE11, Rad50, Artemis, DNA ligase IV and Cernunnos-XRCC4-like factor have been identified. Most exhibit immunodeficiency, with a spectrum of presentation and overlap between conditions. Conventional treatment with immunoglobulin replacement or haematopoietic stem cell transplantation (HSCT) can be effective. A greater understanding of the molecular defect will enable better, tailored therapies to improve survival. PMID:16971555

  2. The clinical impact of deficiency in DNA non-homologous end-joining.

    PubMed

    Woodbine, Lisa; Gennery, Andrew R; Jeggo, Penny A

    2014-04-01

    DNA non-homologous end-joining (NHEJ) is the major DNA double strand break (DSB) repair pathway in mammalian cells. Defects in NHEJ proteins confer marked radiosensitivity in cell lines and mice models, since radiation potently induces DSBs. The process of V(D)J recombination functions during the development of the immune response, and involves the introduction and rejoining of programmed DSBs to generate an array of diverse T and B cells. NHEJ rejoins these programmed DSBs. Consequently, NHEJ deficiency confers (severe) combined immunodeficiency - (S)CID - due to a failure to carry out V(D)J recombination efficiently. NHEJ also functions in class switch recombination, another step enhancing T and B cell diversity. Prompted by these findings, a search for radiosensitivity amongst (S)CID patients revealed a radiosensitive sub-class, defined as RS-SCID. Mutations in NHEJ genes, defining human syndromes deficient in DNA ligase IV (LIG4 Syndrome), XLF-Cernunnos, Artemis or DNA-PKcs, have been identified in such patients. Mutations in XRCC4 or Ku70,80 in patients have not been identified. RS-SCID patients frequently display additional characteristics including microcephaly, dysmorphic facial features and growth delay. Here, we overview the clinical spectrum of RS-SCID patients and discuss our current understanding of the underlying biology. PMID:24629483

  3. Studying DNA Looping by Single-Molecule FRET

    PubMed Central

    Le, Tung T.; Kim, Harold D.

    2014-01-01

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA. PMID:24998459

  4. AUTOUBIQUITINATION OF BCA2 RING E3 LIGASE REGULATES ITS OWN STABILITY AND AFFECTS CELL MIGRATION

    PubMed Central

    Amemiya, Yutaka; Azmi, Peter; Seth, Arun

    2009-01-01

    Accumulating evidence suggests that ubiquitination plays a role in cancer by changing the function of key cellular proteins. Previously, we isolated BCA2 gene from a library enriched for breast tumor mRNAs. The BCA2 protein is a RING type E3 ubiquitin ligase and is overexpressed in human breast tumors. In order to deduce the biochemical and biological function of BCA2, we searched for BCA2 binding partners using human breast and fetal brain cDNA libraries and BacterioMatch two-hybrid system. We identified 62 interacting partners, majority of those were found to encode ubiquitin precursor proteins including ubiquitin C and ubiquitinA-52. Using several deletion and point mutants, we found that the BCA2 zinc finger (BZF) domain at the N-terminus specifically binds ubiquitin and ubiquitinated proteins. The autoubiquitination activity of BCA2, RING-H2 mutant, BZF mutant, and various lysine mutants of BCA2 were investigated. Our results indicate that the BCA2 protein is strongly ubiquitinated and no ubiquitination is detected with the BCA2 RING-H2 mutant, indicating that the RING domain is essential for autoubiquitination. Mutation of the K26 and K32 lysines in the BZF domain also abrogated autoubiquitination activity. Interestingly, mutation of the K232 and K260 lysines in and near the RING domain resulted in an increase in autoubiquitination activity. Additionally, in cellular migration assays, BCA2 mutants showed altered cell motility compared to wild-type BCA2. On the basis of these findings, we propose that BCA2 maybe an important factor regulating breast cancer cell migration/metastasis. We put-forward a novel model for BCA2 E3 ligase mediated cell regulation. PMID:18819927

  5. Allosteric Activation of the RNF146 Ubiquitin Ligase by a Poly(ADP-ribosyl)ation Signal

    PubMed Central

    DaRosa, Paul A.; Wang, Zhizhi; Jiang, Xiaomo; Pruneda, Jonathan N.; Cong, Feng; Klevit, Rachel E.; Xu, Wenqing

    2014-01-01

    Protein poly(ADP-ribosyl)ation (PARylation) plays a role in diverse cellular processes such as DNA repair, transcription, Wnt signaling, and cell death1–6. Recent studies have shown that PARylation can serve as a signal for the polyubiquitination and degradation of several critical regulatory proteins, including Axin and 3BP2 (refs 7–9). The RING-type E3 ubiquitin ligase RNF146 (a.k.a. Iduna) is responsible for PARylation-dependent ubiquitination (PARdU)10–12. Here we provide a structural basis for RNF146 catalyzed PARdU and how PARdU specificity is achieved. First, we show that iso-ADPr, the smallest internal poly(ADP-ribose) (PAR) structural unit, binds between the WWE and RING domains of RNF146 and functions as an allosteric signal that switches the RING domain from a catalytically inactive state to an active one. In the absence of PAR, the RING domain is unable to efficiently bind and activate an E2. Binding of PAR/iso-ADPr induces a major conformational change that creates a functional RING structure. Thus RNF146 represents a new mechanistic class of RING E3 ligases whose activities are regulated by non-covalent ligand binding, which may provide a template for designing inducible protein-degradation systems. Second, we found that RNF146 directly interacts with the PAR polymerase tankyrase (TNKS). Disruption of the RNF146/TNKS interaction inhibits turnover of the substrate Axin in cells. Thus, both substrate PARylation and PARdU are catalyzed by enzymes within the same protein complex, and PARdU substrate specificity may be primarily determined by the substrate-TNKS interaction. We propose that maintenance of unliganded RNF146 in an inactive state may serve to maintain the stability of the RNF146-TNKS complex, which in turn regulates the homeostasis of PARdU activity in the cell. PMID:25327252

  6. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Can Mimic E1A Effects on E2F.

    PubMed

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G Eric; Dobner, Thomas; Branton, Philip E; Blanchette, Paola

    2016-01-01

    The human adenovirus E4orf6/E1B55K E3 ubiquitin ligase is well known to promote viral replication by degrading an increasing number of cellular proteins that inhibit the efficient production of viral progeny. We report here a new function of the adenovirus 5 (Ad5) viral ligase complex that, although at lower levels, mimics effects of E1A products on E2F transcription factors. When expressed in the absence of E1A, the E4orf6 protein in complex with E1B55K binds E2F, disrupts E2F/retinoblastoma protein (Rb) complexes, and induces hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis as well as stimulation of early and late viral gene expression and production of viral progeny of E1/E3-defective adenovirus vectors. These new and previously undescribed functions of the E4orf6/E1B55K E3 ubiquitin ligase could play an important role in promoting the replication of wild-type viruses. IMPORTANCE During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication. PMID:27303679

  7. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Can Mimic E1A Effects on E2F

    PubMed Central

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G. Eric; Dobner, Thomas; Branton, Philip E.

    2015-01-01

    ABSTRACT The human adenovirus E4orf6/E1B55K E3 ubiquitin ligase is well known to promote viral replication by degrading an increasing number of cellular proteins that inhibit the efficient production of viral progeny. We report here a new function of the adenovirus 5 (Ad5) viral ligase complex that, although at lower levels, mimics effects of E1A products on E2F transcription factors. When expressed in the absence of E1A, the E4orf6 protein in complex with E1B55K binds E2F, disrupts E2F/retinoblastoma protein (Rb) complexes, and induces hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis as well as stimulation of early and late viral gene expression and production of viral progeny of E1/E3-defective adenovirus vectors. These new and previously undescribed functions of the E4orf6/E1B55K E3 ubiquitin ligase could play an important role in promoting the replication of wild-type viruses. IMPORTANCE During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication. PMID:27303679

  8. Intelligent Virtual Station (IVS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.

  9. Ubiquitylation of Rad51d Mediated by E3 Ligase Rnf138 Promotes the Homologous Recombination Repair Pathway

    PubMed Central

    Han, Deqiang; Liang, Junbo; Lu, Yalan; Xu, Longchang; Miao, Shiying; Lu, Lin-Yu; Song, Wei; Wang, Linfang

    2016-01-01

    Ubiquitylation has an important role as a signal transducer that regulates protein function, subcellular localization, or stability during the DNA damage response. In this study, we show that Ring domain E3 ubiquitin ligases RNF138 is recruited to DNA damage site quickly. And the recruitment is mediated through its Zinc finger domains. We further confirm that RNF138 is phosphorylated by ATM at Ser124. However, the phosphorylation was dispensable for recruitment to the DNA damage site. Our findings also indicate that RAD51 assembly at DSB sites following irradiation is dramatically affected in RNF138-deficient cells. Hence, RNF138 is likely involved in regulating homologous recombination repair pathway. Consistently, efficiency of homologous recombination decreased observably in RNF138-depleted cells. In addition, RNF138-deficient cell is hypersensitive to DNA damage insults, such as IR and MMS. And the comet assay confirmed that RNF138 directly participated in DNA damage repair. Moreover, we find that RAD51D directly interacted with RNF138. And the recruitment of RAD51D to DNA damage site is delayed and unstable in RNF138-depleted cells. Taken together, these results suggest that RNF138 promotes the homologous recombination repair pathway. PMID:27195665

  10. Ovarian Cancer Stage IV

    MedlinePlus

    ... hyphen, e.g. -historical Searches are case-insensitive Ovarian Cancer Stage IV Add to My Pictures View /Download : ... 1200x1335 View Download Large: 2400x2670 View Download Title: Ovarian Cancer Stage IV Description: Drawing of stage IV shows ...

  11. Transcription Factor hDREF Is a Novel SUMO E3 Ligase of Mi2α.

    PubMed

    Yamashita, Daisuke; Moriuchi, Takanobu; Osumi, Takashi; Hirose, Fumiko

    2016-05-27

    The human transcription factor DNA replication-related element-binding factor (hDREF) is essential for the transcription of a number of housekeeping genes. The mechanisms underlying constitutively active transcription by hDREF were unclear. Here, we provide evidence that hDREF possesses small ubiquitin-like modifier (SUMO) ligase activity and can specifically SUMOylate Mi2α, an ATP-dependent DNA helicase in the nucleosome remodeling and deacetylation complex. Moreover, immunofluorescent staining and biochemical analyses showed that coexpression of hDREF and SUMO-1 resulted in dissociation of Mi2α from chromatin, whereas a SUMOylation-defective Mi2α mutant remained tightly bound to chromatin. Chromatin immunoprecipitation and quantitative RT-PCR analysis demonstrated that Mi2α expression diminished transcription of the ribosomal protein genes, which are positively regulated by hDREF. In contrast, coexpression of hDREF and SUMO-1 suppressed the transcriptional repression by Mi2α. These data indicate that hDREF might incite transcriptional activation by SUMOylating Mi2α, resulting in the dissociation of Mi2α from the gene loci. We propose a novel mechanism for maintaining constitutively active states of a number of hDREF target genes through SUMOylation. PMID:27068747

  12. SUMO-targeted ubiquitin ligase RNF4 plays a critical role in preventing chromosome loss.

    PubMed

    Hirota, Kouji; Tsuda, Masataka; Murai, Junko; Takagi, Tokiyo; Keka, Islam Shamima; Narita, Takeo; Fujita, Mari; Sasanuma, Hiroyuki; Kobayashi, Junya; Takeda, Shunichi

    2014-10-01

    RING finger protein 4 (RNF4) represents a subclass of ubiquitin ligases that target proteins modified by the small ubiquitin-like modifier (SUMO) for ubiquitin-mediated degradation. We disrupted the RNF4 gene in chicken DT40 cells and found that the resulting RNF4(-/-) cells gradually lost proliferation capability. Strikingly, this compromised proliferation was associated with an unprecedented cellular effect: the gradual decrease in the number of intact chromosomes. In the 6 weeks after gene targeting, there was a 25% reduction in the DNA content of the RNF4(-/-) cells. Regarding trisomic chromosome 2, 60% of the RNF4(-/-) cells lost one homologue, suggesting that DNA loss was mediated by whole chromosome loss. To determine the cause of this chromosome loss, we examined cell-cycle checkpoint pathways. RNF4(-/-) cells showed a partial defect in the spindle assembly checkpoint, premature dissociation of sister chromatids, and a marked increase in the number of lagging chromosomes at anaphase. Thus, combined defects in SAC and sister chromatid cohesion may result in increased lagging chromosomes, leading to chromosome loss without accompanying chromosome gain in RNF4(-/-) cells. We therefore propose that RNF4 plays a novel role in preventing the loss of intact chromosomes and ensures the maintenance of chromosome integrity. PMID:25205350

  13. Radiosensitization by PARP Inhibition in DNA Repair Proficient and Deficient Tumor Cells: Proliferative Recovery in Senescent Cells.

    PubMed

    Alotaibi, Moureq; Sharma, Khushboo; Saleh, Tareq; Povirk, Lawrence F; Hendrickson, Eric A; Gewirtz, David A

    2016-03-01

    Radiotherapy continues to be a primary modality in the treatment of cancer. In addition to promoting apoptosis, radiation-induced DNA damage can promote autophagy and senescence, both of which can theoretically function to prolong tumor survival. In this work, we tested the hypothesis that autophagy and/or senescence could be permissive for DNA repair, thereby facilitating tumor cell recovery from radiation-induced growth arrest and/or cell death. In addition, studies were designed to elucidate the involvement of autophagy and senescence in radiosensitization by PARP inhibitors and the re-emergence of a proliferating tumor cell population. In the context of this work, the relationship between radiation-induced autophagy and senescence was also determined. Studies were performed using DNA repair-proficient HCT116 colon carcinoma cells and a repair-deficient ligase IV(-/-) isogenic cell line. Exposure to radiation promoted a parallel induction of autophagy and senescence that was strongly correlated with the extent of persistent H2AX phosphorylation in both cell lines, however, inhibition of autophagy failed to suppress senescence, indicating that the two responses were dissociable. Exposure to radiation resulted in a transient arrest in the HCT116 cells while arrest was prolonged in the ligase IV(-/-) cells, however, both cell lines ultimately recovered proliferative function, which may reflect maintenance of DNA repair capacity. The PARP inhibitors, olaparib and niraparib, increased the extent of persistent DNA damage induced by radiation exposure as well as the extent of both autophagy and senescence. Neither cell line underwent significant apoptosis by radiation exposure alone or in the presence of the PARP inhibitors. Inhibition of autophagy failed to attenuate radiosensitization, indicating that autophagy was not involved in the action of the PARP inhibitors. As with radiation alone, despite sensitization by PARP inhibition, proliferative recovery was evident

  14. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    SciTech Connect

    Miao, Min; Zhu, Yunye; Qiao, Maiju; Tang, Xiaofeng; Zhao, Wei; Xiao, Fangming; Liu, Yongsheng

    2014-08-08

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato.

  15. Enzymatic assembly of overlapping DNA fragments.

    PubMed

    Gibson, Daniel G

    2011-01-01

    Three methods for assembling multiple, overlapping DNA molecules are described. Each method shares the same basic approach: (i) an exonuclease removes nucleotides from the ends of double-stranded (ds) DNA molecules, exposing complementary single-stranded (ss) DNA overhangs that are specifically annealed; (ii) the ssDNA gaps of the joined molecules are filled in by DNA polymerase, and the nicks are covalently sealed by DNA ligase. The first method employs the 3'-exonuclease activity of T4 DNA polymerase (T4 pol), Taq DNA polymerase (Taq pol), and Taq DNA ligase (Taq lig) in a two-step thermocycled reaction. The second method uses 3'-exonuclease III (ExoIII), antibody-bound Taq pol, and Taq lig in a one-step thermocycled reaction. The third method employs 5'-T5 exonuclease, Phusion® DNA polymerase, and Taq lig in a one-step isothermal reaction and can be used to assemble both ssDNA and dsDNA. These assembly methods can be used to seamlessly construct synthetic and natural genes, genetic pathways, and entire genomes and could be very useful for molecular engineering tools. PMID:21601685

  16. Phase IV study comparing diurnal glycemic profile following the administration of 2 NPH plus regular human DNA recombinant insulin regimens in type 1 diabetes mellitus (T1DM) adult patients.

    PubMed

    Feleder, E C; Yerino, G A; Halabe, E K; Tombazzi, J L; Farias, J M

    2012-06-01

    Intensive insulin therapy (IIT) based on multiple daily injections of long plus rapid-acting insulin has been demonstrated to reduce mortality and morbidity associated with chronic hyperglycemia in T1DM patients. The objective of this study was to assess and compare the postprandial glycemic profile over a diurnal 12 h-period produced by the administration of a new NPH plus regular human DNA recombinant IIT (test regimen) relative to the reference IIT in T1DM patients. A phase IV, single-center, open-label, randomized, multiple-dose, balanced, cross-over study in 12 T1DM patients was conducted. Patients were assigned to receive either the test (Densulin® N (NPH) plus Densulin® R (regular),100 UI/ml, Denver Farma, Argentina) followed by the reference (InsulatardHM® (NPH) plus ActrapidHM®,100 UI/ml, Novo Nordisk Pharma Argentina) regimens or viceversa, according to a random sequence. Each treatment regimen consisted of 2 phases of an ambulatory run-in period of 7 days followed by 12 h confinement period. Blood glucose levels were measured. Glycemic profile was evaluated through glycemic plasma-concentration time curves, area under the time-concentration glycemic curves from basal to 2 h (GlyAUC0-2) and to 12 h (GlyAUC0-12) postprandial, and maximum glycemic postprandial concentration (GlyCmax). 12 hour glycemic concentration-time curves were similar for both test and reference regimens. Geometric least square means ratios Test/ref regimens and their 90% confidence interval for GlyAUC0-2, GlyAUC0-12 and GlyCmax were 94.33 (81.13-125.09), 107.75 (94.05-123.45) and 105 (92.89-118.68), respectively. Both regimens presented similar safety profile. This study demonstrated that the new human DNA recombinant NPH and regular insulin is equally effective to the reference regimen for postprandial diurnal glycemic profile. PMID:22438072

  17. Comparison of the In Vitro Replication of the 7-(2-Oxoheptyl)-1,N2-etheno-2′-deoxyguanosine and 1,N2-Etheno-2′-deoxyguanosine Lesions by Sulfolobus solfataricus P2 DNA Polymerase IV (Dpo4)

    PubMed Central

    Christov, Plamen P.; Petrova, Katya V.; Shanmugam, Ganesh; Kozekov, Ivan D.; Kozekova, Albena; Guengerich, F. Peter; Stone, Michael P.; Rizzo, Carmelo J.

    2010-01-01

    Oligonucleotides were synthesized containing the 7-(2-oxoheptyl)-etheno-dGuo adduct, which is derived from the reaction of dGuo and the lipid peroxidation product 4-oxo-2-nonenal. The in vitro replication of 7-(2-oxoheptyl)-etheno-dGuo by the model Y-family polymerase Sulfolobus solfataricus P2 DNA Polymerase IV (Dpo4) was examined in two sequences. The extension products were sequenced using an improved LC-ESI-MS/MS protocol developed in our laboratories and the results were compared to that of the 1,N2-etheno-dGuo adduct in the same sequence contexts. Both etheno adducts were highly miscoding when situated in a 5′-TXG-3′ local sequence contexts with <4% of the extension products being derived from error-free bypass. The major extension products resulted from the misinsertion of Ade opposite the adduct and a one-base deletion. The major extension products from replication of the etheno lesions in a 5′-CXG-3′ local sequence context were the result of misinsertion of Ade, a one-base deletion, and error-free bypass. Other minor extension products were also identified. The 7-(2-oxoheptyl)-etheno-dGuo lesion resulted in a larger frequency of misinsertion of Ade, whereas the 1,N2-etheno-dGuo gave more of the one-base deletion product. Conformational studies of duplex DNA containing the 7-(2-oxoheptyl)-etheno-dGuo in a 5′-TXG-3′ sequence context by NMR indicated the presence of a pH-dependent conformational transition, likely involving the glycosyl bond at the adducted guanosine; the pKa for this transition was lower than that observed for the 1,N2-ε-dGuo lesion. However, the 7-(2-oxoheptyl)-etheno-dGuo lesion, the complementary Cyt, and both flanking base pairs remained disordered at all pH values, which is attributed to the presence of the hydrophobic heptyl group of the 7-(2-oxoheptyl)-etheno-dGuo lesion. The altered pKa value and the structural disorder at the 7-(2-oxoheptyl)-etheno-dGuo lesion site, as compared to the same sequence containing the 1,N2

  18. In Vitro Selection of Optimal DNA Substrates for Ligation by a Water-Soluble Carbodiimide

    NASA Technical Reports Server (NTRS)

    Harada, Kazuo; Orgel, Leslie E.

    1994-01-01

    We have used in vitro selection to investigate the sequence requirements for efficient template-directed ligation of oligonucleotides at 0 deg C using a water-soluble carbodiimide as condensing agent. We find that only 2 bp at each side of the ligation junction are needed. We also studied chemical ligation of substrate ensembles that we have previously selected as optimal by RNA ligase or by DNA ligase. As anticipated, we find that substrates selected with DNA ligase ligate efficiently with a chemical ligating agent, and vice versa. Substrates selected using RNA ligase are not ligated by the chemical condensing agent and vice versa. The implications of these results for prebiotic chemistry are discussed.

  19. Chlorovirus Skp1-Binding Ankyrin Repeat Protein Interplay and Mimicry of Cellular Ubiquitin Ligase Machinery

    PubMed Central

    Noel, Eric A.; Kang, Ming; Adamec, Jiri; Oyler, George A.

    2014-01-01

    ABSTRACT The ubiquitin-proteasome system is targeted by many viruses that have evolved strategies to redirect host ubiquitination machinery. Members of the genus Chlorovirus are proposed to share an ancestral lineage with a broader group of related viruses, nucleo-cytoplasmic large DNA viruses (NCLDV). Chloroviruses encode an Skp1 homolog and ankyrin repeat (ANK) proteins. Several chlorovirus-encoded ANK repeats contain C-terminal domains characteristic of cellular F-boxes or related NCLDV chordopox PRANC (pox protein repeats of ankyrin at C-terminal) domains. These observations suggested that this unique combination of Skp1 and ANK repeat proteins might form complexes analogous to the cellular Skp1-Cul1-F-box (SCF) ubiquitin ligase complex. We identified two ANK proteins from the prototypic chlorovirus Paramecium bursaria chlorella virus-1 (PBCV-1) that functioned as binding partners for the virus-encoded Skp1, proteins A682L and A607R. These ANK proteins had a C-terminal Skp1 interactional motif that functioned similarly to cellular F-box domains. A C-terminal motif of ANK protein A682L binds Skp1 proteins from widely divergent species. Yeast two-hybrid analyses using serial domain deletion constructs confirmed the C-terminal localization of the Skp1 interactional motif in PBCV-1 A682L. ANK protein A607R represents an ANK family with one member present in all 41 sequenced chloroviruses. A comprehensive phylogenetic analysis of these related ANK and viral Skp1 proteins suggested partnered function tailored to the host alga or common ancestral heritage. Here, we show protein-protein interaction between corresponding family clusters of virus-encoded ANK and Skp1 proteins from three chlorovirus types. Collectively, our results indicate that chloroviruses have evolved complementing Skp1 and ANK proteins that mimic cellular SCF-associated proteins. IMPORTANCE Viruses have evolved ways to direct ubiquitination events in order to create environments conducive to their

  20. Structural characterization of filaments formed by human Xrcc4-Cernunnos/XLF complex involved in nonhomologous DNA end-joining.

    PubMed

    Ropars, Virginie; Drevet, Pascal; Legrand, Pierre; Baconnais, Sonia; Amram, Jeremy; Faure, Guilhem; Márquez, José A; Piétrement, Olivier; Guerois, Raphaël; Callebaut, Isabelle; Le Cam, Eric; Revy, Patrick; de Villartay, Jean-Pierre; Charbonnier, Jean-Baptiste

    2011-08-01

    Cernunnos/XLF is a core protein of the nonhomologous DNA end-joining (NHEJ) pathway that processes the majority of DNA double-strand breaks in mammals. Cernunnos stimulates the final ligation step catalyzed by the complex between DNA ligase IV and Xrcc4 (X4). Here we present the crystal structure of the X4(1-157)-Cernunnos(1-224) complex at 5.5-Å resolution and identify the relative positions of the two factors and their binding sites. The X-ray structure reveals a filament arrangement for X4(1-157) and Cernunnos(1-224) homodimers mediated by repeated interactions through their N-terminal head domains. A filament arrangement of the X4-Cernunnos complex was confirmed by transmission electron microscopy analyses both with truncated and full-length proteins. We further modeled the interface and used structure-based site-directed mutagenesis and calorimetry to characterize the roles of various residues at the X4-Cernunnos interface. We identified four X4 residues (Glu(55), Asp(58), Met(61), and Phe(106)) essential for the interaction with Cernunnos. These findings provide new insights into the molecular bases for stimulatory and bridging roles of Cernunnos in the final DNA ligation step. PMID:21768349

  1. Alternative end-joining pathway(s): bricolage at DNA breaks.

    PubMed

    Frit, Philippe; Barboule, Nadia; Yuan, Ying; Gomez, Dennis; Calsou, Patrick

    2014-05-01

    To cope with DNA double strand break (DSB) genotoxicity, cells have evolved two main repair pathways: homologous recombination which uses homologous DNA sequences as repair templates, and non-homologous Ku-dependent end-joining involving direct sealing of DSB ends by DNA ligase IV (Lig4). During the last two decades a third player most commonly named alternative end-joining (A-EJ) has emerged, which is defined as any Ku- or Lig4-independent end-joining process. A-EJ increasingly appears as a highly error-prone bricolage on DSBs and despite expanding exploration, it still escapes full characterization. In the present review, we discuss the mechanism and regulation of A-EJ as well as its biological relevance under physiological and pathological situations, with a particular emphasis on chromosomal instability and cancer. Whether or not it is a genuine DSB repair pathway, A-EJ is emerging as an important cellular process and understanding A-EJ will certainly be a major challenge for the coming years. PMID:24613763

  2. The Membrane Associated RING-CH Proteins: A Family of E3 Ligases with Diverse Roles through the Cell

    PubMed Central

    Means, Robert E.

    2014-01-01

    Since the discovery that conjugation of ubiquitin to proteins can drive proteolytic degradation, ubiquitination has been shown to perform a diverse range of functions in the cell. It plays an important role in endocytosis, signal transduction, trafficking of vesicles inside the cell, and even DNA repair. The process of ubiquitination-mediated control has turned out to be remarkably complex, involving a diverse array of proteins and many levels of control. This review focuses on a family of structurally related E3 ligases termed the membrane-associated RING-CH (MARCH) ubiquitin ligases, which were originally discovered as structural homologs to the virals E3s, K3, and K5 from Kaposi's sarcoma-associated herpesvirus (KSHV). These proteins contain a catalytic RING-CH finger and are typically membrane-bound, with some having up to 14 putative transmembrane domains. Despite several lines of evidence showing that the MARCH proteins play a complex and essential role in several cellular processes, this family remains understudied.

  3. A design principle underlying the paradoxical roles of E3 ubiquitin ligases

    NASA Astrophysics Data System (ADS)

    Lee, Daewon; Kim, Minjin; Cho, Kwang-Hyun

    2014-07-01

    E3 ubiquitin ligases are important cellular components that determine the specificity of proteolysis in the ubiquitin-proteasome system. However, an increasing number of studies have indicated that E3 ubiquitin ligases also participate in transcription. Intrigued by the apparently paradoxical functions of E3 ubiquitin ligases in both proteolysis and transcriptional activation, we investigated the underlying design principles using mathematical modeling. We found that the antagonistic functions integrated in E3 ubiquitin ligases can prevent any undesirable sustained activation of downstream genes when E3 ubiquitin ligases are destabilized by unexpected perturbations. Interestingly, this design principle of the system is similar to the operational principle of a safety interlock device in engineering systems, which prevents a system from abnormal operation unless stability is guaranteed.

  4. Synthesis and Characterization of Pt(IV) Fluorescein Conjugates to Investigate Pt(IV) Intracellular Transformations

    PubMed Central

    Song, Ying; Suntharalingam, Kogularamanan; Yeung, Jessica S.; Royzen, Maksim; Lippard, Stephen J.

    2013-01-01

    Pt(IV) anticancer compounds typically operate as prodrugs that are reduced in the hypoxic environment of cancer cells, losing two axial ligands in the process to generate active Pt(II) species. Here we report the synthesis of two fluorescent Pt(IV) prodrugs of cisplatin in order to image and evaluate the Pt(IV) reduction process in simulated and real biological environments. Treatment of the complexes dissolved in PBS buffer with reducing agents typically encountered in cells, glutathione or ascorbate, afforded a 3- to 5-fold fluorescence turn-on owing to reduction and loss of their fluorescein-based axial ligands, which are quenched when bound to platinum. Both Pt(IV) conjugates displayed moderate cytotoxicity against human cancer cell lines, with IC50 values higher than that of cisplatin. Immunoblotting and DNA flow cytometry analyses of one of the complexes, Pt(IV)FL2, revealed that it damages DNA, causing cell cycle arrest in S or G2/M depending on exposure time, with ultimately triggering of apoptotic cell death. Fluorescence microscopic studies prove that Pt(IV)FL2 enters cells intact and undergoes reduction intracellularly. The results are best interpreted in terms of a model in which the axial fluorescein ligands are expelled through lysosomes, with the platinum(II) moiety generated in the process binding to genomic DNA, which results in cell death. PMID:23957697

  5. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    PubMed Central

    Anella, Fabrizio; Danelon, Christophe

    2014-01-01

    The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA) vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment. PMID:25513761

  6. TRIM32 is an E3 ubiquitin ligase for dysbindin.

    PubMed

    Locke, Matthew; Tinsley, Caroline L; Benson, Matthew A; Blake, Derek J

    2009-07-01

    Mutations in the gene encoding tripartite motif protein 32 (TRIM32) cause two seemingly diverse diseases: limb-girdle muscular dystrophy type 2H (LGMD2H) or sarcotubular myopathy (STM) and Bardet-Biedl syndrome type 11(BBS11). Although TRIM32 is involved in protein ubiquitination, its substrates and the molecular consequences of disease-causing mutations are poorly understood. In this paper, we show that TRIM32 is a widely expressed ubiquitin ligase that is localized to the Z-line in skeletal muscle. Using the yeast two-hybrid system, we found that TRIM32 binds and ubiquitinates dysbindin, a protein implicated in the genetic aetiology of schizophrenia, augmenting its degradation. Small-interfering RNA-mediated knock-down of TRIM32 in myoblasts resulted in elevated levels of dysbindin. Importantly, the LGMD2H/STM-associated TRIM32 mutations, D487N and R394H impair ubiquitin ligase activity towards dysbindin and were mislocalized in heterologous cells. These mutants were able to self-associate and also co-immunoprecipitated with wild-type TRIM32 in transfected cells. Furthermore, the D487N mutant could bind to both dysbindin and its E2 enzyme but was defective in monoubiquitination. In contrast, the BBS11 mutant P130S did not show any biochemical differences compared with the wild-type protein. Our data identify TRIM32 as a regulator of dysbindin and demonstrate that the LGMD2H/STM mutations may impair substrate ubiquitination. PMID:19349376

  7. Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms.

    PubMed

    Dove, Katja K; Stieglitz, Benjamin; Duncan, Emily D; Rittinger, Katrin; Klevit, Rachel E

    2016-08-01

    RING-in-between-RING (RBR) ubiquitin (Ub) ligases are a distinct class of E3s, defined by a RING1 domain that binds E2 Ub-conjugating enzyme and a RING2 domain that contains an active site cysteine similar to HECT-type E3s. Proposed to function as RING/HECT hybrids, details regarding the Ub transfer mechanism used by RBRs have yet to be defined. When paired with RING-type E3s, E2s perform the final step of Ub ligation to a substrate. In contrast, when paired with RBR E3s, E2s must transfer Ub onto the E3 to generate a E3~Ub intermediate. We show that RBRs utilize two strategies to ensure transfer of Ub from the E2 onto the E3 active site. First, RING1 domains of HHARI and RNF144 promote open E2~Ubs. Second, we identify a Ub-binding site on HHARI RING2 important for its recruitment to RING1-bound E2~Ub. Mutations that ablate Ub binding to HHARI RING2 also decrease RBR ligase activity, consistent with RING2 recruitment being a critical step for the RBR Ub transfer mechanism. Finally, we demonstrate that the mechanism defined here is utilized by a variety of RBRs. PMID:27312108

  8. Nucleostemin stabilizes ARF by inhibiting the ubiquitin ligase ULF.

    PubMed

    Lo, D; Zhang, Y; Dai, M-S; Sun, X-X; Zeng, S X; Lu, H

    2015-03-26

    Upregulated expression of nucleolar GTPase nucleostemin (NS) has been associated with increased cellular proliferation potential and tumor malignancy during cancer development. Recent reports attribute the growth regulatory effects of NS protein to its role in facilitating ribosome production. However, the oncogenic potential of NS remains unclear, as imbalanced levels of NS have been reported to exert growth inhibitory effect by modulating p53 tumor-suppressor activity. It also remains in questions if aberrant NS levels might have a p53-independent role in regulation of cell proliferation and growth. In this study, we performed affinity purification and mass spectrometry analysis to explore protein-protein interactions influencing NS growth regulatory properties independently of p53 tumor suppressor. We identified the alternative reading frame (ARF) protein as a key protein associating with NS and further verified the interaction through in vitro and in vivo assays. We demonstrated that NS is able to regulate cell cycle progression by regulating the stability of the ARF tumor suppressor. Furthermore, overexpression of NS suppressed ARF polyubiquitination by its E3 ligase Ubiquitin Ligase for ARF and elongated its half-life, whereas knockdown of NS led to the decrease of ARF levels. Also, we found that NS can enhance NPM stabilization of ARF. Thus, we propose that in the absence of p53, ARF can be stabilized by NS and nucleophosmin to serve as an alternative tumor-suppressor surveillance, preventing potential cellular transformation resulting from the growth-inducing effects of NS overexpression. PMID:24769896

  9. Mechanism of ubiquitylation by dimeric RING ligase RNF4.

    PubMed

    Plechanovová, Anna; Jaffray, Ellis G; McMahon, Stephen A; Johnson, Kenneth A; Navrátilová, Iva; Naismith, James H; Hay, Ronald T

    2011-09-01

    Mammalian RNF4 is a dimeric RING ubiquitin E3 ligase that ubiquitylates poly-SUMOylated proteins. We found that RNF4 bound ubiquitin-charged UbcH5a tightly but free UbcH5a weakly. To provide insight into the mechanism of RING-mediated ubiquitylation, we docked the UbcH5~ubiquitin thioester onto the RNF4 RING structure. This revealed that with E2 bound to one monomer of RNF4, the thioester-linked ubiquitin could reach across the dimer to engage the other monomer. In this model, the 'Ile44 hydrophobic patch' of ubiquitin is predicted to engage a conserved tyrosine located at the dimer interface of the RING, and mutation of these residues blocked ubiquitylation activity. Thus, dimeric RING ligases are not simply inert scaffolds that bring substrate and E2-loaded ubiquitin into close proximity. Instead, they facilitate ubiquitin transfer by preferentially binding the E2~ubiquitin thioester across the dimer and activating the thioester bond for catalysis. PMID:21857666

  10. Prokaryotic BirA ligase biotinylates K4, K9, K18 and K23 in eukaryotic histone H3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BirA ligase, a prokaryotic ortholog of human holocarboxylase synthetase (HCS), is known to biotinylate proteins. Here, we tested the hypothesis that BirA ligase may also catalyze biotinylation of eukaryotic histones. If so, this would render recombinant BirA ligase a useful surrogate for HCS in stud...

  11. GpDSR7, a Novel E3 Ubiquitin Ligase Gene in Grimmia pilifera Is Involved in Tolerance to Drought Stress in Arabidopsis

    PubMed Central

    Li, Mengmeng; Li, Yihao; Zhao, Junyi; Liu, Hai; Jia, Shenghua; Li, Jie; Zhao, Heping; Han, Shengcheng; Wang, Yingdian

    2016-01-01

    The growth and development of plants under drought stress depends mainly on the expression levels of various genes and modification of proteins. To clarify the molecular mechanism of drought-tolerance of plants, suppression subtractive hybridisation cDNA libraries were screened to identify drought-stress-responsive unigenes in Grimmia pilifera, and a novel E3 ubiquitin ligase gene, GpDSR7, was identified among the 240 responsive unigenes. GpDSR7 expression was induced by various abiotic stresses, particularly by drought. GpDSR7 displayed E3 ubiquitin ligase activity in vitro and was exclusively localised on the ER membrane in Arabidopsis mesophyll protoplasts. GpDSR7-overexpressing transgenic Arabidopsis plants showed a high water content and survival ratio under drought stress. Moreover, the expression levels of some marker genes involved in drought stress were higher in the transgenic plants than in wild-type plants. These results suggest that GpDSR7, an E3 ubiquitin ligase, is involved in tolerance to drought stress at the protein modification level. PMID:27228205

  12. GpDSR7, a Novel E3 Ubiquitin Ligase Gene in Grimmia pilifera Is Involved in Tolerance to Drought Stress in Arabidopsis.

    PubMed

    Li, Mengmeng; Li, Yihao; Zhao, Junyi; Liu, Hai; Jia, Shenghua; Li, Jie; Zhao, Heping; Han, Shengcheng; Wang, Yingdian

    2016-01-01

    The growth and development of plants under drought stress depends mainly on the expression levels of various genes and modification of proteins. To clarify the molecular mechanism of drought-tolerance of plants, suppression subtractive hybridisation cDNA libraries were screened to identify drought-stress-responsive unigenes in Grimmia pilifera, and a novel E3 ubiquitin ligase gene, GpDSR7, was identified among the 240 responsive unigenes. GpDSR7 expression was induced by various abiotic stresses, particularly by drought. GpDSR7 displayed E3 ubiquitin ligase activity in vitro and was exclusively localised on the ER membrane in Arabidopsis mesophyll protoplasts. GpDSR7-overexpressing transgenic Arabidopsis plants showed a high water content and survival ratio under drought stress. Moreover, the expression levels of some marker genes involved in drought stress were higher in the transgenic plants than in wild-type plants. These results suggest that GpDSR7, an E3 ubiquitin ligase, is involved in tolerance to drought stress at the protein modification level. PMID:27228205

  13. Energy levels and lifetimes of Nd IV, Pm IV, Sm IV, and Eu IV

    SciTech Connect

    Dzuba, V. A.; Safronova, U. I.; Johnson, W. R.

    2003-09-01

    To address the shortage of experimental data for electron spectra of triply ionized rare-earth elements we have calculated energy levels and lifetimes of 4f{sup n+1} and 4f{sup n}5d configurations of Nd IV (n=2), Pm IV (n=3), Sm IV (n=4), and Eu IV (n=5) using Hartree-Fock and configuration-interaction methods. To control the accuracy of our calculations we also performed similar calculations for Pr III, Nd III, and Sm III, for which experimental data are available. The results are important, in particular, for physics of magnetic garnets.

  14. Molecular underpinnings of Aprataxin RNA/DNA deadenylase function and dysfunction in neurological disease.

    PubMed

    Schellenberg, Matthew J; Tumbale, Percy P; Williams, R Scott

    2015-03-01

    Eukaryotic DNA ligases seal DNA breaks in the final step of DNA replication and repair transactions via a three-step reaction mechanism that can abort if DNA ligases encounter modified DNA termini, such as the products and repair intermediates of DNA oxidation, alkylation, or the aberrant incorporation of ribonucleotides into genomic DNA. Such abortive DNA ligation reactions act as molecular checkpoint for DNA damage and create 5'-adenylated nucleic acid termini in the context of DNA and RNA-DNA substrates in DNA single strand break repair (SSBR) and ribonucleotide excision repair (RER). Aprataxin (APTX), a protein altered in the heritable neurological disorder Ataxia with Oculomotor Apraxia 1 (AOA1), acts as a DNA ligase "proofreader" to directly reverse AMP-modified nucleic acid termini in DNA- and RNA-DNA damage responses. Herein, we survey APTX function and the emerging cell biological, structural and biochemical data that has established a molecular foundation for understanding the APTX mediated deadenylation reaction, and is providing insights into the molecular bases of APTX deficiency in AOA1. PMID:25637650

  15. Ubiquitin E3 ligase FIEL1 regulates fibrotic lung injury through SUMO-E3 ligase PIAS4.

    PubMed

    Lear, Travis; McKelvey, Alison C; Rajbhandari, Shristi; Dunn, Sarah R; Coon, Tiffany A; Connelly, William; Zhao, Joe Y; Kass, Daniel J; Zhang, Yingze; Liu, Yuan; Chen, Bill B

    2016-05-30

    The E3 small ubiquitin-like modifier (SUMO) protein ligase protein inhibitor of activated STAT 4 (PIAS4) is a pivotal protein in regulating the TGFβ pathway. In this study, we discovered a new protein isoform encoded by KIAA0317, termed fibrosis-inducing E3 ligase 1 (FIEL1), which potently stimulates the TGFβ signaling pathway through the site-specific ubiquitination of PIAS4. FIEL1 targets PIAS4 using a double locking mechanism that is facilitated by the kinases PKCζ and GSK3β. Specifically, PKCζ phosphorylation of PIAS4 and GSK3β phosphorylation of FIEL1 are both essential for the degradation of PIAS4. FIEL1 protein is highly expressed in lung tissues from patients with idiopathic pulmonary fibrosis (IPF), whereas PIAS4 protein levels are significantly reduced. FIEL1 overexpression significantly increases fibrosis in a bleomycin murine model, whereas FIEL1 knockdown attenuates fibrotic conditions. Further, we developed a first-in-class small molecule inhibitor toward FIEL1 that is highly effective in ameliorating fibrosis in mice. This study provides a basis for IPF therapeutic intervention by modulating PIAS4 protein abundance. PMID:27162139

  16. Genetics Home Reference: succinate-CoA ligase deficiency

    MedlinePlus

    ... use. Mitochondria each contain a small amount of DNA, known as mitochondrial DNA or mtDNA, which is essential for the normal ... producing and maintaining the building blocks of mitochondrial DNA . Mutations in either the SUCLA2 or SUCLG1 gene ...

  17. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Enhances E1A Functional Activity

    PubMed Central

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G. Eric; Dobner, Thomas; Branton, Philip E.

    2015-01-01

    ABSTRACT Human adenovirus (Ad) E1A proteins have long been known as the central regulators of virus infection as well as the major source of adenovirus oncogenic potential. Not only do they activate expression of other early viral genes, they make viral replication possible in terminally differentiated cells, at least in part, by binding to the retinoblastoma (Rb) tumor suppressor family of proteins to activate E2F transcription factors and thus viral and cellular DNA synthesis. We demonstrate in an accompanying article (F. Dallaire et al., mSphere 1:00014-15, 2016) that the human adenovirus E3 ubiquitin ligase complex formed by the E4orf6 and E1B55K proteins is able to mimic E1A activation of E2F transactivation factors. Acting alone in the absence of E1A, the Ad5 E4orf6 protein in complex with E1B55K was shown to bind E2F, disrupt E2F/Rb complexes, and induce hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis, as well as stimulation of early and late viral gene expression and production of viral progeny. While these activities were significantly lower than those exhibited by E1A, we report here that this ligase complex appeared to enhance E1A activity in two ways. First, the E4orf6/E1B55K complex was shown to stabilize E1A proteins, leading to higher levels in infected cells. Second, the complex was demonstrated to enhance the activation of E2F by E1A products. These findings indicated a new role of the E4orf6/E1B55K ligase complex in promoting adenovirus replication. IMPORTANCE Following our demonstration that adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins is able to mimic the activation of E2F by E1A, we conducted a series of studies to determine if this complex might also promote the ability of E1A to do so. We found that the complex both significantly stabilizes E1A proteins and also enhances their ability to activate E2F. This finding is of significance because it represents an entirely new

  18. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Enhances E1A Functional Activity.

    PubMed

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G Eric; Dobner, Thomas; Branton, Philip E; Blanchette, Paola

    2016-01-01

    Human adenovirus (Ad) E1A proteins have long been known as the central regulators of virus infection as well as the major source of adenovirus oncogenic potential. Not only do they activate expression of other early viral genes, they make viral replication possible in terminally differentiated cells, at least in part, by binding to the retinoblastoma (Rb) tumor suppressor family of proteins to activate E2F transcription factors and thus viral and cellular DNA synthesis. We demonstrate in an accompanying article (F. Dallaire et al., mSphere 1:00014-15, 2016) that the human adenovirus E3 ubiquitin ligase complex formed by the E4orf6 and E1B55K proteins is able to mimic E1A activation of E2F transactivation factors. Acting alone in the absence of E1A, the Ad5 E4orf6 protein in complex with E1B55K was shown to bind E2F, disrupt E2F/Rb complexes, and induce hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis, as well as stimulation of early and late viral gene expression and production of viral progeny. While these activities were significantly lower than those exhibited by E1A, we report here that this ligase complex appeared to enhance E1A activity in two ways. First, the E4orf6/E1B55K complex was shown to stabilize E1A proteins, leading to higher levels in infected cells. Second, the complex was demonstrated to enhance the activation of E2F by E1A products. These findings indicated a new role of the E4orf6/E1B55K ligase complex in promoting adenovirus replication. IMPORTANCE Following our demonstration that adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins is able to mimic the activation of E2F by E1A, we conducted a series of studies to determine if this complex might also promote the ability of E1A to do so. We found that the complex both significantly stabilizes E1A proteins and also enhances their ability to activate E2F. This finding is of significance because it represents an entirely new function for

  19. E3 ubiquitin ligase TRIM32 negatively regulates tumor suppressor p53 to promote tumorigenesis.

    PubMed

    Liu, Ju; Zhang, C; Wang, X L; Ly, P; Belyi, V; Xu-Monette, Z Y; Young, K H; Hu, W; Feng, Z

    2014-11-01

    Tumor suppressor p53 has a key role in maintaining genomic stability and preventing tumorigenesis through its regulation of cellular stress responses, including apoptosis, cell cycle arrest and senescence. To ensure its proper levels and functions in cells, p53 is tightly regulated mainly through post-translational modifications, such as ubiquitination. Here, we identified E3 ubiquitin ligase TRIM32 as a novel p53 target gene and negative regulator to regulate p53-mediated stress responses. In response to stress, such as DNA damage, p53 binds to the p53 responsive element in the promoter of the TRIM32 gene and transcriptionally induces the expression of TRIM32 in cells. In turn, TRIM32 interacts with p53 and promotes p53 degradation through ubiquitination. Thus, TRIM32 negatively regulates p53-mediated apoptosis, cell cycle arrest and senescence in response to stress. TRIM32 is frequently overexpressed in different types of human tumors. TRIM32 overexpression promotes cell oncogenic transformation and tumorigenesis in mice in a largely p53-dependent manner. Taken together, our results demonstrated that as a novel p53 target and a novel negative regulator for p53, TRIM32 has an important role in regulation of p53 and p53-mediated cellular stress responses. Furthermore, our results also revealed that impairing p53 function is a novel mechanism for TRIM32 in tumorigenesis. PMID:25146927

  20. Cloning and functional characterization of a 4-coumarate CoA ligase from liverwort Plagiochasma appendiculatum.

    PubMed

    Gao, Shuai; Yu, Hai-Na; Xu, Rui-Xue; Cheng, Ai-Xia; Lou, Hong-Xiang

    2015-03-01

    Plant phenylpropanoids represent a large group of secondary metabolites which have played an important role in terrestrial plant life, beginning with the evolution of land plants from primitive green algae. 4-Coumarate: coenzyme A ligase (4CL) is a provider of activated thioester substrates within the phenylpropanoid synthesis pathway. Although 4CLs have been extensively characterized in angiosperm, gymnosperm and moss species, little is known of their functions in liverworts. Here, a 4CL homolog (designated as Pa4CL1) was isolated from the liverwort species Plagiochasma appendiculatum. The full-length cDNA sequence of Pa4CL1 contains 1644bp and is predicted to encode a protein with 547amino acids. The gene products were 40-50% identical with 4CL sequences reported in public databases. The recombinant protein was heterologously expressed in Escherichia coli and exhibited a high level of 4CL activity, catalyzing formation of hydroxycinnamate-CoA thioesters by a two-step reaction mechanism from corresponding hydroxycinnamic acids. Kinetic analysis indicated that the most favorable substrate for Pa4CL1 is p-coumaric acid. The transcription of Pa4CL1 was induced when P. appendiculatum thallus was treated with either salicylic acid or methyl jasmonate. PMID:25593011

  1. HERC2 is an E3 ligase that targets BRCA1 for degradation.

    PubMed

    Wu, Wenwen; Sato, Ko; Koike, Ayaka; Nishikawa, Hiroyuki; Koizumi, Hirotaka; Venkitaraman, Ashok R; Ohta, Tomohiko

    2010-08-01

    The breast cancer suppressor BRCA1 forms a stable heterodimeric E3 ubiquitin ligase with BARD1. Each protein controls the abundance and stability of the other, and loss of the interaction leads to BRCA1 degradation. Here, we show that HERC2, a protein recently implicated in DNA damage repair, targets BARD1-uncoupled BRCA1 for degradation. HERC2 shuttles between the nucleus and the cytoplasm. Its COOH-terminal HECT-containing domain interacts with an NH(2)-terminal degron domain in BRCA1. HERC2 ubiquitinates BRCA1; this reaction depends on Cys(4762) of HERC2, the catalytic ubiquitin binding site, and the degron of BRCA1. The HERC2-BRCA1 interaction is maximal during the S phase of the cell cycle and rapidly diminishes as cells enter G(2)-M, inversely correlated with the steady-state level of BRCA1. Significantly, HERC2 depletion antagonizes the effects of BARD1 depletion by restoring BRCA1 expression and G(2)-M checkpoint activity. Conversely, BARD1 protects BRCA1 from HERC2-mediated ubiquitination. Collectively, our findings identify a function for HERC2 in regulating BRCA1 stability in opposition to BARD1. The HERC2 expression in breast epithelial cells and breast carcinomas suggests that this mechanism may play a role in breast carcinogenesis. PMID:20631078

  2. Ligase chain reaction for detection of Neisseria gonorrhoeae in urogenital swabs.

    PubMed Central

    Ching, S; Lee, H; Hook, E W; Jacobs, M R; Zenilman, J

    1995-01-01

    The ligase chain reaction (LCR) is an in vitro nucleic acid amplification technique that exponentially amplifies targeted DNA sequences. In a multicenter study, we evaluated the use of a 4-h LCR-based assay for the diagnosis of Neisseria gonorrhoeae infection of the cervix and male urethra. The LCR results were compared with those of culture for N. gonorrhoeae by using selective media. This assay amplifies target sequences within the N. gonorrhoeae opacity gene. Discordant LCR-positive and culture-negative specimens were further evaluated by testing by another LCR assay which used N. gonorrhoeae-specific pilin probe sets. A total of 1,539 female endocervical specimens and 808 male urethral swab specimens were evaluated in the study. An expanded "gold standard" was defined to include all culture-positive as well as culture-negative, confirmed LCR-positive specimens. After resolution of discrepant samples, the sensitivities of the N. gonorrhoeae LCR assays for the female and male specimens were 97.3 and 98.5%, respectively, with specificities of 99.6 and 99.8%, respectively. Resolved culture sensitivities were 83.9 and 96.5% for the female and male specimens, respectively. The LCR assay for gonorrhea is a rapid, highly sensitive nonculture method for detecting gonococcal infection of the cervix and male urethra. PMID:8586683

  3. Using PLATO IV.

    ERIC Educational Resources Information Center

    Meller, David V.

    This beginning reference manual describes PLATO IV hardware for prospective users and provides an introduction to PLATO for new authors. The PLATO terminal is described in detail in Chapter 1. Chapter 2 provides a block diagram of the PLATO IV system. Procedures for getting on line are described in Chapter 3, and Chapter 4 provides references to…

  4. IV treatment at home

    MedlinePlus

    ... 24 hours a day. If there is a problem with the IV, you can call your home health care agency for help. If the IV comes out of ... bleeding stops. Then call the home health care agency or the doctor right away.

  5. A new gene involved in DNA double-strand break repair and V(D)J recombination is located on human chromosome 10p.

    PubMed

    Moshous, D; Li, L; Chasseval, R; Philippe, N; Jabado, N; Cowan, M J; Fischer, A; de Villartay, J P

    2000-03-01

    V(D)J recombination, accountable for the diversity of T cell receptor- and immunoglobulin-encoding genes, is initiated by a lymphoid-specific DNA double-strand break. The general DNA repair machinery is responsible for the resolution of this break. Any defect in one of the known components of the DNA repair/V(D)J recombination machinery (Ku70, Ku80, DNA-PKcs, XRCC4 and DNA ligase IV) leads to abortion of the V(D)J rearrangement process, early block in both T and B cell maturation, and ultimately to severe combined immune deficiency (SCID) in several animal models. A human SCID condition is also characterized by an absence of mature T and B lymphocytes, and is associated with an increase in sensitivity to DNA-damaging agents (RS-SCID). None of the above-mentioned genes are defective in these patients, arguing for the likelihood of the existence of yet another unknown component of the V(D)J recombination/DNA repair apparatus. Athabascan-speaking (SCIDA) Navajo and Apache Native Americans have a very high incidence of T(-)B(-)SCID. The SCIDA locus is highly linked with markers on chromosome 10p, although the exact molecular defect has not been recognized in these patients. We show here that cells with the SCIDA defect are impaired in the DNA repair phase of V(D)J recombination similarly to RS-SCID, precisely an absence of V(D)J coding joint formation. Moreover, genotyping analysis in several RS-SCID families corroborates a linkage of the RS-SCID locus to the SCIDA region on chromosome 10p. These results demonstrate the presence of a new essential DNA repair/V(D)J recombination gene in this region, the mutation of which causes RS-SCID in humans. PMID:10699181

  6. The Ubiquitin Ligase Hul5 Promotes Proteasomal Processivity▿

    PubMed Central

    Aviram, Sharon; Kornitzer, Daniel

    2010-01-01

    The 26S proteasome is a large cytoplasmic protease that degrades polyubiquitinated proteins to short peptides in a processive manner. The proteasome 19S regulatory subcomplex tethers the target protein via its polyubiquitin adduct and unfolds the target polypeptide, which is then threaded into the proteolytic site-containing 20S subcomplex. Hul5 is a 19S subcomplex-associated ubiquitin ligase that elongates ubiquitin chains on proteasome-bound substrates. We isolated hul5Δ as a mutation with which fusions of an unstable cyclin to stable reporter proteins accumulate as partially processed products. These products appear transiently in the wild type but are strongly stabilized in 19S ATPase mutants and in the hul5Δ mutant, supporting a role for the ATPase subunits in the unfolding of proteasome substrates before insertion into the catalytic cavity and suggesting a role for Hul5 in the processive degradation of proteins that are stalled on the proteasome. PMID:20008553

  7. The Gp78 ubiquitin ligase: probing endoplasmic reticulum complexity.

    PubMed

    St Pierre, Pascal; Nabi, Ivan R

    2012-02-01

    The endoplasmic reticulum (ER) has been classically divided, based on electron microscopy analysis, into parallel ribosome-studded rough ER sheets and a tubular smooth ER network. Recent studies have identified molecular constituents of the ER, the reticulons and DP1, that drive ER tubule formation and whose expression determines expression of ER sheets and tubules and thereby rough and smooth ER. However, segregation of the ER into only two domains remains simplistic and multiple functionally distinct ER domains necessarily exist. In this review, we will discuss the sub-organization of the ER in different domains focusing on the localization and role of the gp78 ubiquitin ligase in the mitochondria-associated smooth ER and on the evidence for a quality control ERAD domain. PMID:22045301

  8. Regulation of cancer stem cells by RING finger ubiquitin ligases

    PubMed Central

    Sun, Xiao-Hong

    2014-01-01

    Like normal stem cells, cancer stem cells (CSCs) are capable of self-renewal, either by symmetric or asymmetric cell division. They have the exclusive ability to reproduce malignant tumors indefinitely, and to confer resistance in response to radiation or chemotherapy. The ubiquitin modification system plays various roles in physiology and pathology. The key component for the specificity of this system is ubiquitin ligases (E3s). Of these E3s, the majority are RING finger proteins. Many RING finger E3s, such as the Cullin1-Skp1-F-box protein (SCF) E3s, CBL, BRCA1, MDM2 and von Hippel-Lindau tumour suppressor (VHL), are crucial in the regulation of cell-cycle progression and cell differentiation. As a result, many RING finger E3s are implicated in the positive and negative regulation of CSC maintenance. This review summarizes current knowledge in this research field. PMID:27358852

  9. Fbxo45, a Novel Ubiquitin Ligase, Regulates Synaptic Activity*

    PubMed Central

    Tada, Hirobumi; Okano, Hirotaka James; Takagi, Hiroshi; Shibata, Shinsuke; Yao, Ikuko; Matsumoto, Masaki; Saiga, Toru; Nakayama, Keiichi I.; Kashima, Haruo; Takahashi, Takuya; Setou, Mitsutoshi; Okano, Hideyuki

    2010-01-01

    Neurons communicate with each other through synapses. To establish the precise yet flexible connections that make up neural networks in the brain, continuous synaptic modulation is required. The ubiquitin-proteasome system of protein degradation is one of the critical mechanisms that underlie this process, playing crucial roles in the regulation of synaptic structure and function. We identified a novel ubiquitin ligase, Fbxo45, that functions at synapses. Fbxo45 is evolutionarily conserved and selectively expressed in the nervous system. We demonstrated that the knockdown of Fbxo45 in primary cultured hippocampal neurons resulted in a greater frequency of miniature excitatory postsynaptic currents. We also found that Fbxo45 induces the degradation of a synaptic vesicle-priming factor, Munc13-1. We propose that Fbxo45 plays an important role in the regulation of neurotransmission by modulating Munc13-1 at the synapse. PMID:19996097

  10. RBR ubiquitin ligases: Diversification and streamlining in animal lineages.

    PubMed

    Marín, Ignacio

    2009-07-01

    The patterns of emergence and disappearance in animal species of genes encoding RBR ubiquitin ligases are described. RBR genes can be classified into subfamilies (Parkin, Ariadne, Dorfin, ARA54, etc.) according to sequence and structural data. Here, I show that most animal-specific RBR subfamilies emerged early in animal evolution, and that ancient animals, before the cnidarian/bilaterian split, had a set of RBR genes, which was as complex as the one currently found in mammals. However, some lineages (nematodes, dipteran insects) have recently suffered multiple losses, leading to a highly simplified set of RBR genes. Genes of a particular RBR subfamily, characterized by containing a helicase domain and so far found only in plants, are present also in some animal species. The meaning of these patterns of diversification and streamlining are discussed at the light of functional data. Extreme evolutionary conservation may be related to gene products having housekeeping functions. PMID:19526189

  11. PARC and CUL7 form atypical cullin RING ligase complexes.

    PubMed

    Skaar, Jeffrey R; Florens, Laurence; Tsutsumi, Takeya; Arai, Takehiro; Tron, Adriana; Swanson, Selene K; Washburn, Michael P; DeCaprio, James A

    2007-03-01

    CUL7 and the p53-associated, PARkin-like cytoplasmic protein (PARC) were previously reported to form homodimers and heterodimers, the first demonstration of cullin dimerization. Although a CUL7-based SKP1/CUL1/F-box (SCF)-like complex has been observed, little is known about the existence of a PARC-based SCF-like complex and how PARC interacts with CUL7-based complexes. To further characterize PARC-containing complexes, we examined the ability of PARC to form an SCF-like complex. PARC binds RBX1 and is covalently modified by NEDD8, defining PARC as a true cullin. However, PARC fails to bind SKP1 or F-box proteins, including the CUL7-associated FBXW8. To examine the assembly of PARC- and CUL7-containing complexes, tandem affinity purification followed by multidimensional protein identification technology were used. Multidimensional protein identification technology analysis revealed that the CUL7 interaction with FBXW8 was mutually exclusive of CUL7 binding to PARC or p53. Notably, although heterodimers of CUL7 and PARC bind p53, p53 is not required for the dimerization of CUL7 and PARC. The observed physical separation of FBXW8 and PARC is supported functionally by the generation of Parc-/-, Fbxw8-/- mice, which do not show exacerbation of the Fbxw8-/- phenotype. Finally, all of the PARC and CUL7 subcomplexes examined exhibit E3 ubiquitin ligase activity in vitro. Together, these findings indicate that the intricate assembly of PARC- and CUL7-containing complexes is highly regulated, and multiple subcomplexes may exhibit ubiquitin ligase activity. PMID:17332328

  12. Human ITCH E3 ubiquitin ligase deficiency causes syndromic multisystem autoimmune disease.

    PubMed

    Lohr, Naomi J; Molleston, Jean P; Strauss, Kevin A; Torres-Martinez, Wilfredo; Sherman, Eric A; Squires, Robert H; Rider, Nicholas L; Chikwava, Kudakwashe R; Cummings, Oscar W; Morton, D Holmes; Puffenberger, Erik G

    2010-03-12

    Ubiquitin ligases play an important role in the regulation of the immune system. Absence of Itch E3 ubiquitin ligase in mice has been shown to cause severe autoimmune disease. Using autozygosity mapping in a large Amish kindred, we identified a linkage region on chromosome 20 and selected candidate genes for screening. We describe, in ten patients, identification of a mutation resulting in truncation of ITCH. These patients represent the first reported human phenotype associated with ITCH deficiency. These patients not only have multisystem autoimmune disease but also display morphologic and developmental abnormalities. This disorder underscores the importance of ITCH ubiquitin ligase in many cellular processes. PMID:20170897

  13. Human ITCH E3 Ubiquitin Ligase Deficiency Causes Syndromic Multisystem Autoimmune Disease

    PubMed Central

    Lohr, Naomi J.; Molleston, Jean P.; Strauss, Kevin A.; Torres-Martinez, Wilfredo; Sherman, Eric A.; Squires, Robert H.; Rider, Nicholas L.; Chikwava, Kudakwashe R.; Cummings, Oscar W.; Morton, D. Holmes; Puffenberger, Erik G.

    2010-01-01

    Ubiquitin ligases play an important role in the regulation of the immune system. Absence of Itch E3 ubiquitin ligase in mice has been shown to cause severe autoimmune disease. Using autozygosity mapping in a large Amish kindred, we identified a linkage region on chromosome 20 and selected candidate genes for screening. We describe, in ten patients, identification of a mutation resulting in truncation of ITCH. These patients represent the first reported human phenotype associated with ITCH deficiency. These patients not only have multisystem autoimmune disease but also display morphologic and developmental abnormalities. This disorder underscores the importance of ITCH ubiquitin ligase in many cellular processes. PMID:20170897

  14. Preliminary evaluation of the ligase chain reaction for specific detection of Neisseria gonorrhoeae.

    PubMed Central

    Birkenmeyer, L; Armstrong, A S

    1992-01-01

    Rapid identification of Neisseria gonorrhoeae in clinical specimens is essential for effective control. Traditional culture requires a minimum of 24 h, and for some specimens harboring gonococci, the gonococci fail to grow or are misidentified. The recently described ligase chain reaction (LCR) is a highly specific and sensitive DNA amplification technique which was evaluated as an alternative to routine culture. Three LCR probe sets were used. Two of the probe sets were directed against the multi-copy Opa genes (Omp-II), while the third set was targeted against the multicopy Pilin genes. Each LCR probe set was evaluated with 260 microorganisms including 136 global isolates of N. gonorrhoeae, 41 isolates of N. meningitidis, and 10 isolates of N. lactamica; 26 nonpathogenic Neisseria strains; and 47 isolates of non-Neisseria species that may reside in clinical specimens. Amplification products were detected by using the IMx LCR format (Abbott Laboratories, Abbott Park, Ill.). Strains of N. gonorrhoeae were assayed at 270 cells per LCR (approximately 6.7 x 10(4) CFU/ml) with the Opa and Pilin probes, producing signals at least 21 and 15 times above background, respectively. In contrast, only background values were observed when testing the probe sets with 124 nongonococcal strains at 1.3 x 10(6) cells per LCR (approximately 3.2 x 10(8) CFU/ml). One hundred urogenital specimens were assayed by LCR, and compared with culture, the three probes were 100% sensitive (8 of 8) and 97.8% specific (90 of 92), resulting in an agreement of 98% (98 of 100). On the basis of the results of these preliminary studies, LCR has the potential to be an accurate and rapid DNA probe assay for the detection of N. gonorrhoeae in clinical specimens. PMID:1452689

  15. Enzyme-catalysed assembly of DNA hydrogel

    NASA Astrophysics Data System (ADS)

    Um, Soong Ho; Lee, Jong Bum; Park, Nokyoung; Kwon, Sang Yeon; Umbach, Christopher C.; Luo, Dan

    2006-10-01

    DNA is a remarkable polymer that can be manipulated by a large number of molecular tools including enzymes. A variety of geometric objects, periodic arrays and nanoscale devices have been constructed. Previously we synthesized dendrimer-like DNA and DNA nanobarcodes from branched DNA via ligases. Here we report the construction of a hydrogel entirely from branched DNA that are three-dimensional and can be crosslinked in nature. These DNA hydrogels were biocompatible, biodegradable, inexpensive to fabricate and easily moulded into desired shapes and sizes. The distinct difference of the DNA hydrogel to other bio-inspired hydrogels (including peptide-based, alginate-based and DNA (linear)-polyacrylamide hydrogels) is that the crosslinking is realized via efficient, ligase-mediated reactions. The advantage is that the gelling processes are achieved under physiological conditions and the encapsulations are accomplished in situ-drugs including proteins and even live mammalian cells can be encapsulated in the liquid phase eliminating the drug-loading step and also avoiding denaturing conditions. Fine tuning of these hydrogels is easily accomplished by adjusting the initial concentrations and types of branched DNA monomers, thus allowing the hydrogels to be tailored for specific applications such as controlled drug delivery, tissue engineering, 3D cell culture, cell transplant therapy and other biomedical applications.

  16. Structural characterization of filaments formed by human Xrcc4–Cernunnos/XLF complex involved in nonhomologous DNA end-joining

    PubMed Central

    Ropars, Virginie; Drevet, Pascal; Legrand, Pierre; Baconnais, Sonia; Amram, Jeremy; Faure, Guilhem; Márquez, José A.; Piétrement, Olivier; Guerois, Raphaël; Callebaut, Isabelle; Le Cam, Eric; Revy, Patrick; de Villartay, Jean-Pierre; Charbonnier, Jean-Baptiste

    2011-01-01

    Cernunnos/XLF is a core protein of the nonhomologous DNA end-joining (NHEJ) pathway that processes the majority of DNA double-strand breaks in mammals. Cernunnos stimulates the final ligation step catalyzed by the complex between DNA ligase IV and Xrcc4 (X4). Here we present the crystal structure of the X41–157-Cernunnos1–224 complex at 5.5-Å resolution and identify the relative positions of the two factors and their binding sites. The X-ray structure reveals a filament arrangement for X41–157 and Cernunnos1–224 homodimers mediated by repeated interactions through their N-terminal head domains. A filament arrangement of the X4–Cernunnos complex was confirmed by transmission electron microscopy analyses both with truncated and full-length proteins. We further modeled the interface and used structure-based site-directed mutagenesis and calorimetry to characterize the roles of various residues at the X4–Cernunnos interface. We identified four X4 residues (Glu55, Asp58, Met61, and Phe106) essential for the interaction with Cernunnos. These findings provide new insights into the molecular bases for stimulatory and bridging roles of Cernunnos in the final DNA ligation step. PMID:21768349

  17. The ubiquitin ligase HACE1 regulates Golgi membrane dynamics during the cell cycle

    PubMed Central

    Tang, Danming; Xiang, Yi; De Renzis, Stefano; Rink, Jochen; Zheng, Gen; Zerial, Marino; Wang, Yanzhuang

    2012-01-01

    Partitioning of the Golgi membrane into daughter cells during mammalian cell division occurs through a unique disassembly and reassembly process that is regulated by ubiquitination. However, the identity of the ubiquitin ligase is unknown. Here we show that the Homologous to the E6-AP Carboxyl Terminus (HECT) domain containing ubiquitin ligase HACE1 is targeted to the Golgi membrane through interactions with Rab proteins. The ubiquitin ligase activity of HACE1 in mitotic Golgi disassembly is required for subsequent postmitotic Golgi membrane fusion. Depletion of HACE1 using small interfering RNAs or expression of an inactive HACE1 mutant protein in cells impaired postmitotic Golgi membrane fusion. The identification of HACE1 as a Golgi-localized ubiquitin ligase provides evidence that ubiquitin has a critical role in Golgi biogenesis during the cell cycle. PMID:21988917

  18. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    DOE PAGESBeta

    Liu, Daniel S.; Nivon, Lucas G.; Richter, Florian; Goldman, Peter J.; Deerinck, Thomas J.; Yao, Jennifer Z.; Richardson, Douglas; Phipps, William S.; Ye, Anne Z.; Ellisman, Mark H.; et al

    2014-10-13

    In this study, chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of themore » intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.« less

  19. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    SciTech Connect

    Liu, Daniel S.; Nivon, Lucas G.; Richter, Florian; Goldman, Peter J.; Deerinck, Thomas J.; Yao, Jennifer Z.; Richardson, Douglas; Phipps, William S.; Ye, Anne Z.; Ellisman, Mark H.; Drennan, Catherine L.; Baker, David; Ting, Alice Y.

    2014-10-13

    In this study, chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.

  20. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    PubMed Central

    Liu, Daniel S.; Nivón, Lucas G.; Richter, Florian; Goldman, Peter J.; Deerinck, Thomas J.; Yao, Jennifer Z.; Richardson, Douglas; Phipps, William S.; Ye, Anne Z.; Ellisman, Mark H.; Drennan, Catherine L.; Baker, David; Ting, Alice Y.

    2014-01-01

    Chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies. PMID:25313043

  1. Cernunnos/XLF: a new player in DNA double-strand break repair.

    PubMed

    Yano, Ken-ichi; Morotomi-Yano, Keiko; Akiyama, Hidenori

    2009-06-01

    Non-homologous end-joining (NHEJ) is the predominant repair pathway for DNA double-strand breaks (DSBs) in vertebrates and also plays a crucial role in V(D)J recombination of immunoglobulin genes. Cernunnos/XLF is a newly identified core factor for NHEJ, and its defect causes a genetic disease characterized by neural disorders, immunodeficiency and increased radiosensitivity. Cernunnos/XLF has at least two distinct functions in NHEJ. Cernunnos/XLF interacts with and stimulates the XRCC4/DNA ligase IV complex, which acts at the final ligation step in NHEJ. In living cells, Cernunnos/XLF quickly responds to DSB induction and accumulates at damaged sites in a Ku-dependent but XRCC4-independent manner. These observations indicate that Cernunnos/XLF plays a unique role in bridging damage sensing and DSB rejoining steps of NHEJ. Recent crystallographic analyses of the homodimeric Cernunnos/XLF protein provide structural insights into the Cernunnos/XLF functions. These studies offer important clues toward understanding the molecular mechanism for NHEJ-defective diseases. PMID:18992362

  2. Multiple Pathways Suppress Telomere Addition to DNA Breaks in the Drosophila Germline

    PubMed Central

    Beaucher, Michelle; Zheng, Xiao-Feng; Amariei, Flavia; Rong, Yikang S.

    2012-01-01

    Telomeres protect chromosome ends from being repaired as double-strand breaks (DSBs). Just as DSB repair is suppressed at telomeres, de novo telomere addition is suppressed at the site of DSBs. To identify factors responsible for this suppression, we developed an assay to monitor de novo telomere formation in Drosophila, an organism in which telomeres can be established on chromosome ends with essentially any sequence. Germline expression of the I-SceI endonuclease resulted in precise telomere formation at its cut site with high efficiency. Using this assay, we quantified the frequency of telomere formation in different genetic backgrounds with known or possible defects in DNA damage repair. We showed that disruption of DSB repair factors (Rad51 or DNA ligase IV) or DSB sensing factors (ATRIP or MDC1) resulted in more efficient telomere formation. Interestingly, partial disruption of factors that normally regulate telomere protection (ATM or NBS) also led to higher frequencies of telomere formation, suggesting that these proteins have opposing roles in telomere maintenance vs. establishment. In the ku70 mutant background, telomere establishment was preceded by excessive degradation of DSB ends, which were stabilized upon telomere formation. Most strikingly, the removal of ATRIP caused a dramatic increase in telomeric retrotransposon attachment to broken ends. Our study identifies several pathways thatsuppress telomere addition at DSBs, paving the way for future mechanistic studies. PMID:22446318

  3. IV treatment at home

    MedlinePlus

    ... home; PICC line - home; Infusion therapy - home; Home health care - IV treatment ... Often, home health care nurses will come to your home to give you the medicine. Sometimes, a family member, a friend, or ...

  4. GCF Mark IV development

    NASA Technical Reports Server (NTRS)

    Mortensen, L. O.

    1982-01-01

    The Mark IV ground communication facility (GCF) as it is implemented to support the network consolidation program is reviewed. Changes in the GCF are made in the area of increased capacity. Common carrier circuits are the medium for data transfer. The message multiplexing in the Mark IV era differs from the Mark III era, in that all multiplexing is done in a GCF computer under GCF software control, which is similar to the multiplexing currently done in the high speed data subsystem.

  5. Comprehensive database of human E3 ubiquitin ligases: application to aquaporin-2 regulation.

    PubMed

    Medvar, Barbara; Raghuram, Viswanathan; Pisitkun, Trairak; Sarkar, Abhijit; Knepper, Mark A

    2016-07-01

    Aquaporin-2 (AQP2) is regulated in part via vasopressin-mediated changes in protein half-life that are in turn dependent on AQP2 ubiquitination. Here we addressed the question, "What E3 ubiquitin ligase is most likely to be responsible for AQP2 ubiquitination?" using large-scale data integration based on Bayes' rule. The first step was to bioinformatically identify all E3 ligase genes coded by the human genome. The 377 E3 ubiquitin ligases identified in the human genome, consisting predominant of HECT, RING, and U-box proteins, have been used to create a publically accessible and downloadable online database (https://hpcwebapps.cit.nih.gov/ESBL/Database/E3-ligases/). We also curated a second database of E3 ligase accessory proteins that included BTB domain proteins, cullins, SOCS-box proteins, and F-box proteins. Using Bayes' theorem to integrate information from multiple large-scale proteomic and transcriptomic datasets, we ranked these 377 E3 ligases with respect to their probability of interaction with AQP2. Application of Bayes' rule identified the E3 ligases most likely to interact with AQP2 as (in order of probability): NEDD4 and NEDD4L (tied for first), AMFR, STUB1, ITCH, ZFPL1. Significantly, the two E3 ligases tied for top rank have also been studied extensively in the reductionist literature as regulatory proteins in renal tubule epithelia. The concordance of conclusions from reductionist and systems-level data provides strong motivation for further studies of the roles of NEDD4 and NEDD4L in the regulation of AQP2 protein turnover. PMID:27199454

  6. Structure of the HHARI Catalytic Domain Shows Glimpses of a HECT E3 Ligase

    PubMed Central

    Spratt, Donald E.; Mercier, Pascal; Shaw, Gary S.

    2013-01-01

    The ubiquitin-signaling pathway utilizes E1 activating, E2 conjugating, and E3 ligase enzymes to sequentially transfer the small modifier protein ubiquitin to a substrate protein. During the last step of this cascade different types of E3 ligases either act as scaffolds to recruit an E2 enzyme and substrate (RING), or form an ubiquitin-thioester intermediate prior to transferring ubiquitin to a substrate (HECT). The RING-inBetweenRING-RING (RBR) proteins constitute a unique group of E3 ubiquitin ligases that includes the Human Homologue of Drosophila Ariadne (HHARI). These E3 ligases are proposed to use a hybrid RING/HECT mechanism whereby the enzyme uses facets of both the RING and HECT enzymes to transfer ubiquitin to a substrate. We now present the solution structure of the HHARI RING2 domain, the key portion of this E3 ligase required for the RING/HECT hybrid mechanism. The structure shows the domain possesses two Zn2+-binding sites and a single exposed cysteine used for ubiquitin catalysis. A structural comparison of the RING2 domain with the HECT E3 ligase NEDD4 reveals a near mirror image of the cysteine and histidine residues in the catalytic site. Further, a tandem pair of aromatic residues exists near the C-terminus of the HHARI RING2 domain that is conserved in other RBR E3 ligases. One of these aromatic residues is remotely located from the catalytic site that is reminiscent of the location found in HECT E3 enzymes where it is used for ubiquitin catalysis. These observations provide an initial structural rationale for the RING/HECT hybrid mechanism for ubiquitination used by the RBR E3 ligases. PMID:24058416

  7. Autophagic UVRAG Promotes UV-Induced Photolesion Repair by Activation of the CRL4(DDB2) E3 Ligase.

    PubMed

    Yang, Yongfei; He, Shanshan; Wang, Qiaoxiu; Li, Fan; Kwak, Mi-Jeong; Chen, Sally; O'Connell, Douglas; Zhang, Tian; Pirooz, Sara Dolatshahi; Jeon, YongHeui; Chimge, Nyam-Osor; Frenkel, Baruch; Choi, Younho; Aldrovandi, Grace M; Oh, Byung-Ha; Yuan, Zengqiang; Liang, Chengyu

    2016-05-19

    UV-induced DNA damage, a major risk factor for skin cancers, is primarily repaired by nucleotide excision repair (NER). UV radiation resistance-associated gene (UVRAG) is a tumor suppressor involved in autophagy. It was initially isolated as a cDNA partially complementing UV sensitivity in xeroderma pigmentosum (XP), but this was not explored further. Here we show that UVRAG plays an integral role in UV-induced DNA damage repair. It localizes to photolesions and associates with DDB1 to promote the assembly and activity of the DDB2-DDB1-Cul4A-Roc1 (CRL4(DDB2)) ubiquitin ligase complex, leading to efficient XPC recruitment and global genomic NER. UVRAG depletion decreased substrate handover to XPC and conferred UV-damage hypersensitivity. We confirmed the importance of UVRAG for UV-damage tolerance using a Drosophila model. Furthermore, increased UV-signature mutations in melanoma correlate with reduced expression of UVRAG. Our results identify UVRAG as a regulator of CRL4(DDB2)-mediated NER and suggest that its expression levels may influence melanoma predisposition. PMID:27203177

  8. Characterization of a novel eukaryal nick-sealing RNA ligase from Naegleria gruberi

    PubMed Central

    Unciuleac, Mihaela-Carmen; Shuman, Stewart

    2015-01-01

    The proteome of the amoebo-flagellate protozoan Naegleria gruberi is rich in candidate RNA repair enzymes, including 15 putative RNA ligases, one of which, NgrRnl, is a eukaryal homolog of Deinococcus radiodurans RNA ligase, DraRnl. Here we report that purified recombinant NgrRnl seals nicked 3′-OH/5′-PO4 duplexes in which the 3′-OH strand is RNA. It does so via the “classic” ligase pathway, entailing reaction with ATP to form a covalent NgrRnl–AMP intermediate, transfer of AMP to the nick 5′-PO4, and attack of the RNA 3′-OH on the adenylylated nick to form a 3′–5′ phosphodiester. Unlike members of the four known families of ATP-dependent RNA ligases, NgrRnl lacks a carboxy-terminal appendage to its nucleotidyltransferase domain. Instead, it contains a defining amino-terminal domain that we show is important for 3′-OH/5′-PO4 nick-sealing and ligase adenylylation, but dispensable for phosphodiester synthesis at a preadenylylated nick. We propose that NgrRnl, DraRnl, and their homologs from diverse bacteria, viruses, and unicellular eukarya comprise a new “Rnl5 family” of nick-sealing ligases with a signature domain organization. PMID:25740837

  9. Cullin 3 Ubiquitin Ligases in Cancer Biology: Functions and Therapeutic Implications

    PubMed Central

    Chen, Hsin-Yi; Chen, Ruey-Hwa

    2016-01-01

    Cullin-RING ubiquitin ligases are the largest E3 ligase family in eukaryotes and are multiprotein complexes. In these complexes, the Cullin protein serves as a scaffold to connect two functional modules of the ligases, the catalytic subunit and substrate-binding subunit. To date, eight members of the Cullin family proteins have been identified. In the Cul3 ubiquitin ligases, Bric-a-brac/Tramtrack/Broad complex (BTB) domain-containing proteins function as a bridge to connect Cul3 and substrates. While the BTB domain is responsible for Cul3 binding, these proteins usually contain an additional domain for substrate interaction, such as MATH, kelch, Zn finger, and PAM, Highwire, and RPM-1 (PHR domain). With the existence of a large number of BTB proteins in human, the Cul3 ubiquitin ligases ubiquitinate a wide range of substrates involving in diverse cellular functions. In this review, we will discuss recent advances on the functions of Cul3 ubiquitin ligases in cancer development, progression, and therapeutic response and the dysregulation of Cul3-mediated ubiquitination events in human malignancies. In particular, we will focus on three Cul3 substrate adaptors, kelch-like ECH-associated protein (Keap1), kelch-like family member 20 (KLHL20), and speckle type BTB/POZ protein (SPOP), with the intent to highlight novel targets in cancer therapy. PMID:27200299

  10. The poxvirus encoded ubiquitin ligase, p28, is regulated by proteasomal degradation and autoubiquitination.

    PubMed

    Mottet, Kelly; Bareiss, Bettina; Milne, Craig D; Barry, Michele

    2014-11-01

    Virus manipulation of the ubiquitin-proteasome system has become increasingly apparent. Ubiquitin is a 76 amino acid protein that is post-translationally conjugated to target proteins, while poly-ubiquitination subsequently leads to degradation via the 26S proteasome. Target specificity is determined by a large family of ubiquitin ligases. Poxviruses encode p28, a highly conserved ubiquitin ligase expressed in a wide range of poxviruses (J. Virol. 79:597). Here we investigate the relationship between p28 and ubiquitination. Confocal microscopy indicated that orthologs of p28 co-localized with ubiquitin at the virus factory. Flow cytometry assays further demonstrated that p28 was regulated by proteasomal degradation. Moreover, when the ubiquitin ligase activity of p28 was disrupted by mutating the RING domain conjugated ubiquitin still localized to the viral factories, indicating that an unknown ubiquitin ligase(s) was responsible for regulating p28. Our observations indicate that p28 is a ubiquitin ligase that is regulated by ubiquitination and proteasomal degradation. PMID:25240226

  11. A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity.

    PubMed Central

    Galperin, M. Y.; Koonin, E. V.

    1997-01-01

    The recently developed PSI-BLAST method for sequence database search and methods for motif analysis were used to define and expand a superfamily of enzymes with an unusual nucleotide-binding fold, referred to as palmate, or ATP-grasp fold. In addition to D-alanine-D-alanine ligase, glutathione synthetase, biotin carboxylase, and carbamoyl phosphate synthetase, enzymes with known three-dimensional structures, the ATP-grasp domain is predicted in the ribosomal protein S6 modification enzyme (RimK), urea amidolyase, tubulin-tyrosine ligase, and three enzymes of purine biosynthesis. All these enzymes possess ATP-dependent carboxylate-amine ligase activity, and their catalytic mechanisms are likely to include acylphosphate intermediates. The ATP-grasp superfamily also includes succinate-CoA ligase (both ADP-forming and GDP-forming variants), malate-CoA ligase, and ATP-citrate lyase, enzymes with a carboxylate-thiol ligase activity, and several uncharacterized proteins. These findings significantly extend the variety of the substrates of ATP-grasp enzymes and the range of biochemical pathways in which they are involved, and demonstrate the complementarity between structural comparison and powerful methods for sequence analysis. PMID:9416615

  12. Ubiquitin-SUMO circuitry controls activated fanconi anemia ID complex dosage in response to DNA damage.

    PubMed

    Gibbs-Seymour, Ian; Oka, Yasuyoshi; Rajendra, Eeson; Weinert, Brian T; Passmore, Lori A; Patel, Ketan J; Olsen, Jesper V; Choudhary, Chunaram; Bekker-Jensen, Simon; Mailand, Niels

    2015-01-01

    We show that central components of the Fanconi anemia (FA) DNA repair pathway, the tumor suppressor proteins FANCI and FANCD2 (the ID complex), are SUMOylated in response to replication fork stalling. The ID complex is SUMOylated in a manner that depends on the ATR kinase, the FA ubiquitin ligase core complex, and the SUMO E3 ligases PIAS1/PIAS4 and is antagonized by the SUMO protease SENP6. SUMOylation of the ID complex drives substrate selectivity by triggering its polyubiquitylation by the SUMO-targeted ubiquitin ligase RNF4 to promote its removal from sites of DNA damage via the DVC1-p97 ubiquitin segregase complex. Deregulation of ID complex SUMOylation compromises cell survival following replication stress. Our results uncover a regulatory role for SUMOylation in the FA pathway, and we propose that ubiquitin-SUMO signaling circuitry is a mechanism that contributes to the balance of activated ID complex dosage at sites of DNA damage. PMID:25557546

  13. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1.

    PubMed

    Harrison, Joseph S; Cornett, Evan M; Goldfarb, Dennis; DaRosa, Paul A; Li, Zimeng M; Yan, Feng; Dickson, Bradley M; Guo, Angela H; Cantu, Daniel V; Kaustov, Lilia; Brown, Peter J; Arrowsmith, Cheryl H; Erie, Dorothy A; Major, Michael B; Klevit, Rachel E; Krajewski, Krzysztof; Kuhlman, Brian; Strahl, Brian D; Rothbart, Scott B

    2016-01-01

    The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs (HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here, we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1 ubiquitylation towards multiple lysines on the H3 tail adjacent to the UHRF1 histone-binding site. Collectively, our studies are the first demonstrations of a DNA-protein interaction and an epigenetic modification directly regulating E3 ubiquitin ligase activity. They also define an orchestrated epigenetic control mechanism involving modifications both to histones and DNA that facilitate UHRF1 chromatin targeting, H3 ubiquitylation, and DNA methylation inheritance. PMID:27595565

  14. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1

    PubMed Central

    Harrison, Joseph S; Cornett, Evan M; Goldfarb, Dennis; DaRosa, Paul A; Li, Zimeng M; Yan, Feng; Dickson, Bradley M; Guo, Angela H; Cantu, Daniel V; Kaustov, Lilia; Brown, Peter J; Arrowsmith, Cheryl H; Erie, Dorothy A; Major, Michael B; Klevit, Rachel E; Krajewski, Krzysztof; Kuhlman, Brian; Strahl, Brian D; Rothbart, Scott B

    2016-01-01

    The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs (HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here, we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1 ubiquitylation towards multiple lysines on the H3 tail adjacent to the UHRF1 histone-binding site. Collectively, our studies are the first demonstrations of a DNA-protein interaction and an epigenetic modification directly regulating E3 ubiquitin ligase activity. They also define an orchestrated epigenetic control mechanism involving modifications both to histones and DNA that facilitate UHRF1 chromatin targeting, H3 ubiquitylation, and DNA methylation inheritance. DOI: http://dx.doi.org/10.7554/eLife.17101.001 PMID:27595565

  15. Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B.

    PubMed

    Hannah, Jeffrey; Zhou, Pengbo

    2015-11-15

    The cullin 4 subfamily of genes includes CUL4A and CUL4B, which share a mostly identical amino acid sequence aside from the elongated N-terminal region in CUL4B. Both act as scaffolding proteins for modular cullin RING ligase 4 (CRL4) complexes which promote the ubiquitination of a variety of substrates. CRL4 function is vital to cells as loss of both genes or their shared substrate adaptor protein DDB1 halts proliferation and eventually leads to cell death. Due to their high structural similarity, CUL4A and CUL4B share a substantial overlap in function. However, in some cases, differences in subcellular localization, spatiotemporal expression patterns and stress-inducibility preclude functional compensation. In this review, we highlight the most essential functions of the CUL4 genes in: DNA repair and replication, chromatin-remodeling, cell cycle regulation, embryogenesis, hematopoiesis and spermatogenesis. CUL4 genes are also clinically relevant as dysregulation can contribute to the onset of cancer and CRL4 complexes are often hijacked by certain viruses to promote viral replication and survival. Also, mutations in CUL4B have been implicated in a subset of patients suffering from syndromic X-linked intellectual disability (AKA mental retardation). Interestingly, the antitumor effects of immunomodulatory drugs are caused by their binding to the CRL4CRBN complex and re-directing the E3 ligase towards the Ikaros transcription factors IKZF1 and IKZF3. Because of their influence over key cellular functions and relevance to human disease, CRL4s are considered promising targets for therapeutic intervention. PMID:26344709

  16. A JUMONJI Protein with E3 Ligase and Histone H3 Binding Activities Affects Transposon Silencing in Arabidopsis.

    PubMed

    Kabelitz, Tina; Brzezinka, Krzysztof; Friedrich, Thomas; Górka, Michał; Graf, Alexander; Kappel, Christian; Bäurle, Isabel

    2016-05-01

    Transposable elements (TEs) make up a large proportion of eukaryotic genomes. As their mobilization creates genetic variation that threatens genome integrity, TEs are epigenetically silenced through several pathways, and this may spread to neighboring sequences. JUMONJI (JMJ) proteins can function as antisilencing factors and prevent silencing of genes next to TEs Whether TE silencing is counterbalanced by the activity of antisilencing factors is still unclear. Here, we characterize JMJ24 as a regulator of TE silencing. We show that loss of JMJ24 results in increased silencing of the DNA transposon AtMu1c, while overexpression of JMJ24 reduces silencing. JMJ24 has a JumonjiC (JmjC) domain and two RING domains. JMJ24 autoubiquitinates in vitro, demonstrating E3 ligase activity of the RING domain(s). JMJ24-JmjC binds the N-terminal tail of histone H3, and full-length JMJ24 binds histone H3 in vivo. JMJ24 activity is anticorrelated with histone H3 Lys 9 dimethylation (H3K9me2) levels at AtMu1c Double mutant analyses with epigenetic silencing mutants suggest that JMJ24 antagonizes histone H3K9me2 and requires H3K9 methyltransferases for its activity on AtMu1c Genome-wide transcriptome analysis indicates that JMJ24 affects silencing at additional TEs Our results suggest that the JmjC domain of JMJ24 has lost demethylase activity but has been retained as a binding domain for histone H3. This is in line with phylogenetic analyses indicating that JMJ24 (with the mutated JmjC domain) is widely conserved in angiosperms. Taken together, this study assigns a role in TE silencing to a conserved JmjC-domain protein with E3 ligase activity, but no demethylase activity. PMID:26979329

  17. Interplanetary Type IV Bursts

    NASA Astrophysics Data System (ADS)

    Hillaris, A.; Bouratzis, C.; Nindos, A.

    2016-08-01

    We study the characteristics of moving type IV radio bursts that extend to hectometric wavelengths (interplanetary type IV or type {IV}_{{IP}} bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprises 48 interplanetary type IV bursts observed with the Radio and Plasma Wave Investigation (WAVES) instrument onboard Wind in the 13.825 MHz - 20 kHz frequency range. The dynamic spectra of the Radio Solar Telescope Network (RSTN), the Nançay Decametric Array (DAM), the Appareil de Routine pour le Traitement et l' Enregistrement Magnetique de l' Information Spectral (ARTEMIS-IV), the Culgoora, Hiraso, and the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) Radio Spectrographs were used to track the evolution of the events in the low corona. These were supplemented with soft X-ray (SXR) flux-measurements from the Geostationary Operational Environmental Satellite (GOES) and coronal mass ejections (CME) data from the Large Angle and Spectroscopic Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). Positional information of the coronal bursts was obtained by the Nançay Radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs, and SXR flares. The majority of the events (45) were characterized as compact, their duration was on average 106 minutes. This type of events was, mostly, associated with M- and X-class flares (40 out of 45) and fast CMEs, 32 of these events had CMEs faster than 1000 km s^{-1}. Furthermore, in 43 compact events the CME was possibly subjected to reduced aerodynamic drag as it was propagating in the wake of a previous CME. A minority (three) of long-lived type {IV}_{{IP}} bursts was detected, with durations from 960 minutes to 115 hours. These events are referred to as extended or long duration and appear to replenish their energetic electron content, possibly from electrons escaping from the corresponding coronal

  18. Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate

    NASA Technical Reports Server (NTRS)

    Winters, T. A.; Russell, P. S.; Kohli, M.; Dar, M. E.; Neumann, R. D.; Jorgensen, T. J.

    1999-01-01

    Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.

  19. Structural basis of tubulin tyrosination by tubulin tyrosine ligase.

    PubMed

    Prota, Andrea E; Magiera, Maria M; Kuijpers, Marijn; Bargsten, Katja; Frey, Daniel; Wieser, Mara; Jaussi, Rolf; Hoogenraad, Casper C; Kammerer, Richard A; Janke, Carsten; Steinmetz, Michel O

    2013-02-01

    Tubulin tyrosine ligase (TTL) catalyzes the post-translational retyrosination of detyrosinated α-tubulin. Despite the indispensable role of TTL in cell and organism development, its molecular mechanism of action is poorly understood. By solving crystal structures of TTL in complex with tubulin, we here demonstrate that TTL binds to the α and β subunits of tubulin and recognizes the curved conformation of the dimer. Biochemical and cellular assays revealed that specific tubulin dimer recognition controls the activity of the enzyme, and as a consequence, neuronal development. The TTL-tubulin structure further illustrates how the enzyme binds the functionally crucial C-terminal tail sequence of α-tubulin and how this interaction catalyzes the tyrosination reaction. It also reveals how TTL discriminates between α- and β-tubulin, and between different post-translationally modified forms of α-tubulin. Together, our data suggest that TTL has specifically evolved to recognize and modify tubulin, thus highlighting a fundamental role of the evolutionary conserved tubulin tyrosination cycle in regulating the microtubule cytoskeleton. PMID:23358242

  20. Biotin Protein Ligase Is a Target for New Antibacterials.

    PubMed

    Feng, Jiage; Paparella, Ashleigh S; Booker, Grant W; Polyak, Steven W; Abell, Andrew D

    2016-01-01

    There is a desperate need for novel antibiotic classes to combat the rise of drug resistant pathogenic bacteria, such as Staphylococcus aureus. Inhibitors of the essential metabolic enzyme biotin protein ligase (BPL) represent a promising drug target for new antibacterials. Structural and biochemical studies on the BPL from S. aureus have paved the way for the design and development of new antibacterial chemotherapeutics. BPL employs an ordered ligand binding mechanism for the synthesis of the reaction intermediate biotinyl-5'-AMP from substrates biotin and ATP. Here we review the structure and catalytic mechanism of the target enzyme, along with an overview of chemical analogues of biotin and biotinyl-5'-AMP as BPL inhibitors reported to date. Of particular promise are studies to replace the labile phosphoroanhydride linker present in biotinyl-5'-AMP with alternative bioisosteres. A novel in situ click approach using a mutant of S. aureus BPL as a template for the synthesis of triazole-based inhibitors is also presented. These approaches can be widely applied to BPLs from other bacteria, as well as other closely related metabolic enzymes and antibacterial drug targets. PMID:27463729

  1. Structural basis of tubulin tyrosination by tubulin tyrosine ligase

    PubMed Central

    Prota, Andrea E.; Magiera, Maria M.; Kuijpers, Marijn; Bargsten, Katja; Frey, Daniel; Wieser, Mara; Jaussi, Rolf; Hoogenraad, Casper C.; Kammerer, Richard A.; Janke, Carsten

    2013-01-01

    Tubulin tyrosine ligase (TTL) catalyzes the post-translational retyrosination of detyrosinated α-tubulin. Despite the indispensable role of TTL in cell and organism development, its molecular mechanism of action is poorly understood. By solving crystal structures of TTL in complex with tubulin, we here demonstrate that TTL binds to the α and β subunits of tubulin and recognizes the curved conformation of the dimer. Biochemical and cellular assays revealed that specific tubulin dimer recognition controls the activity of the enzyme, and as a consequence, neuronal development. The TTL–tubulin structure further illustrates how the enzyme binds the functionally crucial C-terminal tail sequence of α-tubulin and how this interaction catalyzes the tyrosination reaction. It also reveals how TTL discriminates between α- and β-tubulin, and between different post-translationally modified forms of α-tubulin. Together, our data suggest that TTL has specifically evolved to recognize and modify tubulin, thus highlighting a fundamental role of the evolutionary conserved tubulin tyrosination cycle in regulating the microtubule cytoskeleton. PMID:23358242

  2. Ubiquitin-protein ligases in muscle wasting: multiple parallel pathways?

    NASA Technical Reports Server (NTRS)

    Lecker, Stewart H.; Goldberg, A. L. (Principal Investigator)

    2003-01-01

    PURPOSE OF REVIEW: Studies in a wide variety of animal models of muscle wasting have led to the concept that increased protein breakdown via the ubiquitin-proteasome pathway is responsible for the loss of muscle mass seen as muscle atrophy. The complexity of the ubiquitination apparatus has hampered our understanding of how this pathway is activated in atrophying muscles and which ubiquitin-conjugating enzymes in muscle are responsible. RECENT FINDINGS: Recent experiments have shown that two newly identified ubiquitin-protein ligases (E3s), atrogin-1/MAFbx and MURF-1, are critical in the development of muscle atrophy. Other in-vitro studies also implicated E2(14k) and E3alpha, of the N-end rule pathway, as playing an important role in the process. SUMMARY: It seems likely that multiple pathways of ubiquitin conjugation are activated in parallel in atrophying muscle, perhaps to target for degradation specific classes of muscle proteins. The emerging challenge will be to define the protein targets for, as well as inhibitors of, these E3s.

  3. Screening for E3-Ubiquitin ligase inhibitors: challenges and opportunities

    PubMed Central

    Landré, Vivien; Rotblat, Barak; Melino, Sonia; Bernassola, Francesca; Melino, Gerry

    2014-01-01

    The ubiquitin proteasome system (UPS) plays a role in the regulation of most cellular pathways, and its deregulation has been implicated in a wide range of human pathologies that include cancer, neurodegenerative and immunological disorders and viral infections. Targeting the UPS by small molecular regulators thus provides an opportunity for the development of therapeutics for the treatment of several diseases. The proteasome inhibitor Bortezomib was approved for treatment of hematologic malignancies by the FDA in 2003, becoming the first drug targeting the ubiquitin proteasome system in the clinic. Development of drugs targeting specific components of the ubiquitin proteasome system, however, has lagged behind, mainly due to the complexity of the ubiquitination reaction and its outcomes. However, significant advances have been made in recent years in understanding the molecular nature of the ubiquitination system and the vast variety of cellular signals that it produces. Additionally, improvement of screening methods, both in vitro and in silico, have led to the discovery of a number of compounds targeting components of the ubiquitin proteasome system, and some of these have now entered clinical trials. Here, we discuss the current state of drug discovery targeting E3 ligases and the opportunities and challenges that it provides. PMID:25237759

  4. Selective inhibition of Biotin Protein Ligase from Staphylococcus aureus*

    PubMed Central

    Soares da Costa, Tatiana P.; Tieu, William; Yap, Min Y.; Pendini, Nicole R.; Polyak, Steven W.; Sejer Pedersen, Daniel; Morona, Renato; Turnidge, John D.; Wallace, John C.; Wilce, Matthew C. J.; Booker, Grant W.; Abell, Andrew D.

    2012-01-01

    There is a well documented need to replenish the antibiotic pipeline with new agents to combat the rise of drug resistant bacteria. One strategy to combat resistance is to discover new chemical classes immune to current resistance mechanisms that inhibit essential metabolic enzymes. Many of the obvious drug targets that have no homologous isozyme in the human host have now been investigated. Bacterial drug targets that have a closely related human homologue represent a new frontier in antibiotic discovery. However, to avoid potential toxicity to the host, these inhibitors must have very high selectivity for the bacterial enzyme over the human homolog. We have demonstrated that the essential enzyme biotin protein ligase (BPL) from the clinically important pathogen Staphylococcus aureus could be selectively inhibited. Linking biotin to adenosine via a 1,2,3 triazole yielded the first BPL inhibitor selective for S. aureus BPL over the human equivalent. The synthesis of new biotin 1,2,3-triazole analogues using click chemistry yielded our most potent structure (Ki 90 nm) with a >1100-fold selectivity for the S. aureus BPL over the human homologue. X-ray crystallography confirmed the mechanism of inhibitor binding. Importantly, the inhibitor showed cytotoxicity against S. aureus but not cultured mammalian cells. The biotin 1,2,3-triazole provides a novel pharmacophore for future medicinal chemistry programs to develop this new antibiotic class. PMID:22437830

  5. Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli

    PubMed Central

    Zechiedrich, E. Lynn; Khodursky, Arkady B.; Cozzarelli, Nicholas R.

    1997-01-01

    DNA replication and recombination generate intertwined DNA intermediates that must be decatenated for chromosome segregation to occur. We showed recently that topoisomerase IV (topo IV) is the only important decatenase of DNA replication intermediates in bacteria. Earlier results, however, indicated that DNA gyrase has the primary role in unlinking the catenated products of site-specific recombination. To address this discordance, we constructed a set of isogenic strains that enabled us to inhibit selectively with the quinolone norfloxacin topo IV, gyrase, both enzymes, or neither enzyme in vivo. We obtained identical results for the decatenation of the products of two different site-specific recombination enzymes, phage λ integrase and transposon Tn3 resolvase. Norfloxacin blocked decatenation in wild-type strains, but had no effect in strains with drug-resistance mutations in both gyrase and topo IV. When topo IV alone was inhibited, decatenation was almost completely blocked. If gyrase alone were inhibited, most of the catenanes were unlinked. We showed that topo IV is the primary decatenase in vivo and that this function is dependent on the level of DNA supercoiling. We conclude that the role of gyrase in decatenation is to introduce negative supercoils into DNA, which makes better substrates for topo IV. We also discovered that topo IV has an unexpectedly strong DNA relaxation activity that, together with gyrase and topo I, is able to set the supercoiling levels in Escherichia coli. PMID:9334322

  6. Circulating E3 ligases are novel and sensitive biomarkers for diagnosis of acute myocardial infarction

    PubMed Central

    Han, Qiu-Yue; Wang, Hong-Xia; Liu, Xiao-Hong; Guo, Cai-Xia; Hua, Qi; Yu, Xiao-Hong; Li, Nan; Yang, Yan-Zong; Du, Jie

    2015-01-01

    Ubiquitin ligase (E3) is a decisive element of the ubiquitin-proteasome system (UPS), which is the main pathway for intracellular protein turnover. Recently, circulating E3 ligases have been increasingly considered as cancer biomarkers. In the present study, we aimed to determine if cardiac-specific E3 ligases in circulation can serve as novel predictors for early diagnosis of acute myocardial infarction (AMI). By screening and verifying their tissue expression patterns with microarray and real-time PCR analysis, six of 261 E3 ligases, including cardiac-specific Rnf207 and cardiac- and muscle-enriched Fbxo32/atrogin-1, Trim54/MuRF3, Trim63/MuRF1, Kbtbd10/KLHL41, Asb11 and Asb2 in mouse heart, were selected for the present study. In the AMI rats, the levels of five E3 ligases including Rnf207, Fbxo32, Trim54, Trim63 and Kbtbd10 in the plasma were significantly increased compared with control animals. Especially, the plasma levels of Rnf207 was markedly increased at 1 h, peaked at 3 h and decreased at 6–24 h after ligation. Further evaluation of E3 ligases in AMI patients confirmed that plasma Rnf207 level increased significantly compared with that in healthy people and patients without AMI, and showed a similar time course to that in AMI rats. Simultaneously, plasma level of cardiac troponin I (cTnI) was measured by ELISA assays. Finally, receiver operating characteristic (ROC) curve analysis indicated that Rnf207 showed a similar sensitivity and specificity to the classic biomarker troponin I for diagnosis of AMI. Increased cardiac-specific E3 ligase Rnf207 in plasma may be a novel and sensitive biomarkers for AMI in humans. PMID:25599194

  7. A Pathogen Type III Effector with a Novel E3 Ubiquitin Ligase Architecture

    PubMed Central

    Skarina, Tatiana; Xu, Xiaohui; Cui, Hong; Eschen-Lippold, Lennart; Egler, Monique; Srikumar, Tharan; Raught, Brian; Lee, Justin; Scheel, Dierk; Savchenko, Alexei; Bonas, Ulla

    2013-01-01

    Type III effectors are virulence factors of Gram-negative bacterial pathogens delivered directly into host cells by the type III secretion nanomachine where they manipulate host cell processes such as the innate immunity and gene expression. Here, we show that the novel type III effector XopL from the model plant pathogen Xanthomonas campestris pv. vesicatoria exhibits E3 ubiquitin ligase activity in vitro and in planta, induces plant cell death and subverts plant immunity. E3 ligase activity is associated with the C-terminal region of XopL, which specifically interacts with plant E2 ubiquitin conjugating enzymes and mediates formation of predominantly K11-linked polyubiquitin chains. The crystal structure of the XopL C-terminal domain revealed a single domain with a novel fold, termed XL-box, not present in any previously characterized E3 ligase. Mutation of amino acids in the central cavity of the XL-box disrupts E3 ligase activity and prevents XopL-induced plant cell death. The lack of cysteine residues in the XL-box suggests the absence of thioester-linked ubiquitin-E3 ligase intermediates and a non-catalytic mechanism for XopL-mediated ubiquitination. The crystal structure of the N-terminal region of XopL confirmed the presence of a leucine-rich repeat (LRR) domain, which may serve as a protein-protein interaction module for ubiquitination target recognition. While the E3 ligase activity is required to provoke plant cell death, suppression of PAMP responses solely depends on the N-terminal LRR domain. Taken together, the unique structural fold of the E3 ubiquitin ligase domain within the Xanthomonas XopL is unprecedented and highlights the variation in bacterial pathogen effectors mimicking this eukaryote-specific activity. PMID:23359647

  8. RBR E3 ubiquitin ligases: new structures, new insights, new questions

    PubMed Central

    Spratt, Donald E.; Walden, Helen; Shaw, Gary S.

    2014-01-01

    The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology. PMID:24576094

  9. Complete primary structure of the sixth chain of human basement membrane collagen, alpha 6(IV). Isolation of the cDNAs for alpha 6(IV) and comparison with five other type IV collagen chains.

    PubMed

    Zhou, J; Ding, M; Zhao, Z; Reeders, S T

    1994-05-01

    Basement membranes were previously believed to contain five distinct type IV collagen subunits. We have recently isolated part of the cDNA for a novel type IV collagen, alpha 6(IV), and shown that COL4A6, the gene encoding this new chain, is deleted in Alport syndrome-associated leiomyomatosis (Zhou, J., Mochizuki, T., Smeets, H., Antignac, C., Laurila, P., de Paepe, A., Tryggvason, K., and Reeders, S. T. (1993) Science 261, 1167-1169). Here, we describe the entire human alpha 6(IV) cDNA and show that the gene encodes a classical type IV collagen with homology throughout its length to all the other five chains. There is a 21-residue signal peptide, a 1417-residue collagenous domain interrupted at 25 points, and a 228-residue carboxyl-terminal non-collagenous domain. When the complete primary structure of this new chain was compared with all the other known chains, it became clear that alpha 6(IV) has the most resemblance to alpha 2(IV) and alpha 4(IV). The evolution of the six chains was deduced, allowing a new classification of the type IV collagen family. The alpha 6(IV) chain is a candidate gene for X-linked Alport syndrome; knowledge of the complete structure of the chain will permit us to screen systematically for mutations in patients and to generate recombinant proteins and synthetic peptides for further study of cell-matrix interactions involving the alpha 6(IV) chain. PMID:8175748

  10. Complementary genetic screens identify the E3 ubiquitin ligase CBLC, as a modifier of PARP inhibitor sensitivity

    PubMed Central

    Brough, Rachel; Hodny, Zdenek; Ashworth, Alan; Bartek, Jiri; Lord, Christopher J.

    2015-01-01

    Based on a series of basic, preclinical and clinical studies, the Poly (ADP-ribose) Polymerase 1 (PARP1) inhibitor, olaparib, has recently been approved for use in ovarian cancer patients with BRCA1 or BRCA2 mutations. By identifying novel predictive biomarkers of tumour cell sensitivity to olaparib, it is possible that the utility of PARP inhibitors could be extended beyond this patient subgroup. Many of the known genetic determinants of PARP inhibitor response have key roles in DNA damage response (DDR) pathways. Although protein ubiquitylation is known to play an important role in regulating the DDR, the exact mechanisms by which this occurs are not fully understood. Using two parallel RNA interference-based screening approaches, we identified the E3 ubiquitin ligase, CBLC, as a candidate biomarker of response to olaparib. We validated this observation by demonstrating that silencing of CBLC causes increased sensitivity to olaparib in breast cancer cell line models and that defective homologous recombination (HR) DNA repair is the likely cause. This data provides an example of how defects in the ubiquitin machinery have the potential to influence the response of tumour cells to PARP inhibitors. PMID:25883215

  11. MEN2A carrier detection by combined polymerase chain reaction and ligase chain reaction (PCR/LCR) techniques

    SciTech Connect

    Wilson, V.L.; Wel, Q.; Danielson, M.S.

    1994-09-01

    Multiple endocrine neoplasia type 2A (MEN2A) is a dominantly inherited cancer syndrome that is characterized by medullary thyroid carcinoma, parathyroid hyperplasia and phaeoachromocytoma. MEN2A predisposing mutations have been shown to occur in the conserved cysteine rich extracellular domain of the ret proto-oncogene. Thus far, only five separate codons, C609, C611, C618, C620, and C634, each coding for cysteine residues in exons 10 and 11 of the human ret gene, have been associated with MEN2A. Direct analyses of all five of these codon sequences was performed by a combination of polymerase chain reaction (PCR) and ligase chain reaction (LCR) techniques. Genomic DNA was initially amplified with PCR primers surrounding the sequences of exons 10 and 11. Using a multiplex LCR reaction, and resolving the products on a 7 M urea, 10% polyacrylamide gel, the presence of a T{yields}C base substitution was immediately identified according to size. We have used these techniques to identify the prediposing mutation in genomic DNA from the proband of a MEN2A family and subsequently demonstrated the inheritance pattern of this same base substitution mutation in the rest of the family. These PCR/LCR techniques provide a rapid MEN2A detection scheme.

  12. E3-ubiquitin ligase Nedd4 determines the fate of AID-associated RNA polymerase II in B cells.

    PubMed

    Sun, Jianbo; Keim, Celia D; Wang, Jiguang; Kazadi, David; Oliver, Paula M; Rabadan, Raul; Basu, Uttiya

    2013-08-15

    Programmed mutagenesis of the immunoglobulin locus of B lymphocytes during class switch recombination (CSR) and somatic hypermutation requires RNA polymerase II (polII) transcription complex-dependent targeting of the DNA mutator activation-induced cytidine deaminase (AID). AID deaminates cytidine residues on substrate sequences in the immunoglobulin (Ig) locus via a transcription-dependent mechanism, and this activity is stimulated by the RNA polII stalling cofactor Spt5 and the 11-subunit cellular noncoding RNA 3'-5' exonucleolytic processing complex RNA exosome. The mechanism by which the RNA exosome recognizes immunoglobulin locus RNA substrates to stimulate AID DNA deamination activity on its in vivo substrate sequences is an important question. Here we report that E3-ubiquitin ligase Nedd4 destabilizes AID-associated RNA polII by a ubiquitination event, leading to generation of 3' end free RNA exosome RNA substrates at the Ig locus and other AID target sequences genome-wide. We found that lack of Nedd4 activity in B cells leads to accumulation of RNA exosome substrates at AID target genes and defective CSR. Taken together, our study links noncoding RNA processing following RNA polII pausing with regulation of the mutator AID protein. Our study also identifies Nedd4 as a regulator of noncoding RNAs that are generated by stalled RNA polII genome-wide. PMID:23964096

  13. PLATO IV Accountancy Index.

    ERIC Educational Resources Information Center

    Pondy, Dorothy, Comp.

    The catalog was compiled to assist instructors in planning community college and university curricula using the 48 computer-assisted accountancy lessons available on PLATO IV (Programmed Logic for Automatic Teaching Operation) for first semester accounting courses. It contains information on lesson access, lists of acceptable abbreviations for…

  14. IVS Technology Coordinator Report

    NASA Technical Reports Server (NTRS)

    Whitney, Alan

    2013-01-01

    This report of the Technology Coordinator includes the following: 1) continued work to implement the new VLBI2010 system, 2) the 1st International VLBI Technology Workshop, 3) a VLBI Digital- Backend Intercomparison Workshop, 4) DiFX software correlator development for geodetic VLBI, 5) a review of progress towards global VLBI standards, and 6) a welcome to new IVS Technology Coordinator Bill Petrachenko.

  15. The PLATO IV Architecture.

    ERIC Educational Resources Information Center

    Stifle, Jack

    The PLATO IV computer-based instructional system consists of a large scale centrally located CDC 6400 computer and a large number of remote student terminals. This is a brief and general description of the proposed input/output hardware necessary to interface the student terminals with the computer's central processing unit (CPU) using available…

  16. Entropy-driven mechanism of an E3 ligase.

    PubMed

    Truong, Khue; Su, Yang; Song, Jing; Chen, Yuan

    2011-06-28

    Ubiquitin-like modifications are macromolecular chemistry for which our understanding of the enzymatic mechanisms is lacking. Most E3 ligases in ubiquitin-like modifications do not directly participate in chemistry but are thought to confer allosteric effects; however, the nature of the allosteric effects has been elusive. Recent molecular dynamics simulations suggested that an E3 binding enhances the population of the conformational states of the E2·SUMO thioester that favor reactions. In this study, we conducted the first temperature-dependent enzyme kinetic analysis to investigate the role of an E3 on activation entropy and enthalpy. The small ubiquitin-like modifier (SUMO) E3, RanBP2, confers unusually large, favorable activation entropy to lower the activation energy of the reaction. Mutants of RanBP2, designed to alter the flexibilities of the E2·SUMO thioester, showed a direct correlation of their favorable entropic effects with their ability to restrict the conformational flexibility of the E2·SUMO thioester. While the more favorable activation entropy is consistent with the previously suggested role of E3 in conformational selection, the large positive entropy suggests a significant role of solvent in catalysis. Indeed, molecular dynamics simulations in explicit water revealed that the more stable E2·SUMO thioester upon E3 binding results in stabilization of a large number of bound water molecules. Liberating such structured water at the transition state can result in large favorable activation entropy but unfavorable activation enthalpy. The entropy-driven mechanism of the E3 is consistent with the lack of structural conservation among E3s despite their similar functions. This study also illustrates how proteins that bind both SUMO and E2 can function as E3s and how intrinsically unstructured proteins can enhance macromolecular chemistry in addition to their known advantages in protein--protein interactions. PMID:21568279

  17. Interaction of APC/C-E3 Ligase with Swi6/HP1 and Clr4/Suv39 in Heterochromatin Assembly in Fission Yeast*S⃞♦

    PubMed Central

    Dubey, Rudra Narayan; Nakwal, Nandni; Bisht, Kamlesh Kumar; Saini, Ashok; Haldar, Swati; Singh, Jagmohan

    2009-01-01

    Heterochromatin assembly in fission yeast is initiated by binding of Swi6/HP1 to the Lys-9-dimethylated H3 followed by spreading via cooperative recruitment of Swi6/HP1. Recruitment of Cohesin by Swi6/HP1 further stabilizes the heterochromatin structure and integrity. Subsequently, polyubiquitylation of Cut2 by anaphase-promoting complex-cyclosome (APC/C)-ubiquitin-protein isopeptide ligase (E3 ligase) followed by degradation of Cut2 releases Cut1, which cleaves the Rad21 subunit of Cohesin, facilitating sister chromatid separation during mitosis. Here, we demonstrate a surprising role of APC/C in assembly of heterochromatin and silencing at mating type, centromere, and ribosomal DNA loci. Coincidentally with the loss of silencing, recruitment of Swi6, H3-Lys-9-Me2, and Clr4 at dg-dh repeats at cen1 and the K region of mat locus is abrogated in mutants cut4, cut9, and nuc2. Surprisingly, both Cut4 and Cut9 are also highly enriched at these regions in wild type and depleted in swi6Δ mutant. Cut4 and Cut9 interact directly with Swi6/HP1 and Clr4, whereas the mutant Cut4 does not, suggesting that a direct physical interaction of APC subunits Cut4 and Cut9 with Swi6 and Clr4 is instrumental in heterochromatin assembly. The silencing defect in APC mutants is causally related to ubiquitylation activity of APC-E3 ligase. Like swi6 mutant, APC mutants are also defective in Cohesin recruitment and exhibit defects like lagging chromosomes, chromosome loss, and aberrant recombination in the mat region. In addition, APC mutants exhibit a bidirectional expression of dh repeats, suggesting a role in the RNA interference pathway. Thus, APC and heterochromatin proteins Swi6 and Clr4 play a mutually cooperative role in heterochromatin assembly, thereby ensuring chromosomal integrity, inheritance, and segregation during mitosis and meiosis. PMID:19117951

  18. Structure and synthesis of a lipid-containing bacteriophage. Amphiphilic properties of protein IV of bacteriophage PM2.

    PubMed

    Satake, H; Kania, M; Franklin, R M

    1981-03-01

    Interactions between lipids and the DNA-binding protein (protein IV) purified from bacteriophage PM2 were studied in vitro. The efficiency of incorporation of protein IV into single-walled liposomes was more than 90%. Protein IV embedded in liposomes interacted more strongly with PM2 DNA than protein IV alone. The DNA--protein-IV--liposome complex was relatively stable as observed by sedimentation behavior on a sucrose gradient. The interaction between DNA and the protein-IV--liposome was abolished by tryptic digestion, even though 40% of the protein remained in the vesicle. More than 70% of the amino acids of this embedded peptide segment were hydrophobic. Carboxypeptidase digestion of the protein-IV--liposome caused a release of 20% of the radioactivity of the vesicle without changing the DNA-binding ability of the complexes. Modification of the protein-IV--liposome with the chemical probe, 2,4-dinitrofluorobenzene, and analysis of the tryptic peptides released from the protein-IV--liposome demonstrated that the N-terminal basic amino acid cluster segment responsible for the DNA binding was located on the outer surface of the bilayer. These results support an earlier model in which protein IV anchors itself in the inner leaflet of the PM2 bilayer membrane, interacting with the DNA in the virion. PMID:6263621

  19. Exploring Peptide Ligase Orthologs in Actinobacteria-Discovery of Pseudopeptide Natural Products, Ketomemicins.

    PubMed

    Ogasawara, Yasushi; Kawata, Junpei; Noike, Motoyoshi; Satoh, Yasuharu; Furihata, Kazuo; Dairi, Tohru

    2016-06-17

    We recently identified a novel peptide ligase (PGM1), an ATP-grasp-ligase, that catalyzes amide bond formation between (S)-2-(3,5-dihydroxy-4-methoxyphenyl)-2-guanidinoacetic acid and ribosomally supplied oligopeptides in pheganomycin biosynthesis. This was the first example of an ATP-grasp-ligase utilizing peptides as nucleophiles. To explore the potential of this type of enzyme, we performed a BLAST search and identified many orthologs. The orthologs of Streptomyces mobaraensis, Salinispora tropica, and Micromonospora sp. were found in similar gene clusters consisting of six genes. To probe the functions of these genes, we heterologously expressed each of the clusters in Streptomyces lividans and detected novel and structurally similar pseudotripeptides in the broth of all transformants. Moreover, a recombinant PGM1 ortholog of Micromonospora sp. was demonstrated to be a novel dipeptide ligase catalyzing amide bond formation between amidino-arginine and dipeptides to yield tripeptides; this is the first report of a peptide ligase utilizing dipeptides as nucleophiles. PMID:27023439

  20. Leucine: tRNA Ligase from Cultured Cells of Nicotiana tabacum var. Xanthi

    PubMed Central

    Gore, Nigel R.; Wray, John L.

    1978-01-01

    Leucine:tRNA ligase was assayed in extracts from cultured tobacco (Nicotiana tabacum) XD cells by measuring the initial rate of aminoacylation of transfer RNA with l-[4,5-3H]leucine. Transfer RNA was purified from tobacco XD cells after the method of Vanderhoef et al. (Phytochemistry 9: 2291-2304). The buoyant density of leucine:tRNA ligase from cells grown for 100 generations in 2.5 mm [15N]nitrate and 30% deuterium oxide was 1.3397. After transfer of cells into light medium (2.5 mm [14N]nitrate and 100% H2O) the ligase activity increased and the buoyant density decreased with time to 1.3174 at 72 hours after transfer. It was concluded that leucine:tRNA ligase molecules were synthesized de novo from light amino acids during the period of activity increase. The width at half-peak height of the enzyme distribution profiles following isopycnic equilibrium centrifugation in caesium chloride remained constant at all times after transfer into light medium providing evidence for the loss of preexisting functional ligase molecules. It was concluded that during the period of activity increase the cellular level of enzyme activity was determined by a balance between de novo synthesis and the loss of functional enzyme molecules due to either inactivation or degradation. PMID:16660229

  1. ATLs and BTLs, plant-specific and general eukaryotic structurally-related E3 ubiquitin ligases.

    PubMed

    Guzmán, Plinio

    2014-02-01

    Major components of the ubiquitin proteasome system are the enzymes that operate on the transfer of ubiquitin to selected target substrate, known as ubiquitin ligases. The RING finger is a domain that is present in key classes of ubiquitin ligases. This domain coordinates the interaction with a suitable E2 conjugase and the transfer of ubiquitin from the E2 to protein targets. Additional domains coupled to the same polypeptide are important for modulating the function of these ubiquitin ligases. Plants contain several types of E3 ubiquitin ligases that in many cases have expanded as multigene families. Some families are specific to the plant lineage, whereas others may have a common ancestor among plants and other eukaryotic lineages. Arabidopsis Tóxicos en Levadura (ATLs) and BCA2 zinc finger ATLs (BTLs) are two families of ubiquitin ligases that share some common structural features. These are intronless genes that encode a highly related RING finger domain, and yet during evolutionary history, their mode of gene expansion and function is rather different. In each of these two families, the co-occurrence of transmembrane helices or C2/C2 (BZF finger) domains with a selected variation on the RING finger has been subjected to strong selection pressure in order to preserve their unique domain architectures during evolution. PMID:24388516

  2. Nonhomologous end joining of complex DNA double-strand breaks with proximal thymine glycol and interplay with base excision repair.

    PubMed

    Almohaini, Mohammed; Chalasani, Sri Lakshmi; Bafail, Duaa; Akopiants, Konstantin; Zhou, Tong; Yannone, Steven M; Ramsden, Dale A; Hartman, Matthew C T; Povirk, Lawrence F

    2016-05-01

    DNA double-strand breaks induced by ionizing radiation are often accompanied by ancillary oxidative base damage that may prevent or delay their repair. In order to better define the features that make some DSBs repair-resistant, XLF-dependent nonhomologous end joining of blunt-ended DSB substrates having the oxidatively modified nonplanar base thymine glycol at the first (Tg1), second (Tg2), third (Tg3) or fifth (Tg5) positions from one 3' terminus, was examined in human whole-cell extracts. Tg at the third position had little effect on end-joining even when present on both ends of the break. However, Tg as the terminal or penultimate base was a major barrier to end joining (>10-fold reduction in ligated products) and an absolute barrier when present at both ends. Dideoxy trapping of base excision repair intermediates indicated that Tg was excised from Tg1, Tg2 and Tg3 largely if not exclusively after DSB ligation. However, Tg was rapidly excised from the Tg5 substrate, resulting in a reduced level of DSB ligation, as well as slow concomitant resection of the opposite strand. Ligase reactions containing only purified Ku, XRCC4, ligase IV and XLF showed that ligation of Tg3 and Tg5 was efficient and only partially XLF-dependent, whereas ligation of Tg1 and Tg2 was inefficient and only detectable in the presence of XLF. Overall, the results suggest that promoting ligation of DSBs with proximal base damage may be an important function of XLF, but that Tg can still be a major impediment to repair, being relatively resistant to both trimming and ligation. Moreover, it appears that base excision repair of Tg can sometimes interfere with repair of DSBs that would otherwise be readily rejoined. PMID:27049455

  3. Type IV Pilin Proteins: Versatile Molecular Modules

    PubMed Central

    Giltner, Carmen L.; Nguyen, Ylan

    2012-01-01

    Summary: Type IV pili (T4P) are multifunctional protein fibers produced on the surfaces of a wide variety of bacteria and archaea. The major subunit of T4P is the type IV pilin, and structurally related proteins are found as components of the type II secretion (T2S) system, where they are called pseudopilins; of DNA uptake/competence systems in both Gram-negative and Gram-positive species; and of flagella, pili, and sugar-binding systems in the archaea. This broad distribution of a single protein family implies both a common evolutionary origin and a highly adaptable functional plan. The type IV pilin is a remarkably versatile architectural module that has been adopted widely for a variety of functions, including motility, attachment to chemically diverse surfaces, electrical conductance, acquisition of DNA, and secretion of a broad range of structurally distinct protein substrates. In this review, we consider recent advances in this research area, from structural revelations to insights into diversity, posttranslational modifications, regulation, and function. PMID:23204365

  4. Evaluation of circular DNA substrates for whole genome amplification prior to forensic analysis.

    PubMed

    Tate, Courtney M; Nuñez, Ada N; Goldstein, Cori A; Gomes, Iva; Robertson, James M; Kavlick, Mark F; Budowle, Bruce

    2012-03-01

    Forensic biological evidence often contains low quantities of DNA or substantially degraded DNA which makes samples refractory to genotype analysis. One approach that shows promise to overcome the limited quantity of DNA is whole genome amplification (WGA). One WGA technique, termed rolling circle amplification (RCA), involves the amplification of circular DNA fragments and this study evaluates a single-stranded (ss) DNA ligase enzyme for generating circular DNA templates for RCA WGA. Fast, efficient ligation of several sizes of ssDNA templates was achieved. The enzyme also ligated double-stranded (ds) DNA templates, a novel activity not previously reported. Adapter sequences containing optimal terminal nucleotide ends for increased ligation efficiency were designed and ligation of adapters to template DNA was optimized. Increased amplification of DNA templates was observed following WGA; however, no amplification advantage for ssDNA ligase treatment of templates was evident compared to linear templates. A multi-step process to utilize ssDNA ligase prior to WGA was developed and short tandem repeat (STR) analysis of simulated low template (LT) and fragmented DNA was evaluated. The process resulted in the loss of template DNA and failed STR analysis whereas input of linear genomic DNA template directly into WGA prior to STR analysis improved STR genotyping results compared to non-WGA treated samples. Inclusion of an extreme thermostable single-stranded DNA binding protein (SSB) during WGA also increased DNA yields. While STR artifacts such as peak imbalance, drop-in, and dropout persisted, WGA shows potential for successful genetic profiling of LT and fragmented DNA samples. Further research and development is warranted prior to use of WGA in forensic casework. PMID:21570374

  5. Composition, Roles, and Regulation of Cullin-Based Ubiquitin E3 Ligases

    PubMed Central

    Choi, Christina M.; Gray, William M.; Mooney, Sutton; Hellmann, Hanjo

    2014-01-01

    Due to their sessile nature, plants depend on flexible regulatory systems that allow them to adequately regulate developmental and physiological processes in context with environmental cues. The ubiquitin proteasome pathway, which targets a great number of proteins for degradation, is cellular tool that provides the necessary flexibility to accomplish this task. Ubiquitin E3 ligases provide the needed specificity to the pathway by selectively binding to particular substrates and facilitating their ubiquitylation. The largest group of E3 ligases known in plants is represented by CULLIN-REALLY INTERESTING NEW GENE (RING) E3 ligases (CRLs). In recent years, a great amount of knowledge has been generated to reveal the critical roles of these enzymes across all aspects of plant life. This review provides an overview of the different classes of CRLs in plants, their specific complex compositions, the variety of biological processes they control, and the regulatory steps that can affect their activities. PMID:25505853

  6. GIDE is a mitochondrial E3 ubiquitin ligase that induces apoptosis and slows growth

    PubMed Central

    Zhang, Bicheng; Huang, Jun; Li, Hong-Liang; Liu, Ting; Wang, Yan-Yi; Waterman, Paul; Mao, Ai-Ping; Xu, Liang-Guo; Zhai, Zhonghe; Liu, Depei; Marrack, Philippa; Shu, Hong-Bing

    2011-01-01

    We report here the identification of GIDE, a mitochondrially located E3 ubiquitin ligase. GIDE contains a C-terminal Ring finger domain, which is mostly conserved with those of the IAP family members, and which is required for its E3 ligase activity. Overexpression of GIDE induces apoptosis via a pathway involving activation of caspases since the caspase inhibitors, XIAP and an inactive mutant of caspase-9 block GIDE-induced apoptosis. GIDE also activates JNK, and blockade of JNK activation inhibits GIDE-induced release of cytochrome c and Smac and apoptosis, suggesting that JNK activation precedes release of cytochrome c and Smac and is required for GIDE-induced apoptosis. These proapoptotic properties of GIDE require its E3 ligase activity. When somewhat over or underexpressed, GIDE slows or hastens cell growth respectively. These pro-apoptotic or growth rate effects of GIDE may account for its absence from tumor cells. PMID:18591963

  7. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis.

    PubMed

    Nguyen, Giang K T; Wang, Shujing; Qiu, Yibo; Hemu, Xinya; Lian, Yilong; Tam, James P

    2014-09-01

    Proteases are ubiquitous in nature, whereas naturally occurring peptide ligases, enzymes catalyzing the reverse reactions of proteases, are rare occurrences. Here we describe the discovery of butelase 1, to our knowledge the first asparagine/aspartate (Asx) peptide ligase to be reported. This highly efficient enzyme was isolated from Clitoria ternatea, a cyclic peptide-producing medicinal plant. Butelase 1 shares 71% sequence identity and the same catalytic triad with legumain proteases but does not hydrolyze the protease substrate of legumain. Instead, butelase 1 cyclizes various peptides of plant and animal origin with yields greater than 95%. With Kcat values of up to 17 s(-1) and catalytic efficiencies as high as 542,000 M(-1) s(-1), butelase 1 is the fastest peptide ligase known. Notably, butelase 1 also displays broad specificity for the N-terminal amino acids of the peptide substrate, thus providing a new tool for C terminus-specific intermolecular peptide ligations. PMID:25038786

  8. Structure of 5-formyltetrahydrofolate cyclo-ligase from Bacillus anthracis (BA4489)

    SciTech Connect

    Meier, Christoph; Carter, Lester G.; Winter, Graeme; Owens, Ray J.; Stuart, David I.; Esnouf, Robert M.

    2007-03-01

    The structure of 5-formyltetrahydrofolate cyclo-ligase from B. anthracis determined by X-ray crystallography at a resolution of 1.6 Å is described. Bacillus anthracis is a spore-forming bacterium and the causative agent of the disease anthrax. The Oxford Protein Production Facility has been targeting proteins from B. anthracis in order to develop high-throughput technologies within the Structural Proteomics in Europe project. As part of this work, the structure of 5-formyltetrahydrofolate cyclo-ligase (BA4489) has been determined by X-ray crystallography to 1.6 Å resolution. The structure, solved in complex with magnesium-ion-bound ADP and phosphate, gives a detailed picture of the proposed catalytic mechanism of the enzyme. Chemical differences from other cyclo-ligase structures close to the active site that could be exploited to design specific inhibitors are also highlighted.

  9. A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB

    PubMed Central

    Lu, Yanyan; Liang, Feng-Xia; Wang, Xiaozhong

    2014-01-01

    SUMMARY Signaling in the ancestral branch of the unfolded protein response (UPR) is initiated by unconventional splicing of HAC1/XBP1 mRNA during endoplasmic reticulum (ER) stress. In mammals, IRE1α has been known to cleave the XBP1 intron. However, the enzyme responsible for ligation of two XBP1 exons remains unknown. Using an XBP1 splicing-based synthetic circuit, we identify RtcB as the primary UPR RNA ligase. In RtcB knockout cells, XBP1 mRNA splicing is defective during ER stress. Genetic rescue and in vitro splicing show that the RNA ligase activity of RtcB is directly required for the splicing of XBP1 mRNA. Taken together, these data demonstrate that RtcB is the long sought RNA ligase that catalyzes unconventional RNA splicing during the mammalian UPR. PMID:25087875

  10. The E3 ubiquitin ligase WVIP2 highlights the versatility of protein ubiquitination

    PubMed Central

    Guerra, Davide; Cattivelli, Luigi; Mazzucotelli, Elisabetta

    2012-01-01

    Plant cells regulate many cellular processes controlling the half-life of critical proteins through ubiquitination. Previously, we characterized two interacting RING-type E3 ubiquitin ligases of Triticum durum, TdRF1 and WVIP2. We revealed their role in tolerance to dehydration, and existing knowledge about their partners also indicated their involvement in the regulation of some aspects of plant development. Here we located WVIP2 in the regulation of the ABA signaling, based on sequence similarities. Further we acquired general evidence about the versatility of ubiquitination in plant cells. A protein can be target of different E3 ligases for a perfect tuning of its abundance as well as the same E3 ligase can ubiquitinate different and unrelated proteins, thus representing a cross-connections between different signaling pathways for a global coordination of cellular processes. PMID:22899050

  11. Immunoprecipitation of Cullin-RING Ligases (CRLs) in Arabidopsis thaliana Seedlings.

    PubMed

    Franciosini, Anna; Serino, Giovanna

    2016-01-01

    CRL (Cullin-RING ubiquitin ligase) is the major class of plant E3 ubiquitin ligases. Immunoprecipitation-based methods are useful techniques for revealing interactions among Cullin-RING Ligase (CRL) subunits or between CRLs and other proteins, as well as for detecting poly-ubiquitin modifications of the CRLs themselves. Here, we describe two immunoprecipitation (IP) procedures suitable for CRLs in Arabidopsis: a procedure for IP analysis of CRL subunits and their interactors and a second procedure for in vivo ubiquitination analysis of the CRLs. Both protocols can be divided into two major steps: (1) preparation of cell extracts without disruption of protein interactions and (2) affinity purification of the protein complexes and subsequent detection. We provide a thorough description of all the steps, as well as advice on how to choose proper buffers for these analyses. We also suggest a series of negative controls that can be used to verify the specificity of the procedure. PMID:27424742

  12. Microwave-mediated enzymatic modifications of DNA.

    PubMed

    Das, Rakha Hari; Ahirwar, Rajesh; Kumar, Saroj; Nahar, Pradip

    2015-02-15

    Here we report microwave-induced specific cleavage, ligation, dephosphorylation, and phosphorylation of nucleic acids catalyzed by restriction endonucleases, T4 DNA ligase, T4 polynucleotide kinase, and calf intestinal alkaline phosphatase. The microwave-mediated method has dramatically reduced the reaction time to 20 to 50s. In control experiments, the same reactions failed to give the desired reaction products when carried out in the same time periods but without microwave irradiation. Because the microwave method is rapid, it could be a useful alternative to the time-consuming conventional procedure for enzymatic modification of DNA. PMID:25447491

  13. p63 threonine phosphorylation signals the interaction with the WW domain of the E3 ligase Itch

    PubMed Central

    Melino, Sonia; Bellomaria, Alessia; Nepravishta, Ridvan; Paci, Maurizio; Melino, Gerry

    2014-01-01

    Both in epithelial development as well as in epithelial cancers, the p53 family member p63 plays a crucial role acting as a master transcriptional regulator. P63 steady state protein levels are regulated by the E3 ubiquitin ligase Itch, via a physical interaction between the PPxY consensus sequence (PY motif) of p63 and one of the 4 WW domains of Itch; this substrate recognition process leads to protein-ubiquitylation and p63 proteasomal degradation. The interaction of the WW domains, a highly compact protein-protein binding module, with the short proline-rich sequences is therefore a crucial regulatory event that may offer innovative potential therapeutic opportunity. Previous molecular studies on the Itch-p63 recognition have been performed in vitro using the Itch-WW2 domain and the peptide interacting fragment of p63 (pep63), which includes the PY motif. Itch-WW2-pep63 interaction is also stabilized in vitro by the conformational constriction of the S-S cyclization in the p63 peptide. The PY motif of p63, as also for other proteins, is characterized by the nearby presence of a (T/S)P motif, which is a potential recognition site of the WW domain of the IV group present in the prolyl-isomerase Pin1. In this study, we demonstrate, by in silico and spectroscopical studies using both the linear pep63 and its cyclic form, that the threonine phosphorylation of the (T/S)PPPxY motif may represent a crucial regulatory event of the Itch-mediated p63 ubiquitylation, increasing the Itch-WW domains-p63 recognition event and stabilizing in vivo the Itch-WW-p63 complex. Moreover, our studies confirm that the subsequently trans/cis proline isomerization of (T/S)P motif by the Pin1 prolyl-isomerase, could modulate the E3-ligase interaction, and that the (T/S)pPtransPPxY motif represent the best conformer for the ItchWW-(T/S)PPPxY motif recognition. PMID:25485500

  14. p63 threonine phosphorylation signals the interaction with the WW domain of the E3 ligase Itch.

    PubMed

    Melino, Sonia; Bellomaria, Alessia; Nepravishta, Ridvan; Paci, Maurizio; Melino, Gerry

    2014-01-01

    Both in epithelial development as well as in epithelial cancers, the p53 family member p63 plays a crucial role acting as a master transcriptional regulator. P63 steady state protein levels are regulated by the E3 ubiquitin ligase Itch, via a physical interaction between the PPxY consensus sequence (PY motif) of p63 and one of the 4 WW domains of Itch; this substrate recognition process leads to protein-ubiquitylation and p63 proteasomal degradation. The interaction of the WW domains, a highly compact protein-protein binding module, with the short proline-rich sequences is therefore a crucial regulatory event that may offer innovative potential therapeutic opportunity. Previous molecular studies on the Itch-p63 recognition have been performed in vitro using the Itch-WW2 domain and the peptide interacting fragment of p63 (pep63), which includes the PY motif. Itch-WW2-pep63 interaction is also stabilized in vitro by the conformational constriction of the S-S cyclization in the p63 peptide. The PY motif of p63, as also for other proteins, is characterized by the nearby presence of a (T/S)P motif, which is a potential recognition site of the WW domain of the IV group present in the prolyl-isomerase Pin1. In this study, we demonstrate, by in silico and spectroscopical studies using both the linear pep63 and its cyclic form, that the threonine phosphorylation of the (T/S)PPPxY motif may represent a crucial regulatory event of the Itch-mediated p63 ubiquitylation, increasing the Itch-WW domains-p63 recognition event and stabilizing in vivo the Itch-WW-p63 complex. Moreover, our studies confirm that the subsequently trans/cis proline isomerization of (T/S)P motif by the Pin1 prolyl-isomerase, could modulate the E3-ligase interaction, and that the (T/S)pPtransPPxY motif represent the best conformer for the ItchWW-(T/S)PPPxY motif recognition. PMID:25485500

  15. Identification of multiple proteins expressed in murine embryos as binding partners for the WW domains of the ubiquitin-protein ligase Nedd4.

    PubMed Central

    Jolliffe, C N; Harvey, K F; Haines, B P; Parasivam, G; Kumar, S

    2000-01-01

    Nedd4 is a member of a growing family of ubiquitin-protein ligases which consist of a lipid-binding domain, two to four WW domains and a C-terminal ubiquitin-protein ligase domain. The Nedd4 mRNA levels are developmentally regulated and Nedd4 protein is highly expressed in many mouse embryonic tissues. In this study we have used a far-Western screen to identify embryonic proteins that interact with the WW domains in mouse Nedd4. We report here identification of eight Nedd4 WW-domain-interacting proteins from mouse embryonic cDNA expression libraries. Two of the proteins are novel, while two have been identified previously as ligands for a WW domain. All of these proteins contain one or more PY motifs. In seven of the eight proteins, these PY motifs are necessary for their interaction with the WW domains of Nedd4. Using site-directed mutagenesis, and by using individual WW domains of Nedd4 as probes for far-Western analysis, we show that the three WW domains in Nedd4 interact with varying affinities with the PY motifs present in various Nedd4-binding proteins. These results provide evidence that Nedd4 can potentially interact with multiple proteins, possibly simultaneously, through its WW domains. PMID:11042109

  16. Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling.

    PubMed

    Yang, Liang; Liu, Qiaohong; Liu, Zhibin; Yang, Hao; Wang, Jianmei; Li, Xufeng; Yang, Yi

    2016-01-01

    Degradation of proteins via the ubiquitin system is an important step in many stress signaling pathways in plants. E3 ligases recognize ligand proteins and dictate the high specificity of protein degradation, and thus, play a pivotal role in ubiquitination. Here, we identified a gene, named Arabidopsis thaliana abscisic acid (ABA)-insensitive RING protein 4 (AtAIRP4), which is induced by ABA and other stress treatments. AtAIRP4 encodes a cellular protein with a C3HC4-RING finger domain in its C-terminal side, which has in vitro E3 ligase activity. Loss of AtAIRP4 leads to a decrease in sensitivity of root elongation and stomatal closure to ABA, whereas overexpression of this gene in the T-DNA insertion mutant atairp4 effectively recovered the ABA-associated phenotypes. AtAIRP4 overexpression plants were hypersensitive to salt and osmotic stresses during seed germination, and showed drought avoidance compared with the wild-type and atairp4 mutant plants. In addition, the expression levels of ABA- and drought-induced marker genes in AtAIRP4 overexpression plants were markedly higher than those in the wild-type and atairp4 mutant plants. Hence, these results indicate that AtAIRP4 may act as a positive regulator of ABA-mediated drought avoidance and a negative regulator of salt tolerance in Arabidopsis. PMID:25913143

  17. Characterization of a long-chain fatty acid-CoA ligase 1 gene and association between its SNPs and growth traits in the clam Meretrix meretrix.

    PubMed

    Dai, Ping; Huan, Pin; Wang, Hongxia; Lu, Xia; Liu, Baozhong

    2015-07-25

    Long-chain fatty acid-CoA ligases (ACSLs) play crucial roles in fatty acid (FA) metabolism. They convert free long-chain FA into acyl-CoAs, which are key intermediates in both anabolic and catabolic pathways. A long-chain fatty acid-CoA ligase gene was cloned in the clam Meretrix meretrix (MmeACSL1), with a full-length cDNA of 1865 bp encoding 475 amino acids. Its expression was only detected in hepatopancreas by semi-quantitative reverse transcription PCR. Expression level of MmeACSL1 exhibited a significant increase in a starvation experiment (P<0.05). This indicates that MmeACSL1 plays an important role in normal metabolism of M. meretrix and may be involved in energy supply and storage. Two exon SNPs and six intron SNPs were developed in this gene by direct sequencing. A marker-trait association analysis showed that five of these SNPs were significantly associated with growth traits (P<0.05). Also, haplotypes comprised of the five SNPs were revealed to be significantly growth-related (P<0.05), which further corroborates the relationship of this gene to growth traits of M. meretrix. PMID:25900031

  18. Ubiquitin-conjugated degradation of golden 2-like transcription factor is mediated by CUL4-DDB1-based E3 ligase complex in tomato.

    PubMed

    Tang, Xiaofeng; Miao, Min; Niu, Xiangli; Zhang, Danfeng; Cao, Xulv; Jin, Xichen; Zhu, Yunye; Fan, Youhong; Wang, Hongtao; Liu, Ying; Sui, Yuan; Wang, Wenjie; Wang, Anquan; Xiao, Fangming; Giovannoni, Jim; Liu, Yongsheng

    2016-02-01

    CULLIN4-RING ubiquitin ligases (CRL4s) as well as their targets are fundamental regulators functioning in many key developmental and stress responses in eukaryotes. In tomato (Solanum lycopersicum), molecular cloning has revealed that the underlying genes of natural spontaneous mutations high pigment 1 (hp1), high pigment 2 (hp2) and uniform ripening (u) encode UV-DAMAGED DNA BINDING PROTEIN 1 (DDB1), DE-ETIOLATED 1 (DET1) and GOLDEN 2-LIKE (GLK2), respectively. However, the molecular basis of the opposite actions of tomato GLK2 vs CUL4-DDB1-DET1 complex on regulating plastid level and fruit quality remains unknown. Here, we provide molecular evidence showing that the tomato GLK2 protein is a substrate of the CUL4-DDB1-DET1 ubiquitin ligase complex for the proteasome degradation. SlGLK2 is degraded by the ubiquitin-proteasome system, which is mainly determined by two lysine residues (K11 and K253). SlGLK2 associates with the CUL4-DDB1-DET1 E3 complex in plant cells. Genetically impairing CUL4, DDB1 or DET1 results in a retardation of SlGLK2 degradation by the 26S proteasome. These findings are relevant to the potential of nutrient accumulation in tomato fruit by mediating the plastid level and contribute to a deeper understanding of an important regulatory loop, linking protein turnover to gene regulation. PMID:26352615

  19. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    PubMed Central

    Nielsen, Sofie V.; Lindorff-Larsen, Kresten; Hartmann-Petersen, Rasmus

    2016-01-01

    The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology of their ordered regions, and did not capture the unique disorder patterns that encode the functional mechanism of San1. However, by searching specifically for key features of the San1 sequence, such as long regions of intrinsic disorder embedded with short stretches predicted to be suitable for substrate interaction, we identified several E3 ligases with these characteristics. Our initial analysis revealed that another remarkable trait of San1 is shared with several candidate E3 ligases: long stretches of complete lysine suppression, which in San1 limits auto-ubiquitination. We encode these characteristic features into a San1 similarity-score, and present a set of proteins that are plausible candidates as San1 counterparts in humans. In conclusion, our work indicates that San1 is

  20. Structure and function of the region of the replication origin of the Bacillus subtilis chromosome. IV. Transcription of the oriC region and expression of DNA gyrase genes and other open reading frames.

    PubMed Central

    Ogasawara, N; Moriya, S; Yoshikawa, H

    1985-01-01

    We have determined nucleotide sequence of some 10,000 base pairs (bp) in the oriC region of the Bacillus subtilis chromosome. Initiation sites of transcription from this region were determined in vivo by the S1-mapping method. Five major initiation sites were found in the leader sequences of five open reading frames (ORF) deduced from the nucleotide sequence. The sixth site is located inside the ORF323("recF"). Putative promoters were found for each transcript. Function of these promoters was demonstrated in Escherichia coli by the Maxi-cell method using appropriate fragments cloned in pBR vectors. Based on these results, genes in 10,000 bp oriC region are divided into 4 transcriptional units. GyrB composes one unit with two other ORFs, while gyrA constitutes a single unit by itself. The promoters for ORF446("dnaA") and ORF378("dnaN") are located within the putative signal sequences for oriC. Transcription from these promoters is dependent on a dna-initiation gene, dnaB. Images PMID:2987848

  1. A Comprehensive Study of Genic Variation in Natural Populations of Drosophila Melanogaster. IV. Mitochondrial DNA Variation and the Role of History Vs. Selection in the Genetic Structure of Geographic Populations

    PubMed Central

    Hale, L. R.; Singh, R. S.

    1991-01-01

    Preliminary studies with restriction fragment length polymorphisms of mitochondrial DNA (mtDNA) in natural populations of Drosophila melanogaster revealed considerable variation in terms of nucleotide sequence and overall size. In this report we present data from more isofemale lines and more restriction enzymes, and explore the utility of the data in inferring a colonization history of this species. Size variation in the noncoding A + T-rich region is particularly plentiful, with size variants occurring in all restriction site haplotypes in all populations. We report here classes of small-scale mobility polymorphisms (apparent range of 20 bp) in specific restriction fragments in the coding region. The variation in one such fragment appears to be generated even more rapidly than in the noncoding region. On the basis of the distribution of restriction site haplotypes, the species range can be divided into three major regions along longitudinal lines: Euro-African populations are the most diverse and are taken to be oldest; Far East populations have a complex distribution of haplotypes; Western Hemisphere populations are the least diverse and are interpreted to be the youngest. The history inferred from mtDNA alone is remarkably similar to one based on several nuclear markers. The mtDNA haplotype distribution is also very different from that of allozymes in these same populations. We interpret this as further evidence that natural selection is still the most parsimonious explanation for the parallel latitudinal allozyme clines in this species. PMID:1682210

  2. A sputnik IV saga

    NASA Astrophysics Data System (ADS)

    Lundquist, Charles A.

    2009-12-01

    The Sputnik IV launch occurred on May 15, 1960. On May 19, an attempt to deorbit a 'space cabin' failed and the cabin went into a higher orbit. The orbit of the cabin was monitored and Moonwatch volunteer satellite tracking teams were alerted to watch for the vehicle demise. On September 5, 1962, several team members from Milwaukee, Wisconsin made observations starting at 4:49 a.m. of a fireball following the predicted orbit of Sputnik IV. Requests went out to report any objects found under the fireball path. An early morning police patrol in Manitowoc had noticed a metal object on a street and had moved it to the curb. Later the officers recovered the object and had it dropped off at the Milwaukee Journal. The Moonwarch team got the object and reported the situation to Moonwatch Headquarters at the Smithsonian Astrophysical Observatory. A team member flew to Cambridge with the object. It was a solid, 9.49 kg piece of steel with a slag-like layer attached to it. Subsequent analyses showed that it contained radioactive nuclei produced by cosmic ray exposure in space. The scientists at the Observatory quickly recognized that measurements of its induced radioactivity could serve as a calibration for similar measurements of recently fallen nickel-iron meteorites. Concurrently, the Observatory directorate informed government agencies that a fragment from Sputnik IV had been recovered. Coincidently, a debate in the UN Committee on Peaceful Uses of Outer Space involved the issue of liability for damage caused by falling satellite fragments. On September 12, the Observatory delivered the bulk of the fragment to the US Delegation to the UN. Two days later, the fragment was used by US Ambassador Francis Plimpton as an exhibit that the time had come to agree on liability for damage from satellite debris. He offered the Sputnik IV fragment to USSR Ambassador P.D. Morozov, who refused the offer. On October 23, Drs. Alla Massevitch and E.K. Federov of the USSR visited the

  3. Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration of a transgene

    PubMed Central

    Furukawa, Tomoyuki; Angelis, Karel J.; Britt, Anne B.

    2015-01-01

    The DNA double-strand break (DSB) is a critical type of damage, and can be induced by both endogenous sources (e.g., errors of oxidative metabolism, transposable elements, programmed meiotic breaks, or perturbation of the DNA replication fork) and exogenous sources (e.g., ionizing radiation or radiomimetic chemicals). Although higher plants, like mammals, are thought to preferentially repair DSBs via nonhomologous end joining (NHEJ), much remains unclear about plant DSB repair pathways. Our reverse genetic approach suggests that DNA polymerase λ is involved in DSB repair in Arabidopsis. The Arabidopsis T-DNA insertion mutant (atpolλ-1) displayed sensitivity to both gamma-irradiation and treatment with radiomimetic reagents, but not to other DNA damaging treatments. The atpolλ-1 mutant showed a moderate sensitivity to DSBs, while Arabidopsis Ku70 and DNA ligase 4 mutants (atku70-3 and atlig4-2), both of which play critical roles in NHEJ, exhibited a hypersensitivity to these treatments. The atpolλ-1/atlig4-2 double mutant exhibited a higher sensitivity to DSBs than each single mutant, but the atku70/atpolλ-1 showed similar sensitivity to the atku70-3 mutant. We showed that transcription of the DNA ligase 1, DNA ligase 6, and Wee1 genes was quickly induced by BLM in several NHEJ deficient mutants in contrast to wild-type. Finally, the T-DNA transformation efficiency dropped in NHEJ deficient mutants and the lowest transformation efficiency was scored in the atpolλ-1/atlig4-2 double mutant. These results imply that AtPolλ is involved in both DSB repair and DNA damage response pathway. PMID:26074930

  4. RNA-directed DNA methylation in plants.

    PubMed

    Movahedi, Ali; Sun, Weibu; Zhang, Jiaxin; Wu, Xiaolong; Mousavi, Mohaddesseh; Mohammadi, Kourosh; Yin, Tongming; Zhuge, Qiang

    2015-11-01

    In plants, many small interfering RNAs (siRNAs) direct de novo methylation by DNA methyltransferase. DNA methylation typically occurs by RNA-directed DNA methylation (RdDM), which directs transcriptional gene silencing of transposons and endogenous transgenes. RdDM is driven by non-coding RNAs (ncRNAs) produced by DNA-dependent RNA polymerases IV and V (PolIV and PolV). The production of siRNAs is initiated by PolIV and ncRNAs produced by PolIV are precursors of 24-nucleotide siRNAs. In contrast, ncRNAs produced by PolV are involved in scaffolding RNAs. In this review, we summarize recent studies of RdDM. In particular, we focus on the mechanisms involved in chromatin remodeling by PolIV and PolV. PMID:26183954

  5. Hybrid joint formation in human V(D)J recombination requires nonhomologous DNA end joining.

    PubMed

    Raghavan, Sathees C; Tong, Jiangen; Lieber, Michael R

    2006-02-01

    In V(D)J recombination, the RAG proteins bind at a pair of signal sequences adjacent to the V, D, or J coding regions and cleave the DNA, resulting in two signal ends and two hairpinned coding ends. The two coding ends are joined to form a coding joint, and the two signal ends are joined to form a signal joint; this joining is done by the nonhomologous DNA end joining (NHEJ) pathway. A recombinational alternative in which a signal end is recombined with a coding end can also occur in a small percentage of the V(D)J recombination events in murine and human cells, and these are called hybrids (or hybrid joints). Two mechanisms have been proposed for the formation of these hybrids. One mechanism is via NHEJ, after initial cutting by RAGs. The second mechanism does not rely on NHEJ, but rather invokes that the RAGs can catalyze joining of the signal to the hairpinned coding end, by using the 3'OH of the signal end as a nucleophile to attack the phosphodiester bonds of the hairpinned coding end. In the present study, we addressed the question of which type of hybrid joining occurs in a physiological environment, where standard V(D)J recombination presumably occurs and normal RAG proteins are endogenously expressed. We find that all hybrids in vivo require DNA ligase IV in human cells, which is the final component of the NHEJ pathway. Hence, hybrid joints rely on NHEJ rather than on the RAG complex for joining. PMID:16275127

  6. Translesion DNA synthesis

    PubMed Central

    Vaisman, Alexandra; McDonald, John P.; Woodgate, Roger

    2014-01-01

    All living organisms are continually exposed to agents that damage their DNA, which threatens the integrity of their genome. As a consequence, cells are equipped with a plethora of DNA repair enzymes to remove the damaged DNA. Unfortunately, situations nevertheless arise where lesions persist, and these lesions block the progression of the cell’s replicase. Under these situations, cells are forced to choose between recombination-mediated “damage avoidance” pathways, or use a specialized DNA polymerase (pol) to traverse the blocking lesion. The latter process is referred to as Translesion DNA Synthesis (TLS). As inferred by its name, TLS not only results in bases being (mis)incorporated opposite DNA lesions, but also downstream of the replicase-blocking lesion, so as to ensure continued genome duplication and cell survival. Escherichia coli and Salmonella typhimurium possess five DNA polymerases, and while all have been shown to facilitate TLS under certain experimental conditions, it is clear that the LexA-regulated and damage-inducible pols II, IV and V perform the vast majority of TLS under physiological conditions. Pol V can traverse a wide range of DNA lesions and performs the bulk of mutagenic TLS, whereas pol II and pol IV appear to be more specialized TLS polymerases. PMID:26442823

  7. PMD IVS Analysis Center

    NASA Technical Reports Server (NTRS)

    Tornatore, Vincenza

    2013-01-01

    The main activities carried out at the PMD (Politecnico di Milano DIIAR) IVS Analysis Center during 2012 are briefly higlighted, and future plans for 2013 are sketched out. We principally continued to process European VLBI sessions using different approaches to evaluate possible differences due to various processing choices. Then VLBI solutions were also compared to the GPS ones as well as the ones calculated at co-located sites. Concerning the observational aspect, several tests were performed to identify the most suitable method to achieve the highest possible accuracy in the determination of GNSS (GLOBAL NAVIGATION SATELLITE SYSTEM) satellite positions using the VLBI technique.

  8. Multiple facets of the DNA damage response contribute to the radioresistance of mouse mesenchymal stromal cell lines.

    PubMed

    Sugrue, Tara; Brown, James A L; Lowndes, Noel F; Ceredig, Rhodri

    2013-01-01

    The regeneration of the hematopoietic system following total body irradiation is supported by host-derived mesenchymal stromal cells (MSCs) within the bone marrow. The mechanisms used by MSCs to survive radiation doses that are lethal to the hematopoietic system are poorly understood. The DNA damage response (DDR) represents a cohort of signaling pathways that enable cells to execute biological responses to genotoxic stress. Here, we examine the role of the DDR in mediating the resistance of MSCs to ionizing radiation (IR) treatment using two authentic clonal mouse MSC lines, MS5 and ST2, and primary bulk mouse MSCs. We show that multiple DDR mechanisms contribute to the radio-resistance of MSCs: robust DDR activation via rapid γ-H2AX formation, activation of effective S and G(2)/M DNA damage checkpoints, and efficient repair of IR-induced DNA double-strand breaks. We show that MSCs are intrinsically programmed to maximize survival following IR treatment by expressing high levels of key DDR proteins including ATM, Chk2, and DNA Ligase IV; high levels of the anti-apoptotic, Bcl-2 and Bcl-(XL); and low levels of the pro-apoptotic, Bim and Puma. As a result, we demonstrate that irradiated mouse MSCs withstand IR-induced genotoxic stress, continue to proliferate, and retain their capacity to differentiate long-term along mesenchymal-derived lineages. We have shown, for the first time, that the DDR plays key roles in mediating the radioresistance of mouse MSCs which may have important implications for the study and application of MSCs in allogeneic bone marrow transplantation, graft-versus-host disease, and cancer treatment. PMID:22961695

  9. SILENCING OF 4-COUMARATE-CoA LIGASE IN PINUS RADIATA, A CONIFEROUS GYMNOSPERM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The enzyme 4-coumarate-CoA ligase (4CL) is involved in the general phenylpropanoid pathway and provides monolignol precursors such as p-coumaroyl-CoA, ultimately for the biosynthesis of lignin. Recombinant studies designed to assess the role of 4CL in the lignification process have focused on angios...

  10. The prolific ATL family of RING-H2 ubiquitin ligases

    PubMed Central

    Guzmán, Plinio

    2012-01-01

    An abundant class of E3 ubiquitin ligases encodes the RING-finger domain. The RING finger binds to the E2 ubiquitin-conjugating enzyme and brings together both the E2 and substrate. It is predicted that 477 RING finger E3 ligases exist in Arabidopsis thaliana. A particular family among them, named Arabidopsis Tóxicos en Levadura (ATL), consists of 91 members that contain the RING-H2 variation and a hydrophobic domain located at the N-terminal end. Transmembrane E3 ligases are important in several biological processes. For instance, some transmembrane RING finger E3 ligases are main participants in the endoplasmic reticulum-associated degradation pathway that targets misfolded proteins. Functional analysis of a number of ATLs has shown that some of them regulate distinct pathways in plants. Several ATLs have been shown to participate in defense responses, while others play a role in the regulation of the carbon/nitrogen response during post-germinative seedling growth transition, in the regulation of cell death during root development, in endosperm development, or in the transition to flowering under short day conditions. The ATL family has also been instrumental in evolution studies for showing how gene families are expanded in plant genomes. PMID:22827943

  11. Chimeric ubiquitin ligases inhibit non-small cell lung cancer via negative modulation of EGFR signaling.

    PubMed

    Zhong, Daixing; Ru, Yi; Wang, Qinhao; Zhang, Jing; Zhang, Jian; Wei, Junxia; Wu, Jin; Yao, Libo; Li, Xiaofei; Li, Xia

    2015-04-01

    Targeting epidermal growth factor receptor (EGFR) represents a promising therapeutic strategy for non-small cell lung cancers (NSCLC). The ubiquitin-proteasome system (UPS) is a major pathway that mediates protein degradation. To target the degradation of EGFR, we generated two artificial ubiquitin ligases, which are composed of an EGFR-binding domain, i.e., the SH2 domain from growth factor receptor binding protein 2 (Grb2), and an ubiquitin ligase catalytic domain, i.e., the RING domain from Cbl or the U-box domain from CHIP. When the chimeric ubiquitin ligases were introduced into lung cancer SPC-A1 cells, they effectively associated with EGFR, promoted its ubiquitination and degradation, and as a result, blocked the downstream PI3K-Akt signal pathway. Moreover, cell proliferation and invasion were inhibited, the sensitivity to docetaxel-induced apoptosis was enhanced and the tumorigenicity was suppressed. In conclusion, negative modulation of EGFR signaling by the chimeric ubiquitin ligases can inhibit malignancy of SPC-A1 cells and sensitize these cells to chemotherapy, thus it may be applied to targeted therapy for NSCLC. PMID:25573345

  12. The Not4 RING E3 Ligase: A Relevant Player in Cotranslational Quality Control

    PubMed Central

    Collart, Martine A.

    2013-01-01

    The Not4 RING E3 ligase is a subunit of the evolutionarily conserved Ccr4-Not complex. Originally identified in yeast by mutations that increase transcription, it was subsequently defined as an ubiquitin ligase. Substrates for this ligase were characterized in yeast and in metazoans. Interestingly, some substrates for this ligase are targeted for polyubiquitination and degradation, while others instead are stable monoubiquitinated proteins. The former are mostly involved in transcription, while the latter are a ribosomal protein and a ribosome-associated chaperone. Consistently, Not4 and all other subunits of the Ccr4-Not complex are present in translating ribosomes. An important function for Not4 in cotranslational quality control has emerged. In the absence of Not4, the total level of polysomes is reduced. In addition, translationally arrested polypeptides, aggregated proteins, and polyubiquitinated proteins accumulate. Its role in quality control is likely to be related on one hand to its importance for the functional assembly of the proteasome and on the other hand to its association with the RNA degradation machines. Not4 is in an ideal position to signal to degradation mRNAs whose translation has been aborted, and this defines Not4 as a key player in the quality control of newly synthesized proteins. PMID:27335678

  13. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm.

    PubMed

    Yoo, Seung-Hee; Mohawk, Jennifer A; Siepka, Sandra M; Shan, Yongli; Huh, Seong Kwon; Hong, Hee-Kyung; Kornblum, Izabela; Kumar, Vivek; Koike, Nobuya; Xu, Ming; Nussbaum, Justin; Liu, Xinran; Chen, Zheng; Chen, Zhijian J; Green, Carla B; Takahashi, Joseph S

    2013-02-28

    Period determination in the mammalian circadian clock involves the turnover rate of the repressors CRY and PER. We show that CRY ubiquitination engages two competing E3 ligase complexes that either lengthen or shorten circadian period in mice. Cloning of a short-period circadian mutant, Past-time, revealed a glycine to glutamate missense mutation in Fbxl21, an F-box protein gene that is a paralog of Fbxl3 that targets the CRY proteins for degradation. While loss of function of FBXL3 leads to period lengthening, mutation of Fbxl21 causes period shortening. FBXL21 forms an SCF E3 ligase complex that slowly degrades CRY in the cytoplasm but antagonizes the stronger E3 ligase activity of FBXL3 in the nucleus. FBXL21 plays a dual role: protecting CRY from FBXL3 degradation in the nucleus and promoting CRY degradation within the cytoplasm. Thus, the balance and cellular compartmentalization of competing E3 ligases for CRY determine circadian period of the clock in mammals. PMID:23452855

  14. Yeast SREBP cleavage activation requires the Golgi Dsc E3 ligase complex

    PubMed Central

    Stewart, Emerson V.; Nwosu, Christine C.; Tong, Zongtian; Roguev, Assen; Cummins, Timothy D.; Kim, Dong-Uk; Hayles, Jacqueline; Park, Han-Oh; Hoe, Kwang-Lae; Powell, David W.; Krogan, Nevan J.; Espenshade, Peter J.

    2011-01-01

    SUMMARY Mammalian lipid homeostasis requires proteolytic activation of membrane-bound sterol regulatory element binding protein (SREBP) transcription factors through sequential action of the Golgi Site-1 and Site-2 proteases. Here, we report that while SREBP function is conserved in fungi, fission yeast employs a different mechanism for SREBP cleavage. Using genetics and biochemistry, we identified four genes defective for SREBP cleavage, dsc1–4, encoding components of a transmembrane Golgi E3 ligase complex with structural homology to the Hrd1 E3 ligase complex involved in endoplasmic reticulum-associated degradation. The Dsc complex binds SREBP and cleavage requires components of the ubiquitin-proteasome pathway: the E2 conjugating enzyme Ubc4, the Dsc1 RING E3 ligase and the proteasome. dsc mutants display conserved aggravating genetic interactions with components of the multivesicular body pathway in fission yeast and budding yeast, which lacks SREBP. Together, these data suggest that the Golgi Dsc E3 ligase complex functions in a post-ER pathway for protein degradation. PMID:21504829

  15. Benzoate-coenzyme A ligase, encoded by badA, is one of three ligases able to catalyze benzoyl-coenzyme A formation during anaerobic growth of Rhodopseudomonas palustris on benzoate.

    PubMed Central

    Egland, P G; Gibson, J; Harwood, C S

    1995-01-01

    The first step of anaerobic benzoate degradation is the formation of benzoyl-coenzyme A by benzoate-coenzyme A ligase. This enzyme, purified from Rhodopseudomonas palustris, is maximally active with 5 microM benzoate. To study the molecular basis for this reaction, the benzoate-coenzyme A ligase gene (badA) was cloned and sequenced. The deduced amino acid sequence of badA showed substantial similarity to other coenzyme A ligases, with the highest degree of similarity being that to 4-hydroxybenzoate-coenzyme A ligase (50% amino acid identity) from R. palustris. A badA mutant that was constructed had barely detectable levels of ligase activity when cell extracts were assayed at 10 microM benzoate. Despite this, the mutant grew at wild-type rates on benzoate under laboratory culture conditions (3 mM benzoate), and mutant cell extracts had high levels of ligase activity when assayed at a high concentration of benzoate (1 mM). This suggested that R. palustris expresses, in addition to BadA, a benzoate-activating enzyme(s) with a relatively low affinity for benzoate. A possible role of 4-hydroxybenzoate-coenzyme A ligase (encoded by hbaA) in this capacity was investigated by constructing a badA hbaA double mutant. Although the double mutant grew more slowly on benzoate than badA cells, growth rates were still significant, suggesting the involvement of a third enzyme in benzoate activation. Competition experiments involving the addition of a small amount of cyclohexanecarboxylate to ligase assay mixtures implicated cyclohexanecarboxylate-coenzyme A ligase as being this third enzyme. These results show that wild-type R. palustris cells synthesize at least three enzymes that can catalyze the initial step in anaerobic benzoate degradation during growth on benzoate. This observation supports previous suggestions that benzoyl-coenzyme A formation plays a central role in anaerobic aromatic compound biodegradation. PMID:7592432

  16. End-joining inhibition at telomeres requires the translocase and polySUMO-dependent ubiquitin ligase Uls1.

    PubMed

    Lescasse, Rachel; Pobiega, Sabrina; Callebaut, Isabelle; Marcand, Stéphane

    2013-03-20

    In eukaryotes, permanent inhibition of the non-homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non-essential Swi2/Snf2-related translocase and a Small Ubiquitin-related Modifier (SUMO)-Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere-telomere fusions. Uls1 requirement is alleviated by the absence of poly-SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly-SUMO conjugates. We propose that one of Uls1 functions is to clear non-functional poly-SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly-SUMOylated proteins on DNA in eukaryotes. PMID:23417015

  17. The Sumo-targeted ubiquitin ligase RNF4 regulates the localization and function of the HTLV-1 oncoprotein Tax

    PubMed Central

    Fryrear, Kimberly A.; Guo, Xin

    2012-01-01

    The Really Interesting New Gene (RING) Finger Protein 4 (RNF4) represents a class of ubiquitin ligases that target Small Ubiquitin-like Modifier (SUMO)–modified proteins for ubiquitin modification. To date, the regulatory function of RNF4 appears to be ubiquitin-mediated degradation of sumoylated cellular proteins. In the present study, we show that the Human T-cell Leukemia Virus Type 1 (HTLV-1) oncoprotein Tax is a substrate for RNF4 both in vivo and in vitro. We mapped the RNF4-binding site to a region adjacent to the Tax ubiquitin/SUMO modification sites K280/K284. Interestingly, RNF4 modification of Tax protein results in relocalization of the oncoprotein from the nucleus to the cytoplasm. Overexpression of RNF4, but not the RNF4 RING mutant, resulted in cytoplasmic enrichment of Tax. The RNF4-induced nucleus-to-cytoplasm relocalization was associated with increased NF-κB–mediated and decreased cAMP Response Element-Binding (CREB)–mediated Tax activity. Finally, depletion of RNF4 by RNAi prevented the DNA damage–induced nuclear/cytoplasmic translocation of Tax. These results provide important new insight into STUbL-mediated pathways that regulate the subcellular localization and functional dynamics of viral oncogenes. PMID:22106342

  18. End-joining inhibition at telomeres requires the translocase and polySUMO-dependent ubiquitin ligase Uls1

    PubMed Central

    Lescasse, Rachel; Pobiega, Sabrina; Callebaut, Isabelle; Marcand, Stéphane

    2013-01-01

    In eukaryotes, permanent inhibition of the non-homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non-essential Swi2/Snf2-related translocase and a Small Ubiquitin-related Modifier (SUMO)-Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere–telomere fusions. Uls1 requirement is alleviated by the absence of poly-SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly-SUMO conjugates. We propose that one of Uls1 functions is to clear non-functional poly-SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly-SUMOylated proteins on DNA in eukaryotes. PMID:23417015

  19. RNF123 has an E3 ligase-independent function in RIG-I-like receptor-mediated antiviral signaling.

    PubMed

    Wang, Shuai; Yang, Yong-Kang; Chen, Tao; Zhang, Heng; Yang, Wei-Wei; Song, Sheng-Sheng; Zhai, Zhong-He; Chen, Dan-Ying

    2016-08-01

    Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are cytoplasmic sensors crucial for recognizing different species of viral RNAs, which triggers the production of type I interferons (IFNs) and inflammatory cytokines. Here, we identify RING finger protein 123 (RNF123) as a negative regulator of RIG-I and MDA5. Overexpression of RNF123 inhibits IFN-β production triggered by Sendai virus (SeV) and encephalomyocarditis picornavirus (EMCV). Knockdown or knockout of endogenous RNF123 potentiates IFN-β production triggered by SeV and EMCV, but not by the sensor of DNA viruses cGAS RNF123 associates with RIG-I and MDA5 in both endogenous and exogenous cases in a viral infection-inducible manner. The SPRY and coiled-coil, but not the RING, domains of RNF123 are required for the inhibitory function. RNF123 interacts with the N-terminal CARD domains of RIG-I/MDA5 and competes with the downstream adaptor VISA/MAVS/IPS-1/Cardif for RIG-I/MDA5 CARD binding. These findings suggest that RNF123 functions as a novel inhibitor of innate antiviral signaling mediated by RIG-I and MDA5, a function that does not depend on its E3 ligase activity. PMID:27312109

  20. Regulating ehrlich and demethiolation pathways for alcohols production by the expression of ubiquitin-protein ligase gene HUWE1.

    PubMed

    Zhang, Quan; Jia, Kai-Zhi; Xia, Shi-Tao; Xu, Yang-Hua; Liu, Rui-Sang; Li, Hong-Mei; Tang, Ya-Jie

    2016-01-01

    Ehrlich and demethiolation pathways as two competing branches converted amino acid into alcohols. Controlling both pathways offers considerable potential for industrial applications including alcohols overproduction, flavor-quality control and developing new flavors. While how to regulate ehrlich and demethiolation pathways is still not applicable. Taking the conversion of methionine into methionol and methanethiol for example, we constructed two suppression subtractive cDNA libraries of Clonostachys rosea by using suppression subtractive hybridization (SSH) technology for screening regulators controlling the conversion. E3 ubiquitin-protein ligase gene HUWE1 screened from forward SSH library was validated to be related with the biosynthesis of end products. Overexpressing HUWE1 in C. rosea and S. cerevisiae significantly increased the biosynthesis of methanethiol and its derivatives in demethiolation pathway, while suppressed the biosynthesis of methional and methionol in ehrlich pathway. These results attained the directional regulation of both pathways by overexpressing HUWE1. Thus, HUWE1 has potential to be a key target for controlling and enhancing alcohols production by metabolic engineering. PMID:26860895

  1. EM Structure of human APC/CCDH1-EMI1 reveals multimodal mechanism of E3 ligase shutdown

    PubMed Central

    Frye, Jeremiah J.; Brown, Nicholas G.; Petzold, Georg; Watson, Edmond R.; Grace, Christy R. R.; Nourse, Amanda; Jarvis, Marc A.; Kriwacki, Richard W.; Peters, Jan-Michael; Stark, Holger; Schulman, Brenda A.

    2013-01-01

    The Anaphase Promoting Complex/Cyclosome (APC/C) is a ~1.5 MDa multiprotein E3 ligase enzyme that regulates cell division by promoting timely ubiquitin-mediated proteolysis of key cell cycle regulatory proteins. Inhibition of human APC/CCDH1 during interphase by Early Mitotic Inhibitor 1 (EMI1) is essential for accurate coordination of DNA synthesis and mitosis. Here, we report a hybrid structural approach involving NMR, electron microscopy, and enzymology, which reveal that EMI1’s 143-residue C-terminal domain inhibits multiple APC/CCDH1 functions. The intrinsically disordered D-box, Linker, and Tail elements, together with a structured zinc-binding domain, bind distinct regions of APC/CCDH1 to synergistically both block the substrate-binding site and inhibit ubiquitin chain elongation. The functional importance of intrinsic structural disorder is explained by enabling a small inhibitory domain to bind multiple sites to shut down multiple functions of a “molecular machine” nearly 100 times its size. PMID:23708605

  2. The stress phenotype makes cancer cells addicted to CDT2, a substrate receptor of the CRL4 ubiquitin ligase

    PubMed Central

    Olivero, Martina; Dettori, Daniela; Arena, Sabrina; Zecchin, Davide; Lantelme, Erica; Di Renzo, Maria Flavia

    2014-01-01

    CDT2/L2DTL/RAMP is one of the substrate receptors of the Cullin Ring Ubiquitin Ligase 4 that targets for ubiquitin mediated degradation a number of substrates, such as CDT1, p21 and CHK1, involved in the regulation of cell cycle and survival. Here we show that CDT2 depletion was alone able to induce the apoptotic death in 12/12 human cancer cell lines from different tissues, regardless of the mutation profile and CDT2 expression level. Cell death was associated to rereplication and to loss of CDT1 degradation. Conversely, CDT2 depletion did not affect non-transformed human cells, such as immortalized kidney, lung and breast cell lines, and primary cultures of endothelial cells and osteoblasts. The ectopic over-expression of an activated oncogene, such as the mutation-activated RAS or the amplified MET in non-transformed immortalized breast cell lines and primary human osteoblasts, respectively, made cells transformed in vitro, tumorigenic in vivo, and susceptible to CDT2 loss. The widespread effect of CDT2 depletion in different cancer cells suggests that CDT2 is not in a synthetic lethal interaction to a single specific pathway. CDT2 likely is a non-oncogene to which transformed cells become addicted because of their enhanced cellular stress, such as replicative stress and DNA damage. PMID:25115388

  3. Regulating ehrlich and demethiolation pathways for alcohols production by the expression of ubiquitin-protein ligase gene HUWE1

    PubMed Central

    Zhang, Quan; Jia, Kai-Zhi; Xia, Shi-Tao; Xu, Yang-Hua; Liu, Rui-Sang; Li, Hong-Mei; Tang, Ya-Jie

    2016-01-01

    Ehrlich and demethiolation pathways as two competing branches converted amino acid into alcohols. Controlling both pathways offers considerable potential for industrial applications including alcohols overproduction, flavor-quality control and developing new flavors. While how to regulate ehrlich and demethiolation pathways is still not applicable. Taking the conversion of methionine into methionol and methanethiol for example, we constructed two suppression subtractive cDNA libraries of Clonostachys rosea by using suppression subtractive hybridization (SSH) technology for screening regulators controlling the conversion. E3 ubiquitin-protein ligase gene HUWE1 screened from forward SSH library was validated to be related with the biosynthesis of end products. Overexpressing HUWE1 in C. rosea and S. cerevisiae significantly increased the biosynthesis of methanethiol and its derivatives in demethiolation pathway, while suppressed the biosynthesis of methional and methionol in ehrlich pathway. These results attained the directional regulation of both pathways by overexpressing HUWE1. Thus, HUWE1 has potential to be a key target for controlling and enhancing alcohols production by metabolic engineering. PMID:26860895

  4. The Sumo-targeted ubiquitin ligase RNF4 regulates the localization and function of the HTLV-1 oncoprotein Tax.

    PubMed

    Fryrear, Kimberly A; Guo, Xin; Kerscher, Oliver; Semmes, O John

    2012-02-01

    The Really Interesting New Gene (RING) Finger Protein 4 (RNF4) represents a class of ubiquitin ligases that target Small Ubiquitin-like Modifier (SUMO)-modified proteins for ubiquitin modification. To date, the regulatory function of RNF4 appears to be ubiquitin-mediated degradation of sumoylated cellular proteins. In the present study, we show that the Human T-cell Leukemia Virus Type 1 (HTLV-1) oncoprotein Tax is a substrate for RNF4 both in vivo and in vitro. We mapped the RNF4-binding site to a region adjacent to the Tax ubiquitin/SUMO modification sites K280/K284. Interestingly, RNF4 modification of Tax protein results in relocalization of the oncoprotein from the nucleus to the cytoplasm. Overexpression of RNF4, but not the RNF4 RING mutant, resulted in cytoplasmic enrichment of Tax. The RNF4-induced nucleus-to-cytoplasm relocalization was associated with increased NF-κB-mediated and decreased cAMP Response Element-Binding (CREB)-mediated Tax activity. Finally, depletion of RNF4 by RNAi prevented the DNA damage-induced nuclear/cytoplasmic translocation of Tax. These results provide important new insight into STUbL-mediated pathways that regulate the subcellular localization and functional dynamics of viral oncogenes. PMID:22106342

  5. 78 FR 2390 - CSOLAR IV South, LLC, Wistaria Ranch Solar, LLC, CSOLAR IV West, LLC, CSOLAR IV North, LLC v...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... Energy Regulatory Commission CSOLAR IV South, LLC, Wistaria Ranch Solar, LLC, CSOLAR IV West, LLC, CSOLAR IV North, LLC v. California Independent System Operator Corporation; Notice of Complaint Take notice... IV South, LLC, Wistaria Ranch Solar, LLC, CSOLAR IV West, LLC and CSOLAR IV North, LLC...

  6. U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans.

    PubMed

    He, Qin; McLellan, Hazel; Boevink, Petra C; Sadanandom, Ari; Xie, Conghua; Birch, Paul R J; Tian, Zhendong

    2015-06-01

    Ubiquitination regulates many processes in plants, including immunity. The E3 ubiquitin ligase PUB17 is a positive regulator of programmed cell death (PCD) triggered by resistance proteins CF4/9 in tomato. Its role in immunity to the potato late blight pathogen, Phytophthora infestans, was investigated here. Silencing StPUB17 in potato by RNAi and NbPUB17 in Nicotiana benthamiana by virus-induced gene silencing (VIGS) each enhanced P. infestans leaf colonization. PAMP-triggered immunity (PTI) transcriptional responses activated by flg22, and CF4/Avr4-mediated PCD were attenuated by silencing PUB17. However, silencing PUB17 did not compromise PCD triggered by P. infestans PAMP INF1, or co-expression of R3a/AVR3a, demonstrating that not all PTI- and PCD-associated responses require PUB17. PUB17 localizes to the plant nucleus and especially in the nucleolus. Transient over-expression of a dominant-negative StPUB17(V314I,V316I) mutant, which retained nucleolar localization, suppressed CF4-mediated cell death and enhanced P. infestans colonization. Exclusion of the StPUB17(V314I,V316I) mutant from the nucleus abolished its dominant-negative activity, demonstrating that StPUB17 functions in the nucleus. PUB17 is a positive regulator of immunity to late blight that acts in the nucleus to promote specific PTI and PCD pathways. PMID:25873665

  7. Lunapark Is a Component of a Ubiquitin Ligase Complex Localized to the Endoplasmic Reticulum Three-way Junctions.

    PubMed

    Zhao, Yupeng; Zhang, Ting; Huo, Huanhuan; Ye, Yihong; Liu, Yanfen

    2016-08-26

    The endoplasmic reticulum (ER) network comprises sheets and tubules that are connected by dynamic three-way junctions. Lunapark (Lnp) localizes to and stabilizes ER three-way junctions by antagonizing the small GTPase Atlastin, but how Lnp shapes the ER network is unclear. Here, we used an affinity purification approach and mass spectrometry to identify Lnp as an interacting partner of the ER protein quality control ubiquitin ligase gp78. Accordingly, Lnp purified from mammalian cells has a ubiquitin ligase activity in vitro Intriguingly, biochemical analyses show that this activity can be attributed not only to associated ubiquitin ligase, but also to an intrinsic ubiquitin ligase activity borne by Lnp itself. This activity is contained in the N-terminal 45 amino acids of Lnp although this segment does not share homology to any known ubiquitin ligase motifs. Despite its interaction with gp78, Lnp does not seem to have a broad function in degradation of misfolded ER proteins. On the other hand, the N-terminal ubiquitin ligase-bearing motif is required for the ER three-way junction localization of Lnp. Our study identifies a new type of ubiquitin ligase and reveals a potential link between ubiquitin and ER morphology regulation. PMID:27387505

  8. Tripartite motif ligases catalyze polyubiquitin chain formation through a cooperative allosteric mechanism.

    PubMed

    Streich, Frederick C; Ronchi, Virginia P; Connick, J Patrick; Haas, Arthur L

    2013-03-22

    Ligation of polyubiquitin chains to proteins is a fundamental post-translational modification, often resulting in targeted degradation of conjugated proteins. Attachment of polyubiquitin chains requires the activities of an E1 activating enzyme, an E2 carrier protein, and an E3 ligase. The mechanism by which polyubiquitin chains are formed remains largely speculative, especially for RING-based ligases. The tripartite motif (TRIM) superfamily of ligases functions in many cellular processes including innate immunity, cellular localization, development and differentiation, signaling, and cancer progression. The present results show that TRIM ligases catalyze polyubiquitin chain formation in the absence of substrate, the rates of which can be used as a functional readout of enzyme function. Initial rate studies under biochemically defined conditions show that TRIM32 and TRIM25 are specific for the Ubc5 family of E2-conjugating proteins and, along with TRIM5α, exhibit cooperative kinetics with respect to Ubc5 concentration, with submicromolar [S]0.5 and Hill coefficients of 3-5, suggesting they possess multiple binding sites for their cognate E2-ubiquitin thioester. Mutation studies reveal a second, non-canonical binding site encompassing the C-terminal Ubc5α-helix. Polyubiquitin chain formation requires TRIM subunit oligomerization through the conserved coiled-coil domain, but can be partially replaced by fusing the catalytic domain to GST to promote dimerization. Other results suggest that TRIM32 assembles polyubiquitin chains as a Ubc5-linked thioester intermediate. These results represent the first detailed mechanistic study of TRIM ligase activity and provide a functional context for oligomerization observed in the superfamily. PMID:23408431

  9. Identifying the ERAD ubiquitin E3 ligases for viral and cellular targeting of MHC class I.

    PubMed

    van den Boomen, D J H; Lehner, P J

    2015-12-01

    The human cytomegalovirus (HCMV) US2 and US11 gene products hijack mammalian ER-associated degradation (ERAD) to induce rapid degradation of major histocompatibility class I (MHC-I) molecules. The rate-limiting step in this pathway is thought to be the polyubiquitination of MHC-I by distinct host ERAD E3 ubiquitin ligases. TRC8 was identified as the ligase responsible for US2-mediated MHC-I degradation and shown to be required for the cleavage-dependent degradation of some tail-anchored proteins. In addition to MHC-I, plasma membrane profiling identified further immune receptors, which are also substrates for the US2/TRC8 complex. These include at least six α integrins, the coagulation factor thrombomodulin and the NK cell ligand CD112. US2's use of specific HCMV-encoded adaptors makes it an adaptable viral degradation hub. US11-mediated degradation is MHC-I-specific and genetic screens have identified TMEM129, an uncharacterised RING-C2 E3 ligase, as responsible for US11-mediated degradation. In a unique auto-regulatory loop, US11 readily responds to changes in cellular expression of MHC-I. Free US11 either rebinds more MHC-I or is itself degraded by the HRD1/SEL1L E3 ligase complex. While virally encoded US2 and US11 appropriate mammalian ERAD, the MHC-I complex also undergoes stringent cellular quality control and misfolded MHC-I is degraded by the HRD1/SEL1L complex. We discuss the identification and central role of E3 ubiquitin ligases in ER quality control and viral degradation of the MHC-I chain. PMID:26210183

  10. Identifying the ERAD ubiquitin E3 ligases for viral and cellular targeting of MHC class I

    PubMed Central

    van den Boomen, D.J.H.; Lehner, P.J.

    2015-01-01

    The human cytomegalovirus (HCMV) US2 and US11 gene products hijack mammalian ER-associated degradation (ERAD) to induce rapid degradation of major histocompatibility class I (MHC-I) molecules. The rate-limiting step in this pathway is thought to be the polyubiquitination of MHC-I by distinct host ERAD E3 ubiquitin ligases. TRC8 was identified as the ligase responsible for US2-mediated MHC-I degradation and shown to be required for the cleavage-dependent degradation of some tail-anchored proteins. In addition to MHC-I, plasma membrane profiling identified further immune receptors, which are also substrates for the US2/TRC8 complex. These include at least six α integrins, the coagulation factor thrombomodulin and the NK cell ligand CD112. US2’s use of specific HCMV-encoded adaptors makes it an adaptable viral degradation hub. US11-mediated degradation is MHC-I-specific and genetic screens have identified TMEM129, an uncharacterised RING-C2 E3 ligase, as responsible for US11-mediated degradation. In a unique auto-regulatory loop, US11 readily responds to changes in cellular expression of MHC-I. Free US11 either rebinds more MHC-I or is itself degraded by the HRD1/SEL1L E3 ligase complex. While virally encoded US2 and US11 appropriate mammalian ERAD, the MHC-I complex also undergoes stringent cellular quality control and misfolded MHC-I is degraded by the HRD1/SEL1L complex. We discuss the identification and central role of E3 ubiquitin ligases in ER quality control and viral degradation of the MHC-I chain. PMID:26210183

  11. Modulation of myocardin function by the ubiquitin E3 ligase UBR5.

    PubMed

    Hu, Guoqing; Wang, Xiaobo; Saunders, Darren N; Henderson, Michelle; Russell, Amanda J; Herring, B Paul; Zhou, Jiliang

    2010-04-16

    Fully differentiated mature smooth muscle cells (SMCs) are characterized by the presence of a unique repertoire of smooth muscle-specific proteins. Although previous studies have shown myocardin to be a critical transcription factor for stimulating expression of smooth muscle-specific genes, the mechanisms regulating myocardin activity are still poorly understood. We used a yeast two-hybrid screen with myocardin as bait to search for factors that may regulate the transcriptional activity of the myocardin. From this screen we identified a HECT domain-containing protein UBR5 (ubiquitin protein ligase E3 component n-recognin 5) as a myocardin-binding protein. Previous studies have shown that HECT domain-containing proteins are ubiquitin E3 ligases that play an important role in protein degradation. UBR5 has, however, also been shown to regulate transcription independent of its E3 ligase activity. In the current study we demonstrated that UBR5 localized in the nuclei of SMCs and forms a complex with myocardin in vivo and in vitro. We also show that UBR5 specifically enhanced trans-activation of smooth muscle-specific promoters by the myocardin family of proteins. In addition, UBR5 significantly augmented the ability of myocardin to induce expression of endogenous SMC marker genes independent on its E3 ligase function. Conversely, depletion of endogenous UBR5 by small interfering RNA in fibroblast cells attenuated myocardin-induced smooth muscle-specific gene expression, and UBR5 knockdown in SMCs resulted in down-regulation of smooth muscle-specific genes. Furthermore, we found that UBR5 can attenuate myocardin protein degradation resulting in increased myocardin protein expression without affecting myocardin mRNA expression. The effects of UBR5 on myocardin requires only the HECT and UBR1 domains of UBR5. This study reveals an unexpected role for the ubiquitin E3 ligase UBR5 as an activator of smooth muscle differentiation through its ability to stabilize myocardin

  12. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation

    PubMed Central

    Lechtenberg, Bernhard C.; Rajput, Akhil; Sanishvili, Ruslan; Dobaczewska, Małgorzata K.; Ware, Carl F.; Mace, Peter D.; Riedl, Stefan J.

    2015-01-01

    Ubiquitination is a central process affecting all facets of cellular signaling and function1. A critical step in ubiquitination is the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to a substrate or a growing ubiquitin chain, which is mediated by E3 ubiquitin ligases. RING-type E3 ligases typically facilitate the transfer of ubiquitin from the E2 directly to the substrate2,3. The RBR family of RING-type E3 ligases, however, breaks this paradigm by forming a covalent intermediate with ubiquitin similarly to HECT-type E3 ligases4–6. The RBR family includes Parkin4 and HOIP, the central catalytic factor of the linear ubiquitin chain assembly complex (LUBAC)7. While structural insights into the RBR E3 ligases Parkin and HHARI in their overall autoinhibited forms are available8–13, no structures exist of intact fully active RBR E3 ligases or any of their complexes. Thus, the RBR mechanism of action has remained largely enigmatic. Here we present the first structure of the fully active HOIP-RBR in its transfer complex with an E2~ubiquitin conjugate, which elucidates the intricate nature of RBR E3 ligases. The active HOIP-RBR adopts a conformation markedly different from that of autoinhibited RBRs. HOIP-RBR binds the E2~ubiquitin conjugate in an elongated fashion, with the E2 and E3 catalytic centers ideally aligned for ubiquitin transfer, which structurally both requires and enables a HECT-like mechanism. In addition, surprisingly, three distinct helix–IBR-fold motifs inherent to RBRs form ubiquitin-binding regions that engage the activated ubiquitin of the E2~Ub conjugate as well as an additional regulatory ubiquitin molecule. The features uncovered reveal critical states of the HOIP-RBR E3 ligase cycle, and comparison with Parkin and HHARI suggests a general mechanism for RBR E3 ligases. PMID:26789245

  13. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation.

    PubMed

    Lechtenberg, Bernhard C; Rajput, Akhil; Sanishvili, Ruslan; Dobaczewska, Małgorzata K; Ware, Carl F; Mace, Peter D; Riedl, Stefan J

    2016-01-28

    Ubiquitination is a central process affecting all facets of cellular signalling and function. A critical step in ubiquitination is the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to a substrate or a growing ubiquitin chain, which is mediated by E3 ubiquitin ligases. RING-type E3 ligases typically facilitate the transfer of ubiquitin from the E2 directly to the substrate. The RING-between-RING (RBR) family of RING-type E3 ligases, however, breaks this paradigm by forming a covalent intermediate with ubiquitin similarly to HECT-type E3 ligases. The RBR family includes Parkin and HOIP, the central catalytic factor of the LUBAC (linear ubiquitin chain assembly complex). While structural insights into the RBR E3 ligases Parkin and HHARI in their overall auto-inhibited forms are available, no structures exist of intact fully active RBR E3 ligases or any of their complexes. Thus, the RBR mechanism of action has remained largely unknown. Here we present the first structure, to our knowledge, of the fully active human HOIP RBR in its transfer complex with an E2~ubiquitin conjugate, which elucidates the intricate nature of RBR E3 ligases. The active HOIP RBR adopts a conformation markedly different from that of auto-inhibited RBRs. HOIP RBR binds the E2~ubiquitin conjugate in an elongated fashion, with the E2 and E3 catalytic centres ideally aligned for ubiquitin transfer, which structurally both requires and enables a HECT-like mechanism. In addition, three distinct helix-IBR-fold motifs inherent to RBRs form ubiquitin-binding regions that engage the activated ubiquitin of the E2~ubiquitin conjugate and, surprisingly, an additional regulatory ubiquitin molecule. The features uncovered reveal critical states of the HOIP RBR E3 ligase cycle, and comparison with Parkin and HHARI suggests a general mechanism for RBR E3 ligases. PMID:26789245

  14. Bricks and blueprints: methods and standards for DNA assembly.

    PubMed

    Casini, Arturo; Storch, Marko; Baldwin, Geoffrey S; Ellis, Tom

    2015-09-01

    DNA assembly is a key part of constructing gene expression systems and even whole chromosomes. In the past decade, a plethora of powerful new DNA assembly methods - including Gibson Assembly, Golden Gate and ligase cycling reaction (LCR) - have been developed. In this Innovation article, we discuss these methods as well as standards such as the modular cloning (MoClo) system, GoldenBraid, modular overlap-directed assembly with linkers (MODAL) and PaperClip, which have been developed to facilitate a streamlined assembly workflow, to aid the exchange of material between research groups and to create modular reusable DNA parts. PMID:26081612

  15. RING-type ubiquitin ligase McCPN1 catalyzes UBC8-dependent protein ubiquitination and interacts with Argonaute 4 in halophyte ice plant.

    PubMed

    Li, Chang-Hua; Chiang, Chih-Pin; Yang, Jun-Yi; Ma, Chia-Jou; Chen, Yu-Chan; Yen, Hungchen Emilie

    2014-07-01

    RING-type copines are a small family of plant-specific RING-type ubiquitin ligases. They contain an N-terminal myristoylation site for membrane anchoring, a central copine domain for substrate recognition, and a C-terminal RING domain for E2 docking. RING-type copine McCPN1 (copine1) from halophyte ice plant (Mesembryanthemum crystallinum L.) was previously identified from a salt-induced cDNA library. In this work, we characterize the activity, expression, and localization of McCPN1 in ice plant. An in vitro ubiquitination assay of McCPN1 was performed using two ice plant UBCs, McUBC1 and McUBC2, characterized from the same salt-induced cDNA library. The results showed that McUBC2, a member of the UBC8 family, stimulated the autoubiquitination activity of McCPN1, while McUBC1, a homolog of the UBC35 family, did not. The results indicate that McCPN1 has selective E2-dependent E3 ligase activity. We found that McCPN1 localizes primarily on the plasma membrane and in the nucleus of plant cells. Under salt stress, the accumulation of McCPN1 in the roots increases. A yeast two-hybrid screen was used to search for potential McCPN1-interacting partners using a library constructed from salt-stressed ice plants. Screening with full-length McCPN1 identified several independent clones containing partial Argonaute 4 (AGO4) sequence. Subsequent agro-infiltration, protoplast two-hybrid analysis, and bimolecular fluorescence complementation assay confirmed that McCPN1 and AGO4 interacted in vivo in the nucleus of plant cells. The possible involvement of a catalyzed degradation of AGO4 by McCPN1 in response to salt stress is discussed. PMID:24811676

  16. Complete primary structure of the triple-helical region and the carboxyl-terminal domain of a new type IV collagen chain, alpha 5(IV).

    PubMed

    Pihlajaniemi, T; Pohjolainen, E R; Myers, J C

    1990-08-15

    We have isolated and characterized overlapping cDNA clones which code for a previously unidentified human collagen chain. Although the cDNA-derived primary structure of this new polypeptide is very similar to the basement membrane collagen alpha 1(IV) and alpha 2(IV) chains, the carboxyl-terminal collagenous/non-collagenous junction sequence does not correspond to the junction sequence in either of the newly described alpha 3(IV) or alpha 4(IV) chains (Butkowski, R.J., Langeveld, J.P.M., Wieslander, J., Hamilton, J., and Hudson, B. G. (1987) J. Biol. Chem. 262, 7874-7877). Thus the protein presented here has been designated the alpha 5 chain of type IV collagen. Four clones encode an open reading frame of 1602 amino acids that cover about 95% of the entire chain including half of the amino-terminal 7S domain and all of the central triple-helical region and carboxyl-terminal NC1 domain. The collagenous region of the alpha 5(IV) chain contains 22 interruptions which are in most cases identical in distribution to those in both the alpha 1(IV) and alpha 2(IV) chains. Despite the relatively low degree of conservation among the amino acids in the triple-helical region of the three type IV collagen chains, analysis of the sequences clearly showed that alpha 5(IV) is more related to alpha 1(IV) than to alpha 2(IV). This similarity between the alpha 5(IV) and alpha 1(IV) chains is particularly evident in the NC1 domains where the two polypeptides are 83% identical in contrast to the alpha 5(IV) and alpha 2(IV) identity of 63%. In addition to greatly increasing the complexity of basement membranes, the alpha 5 chain of type IV collagen may be responsible for specialized functions of some of these extracellular matrices. In this regard, it is important to note that we have recently assigned the alpha 5(IV) gene to the region of the X chromosome containing the locus for a familial type of hereditary nephritis known as Alport syndrome (Myers, J.C., Jones, T.A., Pohjalainen, E

  17. Identification of Candidate Substrates for the Golgi Tul1 E3 Ligase Using Quantitative diGly Proteomics in Yeast*

    PubMed Central

    Tong, Zongtian; Kim, Min-Sik; Pandey, Akhilesh; Espenshade, Peter J.

    2014-01-01

    Maintenance of protein homeostasis is essential for cellular survival. Central to this regulation are mechanisms of protein quality control in which misfolded proteins are recognized and degraded by the ubiquitin-proteasome system. One well-studied protein quality control pathway requires endoplasmic reticulum (ER)-resident, multi-subunit E3 ubiquitin ligases that function in ER-associated degradation. Using fission yeast, our lab identified the Golgi Dsc E3 ligase as required for proteolytic activation of fungal sterol regulatory element-binding protein transcription factors. The Dsc E3 ligase contains five integral membrane subunits and structurally resembles ER-associated degradation E3 ligases. Saccharomyces cerevisiae codes for homologs of Dsc E3 ligase subunits, including the Dsc1 E3 ligase homolog Tul1 that functions in Golgi protein quality control. Interestingly, S. cerevisiae lacks sterol regulatory element-binding protein homologs, indicating that novel Tul1 E3 ligase substrates exist. Here, we show that the S. cerevisiae Tul1 E3 ligase consists of Tul1, Dsc2, Dsc3, and Ubx3 and define Tul1 complex architecture. Tul1 E3 ligase function required each subunit as judged by vacuolar sorting of the artificial substrate Pep12D. Genetic studies demonstrated that Tul1 E3 ligase was required in cells lacking the multivesicular body pathway and under conditions of ubiquitin depletion. To identify candidate substrates, we performed quantitative diGly proteomics using stable isotope labeling by amino acids in cell culture to survey ubiquitylation in wild-type and tul1Δ cells. We identified 3116 non-redundant ubiquitylation sites, including 10 sites in candidate substrates. Quantitative proteomics found 4.5% of quantified proteins (53/1172) to be differentially expressed in tul1Δ cells. Correcting the diGly dataset for these differences increased the number of Tul1-dependent ubiquitylation sites. Together, our data demonstrate that the Tul1 E3 ligase functions in

  18. Mitochondrial DNA damage induced autophagy, cell death, and disease

    PubMed Central

    Van Houten, Bennett; Hunter, Senyene E.; Meyer, Joel N.

    2016-01-01

    Mammalian mitochondria contain multiple small genomes. While these organelles have efficient base excision removal of oxidative DNA lesions and alkylation damage, many DNA repair systems that work on nuclear DNA damage are not active in mitochondria. What is the fate of DNA damage in the mitochondria that cannot be repaired or that overwhelms the repair system? Some forms of mitochondrial DNA damage can apparently trigger mitochondrial DNA destruction, either via direct degradation or through specific forms of autophagy, such as mitophagy. However, accumulation of certain types of mitochondrial damage, in the absence of DNA ligase III (Lig3) or exonuclease G (EXOG), enzymes required for repair, can directly trigger cell death. This review examines the cellular effects of persistent damage to mitochondrial genomes and discusses the very different cell fates that occur in response to different kinds of damage. PMID:26709760

  19. POU proteins bend DNA via the POU-specific domain.

    PubMed Central

    Verrijzer, C P; van Oosterhout, J A; van Weperen, W W; van der Vliet, P C

    1991-01-01

    POU proteins constitute a family of ubiquitous as well as cell type-specific transcription factors that share the conserved POU DNA binding domain. This domain consists of two distinct subdomains, a POU-specific domain and a POU homeodomain, that are both required for high affinity sequence-specific DNA binding. In a circular permutation assay, several POU proteins, including Oct-1, Oct-2A, Oct-6 and Pit-1, demonstrated a position dependent mobility of the protein-DNA complexes, suggesting induction of DNA bending. This was confirmed by detection of relative bend direction, using pre-bent DNA, and by enhanced ligase mediated cyclization. Bending was caused by interaction with the POU domain. By contrast, binding of the POU homeodomain did not distort the DNA structure, indicating that the POU-specific domain confers DNA bending. Images PMID:1915275

  20. Characterization of inherent curvature in DNA lacking polyadenine runs.

    PubMed

    McNamara, P T; Harrington, R E

    1991-07-01

    Sequence-directed DNA curvature is most commonly associated with AA dinucleotides in the form of polyadenine runs. We demonstrate inherent curvature in DNA which lacks AA/TT dinucleotides using the criteria of polyacrylamide gel mobility and efficiency of DNA cyclization. These studies are based upon two 21-base pair synthetic DNA fragments designed to exhibit fixed curvature according to deflections made to the helical axis by non-AA dinucleotide stacks. Repeats of these sequences display anomalously slow migration in polyacrylamide gels. Moreover, both sequences describe helical conformations that are closed into circles by DNA ligase at much smaller sizes than is typical of nondeformed DNA. Chemical cleavage of these DNA molecules with hydroxyl radical is also consistent with local variation in helical conformation at specific dinucleotide steps. PMID:1648100

  1. Preparation of genomic DNA from bacteria.

    PubMed

    Wilson, K

    2001-11-01

    Most protocols for the preparation of bacterial genomic DNA consist of lysis, followed by incubation with a nonspecific protease and a series of extractions prior to precipitation of the nucleic acids. Such procedures effectively remove contaminating proteins, but are not effective in removing exopolysaccharides which can interfere with the activity of enzymes such as restriction endonucleases and ligases. In this unit, however, the protease incubation is followed by a CTAB extraction whereby CTAB complexes both with polysaccharides and with residual protein, effectively removing both in the subsequent emulsification and extraction. This procedure is effective in producing digestible chromosomal DNA from a variety of gram-negative bacteria, all of which normally produce large amounts of polysaccharides. If large amounts of exceptionally clean DNA are required, the procedure can be scaled up and the DNA purified on a CsCl gradient, as described in the alternate protocol. PMID:18265184

  2. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping

    PubMed Central

    Paik, Paul K.; Drilon, Alexander; Fan, Pang-Dian; Yu, Helena; Rekhtman, Natasha; Ginsberg, Michelle S.; Borsu, Laetitia; Schultz, Nikolaus; Berger, Michael F.; Rudin, Charles M.; Ladanyi, Marc

    2015-01-01

    Mutations in the MET exon 14 RNA splice acceptor and donor sites, which lead to exon skipping, deletion of the juxtamembrane domain containing the Cbl E3-ubiquitin ligase binding site, and decreased turnover of the resultant aberrant MET protein, were previously reported to be oncogenic in preclinical models. We now report responses to the MET inhibitors crizotinib and cabozantinib in four patients with stage IV lung adenocarcinomas harboring mutations leading to MET exon 14 skipping, highlighting a new therapeutic strategy for the 4% of lung adenocarcinoma patients whose tumors harbor this previously underappreciated genetic alteration. PMID:25971939