Science.gov

Sample records for dna microarray profiling

  1. Profiling DNA Methylomes from Microarray to Genome-Scale Sequencing

    PubMed Central

    Huang, Yi-Wen; Huang, Tim H.-M.; Wang, Li-Shu

    2010-01-01

    DNA cytosine methylation is a central epigenetic modification which plays critical roles in cellular processes including genome regulation, development and disease. Here, we review current and emerging microarray and next-generation sequencing based technologies that enhance our knowledge of DNA methylation profiling. Each methodology has limitations and their unique applications, and combinations of several modalities may help build the entire methylome. With advances on next-generation sequencing technologies, it is now possible to globally map the DNA cytosine methylation at single-base resolution, providing new insights into the regulation and dynamics of DNA methylation in genomes. PMID:20218736

  2. Profiling DNA methylomes from microarray to genome-scale sequencing.

    PubMed

    Huang, Yi-Wei; Huang, Tim H-M; Wang, Li-Shu

    2010-04-01

    DNA cytosine methylation is a central epigenetic modification which plays critical roles in cellular processes including genome regulation, development and disease. Here, we review current and emerging microarray and next-generation sequencing based technologies that enhance our knowledge of DNA methylation profiling. Each methodology has limitations and their unique applications, and combinations of several modalities may help build the entire methylome. With advances on next-generation sequencing technologies, it is now possible to globally map the DNA cytosine methylation at single-base resolution, providing new insights into the regulation and dynamics of DNA methylation in genomes. PMID:20218736

  3. DNA Microarrays

    NASA Astrophysics Data System (ADS)

    Nguyen, C.; Gidrol, X.

    Genomics has revolutionised biological and biomedical research. This revolution was predictable on the basis of its two driving forces: the ever increasing availability of genome sequences and the development of new technology able to exploit them. Up until now, technical limitations meant that molecular biology could only analyse one or two parameters per experiment, providing relatively little information compared with the great complexity of the systems under investigation. This gene by gene approach is inadequate to understand biological systems containing several thousand genes. It is essential to have an overall view of the DNA, RNA, and relevant proteins. A simple inventory of the genome is not sufficient to understand the functions of the genes, or indeed the way that cells and organisms work. For this purpose, functional studies based on whole genomes are needed. Among these new large-scale methods of molecular analysis, DNA microarrays provide a way of studying the genome and the transcriptome. The idea of integrating a large amount of data derived from a support with very small area has led biologists to call these chips, borrowing the term from the microelectronics industry. At the beginning of the 1990s, the development of DNA chips on nylon membranes [1, 2], then on glass [3] and silicon [4] supports, made it possible for the first time to carry out simultaneous measurements of the equilibrium concentration of all the messenger RNA (mRNA) or transcribed RNA in a cell. These microarrays offer a wide range of applications, in both fundamental and clinical research, providing a method for genome-wide characterisation of changes occurring within a cell or tissue, as for example in polymorphism studies, detection of mutations, and quantitative assays of gene copies. With regard to the transcriptome, it provides a way of characterising differentially expressed genes, profiling given biological states, and identifying regulatory channels.

  4. SPERM RNA AMPLIFICATION FOR GENE EXPRESSION PROFILING BY DNA MICROARRAY TECHNOLOGY

    EPA Science Inventory

    Sperm RNA Amplification for Gene Expression Profiling by DNA Microarray Technology
    Hongzu Ren, Kary E. Thompson, Judith E. Schmid and David J. Dix, Reproductive Toxicology Division, NHEERL, Office of Research and Development, US Environmental Protection Agency, Research Triang...

  5. Methods for gene expression profiling in dermatology research using DermArray nylon filter DNA microarrays.

    PubMed

    Davis, Richard L; DuBreuil, Rusla M; Reddy, Shanker P; Dooley, Thomas P

    2005-01-01

    Here we present methods of gene expression profiling using nylon filter deoxyribonucleic acid (DNA) microarrays and radiolabeled and nonradiolabeled hybridization probes. DermArray(R) nylon filter DNA microarrays were designed specifically for use in dermatology research. A patent-pending method was used to select approx 4400 highly informative, sequence-verified human cDNA clones for this DNA micro array. Using DermArray(R) filters, biomarkers have been discovered for normal and pathologic cells from skin, and for responses to dermatologic drugs. As an example, gene expression profiling was performed with hydroquinone-treated SKMel-28 cells, a melanoma cell line. Also included are the methods for bioinformatic analysis using Pathwaystrade mark software. PMID:15502201

  6. Protocol for Gene Expression Profiling Using DNA Microarrays in Neisseria gonorrhoeae

    PubMed Central

    Jackson, Lydgia A.; Dyer, David W.

    2016-01-01

    Gene expression profiling using DNA microarrays has become commonplace in current molecular biology practices, and has dramatically enhanced our understanding of the biology of Neisseria spp., and the interaction of these organisms with the host. With the choice of microarray platforms offered for gene expression profiling and commercially available arrays, investigators must ask several central questions to make decisions based on their research focus. Are arrays on hand for their organism and if not then would it be cost-effective to design custom arrays. Other important considerations; what types of specialized equipment for array hybridization and signal detection are required and is the specificity and sensitivity of the array adequate for your application. Here, we describe the use of a custom 12K CombiMatrix ElectraSense™ oligonucleotide microarray format for assessing global gene expression profiles in Neisseria spp. PMID:22782831

  7. Gene expression profile analysis in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray.

    PubMed

    Eom, Hyunsuk; Lee, Choul-Gyun; Jin, EonSeon

    2006-05-01

    The unicellular green alga Haematococcus pluvialis (Volvocales) is known for the ketocarotenoid astaxanthin (3, 3'-dihydroxy-beta, beta-carotene-4, 4'-dione) accumulation, which is induced under unfavorable culture conditions. In this work, we used cDNA microarray analysis to screen differentially expressed genes in H. pluvialis under astaxanthin-inductive culture conditions, such as combination of cell exposure to high irradiance and nutrient deprivation. Among the 965 genes in the cDNA array, there are 144 genes exhibiting differential expression (twofold changes) under these conditions. A significant decrease in the expression of photosynthesis-related genes was shown in astaxanthin-accumulating cells (red cells). Defense- or stress-related genes and signal transduction genes were also induced in the red cells. A comparison of microarray and real-time PCR analysis showed good correlation between the differentially expressed genes by the two methods. Our results indicate that the cDNA microarray approach, as employed in this work, can be relied upon and used to monitor gene expression profiles in H. pluvialis. In addition, the genes that were differentially expressed during astaxanthin induction are suitable candidates for further study and can be used as tools for dissecting the molecular mechanism of this unique pigment accumulation process in the green alga H. pluvialis. PMID:16320067

  8. Compressive Sensing DNA Microarrays

    PubMed Central

    2009-01-01

    Compressive sensing microarrays (CSMs) are DNA-based sensors that operate using group testing and compressive sensing (CS) principles. In contrast to conventional DNA microarrays, in which each genetic sensor is designed to respond to a single target, in a CSM, each sensor responds to a set of targets. We study the problem of designing CSMs that simultaneously account for both the constraints from CS theory and the biochemistry of probe-target DNA hybridization. An appropriate cross-hybridization model is proposed for CSMs, and several methods are developed for probe design and CS signal recovery based on the new model. Lab experiments suggest that in order to achieve accurate hybridization profiling, consensus probe sequences are required to have sequence homology of at least 80% with all targets to be detected. Furthermore, out-of-equilibrium datasets are usually as accurate as those obtained from equilibrium conditions. Consequently, one can use CSMs in applications in which only short hybridization times are allowed. PMID:19158952

  9. Gene expression profiling of NB4 cells following knockdown of nucleostemin using DNA microarrays

    PubMed Central

    SUN, XIAOLI; JIA, YU; WEI, YUANYU; LIU, SHUAI; YUE, BAOHONG

    2016-01-01

    Nucleostemin (NS) is mainly expressed in stem and tumor cells, and is necessary for the maintenance of their self-renewal and proliferation. Originally, NS was thought to exert its effects through inhibiting p53, while recent studies have revealed that NS is also able to function independently of p53. The present study performed a gene expression profiling analysis of p53-mutant NB4 leukeima cells following knockdown of NS in order to elucidate the p53-independent NS pathway. NS expression was silenced using lentivirus-mediated RNA interference technology, and gene expression profiling of NB4 cells was performed by DNA microarray analysis. A total of 1,953 genes were identified to be differentially expressed (fold change ≥2 or ≤0.5) following knockdown of NS expression. Furthermore, reverse-transcription quantitative polymerase chain reaction analysis was used to detect the expression of certain candidate genes, and the results were in agreement with the micaroarray data. Pathway analysis indicated that aberrant genes were enhanced in endoplasmic, c-Jun N-terminal kinase and mineral absorption pathways. The present study shed light on the mechanisms of the p54-independent NS pathway in NB4 cells and provided a foundation for the discovery of promising targets for the treatment of p53-mutant leukemia. PMID:27374947

  10. Genome-wide analysis of mRNA polysomal profiles with spotted DNA microarrays.

    PubMed

    Melamed, Daniel; Arava, Yoav

    2007-01-01

    The sedimentation of an mRNA in sucrose gradients is highly affected by its ribosomal association. Sedimentation analysis has therefore become routine for studying changes in ribosomal association of mRNAs of interest. DNA microarray technology has been combined with sedimentation analysis to characterize changes in ribosomal association for thousands of mRNAs in parallel. Such analyses revealed mRNAs that are translationally regulated and have provided new insights into the translation process. In this chapter, we describe possible experimental designs for analyzing genome-wide changes in ribosomal association, and discuss some of their advantages and disadvantages. We then provide a detailed protocol for analysis of polysomal fractions using spotted DNA microarrays. PMID:17923236

  11. DNA Microarrays in Herbal Drug Research

    PubMed Central

    Chavan, Preeti; Joshi, Kalpana; Patwardhan, Bhushan

    2006-01-01

    Natural products are gaining increased applications in drug discovery and development. Being chemically diverse they are able to modulate several targets simultaneously in a complex system. Analysis of gene expression becomes necessary for better understanding of molecular mechanisms. Conventional strategies for expression profiling are optimized for single gene analysis. DNA microarrays serve as suitable high throughput tool for simultaneous analysis of multiple genes. Major practical applicability of DNA microarrays remains in DNA mutation and polymorphism analysis. This review highlights applications of DNA microarrays in pharmacodynamics, pharmacogenomics, toxicogenomics and quality control of herbal drugs and extracts. PMID:17173108

  12. Gene-expression profiling of human mononuclear cells from welders using cDNA microarray.

    PubMed

    Rim, Kyung Taek; Park, Kun Koo; Kim, Yang Ho; Lee, Yong Hwan; Han, Jeong Hee; Chung, Yong Hyun; Yu, Il Je

    2007-08-01

    A toxicogenomic chip developed to detect welding-related diseases was tested and validated for field trials. To verify the suitability of the microarray, white blood cells (WBC) or whole blood was purified and characterized from 20 subjects in the control group (average work experience of 7 yr) and 20 welders in the welding-fume exposed group (welders with an average work experience of 23 yr). Two hundred and fifty-three rat genes homologous to human genes were obtained and spotted on the chip slide. Meanwhile, a human cDNA chip spotted with 8600 human genes was also used to detect any increased or decreased levels of gene expression among the welders. After comparing the levels of gene expression between the control and welder groups using the toxicogenomic chips, 103 genes were identified as likely to be specifically changed by welding-fume exposure. Eighteen of the 253 rat genes were specifically changed in the welders, while 103 genes from the human cDNA chip were specifically changed. The genes specifically expressed by the welders were associated with inflammatory responses, toxic chemical metabolism, stress proteins, transcription factors, and signal transduction. In contrast, there was no significant change in the genes related to short-term welding-fume exposure, such as tumor necrosis factor (TNF)-alpha and interleukin. In conclusion, if further validation studies are conducted, the present toxicogenomic gene chips could be used for the effective monitoring of welding-fume-exposure-related diseases among welders. PMID:17654244

  13. Development of an oligo DNA microarray for the European sea bass and its application to expression profiling of jaw deformity

    PubMed Central

    2010-01-01

    Background The European sea bass (Dicentrarchus labrax) is a marine fish of great importance for fisheries and aquaculture. Functional genomics offers the possibility to discover the molecular mechanisms underlying productive traits in farmed fish, and a step towards the application of marker assisted selection methods in this species. To this end, we report here on the development of an oligo DNA microarray for D. labrax. Results A database consisting of 19,048 unique transcripts was constructed, of which 12,008 (63%) could be annotated by similarity and 4,692 received a GO functional annotation. Two non-overlapping 60mer probes were designed for each unique transcript and in-situ synthesized on glass slides using Agilent SurePrint™ technology. Probe design was positively completed for 19,035 target clusters; the oligo microarray was then applied to profile gene expression in mandibles and whole-heads of fish affected by prognathism, a skeletal malformation that strongly affects sea bass production. Statistical analysis identified 242 transcripts that are significantly down-regulated in deformed individuals compared to normal fish, with a significant enrichment in genes related to nervous system development and functioning. A set of genes spanning a wide dynamic range in gene expression level were selected for quantitative RT-PCR validation. Fold change correlation between microarray and qPCR data was always significant. Conclusions The microarray platform developed for the European sea bass has a high level of flexibility, reliability, and reproducibility. Despite the well known limitations in achieving a proper functional annotation in non-model species, sufficient information was obtained to identify biological processes that are significantly enriched among differentially expressed genes. New insights were obtained on putative mechanisms involved on mandibular prognathism, suggesting that bone/nervous system development might play a role in this phenomenon

  14. DNA Microarray-Based Diagnostics.

    PubMed

    Marzancola, Mahsa Gharibi; Sedighi, Abootaleb; Li, Paul C H

    2016-01-01

    The DNA microarray technology is currently a useful biomedical tool which has been developed for a variety of diagnostic applications. However, the development pathway has not been smooth and the technology has faced some challenges. The reliability of the microarray data and also the clinical utility of the results in the early days were criticized. These criticisms added to the severe competition from other techniques, such as next-generation sequencing (NGS), impacting the growth of microarray-based tests in the molecular diagnostic market.Thanks to the advances in the underlying technologies as well as the tremendous effort offered by the research community and commercial vendors, these challenges have mostly been addressed. Nowadays, the microarray platform has achieved sufficient standardization and method validation as well as efficient probe printing, liquid handling and signal visualization. Integration of various steps of the microarray assay into a harmonized and miniaturized handheld lab-on-a-chip (LOC) device has been a goal for the microarray community. In this respect, notable progress has been achieved in coupling the DNA microarray with the liquid manipulation microsystem as well as the supporting subsystem that will generate the stand-alone LOC device.In this chapter, we discuss the major challenges that microarray technology has faced in its almost two decades of development and also describe the solutions to overcome the challenges. In addition, we review the advancements of the technology, especially the progress toward developing the LOC devices for DNA diagnostic applications. PMID:26614075

  15. Progress in the application of DNA microarrays.

    PubMed Central

    Lobenhofer, E K; Bushel, P R; Afshari, C A; Hamadeh, H K

    2001-01-01

    Microarray technology has been applied to a variety of different fields to address fundamental research questions. The use of microarrays, or DNA chips, to study the gene expression profiles of biologic samples began in 1995. Since that time, the fundamental concepts behind the chip, the technology required for making and using these chips, and the multitude of statistical tools for analyzing the data have been extensively reviewed. For this reason, the focus of this review will be not on the technology itself but on the application of microarrays as a research tool and the future challenges of the field. PMID:11673116

  16. Comparing Bacterial DNA Microarray Fingerprints

    SciTech Connect

    Willse, Alan R.; Chandler, Darrell P.; White, Amanda M.; Protic, Miroslava; Daly, Don S.; Wunschel, Sharon C.

    2005-08-15

    Detecting subtle genetic differences between microorganisms is an important problem in molecular epidemiology and microbial forensics. In a typical investigation, gel electrophoresis is used to compare randomly amplified DNA fragments between microbial strains, where the patterns of DNA fragment sizes are proxies for a microbe's genotype. The limited genomic sample captured on a gel is often insufficient to discriminate nearly identical strains. This paper examines the application of microarray technology to DNA fingerprinting as a high-resolution alternative to gel-based methods. The so-called universal microarray, which uses short oligonucleotide probes that do not target specific genes or species, is intended to be applicable to all microorganisms because it does not require prior knowledge of genomic sequence. In principle, closely related strains can be distinguished if the number of probes on the microarray is sufficiently large, i.e., if the genome is sufficiently sampled. In practice, we confront noisy data, imperfectly matched hybridizations, and a high-dimensional inference problem. We describe the statistical problems of microarray fingerprinting, outline similarities with and differences from more conventional microarray applications, and illustrate the statistical fingerprinting problem for 10 closely related strains from three Bacillus species, and 3 strains from non-Bacillus species.

  17. Effect of orally administered collagen hydrolysate on gene expression profiles in mouse skin: a DNA microarray analysis.

    PubMed

    Oba, Chisato; Ito, Kyoko; Ichikawa, Satomi; Morifuji, Masashi; Nakai, Yuji; Ishijima, Tomoko; Abe, Keiko; Kawahata, Keiko

    2015-08-01

    Dietary collagen hydrolysate has been hypothesized to improve skin barrier function. To investigate the effect of long-term collagen hydrolysate administration on the skin, we evaluated stratum corneum water content and skin elasticity in intrinsically aged mice. Female hairless mice were fed a control diet or a collagen hydrolysate-containing diet for 12 wk. Stratum corneum water content and skin elasticity were gradually decreased in chronologically aged control mice. Intake of collagen hydrolysate significantly suppressed such changes. Moreover, we used DNA microarrays to analyze gene expression in the skin of mice that had been administered collagen hydrolysate. Twelve weeks after the start of collagen intake, no significant differences appeared in the gene expression profile compared with the control group. However, 1 wk after administration, 135 genes were upregulated and 448 genes were downregulated in the collagen group. This suggests that gene changes preceded changes of barrier function and elasticity. We focused on several genes correlated with functional changes in the skin. Gene Ontology terms related to epidermal cell development were significantly enriched in upregulated genes. These skin function-related genes had properties that facilitate epidermal production and differentiation while suppressing dermal degradation. In conclusion, our results suggest that altered gene expression at the early stages after collagen administration affects skin barrier function and mechanical properties. Long-term oral intake of collagen hydrolysate improves skin dysfunction by regulating genes related to production and maintenance of skin tissue. PMID:26058835

  18. DNA microarrays in prostate cancer.

    PubMed

    Ho, Shuk-Mei; Lau, Kin-Mang

    2002-02-01

    DNA microarray technology provides a means to examine large numbers of molecular changes related to a biological process in a high throughput manner. This review discusses plausible utilities of this technology in prostate cancer research, including definition of prostate cancer predisposition, global profiling of gene expression patterns associated with cancer initiation and progression, identification of new diagnostic and prognostic markers, and discovery of novel patient classification schemes. The technology, at present, has only been explored in a limited fashion in prostate cancer research. Some hurdles to be overcome are the high cost of the technology, insufficient sample size and repeated experiments, and the inadequate use of bioinformatics. With the completion of the Human Genome Project and the advance of several highly complementary technologies, such as laser capture microdissection, unbiased RNA amplification, customized functional arrays (eg, single-nucleotide polymorphism chips), and amenable bioinformatics software, this technology will become widely used by investigators in the field. The large amount of novel, unbiased hypotheses and insights generated by this technology is expected to have a significant impact on the diagnosis, treatment, and prevention of prostate cancer. Finally, this review emphasizes existing, but currently underutilized, data-mining tools, such as multivariate statistical analyses, neural networking, and machine learning techniques, to stimulate wider usage. PMID:12084220

  19. Photoelectrochemical synthesis of DNA microarrays

    PubMed Central

    Chow, Brian Y.; Emig, Christopher J.; Jacobson, Joseph M.

    2009-01-01

    Optical addressing of semiconductor electrodes represents a powerful technology that enables the independent and parallel control of a very large number of electrical phenomena at the solid-electrolyte interface. To date, it has been used in a wide range of applications including electrophoretic manipulation, biomolecule sensing, and stimulating networks of neurons. Here, we have adapted this approach for the parallel addressing of redox reactions, and report the construction of a DNA microarray synthesis platform based on semiconductor photoelectrochemistry (PEC). An amorphous silicon photoconductor is activated by an optical projection system to create virtual electrodes capable of electrochemically generating protons; these PEC-generated protons then cleave the acid-labile dimethoxytrityl protecting groups of DNA phosphoramidite synthesis reagents with the requisite spatial selectivity to generate DNA microarrays. Furthermore, a thin-film porous glass dramatically increases the amount of DNA synthesized per chip by over an order of magnitude versus uncoated glass. This platform demonstrates that PEC can be used toward combinatorial bio-polymer and small molecule synthesis. PMID:19706433

  20. DNA Microarrays for Identifying Fishes

    PubMed Central

    Nölte, M.; Weber, H.; Silkenbeumer, N.; Hjörleifsdottir, S.; Hreggvidsson, G. O.; Marteinsson, V.; Kappel, K.; Planes, S.; Tinti, F.; Magoulas, A.; Garcia Vazquez, E.; Turan, C.; Hervet, C.; Campo Falgueras, D.; Antoniou, A.; Landi, M.; Blohm, D.

    2008-01-01

    In many cases marine organisms and especially their diverse developmental stages are difficult to identify by morphological characters. DNA-based identification methods offer an analytically powerful addition or even an alternative. In this study, a DNA microarray has been developed to be able to investigate its potential as a tool for the identification of fish species from European seas based on mitochondrial 16S rDNA sequences. Eleven commercially important fish species were selected for a first prototype. Oligonucleotide probes were designed based on the 16S rDNA sequences obtained from 230 individuals of 27 fish species. In addition, more than 1200 sequences of 380 species served as sequence background against which the specificity of the probes was tested in silico. Single target hybridisations with Cy5-labelled, PCR-amplified 16S rDNA fragments from each of the 11 species on microarrays containing the complete set of probes confirmed their suitability. True-positive, fluorescence signals obtained were at least one order of magnitude stronger than false-positive cross-hybridisations. Single nontarget hybridisations resulted in cross-hybridisation signals at approximately 27% of the cases tested, but all of them were at least one order of magnitude lower than true-positive signals. This study demonstrates that the 16S rDNA gene is suitable for designing oligonucleotide probes, which can be used to differentiate 11 fish species. These data are a solid basis for the second step to create a “Fish Chip” for approximately 50 fish species relevant in marine environmental and fisheries research, as well as control of fisheries products. PMID:18270778

  1. Microarrays Made Simple: "DNA Chips" Paper Activity

    ERIC Educational Resources Information Center

    Barnard, Betsy

    2006-01-01

    DNA microarray technology is revolutionizing biological science. DNA microarrays (also called DNA chips) allow simultaneous screening of many genes for changes in expression between different cells. Now researchers can obtain information about genes in days or weeks that used to take months or years. The paper activity described in this article…

  2. DNA microarray analyses reveal a post-irradiation differential time-dependent gene expression profile in yeast cells exposed to X-rays and {gamma}-rays

    SciTech Connect

    Kimura, Shinzo; Ishidou, Emi; Kurita, Sakiko; Suzuki, Yoshiteru; Shibato, Junko; Rakwal, Randeep . E-mail: rakwal-68@aist.go.jp; Iwahashi, Hitoshi

    2006-07-21

    Ionizing radiation (IR) is the most enigmatic of genotoxic stress inducers in our environment that has been around from the eons of time. IR is generally considered harmful, and has been the subject of numerous studies, mostly looking at the DNA damaging effects in cells and the repair mechanisms therein. Moreover, few studies have focused on large-scale identification of cellular responses to IR, and to this end, we describe here an initial study on the transcriptional responses of the unicellular genome model, yeast (Saccharomyces cerevisiae strain S288C), by cDNA microarray. The effect of two different IR, X-rays, and gamma ({gamma})-rays, was investigated by irradiating the yeast cells cultured in YPD medium with 50 Gy doses of X- and {gamma}-rays, followed by resuspension of the cells in YPD for time-course experiments. The samples were collected for microarray analysis at 20, 40, and 80 min after irradiation. Microarray analysis revealed a time-course transcriptional profile of changed gene expressions. Up-regulated genes belonged to the functional categories mainly related to cell cycle and DNA processing, cell rescue defense and virulence, protein and cell fate, and metabolism (X- and {gamma}-rays). Similarly, for X- and {gamma}-rays, the down-regulated genes belonged to mostly transcription and protein synthesis, cell cycle and DNA processing, control of cellular organization, cell fate, and C-compound and carbohydrate metabolism categories, respectively. This study provides for the first time a snapshot of the genome-wide mRNA expression profiles in X- and {gamma}-ray post-irradiated yeast cells and comparatively interprets/discusses the changed gene functional categories as effects of these two radiations vis-a-vis their energy levels.

  3. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse

    PubMed Central

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2015-01-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  4. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse.

    PubMed

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2016-03-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood-brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  5. Gene Expression Profiling of Microdissected Pancreatic Ductal Carcinomas Using High-Density DNA Microarrays1,3

    PubMed Central

    Grützmann, Robert; Pilarsky, Christian; Ammerpohl, Ole; Lüttges, Jutta; Böhme, Armin; Sipos, Bence; Foerder, Melanie; Alldinger, Ingo; Jahnke, Beatrix; Schackert, Hans Konrad; Kalthoff, Holger; Kremer, Bernd; Klöppel, Günter; Saeger, Hans Detlev

    2004-01-01

    Abstract Pancreatic ductal adenocarcinoma (PDAC) remains an important cause of malignancy-related death and is the eighth most common cancer with the lowest overall 5-year relative survival rate. To identify new molecular markers and candidates for new therapeutic regimens, we investigated the gene expression profile of microdissected cells from 11 normal pancreatic ducts, 14 samples of PDAC, and 4 well-characterized pancreatic cancer cell lines using the Affymetrix U133 GeneChip set. RNA was extracted from microdissected samples and cell lines, amplified, and labeled using a repetitive in vitro transcription protocol. Differentially expressed genes were identified using the significance analysis of microarrays program. We found 616 differentially expressed genes. Within these, 140 were also identified in PDAC by others, such as Galectin-1, Galectin-3, and MT-SP2. We validated the differential expression of several genes (e.g., CENPF, MCM2, MCM7, RAMP, IRAK1, and PTTG1) in PDAC by immunohistochemistry and reverse transcription polymerase chain reaction. We present a whole genome expression study of microdissected tissues from PDAC, from microdissected normal ductal pancreatic cells and pancreatic cancer cell lines using highdensity microarrays. Within the panel of genes, we identified novel differentially expressed genes, which have not been associated with the pathogenesis of PDAC before. PMID:15548371

  6. Development of the first marmoset-specific DNA microarray (EUMAMA): a new genetic tool for large-scale expression profiling in a non-human primate

    PubMed Central

    Datson, Nicole A; Morsink, Maarten C; Atanasova, Srebrena; Armstrong, Victor W; Zischler, Hans; Schlumbohm, Christina; Dutilh, Bas E; Huynen, Martijn A; Waegele, Brigitte; Ruepp, Andreas; de Kloet, E Ronald; Fuchs, Eberhard

    2007-01-01

    Background The common marmoset monkey (Callithrix jacchus), a small non-endangered New World primate native to eastern Brazil, is becoming increasingly used as a non-human primate model in biomedical research, drug development and safety assessment. In contrast to the growing interest for the marmoset as an animal model, the molecular tools for genetic analysis are extremely limited. Results Here we report the development of the first marmoset-specific oligonucleotide microarray (EUMAMA) containing probe sets targeting 1541 different marmoset transcripts expressed in hippocampus. These 1541 transcripts represent a wide variety of different functional gene classes. Hybridisation of the marmoset microarray with labelled RNA from hippocampus, cortex and a panel of 7 different peripheral tissues resulted in high detection rates of 85% in the neuronal tissues and on average 70% in the non-neuronal tissues. The expression profiles of the 2 neuronal tissues, hippocampus and cortex, were highly similar, as indicated by a correlation coefficient of 0.96. Several transcripts with a tissue-specific pattern of expression were identified. Besides the marmoset microarray we have generated 3215 ESTs derived from marmoset hippocampus, which have been annotated and submitted to GenBank [GenBank: EF214838 – EF215447, EH380242 – EH382846]. Conclusion We have generated the first marmoset-specific DNA microarray and demonstrated its use to characterise large-scale gene expression profiles of hippocampus but also of other neuronal and non-neuronal tissues. In addition, we have generated a large collection of ESTs of marmoset origin, which are now available in the public domain. These new tools will facilitate molecular genetic research into this non-human primate animal model. PMID:17592630

  7. The Current Status of DNA Microarrays

    NASA Astrophysics Data System (ADS)

    Shi, Leming; Perkins, Roger G.; Tong, Weida

    DNA microarray technology that allows simultaneous assay of thousands of genes in a single experiment has steadily advanced to become a mainstream method used in research, and has reached a stage that envisions its use in medical applications and personalized medicine. Many different strategies have been developed for manufacturing DNA microarrays. In this chapter, we discuss the manufacturing characteristics of seven microarray platforms that were used in a recently completed large study by the MicroArray Quality Control (MAQC) consortium, which evaluated the concordance of results across these platforms. The platforms can be grouped into three categories: (1) in situ synthesis of oligonucleotide probes on microarrays (Affymetrix GeneChip® arrays based on photolithography synthesis and Agilent's arrays based on inkjet synthesis); (2) spotting of presynthesized oligonucleotide probes on microarrays (GE Healthcare's CodeLink system, Applied Biosystems' Genome Survey Microarrays, and the custom microarrays printed with Operon's oligonucleotide set); and (3) deposition of presynthesized oligonucleotide probes on bead-based microarrays (Illumina's BeadChip microarrays). We conclude this chapter with our views on the challenges and opportunities toward acceptance of DNA microarray data in clinical and regulatory settings.

  8. The Current Status of DNA Microarrays

    NASA Astrophysics Data System (ADS)

    Shi, Leming; Perkins, Roger G.; Tong, Weida

    DNA microarray technology that allows simultaneous assay of thousands of genes in a single experiment has steadily advanced to become a mainstream method used in research, and has reached a stage that envisions its use in medical applications and personalized medicine. Many different strategies have been developed for manufacturing DNA microarrays. In this chapter, we discuss the manu facturing characteristics of seven microarray platforms that were used in a recently completed large study by the MicroArray Quality Control (MAQC) consortium, which evaluated the concordance of results across these platforms. The platforms can be grouped into three categories: (1) in situ synthesis of oligonucleotide probes on microarrays (Affymetrix GeneChip® arrays based on photolithography synthesis and Agilent's arrays based on inkjet synthesis); (2) spotting of presynthe-sized oligonucleotide probes on microarrays (GE Healthcare's CodeLink system, Applied Biosystems' Genome Survey Microarrays, and the custom microarrays printed with Operon's oligonucleotide set); and (3) deposition of presynthesized oligonucleotide probes on bead-based microarrays (Illumina's BeadChip microar-rays). We conclude this chapter with our views on the challenges and opportunities toward acceptance of DNA microarray data in clinical and regulatory settings.

  9. Profiling Ethylene-Responsive Genes Expressed in the Latex of the Mature Virgin Rubber Trees Using cDNA Microarray.

    PubMed

    Nie, Zhiyi; Kang, Guijuan; Duan, Cuifang; Li, Yu; Dai, Longjun; Zeng, Rizhong

    2016-01-01

    Ethylene is commonly used as a latex stimulant of Hevea brasiliensis by application of ethephon (chloro-2-ethylphosphonic acid); however, the molecular mechanism by which ethylene increases latex production is not clear. To better understand the effects of ethylene stimulation on the laticiferous cells of rubber trees, a latex expressed sequence tag (EST)-based complementary DNA microarray containing 2,973 unique genes (probes) was first developed and used to analyze the gene expression changes in the latex of the mature virgin rubber trees after ethephon treatment at three different time-points: 8, 24 and 48 h. Transcript levels of 163 genes were significantly altered with fold-change values ≥ 2 or ≤ -2 (q-value < 0.05) in ethephon-treated rubber trees compared with control trees. Of the 163 genes, 92 were up-regulated and 71 down-regulated. The microarray results were further confirmed using real-time quantitative reverse transcript-PCR for 20 selected genes. The 163 ethylene-responsive genes were involved in several biological processes including organic substance metabolism, cellular metabolism, primary metabolism, biosynthetic process, cellular response to stimulus and stress. The presented data suggest that the laticifer water circulation, production and scavenging of reactive oxygen species, sugar metabolism, and assembly and depolymerization of the latex actin cytoskeleton might play important roles in ethylene-induced increase of latex production. The results may provide useful insights into understanding the molecular mechanism underlying the effect of ethylene on latex metabolism of H. brasiliensis. PMID:26985821

  10. Profiling Ethylene-Responsive Genes Expressed in the Latex of the Mature Virgin Rubber Trees Using cDNA Microarray

    PubMed Central

    Nie, Zhiyi; Kang, Guijuan; Duan, Cuifang; Li, Yu; Dai, Longjun; Zeng, Rizhong

    2016-01-01

    Ethylene is commonly used as a latex stimulant of Hevea brasiliensis by application of ethephon (chloro-2-ethylphosphonic acid); however, the molecular mechanism by which ethylene increases latex production is not clear. To better understand the effects of ethylene stimulation on the laticiferous cells of rubber trees, a latex expressed sequence tag (EST)-based complementary DNA microarray containing 2,973 unique genes (probes) was first developed and used to analyze the gene expression changes in the latex of the mature virgin rubber trees after ethephon treatment at three different time-points: 8, 24 and 48 h. Transcript levels of 163 genes were significantly altered with fold-change values ≥ 2 or ≤ –2 (q-value < 0.05) in ethephon-treated rubber trees compared with control trees. Of the 163 genes, 92 were up-regulated and 71 down-regulated. The microarray results were further confirmed using real-time quantitative reverse transcript-PCR for 20 selected genes. The 163 ethylene-responsive genes were involved in several biological processes including organic substance metabolism, cellular metabolism, primary metabolism, biosynthetic process, cellular response to stimulus and stress. The presented data suggest that the laticifer water circulation, production and scavenging of reactive oxygen species, sugar metabolism, and assembly and depolymerization of the latex actin cytoskeleton might play important roles in ethylene-induced increase of latex production. The results may provide useful insights into understanding the molecular mechanism underlying the effect of ethylene on latex metabolism of H. brasiliensis. PMID:26985821

  11. Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis.

    PubMed

    Park, Sung-Jin; Huang, Yinghua; Ayoubi, Patricia

    2006-04-01

    The phloem-feeding by greenbug (Schizaphis graminum) elicits unique interactions with their host plants. To investigate the expression profiles of sorghum genes responsive to greenbug feeding, two subtractive cDNA libraries were constructed through different combinatorial subtractions in a strong greenbug resistance sorghum M627 line and a susceptible Tx7000 line with or without greenbug infestation. A total of 3,508 cDNAs were selected from the two cDNA libraries, and subsequent cDNA microarray and northern blot analyses were performed for identification of sorghum genes responsive to greenbugs. In total, 157 sorghum transcripts were identified to be differentially expressed by greenbug feeding. The greenbug responsive genes were isolated and classified into nine categories according to the functional roles in plant metabolic pathways, such as defense, signal transduction, cell wall fortification, oxidative burst/stress, photosynthesis, development, cell maintenance, abiotic stress, and unknown function. Overall, the profiles of sorghum genes, responsive to greenbug phloem-feeding shared common identities with other expression profiles known to be elicited by diverse stresses, including pathogenesis, abiotic stress, and wounding. In addition to well-known defense related regulators such as salicylic acid, jasmonic acid, and abscisic acid, auxin and gibberellic acid were also involved in mediation of the defense responses against greenbug phloem-feeding in sorghum. PMID:16292568

  12. Comprehensive Expression Profiling of Rice Grain Filling-Related Genes under High Temperature Using DNA Microarray[OA

    PubMed Central

    Yamakawa, Hiromoto; Hirose, Tatsuro; Kuroda, Masaharu; Yamaguchi, Takeshi

    2007-01-01

    To elucidate the effect of high temperature on grain-filling metabolism, developing rice (Oryza sativa) ‘Nipponbare’ caryopses were exposed to high temperature (33°C/28°C) or control temperature (25°C/20°C) during the milky stage. Comprehensive gene screening by a 22-K DNA microarray and differential hybridization, followed by expression analysis by semiquantitative reverse transcription-PCR, revealed that several starch synthesis-related genes, such as granule-bound starch synthase I (GBSSI) and branching enzymes, especially BEIIb, and a cytosolic pyruvate orthophosphate dikinase gene were down-regulated by high temperature, whereas those for starch-consuming α-amylases and heat shock proteins were up-regulated. Biochemical analyses of starch showed that the high temperature-ripened grains contained decreased levels of amylose and long chain-enriched amylopectin, which might be attributed to the repressed expression of GBSSI and BEIIb, respectively. SDS-PAGE and immunoblot analysis of storage proteins revealed decreased accumulation of 13-kD prolamin, which is consistent with the diminished expression of prolamin genes under elevated temperature. Ripening under high temperature resulted in the occurrence of grains with various degrees of chalky appearance and decreased weight. Among them, severely chalky grains contained amylopectin enriched particularly with long chains compared to slightly chalky grains, suggesting that such alterations of amylopectin structure might be involved in grain chalkiness. However, among high temperature-tolerant and sensitive cultivars, alterations of neither amylopectin chain-length distribution nor amylose content were correlated to the degree of grain chalkiness, but rather seemed to be correlated to grain weight decrease, implying different underlying mechanisms for the varietal difference in grain chalkiness. The possible metabolic pathways affected by high temperature and their relevance to grain chalkiness are

  13. Gene expression profiling of breast cancer survivability by pooled cDNA microarray analysis using logistic regression, artificial neural networks and decision trees

    PubMed Central

    2013-01-01

    Background Microarray technology can acquire information about thousands of genes simultaneously. We analyzed published breast cancer microarray databases to predict five-year recurrence and compared the performance of three data mining algorithms of artificial neural networks (ANN), decision trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The collection of microarray datasets from the Gene Expression Omnibus, four breast cancer datasets were pooled for predicting five-year breast cancer relapse. After data compilation, 757 subjects, 5 clinical variables and 13,452 genetic variables were aggregated. The bootstrap method, Mann–Whitney U test and 20-fold cross-validation were performed to investigate candidate genes with 100 most-significant p-values. The predictive powers of DT, LR and ANN models were assessed using accuracy and the area under ROC curve. The associated genes were evaluated using Cox regression. Results The DT models exhibited the lowest predictive power and the poorest extrapolation when applied to the test samples. The ANN models displayed the best predictive power and showed the best extrapolation. The 21 most-associated genes, as determined by integration of each model, were analyzed using Cox regression with a 3.53-fold (95% CI: 2.24-5.58) increased risk of breast cancer five-year recurrence… Conclusions The 21 selected genes can predict breast cancer recurrence. Among these genes, CCNB1, PLK1 and TOP2A are in the cell cycle G2/M DNA damage checkpoint pathway. Oncologists can offer the genetic information for patients when understanding the gene expression profiles on breast cancer recurrence. PMID:23506640

  14. Development of DNA Microarrays for Metabolic Pathway and Bioprocess Monitoring

    SciTech Connect

    Gregory Stephanopoulos

    2004-07-31

    Transcriptional profiling experiments utilizing DNA microarrays to study the intracellular accumulation of PHB in Synechocystis has proved difficult in large part because strains that show significant differences in PHB which would justify global analysis of gene expression have not been isolated.

  15. Microarrays (DNA Chips) for the Classroom Laboratory

    ERIC Educational Resources Information Center

    Barnard, Betsy; Sussman, Michael; BonDurant, Sandra Splinter; Nienhuis, James; Krysan, Patrick

    2006-01-01

    We have developed and optimized the necessary laboratory materials to make DNA microarray technology accessible to all high school students at a fraction of both cost and data size. The primary component is a DNA chip/array that students "print" by hand and then analyze using research tools that have been adapted for classroom use. The primary…

  16. Using a customized DNA microarray for expression profiling of the estrogen-responsive genes to evaluate estrogen activity among natural estrogens and industrial chemicals.

    PubMed Central

    Terasaka, Shunichi; Aita, Yukie; Inoue, Akio; Hayashi, Shinichi; Nishigaki, Michiko; Aoyagi, Kazuhiko; Sasaki, Hiroki; Wada-Kiyama, Yuko; Sakuma, Yasuo; Akaba, Shuichi; Tanaka, Junko; Sone, Hideko; Yonemoto, Junzo; Tanji, Masao; Kiyama, Ryoiti

    2004-01-01

    We developed a DNA microarray to evaluate the estrogen activity of natural estrogens and industrial chemicals. Using MCF-7 cells, we conducted a comprehensive analysis of estrogen-responsive genes among approximately 20,000 human genes. On the basis of reproducible and reliable responses of the genes to estrogen, we selected 172 genes to be used for developing a customized DNA microarray. Using this DNA microarray, we examined estrogen activity among natural estrogens (17beta-estradiol, estriol, estrone, genistein), industrial chemicals (diethylstilbestrol, bisphenol A, nonylphenol, methoxychlor), and dioxin. We obtained results identical to those for other bioassays that are used for detecting estrogen activity. On the basis of statistical correlations analysis, these bioassays have shown more sensitivity for dioxin and methoxychlor. PMID:15159206

  17. Identifying Fishes through DNA Barcodes and Microarrays

    PubMed Central

    Kochzius, Marc; Seidel, Christian; Antoniou, Aglaia; Botla, Sandeep Kumar; Campo, Daniel; Cariani, Alessia; Vazquez, Eva Garcia; Hauschild, Janet; Hervet, Caroline; Hjörleifsdottir, Sigridur; Hreggvidsson, Gudmundur; Kappel, Kristina; Landi, Monica; Magoulas, Antonios; Marteinsson, Viggo; Nölte, Manfred; Planes, Serge; Tinti, Fausto; Turan, Cemal; Venugopal, Moleyur N.; Weber, Hannes; Blohm, Dietmar

    2010-01-01

    Background International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. Methodology/Principal Findings This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of “DNA barcoding” and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the “position of label” effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Conclusions/Significance Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products. PMID

  18. Microarrays

    ERIC Educational Resources Information Center

    Plomin, Robert; Schalkwyk, Leonard C.

    2007-01-01

    Microarrays are revolutionizing genetics by making it possible to genotype hundreds of thousands of DNA markers and to assess the expression (RNA transcripts) of all of the genes in the genome. Microarrays are slides the size of a postage stamp that contain millions of DNA sequences to which single-stranded DNA or RNA can hybridize. This…

  19. Profiling In Situ Microbial Community Structure with an Amplification Microarray

    PubMed Central

    Knickerbocker, Christopher; Bryant, Lexi; Golova, Julia; Wiles, Cory; Williams, Kenneth H.; Peacock, Aaron D.; Long, Philip E.

    2013-01-01

    The objectives of this study were to unify amplification, labeling, and microarray hybridization chemistries within a single, closed microfluidic chamber (an amplification microarray) and verify technology performance on a series of groundwater samples from an in situ field experiment designed to compare U(VI) mobility under conditions of various alkalinities (as HCO3−) during stimulated microbial activity accompanying acetate amendment. Analytical limits of detection were between 2 and 200 cell equivalents of purified DNA. Amplification microarray signatures were well correlated with 16S rRNA-targeted quantitative PCR results and hybridization microarray signatures. The succession of the microbial community was evident with and consistent between the two microarray platforms. Amplification microarray analysis of acetate-treated groundwater showed elevated levels of iron-reducing bacteria (Flexibacter, Geobacter, Rhodoferax, and Shewanella) relative to the average background profile, as expected. Identical molecular signatures were evident in the transect treated with acetate plus NaHCO3, but at much lower signal intensities and with a much more rapid decline (to nondetection). Azoarcus, Thaurea, and Methylobacterium were responsive in the acetate-only transect but not in the presence of bicarbonate. Observed differences in microbial community composition or response to bicarbonate amendment likely had an effect on measured rates of U reduction, with higher rates probable in the part of the field experiment that was amended with bicarbonate. The simplification in microarray-based work flow is a significant technological advance toward entirely closed-amplicon microarray-based tests and is generally extensible to any number of environmental monitoring applications. PMID:23160129

  20. Hybridization and Selective Release of DNA Microarrays

    SciTech Connect

    Beer, N R; Baker, B; Piggott, T; Maberry, S; Hara, C M; DeOtte, J; Benett, W; Mukerjee, E; Dzenitis, J; Wheeler, E K

    2011-11-29

    DNA microarrays contain sequence specific probes arrayed in distinct spots numbering from 10,000 to over 1,000,000, depending on the platform. This tremendous degree of multiplexing gives microarrays great potential for environmental background sampling, broad-spectrum clinical monitoring, and continuous biological threat detection. In practice, their use in these applications is not common due to limited information content, long processing times, and high cost. The work focused on characterizing the phenomena of microarray hybridization and selective release that will allow these limitations to be addressed. This will revolutionize the ways that microarrays can be used for LLNL's Global Security missions. The goals of this project were two-fold: automated faster hybridizations and selective release of hybridized features. The first study area involves hybridization kinetics and mass-transfer effects. the standard hybridization protocol uses an overnight incubation to achieve the best possible signal for any sample type, as well as for convenience in manual processing. There is potential to significantly shorten this time based on better understanding and control of the rate-limiting processes and knowledge of the progress of the hybridization. In the hybridization work, a custom microarray flow cell was used to manipulate the chemical and thermal environment of the array and autonomously image the changes over time during hybridization. The second study area is selective release. Microarrays easily generate hybridization patterns and signatures, but there is still an unmet need for methodologies enabling rapid and selective analysis of these patterns and signatures. Detailed analysis of individual spots by subsequent sequencing could potentially yield significant information for rapidly mutating and emerging (or deliberately engineered) pathogens. In the selective release work, optical energy deposition with coherent light quickly provides the thermal energy to

  1. Analyzing Schizophrenia by DNA Microarrays

    PubMed Central

    Horváth, Szatmár; Janka, Zoltán; Mirnics, Károly

    2010-01-01

    To understand the pathological processes of schizophrenia we must embrace the analysis of the diseased human brain: we will never be able to recapitulate the pathology of uniquely human disorders in an animal model. Based on the outcome of the transcriptome profiling experiments performed to date it appears that schizophrenia is associated with a global gene expression disturbance across many cortical regions. In addition, transcriptome changes are present in multiple cell types, including specific subclasses of principal neurons, interneurons and oligodendrocytes. Furthermore, transcripts related to synaptic transmission, energy metabolism and inhibitory neurotransmission are routinely found underexpressed in the postmortem brain tissue of subjects with schizophrenia. To put these transcriptome data in biological context we must make our data publicly available and report our findings in a proper, expanded MIAME format. Cell type specific expression profiling and sequencing-based transcripts assessments should be expanded, with particular attention to understanding splice-variant changes in various mental disorders. Deciphering the pathophysiology of mental disorders depends on integrating data from across many research fields and techniques. Leads from postmortem transcriptome profiling will be essential to generate model animals, perform tissue culture experiments and develop or evaluate novel drugs to treat this devastating disorder. PMID:20801428

  2. Giant Magnetoresistive Sensors for DNA Microarray

    PubMed Central

    Xu, Liang; Yu, Heng; Han, Shu-Jen; Osterfeld, Sebastian; White, Robert L.; Pourmand, Nader; Wang, Shan X.

    2009-01-01

    Giant magnetoresistive (GMR) sensors are developed for a DNA microarray. Compared with the conventional fluorescent sensors, GMR sensors are cheaper, more sensitive, can generate fully electronic signals, and can be easily integrated with electronics and microfluidics. The GMR sensor used in this work has a bottom spin valve structure with an MR ratio of 12%. The single-strand target DNA detected has a length of 20 bases. Assays with DNA concentrations down to 10 pM were performed, with a dynamic range of 3 logs. A double modulation technique was used in signal detection to reduce the 1/f noise in the sensor while circumventing electromagnetic interference. The logarithmic relationship between the magnetic signal and the target DNA concentration can be described by the Temkin isotherm. Furthermore, GMR sensors integrated with microfluidics has great potential of improving the sensitivity to 1 pM or below, and the total assay time can be reduced to less than 1 hour. PMID:20824116

  3. Integrating data from heterogeneous DNA microarray platforms.

    PubMed

    Valente, Eduardo; Rocha, Miguel

    2015-01-01

    DNA microarrays are one of the most used technologies for gene expression measurement. However, there are several distinct microarray platforms, from different manufacturers, each with its own measurement protocol, resulting in data that can hardly be compared or directly integrated. Data integration from multiple sources aims to improve the assertiveness of statistical tests, reducing the data dimensionality problem. The integration of heterogeneous DNA microarray platforms comprehends a set of tasks that range from the re-annotation of the features used on gene expression, to data normalization and batch effect elimination. In this work, a complete methodology for gene expression data integration and application is proposed, which comprehends a transcript-based re-annotation process and several methods for batch effect attenuation. The integrated data will be used to select the best feature set and learning algorithm for a brain tumor classification case study. The integration will consider data from heterogeneous Agilent and Affymetrix platforms, collected from public gene expression databases, such as The Cancer Genome Atlas and Gene Expression Omnibus. PMID:26673932

  4. Overview of DNA microarrays: types, applications, and their future.

    PubMed

    Bumgarner, Roger

    2013-01-01

    This unit provides an overview of DNA microarrays. Microarrays are a technology in which thousands of nucleic acids are bound to a surface and are used to measure the relative concentration of nucleic acid sequences in a mixture via hybridization and subsequent detection of the hybridization events. This overview first discusses the history of microarrays and the antecedent technologies that led to their development. This is followed by discussion of the methods of manufacture of microarrays and the most common biological applications. The unit ends with a brief description of the limitations of microarrays and discusses how microarrays are being rapidly replaced by DNA sequencing technologies. PMID:23288464

  5. Technical considerations in using DNA microarrays to define regulons.

    PubMed

    Rhodius, Virgil A; Wade, Joseph T

    2009-01-01

    Transcription is the major regulatory target of gene expression in bacteria, and is controlled by many regulatory proteins and RNAs. Microarrays are a powerful tool to study the regulation of transcription on a genomic scale. Here we describe the use of transcription profiling and ChIP-chip to study transcriptional regulation in bacteria. Transcription profiling determines the outcome of regulatory events whereas ChIP-chip identifies the protein-DNA interactions that determine these events. Together they can provide detailed information on transcriptional regulatory systems. PMID:18955146

  6. Electrostatic readout of DNA microarrays with charged microspheres

    SciTech Connect

    Clack, Nathan G.; Salaita, Khalid; Groves, Jay T.

    2008-06-29

    DNA microarrays are used for gene-expression profiling, single-nucleotide polymorphism detection and disease diagnosis. A persistent challenge in this area is the lack of microarray screening technology suitable for integration into routine clinical care. In this paper, we describe a method for sensitive and label-free electrostatic readout of DNA or RNA hybridization on microarrays. The electrostatic properties of the microarray are measured from the position and motion of charged microspheres randomly dispersed over the surface. We demonstrate nondestructive electrostatic imaging with 10-μm lateral resolution over centimeter-length scales, which is four-orders of magnitude larger than that achievable with conventional scanning electrostatic force microscopy. Changes in surface charge density as a result of specific hybridization can be detected and quantified with 50-pM sensitivity, single base-pair mismatch selectivity and in the presence of complex background. Lastly, because the naked eye is sufficient to read out hybridization, this approach may facilitate broad application of multiplexed assays.

  7. DNA Microarray-Based PCR Ribotyping of Clostridium difficile

    PubMed Central

    Ehricht, Ralf; Slickers, Peter; Baier, Vico; Neubauer, Heinrich; Zimmermann, Stefan; Rabold, Denise; Lübke-Becker, Antina; Seyboldt, Christian

    2014-01-01

    This study presents a DNA microarray-based assay for fast and simple PCR ribotyping of Clostridium difficile strains. Hybridization probes were designed to query the modularly structured intergenic spacer region (ISR), which is also the template for conventional and PCR ribotyping with subsequent capillary gel electrophoresis (seq-PCR) ribotyping. The probes were derived from sequences available in GenBank as well as from theoretical ISR module combinations. A database of reference hybridization patterns was set up from a collection of 142 well-characterized C. difficile isolates representing 48 seq-PCR ribotypes. The reference hybridization patterns calculated by the arithmetic mean were compared using a similarity matrix analysis. The 48 investigated seq-PCR ribotypes revealed 27 array profiles that were clearly distinguishable. The most frequent human-pathogenic ribotypes 001, 014/020, 027, and 078/126 were discriminated by the microarray. C. difficile strains related to 078/126 (033, 045/FLI01, 078, 126, 126/FLI01, 413, 413/FLI01, 598, 620, 652, and 660) and 014/020 (014, 020, and 449) showed similar hybridization patterns, confirming their genetic relatedness, which was previously reported. A panel of 50 C. difficile field isolates was tested by seq-PCR ribotyping and the DNA microarray-based assay in parallel. Taking into account that the current version of the microarray does not discriminate some closely related seq-PCR ribotypes, all isolates were typed correctly. Moreover, seq-PCR ribotypes without reference profiles available in the database (ribotype 009 and 5 new types) were correctly recognized as new ribotypes, confirming the performance and expansion potential of the microarray. PMID:25411174

  8. Comparative transcript profiling of gene expression between seedless Ponkan mandarin and its seedy wild type during floral organ development by suppression subtractive hybridization and cDNA microarray

    PubMed Central

    2012-01-01

    Background Seedlessness is an important agronomic trait for citrus, and male sterility (MS) is one main cause of seedless citrus fruit. However, the molecular mechanism of citrus seedlessness remained not well explored. Results An integrative strategy combining suppression subtractive hybridization (SSH) library with cDNA microarray was employed to study the underlying mechanism of seedlessness of a Ponkan mandarin seedless mutant (Citrus reticulata Blanco). Screening with custom microarray, a total of 279 differentially expressed clones were identified, and 133 unigenes (43 contigs and 90 singletons) were obtained after sequencing. Gene Ontology (GO) distribution based on biological process suggested that the majority of differential genes are involved in metabolic process and respond to stimulus and regulation of biology process; based on molecular function they function as DNA/RNA binding or have catalytic activity and oxidoreductase activity. A gene encoding male sterility-like protein was highly up-regulated in the seedless mutant compared with the wild type, while several transcription factors (TFs) such as AP2/EREBP, MYB, WRKY, NAC and C2C2-GATA zinc-finger domain TFs were down-regulated. Conclusion Our research highlighted some candidate pathways that participated in the citrus male gametophyte development and could be beneficial for seedless citrus breeding in the future. PMID:22897898

  9. Transcription profiles of boron-deficiency-responsive genes in citrus rootstock root by suppression subtractive hybridization and cDNA microarray

    PubMed Central

    Zhou, Gao-Feng; Liu, Yong-Zhong; Sheng, Ou; Wei, Qing-Jiang; Yang, Cheng-Quan; Peng, Shu-Ang

    2015-01-01

    Boron (B) deficiency has seriously negative effect on citrus production. Carrizo citrange (CC) has been reported as a B-deficiency tolerant rootstock. However, the molecular mechanism of its B-deficiency tolerance remained not well-explored. To understand the molecular basis of citrus rootstock to B-deficiency, suppression subtractive hybridization (SSH) and microarray approaches were combined to identify the potential important or novel genes responsive to B-deficiency. Firstly four SSH libraries were constructed for the root tissue of two citrus rootstocks CC and Trifoliate orange (TO) to compare B-deficiency treated and non-treated plants. Then 7680 clones from these SSH libraries were used to construct a cDNA array and microarray analysis was carried out to verify the expression changes of these clones upon B-deficiency treatment at various time points compared to the corresponding controls. A total of 139 unigenes that were differentially expressed upon B-deficiency stress either in CC or TO were identified from microarray analysis, some of these genes have not previously been reported to be associated with B-deficiency stress. In this work, several genes involved in cell wall metabolism and transmembrane transport were identified to be highly regulated under B-deficiency stress, and a total of 23 metabolic pathways were affected by B-deficiency, especially the lignin biosynthesis pathway, nitrogen metabolism, and glycolytic pathway. All these results indicated that CC was more tolerant than TO to B-deficiency stress. The B-deficiency responsive genes identified in this study could provide further information for understanding the mechanisms of B-deficiency tolerance in citrus. PMID:25674093

  10. DNA Microarray for Detection of Gastrointestinal Viruses

    PubMed Central

    Martínez, Miguel A.; Soto-del Río, María de los Dolores; Gutiérrez, Rosa María; Chiu, Charles Y.; Greninger, Alexander L.; Contreras, Juan Francisco; López, Susana; Arias, Carlos F.

    2014-01-01

    Gastroenteritis is a clinical illness of humans and other animals that is characterized by vomiting and diarrhea and caused by a variety of pathogens, including viruses. An increasing number of viral species have been associated with gastroenteritis or have been found in stool samples as new molecular tools have been developed. In this work, a DNA microarray capable in theory of parallel detection of more than 100 viral species was developed and tested. Initial validation was done with 10 different virus species, and an additional 5 species were validated using clinical samples. Detection limits of 1 × 103 virus particles of Human adenovirus C (HAdV), Human astrovirus (HAstV), and group A Rotavirus (RV-A) were established. Furthermore, when exogenous RNA was added, the limit for RV-A detection decreased by one log. In a small group of clinical samples from children with gastroenteritis (n = 76), the microarray detected at least one viral species in 92% of the samples. Single infection was identified in 63 samples (83%), and coinfection with more than one virus was identified in 7 samples (9%). The most abundant virus species were RV-A (58%), followed by Anellovirus (15.8%), HAstV (6.6%), HAdV (5.3%), Norwalk virus (6.6%), Human enterovirus (HEV) (9.2%), Human parechovirus (1.3%), Sapporo virus (1.3%), and Human bocavirus (1.3%). To further test the specificity and sensitivity of the microarray, the results were verified by reverse transcription-PCR (RT-PCR) detection of 5 gastrointestinal viruses. The RT-PCR assay detected a virus in 59 samples (78%). The microarray showed good performance for detection of RV-A, HAstV, and calicivirus, while the sensitivity for HAdV and HEV was low. Furthermore, some discrepancies in detection of mixed infections were observed and were addressed by reverse transcription-quantitative PCR (RT-qPCR) of the viruses involved. It was observed that differences in the amount of genetic material favored the detection of the most abundant

  11. Mining microarray expression data by literature profiling

    PubMed Central

    Chaussabel, Damien; Sher, Alan

    2002-01-01

    Background The rapidly expanding fields of genomics and proteomics have prompted the development of computational methods for managing, analyzing and visualizing expression data derived from microarray screening. Nevertheless, the lack of efficient techniques for assessing the biological implications of gene-expression data remains an important obstacle in exploiting this information. Results To address this need, we have developed a mining technique based on the analysis of literature profiles generated by extracting the frequencies of certain terms from thousands of abstracts stored in the Medline literature database. Terms are then filtered on the basis of both repetitive occurrence and co-occurrence among multiple gene entries. Finally, clustering analysis is performed on the retained frequency values, shaping a coherent picture of the functional relationship among large and heterogeneous lists of genes. Such data treatment also provides information on the nature and pertinence of the associations that were formed. Conclusions The analysis of patterns of term occurrence in abstracts constitutes a means of exploring the biological significance of large and heterogeneous lists of genes. This approach should contribute to optimizing the exploitation of microarray technologies by providing investigators with an interface between complex expression data and large literature resources. PMID:12372143

  12. Safety evaluation of the aqueous extract Kothala himbutu (Salacia reticulata) stem in the hepatic gene expression profile of normal mice using DNA microarrays.

    PubMed

    Im, Ryanghyok; Mano, Hiroshi; Nakatani, Sachie; Shimizu, Jun; Wada, Masahiro

    2008-12-01

    Kothala himbutu is a traditional Ayurvedic medicinal plant used to treat diabetes. We aimed to evaluate the safety of an aqueous extract of Kothala himbutu stem (KTE) in normal mice. The mice were divided into two groups: one was administered KTE and the other distilled water for 3 weeks. During the test period, the groups showed no significant differences in body weight gain or plasma parameters, such as fasting blood glucose level, oral glucose tolerance test, or aspartate transaminase (AST) or alanine transaminase (ALT) activity. DNA microarray analysis revealed that expression of genes of known function, such as those for the stress response, ribosomal proteins, transcription, cell function, the inflammatory/immune response, and metabolism (xenobiotic, glutathione, etc.) remained largely unaffected by KTE. However some genes such as catechol-o-methyltransferase and succinyl-CoA synthetase were regulated by KTE, indicating that KTE is not toxic to normal mice and might be effective as a functional food. PMID:19060410

  13. Identification of significant features in DNA microarray data

    PubMed Central

    Bair, Eric

    2013-01-01

    DNA microarrays are a relatively new technology that can simultaneously measure the expression level of thousands of genes. They have become an important tool for a wide variety of biological experiments. One of the most common goals of DNA microarray experiments is to identify genes associated with biological processes of interest. Conventional statistical tests often produce poor results when applied to microarray data owing to small sample sizes, noisy data, and correlation among the expression levels of the genes. Thus, novel statistical methods are needed to identify significant genes in DNA microarray experiments. This article discusses the challenges inherent in DNA microarray analysis and describes a series of statistical techniques that can be used to overcome these challenges. The problem of multiple hypothesis testing and its relation to microarray studies are also considered, along with several possible solutions. PMID:24244802

  14. Genome-wide expression profiling of 8-chloroadenosine- and 8-chloro-cAMP-treated human neuroblastoma cells using radioactive human cDNA microarray.

    PubMed

    Park, Gil Hong; Choe, Jaegol; Choo, Hyo-Jung; Park, Yun Gyu; Sohn, Jeongwon; Kim, Meyoung-kon

    2002-07-31

    Previous reports raised question as to whether 8-chloro-cyclic adenosine 3,5-monophosphate (8-Cl-cAMP) is a prodrug for its metabolite, 8-Cl-adenosine which exerts growth inhibition in a broad spectrum of cancer cells. The present study was carried out to clarify overall cellular affects of 8-Cl-cAMP and 8-Cl-adenosine on SK-N-DZ human neuroblastoma cells by systematically characterizing gene expression using radioactive human cDNA microarray. Microarray was prepared with PCR-amplified cDNA of 2,304 known genes spotted on nylon membranes, employing (33)P-labeled cDNAs of SK-N-DZ cells as a probe. The expression levels of approximately 100 cDNAs, representing about 8% of the total DNA elements on the array, were altered in 8-Cl-adenosine- or 8-Cl-cAMP-treated cells, respectively. The genome-wide expression of the two samples exhibited partial overlaps; different sets of up-regulated genes but the same set of down-regulated genes. 8-Cl-adenosine treatment up-regulated genes involved in differentiation and development (LIM protein, connexin 26, neogenin, neurofilament triplet L protein and p21(WAF1/CIP1)) and immune response such as natural killer cells protein 4, and down-regulated ones involved in proliferation and transformation (transforming growth factor-beta, DYRK2, urokinase-type plasminogen activator and proteins involved in transcription and translation) which were in close parallel with those by 8-Cl-cAMP. Our results indicated that the two drugs shared common genomic pathways for the down-regulation of certain genes, but used distinct pathways for the up-regulation of different gene clusters. Based on the findings, we suggest that the anti-cancer activity of 8-Cl-cAMP results at least in part through 8-Cl-adenosine. Thus, the systematic use of DNA arrays can provide insight into the dynamic cellular pathways involved in anticancer activities of chemotherapeutics. PMID:12216110

  15. Uses of Dendrimers for DNA Microarrays

    PubMed Central

    Caminade, Anne-Marie; Padié, Clément; Laurent, Régis; Maraval, Alexandrine; Majoral, Jean-Pierre

    2006-01-01

    Biosensors such as DNA microarrays and microchips are gaining an increasing importance in medicinal, forensic, and environmental analyses. Such devices are based on the detection of supramolecular interactions called hybridizations that occur between complementary oligonucleotides, one linked to a solid surface (the probe), and the other one to be analyzed (the target). This paper focuses on the improvements that hyperbranched and perfectly defined nanomolecules called dendrimers can provide to this methodology. Two main uses of dendrimers for such purpose have been described up to now; either the dendrimer is used as linker between the solid surface and the probe oligonucleotide, or the dendrimer is used as a multilabeled entity linked to the target oligonucleotide. In the first case the dendrimer generally induces a higher loading of probes and an easier hybridization, due to moving away the solid phase. In the second case the high number of localized labels (generally fluorescent) induces an increased sensitivity, allowing the detection of small quantities of biological entities.

  16. DNA microarrays on a mesospaced surface

    NASA Astrophysics Data System (ADS)

    Hong, Bong Jin; Park, Joon Won

    2004-12-01

    A dendron having nine carboxylic acid groups at the end of the branches and a protected amine at the apex was allowed to form a molecular layer on the aminosilylated surface through multipoint ionic attraction. It was found that a compact and smooth monolayer was obtained at appropriate condition. The film quality was maintained successfully after deprotecting CBZ group with trimethylsilyl iodide. The surface density of the primary amine after the deprotection was measured with fluorometry, and 0.1-0.2 amine group per 1 nm2 was observed. This implies that the spacing between the amine functional groups is 24-34 Å in hexagonal close packing (hcp) model. In addition, DNA microarrays were fabricated successfully on the dendron-modified surface.

  17. Profiling of circadian genes expressed in the uterus endometrial stromal cells of pregnant rats as revealed by DNA microarray coupled with RNA interference.

    PubMed

    Tasaki, Hirotaka; Zhao, Lijia; Isayama, Keishiro; Chen, Huatao; Nobuhiko Yamauchi; Yasufumi Shigeyoshi; Hashimoto, Seiichi; Hattori, Masa-Aki

    2013-01-01

    The peripheral circadian oscillator plays an essential role in synchronizing local physiology to operate in a circadian manner via regulation of the expression of clock-controlled genes. The present study aimed to evaluate the circadian rhythms of clock genes and clock-controlled genes expressed in the rat uterus endometrial stromal cells (UESCs) during the stage of implantation by a DNA microarray. Of 12,252 genes showing significantly expression, 7,235 genes displayed significant alterations. As revealed by the biological pathway analysis using the database for annotation, visualization, and integrated discovery online annotation software, genes were involved in cell cycle, glutathione metabolism, MAPK signaling pathway, fatty acid metabolism, ubiquitin mediated proteolysis, focal adhesion, and PPAR signaling pathway. The clustering of clock genes were mainly divided into four groups: the first group was Rorα, Timeless, Npas2, Bmal1, Id2, and Cry2; the second group Per1, Per2, Per3, Dec1, Tef, and Dbp; the third group Bmal2, Cry1, E4bp4, Rorβ, and Clock; the fourth group Rev-erbα. Eleven implantation-related genes and 24 placenta formation-related genes displayed significant alterations, suggesting that these genes involved in implantation and placenta formation are controlled under circadian clock. Some candidates as clock-controlled genes were evaluated by using RNA interference to Bmal1 mRNA. Down-regulation of Igf1 gene expression was observed by Bmal1 silencing, whereas the expression of Inhβa was significantly increased. During active oscillation of circadian clock, the apoptosis-related genes Fas and Caspase3 remained no significant changes, but they were significantly increased by knockdown of Bmal1 mRNA. These results indicate that clock-controlled genes are up- or down-regulated in rat UESCs during the stage of decidualization. DNA microarray analysis coupled with RNA interference will be helpful to understand the physiological roles of some

  18. DNA profiles from fingermarks.

    PubMed

    Templeton, Jennifer E L; Linacre, Adrian

    2014-11-01

    Criminal investigations would be considerably improved if DNA profiles could be routinely generated from single fingermarks. Here we report a direct DNA profiling method that was able to generate interpretable profiles from 71% of 170 fingermarks. The data are based on fingermarks from all 5 digits of 34 individuals. DNA was obtained from the fingermarks using a swab moistened with Triton-X, and the fibers were added directly to one of two commercial DNA profiling kits. All profiles were obtained without increasing the number of amplification cycles; therefore, our method is ideally suited for adoption by the forensic science community. We indicate the use of the technique in a criminal case in which a DNA profile was generated from a fingermark on tape that was wrapped around a drug seizure. Our direct DNA profiling approach is rapid and able to generate profiles from touched items when current forensic practices have little chance of success. PMID:25391915

  19. Profiling of hepatic gene expression of mice fed with edible japanese mushrooms by DNA microarray analysis: comparison among Pleurotus ostreatus, Grifola frondosa, and Hypsizigus marmoreus.

    PubMed

    Sato, Mayumi; Tokuji, Yoshihiko; Yoneyama, Shozo; Fujii-Akiyama, Kyoko; Kinoshita, Mikio; Ohnishi, Masao

    2011-10-12

    To compare and estimate the effects of dietary intake of three kinds of mushrooms (Pleurotus ostreatus, Grifola frondosa, and Hypsizigus marmoreus), mice were fed a diet containing 10-14% of each mushroom for 4 weeks. Triacylglycerol in the liver and plasma decreased and plasma cholesterol increased in the P. ostreatus-fed group compared with those in the control group. Cholesterol in the liver was lower in the G. frondosa-fed group than in the control group, but no changes were found in the H. marmoreus-fed group. DNA microarray analysis of the liver revealed differences of gene expression patterns among mushrooms. Ctp1a and Fabp families were upregulated in the P. ostreatus-fed group, which were considered to promote lipid transport and β-oxidation. In the G. frondosa-fed group, not only the gene involved in signal transduction of innate immunity via TLR3 and interferon but also virus resistance genes, such as Mx1, Rsad2, and Oas1, were upregulated. PMID:21910414

  20. Alteration of Gene Expression Profile in Kidney of Spontaneously Hypertensive Rats Treated with Protein Hydrolysate of Blue Mussel (Mytilus edulis) by DNA Microarray Analysis.

    PubMed

    Feng, Junli; Dai, Zhiyuan; Zhang, Yanping; Meng, Lu; Ye, Jian; Ma, Xuting

    2015-01-01

    Marine organisms are rich sources of bioactive components, which are often reported to have antihypertensive effects. However, the underlying mechanisms have yet to be fully identified. The aim of this study was to investigate the antihypertensive effect of enzymatic hydrolysis of blue mussel protein (HBMP) in rats. Peptides with in vitro ACE inhibitory activity were purified from HBMP by ultrafiltration, gel filtration chromatography and reversed-phase high performance liquid chromatography. And the amino acid sequences of isolated peptides were estimated to be Val-Trp, Leu-Gly-Trp, and Met-Val-Trp-Thr. To study its in vivo action, spontaneously hypertensive rats (SHRs) were orally administration with high- or low-dose of HBMP for 28 days. Major components of the renin-angiotensin (RAS) system in serum of SHRs from different groups were analyzed, and gene expression profiling were performed in the kidney of SHRs, using the Whole Rat Genome Oligonucleotide Microarray. Results indicated although genes involved in RAS system were not significantly altered, those related to blood coagulation system, cytokine and growth factor, and fatty acids metabolism were remarkablely changed. Several genes which were seldom reported to be implicated in pathogenesis of hypertension also showed significant expression alterations after oral administration of HBMP. These data provided valuable information for our understanding of the molecular mechanisms that underlie the potential antihypertensive activities of HBMP, and will contribute towards increased value-added utilization of blue mussel protein. PMID:26517713

  1. Alteration of Gene Expression Profile in Kidney of Spontaneously Hypertensive Rats Treated with Protein Hydrolysate of Blue Mussel (Mytilus edulis) by DNA Microarray Analysis

    PubMed Central

    Feng, Junli; Dai, Zhiyuan; Zhang, Yanping; Meng, Lu; Ye, Jian; Ma, Xuting

    2015-01-01

    Marine organisms are rich sources of bioactive components, which are often reported to have antihypertensive effects. However, the underlying mechanisms have yet to be fully identified. The aim of this study was to investigate the antihypertensive effect of enzymatic hydrolysis of blue mussel protein (HBMP) in rats. Peptides with in vitro ACE inhibitory activity were purified from HBMP by ultrafiltration, gel filtration chromatography and reversed-phase high performance liquid chromatography. And the amino acid sequences of isolated peptides were estimated to be Val-Trp, Leu-Gly-Trp, and Met-Val-Trp-Thr. To study its in vivo action, spontaneously hypertensive rats (SHRs) were orally administration with high- or low-dose of HBMP for 28 days. Major components of the renin-angiotensin (RAS) system in serum of SHRs from different groups were analyzed, and gene expression profiling were performed in the kidney of SHRs, using the Whole Rat Genome Oligonucleotide Microarray. Results indicated although genes involved in RAS system were not significantly altered, those related to blood coagulation system, cytokine and growth factor, and fatty acids metabolism were remarkablely changed. Several genes which were seldom reported to be implicated in pathogenesis of hypertension also showed significant expression alterations after oral administration of HBMP. These data provided valuable information for our understanding of the molecular mechanisms that underlie the potential antihypertensive activities of HBMP, and will contribute towards increased value-added utilization of blue mussel protein. PMID:26517713

  2. A Perspective on DNA Microarrays in Pathology Research and Practice

    PubMed Central

    Pollack, Jonathan R.

    2007-01-01

    DNA microarray technology matured in the mid-1990s, and the past decade has witnessed a tremendous growth in its application. DNA microarrays have provided powerful tools for pathology researchers seeking to describe, classify, and understand human disease. There has also been great expectation that the technology would advance the practice of pathology. This review highlights some of the key contributions of DNA microarrays to experimental pathology, focusing in the area of cancer research. Also discussed are some of the current challenges in translating utility to clinical practice. PMID:17600117

  3. Microarrays/DNA Chips for the Detection of Waterborne Pathogens.

    PubMed

    Vale, Filipa F

    2016-01-01

    DNA microarrays are useful for the simultaneous detection of microorganisms in water samples. Specific probes targeting waterborne pathogens are selected with bioinformatics tools, synthesized and spotted onto a DNA array. Here, the construction of a DNA chip for waterborne pathogen detection is described, including the processes of probe in silico selection, synthesis, validation, and data analysis. PMID:27460375

  4. Comparing bioinformatic gene expression profiling methods: microarray and RNA-Seq.

    PubMed

    Mantione, Kirk J; Kream, Richard M; Kuzelova, Hana; Ptacek, Radek; Raboch, Jiri; Samuel, Joshua M; Stefano, George B

    2014-01-01

    Understanding the control of gene expression is critical for our understanding of the relationship between genotype and phenotype. The need for reliable assessment of transcript abundance in biological samples has driven scientists to develop novel technologies such as DNA microarray and RNA-Seq to meet this demand. This review focuses on comparing the two most useful methods for whole transcriptome gene expression profiling. Microarrays are reliable and more cost effective than RNA-Seq for gene expression profiling in model organisms. RNA-Seq will eventually be used more routinely than microarray, but right now the techniques can be complementary to each other. Microarrays will not become obsolete but might be relegated to only a few uses. RNA-Seq clearly has a bright future in bioinformatic data collection. PMID:25149683

  5. MicroRNA expression profiling using microarrays.

    PubMed

    Love, Cassandra; Dave, Sandeep

    2013-01-01

    MicroRNAs are small noncoding RNAs which are able to regulate gene expression at both the transcriptional and translational levels. There is a growing recognition of the role of microRNAs in nearly every tissue type and cellular process. Thus there is an increasing need for accurate quantitation of microRNA expression in a variety of tissues. Microarrays provide a robust method for the examination of microRNA expression. In this chapter, we describe detailed methods for the use of microarrays to measure microRNA expression and discuss methods for the analysis of microRNA expression data. PMID:23666707

  6. Salt concentration effects on equilibrium melting curves from DNA microarrays.

    PubMed

    Fuchs, J; Fiche, J-B; Buhot, A; Calemczuk, R; Livache, T

    2010-09-22

    DNA microarrays find applications in an increasing number of domains where more quantitative results are required. DNA being a charged polymer, the repulsive interactions between the surface of the microarray and the targets in solution are increasing upon hybridization. Such electrostatic penalty is generally reduced by increasing the salt concentration. In this article, we present equilibrium-melting curves obtained from dedicated physicochemical experiments on DNA microarrays in order to get a better understanding of the electrostatic penalty incurred during the hybridization reaction at the surface. Various salt concentrations have been considered and deviations from the commonly used Langmuir adsorption model are experimentally quantified for the first time in agreement with theoretical predictions. PMID:20858434

  7. DNA microarrays: design principles for maximizing ergodic, chaotic mixing.

    PubMed

    Hertzsch, Jan-Martin; Sturman, Rob; Wiggins, Stephen

    2007-02-01

    In this article we show that models of flows in DNA microarrays generated by pulsed source-sink pairs can be studied as linked twist maps. The significance of this is that it enables us to relate the flow to mathematically precise notions of chaotic mixing that can be realized through specific design criteria. We apply these techniques to three different mixing protocols, two of which have been previously described in the literature, and we are able to isolate the features of each mixer that lead to "good" or "bad" mixing. Based on this, we propose a new design to generate a "well-mixed" flow in a DNA microarray. PMID:17262763

  8. Food Microbial Pathogen Detection and Analysis Using DNA Microarray Technologies

    PubMed Central

    Herold, Keith E.

    2008-01-01

    Abstract Culture-based methods used for microbial detection and identification are simple to use, relatively inexpensive, and sensitive. However, culture-based methods are too time-consuming for high-throughput testing and too tedious for analysis of samples with multiple organisms and provide little clinical information regarding the pathogen (e.g., antibiotic resistance genes, virulence factors, or strain subtype). DNA-based methods, such as polymerase chain reaction (PCR), overcome some these limitations since they are generally faster and can provide more information than culture-based methods. One limitation of traditional PCR-based methods is that they are normally limited to the analysis of a single pathogen, a small group of related pathogens, or a small number of relevant genes. Microarray technology enables a significant expansion of the capability of DNA-based methods in terms of the number of DNA sequences that can be analyzed simultaneously, enabling molecular identification and characterization of multiple pathogens and many genes in a single array assay. Microarray analysis of microbial pathogens has potential uses in research, food safety, medical, agricultural, regulatory, public health, and industrial settings. In this article, we describe the main technical elements of microarray technology and the application and potential use of DNA microarrays for food microbial analysis. PMID:18673074

  9. A comparative analysis of DNA barcode microarray feature size

    PubMed Central

    Ammar, Ron; Smith, Andrew M; Heisler, Lawrence E; Giaever, Guri; Nislow, Corey

    2009-01-01

    Background Microarrays are an invaluable tool in many modern genomic studies. It is generally perceived that decreasing the size of microarray features leads to arrays with higher resolution (due to greater feature density), but this increase in resolution can compromise sensitivity. Results We demonstrate that barcode microarrays with smaller features are equally capable of detecting variation in DNA barcode intensity when compared to larger feature sizes within a specific microarray platform. The barcodes used in this study are the well-characterized set derived from the Yeast KnockOut (YKO) collection used for screens of pooled yeast (Saccharomyces cerevisiae) deletion mutants. We treated these pools with the glycosylation inhibitor tunicamycin as a test compound. Three generations of barcode microarrays at 30, 8 and 5 μm features sizes independently identified the primary target of tunicamycin to be ALG7. Conclusion We show that the data obtained with 5 μm feature size is of comparable quality to the 30 μm size and propose that further shrinking of features could yield barcode microarrays with equal or greater resolving power and, more importantly, higher density. PMID:19825181

  10. Gene expression analysis of perennial ryegrass (Lolium perenne) using cDNA microarrays

    NASA Astrophysics Data System (ADS)

    Ong, Eng-Kok; Sawbridge, Tim; Webster, Tracie; Emmerling, Michael; Nguyen, Nga; Nunan, Katrina; O'Neill, Matthew; O'Toole, Fiona; Rhodes, Carolyn; Simmonds, Jason; Tian, Pei; Wearne, Katherine; Winkworth, Amanda; Spangenberg, German

    2003-07-01

    Perennial ryegrass (Lolium perenne) is a major forage grass of temperate pastures. A genomics program has been undertaken generating over 52,000 expressed sequence tags (ESTs). Cluster analysis of the ESTs identified approximately 14,600 ryegrass unigenes. In this report, we described the application of ryegrass unigene cDNAs to produce ryegrass 15K microarray. Fifteen microarray hybridisations were performed with labeled total RNA isolated from a variety of plant organs and developmental stages. In a proof of concept, gene expression profiling of ryegrass ESTs using the 15K unigene microarrays has been established using several known genes and two cluster analysis approaches (parallel coordinate planes plot and hierarchical clustering). The expression profile of the known genes (e.g. rubisco and invertase) corresponds well with published data. The microarray expression profile of a ryegrass putative root specific kinase gene was also verified with Northern blotting. This combination of DNA microarray hybridisations and cluster analysis can be applied as a tool for the identification of novel sequences of unknown function.

  11. Unravelling Microbial Communities with DNA-Microarrays: Challengesand Future Directions.

    SciTech Connect

    Wagner, Michael; Smidt, Hauke; Loy, Alexander; Zhou, Jizhong

    2007-03-08

    High-throughput technologies are urgently needed formonitoring the formidable biodiversity and functional capabilities ofmicroorganisms in the environment. Ten years ago, DNA microarrays,miniaturized platforms for highly parallel hybridization reactions, foundtheir way into environmental microbiology and raised great expectationsamong researchers in the field. In this article, we briefly summarize thestate-of-the-art of microarray approaches in microbial ecology researchand discuss in more detail crucial problems and promising solutions.Finally, we outline scenarios for an innovative combination ofmicroarrays with other molecular tools for structure-function analysis ofcomplex microbial communities.

  12. Quality Control Usage in High-Density Microarrays Reveals Differential Gene Expression Profiles in Ovarian Cancer.

    PubMed

    Villegas-Ruiz, Vanessa; Moreno, Jose; Jacome-Lopez, Karina; Zentella-Dehesa, Alejandro; Juarez-Mendez, Sergio

    2016-01-01

    There are several existing reports of microarray chip use for assessment of altered gene expression in different diseases. In fact, there have been over 1.5 million assays of this kind performed over the last twenty years, which have influenced clinical and translational research studies. The most commonly used DNA microarray platforms are Affymetrix GeneChip and Quality Control Software along with their GeneChip Probe Arrays. These chips are created using several quality controls to confirm the success of each assay, but their actual impact on gene expression profiles had not been previously analyzed until the appearance of several bioinformatics tools for this purpose. We here performed a data mining analysis, in this case specifically focused on ovarian cancer, as well as healthy ovarian tissue and ovarian cell lines, in order to confirm quality control results and associated variation in gene expression profiles. The microarray data used in our research were downloaded from ArrayExpress and Gene Expression Omnibus (GEO) and analyzed with Expression Console Software using RMA, MAS5 and Plier algorithms. The gene expression profiles were obtained using Partek Genomics Suite v6.6 and data were visualized using principal component analysis, heat map, and Venn diagrams. Microarray quality control analysis showed that roughly 40% of the microarray files were false negative, demonstrating over- and under-estimation of expressed genes. Additionally, we confirmed the results performing second analysis using independent samples. About 70% of the significant expressed genes were correlated in both analyses. These results demonstrate the importance of appropriate microarray processing to obtain a reliable gene expression profile. PMID:27268623

  13. Analysis of microarray experiments of gene expression profiling

    PubMed Central

    Tarca, Adi L.; Romero, Roberto; Draghici, Sorin

    2008-01-01

    The study of gene expression profiling of cells and tissue has become a major tool for discovery in medicine. Microarray experiments allow description of genome-wide expression changes in health and disease. The results of such experiments are expected to change the methods employed in the diagnosis and prognosis of disease in obstetrics and gynecology. Moreover, an unbiased and systematic study of gene expression profiling should allow the establishment of a new taxonomy of disease for obstetric and gynecologic syndromes. Thus, a new era is emerging in which reproductive processes and disorders could be characterized using molecular tools and fingerprinting. The design, analysis, and interpretation of microarray experiments require specialized knowledge that is not part of the standard curriculum of our discipline. This article describes the types of studies that can be conducted with microarray experiments (class comparison, class prediction, class discovery). We discuss key issues pertaining to experimental design, data preprocessing, and gene selection methods. Common types of data representation are illustrated. Potential pitfalls in the interpretation of microarray experiments, as well as the strengths and limitations of this technology, are highlighted. This article is intended to assist clinicians in appraising the quality of the scientific evidence now reported in the obstetric and gynecologic literature. PMID:16890548

  14. Detection of bacterial pathogens in environmental samples using DNA microarrays.

    PubMed

    Call, Douglas R; Borucki, Monica K; Loge, Frank J

    2003-05-01

    Polymerase chain reaction (PCR) is an important tool for pathogen detection, but historically, it has not been possible to accurately identify PCR products without sequencing, Southern blots, or dot-blots. Microarrays can be coupled with PCR where they serve as a set of parallel dot-blots to enhance product detection and identification. Microarrays are composed of many discretely located probes on a solid substrate such as glass. Each probe is composed of a sequence that is complimentary to a pathogen-specific gene sequence. PCR is used to amplify one or more genes and the products are then hybridized to the array to identify species-specific polymorphism within one or more genes. We illustrate this type of array using 16S rDNA probes suitable for distinguishing between several salmonid pathogens. We also describe the use of microarrays for direct detection of either RNA or DNA without the aid of PCR, although the sensitivity of these systems currently limits their application for pathogen detection. Finally, microarrays can also be used to "fingerprint" bacterial isolates and they can be used to identify diagnostic markers suitable for developing new PCR-based detection assays. We illustrate this type of array for subtyping an important food-borne pathogen, Listeria monocytogenes. PMID:12654494

  15. Reordering based integrative expression profiling for microarray classification

    PubMed Central

    2012-01-01

    Background Current network-based microarray analysis uses the information of interactions among concerned genes/gene products, but still considers each gene expression individually. We propose an organized knowledge-supervised approach - Integrative eXpression Profiling (IXP), to improve microarray classification accuracy, and help discover groups of genes that have been too weak to detect individually by traditional ways. To implement IXP, ant colony optimization reordering (ACOR) algorithm is used to group functionally related genes in an ordered way. Results Using Alzheimer's disease (AD) as an example, we demonstrate how to apply ACOR-based IXP approach into microarray classifications. Using a microarray dataset - GSE1297 with 31 samples as training set, the result for the blinded classification on another microarray dataset - GSE5281 with 151 samples, shows that our approach can improve accuracy from 74.83% to 82.78%. A recently-published 1372-probe signature for AD can only achieve 61.59% accuracy in the same condition. The ACOR-based IXP approach also has better performance than the IXP approach based on classic network ranking, graph clustering, and random-ordering methods in an overall classification performance comparison. Conclusions The ACOR-based IXP approach can serve as a knowledge-supervised feature transformation approach to increase classification accuracy dramatically, by transforming each gene expression profile to an integrated expression files as features inputting into standard classifiers. The IXP approach integrates both gene expression information and organized knowledge - disease gene/protein network topology information, which is represented as both network node weights (local topological properties) and network node orders (global topological characteristics). PMID:22536860

  16. Application of DNA microarray for screening metagenome library clones.

    PubMed

    Park, Soo-Je; Chae, Jong-Chan; Rhee, Sung-Keun

    2010-01-01

    Sequence-based screening tools of a metagenome library can expedite metagenome researches considering tremendous metagenome diversities. Several critical disadvantages of activity-based screening of metagenome libraries could be overcome by sequence-based screening approaches. DNA microarray technology widely used for monitoring environmental genes can be employed for screening environmental fosmid and BAC clones harboring target genes due to its high throughput nature. DNAs of fosmid clones are extracted and spotted on a glass slide and fluorescence-labeled probes are hybridized to the microarray. Specific hybridization signals can be obtained only for the fosmid clones that contain the target gene with high sensitivity (10 ng/μL of fosmid clone DNA) and quantitativeness. PMID:20830574

  17. Modulation of gene expression in Leishmania drug resistant mutants as determined by targeted DNA microarrays

    PubMed Central

    Guimond, Chantal; Trudel, Nathalie; Brochu, Christian; Marquis, Nathalie; Fadili, Amal El; Peytavi, Régis; Briand, Guylaine; Richard, Dave; Messier, Nadine; Papadopoulou, Barbara; Corbeil, Jacques; Bergeron, Michel G.; Légaré, Danielle; Ouellette, Marc

    2003-01-01

    In the protozoan parasite Leishmania, drug resistance can be a complex phenomenon. Several metabolic pathways and membrane transporters are implicated in the resistance phenotype. To monitor the expression of these genes, we generated custom DNA microarrays with PCR fragments corresponding to 44 genes involved with drug resistance. Transcript profiling of arsenite and antimony resistant mutants with these arrays pinpointed a number of genes overexpressed in mutants, including the ABC transporter PGPA, the glutathione biosynthesis genes γ-glutamylcysteine synthetase (GSH1) and the glutathione synthetase (GSH2). Competitive hybridisations with total RNA derived from sensitive and methotrexate resistant cells revealed the overexpression of genes coding for dihydrofolate reductase (DHFR-TS), pteridine reductase (PTR1) and S-adenosylmethionine synthase (MAT2) and a down regulation of one gene of the folate transporter (FT) family. By labelling the DNA of sensitive and resistant parasites we could also detect several gene amplification events using DNA microarrays including the amplification of the S-adenosyl homocysteine hydrolase gene (SAHH). Alteration in gene expression detected by microarrays was validated by northern blot analysis, while Southern blots indicated that most genes overexpressed were also amplified, although other mechanisms were also present. The microarrays were useful in the study of resistant parasites to pinpoint several genes linked to drug resistance. PMID:14530437

  18. Improved microarray methods for profiling the yeast knockout strain collection

    PubMed Central

    Yuan, Daniel S.; Pan, Xuewen; Ooi, Siew Loon; Peyser, Brian D.; Spencer, Forrest A.; Irizarry, Rafael A.; Boeke, Jef D.

    2005-01-01

    A remarkable feature of the Yeast Knockout strain collection is the presence of two unique 20mer TAG sequences in almost every strain. In principle, the relative abundances of strains in a complex mixture can be profiled swiftly and quantitatively by amplifying these sequences and hybridizing them to microarrays, but TAG microarrays have not been widely used. Here, we introduce a TAG microarray design with sophisticated controls and describe a robust method for hybridizing high concentrations of dye-labeled TAGs in single-stranded form. We also highlight the importance of avoiding PCR contamination and provide procedures for detection and eradication. Validation experiments using these methods yielded false positive (FP) and false negative (FN) rates for individual TAG detection of 3–6% and 15–18%, respectively. Analysis demonstrated that cross-hybridization was the chief source of FPs, while TAG amplification defects were the main cause of FNs. The materials, protocols, data and associated software described here comprise a suite of experimental resources that should facilitate the use of TAG microarrays for a wide variety of genetic screens. PMID:15994458

  19. DNA Microarray Technologies: A Novel Approach to Geonomic Research

    SciTech Connect

    Hinman, R.; Thrall, B.; Wong, K,

    2002-01-01

    A cDNA microarray allows biologists to examine the expression of thousands of genes simultaneously. Researchers may analyze the complete transcriptional program of an organism in response to specific physiological or developmental conditions. By design, a cDNA microarray is an experiment with many variables and few controls. One question that inevitably arises when working with a cDNA microarray is data reproducibility. How easy is it to confirm mRNA expression patterns? In this paper, a case study involving the treatment of a murine macrophage RAW 264.7 cell line with tumor necrosis factor alpha (TNF) was used to obtain a rough estimate of data reproducibility. Two trials were examined and a list of genes displaying either a > 2-fold or > 4-fold increase in gene expression was compiled. Variations in signal mean ratios between the two slides were observed. We can assume that erring in reproducibility may be compensated by greater inductive levels of similar genes. Steps taken to obtain results included serum starvation of cells before treatment, tests of mRNA for quality/consistency, and data normalization.

  20. Simultaneous Discrimination between 15 Fish Pathogens by Using 16S Ribosomal DNA PCR and DNA Microarrays

    PubMed Central

    Warsen, Adelaide E.; Krug, Melissa J.; LaFrentz, Stacey; Stanek, Danielle R.; Loge, Frank J.; Call, Douglas R.

    2004-01-01

    We developed a DNA microarray suitable for simultaneous detection and discrimination between multiple bacterial species based on 16S ribosomal DNA (rDNA) polymorphisms using glass slides. Microarray probes (22- to 31-mer oligonucleotides) were spotted onto Teflon-masked, epoxy-silane-derivatized glass slides using a robotic arrayer. PCR products (ca. 199 bp) were generated using biotinylated, universal primer sequences, and these products were hybridized overnight (55°C) to the microarray. Targets that annealed to microarray probes were detected using a combination of Tyramide Signal Amplification and Alexa Fluor 546. This methodology permitted 100% specificity for detection of 18 microbes, 15 of which were fish pathogens. With universal 16S rDNA PCR (limited to 28 cycles), detection sensitivity for purified control DNA was equivalent to <150 genomes (675 fg), and this sensitivity was not adversely impacted either by the presence of competing bacterial DNA (1.1 × 106 genomes; 5 ng) or by the addition of up to 500 ng of fish DNA. Consequently, coupling 16S rDNA PCR with a microarray detector appears suitable for diagnostic detection and surveillance for commercially important fish pathogens. PMID:15240304

  1. Molecular characterization of Neisseria meningitidis isolates using a resequencing DNA microarray.

    PubMed

    Corless, Caroline E; Kaczmarski, Edward; Borrow, Ray; Guiver, Malcolm

    2008-05-01

    Neisseria meningitidis is a major cause of both meningitis and septicemia. Typically, isolates are characterized by using a combination of immunological phenotyping, using monoclonal and polyclonal antisera, and Sanger nucleotide sequencing of epitope-encoding variable regions, although these methods can be both time-consuming and limited by reagent availability. Herein, we describe and evaluate a novel microarray to define the porB and porA serotypes of N. meningitidis by the resequencing of variable regions in a single hybridization reaction. PCR products for each gene were amplified, pooled in equimolar concentrations, hybridized to the microarray, and analyzed using Affymetrix GeneChip DNA Analysis Software. Resequencing of the microarray data was then validated by comparison with sequencing data. Molecular profiles were generated for 50 isolates that were combinations of phenotypically typeable (ie, PorA and PorB) and non-typeable (PorB only) isolates. Microarray-generated profiles from isolates with a PorB phenotype were concordant with predicted profiles compared with a previously described typing scheme. In addition, 42% (8 of 19) of previously non-typeable samples were assigned a PorB type when tested using the microarray. The remaining isolates were novel types for which no typing antisera are currently available. The porA data were 97% concordant with Sanger nucleotide sequencing. These results suggest that that microarray resequencing may be a useful tool for the characterization of meningococci, particularly for those isolates that cannot be phenotyped, offering an alternative to conventional sequencing methods. PMID:18372424

  2. The microarray explorer tool for data mining of cDNA microarrays: application for the mammary gland.

    PubMed

    Lemkin, P F; Thornwall, G C; Walton, K D; Hennighausen, L

    2000-11-15

    The Microarray Explorer (MAExplorer) is a versatile Java-based data mining bioinformatic tool for analyzing quantitative cDNA expression profiles across multiple microarray platforms and DNA labeling systems. It may be run as either a stand-alone application or as a Web browser applet over the Internet. With this program it is possible to (i) analyze the expression of individual genes, (ii) analyze the expression of gene families and clusters, (iii) compare expression patterns and (iv) directly access other genomic databases for clones of interest. Data may be downloaded as required from a Web server or in the case of the stand-alone version, reside on the user's computer. Analyses are performed in real-time and may be viewed and directly manipulated in images, reports, scatter plots, histograms, expression profile plots and cluster analyses plots. A key feature is the clone data filter for constraining a working set of clones to those passing a variety of user-specified logical and statistical tests. Reports may be generated with hypertext Web access to UniGene, GenBank and other Internet databases for sets of clones found to be of interest. Users may save their explorations on the Web server or local computer and later recall or share them with other scientists in this groupware Web environment. The emphasis on direct manipulation of clones and sets of clones in graphics and tables provides a high level of interaction with the data, making it easier for investigators to test ideas when looking for patterns. We have used the MAExplorer to profile gene expression patterns of 1500 duplicated genes isolated from mouse mammary tissue. We have identified genes that are preferentially expressed during pregnancy and during lactation. One gene we identified, carbonic anhydrase III, is highly expressed in mammary tissue from virgin and pregnant mice and in gene knock-out mice with underdeveloped mammary epithelium. Other genes, which include those encoding milk proteins

  3. Glycan profiling of endometrial cancers using lectin microarray.

    PubMed

    Nishijima, Yoshihiro; Toyoda, Masashi; Yamazaki-Inoue, Mayu; Sugiyama, Taro; Miyazawa, Masaki; Muramatsu, Toshinari; Nakamura, Kyoko; Narimatsu, Hisashi; Umezawa, Akihiro; Mikami, Mikio

    2012-10-01

    Cell surface glycans change during the process of malignant transformation. To characterize and distinguish endometrial cancer and endometrium, we performed glycan profiling using an emerging modern technology, lectin microarray analysis. The three cell lines, two from endometrial cancers [well-differentiated type (G1) and poorly differentiated type (G3)] and one from normal endometrium, were successfully categorized into three independent groups by 45 lectins. Furthermore, in cancer cells, a clear difference between G1 and G3 type was observed for the glycans recognized with six lectins, Ulex europaeus agglutinin I (UEA-I), Sambucus sieboldiana agglutinin (SSA), Sambucus nigra agglutinin (SNA), Trichosanthes japonica agglutinin I (TJA-I), Amaranthus caudatus agglutinin (ACA), and Bauhinia purpurea lectin (BPL). The lectin microarray analysis using G3 type tissues demonstrated that stage I and stage III or IV were distinguished depending on signal pattern of three lectins, Dolichos biflorus agglutinin (DBA), BPL, and ACA. In addition, the analysis of the glycans on the ovarian cancer cells showed that only anticancer drug-sensitive cell lines had almost no activities to specific three lectins. Glycan profiling by the lectin microarray may be used to assess the characteristics of tumors and potentially to predict the success of chemotherapy treatment. PMID:22957961

  4. Advances in spotted microarray resources for expression profiling.

    PubMed

    Lyons, Paul

    2003-04-01

    The new millennium has ushered in a new era in human biology. The elucidation of the human genome sequence, together with those of model organisms, provides us with an unprecedented insight into the makeup of our genetic blueprint. The challenge now is to figure out how all the constituent pieces fit together to form the whole picture, and the consequences of what happens when the process goes awry. One experimental tool that has the potential to provide enormous insights into this complex process is expression profiling using microarrays. The past few years have seen a considerable growth in the availability and use of microarrays. Fuelled in part by the many genome projects currently underway, there has been a large increase in the number of organisms for which microarray reagents are available from both commercial and academic sources. In addition to the increasing number of genome-wide probe sets that are available, a significant amount of attention has been focussed on generating more targeted probe sets that focus in on specific pathways or biological processes. Finally, the microarray field is starting to see a shift away from the use of cDNAs or polymerase chain reaction (PCR) products as probes towards the use of 50-70mer oligonucleotide probes with all of the potential advantages that they offer. The aim of this review is to provide an overview of what is currently available in terms of spotted microarray reagents both with respect to pre-made arrays and to probe sets available for arraying. PMID:15239940

  5. Microarray analysis of gene expression profiles in ripening pineapple fruits

    PubMed Central

    2012-01-01

    Background Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Results Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. Conclusions This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the

  6. DNA microarrays for hybridization detection by surface plasmon resonance spectroscopy.

    PubMed

    Kick, Alfred; Bönsch, Martin; Katzschner, Beate; Voigt, Jan; Herr, Alexander; Brabetz, Werner; Jung, Martin; Sonntag, Frank; Klotzbach, Udo; Danz, Norbert; Howitz, Steffen; Mertig, Michael

    2010-12-15

    We report on the development of a new platform technology for the detection of genetic variations by means of surface plasmon resonance (SPR) spectroscopy. TOPAS chips with integrated optics were exploited in combination with microfluidics. Within minutes, the detection of hybridization kinetics was achieved simultaneously at all spots of the DNA microarray. A nanoliter dispenser is used to deposit thiol-modified single-stranded probe DNA on the gold surface of the chips. We investigated the influence of different parameters on hybridization using model polymerase chain reaction (PCR) products. These PCR products comprised a single-stranded tag sequence being complementary to an anti-tag sequence of probes immobilized on the gold surface. The signals increased with increasing length of PCR products (60, 100 or 300 base pairs) as well as with their concentration. We investigated hybridizations on DNA microarrays comprising 90 spots of probe DNA with three different sequences. Furthermore, we demonstrate that sequences with possible hairpin structures significantly lower the binding rate, and thus, the SPR signals during hybridization. PMID:20729067

  7. Single-Round Patterned DNA Library Microarray Aptamer Lead Identification

    PubMed Central

    Martin, Jennifer A.; Mirau, Peter A.; Chushak, Yaroslav; Chávez, Jorge L.; Naik, Rajesh R.; Hagen, Joshua A.; Kelley-Loughnane, Nancy

    2015-01-01

    A method for identifying an aptamer in a single round was developed using custom DNA microarrays containing computationally derived patterned libraries incorporating no information on the sequences of previously reported thrombin binding aptamers. The DNA library was specifically designed to increase the probability of binding by enhancing structural complexity in a sequence-space confined environment, much like generating lead compounds in a combinatorial drug screening library. The sequence demonstrating the highest fluorescence intensity upon target addition was confirmed to bind the target molecule thrombin with specificity by surface plasmon resonance, and a novel imino proton NMR/2D NOESY combination was used to screen the structure for G-quartet formation. We propose that the lack of G-quartet structure in microarray-derived aptamers may highlight differences in binding mechanisms between surface-immobilized and solution based strategies. This proof-of-principle study highlights the use of a computational driven methodology to create a DNA library rather than a SELEX based approach. This work is beneficial to the biosensor field where aptamers selected by solution based evolution have proven challenging to retain binding function when immobilized on a surface. PMID:26075138

  8. DNA Microarray Wet Lab Simulation Brings Genomics into the High School Curriculum

    ERIC Educational Resources Information Center

    Campbell, A. Malcolm; Zanta, Carolyn A.; Heyer, Laurie J.; Kittinger, Ben; Gabric, Kathleen M.; Adler, Leslie

    2006-01-01

    We have developed a wet lab DNA microarray simulation as part of a complete DNA microarray module for high school students. The wet lab simulation has been field tested with high school students in Illinois and Maryland as well as in workshops with high school teachers from across the nation. Instead of using DNA, our simulation is based on pH…

  9. An antibody profile of systemic lupus erythematosus detected by antigen microarray

    PubMed Central

    Fattal, Ittai; Shental, Noam; Mevorach, Dror; Anaya, Juan-Manuel; Livneh, Avi; Langevitz, Pnina; Zandman-Goddard, Gisele; Pauzner, Rachel; Lerner, Miriam; Blank, Miri; Hincapie, Maria-Eugenia; Gafter, Uzi; Naparstek, Yaakov; Shoenfeld, Yehuda; Domany, Eytan; Cohen, Irun R

    2010-01-01

    Patients with systemic lupus erythematosus (SLE) produce antibodies to many different self-antigens. Here, we investigated antibodies in SLE sera using an antigen microarray containing many hundreds of antigens, mostly self-antigens. The aim was to detect sets of antibody reactivities characteristic of SLE patients in each of various clinical states – SLE patients with acute lupus nephritis, SLE patients in renal remission, and SLE patients who had never had renal involvement. The analysis produced two novel findings: (i) an SLE antibody profile persists independently of disease activity and despite long-term clinical remission, and (ii) this SLE antibody profile includes increases in four specific immunoglobulin G (IgG) reactivities to double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), Epstein–Barr virus (EBV) and hyaluronic acid; the profile also includes decreases in specific IgM reactivities to myeloperoxidase (MPO), CD99, collagen III, insulin-like growth factor binding protein 1 (IGFBP1) and cardiolipin. The reactivities together showed high sensitivity (> 93%) and high specificity for SLE (> 88%). A healthy control subject who had the SLE antibody profile was later found to develop clinical SLE. The present study did not detect antibody reactivities that differentiated among the various subgroups of SLE subjects with statistical significance. Thus, SLE is characterized by an enduring antibody profile irrespective of clinical state. The association of SLE with decreased IgM natural autoantibodies suggests that these autoantibodies might enhance resistance to SLE. PMID:20201986

  10. Development of a Daphnia magna DNA microarray for evaluating the toxicity of environmental chemicals.

    PubMed

    Watanabe, Hajime; Takahashi, Eri; Nakamura, Yuko; Oda, Shigeto; Tatarazako, Norihisa; Iguchi, Taisen

    2007-04-01

    Toxic chemical contaminants have a variety of detrimental effects on various species, and the impact of pollutants on ecosystems has become an urgent issue. However, the majority of studies regarding the effects of chemical contaminants have focused on vertebrates. Among aquatic organisms, Daphnia magna has been used extensively to evaluate organism- and population-level responses of invertebrates to pollutants in acute toxicity or reproductive toxicity tests. Although these types of tests can provide information concerning hazardous concentrations of chemicals, they provide no information about their mode of action. Recent advances in molecular genetic techniques have provided tools to better understand the responses of aquatic organisms to pollutants. In the present study, we adapted some of the techniques of molecular genetics to develop new tools, which form the basis for an ecotoxicogenomic assessment of D. magna. Based on a Daphnia expressed sequence tag database, we developed an oligonucleotide-based DNA microarray with high reproducibility. The DNA microarray was used to evaluate gene expression profiles of neonatal daphnids exposed to several different chemicals: Copper sulfate, hydrogen peroxide, pentachlorophenol, or beta-naphthoflavone. Exposure to these chemicals resulted in characteristic patterns of gene expression that were chemical-specific, indicating that the Daphnia DNA microarray can be used for classification of toxic chemicals and for development of a mechanistic understanding of chemical toxicity on a common freshwater organism. PMID:17447551

  11. A dynamic bead-based microarray for parallel DNA detection

    NASA Astrophysics Data System (ADS)

    Sochol, R. D.; Casavant, B. P.; Dueck, M. E.; Lee, L. P.; Lin, L.

    2011-05-01

    A microfluidic system has been designed and constructed by means of micromachining processes to integrate both microfluidic mixing of mobile microbeads and hydrodynamic microbead arraying capabilities on a single chip to simultaneously detect multiple bio-molecules. The prototype system has four parallel reaction chambers, which include microchannels of 18 × 50 µm2 cross-sectional area and a microfluidic mixing section of 22 cm length. Parallel detection of multiple DNA oligonucleotide sequences was achieved via molecular beacon probes immobilized on polystyrene microbeads of 16 µm diameter. Experimental results show quantitative detection of three distinct DNA oligonucleotide sequences from the Hepatitis C viral (HCV) genome with single base-pair mismatch specificity. Our dynamic bead-based microarray offers an effective microfluidic platform to increase parallelization of reactions and improve microbead handling for various biological applications, including bio-molecule detection, medical diagnostics and drug screening.

  12. DNA Microarray Data Analysis: A Novel Biclustering Algorithm Approach

    NASA Astrophysics Data System (ADS)

    Tchagang, Alain B.; Tewfik, Ahmed H.

    2006-12-01

    Biclustering algorithms refer to a distinct class of clustering algorithms that perform simultaneous row-column clustering. Biclustering problems arise in DNA microarray data analysis, collaborative filtering, market research, information retrieval, text mining, electoral trends, exchange analysis, and so forth. When dealing with DNA microarray experimental data for example, the goal of biclustering algorithms is to find submatrices, that is, subgroups of genes and subgroups of conditions, where the genes exhibit highly correlated activities for every condition. In this study, we develop novel biclustering algorithms using basic linear algebra and arithmetic tools. The proposed biclustering algorithms can be used to search for all biclusters with constant values, biclusters with constant values on rows, biclusters with constant values on columns, and biclusters with coherent values from a set of data in a timely manner and without solving any optimization problem. We also show how one of the proposed biclustering algorithms can be adapted to identify biclusters with coherent evolution. The algorithms developed in this study discover all valid biclusters of each type, while almost all previous biclustering approaches will miss some.

  13. An Overview of DNA Microarray Grid Alignment and Foreground Separation Approaches

    NASA Astrophysics Data System (ADS)

    Bajcsy, Peter

    2006-12-01

    This paper overviews DNA microarray grid alignment and foreground separation approaches. Microarray grid alignment and foreground separation are the basic processing steps of DNA microarray images that affect the quality of gene expression information, and hence impact our confidence in any data-derived biological conclusions. Thus, understanding microarray data processing steps becomes critical for performing optimal microarray data analysis. In the past, the grid alignment and foreground separation steps have not been covered extensively in the survey literature. We present several classifications of existing algorithms, and describe the fundamental principles of these algorithms. Challenges related to automation and reliability of processed image data are outlined at the end of this overview paper.

  14. Glycan Profiling of Plant Cell Wall Polymers using Microarrays

    PubMed Central

    Moller, Isabel E.; Pettolino, Filomena A.; Hart, Charlie; Lampugnani, Edwin R.; Willats, William G.T.; Bacic, Antony

    2012-01-01

    to determine the relative abundance of glycans in a broad range of plant and tissue types simultaneously9,10,11. Here we present a microarray-based glycan screening method called Comprehensive Microarray Polymer Profiling (CoMPP) (Figures 1 & 2)10,11 that enables multiple samples (100 sec) to be screened using a miniaturised microarray platform with reduced reagent and sample volumes. The spot signals on the microarray can be formally quantified to give semi-quantitative data about glycan epitope occurrence. This approach is well suited to tracking glycan changes in complex biological systems12 and providing a global overview of cell wall composition particularly when prior knowledge of this is unavailable. PMID:23271573

  15. The Microarray Explorer tool for data mining of cDNA microarrays: application for the mammary gland

    PubMed Central

    Lemkin, Peter F.; Thornwall, Gregory C.; Walton, Katherine D.; Hennighausen, Lothar

    2000-01-01

    The Microarray Explorer (MAExplorer) is a versatile Java-based data mining bioinformatic tool for analyzing quantitative cDNA expression profiles across multiple microarray platforms and DNA labeling systems. It may be run as either a stand-alone application or as a Web browser applet over the Internet. With this program it is possible to (i) analyze the expression of individual genes, (ii) analyze the expression of gene families and clusters, (iii) compare expression patterns and (iv) directly access other genomic databases for clones of interest. Data may be downloaded as required from a Web server or in the case of the stand-alone version, reside on the user’s computer. Analyses are performed in real-time and may be viewed and directly manipulated in images, reports, scatter plots, histograms, expression profile plots and cluster analyses plots. A key feature is the clone data filter for constraining a working set of clones to those passing a variety of user-specified logical and statistical tests. Reports may be generated with hypertext Web access to UniGene, GenBank and other Internet databases for sets of clones found to be of interest. Users may save their explorations on the Web server or local computer and later recall or share them with other scientists in this groupware Web environment. The emphasis on direct manipulation of clones and sets of clones in graphics and tables provides a high level of interaction with the data, making it easier for investigators to test ideas when looking for patterns. We have used the MAExplorer to profile gene expression patterns of 1500 duplicated genes isolated from mouse mammary tissue. We have identified genes that are preferentially expressed during pregnancy and during lactation. One gene we identified, carbonic anhydrase III, is highly expressed in mammary tissue from virgin and pregnant mice and in gene knock-out mice with underdeveloped mammary epithelium. Other genes, which include those encoding milk proteins

  16. Gene expression profiling diagnosis through DNA molecular computation.

    PubMed

    Mills, Allen P

    2002-04-01

    Gene expression profiling is the characterization of cells based on the level of gene activity represented by concentrations of complementary DNA reverse transcribed from messenger RNA. The spectrum of cDNA concentrations, the expression profile, is determined using a DNA microarray. Although this approach is valuable for research, a simpler scheme that would give answers on a shorter time-scale for clinical applications is needed. An Adleman DNA self-assembly computer that would use cDNA as input might be ideal for clinical cell discrimination and a neural network architecture would be appropriate for making the necessary classifications. Preliminary experimental results suggest that expression profiling should be feasible using a DNA neural network that acts directly on cDNA. PMID:11906739

  17. Monitoring Expression Profiles of Rice Genes under Cold, Drought, and High-Salinity Stresses and Abscisic Acid Application Using cDNA Microarray and RNA Gel-Blot Analyses1[w

    PubMed Central

    Rabbani, M. Ashiq; Maruyama, Kyonoshin; Abe, Hiroshi; Khan, M. Ayub; Katsura, Koji; Ito, Yusuke; Yoshiwara, Kyoko; Seki, Motoaki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2003-01-01

    To identify cold-, drought-, high-salinity-, and/or abscisic acid (ABA)-inducible genes in rice (Oryza sativa), we prepared a rice cDNA microarray including about 1,700 independent cDNAs derived from cDNA libraries prepared from drought-, cold-, and high-salinity-treated rice plants. We confirmed stress-inducible expression of the candidate genes selected by microarray analysis using RNA gel-blot analysis and finally identified a total of 73 genes as stress inducible including 58 novel unreported genes in rice. Among them, 36, 62, 57, and 43 genes were induced by cold, drought, high salinity, and ABA, respectively. We observed a strong association in the expression of stress-responsive genes and found 15 genes that responded to all four treatments. Venn diagram analysis revealed greater cross talk between signaling pathways for drought, ABA, and high-salinity stresses than between signaling pathways for cold and ABA stresses or cold and high-salinity stresses in rice. The rice genome database search enabled us not only to identify possible known cis-acting elements in the promoter regions of several stress-inducible genes but also to expect the existence of novel cis-acting elements involved in stress-responsive gene expression in rice stress-inducible promoters. Comparative analysis of Arabidopsis and rice showed that among the 73 stress-inducible rice genes, 51 already have been reported in Arabidopsis with similar function or gene name. Transcriptome analysis revealed novel stress-inducible genes, suggesting some differences between Arabidopsis and rice in their response to stress. PMID:14645724

  18. Design issues in toxicogenomics using DNA microarray experiment

    SciTech Connect

    Lee, Kyoung-Mu; Kim, Ju-Han; Kang, Daehee . E-mail: dhkang@snu.ac.kr

    2005-09-01

    The methods of toxicogenomics might be classified into omics study (e.g., genomics, proteomics, and metabolomics) and population study focusing on risk assessment and gene-environment interaction. In omics study, microarray is the most popular approach. Genes falling into several categories (e.g., xenobiotics metabolism, cell cycle control, DNA repair etc.) can be selected up to 20,000 according to a priori hypothesis. The appropriate type of samples and species should be selected in advance. Multiple doses and varied exposure durations are suggested to identify those genes clearly linked to toxic response. Microarray experiments can be affected by numerous nuisance variables including experimental designs, sample extraction, type of scanners, etc. The number of slides might be determined from the magnitude and variance of expression change, false-positive rate, and desired power. Instead, pooling samples is an alternative. Online databases on chemicals with known exposure-disease outcomes and genetic information can aid the interpretation of the normalized results. Gene function can be inferred from microarray data analyzed by bioinformatics methods such as cluster analysis. The population study often adopts hospital-based or nested case-control design. Biases in subject selection and exposure assessment should be minimized, and confounding bias should also be controlled for in stratified or multiple regression analysis. Optimal sample sizes are dependent on the statistical test for gene-to-environment or gene-to-gene interaction. The design issues addressed in this mini-review are crucial in conducting toxicogenomics study. In addition, integrative approach of exposure assessment, epidemiology, and clinical trial is required.

  19. Structural analysis of hepatitis C RNA genome using DNA microarrays

    PubMed Central

    Martell, María; Briones, Carlos; de Vicente, Aránzazu; Piron, María; Esteban, Juan I.; Esteban, Rafael; Guardia, Jaime; Gómez, Jordi

    2004-01-01

    Many studies have tried to identify specific nucleotide sequences in the quasispecies of hepatitis C virus (HCV) that determine resistance or sensitivity to interferon (IFN) therapy, unfortunately without conclusive results. Although viral proteins represent the most evident phenotype of the virus, genomic RNA sequences determine secondary and tertiary structures which are also part of the viral phenotype and can be involved in important biological roles. In this work, a method of RNA structure analysis has been developed based on the hybridization of labelled HCV transcripts to microarrays of complementary DNA oligonucleotides. Hybridizations were carried out at non-denaturing conditions, using appropriate temperature and buffer composition to allow binding to the immobilized probes of the RNA transcript without disturbing its secondary/tertiary structural motifs. Oligonucleotides printed onto the microarray covered the entire 5′ non-coding region (5′NCR), the first three-quarters of the core region, the E2–NS2 junction and the first 400 nt of the NS3 region. We document the use of this methodology to analyse the structural degree of a large region of HCV genomic RNA in two genotypes associated with different responses to IFN treatment. The results reported here show different structural degree along the genome regions analysed, and differential hybridization patterns for distinct genotypes in NS2 and NS3 HCV regions. PMID:15247323

  20. Microintaglio Printing of In situ Synthesized Proteins Enables Rapid Printing of High-Density Protein Microarrays Directly from DNA Microarrays

    NASA Astrophysics Data System (ADS)

    Biyani, Manish; Moriyasu, Junpei; Tanaka, Yoko; Sato, Shusuke; Ueno, Shingo; Ichiki, Takanori

    2013-08-01

    A simple and versatile approach to the simultaneous on-chip synthesis and printing of proteins has been studied for high-density protein microarray applications. The method used is based on the principle of intaglio printing using microengraved plates. Unlike conventional approaches that require multistep reactions for synthesizing proteins off the chip followed by printing using a robotic spotter, our approach demonstrates the following: (i) parallel and spotter-free printing of high-density protein microarrays directly from a type of DNA microarray and (ii) microcompartmentalization of cell-free coupled transcription/translation reaction and direct transferring of picoliter protein solution per spot to pattern microarrays of 25-100 µm features.

  1. Surface ligation-based resonance light scattering analysis of methylated genomic DNA on a microarray platform.

    PubMed

    Ma, Lan; Lei, Zhen; Liu, Xia; Liu, Dianjun; Wang, Zhenxin

    2016-05-10

    DNA methylation is a crucial epigenetic modification and is closely related to tumorigenesis. Herein, a surface ligation-based high throughput method combined with bisulfite treatment is developed for analysis of methylated genomic DNA. In this method, a DNA microarray is employed as a reaction platform, and resonance light scattering (RLS) of nanoparticles is used as the detection principle. The specificity stems from allele-specific ligation of Taq DNA ligase, which is further enhanced by improving the fidelity of Taq DNA ligase in a heterogeneous reaction. Two amplification techniques, rolling circle amplification (RCA) and silver enhancement, are employed after the ligation reaction and a gold nanoparticle (GNP) labeling procedure is used to amplify the signal. As little as 0.01% methylated DNA (i.e. 2 pmol L(-1)) can be distinguished from the cocktail of methylated and unmethylated DNA by the proposed method. More importantly, this method shows good accuracy and sensitivity in profiling the methylation level of genomic DNA of three selected colonic cancer cell lines. This strategy provides a high throughput alternative with reasonable sensitivity and resolution for cancer study and diagnosis. PMID:27093298

  2. Age-Specific Gene Expression Profiles of Rhesus Monkey Ovaries Detected by Microarray Analysis.

    PubMed

    Wei, Hengxi; Liu, Xiangjie; Yuan, Jihong; Li, Li; Zhang, Dongdong; Guo, Xinzheng; Liu, Lin; Zhang, Shouquan

    2015-01-01

    The biological function of human ovaries declines with age. To identify the potential molecular changes in ovarian aging, we performed genome-wide gene expression analysis by microarray of ovaries from young, middle-aged, and old rhesus monkeys. Microarray data was validated by quantitative real-time PCR. Results showed that a total of 503 (60 upregulated, 443 downregulated) and 84 (downregulated) genes were differentially expressed in old ovaries compared to young and middle-aged groups, respectively. No difference in gene expression was found between middle-aged and young groups. Differentially expressed genes were mainly enriched in cell and organelle, cellular and physiological process, binding, and catalytic activity. These genes were primarily associated with KEGG pathways of cell cycle, DNA replication and repair, oocyte meiosis and maturation, MAPK, TGF-beta, and p53 signaling pathway. Genes upregulated were involved in aging, defense response, oxidation reduction, and negative regulation of cellular process; genes downregulated have functions in reproduction, cell cycle, DNA and RNA process, macromolecular complex assembly, and positive regulation of macromolecule metabolic process. These findings show that monkey ovary undergoes substantial change in global transcription with age. Gene expression profiles are useful in understanding the mechanisms underlying ovarian aging and age-associated infertility in primates. PMID:26421297

  3. Age-Specific Gene Expression Profiles of Rhesus Monkey Ovaries Detected by Microarray Analysis

    PubMed Central

    Wei, Hengxi; Liu, Xiangjie; Yuan, Jihong; Li, Li; Zhang, Dongdong; Guo, Xinzheng; Liu, Lin; Zhang, Shouquan

    2015-01-01

    The biological function of human ovaries declines with age. To identify the potential molecular changes in ovarian aging, we performed genome-wide gene expression analysis by microarray of ovaries from young, middle-aged, and old rhesus monkeys. Microarray data was validated by quantitative real-time PCR. Results showed that a total of 503 (60 upregulated, 443 downregulated) and 84 (downregulated) genes were differentially expressed in old ovaries compared to young and middle-aged groups, respectively. No difference in gene expression was found between middle-aged and young groups. Differentially expressed genes were mainly enriched in cell and organelle, cellular and physiological process, binding, and catalytic activity. These genes were primarily associated with KEGG pathways of cell cycle, DNA replication and repair, oocyte meiosis and maturation, MAPK, TGF-beta, and p53 signaling pathway. Genes upregulated were involved in aging, defense response, oxidation reduction, and negative regulation of cellular process; genes downregulated have functions in reproduction, cell cycle, DNA and RNA process, macromolecular complex assembly, and positive regulation of macromolecule metabolic process. These findings show that monkey ovary undergoes substantial change in global transcription with age. Gene expression profiles are useful in understanding the mechanisms underlying ovarian aging and age-associated infertility in primates. PMID:26421297

  4. Design of a combinatorial DNA microarray for protein-DNA interaction studies

    PubMed Central

    Mintseris, Julian; Eisen, Michael B

    2006-01-01

    Background Discovery of precise specificity of transcription factors is an important step on the way to understanding the complex mechanisms of gene regulation in eukaryotes. Recently, double-stranded protein-binding microarrays were developed as a potentially scalable approach to tackle transcription factor binding site identification. Results Here we present an algorithmic approach to experimental design of a microarray that allows for testing full specificity of a transcription factor binding to all possible DNA binding sites of a given length, with optimally efficient use of the array. This design is universal, works for any factor that binds a sequence motif and is not species-specific. Furthermore, simulation results show that data produced with the designed arrays is easier to analyze and would result in more precise identification of binding sites. Conclusion In this study, we present a design of a double stranded DNA microarray for protein-DNA interaction studies and show that our algorithm allows optimally efficient use of the arrays for this purpose. We believe such a design will prove useful for transcription factor binding site identification and other biological problems. PMID:17018151

  5. Uropathogenic Escherichia coli virulence genes: invaluable approaches for designing DNA microarray probes

    PubMed Central

    Jahandeh, Nadia; Ranjbar, Reza; Behzadi, Elham

    2015-01-01

    Introduction The pathotypes of uropathogenic Escherichia coli (UPEC) cause different types of urinary tract infections (UTIs). The presence of a wide range of virulence genes in UPEC enables us to design appropriate DNA microarray probes. These probes, which are used in DNA microarray technology, provide us with an accurate and rapid diagnosis and definitive treatment in association with UTIs caused by UPEC pathotypes. The main goal of this article is to introduce the UPEC virulence genes as invaluable approaches for designing DNA microarray probes. Material and methods Main search engines such as Google Scholar and databases like NCBI were searched to find and study several original pieces of literature, review articles, and DNA gene sequences. In parallel with in silico studies, the experiences of the authors were helpful for selecting appropriate sources and writing this review article. Results There is a significant variety of virulence genes among UPEC strains. The DNA sequences of virulence genes are fabulous patterns for designing microarray probes. The location of virulence genes and their sequence lengths influence the quality of probes. Conclusions The use of selected virulence genes for designing microarray probes gives us a wide range of choices from which the best probe candidates can be chosen. DNA microarray technology provides us with an accurate, rapid, cost-effective, sensitive, and specific molecular diagnostic method which is facilitated by designing microarray probes. Via these tools, we are able to have an accurate diagnosis and a definitive treatment regarding UTIs caused by UPEC pathotypes. PMID:26855801

  6. The construction and use of bacterial DNA microarrays based on an optimized two-stage PCR strategy

    PubMed Central

    Postier, Bradley L; Wang, Hong-Liang; Singh, Abhay; Impson, Lori; Andrews, Heather L; Klahn, Jessica; Li, Hong; Risinger, George; Pesta, David; Deyholos, Michael; Galbraith, David W; Sherman, Louis A; Burnap, Robert L

    2003-01-01

    Background DNA microarrays are a powerful tool with important applications such as global gene expression profiling. Construction of bacterial DNA microarrays from genomic sequence data using a two-stage PCR amplification approach for the production of arrayed DNA is attractive because it allows, in principal, the continued re-amplification of DNA fragments and facilitates further utilization of the DNA fragments for additional uses (e.g. over-expression of protein). We describe the successful construction and use of DNA microarrays by the two-stage amplification approach and discuss the technical challenges that were met and resolved during the project. Results Chimeric primers that contained both gene-specific and shared, universal sequence allowed the two-stage amplification of the 3,168 genes identified on the genome of Synechocystis sp. PCC6803, an important prokaryotic model organism for the study of oxygenic photosynthesis. The gene-specific component of the primer was of variable length to maintain uniform annealing temperatures during the 1st round of PCR synthesis, and situated to preserve full-length ORFs. Genes were truncated at 2 kb for efficient amplification, so that about 92% of the PCR fragments were full-length genes. The two-stage amplification had the additional advantage of normalizing the yield of PCR products and this improved the uniformity of DNA features robotically deposited onto the microarray surface. We also describe the techniques utilized to optimize hybridization conditions and signal-to-noise ratio of the transcription profile. The inter-lab transportability was demonstrated by the virtual error-free amplification of the entire genome complement of 3,168 genes using the universal primers in partner labs. The printed slides have been successfully used to identify differentially expressed genes in response to a number of environmental conditions, including salt stress. Conclusions The technique detailed here minimizes the cost and

  7. DETECTION OF EMERGING MICROBIAL CONTAMINANTS IN SOURCE AND FINISHED DRINKING WATER WITH DNA MICROARRAYS

    EPA Science Inventory

    DNA microarrays represent a potentially significant technology and analytical technique for the simultaneous detection of multiple pathogens in a single water sample, with the ability to incorporate live/dead discrimination via mRNA analysis. However, microarrays have not been a...

  8. DNA Microarray Detection of Antimicrobial Resistance Genes in Bacteria Co-Cultured from Swine Feces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One factor leading to the spread of antimicrobial resistance (AR) in bacteria is the horizontal transfer of resistance genes. To study this, a DNA microarray was recently developed to detect these genes. To maximize the capability of this microarray, probes were designed and added to detect all AR g...

  9. [Differential gene expression analysis by DNA microarrays technology and its application in molecular oncology].

    PubMed

    Frolov, A E; Godwin, A K; Favorova, O O

    2003-01-01

    Accumulation of genetic and epigenetic aberrations leads to malignant transformation of normal cells. Functional studies of cancer using genomic and proteomic tools will help to reveal the true complexity of the processes leading to cancer development in humans. Until recently, diagnosis and prognosis of cancer was based on conventional pathologic criteria and epidemiological evidence. Certain tumors were divided only into relatively broad histological and morphological subcategories. Rapidly developing methods of differential gene expression analysis promote the search for clinically relevant genes changing their expression levels during malignant transformation. DNA microarrays offer a unique possibility to rapidly assess the global expression picture of thousands genes in any given time point and compare the detailed combinatory analysis results of global expression profiles for normal and malignant cells at various functional stages or separate experimental conditions. Acquisition of such "genetic portraits" allows searching for regularity and difference in expression patterns of certain genes, understanding their function and pathological importance, and ultimately developing the "molecular nosology" of cancer. This review describes the basis of DNA microarray technology and methodology, and focuses on their applications in molecular classification of tumors, drug sensitivity and resistance studies, and identification of biological markers of cancer. PMID:12942629

  10. DNA microarrays and likelihood ratio bioinformatic methods: discovery of human melanocyte biomarkers.

    PubMed

    Dooley, Thomas P; Curto, Ernest V; Davis, Richard L; Grammatico, Paola; Robinson, Edward S; Wilborn, Teresa W

    2003-06-01

    In this article, some of the advantages and limitations of DNA microarray technologies for gene expression profiling are summarized. As a model experiment, DermArray DNA microarrays were utilized to identify potential biomarkers of cultured normal human melanocytes in two different experimental comparisons. In the first case, melanocyte RNA was compared with vastly dissimilar non-melanocytic RNA samples of normal skin keratinocytes and fibroblasts. In the second case, melanocyte RNA was compared with a primary cutaneous melanoma line (MS7) and a metastatic melanoma cell line (SKMel-28). The alternative approaches provide dramatically different lists of 'normal melanocyte' biomarkers. The most robust biomarkers were identified using principal component analysis bioinformatic methods related to likelihood ratios. Only three of 25 robust biomarkers in the melanocyte-proximal study (i.e. melanocytes vs. melanoma cells) were coincidentally identified in the melanocyte-distal study (i.e. melanocytes vs. non-melanocytic cells). Selected up-regulated biomarkers of melanocytes (i.e. TRP-1, melan-A/MART-1, silver/Pmel17, and nidogen-2) were validated by qRT-PCR. Some of the melanocytic biomarkers identified here may be useful in molecular diagnostics, as potential molecular targets for drug discovery, and for understanding the biochemistry of melanocytic cells. PMID:12753397

  11. Fabrication of DNA Microarrays on Polydopamine-Modified Gold Thin Films for SPR Imaging Measurements

    PubMed Central

    Wood, Jennifer B.; Szyndler, Megan W.; Halpern, Aaron R.; Cho, Kyunghee

    2013-01-01

    Polydopamine (PDA) films were fabricated on thin film gold substrates in a single-step polymerization-deposition process from dopamine solutions and then employed in the construction of robust DNA microarrays for the ultra-sensitive detection of biomolecules with nanoparticle-enhanced surface plasmon resonance (SPR) imaging. PDA multilayers with thicknesses varying from 1 to 5 nm were characterized with a combination of scanning angle SPR and AFM experiments, and 1.3 ± 0.2 nm PDA multilayers were chosen as an optimal thickness for the SPR imaging measurements. DNA microarrays were then fabricated by the reaction of amine-functionalized single-stranded DNA (ssDNA) oligonucleotides with PDA-modified gold thin film microarray elements, and were subsequently employed in SPR imaging measurements of DNA hybridization adsorption and protein-DNA binding. Concurrent control experiments with noncomplementary ssDNA sequences demonstrated that the adhesive PDA multilayer was also able to provide good resistance to the nonspecific binding of biomolecules. Finally, a series of SPR imaging measurements of the hybridization adsorption of DNA-modified gold nanoparticles onto mixed sequence DNA microarrays were used to confirm that the use of PDA multilayer films is a simple, rapid and versatile method for fabricating DNA microarrays for ultrasensitive nanoparticle-enhanced SPR imaging biosensing. PMID:23902428

  12. Fabrication of DNA microarrays on polydopamine-modified gold thin films for SPR imaging measurements.

    PubMed

    Wood, Jennifer B; Szyndler, Megan W; Halpern, Aaron R; Cho, Kyunghee; Corn, Robert M

    2013-08-27

    Polydopamine (PDA) films were fabricated on thin film gold substrates in a single-step polymerization-deposition process from dopamine solutions and then employed in the construction of robust DNA microarrays for the ultrasensitive detection of biomolecules with nanoparticle-enhanced surface plasmon resonance (SPR) imaging. PDA multilayers with thicknesses varying from 1 to 5 nm were characterized with a combination of scanning angle SPR and AFM experiments, and 1.3 ± 0.2 nm PDA multilayers were chosen as an optimal thickness for the SPR imaging measurements. DNA microarrays were then fabricated by the reaction of amine-functionalized single-stranded DNA (ssDNA) oligonucleotides with PDA-modified gold thin film microarray elements, and were subsequently employed in SPR imaging measurements of DNA hybridization adsorption and protein-DNA binding. Concurrent control experiments with non-complementary ssDNA sequences demonstrated that the adhesive PDA multilayer was also able to provide good resistance to the nonspecific binding of biomolecules. Finally, a series of SPR imaging measurements of the hybridization adsorption of DNA-modified gold nanoparticles onto mixed sequence DNA microarrays were used to confirm that the use of PDA multilayer films is a simple, rapid, and versatile method for fabricating DNA microarrays for ultrasensitive nanoparticle-enhanced SPR imaging biosensing. PMID:23902428

  13. Exploration of high-density protein microarrays for antibody validation and autoimmunity profiling.

    PubMed

    Sjöberg, Ronald; Mattsson, Cecilia; Andersson, Eni; Hellström, Cecilia; Uhlen, Mathias; Schwenk, Jochen M; Ayoglu, Burcu; Nilsson, Peter

    2016-09-25

    High-density protein microarrays of recombinant human protein fragments, representing 12,412 unique Ensembl Gene IDs, have here been produced and explored. These protein microarrays were used to analyse antibody off-target interactions, as well as for profiling the human autoantibody repertoire in plasma against the antigens represented by the protein fragments. Affinity-purified polyclonal antibodies produced within the Human Protein Atlas (HPA) were analysed on microarrays of three different sizes, ranging from 384 antigens to 21,120 antigens, for evaluation of the antibody validation criteria in the HPA. Plasma samples from secondary progressive multiple sclerosis patients were also screened in order to explore the feasibility of these arrays for broad-scale profiling of autoantibody reactivity. Furthermore, analysis on these near proteome-wide microarrays was complemented with analysis on HuProt™ Human Proteome protein microarrays. The HPA recombinant protein microarray with 21,120 antigens and the HuProt™ Human Proteome protein microarray are currently the largest protein microarray platforms available to date. The results on these arrays show that the Human Protein Atlas antibodies have few off-target interactions if the antibody validation criteria are kept stringent and demonstrate that the HPA-produced high-density recombinant protein fragment microarrays allow for a high-throughput analysis of plasma for identification of possible autoantibody targets in the context of various autoimmune conditions. PMID:26417875

  14. A Platform for Combined DNA and Protein Microarrays Based on Total Internal Reflection Fluorescence

    PubMed Central

    Asanov, Alexander; Zepeda, Angélica; Vaca, Luis

    2012-01-01

    We have developed a novel microarray technology based on total internal reflection fluorescence (TIRF) in combination with DNA and protein bioassays immobilized at the TIRF surface. Unlike conventional microarrays that exhibit reduced signal-to-background ratio, require several stages of incubation, rinsing and stringency control, and measure only end-point results, our TIRF microarray technology provides several orders of magnitude better signal-to-background ratio, performs analysis rapidly in one step, and measures the entire course of association and dissociation kinetics between target DNA and protein molecules and the bioassays. In many practical cases detection of only DNA or protein markers alone does not provide the necessary accuracy for diagnosing a disease or detecting a pathogen. Here we describe TIRF microarrays that detect DNA and protein markers simultaneously, which reduces the probabilities of false responses. Supersensitive and multiplexed TIRF DNA and protein microarray technology may provide a platform for accurate diagnosis or enhanced research studies. Our TIRF microarray system can be mounted on upright or inverted microscopes or interfaced directly with CCD cameras equipped with a single objective, facilitating the development of portable devices. As proof-of-concept we applied TIRF microarrays for detecting molecular markers from Bacillus anthracis, the pathogen responsible for anthrax. PMID:22438738

  15. Comparative Evaluation of Effectiveness of IAVchip DNA Microarray in Influenza A Diagnosis

    PubMed Central

    Sultankulova, K. T.; Chervyakova, O. V.; Kozhabergenov, N. S.; Shorayeva, K. A.; Strochkov, V. M.; Orynbayev, M. B.; Sandybayev, N. T.; Sansyzbay, A. R.; Vasin, A. V.

    2014-01-01

    The paper describes comparative evaluation of IAVchip DNA microarray, reverse transcription PCR (RT-PCR), and real-time RT-PCR versus virus isolation in chicken embryos and shows their diagnostic effectiveness in detection and subtyping of influenza A virus. The tests were evaluated with use of 185 specimens from humans, animals, and birds. IAVchip DNA microarray demonstrates higher diagnostic effectiveness (99.45%) in early influenza A diagnosis as compared to the real-time PCR (98.38%) and RT-PCR (96.22%), thus showing its clear superiority. Diagnostic sensitivity of IAVchip DNA microarray (100%) exceeds the same of RT-PCR (95.95%) and real-time RT-PCR (97.96%) in the range of estimated confidence intervals. IAVchip DNA microarray and real-time RT-PCR displayed equal diagnostic specificity (98.85%), while diagnostic specificity of RT-PCR was 96.40%. IAVchip DNA microarray has an advantage over the other tests for influenza A diagnosis and virus identification as a more rapid method that allows performing simultaneous detection and subtyping of about tens of specimens within one experiment during 8–10 hours. The developed IAVchip DNA microarray is a general test tool that enables identifying simultaneously 16 hemagglutinin (HA) and 9 neuraminidase (NA) subtypes of influenza A virus and also to screen the influenza A viruses from humans, animals, and birds by M and NP genes. PMID:25548788

  16. Comparative evaluation of effectiveness of IAVchip DNA microarray in influenza A diagnosis.

    PubMed

    Sultankulova, K T; Chervyakova, O V; Kozhabergenov, N S; Shorayeva, K A; Strochkov, V M; Orynbayev, M B; Sandybayev, N T; Sansyzbay, A R; Vasin, A V

    2014-01-01

    The paper describes comparative evaluation of IAVchip DNA microarray, reverse transcription PCR (RT-PCR), and real-time RT-PCR versus virus isolation in chicken embryos and shows their diagnostic effectiveness in detection and subtyping of influenza A virus. The tests were evaluated with use of 185 specimens from humans, animals, and birds. IAVchip DNA microarray demonstrates higher diagnostic effectiveness (99.45%) in early influenza A diagnosis as compared to the real-time PCR (98.38%) and RT-PCR (96.22%), thus showing its clear superiority. Diagnostic sensitivity of IAVchip DNA microarray (100%) exceeds the same of RT-PCR (95.95%) and real-time RT-PCR (97.96%) in the range of estimated confidence intervals. IAVchip DNA microarray and real-time RT-PCR displayed equal diagnostic specificity (98.85%), while diagnostic specificity of RT-PCR was 96.40%. IAVchip DNA microarray has an advantage over the other tests for influenza A diagnosis and virus identification as a more rapid method that allows performing simultaneous detection and subtyping of about tens of specimens within one experiment during 8-10 hours. The developed IAVchip DNA microarray is a general test tool that enables identifying simultaneously 16 hemagglutinin (HA) and 9 neuraminidase (NA) subtypes of influenza A virus and also to screen the influenza A viruses from humans, animals, and birds by M and NP genes. PMID:25548788

  17. Use of Microarray to Analyze Gene Expression Profiles of Acute Effects of Prochloraz on Fathead Minnows Pimephales promelas

    EPA Science Inventory

    Microarray technology is a powerful tool to investigate the gene expression profiles for thousands of genes simultaneously. In recent years, microarrays have been used to characterize environmental pollutants and identify molecular mode(s) of action of chemicals including endocri...

  18. Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.

    PubMed

    Polen, Tino; Wendisch, Volker F

    2004-01-01

    DNA microarray technology has become an important research tool for biotechnology and microbiology. It is now possible to characterize genetic diversity and gene expression in a genomewide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Escherichia coli, but only recently have they been developed for the Gram-positive Corynebacterium glutamicum. Both bacteria are widely used for biotechnological amino acid production. In this article, in addition to the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, we describe recent applications of DNA microarray technology regarding amino acid production in C. glutamicum and E. coli. We also discuss the impact of functional genomics studies on fundamental as well as applied aspects of amino acid production with C. glutamicum and E. coli. PMID:15304751

  19. Improvement in the amine glass platform by bubbling method for a DNA microarray

    PubMed Central

    Jee, Seung Hyun; Kim, Jong Won; Lee, Ji Hyeong; Yoon, Young Soo

    2015-01-01

    A glass platform with high sensitivity for sexually transmitted diseases microarray is described here. An amino-silane-based self-assembled monolayer was coated on the surface of a glass platform using a novel bubbling method. The optimized surface of the glass platform had highly uniform surface modifications using this method, as well as improved hybridization properties with capture probes in the DNA microarray. On the basis of these results, the improved glass platform serves as a highly reliable and optimal material for the DNA microarray. Moreover, in this study, we demonstrated that our glass platform, manufactured by utilizing the bubbling method, had higher uniformity, shorter processing time, lower background signal, and higher spot signal than the platforms manufactured by the general dipping method. The DNA microarray manufactured with a glass platform prepared using bubbling method can be used as a clinical diagnostic tool. PMID:26468293

  20. DNA Microarray Characterization of Pathogens Associated with Sexually Transmitted Diseases

    PubMed Central

    Cao, Boyang; Wang, Suwei; Tian, Zhenyang; Hu, Pinliang; Feng, Lu; Wang, Lei

    2015-01-01

    This study established a multiplex PCR-based microarray to detect simultaneously a diverse panel of 17 sexually transmitted diseases (STDs)-associated pathogens including Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma, Herpes simplex virus (HSV) types 1 and 2, and Human papillomavirus (HPV) types 6, 11, 16, 18, 31, 33, 35, 39, 54 and 58. The target genes are 16S rRNA gene for N. gonorrhoeae, M. genitalium, M. hominism, and Ureaplasma, the major outer membrane protein gene (ompA) for C. trachomatis, the glycoprotein B gene (gB) for HSV; and the L1 gene for HPV. A total of 34 probes were selected for the microarray including 31 specific probes, one as positive control, one as negative control, and one as positional control probe for printing reference. The microarray is specific as the commensal and pathogenic microbes (and closely related organisms) in the genitourinary tract did not cross-react with the microarray probes. The microarray is 10 times more sensitive than that of the multiplex PCR. Among the 158 suspected HPV specimens examined, the microarray showed that 49 samples contained HPV, 21 samples contained Ureaplasma, 15 contained M. hominis, four contained C. trachomatis, and one contained N. gonorrhoeae. This work reports the development of the first high through-put detection system that identifies common pathogens associated with STDs from clinical samples, and paves the way for establishing a time-saving, accurate and high-throughput diagnostic tool for STDs. PMID:26208181

  1. Detection of Alicyclobacillus species in fruit juice using a random genomic DNA microarray chip.

    PubMed

    Jang, Jun Hyeong; Kim, Sun-Joong; Yoon, Bo Hyun; Ryu, Jee-Hoon; Gu, Man Bock; Chang, Hyo-Ihl

    2011-06-01

    This study describes a method using a DNA microarray chip to rapidly and simultaneously detect Alicyclobacillus species in orange juice based on the hybridization of genomic DNA with random probes. Three food spoilage bacteria were used in this study: Alicyclobacillus acidocaldarius, Alicyclobacillus acidoterrestris, and Alicyclobacillus cycloheptanicus. The three Alicyclobacillus species were adjusted to 2 × 10(3) CFU/ml and inoculated into pasteurized 100% pure orange juice. Cy5-dCTP labeling was used for reference signals, and Cy3-dCTP was labeled for target genomic DNA. The molar ratio of 1:1 of Cy3-dCTP and Cy5-dCTP was used. DNA microarray chips were fabricated using randomly fragmented DNA of Alicyclobacillus spp. and were hybridized with genomic DNA extracted from Bacillus spp. Genomic DNA extracted from Alicyclobacillus spp. showed a significantly higher hybridization rate compared with DNA of Bacillus spp., thereby distinguishing Alicyclobacillus spp. from Bacillus spp. The results showed that the microarray DNA chip containing randomly fragmented genomic DNA was specific and clearly identified specific food spoilage bacteria. This microarray system is a good tool for rapid and specific detection of thermophilic spoilage bacteria, mainly Alicyclobacillus spp., and is useful and applicable to the fruit juice industry. PMID:21669070

  2. Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm

    PubMed Central

    Saberkari, Hamidreza; Bahrami, Sheyda; Shamsi, Mousa; Amoshahy, Mohammad Javad; Ghavifekr, Habib Badri; Sedaaghi, Mohammad Hossein

    2015-01-01

    DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively. PMID:26284175

  3. Fluorescence, XPS, and TOF-SIMS surface chemical state image analysis of DNA microarrays.

    PubMed

    Lee, Chi-Ying; Harbers, Gregory M; Grainger, David W; Gamble, Lara J; Castner, David G

    2007-08-01

    Performance improvements in DNA-modified surfaces required for microarray and biosensor applications rely on improved capabilities to accurately characterize the chemistry and structure of immobilized DNA molecules on micropatterned surfaces. Recent innovations in imaging X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) now permit more detailed studies of micropatterned surfaces. We have exploited the complementary information provided by imaging XPS and imaging TOF-SIMS to detail the chemical composition, spatial distribution, and hybridization efficiency of amine-terminated single-stranded DNA (ssDNA) bound to commercial polyacrylamide-based, amine-reactive microarray slides, immobilized in both macrospot and microarray diagnostic formats. Combinations of XPS imaging and small spot analysis were used to identify micropatterned DNA spots within printed DNA arrays on slide surfaces and quantify DNA elements within individual microarray spots for determination of probe immobilization and hybridization efficiencies. This represents the first report of imaging XPS of DNA immobilization and hybridization efficiencies for arrays fabricated on commercial microarray slides. Imaging TOF-SIMS provided distinct analytical data on the lateral distribution of DNA within single array microspots before and after target hybridization. Principal component analysis (PCA) applied to TOF-SIMS imaging datasets demonstrated that the combination of these two techniques provides information not readily observable in TOF-SIMS images alone, particularly in identifying species associated with array spot nonuniformities (e.g., "halo" or "donut" effects often observed in fluorescence images). Chemically specific spot images were compared to conventional fluorescence scanned images in microarrays to provide new information on spot-to-spot DNA variations that affect current diagnostic reliability, assay variance, and sensitivity. PMID:17625851

  4. Scanning electrochemical microscopy of genomic DNA microarrays--study of adsorption and subsequent interactions.

    PubMed

    Roberts, William S; Davis, Frank; Higson, Séamus P J

    2009-07-01

    The adsorption of genomic DNA and subsequent interactions between adsorbed and solvated DNA have been studied using scanning electrochemical microscopy (SECM). Microarrays of polyethylenimine (PEI) films could be deposited on screen-printed carbon substrates using the SECM. Single stranded herring DNA was electrostatically adsorbed at the surface of the polyethylenimine. The further adsorption of complementary single stranded DNA on the surface was observed to give rise to substantial decreases in interfacial impedance at the surface as measured by increases of tip current of the order of 1-2 nA (6%). Conversely adsorption of DNA from alternate species, i.e. salmon ssDNA on herring ssDNA, yielded much smaller changes in tip current of 0.2 nA. The significance of this work is that the approach opens up the possibility for direct label-free electrochemical interrogation of DNA microarrays as an alternative to other existing optical techniques. PMID:19562194

  5. Gene expression profiling in peanut using oligonucleotide microarrays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently have a moderately significant number of ESTs been released into the public domain. Utilization of these ESTs for the oligonucleotide microarrays provides a means to investigate l...

  6. Comprehensive Analysis of Prokaryotes in Environmental Water Using DNA Microarray Analysis and Whole Genome Amplification

    PubMed Central

    Akama, Takeshi; Kawashima, Akira; Tanigawa, Kazunari; Hayashi, Moyuru; Ishido, Yuko; Luo, Yuqian; Hata, Akihisa; Fujitani, Noboru; Ishii, Norihisa; Suzuki, Koichi

    2013-01-01

    The microflora in environmental water consists of a high density and diversity of bacterial species that form the foundation of the water ecosystem. Because the majority of these species cannot be cultured in vitro, a different approach is needed to identify prokaryotes in environmental water. A novel DNA microarray was developed as a simplified detection protocol. Multiple DNA probes were designed against each of the 97,927 sequences in the DNA Data Bank of Japan and mounted on a glass chip in duplicate. Evaluation of the microarray was performed using the DNA extracted from one liter of environmental water samples collected from seven sites in Japan. The extracted DNA was uniformly amplified using whole genome amplification (WGA), labeled with Cy3-conjugated 16S rRNA specific primers and hybridized to the microarray. The microarray successfully identified soil bacteria and environment-specific bacteria clusters. The DNA microarray described herein can be a useful tool in evaluating the diversity of prokaryotes and assessing environmental changes such as global warming. PMID:25437334

  7. Identifying protein interactions with metal-modified DNA using microarray technology.

    PubMed

    Stansfield, Hope E; Kulczewski, Bethany P; Lybrand, Kyle E; Jamieson, Elizabeth R

    2009-02-01

    Protein microarrays have been used extensively to identify protein-protein interactions; however, this technology has not been widely applied to protein-DNA interactions. In particular, this work demonstrates the utility of this technique for rapidly identifying interactions of proteins with metal-modified DNA. Protein macroarray experiments were carried out with high mobility group protein 1 (HMG-1) and cisplatin- and chromium-modified 50-mer oligonucleotides to demonstrate "proof of principle." Commercially available protein microarrays containing many different classes of human proteins were then employed to search for additional interactions with cisplatin-modified DNA. The results of the microarray experiments confirmed some known interactions and, more importantly, identified many novel protein interactions, demonstrating the utility of this method as a rapid, high-throughput technique to discover proteins that interact with metal-modified DNA. PMID:18936984

  8. APPLICATION OF DNA MICROARRAYS TO REPRODUCTIVE TOXICOLOGY AND THE DEVELOPMENT OF A TESTIS ARRAY

    EPA Science Inventory

    With the advent of sequence information for entire mammalian genomes, it is now possible to analyze gene expression and gene polymorphisms on a genomic scale. The primary tool for analysis of gene expression is the DNA microarray. We have used commercially available cDNA micro...

  9. An Undergraduate Laboratory Exercise to Study the Effect of Darkness on Plant Gene Expression Using DNA Microarray

    ERIC Educational Resources Information Center

    Chang, Ming-Mei; Briggs, George M.

    2007-01-01

    DNA microarrays are microscopic arrays on a solid surface, typically a glass slide, on which DNA oligonucleotides are deposited or synthesized in a high-density matrix with a predetermined spatial order. Several types of DNA microarrays have been developed and used for various biological studies. Here, we developed an undergraduate laboratory…

  10. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    PubMed

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. PMID:26922047

  11. DNA microarray analysis of Staphylococcus aureus causing bloodstream infection: bacterial genes associated with mortality?

    PubMed

    Blomfeldt, A; Aamot, H V; Eskesen, A N; Monecke, S; White, R A; Leegaard, T M; Bjørnholt, J V

    2016-08-01

    Providing evidence for microbial genetic determinants' impact on outcome in Staphylococcus aureus bloodstream infections (SABSI) is challenging due to the complex and dynamic microbe-host interaction. Our recent population-based prospective study reported an association between the S. aureus clonal complex (CC) 30 genotype and mortality in SABSI patients. This follow-up investigation aimed to examine the genetic profiles of the SABSI isolates and test the hypothesis that specific genetic characteristics in S. aureus are associated with mortality. SABSI isolates (n = 305) and S. aureus CC30 isolates from asymptomatic nasal carriers (n = 38) were characterised by DNA microarray analysis and spa typing. Fisher's exact test, least absolute shrinkage and selection operator (LASSO) and elastic net regressions were performed to discern within four groups defined by patient outcome and characteristics. No specific S. aureus genetic determinants were found to be associated with mortality in SABSI patients. By applying LASSO and elastic net regressions, we found evidence suggesting that agrIII and cna were positively and setC (=selX) and seh were negatively associated with S. aureus CC30 versus non-CC30 isolates. The genes chp and sak, encoding immune evasion molecules, were found in higher frequencies in CC30 SABSI isolates compared to CC30 carrier isolates, indicating a higher virulence potential. In conclusion, no specific S. aureus genes were found to be associated with mortality by DNA microarray analysis and state-of-the-art statistical analyses. The next natural step is to test the hypothesis in larger samples with higher resolution methods, like whole genome sequencing. PMID:27177754

  12. Mouse strain specific gene expression differences for illumina microarray expression profiling in embryos

    PubMed Central

    2012-01-01

    Background In the field of mouse genetics the advent of technologies like microarray based expression profiling dramatically increased data availability and sensitivity, yet these advanced methods are often vulnerable to the unavoidable heterogeneity of in vivo material and might therefore reflect differentially expressed genes between mouse strains of no relevance to a targeted experiment. The aim of this study was not to elaborate on the usefulness of microarray analysis in general, but to expand our knowledge regarding this potential “background noise” for the widely used Illumina microarray platform surpassing existing data which focused primarily on the adult sensory and nervous system, by analyzing patterns of gene expression at different embryonic stages using wild type strains and modern transgenic models of often non-isogenic backgrounds. Results Wild type embryos of 11 mouse strains commonly used in transgenic and molecular genetic studies at three developmental time points were subjected to Illumina microarray expression profiling in a strain-by-strain comparison. Our data robustly reflects known gene expression patterns during mid-gestation development. Decreasing diversity of the input tissue and/or increasing strain diversity raised the sensitivity of the array towards the genetic background. Consistent strain sensitivity of some probes was attributed to genetic polymorphisms or probe design related artifacts. Conclusion Our study provides an extensive reference list of gene expression profiling background noise of value to anyone in the field of developmental biology and transgenic research performing microarray expression profiling with the widely used Illumina microarray platform. Probes identified as strain specific background noise further allow for microarray expression profiling on its own to be a valuable tool for establishing genealogies of mouse inbred strains. PMID:22583621

  13. In Silico Analysis of Microarray-Based Gene Expression Profiles Predicts Tumor Cell Response to Withanolides

    PubMed Central

    Efferth, Thomas; Greten, Henry Johannes

    2012-01-01

    Withania somnifera (L.) Dunal (Indian ginseng, winter cherry, Solanaceae) is widely used in traditional medicine. Roots are either chewed or used to prepare beverages (aqueous decocts). The major secondary metabolites of Withania somnifera are the withanolides, which are C-28-steroidal lactone triterpenoids. Withania somnifera extracts exert chemopreventive and anticancer activities in vitro and in vivo. The aims of the present in silico study were, firstly, to investigate whether tumor cells develop cross-resistance between standard anticancer drugs and withanolides and, secondly, to elucidate the molecular determinants of sensitivity and resistance of tumor cells towards withanolides. Using IC50 concentrations of eight different withanolides (withaferin A, withaferin A diacetate, 3-azerininylwithaferin A, withafastuosin D diacetate, 4-B-hydroxy-withanolide E, isowithanololide E, withafastuosin E, and withaperuvin) and 19 established anticancer drugs, we analyzed the cross-resistance profile of 60 tumor cell lines. The cell lines revealed cross-resistance between the eight withanolides. Consistent cross-resistance between withanolides and nitrosoureas (carmustin, lomustin, and semimustin) was also observed. Then, we performed transcriptomic microarray-based COMPARE and hierarchical cluster analyses of mRNA expression to identify mRNA expression profiles predicting sensitivity or resistance towards withanolides. Genes from diverse functional groups were significantly associated with response of tumor cells to withaferin A diacetate, e.g. genes functioning in DNA damage and repair, stress response, cell growth regulation, extracellular matrix components, cell adhesion and cell migration, constituents of the ribosome, cytoskeletal organization and regulation, signal transduction, transcription factors, and others.

  14. The emergence and diffusion of DNA microarray technology

    PubMed Central

    Lenoir, Tim; Giannella, Eric

    2006-01-01

    The network model of innovation widely adopted among researchers in the economics of science and technology posits relatively porous boundaries between firms and academic research programs and a bi-directional flow of inventions, personnel, and tacit knowledge between sites of university and industry innovation. Moreover, the model suggests that these bi-directional flows should be considered as mutual stimulation of research and invention in both industry and academe, operating as a positive feedback loop. One side of this bi-directional flow – namely; the flow of inventions into industry through the licensing of university-based technologies – has been well studied; but the reverse phenomenon of the stimulation of university research through the absorption of new directions emanating from industry has yet to be investigated in much detail. We discuss the role of federal funding of academic research in the microarray field, and the multiple pathways through which federally supported development of commercial microarray technologies have transformed core academic research fields. Our study confirms the picture put forward by several scholars that the open character of networked economies is what makes them truly innovative. In an open system innovations emerge from the network. The emergence and diffusion of microarray technologies we have traced here provides an excellent example of an open system of innovation in action. Whether they originated in a startup company environment that operated like a think-tank, such as Affymax, the research labs of a large firm, such as Agilent, or within a research university, the inventors we have followed drew heavily on knowledge resources from all parts of the network in bringing microarray platforms to light. Federal funding for high-tech startups and new industrial development was important at several phases in the early history of microarrays, and federal funding of academic researchers using microarrays was fundamental

  15. DNA methylation analysis using CpG microarrays is impaired in benzopyrene exposed cells

    SciTech Connect

    Sadikovic, Bekim; Andrews, Joseph; Rodenhiser, David I.

    2007-12-15

    Epigenetic alterations have emerged as a key mechanism involved in tumorigenesis. These disruptions are partly due to environmental factors that change normal DNA methylation patterns necessary for transcriptional regulation and chromatin compaction. Microarray technologies are allowing environmentally susceptible epigenetic patterns to be mapped and the precise targets of environmentally induced alterations to be identified. Previously, we observed BaP-induced epigenetic events and cell cycle disruptions in breast cancer cell lines that included time- and concentration-dependent loss of proliferation as well as sequence-specific hypo- and hypermethylation events. In this present report, we further characterized epigenetic changes in BaP-exposed MCF-7 cells. We analyzed DNA methylation on a CpG island microarray platform with over 5400 unique genomic regions. Depleted and enriched microarray targets, representative of putative DNA methylation changes, were identified across the genome; however, subsequent sodium bisulfite analyses revealed no changes in DNA methylation at a number of these loci. Instead, we found that the identification of DNA methylation changes using this restriction enzyme-based microarray approach corresponded with the regions of DNA bound by the BaP derived DNA adducts. This DNA adduct formation occurs at both methylated and unmethylated CpG dinucleotides and affects PCR amplification during sample preparation. Our data suggest that caution should be exercised when interpreting data from comparative microarray experiments that rely on enzymatic reactions. These results are relevant to genome screening approaches involving environmental exposures in which DNA adduct formation at specific nucleotide sites may bias target acquisition and compromise the correct identification of epigenetically responsive genes.

  16. Development of highly fluorescent silica nanoparticles chemically doped with organic dye for sensitive DNA microarray detection.

    PubMed

    Liu, Aihua; Wu, Liyou; He, Zhili; Zhou, Jizhong

    2011-10-01

    Increasing the sensitivity in DNA microarray hybridization can significantly enhance the capability of microarray technology for a wide range of research and clinical diagnostic applications, especially for those with limited sample biomass. To address this issue, using reverse microemulsion method and surface chemistry, a novel class of homogenous, photostable, highly fluorescent streptavidin-functionalized silica nanoparticles was developed, in which Alexa Fluor 647 (AF647) molecules were covalently embedded. The coating of bovine serum albumin on the resultant fluorescent particles can greatly eliminate nonspecific background signal interference. The thus-synthesized fluorescent nanoparticles can specifically recognize biotin-labeled target DNA hybridized to the microarray via streptavidin-biotin interaction. The response of this DNA microarray technology exhibited a linear range within 0.2 to 10 pM complementary DNA and limit of detection of 0.1 pM, enhancing microarray hybridization sensitivity over tenfold. This promising technology may be potentially applied to other binding events such as specific interactions between proteins. PMID:21822973

  17. Iterative normalization of cDNA microarray data.

    PubMed

    Wang, Yue; Lu, Jianping; Lee, Richard; Gu, Zhiping; Clarke, Robert

    2002-03-01

    This paper describes a new approach to normalizing microarray expression data. The novel feature is to unify the tasks of estimating normalization coefficients and identifying control gene set. Unification is realized by constructing a window function over the scatter plot defining the subset of constantly expressed genes and by affecting optimization using an iterative procedure. The structure of window function gates contributions to the control gene set used to estimate normalization coefficients. This window measures the consistency of the matched neighborhoods in the scatter plot and provides a means of rejecting control gene outliers. The recovery of normalizational regression and control gene selection are interleaved and are realized by applying coupled operations to the mean square error function. In this way, the two processes bootstrap one another. We evaluate the technique on real microarray data from breast cancer cell lines and complement the experiment with a data cluster visualization study. PMID:11936594

  18. Comparison of RNA-Seq and Microarray in Transcriptome Profiling of Activated T Cells

    PubMed Central

    Zhao, Shanrong; Fung-Leung, Wai-Ping; Bittner, Anton; Ngo, Karen; Liu, Xuejun

    2014-01-01

    To demonstrate the benefits of RNA-Seq over microarray in transcriptome profiling, both RNA-Seq and microarray analyses were performed on RNA samples from a human T cell activation experiment. In contrast to other reports, our analyses focused on the difference, rather than similarity, between RNA-Seq and microarray technologies in transcriptome profiling. A comparison of data sets derived from RNA-Seq and Affymetrix platforms using the same set of samples showed a high correlation between gene expression profiles generated by the two platforms. However, it also demonstrated that RNA-Seq was superior in detecting low abundance transcripts, differentiating biologically critical isoforms, and allowing the identification of genetic variants. RNA-Seq also demonstrated a broader dynamic range than microarray, which allowed for the detection of more differentially expressed genes with higher fold-change. Analysis of the two datasets also showed the benefit derived from avoidance of technical issues inherent to microarray probe performance such as cross-hybridization, non-specific hybridization and limited detection range of individual probes. Because RNA-Seq does not rely on a pre-designed complement sequence detection probe, it is devoid of issues associated with probe redundancy and annotation, which simplified interpretation of the data. Despite the superior benefits of RNA-Seq, microarrays are still the more common choice of researchers when conducting transcriptional profiling experiments. This is likely because RNA-Seq sequencing technology is new to most researchers, more expensive than microarray, data storage is more challenging and analysis is more complex. We expect that once these barriers are overcome, the RNA-Seq platform will become the predominant tool for transcriptome analysis. PMID:24454679

  19. Functional genomics in chickens: development of integrated-systems microarrays for transcriptional profiling and discovery of regulatory pathways.

    PubMed

    Cogburn, L A; Wang, X; Carre, W; Rejto, L; Aggrey, S E; Duclos, M J; Simon, J; Porter, T E

    2004-01-01

    The genetic networks that govern the differentiation and growth of major tissues of economic importance in the chicken are largely unknown. Under a functional genomics project, our consortium has generated 30 609 expressed sequence tags (ESTs) and developed several chicken DNA microarrays, which represent the Chicken Metabolic/Somatic (10 K) and Neuroendocrine/Reproductive (8 K) Systems (http://udgenome.ags.udel.edu/cogburn/). One of the major challenges facing functional genomics is the development of mathematical models to reconstruct functional gene networks and regulatory pathways from vast volumes of microarray data. In initial studies with liver-specific microarrays (3.1 K), we have examined gene expression profiles in liver during the peri-hatch transition and during a strong metabolic perturbation-fasting and re-feeding-in divergently selected broiler chickens (fast vs. slow-growth lines). The expression of many genes controlling metabolic pathways is dramatically altered by these perturbations. Our analysis has revealed a large number of clusters of functionally related genes (mainly metabolic enzymes and transcription factors) that control major metabolic pathways. Currently, we are conducting transcriptional profiling studies of multiple tissues during development of two sets of divergently selected broiler chickens (fast vs. slow growing and fat vs. lean lines). Transcriptional profiling across multiple tissues should permit construction of a detailed genetic blueprint that illustrates the developmental events and hierarchy of genes that govern growth and development of chickens. This review will briefly describe the recent acquisition of chicken genomic resources (ESTs and microarrays) and our consortium's efforts to help launch the new era of functional genomics in the chicken. PMID:18629153

  20. Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities

    PubMed Central

    Berger, Michael F.; Philippakis, Anthony A.; Qureshi, Aaron M.; He, Fangxue S.; Estep, Preston W.; Bulyk, Martha L.

    2015-01-01

    Transcription factors (TFs) regulate the expression of genes involved in myriad cellular processes through sequence-specific interactions with DNA. In order to predict DNA regulatory elements and the TFs targeting them with greater accuracy, detailed knowledge of the binding preferences of TFs is needed. Protein binding microarray (PBM) technology permits rapid, high-throughput characterization of the in vitro DNA binding specificities of proteins1. Here, we present a novel, maximally compact, synthetic DNA sequence design that represents all possible DNA sequence variants of a given length k (i.e., all “k-mers”) on a single, universal microarray. We constructed such all k-mer microarrays covering all 10 base pair (bp) binding sites by converting high-density single-stranded oligonucleotide arrays to double-stranded DNA arrays. Using these microarrays, we comprehensively determined the binding specificities over a full range of affinities for five TFs of diverse structural classes from yeast, worm, mouse, and human. Importantly, the unbiased coverage of all k-mers permits an interrogation of binding site preferences, including nucleotide interdependencies, at unprecedented resolution. PMID:16998473

  1. Easy and fast detection and genotyping of high-risk human papillomavirus by dedicated DNA microarrays.

    PubMed

    Albrecht, Valérie; Chevallier, Anne; Magnone, Virginie; Barbry, Pascal; Vandenbos, Fanny; Bongain, André; Lefebvre, Jean-Claude; Giordanengo, Valérie

    2006-11-01

    Persistent cervical high-risk human papillomavirus (HPV) infection is correlated with an increased risk of developing a high-grade cervical intraepithelial lesion. A two-step method was developed for detection and genotyping of high-risk HPV. DNA was firstly amplified by asymmetrical PCR in the presence of Cy3-labelled primers and dUTP. Labelled DNA was then genotyped using DNA microarray hybridization. The current study evaluated the technical efficacy of laboratory-designed HPV DNA microarrays for high-risk HPV genotyping on 57 malignant and non-malignant cervical smears. The approach was evaluated for a broad range of cytological samples: high-grade squamous intraepithelial lesions (HSIL), low-grade squamous intraepithelial lesions (LSIL) and atypical squamous cells of high-grade (ASC-H). High-risk HPV was also detected in six atypical squamous cells of undetermined significance (ASC-US) samples; among them only one cervical specimen was found uninfected, associated with no histological lesion. The HPV oligonucleotide DNA microarray genotyping detected 36 infections with a single high-risk HPV type and 5 multiple infections with several high-risk types. Taken together, these results demonstrate the sensitivity and specificity of the HPV DNA microarray approach. This approach could improve clinical management of patients with cervical cytological abnormalities. PMID:16879879

  2. DNA microarray for tracing Salmonella in the feed chain.

    PubMed

    Koyuncu, Sevinc; Andersson, Gunnar; Vos, Pieter; Häggblom, Per

    2011-03-01

    In the present study we investigated if the microarray platforms Premi®Test Salmonella (PTS) and Salmonella array (SA) could be applied for the identification and typing of Salmonella in artificially contaminated animal feed materials. The results were compared to the culture-based MSRV method and serotyping according to Kauffman-White. The SA platform showed a specificity of 100% for the identification of Salmonella compared to 93% with the PTS platform and a sensitivity of 99% or 100%, respectively. Among all identified Salmonella serotypes, 56% with the SA platform and 81% with the PTS platform were correctly identified. The difference in probe signal intensity for each probe was higher between duplicates analyzed with the SA platform than with the PTS platform. Attempts to use the microarray platforms from BPW resulted in many false negative samples and incorrect typing results. The microarray platforms tested were simple to use and might have a potential in tracing studies for Salmonella in the feed chain particularly when rapid information about serotypes are important. PMID:20688409

  3. Microarray-Based Phospho-Proteomic Profiling of Complex Biological Systems.

    PubMed

    Goodwin, C Rory; Woodard, Crystal L; Zhou, Xin; Pan, Jianbo; Olivi, Alessandro; Xia, Shuli; Bettegowda, Chetan; Sciubba, Daniel M; Pevsner, Jonathan; Zhu, Heng; Laterra, John

    2016-04-01

    Protein microarray technology has been successfully used for identifying substrates of purified activated kinases. We used protein microarrays to globally interrogate the effects of PTEN and Akt activity on the phospho-kinome of in vitro and in vivo glioma models and validated results in clinical pathological specimens. Whole cell lysates extracted from tumor samples can be applied to human kinome chip microarrays to profile the global kinase phosphorylation patterns in a high-throughput manner and identify novel substrates inherent to the tumor cell and the interactions with tumor microenvironment. Our findings identify a novel microarray-based method for assessing intracellular signaling events applicable to human oncogenesis and other pathophysiologic states. PMID:27084428

  4. Microarray-Based Phospho-Proteomic Profiling of Complex Biological Systems12

    PubMed Central

    Goodwin, C. Rory; Woodard, Crystal L.; Zhou, Xin; Pan, Jianbo; Olivi, Alessandro; Xia, Shuli; Bettegowda, Chetan; Sciubba, Daniel M.; Pevsner, Jonathan; Zhu, Heng; Laterra, John

    2016-01-01

    Protein microarray technology has been successfully used for identifying substrates of purified activated kinases. We used protein microarrays to globally interrogate the effects of PTEN and Akt activity on the phospho-kinome of in vitro and in vivo glioma models and validated results in clinical pathological specimens. Whole cell lysates extracted from tumor samples can be applied to human kinome chip microarrays to profile the global kinase phosphorylation patterns in a high-throughput manner and identify novel substrates inherent to the tumor cell and the interactions with tumor microenvironment. Our findings identify a novel microarray-based method for assessing intracellular signaling events applicable to human oncogenesis and other pathophysiologic states. PMID:27084428

  5. Identification of hypoxia-responsive genes in a dopaminergic cell line by subtractive cDNA libraries and microarray analysis.

    PubMed

    Beitner-Johnson, D; Seta, K; Yuan, Y; Kim, H -W.; Rust, R T.; Conrad, P W.; Kobayashi, S; Millhorn, D E.

    2001-07-01

    Transplantation of dopamine-secreting cells harvested from fetal mesencephalon directly into the striatum has had limited success as a therapy for Parkinson's disease. A major problem is that the majority of the cells die during the first 3 weeks following transplantation. Hypoxia in the tissue surrounding the graft is a potential cause of the cell death. We have used subtractive cDNA libraries and microarray analysis to identify the gene expression profile that regulates tolerance to hypoxia. An improved understanding of the molecular basis of hypoxia-tolerance may allow investigators to engineer cells that can survive in the hypoxic environment of the brain parenchyma following transplantation. PMID:11331199

  6. Protein Microarrays

    NASA Astrophysics Data System (ADS)

    Ricard-Blum, S.

    Proteins are key actors in the life of the cell, involved in many physiological and pathological processes. Since variations in the expression of messenger RNA are not systematically correlated with variations in the protein levels, the latter better reflect the way a cell functions. Protein microarrays thus supply complementary information to DNA chips. They are used in particular to analyse protein expression profiles, to detect proteins within complex biological media, and to study protein-protein interactions, which give information about the functions of those proteins [3-9]. They have the same advantages as DNA microarrays for high-throughput analysis, miniaturisation, and the possibility of automation. Section 18.1 gives a brief overview of proteins. Following this, Sect. 18.2 describes how protein microarrays can be made on flat supports, explaining how proteins can be produced and immobilised on a solid support, and discussing the different kinds of substrate and detection method. Section 18.3 discusses the particular format of protein microarrays in suspension. The diversity of protein microarrays and their applications are then reported in Sect. 18.4, with applications to therapeutics (protein-drug interactions) and diagnostics. The prospects for future developments of protein microarrays are then outlined in the conclusion. The bibliography provides an extensive list of reviews and detailed references for those readers who wish to go further in this area. Indeed, the aim of the present chapter is not to give an exhaustive or detailed analysis of the state of the art, but rather to provide the reader with the basic elements needed to understand how proteins are designed and used.

  7. Methods in DNA methylation profiling

    PubMed Central

    Zuo, Tao; Tycko, Benjamin; Liu, Ta-Ming; Lin, Huey-Jen L; Huang, Tim H-M

    2010-01-01

    Metastable and somatically heritable patterns of DNA methylation provide an important level of genomic regulation. In this article, we review methods for analyzing these genome-wide epigenetic patterns and offer a perspective on the ever-expanding literature, which we hope will be useful for investigators who are new to this area. The historical aspects that we cover will be helpful in interpreting this literature and we hope that our discussion of the newest analytical methods will stimulate future progress. We emphasize that no single approach can provide a complete view of the overall methylome, and that combinations of several modalities applied to the same sample set will give the clearest picture. Given the unexpected epigenomic patterns and new biological principles, as well as new disease markers, that have been uncovered in recent studies, it is likely that important discoveries will continue to be made using genome-wide DNA methylation profiling. PMID:20526417

  8. A dolphin peripheral blood leukocyte cDNA microarray for studies of immune function and stress reactions.

    PubMed

    Mancia, Annalaura; Lundqvist, Mats L; Romano, Tracy A; Peden-Adams, Margie M; Fair, Patricia A; Kindy, Mark S; Ellis, Blake C; Gattoni-Celli, Sebastiano; McKillen, David J; Trent, Harold F; Chen, Yian Ann; Almeida, Jonas S; Gross, Paul S; Chapman, Robert W; Warr, Gregory W

    2007-01-01

    A microarray focused on stress response and immune function genes of the bottlenosed dolphin has been developed. Random expressed sequence tags (ESTs) were isolated and sequenced from two dolphin peripheral blood leukocyte (PBL) cDNA libraries biased towards T- and B-cell gene expression by stimulation with IL-2 and LPS, respectively. A total of 2784 clones were sequenced and contig analysis yielded 1343 unigenes (archived and annotated at ). In addition, 52 dolphin genes known to be important in innate and adaptive immune function and stress responses of terrestrial mammals were specifically targeted, cloned and added to the unigene collection. The set of dolphin sequences printed on a cDNA microarray comprised the 1343 unigenes, the 52 targeted genes and 2305 randomly selected (but unsequenced) EST clones. This set was printed in duplicate spots, side by side, and in two replicates per slide, such that the total number of features per microarray slide was 19,200, including controls. The dolphin arrays were validated and transcriptomic profiles were generated using PBL from a wild dolphin, a captive dolphin and dolphin skin cells. The results demonstrate that the array is a reproducible and informative tool for assessing differential gene expression in dolphin PBL and in other tissues. PMID:17084893

  9. Review of the literature examining the correlation among DNA microarray technologies

    PubMed Central

    Yauk, Carole L; Berndt, M Lynn

    2007-01-01

    DNA microarray technologies are used in a variety of biological disciplines. The diversity of platforms and analytical methods employed has raised concerns over the reliability, reproducibility and correlation of data produced across the different approaches. Initial investigations (years 2000–2003) found discrepancies in the gene expression measures produced by different microarray technologies. Increasing knowledge and control of the factors that result in poor correlation among the technologies has led to much higher levels of correlation among more recent publications (years 2004 to present). Here, we review the studies examining the correlation among microarray technologies. We find that with improvements in the technology (optimization and standardization of methods, including data analysis) and annotation, analysis across platforms yields highly correlated and reproducible results. We suggest several key factors that should be controlled in comparing across technologies, and are good microarray practice in general. Environ. Mol. Mutagen. 48:380–394, 2007. © 2007 Wiley-Liss, Inc. PMID:17370338

  10. An efficient algorithm for the stochastic simulation of the hybridization of DNA to microarrays

    PubMed Central

    2009-01-01

    Background Although oligonucleotide microarray technology is ubiquitous in genomic research, reproducibility and standardization of expression measurements still concern many researchers. Cross-hybridization between microarray probes and non-target ssDNA has been implicated as a primary factor in sensitivity and selectivity loss. Since hybridization is a chemical process, it may be modeled at a population-level using a combination of material balance equations and thermodynamics. However, the hybridization reaction network may be exceptionally large for commercial arrays, which often possess at least one reporter per transcript. Quantification of the kinetics and equilibrium of exceptionally large chemical systems of this type is numerically infeasible with customary approaches. Results In this paper, we present a robust and computationally efficient algorithm for the simulation of hybridization processes underlying microarray assays. Our method may be utilized to identify the extent to which nucleic acid targets (e.g. cDNA) will cross-hybridize with probes, and by extension, characterize probe robustnessusing the information specified by MAGE-TAB. Using this algorithm, we characterize cross-hybridization in a modified commercial microarray assay. Conclusions By integrating stochastic simulation with thermodynamic prediction tools for DNA hybridization, one may robustly and rapidly characterize of the selectivity of a proposed microarray design at the probe and "system" levels. Our code is available at http://www.laurenzi.net. PMID:20003312

  11. A cooperative polymer-DNA microarray approach to biomaterial investigation.

    PubMed

    Pernagallo, Salvatore; Diaz-Mochon, Juan Jose; Bradley, Mark

    2009-02-01

    In this study, polymer microarrays were used for the rapid identification of polymer substrates upon which a suspension cell line would both adhere and proliferate giving a detailed and rapid understanding of cell-biomaterial interactions. Analysis demonstrated that suspension K562 human erythroleukemic cells, which normally grow in suspension, adhered and proliferated on several different polymers. Phenotypic and transcriptomic analysis techniques allowed examination of the interaction between cells and polymers permitting the elucidation of putative links between phenotypic responses to cell-biomaterial interactions and global gene expression. PMID:19156288

  12. Potential markers of tongue tumor progression selected by cDNA microarray.

    PubMed

    Carinci, F; Lo Muzio, L; Piattelli, A; Rubini, C; Chiesa, F; Ionna, F; Palmieri, A; Maiorano, E; Pastore, A; Laino, G; Dolci, M; Pezzetti, F

    2005-01-01

    Squamous cell carcinoma (SCC), the most frequent malignant tumor of the oral cavity, generally exhibits a poor prognosis and metastases are the main cause of death. This tumor often arises from pre-malignant lesions. To date, it is difficult to predict if and which pre-malignant lesions may progress into oral SCC using traditional methods. For these reasons, several studies are trying to identify markers useful in the progression of pre-malignant lesions and tumors. To define the genetic expression profile of tongue tumor progression we compared 9 dysplasias (DS), 8 tumors without metastasis (TWM), 11 metastasizing SCCs (MT) of the tongue, and a baseline of 11 normal tissues by using cDNA microarray containing 19.2 K clones. We initially applied hierarchical agglomerative clustering based on information from all 6026 clones. Results were obtained by performing a two steps analysis: a Significance Analysis of Microarray (SAM) and a Gene Ontology search. One hundred and five clones have statistically significant different expression levels (FDR < 0.01) between DS and TWM, whereas 570 genes have statistically significant difference expression levels between TWM and MT (FDR < 0.01) as detected by SAM. By filtering with FatiGo only 33 genes were differentially expressed in TWN, respect to DS, whereas 155 genes were differentially expressed in MT respect to TWM. We detected some genes which encode for oncogenes, transcription factors and cell cycle regulators as potential markers of DS progression. Examples are BAG4, PAX3 and CCNI, respectively. Among potential markers of metastases are some genes related to cell mobility (TSPAN-2 and SNTA1), intercellular adhesion (integrin alpha 7) or extracellular matrix components (ADAMTS2 and cathepsin O). Additionally, under-expressed genes encoded apoptosis-related proteins (PDCD4 and CASP4). In conclusion, we identified several genes differentially expressed in tumor progression which can potentially help in better classifying

  13. Microarray long oligo probe designing for Escherichia coli: an in-silico DNA marker extraction

    PubMed Central

    Behzadi, Payam; Najafi, Ali; Behzadi, Elham

    2016-01-01

    Introduction Urinary tract infections are predominant diseases which may be caused by different pathogenic microorganisms, particularly Escherichia coli (E.coli). DNA microarray technology is an accurate, rapid, sensitive, and specific diagnostic tool which may lead to definite diagnosis and treatment of several infectious diseases. DNA microarray is a multi-process method in which probe designing plays an important. Therefore, the authors of the present study have tried to design a range of effective and proper long oligo microarray probes for detection and identification of different strains of pathogenic E.coli and in particular, uropathogenic E.coli (UPEC). Material and methods E.coli O26 H11 11368 uid41021 was selected as the standard strain for probe designing. This strain encompasses the largest nucleotide sequence and the most number of genes among other pathogenic strains of E.coli. For performing this in silico survey, NCBI database, GReview Server, PanSeq Server, Oligoanalyzer tool, and AlleleID 7.7 were used to design accurate, appropriate, effective, and flexible long oligo microarray probes. Moreover, the genome of E.coli and its closely related microorganisms were compared. Results In this study, 15 long oligo microarray probes were designed for detecting and identifying different strains of E.coli such as UPEC. These probes possessed the best physico-chemical characteristics. The functional and structural properties of the designed probes were recognized by practical tools and softwares. Conclusions The use of reliable advanced technologies and methodologies for probe designing guarentees the high quality of microarray probes and makes DNA microarray technology more flexible and an effective diagnostic technique. PMID:27123336

  14. Microarray gene expression profiling and bioinformatics analysis of premature ovarian failure in a rat model.

    PubMed

    Li, Ji; Fan, Shengjun; Han, Dongwei; Xie, Jiaming; Kuang, Haixue; Ge, Pengling

    2014-12-01

    Premature ovarian failure (POF) remains one of the major gynecological problems worldwide which affected 1% of women. Even though tremendous achievements had been acquired as opposed to years past, molecular pathogenesis associated with POF is still unclear and needs to be well-defined. The aim of this study was to analyze the gene expression profiles in the POF rat model. To predict potential regulating factors, we firstly treated female Sprague Dawley (SD) rat with 4-vinylcyclohexene diepoxide (VCD). Total RNA from ovarian tissue was converted to cDNA and hybridized to mRNA Chip array. The differentially expressed genes (DEGs) were identified by two-sample t test and assessed using hierarchical clustering and Principal Component Analysis methods. Potential regulatory targets associated with these DEGs were constructed using BisoGenet in Cytoscape. Gene Ontology (GO) and functional enrichment analysis were performed using BiNGO and DAVID, respectively. As the results, 25 DEGs were found to be closely associated with POF initiation. Hierarchical clustering and Principal Component Analysis on the transcriptional profiles revealed an excellent separation of the vehicle and POF compartments. Pathway enrichment analysis based on the disease-gene interaction network analysis led to the identification of two core signaling pathways that were strongly affected during POF initiation and progression: immune response and cardiovascular disorders. In conclusion, we constructed a gene regulatory network associated with POF using the microarray gene expression profiling, and screened out some genes or transcription factors that may be used as potential molecular therapeutic targets for POF. PMID:25445499

  15. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    PubMed Central

    Díaz-Badillo, Alvaro; de Lourdes Muñoz, María; Perez-Ramirez, Gerardo; Altuzar, Victor; Burgueño, Juan; Mendoza-Alvarez, Julio G.; Martínez-Muñoz, Jorge P.; Cisneros, Alejandro; Navarrete-Espinosa, Joel; Sanchez-Sinencio, Feliciano

    2014-01-01

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples. PMID:24776933

  16. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers.

    PubMed

    Miller, Jeremy C; Zhou, Heping; Kwekel, Joshua; Cavallo, Robert; Burke, Jocelyn; Butler, E Brian; Teh, Bin S; Haab, Brian B

    2003-01-01

    We developed a practical strategy for serum protein profiling using antibody microarrays and applied the method to the identification of potential biomarkers in prostate cancer serum. Protein abundances from 33 prostate cancer and 20 control serum samples were compared to abundances from a common reference pool using a two-color fluorescence assay. Robotically spotted microarrays containing 184 unique antibodies were prepared on two different substrates: polyacrylamide based hydrogels on glass and poly-1-lysine coated glass with a photoreactive cross-linking layer. The hydrogel substrate yielded an average six-fold higher signal-to-noise ratio than the other substrate, and detection of protein binding was possible from a greater number of antibodies using the hydrogels. A statistical filter based on the correlation of data from "reverse-labeled" experiment sets accurately predicted the agreement between the microarray measurements and enzyme-linked immunosorbent assay measurements, showing that this parameter can serve to screen for antibodies that are functional on microarrays. Having defined a set of reliable microarray measurements, we identified five proteins (von Willebrand Factor, immunoglobulinM, Alpha1-antichymotrypsin, Villin and immunoglobulinG) that had significantly different levels between the prostate cancer samples and the controls. These developments enable the immediate use of high-density antibody and protein microarrays in biomarker discovery studies. PMID:12548634

  17. A versatile protein microarray platform enabling antibody profiling against denatured proteins

    PubMed Central

    Wang, Jie; Barker, Kristi; Steel, Jason; Park, Jin; Saul, Justin; Festa, Fernanda; Wallstrom, Garrick; Yu, Xiaobo; Bian, Xiaofang; Anderson, Karen S; Figueroa, Jonine D; LaBaer, Joshua; Qiu, Ji

    2014-01-01

    Purpose We aim to develop a protein microarray platform capable of presenting both natural and denatured forms of proteins for antibody biomarker discovery. We will further optimize plasma screening protocols to improve detection. Experimental design We developed a new covalent capture protein microarray chemistry using HaloTag fusion proteins and ligand. To enhance protein yield, we used HeLa cell lysate as an in vitro transcription translation system (IVTT). E. coli lysates were added to the plasma blocking buffer to reduce non-specific background. These protein microarrays were probed with plasma samples and autoantibody responses were quantified and compared with or without denaturing buffer treatment. Results We demonstrated that protein microarrays using the covalent attachment chemistry endured denaturing conditions. Blocking with E. coli lysates greatly reduced the background signals and expression with IVTT based on HeLa cell lysates significantly improved the antibody signals on protein microarrays probed with plasma samples. Plasma samples probed on denatured protein arrays produced autoantibody profiles distinct from those probed on natively displayed proteins. Conclusions and clinical relevance This versatile protein microarray platform allows the display of both natural and denatured proteins, offers a new dimension to search for disease-specific antibodies, broadens the repertoire of potential biomarkers, and will potentially yield clinical diagnostics with greater performance. PMID:23027520

  18. Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis.

    PubMed

    Fragkostefanakis, Sotirios; Simm, Stefan; Paul, Puneet; Bublak, Daniela; Scharf, Klaus-Dieter; Schleiff, Enrico

    2015-04-01

    Heat shock proteins (Hsps) are molecular chaperones primarily involved in maintenance of protein homeostasis. Their function has been best characterized in heat stress (HS) response during which Hsps are transcriptionally controlled by HS transcription factors (Hsfs). The role of Hsfs and Hsps in HS response in tomato was initially examined by transcriptome analysis using the massive analysis of cDNA ends (MACE) method. Approximately 9.6% of all genes expressed in leaves are enhanced in response to HS, including a subset of Hsfs and Hsps. The underlying Hsp-Hsf networks with potential functions in stress responses or developmental processes were further explored by meta-analysis of existing microarray datasets. We identified clusters with differential transcript profiles with respect to abiotic stresses, plant organs and developmental stages. The composition of two clusters points towards two major chaperone networks. One cluster consisted of constitutively expressed plastidial chaperones and other genes involved in chloroplast protein homeostasis. The second cluster represents genes strongly induced by heat, drought and salinity stress, including HsfA2 and many stress-inducible chaperones, but also potential targets of HsfA2 not related to protein homeostasis. This observation attributes a central regulatory role to HsfA2 in controlling different aspects of abiotic stress response and tolerance in tomato. PMID:25124075

  19. Erratum: Colorectal Cancer Cell Surface Protein Profiling Using an Antibody Microarray and Fluorescence Multiplexing.

    PubMed

    2015-01-01

    The author's email has been corrected in the publication of Colorectal Cancer Cell Surface Protein Profiling Using an Antibody Microarray and Fluorescence Multiplexing. There was an error with the author, Jerry Zhou's, email. The author's email has been updated to: j.zhou@uws.edu.au from: jzho7551@mail.usyd.edu.au. PMID:26167960

  20. Assessment and integration of publicly available SAGE, cDNA microarray, and oligonucleotide microarray expression data for global coexpression analyses.

    PubMed

    Griffith, Obi L; Pleasance, Erin D; Fulton, Debra L; Oveisi, Mehrdad; Ester, Martin; Siddiqui, Asim S; Jones, Steven J M

    2005-10-01

    Large amounts of gene expression data from several different technologies are becoming available to the scientific community. A common practice is to use these data to calculate global gene coexpression for validation or integration of other "omic" data. To assess the utility of publicly available datasets for this purpose we have analyzed Homo sapiens data from 1202 cDNA microarray experiments, 242 SAGE libraries, and 667 Affymetrix oligonucleotide microarray experiments. The three datasets compared demonstrate significant but low levels of global concordance (rc<0.11). Assessment against Gene Ontology (GO) revealed that all three platforms identify more coexpressed gene pairs with common biological processes than expected by chance. As the Pearson correlation for a gene pair increased it was more likely to be confirmed by GO. The Affymetrix dataset performed best individually with gene pairs of correlation 0.9-1.0 confirmed by GO in 74% of cases. However, in all cases, gene pairs confirmed by multiple platforms were more likely to be confirmed by GO. We show that combining results from different expression platforms increases reliability of coexpression. A comparison with other recently published coexpression studies found similar results in terms of performance against GO but with each method producing distinctly different gene pair lists. PMID:16098712

  1. DNA microarray detection of antimicrobial resistance genes in Detection and Characterization of Antibiotic Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection of antimicrobial resistance genes is essential for research and an important tool for clinical diagnostics. Most techniques used to identify resistance genes can only detect one or a few genes per assay, whereas DNA microarray technology can detect thousands of genes in a single assay. Sev...

  2. Simultaneous Detection of Multiple Fish Pathogens Using a Naked-Eye Readable DNA Microarray

    PubMed Central

    Chang, Chin-I; Hung, Pei-Hsin; Wu, Chia-Che; Cheng, Ta Chih; Tsai, Jyh-Ming; Lin, King-Jung; Lin, Chung-Yen

    2012-01-01

    We coupled 16S rDNA PCR and DNA hybridization technology to construct a microarray for simultaneous detection and discrimination of eight fish pathogens (Aeromonas hydrophila, Edwardsiella tarda, Flavobacterium columnare, Lactococcus garvieae, Photobacterium damselae, Pseudomonas anguilliseptica, Streptococcus iniae and Vibrio anguillarum) commonly encountered in aquaculture. The array comprised short oligonucleotide probes (30 mer) complementary to the polymorphic regions of 16S rRNA genes for the target pathogens. Targets annealed to the microarray probes were reacted with streptavidin-conjugated alkaline phosphatase and nitro blue tetrazolium/5-bromo-4-chloro-3′-indolylphosphate, p-toluidine salt (NBT/BCIP), resulting in blue spots that are easily visualized by the naked eye. Testing was performed against a total of 168 bacterial strains, i.e., 26 representative collection strains, 81 isolates of target fish pathogens, and 61 ecologically or phylogenetically related strains. The results showed that each probe consistently identified its corresponding target strain with 100% specificity. The detection limit of the microarray was estimated to be in the range of 1 pg for genomic DNA and 103 CFU/mL for pure pathogen cultures. These high specificity and sensitivity results demonstrate the feasibility of using DNA microarrays in the diagnostic detection of fish pathogens. PMID:22736973

  3. Use of Low-Density DNA Microarrays and Photopolymerization for Genotyping Foodborne-Associated Noroviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human noroviruses cause up to 21 million cases of foodborne disease in the United States annually and are the most common cause of acute gastroenteritis in industrialized countries. To reduce the burden of foodborne disease associated with viruses, the use of low density DNA microarrays in conjunct...

  4. Simultaneous detection of multiple fish pathogens using a naked-eye readable DNA microarray.

    PubMed

    Chang, Chin-I; Hung, Pei-Hsin; Wu, Chia-Che; Cheng, Ta Chih; Tsai, Jyh-Ming; Lin, King-Jung; Lin, Chung-Yen

    2012-01-01

    We coupled 16S rDNA PCR and DNA hybridization technology to construct a microarray for simultaneous detection and discrimination of eight fish pathogens (Aeromonas hydrophila, Edwardsiella tarda, Flavobacterium columnare, Lactococcus garvieae, Photobacterium damselae, Pseudomonas anguilliseptica, Streptococcus iniae and Vibrio anguillarum) commonly encountered in aquaculture. The array comprised short oligonucleotide probes (30 mer) complementary to the polymorphic regions of 16S rRNA genes for the target pathogens. Targets annealed to the microarray probes were reacted with streptavidin-conjugated alkaline phosphatase and nitro blue tetrazolium/5-bromo-4-chloro-3'-indolylphosphate, p-toluidine salt (NBT/BCIP), resulting in blue spots that are easily visualized by the naked eye. Testing was performed against a total of 168 bacterial strains, i.e., 26 representative collection strains, 81 isolates of target fish pathogens, and 61 ecologically or phylogenetically related strains. The results showed that each probe consistently identified its corresponding target strain with 100% specificity. The detection limit of the microarray was estimated to be in the range of 1 pg for genomic DNA and 10(3) CFU/mL for pure pathogen cultures. These high specificity and sensitivity results demonstrate the feasibility of using DNA microarrays in the diagnostic detection of fish pathogens. PMID:22736973

  5. USING DNA MICROARRAYS TO CHARACTERIZE GENE EXPRESSION IN TESTES OF FERTILE AND INFERTILE HUMANS AND MICE

    EPA Science Inventory

    USING DNA MICROARRAYS TO CHARACTERIZE GENE EXPRESSION
    IN TESTES OF FERTILE AND INFERTILE HUMANS AND MICE

    John C. Rockett1, J. Christopher Luft1, J. Brian Garges1, M. Stacey Ricci2, Pasquale Patrizio2, Norman B. Hecht2 and David J. Dix1
    Reproductive Toxicology Divisio...

  6. Electronic hybridization detection in microarray format and DNA genotyping

    PubMed Central

    Blin, Antoine; Cissé, Ismaïl; Bockelmann, Ulrich

    2014-01-01

    We describe an approach to substituting a fluorescence microarray with a surface made of an arrangement of electrolyte-gated field effect transistors. This was achieved using a dedicated blocking of non-specific interactions and comparing threshold voltage shifts of transistors exhibiting probe molecules of different base sequence. We apply the approach to detection of the 35delG mutation, which is related to non-syndromic deafness and is one of the most frequent mutations in humans. The process involves barcode sequences that are generated by Tas-PCR, a newly developed replication reaction using polymerase blocking. The barcodes are recognized by hybridization to surface attached probes and are directly detected by the semiconductor device. PMID:24569823

  7. Electronic hybridization detection in microarray format and DNA genotyping

    NASA Astrophysics Data System (ADS)

    Blin, Antoine; Cissé, Ismaïl; Bockelmann, Ulrich

    2014-02-01

    We describe an approach to substituting a fluorescence microarray with a surface made of an arrangement of electrolyte-gated field effect transistors. This was achieved using a dedicated blocking of non-specific interactions and comparing threshold voltage shifts of transistors exhibiting probe molecules of different base sequence. We apply the approach to detection of the 35delG mutation, which is related to non-syndromic deafness and is one of the most frequent mutations in humans. The process involves barcode sequences that are generated by Tas-PCR, a newly developed replication reaction using polymerase blocking. The barcodes are recognized by hybridization to surface attached probes and are directly detected by the semiconductor device.

  8. Preliminary studies on palladium nanoparticle as a novel label for DNA microarray and their corresponding detection.

    PubMed

    Wang, Zhifei; Li, Hongyin; Zhen, Shuang; Zhang, Yuanying; He, Nongyue

    2013-06-01

    This paper firstly describes the preliminary results achieved by using palladium nanoparticle (Pd NP) as a novel label for the detection of DNA hybridization in DNA microarray. And two signal amplification procedures based on "the silver staining" or "the cobalt staining" are presented during above analysis. The results show that the label Pd NP-ssDNA (target) (single strand DNA(target)) performs high single base pair mismatch-discrimination capability. The succeeding silver staining or cobalt staining procedure greatly amplifies such a signal through the catalysis of Pd. For "the silver staining:' the background staining is very low and the silver deposition only occurs around Pd NPs. So such a procedure provides a alternative for "Gold Label Silver Stain" presented by Mirkin C. A. For "the cobalt staining," not only a colorimetric array but also a magnetic sensor (such as Magnetic Tunnel Junction sensor, MTJ) can be used to detect the obtained cobalt dot due to its strong magnetic property, which provides a new strategy for DNA microarray detection. So as the proof-of-concept investigations, this work proved the feasibility of the application of Pd NPs as the label in DNA microarray assay. PMID:23858969

  9. The prostate cancer immunome: In silico functional analysis of antigenic proteins from microarray profiling with IgG.

    PubMed

    Luna-Coronell, Johana A; Vierlinger, Klemens; Gamperl, Magdalena; Hofbauer, Johann; Berger, Ingrid; Weinhäusel, Andreas

    2016-04-01

    The study of the immunome of prostate cancer (PCa) and characterization of autoantibody signature from differentially reactive antigens can uncover disease stage proteins, reveal enriched networks and even expose aberrant cellular mechanisms during the disease process. By conducting plasma IgG profiling on protein microarrays presenting 5449 unique human proteins expressed in 15 417 E. coli human cDNA expression clones, we elucidated 471 (21 higher reactive in PCa) differentially reactive antigens in 50 PCa versus 49 patients with benign prostate hyperplasia (BPH) at initial diagnosis. Functional analyzes show that the immune-profile of PCa compared to BPH control samples is significantly enriched in features targeting Cellular assembly, Cell death and pathways involved in Cell cycle, translation, and assembly of proteins as EIF2 signaling, PCa related genes as AXIN1 and TP53, and ribosomal proteins (e.g. RPS10). An overlap of 61 (out of 471) DIRAGs with the published 1545 antigens from the SEREX database has been found, however those were higher reactive in BPH. Clinical relevance is shown when antibody-reactivities against eight proteins were significantly (p < 0.001) correlated with Gleason-score. Herewith we provide a biological and pathophysiological characterization of the immunological layer of cancerous (PCa) versus benign (BPH) disease, derived from antibody profiling on protein microarrays. PMID:27089054

  10. Quantitative comparison of the HSV-1 and HSV-2 transcriptomes using DNA microarray analysis

    SciTech Connect

    Aguilar, J.S. . E-mail: jsaguila@uci.edu; Devi-Rao, G.V.; Rice, M.K.; Sunabe, J.; Ghazal, P.; Wagner, E.K.

    2006-04-25

    The genomes of human herpes virus type-1 and type-2 share a high degree of sequence identity; yet, they exhibit important differences in pathology in their natural human host as well as in animal host and cell cultures. Here, we report the comparative analysis of the time and relative abundance profiles of the transcription of each virus type (their transcriptomes) using parallel infections and microarray analysis using HSV-1 probes which hybridize with high efficiency to orthologous HSV-2 transcripts. We have confirmed that orthologous transcripts belong to the same kinetic class; however, the temporal pattern of accumulation of 4 transcripts (U{sub L}4, U{sub L}29, U{sub L}30, and U{sub L}31) differs in infections between the two virus types. Interestingly, the protein products of these transcripts are all involved in nuclear organization and viral DNA localization. We discuss the relevance of these findings and whether they may have potential roles in the pathological differences of HSV-1 and HSV-2.

  11. Modeling the temporal evolution of the Drosophila gene expression from DNA microarray time series

    NASA Astrophysics Data System (ADS)

    Haye, Alexandre; Dehouck, Yves; Kwasigroch, Jean Marc; Bogaerts, Philippe; Rooman, Marianne

    2009-03-01

    The time evolution of gene expression across the developmental stages of the host organism can be inferred from appropriate DNA microarray time series. Modeling this evolution aims eventually at improving the understanding and prediction of the complex phenomena that are the basis of life. We focus on the embryonic-to-adult development phases of Drosophila melanogaster, and chose to model the expression network with the help of a system of differential equations with constant coefficients, which are nonlinear in the transcript concentrations but linear in their logarithms. To reduce the dimensionality of the problem, genes having similar expression profiles are grouped into 17 clusters. We show that a simple linear model is able to reproduce the experimental data with very good precision, owing to the large number of parameters that represent the connections between the clusters. Remarkably, the parameter reduction allowed elimination of up to 80-85% of these connections while keeping fairly good precision. This result supports the low-connectivity hypothesis of gene expression networks, with about three connections per cluster, without introducing a priori hypotheses. The core of the network shows a few gene clusters with negative self-regulation, and some highly connected clusters involving proteins with crucial functions.

  12. Selective immobilization and detection of DNA on biopolymer supports for the design of microarrays.

    PubMed

    Kargl, R; Vorraber, V; Ribitsch, V; Köstler, S; Stana-Kleinschek, K; Mohan, T

    2015-06-15

    DNA immobilization for the manufacturing of microarrays requires sufficient probe density, low unspecific binding and high interaction efficiency with complementary strands that are detected from solutions. Many of these important parameters are affected by the surface chemistry and the blocking steps conducted during DNA spotting and hybridization. This work describes an alternative method to selectively immobilize probes and to detect DNA on biocompatible, hydrophilic cellulose coated supports with low unspecific binding, high selectivity and appropriate sensitivity. It takes advantage of a relatively selective adsorption of water soluble polysaccharides on a solid cellulose matrix. Single strands of DNA were conjugated to this soluble polysaccharide and subsequently micro-spotted on solid cellulose thin films that were coated on glass and polymer slides. This resulted in adsorptively bound DNA-probes that were used to detect complementary, labelled DNA strands with different lengths and sequences by hybridization. The interaction of the DNA-conjugates with cellulose surfaces and the selectivity of hybridization were investigated by a quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence scanning. The method of non-covalent immobilization of DNA probes on an uncharged, non-reactive, hydrophilic support lowers the unspecific binding and the number of handling steps required to conduct the experiments for the detection of DNA on microarrays. Simultaneously selectivity, hybridization efficiency and detection limits are maintained. PMID:25618375

  13. Molecular characterization of zebrafish embryogenesis via DNA microarrays and multiplatform time course metabolomics studies.

    PubMed

    Soanes, Kelly H; Achenbach, John C; Burton, Ian W; Hui, Joseph P M; Penny, Susanne L; Karakach, Tobias K

    2011-11-01

    One of the greatest strengths of "-omics" technologies is their ability to capture a molecular snapshot of multiple cellular processes simultaneously. Transcriptomics, proteomics, and metabolomics have, individually, been used in wide-ranging studies involving cell lines, tissues, model organisms, and human subjects. Nonetheless, despite the fact that their power lies in the global acquisition of parallel data streams, these methods continue to be employed separately. We highlight work done to merge transcriptomics and metabolomics technologies to study zebrafish (Danio rerio) embryogenesis. We combine information from three bioanalytical platforms, that is, DNA microarrays, (1)H nuclear magnetic resonance ((1)H NMR), and mass spectrometry (MS)-based metabolomics, to identify and provide insights into the organism's developmental regulators. We apply a customized approach to the analysis of such time-ordered measurements to provide temporal profiles that depict the modulation of metabolites and gene transcription. Initially, the three data sets were analyzed individually but later they were fused to highlight the advantages gained through such an integrated approach. Unique challenges posed by fusion of such data are discussed given differences in the measurement error structures, the wide dynamic range for the molecular species, and the analytical platforms used to measure them (i.e., fluorescence ratios, NMR, and MS intensities). Our data analysis reveals that changes in transcript levels at specific developmental stages correlate with previously published data with over 90% accuracy. In addition, transcript profiles exhibited trends that were similar to the accumulation of metabolites over time. Profiles for metabolites such as choline-like compounds (Trimethylamine-N-oxide, phosphocholine, betaine), creatinine/creatine, and other metabolites involved in energy metabolism exhibited a steady increase from 15 hours post fertilization (hpf) to 48 hpf. Other

  14. A Unique Procedure to Identify Cell Surface Markers Through a Spherical Self-Organizing Map Applied to DNA Microarray Analysis

    PubMed Central

    Sugii, Yuh; Kasai, Tomonari; Ikeda, Masashi; Vaidyanath, Arun; Kumon, Kazuki; Mizutani, Akifumi; Seno, Akimasa; Tokutaka, Heizo; Kudoh, Takayuki; Seno, Masaharu

    2016-01-01

    To identify cell-specific markers, we designed a DNA microarray platform with oligonucleotide probes for human membrane-anchored proteins. Human glioma cell lines were analyzed using microarray and compared with normal and fetal brain tissues. For the microarray analysis, we employed a spherical self-organizing map, which is a clustering method suitable for the conversion of multidimensional data into two-dimensional data and displays the relationship on a spherical surface. Based on the gene expression profile, the cell surface characteristics were successfully mirrored onto the spherical surface, thereby distinguishing normal brain tissue from the disease model based on the strength of gene expression. The clustered glioma-specific genes were further analyzed by polymerase chain reaction procedure and immunocytochemical staining of glioma cells. Our platform and the following procedure were successfully demonstrated to categorize the genes coding for cell surface proteins that are specific to glioma cells. Our assessment demonstrates that a spherical self-organizing map is a valuable tool for distinguishing cell surface markers and can be employed in marker discovery studies for the treatment of cancer. PMID:26966393

  15. Cassava (Manihot esculenta) transcriptome analysis in response to infection by the fungus Colletotrichum gloeosporioides using an oligonucleotide-DNA microarray.

    PubMed

    Utsumi, Yoshinori; Tanaka, Maho; Kurotani, Atsushi; Yoshida, Takuhiro; Mochida, Keiichi; Matsui, Akihiro; Ishitani, Manabu; Sraphet, Supajit; Whankaew, Sukhuman; Asvarak, Thipa; Narangajavana, Jarunya; Triwitayakorn, Kanokporn; Sakurai, Tetsuya; Seki, Motoaki

    2016-07-01

    Cassava anthracnose disease (CAD), caused by the fungus Colletotrichum gloeosporioides f. sp. Manihotis, is a serious disease of cassava (Manihot esculenta) worldwide. In this study, we established a cassava oligonucleotide-DNA microarray representing 59,079 probes corresponding to approximately 30,000 genes based on original expressed sequence tags and RNA-seq information from cassava, and applied it to investigate the molecular mechanisms of resistance to fungal infection using two cassava cultivars, Huay Bong 60 (HB60, resistant to CAD) and Hanatee (HN, sensitive to CAD). Based on quantitative real-time reverse transcription PCR and expression profiling by the microarray, we showed that the expressions of various plant defense-related genes, such as pathogenesis-related (PR) genes, cell wall-related genes, detoxification enzyme, genes related to the response to bacterium, mitogen-activated protein kinase (MAPK), genes related to salicylic acid, jasmonic acid and ethylene pathways were higher in HB60 compared with HN. Our results indicated that the induction of PR genes in HB60 by fungal infection and the higher expressions of defense response-related genes in HB60 compared with HN are likely responsible for the fungal resistance in HB60. We also showed that the use of our cassava oligo microarray could improve our understanding of cassava molecular mechanisms related to environmental responses and development, and advance the molecular breeding of useful cassava plants. PMID:27138000

  16. Xylella fastidiosa gene expression analysis by DNA microarrays

    PubMed Central

    2009-01-01

    Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcription reactions and which were obtained from bacteria grown under two different conditions (liquid XDM2 and liquid BCYE). All data were statistically analyzed to verify which genes were differentially expressed. In addition to exploring conditions for X. fastidiosa genome-wide transcriptome analysis, the present work observed the differential expression of several classes of genes (energy, protein, amino acid and nucleotide metabolism, transport, degradation of substances, toxins and hypothetical proteins, among others). The understanding of expressed genes in these two different media will be useful in comprehending the metabolic characteristics of X. fastidiosa, and in evaluating how important certain genes are for the functioning and survival of these bacteria in plants. PMID:21637690

  17. Compressed sensing methods for DNA microarrays, RNA interference, and metagenomics.

    PubMed

    Rao, Aditya; P, Deepthi; Renumadhavi, C H; Chandra, M Girish; Srinivasan, Rajgopal

    2015-02-01

    Compressed sensing (CS) is a sparse signal sampling methodology for efficiently acquiring and reconstructing a signal from relatively few measurements. Recent work shows that CS is well-suited to be applied to problems in genomics, including probe design in microarrays, RNA interference (RNAi), and taxonomic assignment in metagenomics. The principle of using different CS recovery methods in these applications has thus been established, but a comprehensive study of using a wide range of CS methods has not been done. For each of these applications, we apply three hitherto unused CS methods, namely, l1-magic, CoSaMP, and l1-homotopy, in conjunction with CS measurement matrices such as randomly generated CS m matrix, Hamming matrix, and projective geometry-based matrix. We find that, in RNAi, the l1-magic (the standard package for l1 minimization) and l1-homotopy methods show significant reduction in reconstruction error compared to the baseline. In metagenomics, we find that l1-homotopy as well as CoSaMP estimate concentration with significantly reduced time when compared to the GPSR and WGSQuikr methods. PMID:25629590

  18. Controlling microarray DNA hybridization efficiency by probe-surface distance and external surface electrostatics

    NASA Astrophysics Data System (ADS)

    Qamhieh, K.; Pettitt, B. Montgomery

    2015-03-01

    DNA microarrays are analytical devices designed to determine the composition of multicomponent solutions of nucleic acids, DNA or RNA. These devices are promising technology for diverse applications, including sensing, diagnostics, and drug/gene delivery. Here, we modify a hybridization adsorption isotherm to study the effects of probe-surface distance and the external electrostatic fields, on the oligonucleotide hybridization in microarray and how these effects are varies depending on surface probe density and target concentration. This study helps in our understanding on-surface hybridization mechanisms, and from it we can observe a significant effect of the probe-surface distance, and the external electrostatic fields, on the hybridization yield. In addition we present a simple new criteria to control the oligonucleotide hybridization efficiency by providing a chart illustrating the effects of all factors on the DNA-hybridization efficiency.

  19. Phenotype Microarray Profiling of Zymomonas mobilis ZM4

    SciTech Connect

    Bochner, Barry; Gomez, Vanessa; Ziman, michael; Yang, Shihui; Brown, Steven D

    2009-01-01

    In this study, we developed a Phenotype MicroArray{trademark} (PM) protocol to profile cellular phenotypes in Zymomonas mobilis, which included a standard set of nearly 2,000 assays for carbon, nitrogen, phosphorus and sulfur source utilization, nutrient stimulation, pH and osmotic stresses, and chemical sensitivities with 240 inhibitory chemicals. We observed two positive assays for C-source utilization (fructose and glucose) using the PM screen, which uses redox chemistry and cell respiration as a universal reporter to profile growth phenotypes in a high-throughput 96-well plate-based format. For nitrogen metabolism, the bacterium showed a positive test results for ammonia, aspartate, asparagine, glutamate, glutamine, and peptides. Z. mobilis appeared to use a diverse array of P-sources with two exceptions being pyrophosphate and tripolyphosphate. The assays suggested that Z. mobilis uses both inorganic and organic compounds as S-sources. No stimulation by nutrients was detected; however, there was evidence of partial inhibition by purines and pyrimidines, NAD, and deferoxamine. Z. mobilis was relatively resistant to acid pH, tolerating a pH down to about 4.0. It also tolerated phosphate, sulfate, and nitrate, but was rather sensitive to chloride and nitrite. Z. mobilis showed resistance to a large number of diverse chemicals that inhibit most bacteria. The information from PM analysis provides an overview of Z. mobilis physiology and a foundation for future comparisons of other wild-type and mutant Z. mobilis strains.

  20. DNA Microarray-Based Typing of Streptococcus agalactiae Isolates

    PubMed Central

    Nitschke, Heike; Slickers, Peter; Müller, Elke; Ehricht, Ralf

    2014-01-01

    Streptococcus agalactiae frequently colonizes the urogenital tract, and it is a major cause of bacterial septicemia, meningitis, and pneumonia in newborns. For typing purposes, a microarray targeting group B streptococcus (GBS) virulence-associated markers and resistance genes was designed and validated with reference strains, as well as clinical and veterinary isolates. Selected isolates were also subjected to multilocus sequence typing. It was observed that putative typing markers, such as alleles of the alpha-like protein or capsule types, vary independently of each other, and they also vary independently from the affiliation to their multilocus sequence typing (MLST)-defined sequence types. Thus, it is not possible to assign isolates to sequence types based on the identification of a single distinct marker, such as a capsule type or alp allele. This suggests the occurrence of frequent genomic recombination. For array-based typing, a set of 11 markers (bac, alp, pil1 locus, pepS8, fbsB, capsule locus, hylB, abiG-I/-II plus Q8DZ34, pil2 locus, nss plus srr plus rogB2, and rgfC/A/D/B) was defined that provides a framework for splitting the tested 448 S. agalactiae isolates into 76 strains that clustered mainly according to MLST-defined clonal complexes. There was evidence for region- and host-specific differences in the population structure of S. agalactiae, as well as an overrepresentation of strains related to sequence type 17 among the invasive isolates. The arrays and typing scheme described here proved to be a convenient tool for genotyping large numbers of clinical/veterinary isolates and thus might help obtain insight into the epidemiology of S. agalactiae. PMID:25165085

  1. Long Noncoding RNA Expression Profiling Using Arraystar LncRNA Microarrays.

    PubMed

    Shi, Yanggu; Shang, Jindong

    2016-01-01

    Arraystar LncRNA microarrays are designed for global gene expression profiling of both LncRNAs and mRNAs on the same array. The array contents feature comprehensive collections of LncRNAs and include entire sets of known coding mRNAs. Each RNA transcript is detected by a splice junction-specific probe or a unique exon sequence, such that the alternatively spliced transcript isoforms or variants are reliably and accurately detected. The highly optimized experimental protocols and efficient workflow ensure sensitive, robust, and accurate microarray data generation. Standard data analyses are provided for microarray raw data processing, data quality control, gene expression clustering and heat map visualization, differentially expressed LncRNAs and mRNAs, LncRNA subcategories, regulatory relationships of LncRNAs with the mRNAs, gene ontology, and pathway analysis. The LncRNA microarrays are powerful tools for the study of LncRNAs in biology and disease, with broad applications in gene expression profiling, gene regulatory mechanism research, LncRNA functional discovery, and biomarker development. PMID:26721483

  2. Differential gene expression in recombinant Pichia pastoris analysed by heterologous DNA microarray hybridisation

    PubMed Central

    Sauer, Michael; Branduardi, Paola; Gasser, Brigitte; Valli, Minoska; Maurer, Michael; Porro, Danilo; Mattanovich, Diethard

    2004-01-01

    Background Pichia pastoris is a well established yeast host for heterologous protein expression, however, the physiological and genetic information about this yeast remains scanty. The lack of a published genome sequence renders DNA arrays unavailable, thereby hampering more global investigations of P. pastoris from the beginning. Here, we examine the suitability of Saccharomyces cerevisiae DNA microarrays for heterologous hybridisation with P. pastoris cDNA. Results We could show that it is possible to obtain new and valuable information about transcriptomic regulation in P. pastoris by probing S. cerevisiae DNA microarrays. The number of positive signals was about 66 % as compared to homologous S. cerevisiae hybridisation, and both the signal intensities and gene regulations correlated with high significance between data obtained from P. pastoris and S. cerevisiae samples. The differential gene expression patterns upon shift from glycerol to methanol as carbon source were investigated in more detail. Downregulation of TCA cycle genes and a decrease of genes related to ribonucleotide and ribosome synthesis were among the major effects identified. Conclusions We could successfully demonstrate that heterologous microarray hybridisations allow deep insights into the transcriptomic regulation processes of P. pastoris. The observed downregulation of TCA cycle and ribosomal synthesis genes correlates to a significantly lower specific growth rate during the methanol feed phase. PMID:15610561

  3. DNA microarrays detect effects of soil contamination on Arabidopsis thaliana gene expression.

    PubMed

    Magrini, Kimberly D; Basu, Amit; Spotila, James R; Avery, Harold W; Bergman, Lawrence W; Hammond, Rachel; Anandan, Shivanthi

    2008-12-01

    Soil contamination, such as heavy metals and benzene compounds, is a widespread problem on military installations. It is important to be able to determine the effects of soil contamination before any adverse effects appear in organisms in surrounding areas. We examined gene expression in Arabidopsis thaliana grown in soil from three sites at the Radford Army Ammunition Plant in Radford, Virginia, USA, using DNA microarrays. We analyzed soil, germination, and growth rate to compare with the microarray data. Soil contamination affected both external phenotype and gene expression. Plants grown in soil with high levels of contaminants were chloritic and were smaller than control plants grown in potting soil. Plants grown in soil with the highest copper concentration had the lowest growth rates and had genes up-regulated across several functional groups. Plants grown in soils with elevated lead had many genes down-regulated that were related to photosystem II, metabolism, cellular transport, and protein synthesis. Genes consistently up-regulated across most microarrays were genes related to photosystem I, genes related to water deprivation and oxidative stress response, heat shock proteins, and toxin catabolism genes such as glutathiones. DNA microarrays, in concert with a model genetic organism such as A. thaliana, were an effective assessment tool to determine the presence of toxic substances in soil at a site used for the production of military explosives. PMID:18613744

  4. Establishment and Application of a Visual DNA Microarray for the Detection of Food-borne Pathogens.

    PubMed

    Li, Yongjin

    2016-01-01

    The accurate detection and identification of food-borne pathogenic microorganisms is critical for food safety nowadays. In the present work, a visual DNA microarray was established and applied to detect pathogens commonly found in food, including Salmonella enterica, Shigella flexneri, E. coli O157:H7 and Listeria monocytogenes in food samples. Multiplex PCR (mPCR) was employed to simultaneously amplify specific gene fragments, fimY for Salmonella, ipaH for Shigella, iap for L. monocytogenes and ECs2841 for E. coli O157:H7, respectively. Biotinylated PCR amplicons annealed to the microarray probes were then reacted with a streptavidin-alkaline phosphatase conjugate and nitro blue tetrazolium/5-bromo-4-chloro-3'-indolylphosphate, p-toluidine salt (NBT/BCIP); the positive results were easily visualized as blue dots formatted on the microarray surface. The performance of a DNA microarray was tested against 14 representative collection strains and mock-contamination food samples. The combination of mPCR and a visual micro-plate chip specifically and sensitively detected Salmonella enterica, Shigella flexneri, E. coli O157:H7 and Listeria monocytogenes in standard strains and food matrices with a sensitivity of ∼10(2) CFU/mL of bacterial culture. Thus, the developed method is advantageous because of its high throughput, cost-effectiveness and ease of use. PMID:26860568

  5. Segmentation of complementary DNA microarray images by wavelet-based Markov random field model.

    PubMed

    Athanasiadis, Emmanouil I; Cavouras, Dionisis A; Glotsos, Dimitris Th; Georgiadis, Pantelis V; Kalatzis, Ioannis K; Nikiforidis, George C

    2009-11-01

    A wavelet-based modification of the Markov random field (WMRF) model is proposed for segmenting complementary DNA (cDNA) microarray images. For evaluation purposes, five simulated and a set of five real microarray images were used. The one-level stationary wavelet transform (SWT) of each microarray image was used to form two images, a denoised image, using hard thresholding filter, and a magnitude image, from the amplitudes of the horizontal and vertical components of SWT. Elements from these two images were suitably combined to form the WMRF model for segmenting spots from their background. The WMRF was compared against the conventional MRF and the Fuzzy C means (FCM) algorithms on simulated and real microarray images and their performances were evaluated by means of the segmentation matching factor (SMF) and the coefficient of determination (r2). Additionally, the WMRF was compared against the SPOT and SCANALYZE, and performances were evaluated by the mean absolute error (MAE) and the coefficient of variation (CV). The WMRF performed more accurately than the MRF and FCM (SMF: 92.66, 92.15, and 89.22, r2 : 0.92, 0.90, and 0.84, respectively) and achieved higher reproducibility than the MRF, SPOT, and SCANALYZE (MAE: 497, 1215, 1180, and 503, CV: 0.88, 1.15, 0.93, and 0.90, respectively). PMID:19783509

  6. Forensic DNA Profiling and Database

    PubMed Central

    Panneerchelvam, S.; Norazmi, M.N.

    2003-01-01

    The incredible power of DNA technology as an identification tool had brought a tremendous change in crimnal justice . DNA data base is an information resource for the forensic DNA typing community with details on commonly used short tandem repeat (STR) DNA markers. This article discusses the essential steps in compilation of COmbined DNA Index System (CODIS) on validated polymerase chain amplified STRs and their use in crime detection. PMID:23386793

  7. Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis

    PubMed Central

    Chen, Yongxin; Gelfond, Jonathan AL; McManus, Linda M; Shireman, Paula K

    2009-01-01

    Background MicroRNAs (miRNAs) have critical functions in various biological processes. MiRNA profiling is an important tool for the identification of differentially expressed miRNAs in normal cellular and disease processes. A technical challenge remains for high-throughput miRNA expression analysis as the number of miRNAs continues to increase with in silico prediction and experimental verification. Our study critically evaluated the performance of a novel miRNA expression profiling approach, quantitative RT-PCR array (qPCR-array), compared to miRNA detection with oligonucleotide microchip (microarray). Results High reproducibility with qPCR-array was demonstrated by comparing replicate results from the same RNA sample. Pre-amplification of the miRNA cDNA improved sensitivity of the qPCR-array and increased the number of detectable miRNAs. Furthermore, the relative expression levels of miRNAs were maintained after pre-amplification. When the performance of qPCR-array and microarrays were compared using different aliquots of the same RNA, a low correlation between the two methods (r = -0.443) indicated considerable variability between the two assay platforms. Higher variation between replicates was observed in miRNAs with low expression in both assays. Finally, a higher false positive rate of differential miRNA expression was observed using the microarray compared to the qPCR-array. Conclusion Our studies demonstrated high reproducibility of TaqMan qPCR-array. Comparison between different reverse transcription reactions and qPCR-arrays performed on different days indicated that reverse transcription reactions did not introduce significant variation in the results. The use of cDNA pre-amplification increased the sensitivity of miRNA detection. Although there was variability associated with pre-amplification in low abundance miRNAs, the latter did not involve any systemic bias in the estimation of miRNA expression. Comparison between microarray and q

  8. Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling

    SciTech Connect

    R. Quatrini; C. Appia-Ayme; Y. Denis; J. Ratouchniak; F. Veloso; J. Valdes; C. Lefimil; S. Silver; F. Roberto; O. Orellana; F. Denizot; E. Jedlicki; D. Holmes; V. Bonnefoy

    2006-09-01

    Acidithiobacillus ferrooxidans is a well known acidophilic, chemolithoautotrophic, Gram negative, bacterium involved in bioleaching and acid mine drainage. In aerobic conditions, it gains energy mainly from the oxidation of ferrous iron and/or reduced sulfur compounds present in ores. After initial oxidation of the substrate, electrons from ferrous iron or sulfur enter respiratory chains and are transported through several redox proteins to oxygen. However, the oxidation of ferrous iron and reduced sulfur compounds has also to provide electrons for the reduction of NAD(P) that is subsequently required for many metabolic processes including CO2 fixation. To help to unravel the enzymatic pathways and the electron transfer chains involved in these processes, a genome-wide microarray transcript profiling analysis was carried out. Oligonucleotides corresponding to approximately 3000 genes of the A. ferrooxidans type strain ATCC23270 were spotted onto glass-slides and hybridized with cDNA retrotranscribed from RNA extracted from ferrous iron and sulfur grown cells. The genes which are preferentially transcribed in ferrous iron conditions and those preferentially transcribed in sulfur conditions were analyzed. The expression of a substantial number of these genes has been validated by real-time PCR, Northern blot hybridization and/or immunodetection analysis. Our results support and extend certain models of iron and sulfur oxidation and highlight previous observations regarding the possible presence of alternate electron pathways. Our findings also suggest ways in which iron and sulfur oxidation may be co-ordinately regulated. An accompanying paper (Appia-Ayme et al.) describes results pertaining to other metabolic functions.

  9. Role of DNA profiling in forensic odontology

    PubMed Central

    Sakari, S. Leena; Jimson, Sudha; Masthan, K. M. K.; Jacobina, Jenita

    2015-01-01

    The recent advances in DNA profiling have made DNA evidence to be more widely accepted in courts. This has revolutionized the aspect of forensic odontology. DNA profiling/DNA fingerprinting has come a long way from the conventional fingerprints. DNA that is responsible for all the cell's activities, yields valuable information both in the healthy and diseased individuals. When other means of traditional identification become impossible following mass calamities or fire explosions, teeth provide a rich source of DNA as they have a high chemical as well as physical resistance. The recent evolution in the isolation of DNA and the ways of running a DNA fingerprint are highlighted in this literature review. PMID:26015692

  10. An MCMC Algorithm for Target Estimation in Real-Time DNA Microarrays

    NASA Astrophysics Data System (ADS)

    Vikalo, Haris; Gokdemir, Mahsuni

    2010-12-01

    DNA microarrays detect the presence and quantify the amounts of nucleic acid molecules of interest. They rely on a chemical attraction between the target molecules and their Watson-Crick complements, which serve as biological sensing elements (probes). The attraction between these biomolecules leads to binding, in which probes capture target analytes. Recently developed real-time DNA microarrays are capable of observing kinetics of the binding process. They collect noisy measurements of the amount of captured molecules at discrete points in time. Molecular binding is a random process which, in this paper, is modeled by a stochastic differential equation. The target analyte quantification is posed as a parameter estimation problem, and solved using a Markov Chain Monte Carlo technique. In simulation studies where we test the robustness with respect to the measurement noise, the proposed technique significantly outperforms previously proposed methods. Moreover, the proposed approach is tested and verified on experimental data.

  11. Design of a combinatorial dna microarray for protein-dnainteraction studies

    SciTech Connect

    Mintseris, Julian; Eisen, Michael B.

    2006-07-07

    Background: Discovery of precise specificity oftranscription factors is an important step on the way to understandingthe complex mechanisms of gene regulation in eukaryotes. Recently,doublestranded protein-binding microarrays were developed as apotentially scalable approach to tackle transcription factor binding siteidentification. Results: Here we present an algorithmic approach toexperimental design of a microarray that allows for testing fullspecificity of a transcription factor binding to all possible DNA bindingsites of a given length, with optimally efficient use of the array. Thisdesign is universal, works for any factor that binds a sequence motif andis not species-specific. Furthermore, simulation results show that dataproduced with the designed arrays is easier to analyze and would resultin more precise identification of binding sites. Conclusion: In thisstudy, we present a design of a double stranded DNA microarray forprotein-DNA interaction studies and show that our algorithm allowsoptimally efficient use of the arrays for this purpose. We believe such adesign will prove useful for transcription factor binding siteidentification and other biological problems.

  12. Comprehensive DNA Microarray Analysis of Bacillus subtilis Two-Component Regulatory Systems

    PubMed Central

    Kobayashi, Kazuo; Ogura, Mitsuo; Yamaguchi, Hirotake; Yoshida, Ken-Ichi; Ogasawara, Naotake; Tanaka, Teruo; Fujita, Yasutaro

    2001-01-01

    It has recently been shown through DNA microarray analysis of Bacillus subtilis two-component regulatory systems (DegS-DegU, ComP-ComA, and PhoR-PhoP) that overproduction of a response regulator of the two-component systems in the background of a deficiency of its cognate sensor kinase affects the regulation of genes, including its target ones. The genome-wide effect on gene expression caused by the overproduction was revealed by DNA microarray analysis. In the present work, we newly analyzed 24 two-component systems by means of this strategy, leaving out 8 systems to which it was unlikely to be applicable. This analysis revealed various target gene candidates for these two-component systems. It is especially notable that interesting interactions appeared to take place between several two-component systems. Moreover, the probable functions of some unknown two-component systems were deduced from the list of their target gene candidates. This work is heuristic but provides valuable information for further study toward a comprehensive understanding of the B. subtilis two-component regulatory systems. The DNA microarray data obtained in this work are available at the KEGG Expression Database website (http://www.genome.ad.jp/kegg/expression). PMID:11717295

  13. MASQOT: a method for cDNA microarray spot quality control

    PubMed Central

    Bylesjö, Max; Eriksson, Daniel; Sjödin, Andreas; Sjöström, Michael; Jansson, Stefan; Antti, Henrik; Trygg, Johan

    2005-01-01

    Background cDNA microarray technology has emerged as a major player in the parallel detection of biomolecules, but still suffers from fundamental technical problems. Identifying and removing unreliable data is crucial to prevent the risk of receiving illusive analysis results. Visual assessment of spot quality is still a common procedure, despite the time-consuming work of manually inspecting spots in the range of hundreds of thousands or more. Results A novel methodology for cDNA microarray spot quality control is outlined. Multivariate discriminant analysis was used to assess spot quality based on existing and novel descriptors. The presented methodology displays high reproducibility and was found superior in identifying unreliable data compared to other evaluated methodologies. Conclusion The proposed methodology for cDNA microarray spot quality control generates non-discrete values of spot quality which can be utilized as weights in subsequent analysis procedures as well as to discard spots of undesired quality using the suggested threshold values. The MASQOT approach provides a consistent assessment of spot quality and can be considered an alternative to the labor-intensive manual quality assessment process. PMID:16223442

  14. Antibody microarray profiling of osteosarcoma cell serum for identifying potential biomarkers.

    PubMed

    Zhu, Zi-Qiang; Tang, Jin-Shan; Gang, Duan; Wang, Ming-Xing; Wang, Jian-Qiang; Lei, Zhou; Feng, Zhou; Fang, Ming-Liang; Yan, Lin

    2015-07-01

    The aim of the present study was to identify biomarkers in osteosarcoma (OS) cell serum by antibody microarray profiling, which may be used for OS diagnosis and therapy. An antibody microarray was used to detect the expression levels of cytokines in serum samples from 20 patients with OS and 20 healthy individuals. Significantly expressed cytokines in OS serum were selected when P<0.05 and fold change >2. An enzyme-linked immunosorbent assay (ELISA) was used to validate the antibody microarray results. Finally, classification accuracy was calculated by cluster analysis. Twenty one cytokines were significantly upregulated in OS cell serum samples compared with control samples. Expression of interleukin-6, monocyte chemoattractant protein-1, tumor growth factor-β, growth-related oncogene, hepatocyte growth factor, chemokine ligand 16, Endoglin, matrix metalloproteinase-9 and platelet-derived growth factor-AA was validated by ELISAs. OS serum samples and control samples were distinguished by significantly expressed cytokines with an accuracy of 95%. The results demonstrated that expressed cytokines identified by antibody microarray may be used as biomarkers for OS diagnosis and therapy. PMID:25815525

  15. Profiling Humoral Immune Responses to Clostridium difficile-Specific Antigens by Protein Microarray Analysis.

    PubMed

    Negm, Ola H; Hamed, Mohamed R; Dilnot, Elizabeth M; Shone, Clifford C; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E; Edwards, Laura J; Tighe, Patrick J; Wilcox, Mark H; Monaghan, Tanya M

    2015-09-01

    Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated <10% coefficient of variation (CV). Significant correlation was observed between microarray and ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. PMID:26178385

  16. Dynamic Modeling of DNA Microarray Data Using Singular Value Decomposition

    NASA Astrophysics Data System (ADS)

    Dewey, Greg

    2000-03-01

    Currently, there are a number of high throughput, array technologies that can generate a wealth of data on gene expression and regulation. To date, the emphasis of computational work in this area has focused on the analysis of raw data by image reconstruction techniques and on the use of clustering algorithms to relate expression levels of different genes. A modeling algorithm for the analysis of times series in expression profiles is presented. It is based on a recent generalization of a matrix technique known as singular value decomposition (SVD). This method can be used to compute more accurate correlation functions for gene expression because it avoids spurious errors and singularities that occur in large matrix manipulations. In addition, the SVD approach can be adapted in a least squares format to model the dynamics of gene regulation and expression. Using this approach, gene expression dynamics can be separated into Markovian and non-Markovian gene clusters. This allows the construction of a "wiring diagram" for linear and non-linear components

  17. Nonlinear matching measure for the analysis of on-off type DNA microarray images

    NASA Astrophysics Data System (ADS)

    Kim, Jong D.; Park, Misun; Kim, Jongwon

    2003-07-01

    In this paper, we propose a new nonlinear matching measure for automatic analysis of the on-off type DNA microarray images in which the hybridized spots are detected by the template matching method. The targeting spots of HPV DNA chips are designed for genotyping the human papilloma virus(HPV). The proposed measure is obtained by binarythresholding over the whole template region and taking the number of white pixels inside the spotted area. This measure is evaluated in terms of the accuracy of the estimated marker location to show better performance than the normalized covariance.

  18. Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses.

    PubMed

    Amundson, S A; Bittner, M; Chen, Y; Trent, J; Meltzer, P; Fornace, A J

    1999-06-17

    The fate of cells exposed to ionizing radiation (IR) may depend greatly on changes in gene expression, so that an improved view of gene induction profiles is important for understanding mechanisms of checkpoint control, repair and cell death following such exposures. We have used a quantitative fluorescent cDNA microarray hybridization approach to identify genes regulated in response to 7-irradiation in the p53 wild-type ML-1 human myeloid cell line. Hybridization of the array to fluorescently-labeled RNA from treated and untreated cells was followed by computer analysis to derive relative changes in expression levels of the genes present in the array, which agreed well with actual quantitative changes in expression. Forty-eight sequences, 30 not previously identified as IR-responsive, were significantly regulated by IR. Induction by IR and other stresses of a subset of these genes, including the previously characterized CIP1/ WAF1, MDM2 and BAX genes, as well as nine genes not previously reported to be IR-responsive, was examined in a panel of 12 human cell lines. Responses varied widely in cell lines with different tissues of origin and different genetic backgrounds, highlighting the importance of cellular context to genotoxic stress responses. Two of the newly identified IR-responsive genes, FRA-1 and ATF3, showed a p53-associated component to their IR-induction, and this was confirmed both in isogenic human cell lines and in mouse thymus. The majority of the IR-responsive genes, however, showed no indication of p53-dependent regulation, representing a potentially important class of stress-responsive genes in leukemic cells. PMID:10380890

  19. Comprehensive profiling of accessible surface glycans of mammalian sperm using a lectin microarray

    PubMed Central

    2014-01-01

    It is well known that cell surface glycans or glycocalyx play important roles in sperm motility, maturation and fertilization. A comprehensive profile of the sperm surface glycans will greatly facilitate both basic research (sperm glycobiology) and clinical studies, such as diagnostics of infertility. As a group of natural glycan binders, lectin is an ideal tool for cell surface glycan profiling. However, because of the lack of effective technology, only a few lectins have been tested for lectin-sperm binding profiles. To address this challenge, we have developed a procedure for high-throughput probing of mammalian sperm with 91 lectins on lectin microarrays. Normal sperm from human, boar, bull, goat and rabbit were collected and analyzed on the lectin microarrays. Positive bindings of a set of ~50 lectins were observed for all the sperm of 5 species, which indicated a wide range of glycans are on the surface of mammalian sperm. Species specific lectin bindings were also observed. Clustering analysis revealed that the distances of the five species according to the lectin binding profiles are consistent with that of the genome sequence based phylogenetic tree except for rabbit. The procedure that we established in this study could be generally applicable for sperm from other species or defect sperm from the same species. We believe the lectin binding profiles of the mammalian sperm that we established in this study are valuable for both basic research and clinical studies. PMID:24629138

  20. Development of a DNA Microarray for Molecular Identification of All 46 Salmonella O Serogroups

    PubMed Central

    Guo, Dan; Liu, Bin; Liu, Fenxia; Cao, Boyang; Chen, Min; Hao, Xiyan; Feng, Lu

    2013-01-01

    Salmonella is a major cause of food-borne disease in many countries. Serotype determination of Salmonella is important for disease assessment, infection control, and epidemiological surveillance. In this study, a microarray system that targets the O antigen-specific genes was developed for simultaneously detecting and identifying all 46 Salmonella O serogroups. Of these, 40 serogroups can be confidently identified, and the remaining 6, in three pairs (serogroups O67 and B, E1 and E4, and A and D1), need to be further distinguished from each other using PCR methods or conventional serotyping methods. The microarray was shown to be highly specific when evaluated against 293 Salmonella strains, 186 Shigella strains, representative Escherichia coli strains, and 10 strains of other bacterial species. The assay correctly identified 288 (98%) of the Salmonella strains. The detection sensitivity was determined to be 50 ng genomic DNA per sample. By testing simulated samples in a tomato background, 2 to 8 CFU per gram inoculated could be detected after enrichment. This newly developed microarray assay is the first molecular protocol that can be used for the comprehensive detection and identification of all 46 Salmonella O serogroups. Compared to the traditional serogrouping method, the microarray provides a reliable, high-throughput, and sensitive approach that can be used for rapid identification of multiple Salmonella O serogroups simultaneously. PMID:23524674

  1. A Simple Method for Optimization of Reference Gene Identification and Normalization in DNA Microarray Analysis

    PubMed Central

    Casares, Federico M.

    2016-01-01

    Background Comparative DNA microarray analyses typically yield very large gene expression data sets that reflect complex patterns of change. Despite the wealth of information that is obtained, the identification of stable reference genes is required for normalization of disease- or drug-induced changes across tested groups. This is a prerequisite in quantitative real-time reverse transcription-PCR (qRT-PCR) and relative RT-PCR but rare in gene microarray analysis. The goal of the present study was to outline a simple method for identification of reliable reference genes derived from DNA microarray data sets by comparative statistical analysis of software-generated and manually calculated candidate genes. Material/Methods DNA microarray data sets derived from whole-blood samples obtained from 14 Zucker diabetic fatty (ZDF) rats (7 lean and 7 diabetic obese) were used for the method development. This involved the use of software-generated filtering parameters to accomplish the desired signal-to-noise ratios, 75th percentile signal manual normalizations, and the selection of reference genes as endogenous controls for target gene expression normalization. Results The combination of software-generated and manual normalization methods yielded a group of 5 stably expressed, suitable endogenous control genes which can be used in further target gene expression determinations in whole blood of ZDF rats. Conclusions This method can be used to correct for potentially false results and aid in the selection of suitable endogenous control genes. It is especially useful when aimed to aid the software in cases of borderline results, where the expression and/or the fold change values are just beyond the pre-established set of acceptable parameters. PMID:27122237

  2. A new custom microarray for sRNA profiling in Escherichia coli.

    PubMed

    Ruiz-Larrabeiti, Olatz; Plágaro, Ander Hernández; Gracia, Celine; Sevillano, Elena; Gallego, Lucía; Hajnsdorf, Eliane; Kaberdin, Vladimir R

    2016-07-01

    Bacterial small RNAs (sRNAs) play essential roles in the post-transcriptional control of gene expression. To improve their detection by conventional microarrays, we designed a custom microarray containing a group of probes targeting known and some putative Escherichia coli sRNAs. To assess its potential in detection of sRNAs, RNA profiling experiments were performed with total RNA extracted from E. coli MG1655 cells exponentially grown in rich (Luria-Bertani) and minimal (M9/glucose) media. We found that many sRNAs could yield reasonably strong and statistically significant signals corresponding to nearly all sRNAs annotated in the EcoCyc database. Besides differential expression of two sRNAs (GcvB and RydB), expression of other sRNAs was less affected by the composition of the growth media. Other examples of the differentially expressed sRNAs were revealed by comparing gene expression of the wild-type strain and its isogenic mutant lacking functional poly(A) polymerase I (pcnB). Further, northern blot analysis was employed to validate these data and to assess the existence of new putative sRNAs. Our results suggest that the use of custom microarrays with improved capacities for detection of sRNAs can offer an attractive opportunity for efficient gene expression profiling of sRNAs and their target mRNAs at the whole transcriptome level. PMID:27190161

  3. Analysis of hypertrophic and normal scar gene expression with cDNA microarrays.

    PubMed

    Tsou, R; Cole, J K; Nathens, A B; Isik, F F; Heimbach, D M; Engrav, L H; Gibran, N S

    2000-01-01

    Hypertrophic scar is one form of abnormal wound healing. Previous studies have suggested that hypertrophic scar formation results from altered gene expression of extracellular matrix molecules. A broadscale evaluation of gene expression in hypertrophic scars has not been reported. To better understand abnormalities in hypertrophic scar gene expression, we compared messenger RNA expression in hypertrophic scars, normal scars, and uninjured skin with the use of complementary (c)DNA microarrays. Total RNA was extracted from freshly excised human hypertrophic scars, normal scars, or uninjured skin and reverse transcribed into cDNA with the incorporation of [33P] deoxycytidine triphosphate. The resulting radioactive cDNA probes were hybridized onto cDNA microarrays of 4000 genes. Hybridization signals were normalized and analyzed. In the comparison of tissue samples, mean intensities were calculated for each gene within each group (hypertrophic scars, normal scars, and uninjured skin). Ratios of the mean intensities of hypertrophic scars to normal scars, hypertrophic scars to uninjured skin, and normal scars to uninjured skin were generated. A ratio that was greater than 1 indicated upregulation of any particular gene and a ratio that was less than 1 indicated downregulation of any particular gene. Our data indicated that 142 genes were overexpressed and 50 genes were underexpressed in normal scars compared with uninjured skin, 107 genes were overexpressed and 71 were underexpressed in hypertrophic scars compared with uninjured skin, and 44 genes were overexpressed and 124 were underexpressed in hypertrophic scars compared with normal scars. Our analysis of collagen, growth factor, and metalloproteinase gene expression confirmed that our molecular data were consistent with published biochemical and clinical observations of normal scars and hypertrophic scars. cDNA microarray analysis provides a powerful tool for the investigation of differential gene expression in

  4. Microarray technology for the study of DNA damage by low-energy electrons

    NASA Astrophysics Data System (ADS)

    Solomun, T.; Hultschig, C.; Illenberger, E.

    2005-08-01

    The damage induced to a model DNA (dT{25}) immobilized on a gold surface by the interaction of low-energy (1 eV) electrons was studied by means of microarray technology. High quality single-stranded DNA arrays were hybridized with a dye-marked complementary strand after irradiation with electrons and the normalized fluorescence data were used to quantify the DNA damage. The data clearly show the sensitivity of the method. A significant loss of genetic information was already observed at dose as low as few hundred of electrons per immobilized oligonucleotide. The results imply that single stranded DNA and RNA are appreciably more sensitive to radiation and the attack of secondary electrons during replication, transcription or translation stages than the current radiation damage models envisage.

  5. Comparison of hepatocellular carcinoma miRNA expression profiling as evaluated by next generation sequencing and microarray.

    PubMed

    Murakami, Yoshiki; Tanahashi, Toshihito; Okada, Rina; Toyoda, Hidenori; Kumada, Takashi; Enomoto, Masaru; Tamori, Akihiro; Kawada, Norifumi; Taguchi, Y-h; Azuma, Takeshi

    2014-01-01

    MicroRNA (miRNA) expression profiling has proven useful in diagnosing and understanding the development and progression of several diseases. Microarray is the standard method for analyzing miRNA expression profiles; however, it has several disadvantages, including its limited detection of miRNAs. In recent years, advances in genome sequencing have led to the development of next-generation sequencing (NGS) technologies, which significantly advance genome sequencing speed and discovery. In this study, we compared the expression profiles obtained by next generation sequencing (NGS) with the profiles created using microarray to assess if NGS could produce a more accurate and complete miRNA profile. Total RNA from 14 hepatocellular carcinoma tumors (HCC) and 6 matched non-tumor control tissues were sequenced with Illumina MiSeq 50-bp single-end reads. Micro RNA expression profiles were estimated using miRDeep2 software. As a comparison, miRNA expression profiles for 11 out of 14 HCCs were also established by microarray (Agilent human microRNA microarray). The average total sequencing exceeded 2.2 million reads per sample and of those reads, approximately 57% mapped to the human genome. The average correlation for miRNA expression between microarray and NGS and subtraction were 0.613 and 0.587, respectively, while miRNA expression between technical replicates was 0.976. The diagnostic accuracy of HCC, p-value, and AUC were 90.0%, 7.22×10(-4), and 0.92, respectively. In summary, NGS created an miRNA expression profile that was reproducible and comparable to that produced by microarray. Moreover, NGS discovered novel miRNAs that were otherwise undetectable by microarray. We believe that miRNA expression profiling by NGS can be a useful diagnostic tool applicable to multiple fields of medicine. PMID:25215888

  6. Inferring genetic networks from DNA microarray data by multiple regression analysis.

    PubMed

    Kato, M; Tsunoda, T; Takagi, T

    2000-01-01

    Inferring gene regulatory networks by differential equations from the time series data of a DNA microarray is one of the most challenging tasks in the post-genomic era. However, there have been no studies actually inferring gene regulatory networks by differential equations from genome-level data. The reason for this is that the number of parameters in the equations exceeds the number of measured time points. We here succeeded in executing the inference, not by directly determining parameters but by applying multiple regression analysis to our equations. We derived our differential equations and steady state equations from the rate equations of transcriptional reactions in an organism. Verification with a number of genes related to respiration indicated the validity and effectiveness of our method. Moreover, the steady state equations were more appropriate than the differential equations for the microarray data used. PMID:11700593

  7. Time-resolved Förster-resonance-energy-transfer DNA assay on an active CMOS microarray

    PubMed Central

    Schwartz, David Eric; Gong, Ping; Shepard, Kenneth L.

    2008-01-01

    We present an active oligonucleotide microarray platform for time-resolved Förster resonance energy transfer (TR-FRET) assays. In these assays, immobilized probe is labeled with a donor fluorophore and analyte target is labeled with a fluorescence quencher. Changes in the fluorescence decay lifetime of the donor are measured to determine the extent of hybridization. In this work, we demonstrate that TR-FRET assays have reduced sensitivity to variances in probe surface density compared with standard fluorescence-based microarray assays. Use of an active array substrate, fabricated in a standard complementary metal-oxide-semiconductor (CMOS) process, provides the additional benefits of reduced system complexity and cost. The array consists of 4096 independent single-photon avalanche diode (SPAD) pixel sites and features on-chip time-to-digital conversion. We demonstrate the functionality of our system by measuring a DNA target concentration series using TR-FRET with semiconductor quantum dot donors. PMID:18515059

  8. Mechanisms Underlying the Antiproliferative and Prodifferentiative Effects of Psoralen on Adult Neural Stem Cells via DNA Microarray

    PubMed Central

    Ning, You; Huang, Jian-Hua; Xia, Shi-Jin; Bian, Qin; Chen, Yang; Zhang, Xin-Min; Dong, Jing-Cheng; Shen, Zi-Yin

    2013-01-01

    Adult neural stem cells (NSCs) persist throughout life to replace mature cells that are lost during turnover, disease, or injury. The investigation of NSC creates novel treatments for central nervous system (CNS) injuries and neurodegenerative disorders. The plasticity and reparative potential of NSC are regulated by different factors, which are critical for neurological regenerative medicine research. We investigated the effects of Psoralen, which is the mature fruit of Psoralea corylifolia L., on NSC behaviors and the underlying mechanisms. The self-renewal and proliferation of NSC were examined. We detected neuron- and/or astrocyte-specific markers using immunofluorescence and Western blotting, which could evaluate NSC differentiation. Psoralen treatment significantly inhibited neurosphere formation in a dose-dependent manner. Psoralen treatment increased the expression of the astrocyte-specific marker but decreased neuron-specific marker expression. These results suggested that Psoralen was a differentiation inducer in astrocyte. Differential gene expression following Psoralen treatment was screened using DNA microarray and confirmed by quantitative real-time PCR. Our microarray study demonstrated that Psoralen could effectively regulate the specific gene expression profile of NSC. The genes involved in the classification of cellular differentiation, proliferation, and metabolism, the transcription factors belonging to Ets family, and the hedgehog pathway may be closely related to the regulation. PMID:23983781

  9. Touch DNA-The prospect of DNA profiles from cables.

    PubMed

    Lim, Sharon; Subhani, Zuhaib; Daniel, Barbara; Frascione, Nunzianda

    2016-05-01

    Metal theft in the railroad industry poses significant challenges to transport investigators. Cable sheaths left behind at crime scenes, if appropriately analysed, could provide valuable evidence in a forensic investigation, but attempts at recovering DNA are not routinely made. Experiments were set up to ascertain the success in DNA recovery from the surface of cable sheaths after deposition of (a) sweat, (b) extracted DNA and (c) fingermarks. Since investigators try to collect fingermarks and often treat the cables with cyanoacrylate fuming (CNA fuming) or wet powder suspensions (WPS) to enhance the marks this study investigated the recovery of DNA from fingermarks pre- and post-enhancement. The double-swab technique and mini-taping were compared as options to recover DNA from the cable sheaths. Results demonstrate that generally, there is no significant difference between using swabs or mini-tapes to recover the DNA from the non-porous cables (p>0.05). It was also illustrated that CNA fuming performed better than WPS in terms of subsequent recovery and profiling of DNA. CNA fuming resulted in an average increase in DNA recovered via swabbing and taping (more than 4× and 8×, respectively), as compared to no treatment, with 50% of the DNA recovered after CNA fuming generating full DNA profiles. PMID:27162019

  10. THE RARITY OF DNA PROFILES1

    PubMed Central

    Weir, Bruce S.

    2008-01-01

    It is now widely accepted that forensic DNA profiles are rare, so it was a surprise to some people that different people represented in offender databases are being found to have the same profile. In the first place this is just an illustration of the birthday problem, but a deeper analysis must take into account dependencies among profiles caused by family or population membership. PMID:19030117

  11. 3D-DIP-Chip: a microarray-based method to measure genomic DNA damage

    PubMed Central

    Powell, James Rees; Bennett, Mark Richard; Evans, Katie Ellen; Yu, Shirong; Webster, Richard Michael; Waters, Raymond; Skinner, Nigel; Reed, Simon Huw

    2015-01-01

    Genotoxins cause DNA damage, which can result in genomic instability. The genetic changes induced have far-reaching consequences, often leading to diseases such as cancer. A wide range of genotoxins exists, including radiations and chemicals found naturally in the environment, and in man-made forms created by human activity across a variety of industries. Genomic technologies offer the possibility of unravelling the mechanisms of genotoxicity, including the repair of genetic damage, enhancing our ability to develop, test and safely use existing and novel materials. We have developed 3D-DIP-Chip, a microarray-based method to measure the prevalence of genomic genotoxin-induced DNA damage. We demonstrate the measurement of both physical and chemical induced DNA damage spectra, integrating the analysis of these with the associated changes in histone acetylation induced in the epigenome. We discuss the application of the method in the context of basic and translational sciences. PMID:25609656

  12. Profiling Caenorhabditis elegans non-coding RNA expression with a combined microarray.

    PubMed

    He, Housheng; Cai, Lun; Skogerbø, Geir; Deng, Wei; Liu, Tao; Zhu, Xiaopeng; Wang, Yudong; Jia, Dong; Zhang, Zhihua; Tao, Yong; Zeng, Haipan; Aftab, Muhammad Nauman; Cui, Yan; Liu, Guozhen; Chen, Runsheng

    2006-01-01

    Small non-coding RNAs (ncRNAs) are encoded by genes that function at the RNA level, and several hundred ncRNAs have been identified in various organisms. Here we describe an analysis of the small non-coding transcriptome of Caenorhabditis elegans, microRNAs excepted. As a substantial fraction of the ncRNAs is located in introns of protein-coding genes in C.elegans, we also analysed the relationship between ncRNA and host gene expression. To this end, we designed a combined microarray, which included probes against ncRNA as well as host gene mRNA transcripts. The microarray revealed pronounced differences in expression profiles, even among ncRNAs with housekeeping functions (e.g. snRNAs and snoRNAs), indicating distinct developmental regulation and stage-specific functions of a number of novel transcripts. Analysis of ncRNA-host mRNA relations showed that the expression of intronic ncRNA loci with conserved upstream motifs was not correlated to (and much higher than) expression levels of their host genes. Even promoter-less intronic ncRNA loci, though showing a clear correlation to host gene expression, appeared to have a surprising amount of 'expressional freedom', depending on host gene function. Taken together, our microarray analysis presents a more complete and detailed picture of a non-coding transcriptome than hitherto has been presented for any other multicellular organism. PMID:16738136

  13. Shrink-Induced Silica Multiscale Structures for Enhanced Fluorescence from DNA Microarrays

    PubMed Central

    2015-01-01

    We describe a manufacturable and scalable method for fabrication of multiscale wrinkled silica (SiO2) structures on shrink-wrap film to enhance fluorescence signals in DNA fluorescence microarrays. We are able to enhance the fluorescence signal of hybridized DNA by more than 120 fold relative to a planar glass slide. Notably, our substrate has improved detection sensitivity (280 pM) relative to planar glass slide (11 nM). Furthermore, this is accompanied by a 30–45 times improvement in the signal-to-noise ratio (SNR). Unlike metal enhanced fluorescence (MEF) based enhancements, this is a far-field and uniform effect based on surface concentration and photophysical effects from the nano- to microscale SiO2 structures. Notably, the photophysical effects contribute an almost 2.5 fold enhancement over the concentration effects alone. Therefore, this simple and robust method offers an efficient technique to enhance the detection capabilities of fluorescence based DNA microarrays. PMID:25191785

  14. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis

    PubMed Central

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids

  15. An evolutionary and visual framework for clustering of DNA microarray data.

    PubMed

    Castellanos-Garzón, José A; Díaz, Fernando

    2013-01-01

    This paper presents a case study to show the competence of our evolutionary and visual framework for cluster analysis of DNA microarray data. The proposed framework joins a genetic algorithm for hierarchical clustering with a set of visual components of cluster tasks given by a tool. The cluster visualization tool allows us to display different views of clustering results as a means of cluster visual validation. The results of the genetic algorithm for clustering have shown that it can find better solutions than the other methods for the selected data set. Thus, this shows the reliability of the proposed framework. PMID:24231146

  16. DNA microarray gene expression analysis technology and its application to neurological disorders.

    PubMed

    Greenberg, S A

    2001-09-11

    DNA microarray technology is currently an area of great interest. Also called "genechip" technology, it incorporates molecular genetics and computer science on a massive scale. This technology can rapidly provide a detailed view of the simultaneous expression of entire genomes and provide new insights into gene function, disease pathophysiology, disease classification, and drug development. In this review, the author discusses the basic theory behind genechip and the other biologic chip technologies, their limitations given the current state of biologic knowledge and computational abilities, and their potential applications to the understanding of neurologic disorders. PMID:11575306

  17. A Combinational Clustering Based Method for cDNA Microarray Image Segmentation

    PubMed Central

    Shao, Guifang; Li, Tiejun; Zuo, Wangda; Wu, Shunxiang; Liu, Tundong

    2015-01-01

    Microarray technology plays an important role in drawing useful biological conclusions by analyzing thousands of gene expressions simultaneously. Especially, image analysis is a key step in microarray analysis and its accuracy strongly depends on segmentation. The pioneering works of clustering based segmentation have shown that k-means clustering algorithm and moving k-means clustering algorithm are two commonly used methods in microarray image processing. However, they usually face unsatisfactory results because the real microarray image contains noise, artifacts and spots that vary in size, shape and contrast. To improve the segmentation accuracy, in this article we present a combination clustering based segmentation approach that may be more reliable and able to segment spots automatically. First, this new method starts with a very simple but effective contrast enhancement operation to improve the image quality. Then, an automatic gridding based on the maximum between-class variance is applied to separate the spots into independent areas. Next, among each spot region, the moving k-means clustering is first conducted to separate the spot from background and then the k-means clustering algorithms are combined for those spots failing to obtain the entire boundary. Finally, a refinement step is used to replace the false segmentation and the inseparable ones of missing spots. In addition, quantitative comparisons between the improved method and the other four segmentation algorithms--edge detection, thresholding, k-means clustering and moving k-means clustering--are carried out on cDNA microarray images from six different data sets. Experiments on six different data sets, 1) Stanford Microarray Database (SMD), 2) Gene Expression Omnibus (GEO), 3) Baylor College of Medicine (BCM), 4) Swiss Institute of Bioinformatics (SIB), 5) Joe DeRisi’s individual tiff files (DeRisi), and 6) University of California, San Francisco (UCSF), indicate that the improved approach is

  18. A Combinational Clustering Based Method for cDNA Microarray Image Segmentation.

    PubMed

    Shao, Guifang; Li, Tiejun; Zuo, Wangda; Wu, Shunxiang; Liu, Tundong

    2015-01-01

    Microarray technology plays an important role in drawing useful biological conclusions by analyzing thousands of gene expressions simultaneously. Especially, image analysis is a key step in microarray analysis and its accuracy strongly depends on segmentation. The pioneering works of clustering based segmentation have shown that k-means clustering algorithm and moving k-means clustering algorithm are two commonly used methods in microarray image processing. However, they usually face unsatisfactory results because the real microarray image contains noise, artifacts and spots that vary in size, shape and contrast. To improve the segmentation accuracy, in this article we present a combination clustering based segmentation approach that may be more reliable and able to segment spots automatically. First, this new method starts with a very simple but effective contrast enhancement operation to improve the image quality. Then, an automatic gridding based on the maximum between-class variance is applied to separate the spots into independent areas. Next, among each spot region, the moving k-means clustering is first conducted to separate the spot from background and then the k-means clustering algorithms are combined for those spots failing to obtain the entire boundary. Finally, a refinement step is used to replace the false segmentation and the inseparable ones of missing spots. In addition, quantitative comparisons between the improved method and the other four segmentation algorithms--edge detection, thresholding, k-means clustering and moving k-means clustering--are carried out on cDNA microarray images from six different data sets. Experiments on six different data sets, 1) Stanford Microarray Database (SMD), 2) Gene Expression Omnibus (GEO), 3) Baylor College of Medicine (BCM), 4) Swiss Institute of Bioinformatics (SIB), 5) Joe DeRisi's individual tiff files (DeRisi), and 6) University of California, San Francisco (UCSF), indicate that the improved approach is

  19. Optical and surface analysis of DNA microarrays to assess printed spot heterogeneity

    NASA Astrophysics Data System (ADS)

    Nagaraja Rao, Archana

    DNA microarrays have been plagued with analytical problems with quantitation, metrics, figures of merit, and reliability and reproducibility issues, hindering their acceptance in clinical and diagnostic settings. The main deficiency in the printed DNA format is the microspot heterogeneity occurring during array fabrication and further amplified during target hybridization. Work described in this dissertation focuses on assessment of DNA microarray spots generated with conventional pin-type contact printing of fluorescently labeled DNA probes, on industry-standard commercial polymer-coated array slides and their hybridization with complementary oligomer DNA target. Printing of probe DNA microspots shares many features of commonly reported droplet evaporation dynamics that lead to different drying patterns and spot morphologies. This study directly identifies and analyzes different DNA probe chemical and spatial microenvironments within spots, analyzed with high-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS) chemical imaging, confocal epifluorescence, and probe microscopy force imaging methods. Drying of DNA probe spots shows Marangoni flow effects with high densities of probe DNA-Cy3 located in spot centers and nonhomogeneous DNA distributed radially within printed spots with both TOF-SIMS imaging and epifluorescence microscopy. Target hybridization kinetics and duplex formation were assessed using real-time in situ confocal imaging, and confirmed radial hemispherical diffusion-mediated distribution of target capture from spot edge to its interior. Kinetic modeling indicates pseudo-first order kinetics due to transport limitations and local density-dependent probe interactions with diffusing target. Fluorescence resonance energy transfer (FRET) and photobleaching results show that the high- density probe overcrowding in spots facilitates a broad range of target binding interactions regardless of dye orientations. Moreover, lateral probe density

  20. Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays

    PubMed Central

    Halpern, Aaron R.; Chen, Yulin; Corn, Robert M.; Kim, Donghyun

    2011-01-01

    The optical technique of surface plasmon resonance phase imaging (SPR-PI) is implemented in a linear microarray format for real-time measurements of surface bioaffinity adsorption processes. SPR-PI measures the phase shift of p-polarized light incident at the SPR angle reflected from a gold thin film in an ATR Kretschmann geometry by creating an interference fringe image on the interface with a polarizer-quartz wedge depolarizer combination. The position of the fringe pattern in this image changes upon the adsorption of biomolecules to the gold thin film. By using a linear array of 500 μm biosensor element lines that are perpendicular to the interference fringe image, multiple bioaffinity adsorption measurements can be performed in real time. Two experiments were performed to characterize the sensitivity of the SPR-PI measurement technique; first, a ten line pattern of a self-assembled monolayer of 11-mercaptoundecamine (MUAM) was created via photopatterning to verify that multiple phase shifts could be measured simultaneously. A phase shift difference (Δφ) of Δφ = 182.08 ± 0.03° was observed for the 1.8-nm MUAM monolayer; this value agrees with the phase shift difference calculated from a combination of Fresnel equations and Jones matrices for the depolarizer. In a second demonstration experiment, the feasibility of SPR-PI for in situ bioaffinity adsorption measurements was confirmed by detecting the hybridization and adsorption of single stranded DNA (ssDNA) onto a six component DNA line microarray patterned monolayer. Adsorption of a full DNA monolayer produced a phase shift difference of Δφ = 28.80 ± 0.03° at the SPR angle of incidence and the adsorption of the ssDNA was monitored in real time with the SPR-PI. These initial results suggest that SPR-PI should have a detection limit roughly 100 times lower than traditional intensity-based SPR imaging measurements. PMID:21355546

  1. Massively multiplexed microbial identification using resequencing DNA microarrays for outbreak investigation

    NASA Astrophysics Data System (ADS)

    Leski, T. A.; Ansumana, R.; Jimmy, D. H.; Bangura, U.; Malanoski, A. P.; Lin, B.; Stenger, D. A.

    2011-06-01

    Multiplexed microbial diagnostic assays are a promising method for detection and identification of pathogens causing syndromes characterized by nonspecific symptoms in which traditional differential diagnosis is difficult. Also such assays can play an important role in outbreak investigations and environmental screening for intentional or accidental release of biothreat agents, which requires simultaneous testing for hundreds of potential pathogens. The resequencing pathogen microarray (RPM) is an emerging technological platform, relying on a combination of massively multiplex PCR and high-density DNA microarrays for rapid detection and high-resolution identification of hundreds of infectious agents simultaneously. The RPM diagnostic system was deployed in Sierra Leone, West Africa in collaboration with Njala University and Mercy Hospital Research Laboratory located in Bo. We used the RPM-Flu microarray designed for broad-range detection of human respiratory pathogens, to investigate a suspected outbreak of avian influenza in a number of poultry farms in which significant mortality of chickens was observed. The microarray results were additionally confirmed by influenza specific real-time PCR. The results of the study excluded the possibility that the outbreak was caused by influenza, but implicated Klebsiella pneumoniae as a possible pathogen. The outcome of this feasibility study confirms that application of broad-spectrum detection platforms for outbreak investigation in low-resource locations is possible and allows for rapid discovery of the responsible agents, even in cases when different agents are suspected. This strategy enables quick and cost effective detection of low probability events such as outbreak of a rare disease or intentional release of a biothreat agent.

  2. Construction and Validation of the Rhodobacter sphaeroides 2.4.1 DNA Microarray: Transcriptome Flexibility at Diverse Growth Modes

    SciTech Connect

    Pappas, Christopher T.; Sram, Jakub; Moskvin, Oleg V.; Ivanov, Pavel S.; Mackenzie, Christopher; Choudhary, Madhusudan; Land, Miriam L; Larimer, Frank W; Kaplan, Samuel; Gomelsky, Mark

    2004-07-01

    A high-density oligonucleotide DNA microarray, a genechip, representing the 4.6-Mb genome of the facultative phototrophic proteobacterium, Rhodobacter sphaeroides 2.4.1, was custom-designed and manufactured by Affymetrix, Santa Clara, Calif. The genechip contains probe sets for 4,292 open reading frames (ORFs), 47 rRNA and tRNA genes, and 394 intergenic regions. The probe set sequences were derived from the genome annotation generated by Oak Ridge National Laboratory after extensive revision, which was based primarily upon codon usage characteristic of this GC-rich bacterium. As a result of the revision, numerous missing ORFs were uncovered, nonexistent ORFs were deleted, and misidentified start codons were corrected. To evaluate R. sphaeroides transcriptome flexibility, expression profiles for three diverse growth modes-aerobic respiration, anaerobic respiration in the dark, and anaerobic photosynthesis-were generated. Expression levels of one-fifth to one-third of the R. sphaeroides ORFs were significantly different in cells under any two growth modes. Pathways involved in energy generation and redox balance maintenance under three growth modes were reconstructed. Expression patterns of genes involved in these pathways mirrored known functional changes, suggesting that massive changes in gene expression are the major means used by R. sphaeroides in adaptation to diverse conditions. Differential expression was observed for genes encoding putative new participants in these pathways (additional photosystem genes, duplicate NADH dehydrogenase, ATP synthases), whose functionality has yet to be investigated. The DNA microarray data correlated well with data derived from quantitative reverse transcription-PCR, as well as with data from the literature, thus validating the R. sphaeroides genechip as a powerful and reliable tool for studying unprecedented metabolic versatility of this bacterium.

  3. FDA Escherichia coli Identification (FDA-ECID) Microarray: a Pangenome Molecular Toolbox for Serotyping, Virulence Profiling, Molecular Epidemiology, and Phylogeny

    PubMed Central

    Patel, Isha R.; Gangiredla, Jayanthi; Lacher, David W.; Mammel, Mark K.; Jackson, Scott A.; Lampel, Keith A.

    2016-01-01

    ABSTRACT Most Escherichia coli strains are nonpathogenic. However, for clinical diagnosis and food safety analysis, current identification methods for pathogenic E. coli either are time-consuming and/or provide limited information. Here, we utilized a custom DNA microarray with informative genetic features extracted from 368 sequence sets for rapid and high-throughput pathogen identification. The FDA Escherichia coli Identification (FDA-ECID) platform contains three sets of molecularly informative features that together stratify strain identification and relatedness. First, 53 known flagellin alleles, 103 alleles of wzx and wzy, and 5 alleles of wzm provide molecular serotyping utility. Second, 41,932 probe sets representing the pan-genome of E. coli provide strain-level gene content information. Third, approximately 125,000 single nucleotide polymorphisms (SNPs) of available whole-genome sequences (WGS) were distilled to 9,984 SNPs capable of recapitulating the E. coli phylogeny. We analyzed 103 diverse E. coli strains with available WGS data, including those associated with past foodborne illnesses, to determine robustness and accuracy. The array was able to accurately identify the molecular O and H serotypes, potentially correcting serological failures and providing better resolution for H-nontypeable/nonmotile phenotypes. In addition, molecular risk assessment was possible with key virulence marker identifications. Epidemiologically, each strain had a unique comparative genomic fingerprint that was extended to an additional 507 food and clinical isolates. Finally, a 99.7% phylogenetic concordance was established between microarray analysis and WGS using SNP-level data for advanced genome typing. Our study demonstrates FDA-ECID as a powerful tool for epidemiology and molecular risk assessment with the capacity to profile the global landscape and diversity of E. coli. IMPORTANCE This study describes a robust, state-of-the-art platform developed from available

  4. Probe classification of on-off type DNA microarray images with a nonlinear matching measure

    NASA Astrophysics Data System (ADS)

    Ryu, Munho; Kim, Jong Dae; Min, Byoung Goo; Kim, Jongwon; Kim, Y. Y.

    2006-01-01

    We propose a nonlinear matching measure, called counting measure, as a signal detection measure that is defined as the number of on pixels in the spot area. It is applied to classify probes for an on-off type DNA microarray, where each probe spot is classified as hybridized or not. The counting measure also incorporates the maximum response search method, where the expected signal is obtained by taking the maximum among the measured responses of the various positions and sizes of the spot template. The counting measure was compared to existing signal detection measures such as the normalized covariance and the median for 2390 patient samples tested on the human papillomavirus (HPV) DNA chip. The counting measure performed the best regardless of whether or not the maximum response search method was used. The experimental results showed that the counting measure combined with the positional search was the most preferable.

  5. Fabrication of polyurethane molecular stamps for the synthesis of DNA microarray

    NASA Astrophysics Data System (ADS)

    Liu, Zhengchun; He, Quanguo; Xiao, Pengfeng; He, Nongyao; Lu, Zuhong; Bo, Liang

    2001-10-01

    Polyurethane based on polypropylene glycol (PPG) and Toluene diisocyanate (TDI) using 3,3'-dichloride-4,4'- methylenedianiline (MOCA) as the crosslinker is presented for the first time to fabricate molecular stamps (PU stamps) for the synthesis of DNA microarray with contact procedure. The predictability of the process is achieved by utilizing commercially available starting materials. SEM analysis of the morphology of PU stamps and master showed that PU elastometer could replicate subtly the motherboard's patterns with high fidelity. It was proved from the contact angle measurement that PU stamps surface has good affinity with acetonitrile, which guarantee the well-distribution of DNA monomers on patterned stamps. Laser confocal fluorescence microscopy images of oligonucleotide arrays confirmed polyurethane is an excellent material for molecular stamps.

  6. Glycosylation and post-translational modification gene expression analysis by DNA microarrays for cultured mammalian cells

    PubMed Central

    Brodsky, Arthur Nathan; Caldwell, Mary; Harcum, Sarah W.

    2011-01-01

    DNA microarray analysis of gene expression has become a valuable tool for bioprocessing research aimed at improving therapeutic protein yields. The highly parallel nature of DNA microarray technology allows researchers to assess hundreds of gene simultaneously, essentially enabling genome-wide snapshots. The quality and amount of therapeutic proteins produced by cultured mammalian cells rely heavily on the culture environment. In order to implement beneficial changes to the culture environment, a better understanding of the relationship between the product quality and culture environment must be developed. By analyzing gene expression levels under various environmental conditions, light can be shed on the underlying mechanisms. This paper describes a method for evaluating gene expression changes for cultured NS0 cells, a mouse-derived myeloma cell line, under culture environment conditions, such as ammonia buildup, known to affect product quality. These procedures can be easily adapted to other environmental conditions and any mammalian cell lines cultured in suspension, so long as a sufficient number of gene sequences are publicly available. PMID:22033470

  7. Capturing genomic signatures of DNA sequence variation using a standard anonymous microarray platform

    PubMed Central

    Cannon, C. H.; Kua, C. S.; Lobenhofer, E. K.; Hurban, P.

    2006-01-01

    Comparative genomics, using the model organism approach, has provided powerful insights into the structure and evolution of whole genomes. Unfortunately, only a small fraction of Earth's biodiversity will have its genome sequenced in the foreseeable future. Most wild organisms have radically different life histories and evolutionary genomics than current model systems. A novel technique is needed to expand comparative genomics to a wider range of organisms. Here, we describe a novel approach using an anonymous DNA microarray platform that gathers genomic samples of sequence variation from any organism. Oligonucleotide probe sequences placed on a custom 44 K array were 25 bp long and designed using a simple set of criteria to maximize their complexity and dispersion in sequence probability space. Using whole genomic samples from three known genomes (mouse, rat and human) and one unknown (Gonystylus bancanus), we demonstrate and validate its power, reliability, transitivity and sensitivity. Using two separate statistical analyses, a large numbers of genomic ‘indicator’ probes were discovered. The construction of a genomic signature database based upon this technique would allow virtual comparisons and simple queries could generate optimal subsets of markers to be used in large-scale assays, using simple downstream techniques. Biologists from a wide range of fields, studying almost any organism, could efficiently perform genomic comparisons, at potentially any phylogenetic level after performing a small number of standardized DNA microarray hybridizations. Possibilities for refining and expanding the approach are discussed. PMID:17000641

  8. Functionally associated targets in mantle cell lymphoma as defined by DNA microarrays and RNA interference.

    PubMed

    Ortega-Paino, Eva; Fransson, Johan; Ek, Sara; Borrebaeck, Carl A K

    2008-02-01

    Mantle cell lymphoma (MCL) is a non-Hodgkin lymphoma with poor prognosis. Its hallmark is the translocation t(11:14)q (13;32), leading to overexpression of cyclin D1, a positive regulator of the cell cycle. As cyclin D1 up-regulation is not sufficient for inducing malignant transformation, we combined DNA microarray and RNA interference (RNAi) approaches to identify novel deregulated genes involved in the progression of MCL. DNA microarray analysis identified 46 genes specifically up-regulated in MCL compared with normal B cells; 20 of these were chosen for further studies based on their cellular functions, such as growth and proliferation. The Granta 519 cell line was selected as an MCL in vitro model, to set up the RNAi protocol. To confirm the functionality of overexpression of the 20 disease-associated genes, they were knocked down using small interfering RNAs (siRNAs). In particular, knockdown of 3 genes, encoding the hepatoma-derived growth factor related protein 3 (HDGFRP3), the frizzled homolog 2 (FZD2), and the dual specificity phosphatase 5 (DUSP5), induced proliferative arrest in Granta 519 MCL cells. These genes emerged as functionally associated in MCL, in relation to growth and survival, and interfering with their function would increase insight into lymphoma growth regulation, potentially leading to novel clinical intervention modalities. PMID:18024791

  9. PMA-PhyloChip DNA Microarray to Elucidate Viable Microbial Community Structure

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri J.; Stam, Christina N.; Andersen, Gary L.; DeSantis, Todd

    2011-01-01

    Since the Viking missions in the mid-1970s, traditional culture-based methods have been used for microbial enumeration by various NASA programs. Viable microbes are of particular concern for spacecraft cleanliness, for forward contamination of extraterrestrial bodies (proliferation of microbes), and for crew health/safety (viable pathogenic microbes). However, a "true" estimation of viable microbial population and differentiation from their dead cells using the most sensitive molecular methods is a challenge, because of the stability of DNA from dead cells. The goal of this research is to evaluate a rapid and sensitive microbial detection concept that will selectively estimate viable microbes. Nucleic acid amplification approaches such as the polymerase chain reaction (PCR) have shown promise for reducing time to detection for a wide range of applications. The proposed method is based on the use of a fluorescent DNA intercalating agent, propidium monoazide (PMA), which can only penetrate the membrane of dead cells. The PMA-quenched reaction mixtures can be screened, where only the DNA from live cells will be available for subsequent PCR reaction and microarray detection, and be identified as part of the viable microbial community. An additional advantage of the proposed rapid method is that it will detect viable microbes and differentiate from dead cells in only a few hours, as opposed to less comprehensive culture-based assays, which take days to complete. This novel combination approach is called the PMA-Microarray method. DNA intercalating agents such as PMA have previously been used to selectively distinguish between viable and dead bacterial cells. Once in the cell, the dye intercalates with the DNA and, upon photolysis under visible light, produces stable DNA adducts. DNA cross-linked in this way is unavailable for PCR. Environmental samples suspected of containing a mixture of live and dead microbial cells/spores will be treated with PMA, and then incubated

  10. Selective recognition of DNA from olive leaves and olive oil by PNA and modified-PNA microarrays.

    PubMed

    Rossi, Stefano; Calabretta, Alessandro; Tedeschi, Tullia; Sforza, Stefano; Arcioni, Sergio; Baldoni, Luciana; Corradini, Roberto; Marchelli, Rosangela

    2012-01-01

    PNA probes for the specific detection of DNA from olive oil samples by microarray technology were developed. The presence of as low as 5% refined hazelnut (Corylus avellana) oil in extra-virgin olive oil (Olea europaea L.) could be detected by using a PNA microarray. A set of two single nucleotide polymorphisms (SNPs) from the Actin gene of Olive was chosen as a model for evaluating the ability of PNA probes for discriminating olive cultivars. Both unmodified and C2-modified PNAs bearing an arginine side-chain were used, the latter showing higher sequence specificity. DNA extracted from leaves of three different cultivars (Ogliarola leccese, Canino and Frantoio) could be easily discriminated using a microarray with unmodified PNA probes, whereas discrimination of DNA from oil samples was more challenging, and could be obtained only by using chiral PNA probes. PMID:22772038

  11. Selective recognition of DNA from olive leaves and olive oil by PNA and modified-PNA microarrays

    PubMed Central

    Rossi, Stefano; Calabretta, Alessandro; Tedeschi, Tullia; Sforza, Stefano; Arcioni, Sergio; Baldoni, Luciana; Corradini, Roberto; Marchelli, Rosangela

    2012-01-01

    PNA probes for the specific detection of DNA from olive oil samples by microarray technology were developed. The presence of as low as 5% refined hazelnut (Corylus avellana) oil in extra-virgin olive oil (Olea europaea L.) could be detected by using a PNA microarray. A set of two single nucleotide polymorphisms (SNPs) from the Actin gene of Olive was chosen as a model for evaluating the ability of PNA probes for discriminating olive cultivars. Both unmodified and C2-modified PNAs bearing an arginine side-chain were used, the latter showing higher sequence specificity. DNA extracted from leaves of three different cultivars (Ogliarola leccese, Canino and Frantoio) could be easily discriminated using a microarray with unmodified PNA probes, whereas discrimination of DNA from oil samples was more challenging, and could be obtained only by using chiral PNA probes. PMID:22772038

  12. Gene expression profiling in mitochondrial disease: assessment of microarray accuracy by high-throughput Q-PCR.

    PubMed

    Beckman, Kenneth B; Lee, Kathleen Y; Golden, Tamara; Melov, Simon

    2004-09-01

    Mitochondrial diseases are a heterogeneous array of disorders with a complex etiology. Use of microarrays as a tool to investigate complex human disease is increasingly common, however, a principle drawback of microarrays is their limited dynamic range, due to the poor quantification of weak signals. Although it is generally understood that low-intensity microarray 'spots' may be unreliable, there exists little documentation of their accuracy. Quantitative PCR (Q-PCR) is frequently used to validate microarray data, yet few Q-PCR validation studies have focused on the accuracy of low-intensity microarray signals. Hence, we have used Q-PCR to systematically assess microarray accuracy as a function of signal strength in a mouse model of mitochondrial disease, the superoxide dismutase 2 (SOD2) nullizygous mouse. We have focused on a unique category of data--spots with only one weak signal in a two-dye comparative hybridization--and show that such 'high-low' signal intensities are common for differentially expressed genes. This category of differential expression may be more important in mitochondrial disease in which there are often mosaic expression patterns due to the idiosyncratic distribution of mutant mtDNA in heteroplasmic individuals. Using RNA from the SOD2 mouse, we found that when spotted cDNA microarray data are filtered for quality (low variance between many technical replicates) and spot intensity (above a negative control threshold in both channels), there is an excellent quantitative concordance with Q-PCR (R2 = 0.94). The accuracy of gene expression ratios from low-intensity spots (R2 = 0.27) and 'high-low' spots (R2 = 0.32) is considerably lower. Our results should serve as guidelines for microarray interpretation and the selection of genes for validation in mitochondrial disorders. PMID:16120406

  13. Microarray expression profiling identifies genes with altered expression in HDL-deficient mice

    SciTech Connect

    Callow, Matthew J.; Dudoit, Sandrine; Gong, Elaine L.; Speed, Terence P.; Rubin, Edward M.

    2000-05-05

    Based on the assumption that severe alterations in the expression of genes known to be involved in HDL metabolism may affect the expression of other genes we screened an array of over 5000 mouse expressed sequence tags (ESTs) for altered gene expression in the livers of two lines of mice with dramatic decreases in HDL plasma concentrations. Labeled cDNA from livers of apolipoprotein AI (apo AI) knockout mice, Scavenger Receptor BI (SR-BI) transgenic mice and control mice were co-hybridized to microarrays. Two-sample t-statistics were used to identify genes with altered expression levels in the knockout or transgenic mice compared with the control mice. In the SR-BI group we found 9 array elements representing at least 5 genes to be significantly altered on the basis of an adjusted p value of less than 0.05. In the apo AI knockout group 8 array elements representing 4 genes were altered compared with the control group (p < 0.05). Several of the genes identified in the SR-BI transgenic suggest altered sterol metabolism and oxidative processes. These studies illustrate the use of multiple-testing methods for the identification of genes with altered expression in replicated microarray experiments of apo AI knockout and SR-BI transgenic mice.

  14. Autoantigen Microarray for High-throughput Autoantibody Profiling in Systemic Lupus Erythematosus

    PubMed Central

    Zhu, Honglin; Luo, Hui; Yan, Mei; Zuo, Xiaoxia; Li, Quan-Zhen

    2015-01-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by the production of autoantibodies to a broad range of self-antigens. Profiling the autoantibody repertoire using array-based technology has emerged as a powerful tool for the identification of biomarkers in SLE and other autoimmune diseases. Proteomic microarray has the capacity to hold large number of self-antigens on a solid surface and serve as a high-throughput screening method for the determination of autoantibody specificities. The autoantigen arrays carrying a wide variety of self-antigens, such as cell nuclear components (nucleic acids and associated proteins), cytoplasmic proteins, phospholipid proteins, cell matrix proteins, mucosal/secreted proteins, glomeruli, and other tissue-specific proteins, have been used for screening of autoantibody specificities associated with different manifestations of SLE. Arrays containing synthetic peptides and molecular modified proteins are also being utilized for identification of autoantibodies targeting to special antigenic epitopes. Different isotypes of autoantibodies, including IgG, IgM, IgA, and IgE, as well as other Ig subtypes, can be detected simultaneously with multi-color labeled secondary antibodies. Serum and plasma are the most common biologic materials for autoantibody detection, but other body fluids such as cerebrospinal fluid, synovial fluid, and saliva can also be a source of autoantibody detection. Proteomic microarray as a multiplexed high-throughput screening platform is playing an increasingly-important role in autoantibody diagnostics. In this article, we highlight the use of autoantigen microarrays for autoantibody exploration in SLE. PMID:26415621

  15. Gene expression profiling of HCV genotype 3a initial liver fibrosis and cirrhosis patients using microarray

    PubMed Central

    2012-01-01

    Background Hepatitis C virus (HCV) causes liver fibrosis that may lead to liver cirrhosis or hepatocellular carcinoma (HCC), and may partially depend on infecting viral genotype. HCV genotype 3a is being more common in Asian population, especially Pakistan; the detail mechanism of infection still needs to be explored. In this study, we investigated and compared the gene expression profile between initial fibrosis stage and cirrhotic 3a genotype patients. Methods Gene expression profiling of human liver tissues was performed containing more than 22000 known genes. Using Oparray protocol, preparation and hybridization of slides was carried out and followed by scanning with GeneTAC integrator 4.0 software. Normalization of the data was obtained using MIDAS software and Significant Microarray Analysis (SAM) was performed to obtain differentially expressed candidate genes. Results Out of 22000 genes studied, 219 differentially regulated genes found with P ≤ 0.05 between both groups; 107 among those were up-regulated and 112 were down-regulated. These genes were classified into 31 categories according to their biological functions. The main categories included: apoptosis, immune response, cell signaling, kinase activity, lipid metabolism, protein metabolism, protein modulation, metabolism, vision, cell structure, cytoskeleton, nervous system, protein metabolism, protein modulation, signal transduction, transcriptional regulation and transport activity. Conclusion This is the first study on gene expression profiling in patients associated with genotype 3a using microarray analysis. These findings represent a broad portrait of genomic changes in early HCV associated fibrosis and cirrhosis. We hope that identified genes in this study will help in future to act as prognostic and diagnostic markers to differentiate fibrotic patients from cirrhotic ones. PMID:22397681

  16. Microarray-based gene expression profiling of peripheral blood mononuclear cells in dairy cows with experimental hypocalcemia and milk fever.

    PubMed

    Sasaki, K; Yamagishi, N; Kizaki, K; Sasaki, K; Devkota, B; Hashizume, K

    2014-01-01

    Although a molecular diagnostic assay using clinically accessible tissue, such as blood, would facilitate evaluation of disease conditions in humans and animals, little information exists on microarray-based gene expression profiling of circulating leukocytes from clinically hypocalcemic cows. Therefore, peripheral blood mononuclear cells from dairy cows with experimentally induced hypocalcemia or spontaneous milk fever were subjected to oligo-microarray analysis to identify specific biomarker genes. In experimental hypocalcemia induced by a 4-h infusion of 10% disodium EDTA (n=4), 32 genes were significantly up- or downregulated compared with control treatment (4-h infusion of 11% calcium EDTA; n=4). In cows with milk fever (n=8), 98 genes were expressed differentially (either up- or downregulated) compared with healthy parturient cows (n=5). From these data, the following 5 genes were selected as being strongly related to both experimental hypocalcemia and milk fever: protein kinase (cAMP-dependent, catalytic) inhibitor β (PKIB); DNA-damage-inducible transcript 4 (DDIT4); period homolog 1 (PER1); NUAK family, SNF1-like kinase, 1 (NUAK1); and expressed sequence tag (BI537947). Another gene (neuroendocrine secretory protein 55, NESP55) was also determined to be specific for milk fever, independently of hypocalcemia. The mRNA expression of these 6 genes in milk fever cases was verified by quantitative real-time reverse-transcription PCR and was significantly different compared with their expression in healthy parturient cows. In the present study, the selected genes appeared to be candidate biomarkers of milk fever because the continuous interactions between blood cells and the entire body suggest that subtle intracellular changes occur in association with disease. However, before any genomic biomarkers are incorporated into clinical evaluation of the disease, the effect of hypocalcemia on the mRNA expression of these genes in the tissues that regulate calcium

  17. Deregulated Direct Targets of the Hepatitis B Virus (HBV) Protein, HBx, Identified through Chromatin Immunoprecipitation and Expression Microarray Profiling*

    PubMed Central

    Sung, Wing-Kin; Lu, Yiwei; Lee, Charlie W. H.; Zhang, Dongwei; Ronaghi, Mostafa; Lee, Caroline G. L.

    2009-01-01

    The hepatitis B-X (HBx) protein is strongly associated with hepatocellular carcinoma. It is implicated not to directly cause cancer but to play a role in hepatocellular carcinoma as a co-factor. The oncogenic potential of HBx primarily lies in its interaction with transcriptional regulators resulting in aberrant gene expression and deregulated cellular pathways. Utilizing ultraviolet irradiation to simulate a tumor-initiating event, we integrated chip-based chromatin immunoprecipitation (ChIP-chip) with expression microarray profiling and identified 184 gene targets directly deregulated by HBx. One-hundred forty-four transcription factors interacting with HBx were computationally inferred. We experimentally validated that HBx interacts with some of the predicted transcription factors (pTF) as well as the promoters of the deregulated target genes of these pTFs. Significantly, we demonstrated that the pTF interacts with the promoters of the deregulated HBx target genes and that deregulation by HBx of these HBx target genes carrying the pTF consensus sequences can be reversed using pTF small interfering RNAs. The roles of these deregulated direct HBx target genes and their relevance in cancer was inferred via querying against biogroup/cancer-related microarray databases using web-based NextBioTM software. Six pathways, including the Jak-STAT pathway, were predicted to be significantly deregulated when HBx binds indirectly to direct target gene promoters. In conclusion, this study represents the first ever demonstration of the utilization of ChIP-chip to identify deregulated direct gene targets from indirect protein-DNA binding as well as transcriptional factors directly interacting with HBx. Increased knowledge of the gene/transcriptional factor targets of HBx will enhance our understanding of the role of HBx in hepatocellular carcinogenesis and facilitate the design of better strategies in combating hepatitis B virus-associated hepatocellular carcinoma. PMID:19439406

  18. Deregulated direct targets of the hepatitis B virus (HBV) protein, HBx, identified through chromatin immunoprecipitation and expression microarray profiling.

    PubMed

    Sung, Wing-Kin; Lu, Yiwei; Lee, Charlie W H; Zhang, Dongwei; Ronaghi, Mostafa; Lee, Caroline G L

    2009-08-14

    The hepatitis B-X (HBx) protein is strongly associated with hepatocellular carcinoma. It is implicated not to directly cause cancer but to play a role in hepatocellular carcinoma as a co-factor. The oncogenic potential of HBx primarily lies in its interaction with transcriptional regulators resulting in aberrant gene expression and deregulated cellular pathways. Utilizing ultraviolet irradiation to simulate a tumor-initiating event, we integrated chip-based chromatin immunoprecipitation (ChIP-chip) with expression microarray profiling and identified 184 gene targets directly deregulated by HBx. One-hundred forty-four transcription factors interacting with HBx were computationally inferred. We experimentally validated that HBx interacts with some of the predicted transcription factors (pTF) as well as the promoters of the deregulated target genes of these pTFs. Significantly, we demonstrated that the pTF interacts with the promoters of the deregulated HBx target genes and that deregulation by HBx of these HBx target genes carrying the pTF consensus sequences can be reversed using pTF small interfering RNAs. The roles of these deregulated direct HBx target genes and their relevance in cancer was inferred via querying against biogroup/cancer-related microarray databases using web-based NextBio(TM) software. Six pathways, including the Jak-STAT pathway, were predicted to be significantly deregulated when HBx binds indirectly to direct target gene promoters. In conclusion, this study represents the first ever demonstration of the utilization of ChIP-chip to identify deregulated direct gene targets from indirect protein-DNA binding as well as transcriptional factors directly interacting with HBx. Increased knowledge of the gene/transcriptional factor targets of HBx will enhance our understanding of the role of HBx in hepatocellular carcinogenesis and facilitate the design of better strategies in combating hepatitis B virus-associated hepatocellular carcinoma. PMID

  19. Massive Collection of Full-Length Complementary DNA Clones and Microarray Analyses:. Keys to Rice Transcriptome Analysis

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shoshi

    2009-02-01

    Completion of the high-precision genome sequence analysis of rice led to the collection of about 35,000 full-length cDNA clones and the determination of their complete sequences. Mapping of these full-length cDNA sequences has given us information on (1) the number of genes expressed in the rice genome; (2) the start and end positions and exon-intron structures of rice genes; (3) alternative transcripts; (4) possible encoded proteins; (5) non-protein-coding (np) RNAs; (6) the density of gene localization on the chromosome; (7) setting the parameters of gene prediction programs; and (8) the construction of a microarray system that monitors global gene expression. Manual curation for rice gene annotation by using mapping information on full-length cDNA and EST assemblies has revealed about 32,000 expressed genes in the rice genome. Analysis of major gene families, such as those encoding membrane transport proteins (pumps, ion channels, and secondary transporters), along with the evolution from bacteria to higher animals and plants, reveals how gene numbers have increased through adaptation to circumstances. Family-based gene annotation also gives us a new way of comparing organisms. Massive amounts of data on gene expression under many kinds of physiological conditions are being accumulated in rice oligoarrays (22K and 44K) based on full-length cDNA sequences. Cluster analyses of genes that have the same promoter cis-elements, that have similar expression profiles, or that encode enzymes in the same metabolic pathways or signal transduction cascades give us clues to understanding the networks of gene expression in rice. As a tool for that purpose, we recently developed "RiCES", a tool for searching for cis-elements in the promoter regions of clustered genes.

  20. Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis

    PubMed Central

    Fernandez, Paula; Di Rienzo, Julio; Fernandez, Luis; Hopp, H Esteban; Paniego, Norma; Heinz, Ruth A

    2008-01-01

    Background Considering that sunflower production is expanding to arid regions, tolerance to abiotic stresses as drought, low temperatures and salinity arises as one of the main constrains nowadays. Differential organ-specific sunflower ESTs (expressed sequence tags) were previously generated by a subtractive hybridization method that included a considerable number of putative abiotic stress associated sequences. The objective of this work is to analyze concerted gene expression profiles of organ-specific ESTs by fluorescence microarray assay, in response to high sodium chloride concentration and chilling treatments with the aim to identify and follow up candidate genes for early responses to abiotic stress in sunflower. Results Abiotic-related expressed genes were the target of this characterization through a gene expression analysis using an organ-specific cDNA fluorescence microarray approach in response to high salinity and low temperatures. The experiment included three independent replicates from leaf samples. We analyzed 317 unigenes previously isolated from differential organ-specific cDNA libraries from leaf, stem and flower at R1 and R4 developmental stage. A statistical analysis based on mean comparison by ANOVA and ordination by Principal Component Analysis allowed the detection of 80 candidate genes for either salinity and/or chilling stresses. Out of them, 50 genes were up or down regulated under both stresses, supporting common regulatory mechanisms and general responses to chilling and salinity. Interestingly 15 and 12 sequences were up regulated or down regulated specifically in one stress but not in the other, respectively. These genes are potentially involved in different regulatory mechanisms including transcription/translation/protein degradation/protein folding/ROS production or ROS-scavenging. Differential gene expression patterns were confirmed by qRT-PCR for 12.5% of the microarray candidate sequences. Conclusion Eighty genes isolated from

  1. Simultaneous Detection of Marine Fish Pathogens by Using Multiplex PCR and a DNA Microarray

    PubMed Central

    González, Santiago F.; Krug, Melissa J.; Nielsen, Michael E.; Santos, Ysabel; Call, Douglas R.

    2004-01-01

    We coupled multiplex PCR and a DNA microarray to construct an assay suitable for the simultaneous detection of five important marine fish pathogens (Vibrio vulnificus, Listonella anguillarum, Photobacterium damselae subsp. damselae, Aeromonas salmonicida subsp. salmonicida, and Vibrio parahaemolyticus). The array was composed of nine short oligonucleotide probes (25-mer) complementary to seven chromosomal loci (cyt, rpoN, gyrB, toxR, ureC, dly, and vapA) and two plasmid-borne loci (fatA and A.sal). Nine primer sets were designed to amplify short fragments of these loci (100 to 177 bp) in a multiplex PCR. PCR products were subsequently labeled by nick translation and hybridized to the microarray. All strains of the five target species (n = 1 to 21) hybridized to at least one species-specific probe. Assay sensitivities ranged from 100% for seven probes to 83 and 67% for the two remaining probes. Multiplex PCR did not produce any nonspecific amplification products when tested against 23 related species of bacteria (n = 40 strains; 100% specificity). Using purified genomic DNA, we were able to detect PCR products with <20 fg of genomic DNA per reaction (equivalent to four or five cells), and the array was at least fourfold more sensitive than agarose gel electrophoresis for detecting PCR products. In addition, our method allowed the tentative identification of virulent strains of L. anguillarum serotype O1 based on the presence of the fatA gene (67% sensitivity and 100% specificity). This assay is a sensitive and specific tool for the simultaneous detection of multiple pathogenic bacteria that cause disease in fish and humans. PMID:15070982

  2. Simultaneous detection of marine fish pathogens by using multiplex PCR and a DNA microarray.

    PubMed

    González, Santiago F; Krug, Melissa J; Nielsen, Michael E; Santos, Ysabel; Call, Douglas R

    2004-04-01

    We coupled multiplex PCR and a DNA microarray to construct an assay suitable for the simultaneous detection of five important marine fish pathogens (Vibrio vulnificus, Listonella anguillarum, Photobacterium damselae subsp. damselae, Aeromonas salmonicida subsp. salmonicida, and Vibrio parahaemolyticus). The array was composed of nine short oligonucleotide probes (25-mer) complementary to seven chromosomal loci (cyt, rpoN, gyrB, toxR, ureC, dly, and vapA) and two plasmid-borne loci (fatA and A.sal). Nine primer sets were designed to amplify short fragments of these loci (100 to 177 bp) in a multiplex PCR. PCR products were subsequently labeled by nick translation and hybridized to the microarray. All strains of the five target species (n = 1 to 21) hybridized to at least one species-specific probe. Assay sensitivities ranged from 100% for seven probes to 83 and 67% for the two remaining probes. Multiplex PCR did not produce any nonspecific amplification products when tested against 23 related species of bacteria (n = 40 strains; 100% specificity). Using purified genomic DNA, we were able to detect PCR products with < 20 fg of genomic DNA per reaction (equivalent to four or five cells), and the array was at least fourfold more sensitive than agarose gel electrophoresis for detecting PCR products. In addition, our method allowed the tentative identification of virulent strains of L. anguillarum serotype O1 based on the presence of the fatA gene (67% sensitivity and 100% specificity). This assay is a sensitive and specific tool for the simultaneous detection of multiple pathogenic bacteria that cause disease in fish and humans. PMID:15070982

  3. Evaluation of normalization methods for cDNA microarray data by k-NN classification

    SciTech Connect

    Wu, Wei; Xing, Eric P; Myers, Connie; Mian, Saira; Bissell, Mina J

    2004-12-17

    Non-biological factors give rise to unwanted variations in cDNA microarray data. There are many normalization methods designed to remove such variations. However, to date there have been few published systematic evaluations of these techniques for removing variations arising from dye biases in the context of downstream, higher-order analytical tasks such as classification. Ten location normalization methods that adjust spatial- and/or intensity-dependent dye biases, and three scale methods that adjust scale differences were applied, individually and in combination, to five distinct, published, cancer biology-related cDNA microarray data sets. Leave-one-out cross-validation (LOOCV) classification error was employed as the quantitative end-point for assessing the effectiveness of a normalization method. In particular, a known classifier, k-nearest neighbor (k-NN), was estimated from data normalized using a given technique, and the LOOCV error rate of the ensuing model was computed. We found that k-NN classifiers are sensitive to dye biases in the data. Using NONRM and GMEDIAN as baseline methods, our results show that single-bias-removal techniques which remove either spatial-dependent dye bias (referred later as spatial effect) or intensity-dependent dye bias (referred later as intensity effect) moderately reduce LOOCV classification errors; whereas double-bias-removal techniques which remove both spatial- and intensity effect reduce LOOCV classification errors even further. Of the 41 different strategies examined, three two-step processes, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, all of which removed intensity effect globally and spatial effect locally, appear to reduce LOOCV classification errors most consistently and effectively across all data sets. We also found that the investigated scale normalization methods do not reduce LOOCV classification error. Using LOOCV error of k-NNs as the evaluation criterion, three double

  4. Challenges of microarray applications for microbial detection and gene expression profiling in food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microarray technology represents one of the latest advances in molecular biology. The diverse types of microarrays have been applied to clinical and environmental microbiology, microbial ecology, and in human, veterinary, and plant diagnostics. Since multiple genes can be analyzed simultaneously, ...

  5. MELANCHOLIC DEPRESSION PREDICTION BY IDENTIFYING REPRESENTATIVE FEATURES IN METABOLIC AND MICROARRAY PROFILES WITH MISSING VALUES

    PubMed Central

    Nie, Zhi; Yang, Tao; Liu, Yashu; Lin, Binbin; Li, Qingyang; Narayan, Vaibhav A; Wittenberg, Gayle; Ye, Jieping

    2014-01-01

    Recent studies have revealed that melancholic depression, one major subtype of depression, is closely associated with the concentration of some metabolites and biological functions of certain genes and pathways. Meanwhile, recent advances in biotechnologies have allowed us to collect a large amount of genomic data, e.g., metabolites and microarray gene expression. With such a huge amount of information available, one approach that can give us new insights into the understanding of the fundamental biology underlying melancholic depression is to build disease status prediction models using classification or regression methods. However, the existence of strong empirical correlations, e.g., those exhibited by genes sharing the same biological pathway in microarray profiles, tremendously limits the performance of these methods. Furthermore, the occurrence of missing values which are ubiquitous in biomedical applications further complicates the problem. In this paper, we hypothesize that the problem of missing values might in some way benefit from the correlation between the variables and propose a method to learn a compressed set of representative features through an adapted version of sparse coding which is capable of identifying correlated variables and addressing the issue of missing values simultaneously. An efficient algorithm is also developed to solve the proposed formulation. We apply the proposed method on metabolic and microarray profiles collected from a group of subjects consisting of both patients with melancholic depression and healthy controls. Results show that the proposed method can not only produce meaningful clusters of variables but also generate a set of representative features that achieve superior classification performance over those generated by traditional clustering and data imputation techniques. In particular, on both datasets, we found that in comparison with the competing algorithms, the representative features learned by the proposed

  6. Melancholic depression prediction by identifying representative features in metabolic and microarray profiles with missing values.

    PubMed

    Nie, Zhi; Yang, Tao; Liu, Yashu; Li, Qingyang; Narayan, Vaibhav A; Wittenberg, Gayle; Ye, Jieping

    2015-01-01

    Recent studies have revealed that melancholic depression, one major subtype of depression, is closely associated with the concentration of some metabolites and biological functions of certain genes and pathways. Meanwhile, recent advances in biotechnologies have allowed us to collect a large amount of genomic data, e.g., metabolites and microarray gene expression. With such a huge amount of information available, one approach that can give us new insights into the understanding of the fundamental biology underlying melancholic depression is to build disease status prediction models using classification or regression methods. However, the existence of strong empirical correlations, e.g., those exhibited by genes sharing the same biological pathway in microarray profiles, tremendously limits the performance of these methods. Furthermore, the occurrence of missing values which are ubiquitous in biomedical applications further complicates the problem. In this paper, we hypothesize that the problem of missing values might in some way benefit from the correlation between the variables and propose a method to learn a compressed set of representative features through an adapted version of sparse coding which is capable of identifying correlated variables and addressing the issue of missing values simultaneously. An efficient algorithm is also developed to solve the proposed formulation. We apply the proposed method on metabolic and microarray profiles collected from a group of subjects consisting of both patients with melancholic depression and healthy controls. Results show that the proposed method can not only produce meaningful clusters of variables but also generate a set of representative features that achieve superior classification performance over those generated by traditional clustering and data imputation techniques. In particular, on both datasets, we found that in comparison with the competing algorithms, the representative features learned by the proposed

  7. Inferring identify from DNA profile evidence.

    PubMed

    Balding, D J; Donnelly, P

    1995-12-01

    The controversy over the interpretation of DNA profile evidence in forensic identification can be attributed in part to confusion over the mode(s) of statistical inference appropriate to this setting. Although there has been substantial discussion in the literature of, for example, the role of population genetics issues, few authors have made explicit the inferential framework which underpins their arguments. This lack of clarity has led both to unnecessary debates over ill-posed or inappropriate questions and to the neglect of some issues which can have important consequences. We argue that the mode of statistical inference which seems to underlie the arguments of some authors, based on a hypothesis testing framework, is not appropriate for forensic identification. We propose instead a logically coherent framework in which, for example, the roles both of the population genetics issues and of the nonscientific evidence in a case are incorporated. Our analysis highlights several widely held misconceptions in the DNA profiling debate. For example, the profile frequency is not directly relevant to forensic inference. Further, very small match probabilities may in some settings be consistent with acquittal. Although DNA evidence is typically very strong, our analysis of the coherent approach highlights situations which can arise in practice where alternative methods for assessing DNA evidence may be misleading. PMID:8524840

  8. Convergent evolution to an aptamer observed in small populations on DNA microarrays

    NASA Astrophysics Data System (ADS)

    Rowe, W.; Platt, M.; Wedge, D. C.; Day, P. J. R.; Kell, D. B.; Knowles, J. D.

    2010-09-01

    The development of aptamers on custom synthesized DNA microarrays, which has been demonstrated in recent publications, can facilitate detailed analyses of sequence and fitness relationships. Here we use the technique to observe the paths taken through sequence-fitness space by three different evolutionary regimes: asexual reproduction, recombination and model-based evolution. The different evolutionary runs are made on the same array chip in triplicate, each one starting from a small population initialized independently at random. When evolving to a common target protein, glucose-6-phosphate dehydrogenase (G6PD), these nine distinct evolutionary runs are observed to develop aptamers with high affinity and to converge on the same motif not present in any of the starting populations. Regime specific differences in the evolutions, such as speed of convergence, could also be observed.

  9. A DNA microarray for the authentication of toxic traditional Chinese medicinal plants.

    PubMed

    Carles, Maria; Cheung, Matthew Kin; Moganti, Shanti; Dong, Tina T; Tsim, Karl W; Ip, Nancy Y; Sucher, Nikolaus J

    2005-06-01

    A silicon-based DNA microarray was designed and fabricated for the identification of toxic traditional Chinese medicinal plants. Species-specific oligonucleotide probes were derived from the 5S ribosomal RNA gene of Aconitum carmichaeli, A. kusnezoffi, Alocasia macrorrhiza, Croton tiglium, Datura inoxia, D. metel, D. tatula, Dysosma pleiantha, Dy. versipellis, Euphorbia kansui, Hyoscyamus niger, Pinellia cordata, P. pedatisecta, P. ternata, Rhododendron molle, Strychnos nux-vomica, Typhonium divaricatum and T. giganteum and the leucine transfer RNA gene of Aconitum pendulum and Stellera chamaejasme. The probes were immobilized via dithiol linkage on a silicon chip. Genomic target sequences were amplified and fluorescently labeled by asymmetric polymerase chain reaction. Multiple toxic plant species were identified by parallel genotyping. Chip-based authentication of medicinal plants may be useful as inexpensive and rapid tool for quality control and safety monitoring of herbal pharmaceuticals and neutraceuticals. PMID:15971136

  10. DNA microarray unravels rapid changes in transcriptome of MK-801 treated rat brain

    PubMed Central

    Kobayashi, Yuka; Kulikova, Sofya P; Shibato, Junko; Rakwal, Randeep; Satoh, Hiroyuki; Pinault, Didier; Masuo, Yoshinori

    2015-01-01

    AIM: To investigate the impact of MK-801 on gene expression patterns genome wide in rat brain regions. METHODS: Rats were treated with an intraperitoneal injection of MK-801 [0.08 (low-dose) and 0.16 (high-dose) mg/kg] or NaCl (vehicle control). In a first series of experiment, the frontoparietal electrocorticogram was recorded 15 min before and 60 min after injection. In a second series of experiments, the whole brain of each animal was rapidly removed at 40 min post-injection, and different regions were separated: amygdala, cerebral cortex, hippocampus, hypothalamus, midbrain and ventral striatum on ice followed by DNA microarray (4 × 44 K whole rat genome chip) analysis. RESULTS: Spectral analysis revealed that a single systemic injection of MK-801 significantly and selectively augmented the power of baseline gamma frequency (30-80 Hz) oscillations in the frontoparietal electroencephalogram. DNA microarray analysis showed the largest number (up- and down- regulations) of gene expressions in the cerebral cortex (378), midbrain (376), hippocampus (375), ventral striatum (353), amygdala (301), and hypothalamus (201) under low-dose (0.08 mg/kg) of MK-801. Under high-dose (0.16 mg/kg), ventral striatum (811) showed the largest number of gene expression changes. Gene expression changes were functionally categorized to reveal expression of genes and function varies with each brain region. CONCLUSION: Acute MK-801 treatment increases synchrony of baseline gamma oscillations, and causes very early changes in gene expressions in six individual rat brain regions, a first report. PMID:26629322

  11. Comprehensive census of bacteria in clean rooms by using DNA microarray and cloning methods.

    PubMed

    La Duc, Myron T; Osman, Shariff; Vaishampayan, Parag; Piceno, Yvette; Andersen, Gary; Spry, J A; Venkateswaran, Kasthuri

    2009-10-01

    A census of clean room surface-associated bacterial populations was derived from the results of both the cloning and sequencing of 16S rRNA genes and DNA microarray (PhyloChip) analyses. Samples from the Lockheed Martin Aeronautics Multiple Testing Facility (LMA-MTF), the Kennedy Space Center Payload Hazard and Servicing Facility (KSC-PHSF), and the Jet Propulsion Laboratory Spacecraft Assembly Facility (JPL-SAF) clean rooms were collected during the various assembly phases of the Phoenix and Mars Science Laboratory (MSL) spacecraft. Clone library-derived analyses detected a larger bacterial diversity prior to the arrival of spacecraft hardware in these clean room facilities. PhyloChip results were in agreement with this trend but also unveiled the presence of anywhere from 9- to 70-fold more bacterial taxa than cloning approaches. Among the facilities sampled, the JPL-SAF (MSL mission) housed a significantly less diverse bacterial population than either the LMA-MTF or KSC-PHSF (Phoenix mission). Bacterial taxa known to thrive in arid conditions were frequently detected in MSL-associated JPL-SAF samples, whereas proteobacterial lineages dominated Phoenix-associated KSC-PHSF samples. Comprehensive bacterial censuses, such as that reported here, will help space-faring nations preemptively identify contaminant biomatter that may compromise extraterrestrial life detection experiments. The robust nature and high sensitivity of DNA microarray technologies should prove beneficial to a wide range of scientific, electronic, homeland security, medical, and pharmaceutical applications and to any other ventures with a vested interest in monitoring and controlling contamination in exceptionally clean environments. PMID:19700540

  12. Synergistic effects of epoxy- and amine-silanes on microarray DNA immobilization and hybridization.

    PubMed Central

    Chiu, Sung-Kay; Hsu, Mandy; Ku, Wei-Chi; Tu, Ching-Yu; Tseng, Yu-Tien; Lau, Wai-Kwan; Yan, Rong-Yih; Ma, Jing-Tyan; Tzeng, Chi-Meng

    2003-01-01

    Most microarray slides are manufactured or coated with a layer of poly(L-lysine) or with silanes with different chemical functional groups, for the attachment of nucleic acids on to their surfaces. The efficiency with which nucleic acids bind to these surfaces is not high, because they can be washed away, especially in the case of spotting oligonucleotides. In view of this, we have developed a method to increase the binding capacity and efficiency of hybridization of DNA on to derivatized glass surfaces. This makes use of the synergistic effect of two binding interactions between the nucleic acids and the coating chemicals on the surface of the glass slides. The enhanced binding allows the nucleic acids to be bound tightly and to survive stringency washes. When immobilized, DNA exhibits a higher propensity for hybridization on the surface than on slides with only one binding chemical. By varying the silane concentrations, we have shown that maximal DNA oligonucleotide binding on glass surfaces occurs when the percentage composition of both of the surface-coating chemicals falls to 0.2%, which is different from that on binding PCR products. This new mixture-combination approach for nucleic-acid binding allows signals from immobilization and hybridization to have higher signal-to-noise ratios than for other silane-coated methods. PMID:12809552

  13. Multiple protein extract microarray for profiling human food-specific immunoglobulins A, M, G and E.

    PubMed

    Renault, N K; Gaddipati, S R; Wulfert, F; Falcone, F H; Mirotti, L; Tighe, P J; Wright, V; Alcocer, M J C

    2011-02-01

    Existing food immunoglobulin (Ig) tests require large volumes of serum, are limited to one immunoglobulin class, are not amenable to high throughput analysis and only give a limited picture of the immunological response to food antigens. Conversely a new generation of Component Resolved Diagnostic systems using pure proteins is highly specific and totally dependent on the availability of the protein in its recombinant or natural origin form. Here we demonstrate a proof-of-concept of a microarray test based on protein extracts of food components. Our approach relies on innovations on three different fronts: the novelty of using arrayed food samples sequentially extracted with detergent and chaotropic agents, the ability to measure four different Ig classes simultaneously and the ability to analyse the generated data via a suitable bioinformatics/statistical analysis interface. This approach combines high numerical power of microarrays with automation, high throughput analysis and enables detailed investigation of the Ig profiles to food antigens. The prototype shown contains extracts of approximately 350 food ingredients that cover most of the food products found in the UK. Here we showed that the use of a sequential extraction technique to solubilise and then denature food samples has its benefits in the assessment of variations in antigenicity when tested with human sera. A patient dependent degree of class specificity was observed with human sera (IgG specificity correlates well with IgA>IgM>IgE). Besides generating a simultaneous profile for IgA, IgM, IgG and IgE the array system has shown good discrimination between challenge responders in atopic and non-atopic individuals. Poly- and mono-specific IgE responders were easily identified. The mathematical modelling of specific IgE content showed good correlations when compared with established IgE antibody testing assay (UniCAP). Although in its proof-of-principle stages, the immune profiling technique described

  14. Microarray profiling of L1-overexpressing endothelial cells reveals STAT3 activation via IL-6/IL-6Rα axis

    PubMed Central

    Magrini, Elena; Cavallaro, Ugo; Bianchi, Fabrizio

    2015-01-01

    We recently identified a novel role for the L1 transmembrane glycoprotein (also known as L1CAM or CD171) in the regulation of tumor angiogenesis and vessels stabilization. L1 overexpression in cultured endothelial cells of the lung (luECs) exerted a pleiotropic effect in that it regulated proliferation, migration, tubulogenesis, vascular permeability, and endothelial-to-mesenchymal transition (EndMT). In addition, we provided strong evidence that antibody-mediated targeting of L1 may be an effective strategy for vessel normalization with the potential to increase efficacy of chemotherapeutic agents. High-throughput microarray expression profile revealed that L1 modulates the expression of hundreds of genes mainly involved in cell cycle regulation, DNA replication, cellular assembly, migration, development and organization. By using a ‘pathway-oriented’ analysis strategy we were able to identify a network of 105 genes modulated by L1 through the predicted activation of five transcription factors: STAT1, STAT2, STAT3, IRF7, and ATF4. Indeed, L1 overexpression resulted in the strong induction of STAT3 phosphorylation which was abolished by antibody-mediated neutralization of IL-6Rα. These results indicated that L1 promoted STAT3 activation via the IL-6/IL-6Rα axis. PMID:26484199

  15. ASSESSMENT OF THE SWINE PROTEIN-ANNOTATED OLIGONUCLEOTIDE MICROARRAY AND UTILITY OF THE ARRAYS FOR EQTL AND TRANSCRIPTIONAL PROFILING STUDIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have evaluated the new Swine Protein-Annotated Oligonucleotide Microarray (http://www.pigoligoarray.org) by analyzing transcriptional profiles for longissimus dorsi muscle (LD), Bronchial lymph node (BLN) and Lung. Four LD samples were used to assess the stringency of hybridization conditions com...

  16. Sensitive immunoassay detection of multiple environmental chemicals on protein microarrays using DNA/dye conjugate as a fluorescent label

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Indirect competitive immunoassays were developed on protein microarrays for the sensitive and simultaneous detection of multiple environmental chemicals in one sample. In this assay, a DNA/SYTOX Orange conjugate was employed as antibody labels to increase the fluorescence signal and sensitivity. Ep...

  17. Automatic image analysis and spot classification for detection of pathogenic Escherichia coli on glass slide DNA microarrays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A computer algorithm was created to inspect scanned images from DNA microarray slides developed to rapidly detect and genotype E. Coli O157 virulent strains. The algorithm computes centroid locations for signal and background pixels in RGB space and defines a plane perpendicular to the line connect...

  18. Colorectal Cancer Cell Surface Protein Profiling Using an Antibody Microarray and Fluorescence Multiplexing

    PubMed Central

    Zhou, Jerry; Belov, Larissa; Solomon, Michael J.; Chan, Charles; Clarke, Stephen J.; Christopherson, Richard I.

    2011-01-01

    The current prognosis and classification of CRC relies on staging systems that integrate histopathologic and clinical findings. However, in the majority of CRC cases, cell dysfunction is the result of numerous mutations that modify protein expression and post-translational modification1. A number of cell surface antigens, including cluster of differentiation (CD) antigens, have been identified as potential prognostic or metastatic biomarkers in CRC. These antigens make ideal biomarkers as their expression often changes with tumour progression or interactions with other cell types, such as tumour-infiltrating lymphocytes (TILs) and tumour-associated macrophages (TAMs). The use of immunohistochemistry (IHC) for cancer sub-classification and prognostication is well established for some tumour types2,3. However, no single ‘marker’ has shown prognostic significance greater than clinico-pathological staging or gained wide acceptance for use in routine pathology reporting of all CRC cases. A more recent approach to prognostic stratification of disease phenotypes relies on surface protein profiles using multiple 'markers'. While expression profiling of tumours using proteomic techniques such as iTRAQ is a powerful tool for the discovery of biomarkers4, it is not optimal for routine use in diagnostic laboratories and cannot distinguish different cell types in a mixed population. In addition, large amounts of tumour tissue are required for the profiling of purified plasma membrane glycoproteins by these methods. In this video we described a simple method for surface proteome profiling of viable cells from disaggregated CRC samples using a DotScan CRC antibody microarray. The 122-antibody microarray consists of a standard 82-antibody region recognizing a range of lineage-specific leukocyte markers, adhesion molecules, receptors and markers of inflammation and immune response5, together with a satellite region for detection of 40 potentially prognostic markers for CRC

  19. Use of cDNA Microarrays To Monitor Transcriptional Responses of the Chestnut Blight Fungus Cryphonectria parasitica to Infection by Virulence-Attenuating Hypoviruses

    PubMed Central

    Allen, Todd D.; Dawe, Angus L.; Nuss, Donald L.

    2003-01-01

    Hypoviruses are a family of cytoplasmically replicating RNA viruses of the chestnut blight fungus Cryphonectria parasitica. Members of this mycovirus family persistently alter virulence (hypovirulence) and related fungal developmental processes, including asexual and sexual sporulation. In order to gain a better understanding of the molecular basis for these changes, we have developed a C. parasitica cDNA microarray to monitor global transcriptional responses to hypovirus infection. In this report, a spotted DNA microarray representing approximately 2,200 C. parasitica genes was used to monitor changes in the transcriptional profile after infection by the prototypic hypovirus CHV1-EP713. Altered transcript abundance was identified for 295 clones (13.4% of the 2,200 unique cDNAs) as a result of CHV1-EP713 infection—132 up-regulated and 163 down-regulated. In comparison, less than 20 specific C. parasitica genes were previously identified by Northern analysis and mRNA differential display as being responsive to hypovirus infection. A 93% validation rate was achieved between real-time reverse transcription-PCR results and microarray predictions. Differentially expressed genes represented a broad spectrum of biological functions, including stress responses, carbon metabolism, and transcriptional regulation. These findings are consistent with the view that infection by a 12.7-kbp hypovirus RNA results in a persistent reprogramming of a significant portion of the C. parasitica transcriptome. The potential impact of microarray studies on current and future efforts to establish links between hypovirus-mediated changes in cellular gene expression and phenotypes is discussed. PMID:14665460

  20. The Sterolgene v0 cDNA microarray: a systemic approach to studies of cholesterol homeostasis and drug metabolism

    PubMed Central

    Režen, Tadeja; Juvan, Peter; Fon Tacer, Klementina; Kuzman, Drago; Roth, Adrian; Pompon, Denis; Aggerbeck, Lawrence P; Meyer, Urs A; Rozman, Damjana

    2008-01-01

    Background Cholesterol homeostasis and xenobiotic metabolism are complex biological processes, which are difficult to study with traditional methods. Deciphering complex regulation and response of these two processes to different factors is crucial also for understanding of disease development. Systems biology tools as are microarrays can importantly contribute to this knowledge and can also discover novel interactions between the two processes. Results We have developed a low density Sterolgene v0 cDNA microarray dedicated to studies of cholesterol homeostasis and drug metabolism in the mouse. To illustrate its performance, we have analyzed mouse liver samples from studies focused on regulation of cholesterol homeostasis and drug metabolism by diet, drugs and inflammation. We observed down-regulation of cholesterol biosynthesis during fasting and high-cholesterol diet and subsequent up-regulation by inflammation. Drug metabolism was down-regulated by fasting and inflammation, but up-regulated by phenobarbital treatment and high-cholesterol diet. Additionally, the performance of the Sterolgene v0 was compared to the two commercial high density microarray platforms: the Agilent cDNA (G4104A) and the Affymetrix MOE430A GeneChip. We hybridized identical RNA samples to the commercial microarrays and showed that the performance of Sterolgene is comparable to commercial arrays in terms of detection of changes in cholesterol homeostasis and drug metabolism. Conclusion Using the Sterolgene v0 microarray we were able to detect important changes in cholesterol homeostasis and drug metabolism caused by diet, drugs and inflammation. Together with its next generations the Sterolgene microarrays represent original and dedicated tools enabling focused and cost effective studies of cholesterol homeostasis and drug metabolism. These microarrays have the potential of being further developed into screening or diagnostic tools. PMID:18261244

  1. Broad respiratory virus detection in infants hospitalized for bronchiolitis by use of a multiplex RT-PCR DNA microarray system.

    PubMed

    Huguenin, Antoine; Moutte, Lauryane; Renois, Fanny; Leveque, Nicolas; Talmud, Deborah; Abely, Michel; Nguyen, Yohan; Carrat, Fabrice; Andreoletti, Laurent

    2012-06-01

    Newly available molecular tools allow a sensitive detection of a broad panel of viruses in respiratory tract specimens. In the present study, the application of a multiplex RT-PCR DNA microarray in diagnosis and epidemiological survey of viral infections in infants hospitalized for bronchiolitis was assessed. One hundred and thirty-eight nasopharyngeal aspirates collected from October 2007 to September 2008 were tested by direct immunofluorescence and viral culture, a combination of referenced RT-PCRs and the DNA microarray. One or more viruses were detected in 96, 126 and 126 of the specimens by direct immunofluorescence and viral culture, RT-PCRs and DNA microarray, respectively (70 vs. 91 vs. 91%, P < 10(-3)). The RT-PCRs and the DNA microarray yielded concordant results for 99% of specimens and identified mixed viral infections in 85 (62%). The most common associations were: human bocavirus and respiratory syncytial virus (32%), adenovirus and respiratory syncytial virus (30%), and parainfluenza virus type 3 and respiratory syncytial virus (23%). None of the bronchiolitis severity parameters including intensive care unit admission, O(2) supply, O(2) saturation percentage, O(2) length and length of stay at the hospital appeared to be significantly increased in multiple viral infections compared to single viral infections (P > 0.1). In conclusion, the use of this DNA microarray in clinical virology practice allows rapid and accurate identification of common and uncommon viral respiratory pathogens in infants hospitalized for bronchiolitis. It should improve the clinical management, the epidemiological survey, and the prevention of the nosocomial transmission of respiratory viruses in pediatric wards. PMID:22499022

  2. Plasma long noncoding RNA expression profile identified by microarray in patients with Crohn’s disease

    PubMed Central

    Chen, Dong; Liu, Jiang; Zhao, Hui-Ying; Chen, Yi-Peng; Xiang, Zun; Jin, Xi

    2016-01-01

    AIM: To investigate the expression pattern of plasma long noncoding RNAs (lncRNAs) in Chrohn’s disease (CD) patients. METHODS: Microarray screening and qRT-PCR verification of lncRNAs and mRNAs were performed in CD and control subjects, followed by hierarchy clustering, GO and KEGG pathway analyses. Significantly dysregulated lncRNAs were categorized into subgroups of antisense lncRNAs, enhancer lncRNAs and lincRNAs. To predict the regulatory effect of lncRNAs on mRNAs, a CNC network analysis was performed and cross linked with significantly changed lncRNAs. The overlapping lncRNAs were randomly selected and verified by qRT-PCR in a larger cohort. RESULTS: Initially, there were 1211 up-regulated and 777 down-regulated lncRNAs as well as 1020 up-regulated and 953 down-regulated mRNAs after microarray analysis; a heat map based on these results showed good categorization into the CD and control groups. GUSBP2 and AF113016 had the highest fold change of the up- and down-regulated lncRNAs, whereas TBC1D17 and CCL3L3 had the highest fold change of the up- and down-regulated mRNAs. Six (SNX1, CYFIP2, CD6, CMTM8, STAT4 and IGFBP7) of 10 mRNAs and 8 (NR_033913, NR_038218, NR_036512, NR_049759, NR_033951, NR_045408, NR_038377 and NR_039976) of 14 lncRNAs showed the same change trends on the microarray and qRT-PCR results with statistical significance. Based on the qRT-PCR verified mRNAs, 1358 potential lncRNAs with 2697 positive correlations and 2287 negative correlations were predicted by the CNC network. CONCLUSION: The plasma lncRNAs profiles provide preliminary data for the non-invasive diagnosis of CD and a resource for further specific lncRNA-mRNA pathway exploration. PMID:27217703

  3. Phylogeographic genomics of mitochondrial DNA: Highly-resolved patterns of intraspecific evolution and a multi-species, microarray-based DNA sequencing strategy for biodiversity studies.

    PubMed

    Carr, Steven M; Marshall, H Dawn; Duggan, Ana T; Flynn, Sarah M C; Johnstone, Kimberley A; Pope, Angela M; Wilkerson, Corinne D

    2008-03-01

    Phylogeographic genomics, based on multiple complete mtDNA genome sequences from within individual vertebrate species, provides highly-resolved intraspecific trees for the detailed study of evolutionary biology. We describe new biogeographic and historical insights from our studies of the genomes of codfish, wolffish, and harp seal populations in the Northwest Atlantic, and from the descendants of the founding human population of Newfoundland. Population genomics by conventional sequencing methods remains laborious. A new biotechnology, iterative DNA "re-sequencing", uses a DNA microarray to recover 30-300 kb of contiguous DNA sequence in a single experiment. Experiments with a single-species mtDNA microarray show that the method is accurate and efficient, and sufficiently species-specific to discriminate mtDNA genomes of moderately-divergent taxa. Experiments with a multi-species DNA microarray (the "ArkChip") show that simultaneous sequencing of species in different orders and classes detects SNPs within each taxon with equal accuracy as single-species-specific experiments. Iterative DNA sequencing offers a practical method for high-throughput biodiversity genomics that will enable standardized, coordinated investigation of multiple species of interest to Species at Risk and conservation biologists. PMID:20483203

  4. Tissue microarrays: applications in genomic research.

    PubMed

    Watanabe, Aprill; Cornelison, Robert; Hostetter, Galen

    2005-03-01

    The widespread application of tissue microarrays in cancer research and the clinical pathology laboratory demonstrates a versatile and portable technology. The rapid integration of tissue microarrays into biomarker discovery and validation processes reflects the forward thinking of researchers who have pioneered the high-density tissue microarray. The precise arrangement of hundreds of archival clinical tissue samples into a composite tissue microarray block is now a proven method for the efficient and standardized analysis of molecular markers. With applications in cancer research, tissue microarrays are a valuable tool in validating candidate markers discovered in highly sensitive genome-wide microarray experiments. With applications in clinical pathology, tissue microarrays are used widely in immunohistochemistry quality control and quality assurance. The timeline of a biomarker implicated in prostate neoplasia, which was identified by complementary DNA expression profiling, validated by tissue microarrays and is now used as a prognostic immunohistochemistry marker, is reviewed. The tissue microarray format provides opportunities for digital imaging acquisition, image processing and database integration. Advances in digital imaging help to alleviate previous bottlenecks in the research pipeline, permit computer image scoring and convey telepathology opportunities for remote image analysis. The tissue microarray industry now includes public and private sectors with varying degrees of research utility and offers a range of potential tissue microarray applications in basic research, prognostic oncology and drug discovery. PMID:15833047

  5. Identification of Genes Associated With Progression and Metastasis of Advanced Cervical Cancers After Radiotherapy by cDNA Microarray Analysis

    SciTech Connect

    Harima, Yoko; Ikeda, Koshi; Utsunomiya, Keita; Shiga, Toshiko; Komemushi, Atsushi; Kojima, Hiroyuki; Nomura, Motoo; Kamata, Minoru; Sawada, Satoshi

    2009-11-15

    Purpose: To identify a set of genes related to the progression and metastasis of advanced cervical cancer after radiotherapy and to establish a predictive method. Methods and Materials: A total of 28 patients with cervical cancer (15 stage IIIB, 13 stage IVA patients) who underwent definitive radiotherapy between May 1995 and April 2001 were included in this study. All patients were positive for human papillomavirus infection and harbored the wild-type p53 gene. The expression profiles of 14 tumors with local failure and multiple distant metastasis and 14 tumors without metastasis (cancer free) obtained by punch biopsy were compared before treatment, using a cDNA microarray consisting of 23,040 human genes. Results: Sixty-three genes were selected on the basis of a clustering analysis, and the validity of these genes was confirmed using a cross-validation test. The most accurate prediction was achieved for 63 genes (sensitivity, 78.8%; specificity, 38.1%). Some of these genes were already known to be associated with metastasis via chromosomal instability (TTK, BUB1B), extracellular matrix components (matrix metalloproteinase 1 [MMP-1]), and carcinogenesis (protein phosphatase 1 regulatory subunit 7 [PPP1R7]). A 'predictive score' system was developed that could predict the probability for development of metastases using leave-one-out cross-validation methods. Conclusions: The present results may provide valuable information for identified predictive markers and novel therapeutic target molecules for progression and metastasis of advanced cervical cancer.

  6. DNA Microarray Highlights Nrf2-Mediated Neuron Protection Targeted by Wasabi-Derived Isothiocyanates in IMR-32 Cells.

    PubMed

    Trio, Phoebe Zapanta; Fujisaki, Satoru; Tanigawa, Shunsuke; Hisanaga, Ayami; Sakao, Kozue; Hou, De-Xing

    2016-01-01

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), 6-(methylthio)hexyl isothiocyanate (6-MTITC), and 4-(methylsulfinyl)butyl isothiocyanate (4-MSITC) are isothiocyanate (ITC) bioactive compounds from Japanese Wasabi. Previous in vivo studies highlighted the neuroprotective potential of ITCs since ITCs enhance the production of antioxidant-related enzymes. Thus, in this present study, a genome-wide DNA microarray analysis was designed to profile gene expression changes in a neuron cell line, IMR-32, stimulated by these ITCs. Among these ITCs, 6-MSITC caused the expression changes of most genes (263), of which 100 genes were upregulated and 163 genes were downregulated. Gene categorization showed that most of the differentially expressed genes are involved in oxidative stress response, and pathway analysis further revealed that Nrf2-mediated oxidative stress pathway is the top of the ITC-modulated signaling pathway. Finally, real-time polymerase chain reaction (PCR) and Western blotting confirmed the gene expression and protein products of the major targets by ITCs. Taken together, Wasabi-derived ITCs might target the Nrf2-mediated oxidative stress pathway to exert neuroprotective effects. PMID:27547033

  7. DNA Microarray Highlights Nrf2-Mediated Neuron Protection Targeted by Wasabi-Derived Isothiocyanates in IMR-32 Cells

    PubMed Central

    Trio, Phoebe Zapanta; Fujisaki, Satoru; Tanigawa, Shunsuke; Hisanaga, Ayami; Sakao, Kozue; Hou, De-Xing

    2016-01-01

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), 6-(methylthio)hexyl isothiocyanate (6-MTITC), and 4-(methylsulfinyl)butyl isothiocyanate (4-MSITC) are isothiocyanate (ITC) bioactive compounds from Japanese Wasabi. Previous in vivo studies highlighted the neuroprotective potential of ITCs since ITCs enhance the production of antioxidant-related enzymes. Thus, in this present study, a genome-wide DNA microarray analysis was designed to profile gene expression changes in a neuron cell line, IMR-32, stimulated by these ITCs. Among these ITCs, 6-MSITC caused the expression changes of most genes (263), of which 100 genes were upregulated and 163 genes were downregulated. Gene categorization showed that most of the differentially expressed genes are involved in oxidative stress response, and pathway analysis further revealed that Nrf2-mediated oxidative stress pathway is the top of the ITC-modulated signaling pathway. Finally, real-time polymerase chain reaction (PCR) and Western blotting confirmed the gene expression and protein products of the major targets by ITCs. Taken together, Wasabi-derived ITCs might target the Nrf2-mediated oxidative stress pathway to exert neuroprotective effects. PMID:27547033

  8. DNA microarray reveals different pathways responding to paclitaxel and docetaxel in non-small cell lung cancer cell line

    PubMed Central

    Che, Chun-Li; Zhang, Yi-Mei; Zhang, Hai-Hong; Sang, Yu-Lan; Lu, Ben; Dong, Fu-Shi; Zhang, Li-Juan; Lv, Fu-Zhen

    2013-01-01

    The wide use of paclitaxel and docetaxel in NSCLC clinical treatment makes it necessary to find biomarkers for identifying patients who can benefit from paclitaxel or docetaxel. In present study, NCI-H460, a NSCLC cell line with different sensitivity to paclitaxel and docetaxel, was applied to DNA microarray expression profiling analysis at different time points of lower dose treatment with paclitaxel or docetaxel. And the complex signaling pathways regulating the drug response were identified, and several novel sensitivity-realted markers were biocomputated.The dynamic changes of responding genes showed that paclitaxel effect is acute but that of docetaxel is durable at least for 48 hours in NCI-H460 cells. Functional annotation of the genes with altered expression showed that genes/pathways responding to these two drugs were dramatically different. Gene expression changes induced by paclitaxel treatment were mainly enriched in actin cytoskeleton (ACTC1, MYL2 and MYH2), tyrosine-protein kinases (ERRB4, KIT and TIE1) and focal adhesion pathway (MYL2, IGF1 and FLT1), while the expression alterations responding to docetaxel were highly co-related to cell surface receptor linked signal transduction (SHH, DRD5 and ADM2), cytokine-cytokine receptor interaction (IL1A and IL6) and cell cycleregulation (CCNB1, CCNE2 and PCNA). Moreover, we also confirmed some different expression patterns with real time PCR. Our study will provide the potential biomarkers for paclitaxel and docetaxel-selection therapy in clinical application. PMID:23923072

  9. Design and testing of 'genome-proxy' microarrays to profile marine microbial communities.

    PubMed

    Rich, Virginia I; Konstantinidis, Konstantinos; DeLong, Edward F

    2008-02-01

    Microarrays are useful tools for detecting and quantifying specific functional and phylogenetic genes in natural microbial communities. In order to track uncultivated microbial genotypes and their close relatives in an environmental context, we designed and implemented a 'genome-proxy' microarray that targets microbial genome fragments recovered directly from the environment. Fragments consisted of sequenced clones from large-insert genomic libraries from microbial communities in Monterey Bay, the Hawaii Ocean Time-series station ALOHA, and Antarctic coastal waters. In a prototype array, we designed probe sets to 13 of the sequenced genome fragments and to genomic regions of the cultivated cyanobacterium Prochlorococcus MED4. Each probe set consisted of multiple 70-mers, each targeting an individual open reading frame, and distributed along each approximately 40-160 kbp contiguous genomic region. The targeted organisms or clones, and close relatives, were hybridized to the array both as pure DNA mixtures and as additions of cells to a background of coastal seawater. This prototype array correctly identified the presence or absence of the target organisms and their relatives in laboratory mixes, with negligible cross-hybridization to organisms having DNA, with a limit of detection of approximately 0.1% of the community, corresponding to approximately 10(3) cells ml(-1) in these samples. Signal correlated to cell concentration with an R(2) of 1.0 across six orders of magnitude. In addition, the array could track a related strain (at 86% genomic identity to that targeted) with a linearity of R(2) = 0.9999 and a limit of detection of approximately 1% of the community. Closely related genotypes were distinguishable by differing hybridization patterns across each probe set. This array's multiple-probe, 'genome-proxy' approach and

  10. A highly oriented hybrid microarray modified electrode fabricated by a template-free method for ultrasensitive electrochemical DNA recognition

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Chu, Zhenyu; Dong, Xueliang; Jin, Wanqin; Dempsey, Eithne

    2013-10-01

    Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and influence the morphologies of hybrid films. A highly oriented hybrid microarray was formed on the highly aligned and vertical SAMs of 1,4-benzenedithiol molecules with rigid backbones, which afforded an intense structure-directing power for the oriented growth of hybrid crystals. Additionally, the density of the microarray could be adjusted by controlling the surface coverage of assembled molecules. Based on the hybrid microarray modified electrode with a large specific area (ca. 10 times its geometrical area), a label-free electrochemical DNA biosensor was constructed for the detection of an oligonucleotide fragment of the avian flu virus H5N1. The DNA biosensor displayed a significantly low detection limit of 5 pM (S/N = 3), a wide linear response from 10 pM to 10 nM, as well as excellent selectivity, good regeneration and high stability. We expect that the proposed template-free method can provide a new reference for the fabrication of a highly oriented hybrid array and the as-prepared microarray modified electrode will be a promising paradigm in constructing highly sensitive and selective biosensors.Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and

  11. Processing the loblolly pine PtGen2 cDNA microarray.

    PubMed

    Lorenz, W Walter; Yu, Yuan-Sheng; Simões, Marta; Dean, Jeffrey F D

    2009-01-01

    PtGen2 is a 26,496 feature cDNA microarray containing amplified loblolly pine ESTs. The array is produced in our laboratory for use by researchers studying gene expression in pine and other conifer species. PtGen2 was developed as a result of our gene discovery efforts in loblolly pine, and is comprised of sequences identified primarily from root tissues, but also from needle and stem. PtGen2 has been tested by hybridizing different Cy-dye labeled conifer target cDNAs, using both amplified and non-amplified indirect labeling methods, and also tested with a number of hybridization and washing conditions. This video focuses on the handling and processing of slides before and after pre-hybridization, as well as after hybridization, using some modifications to procedures developed previously. Also included, in text form only, are the protocols used for the generation, labeling and clean up of target cDNA s, as well as information on software used for downstream data processing. PtGen2 is printed with a proprietary print buffer that contains high concentrations of salt that can be difficult to remove completely. The slides are washed first in a warm SDS solution prior to pre-hybridization. After pre-hybridization, the slides are washed vigorously in several changes of water to complete removal of remaining salts. LifterSlips are then cleaned and positioned on the slides and labeled cDNA is carefully loaded onto the microarray by way of capillary action which provides for even distribution of the sample across the slide, and reduces the chance of bubble incorporation. Hybridization of targets to the array is done at 48 degrees C in high humidity conditions. After hybridization, a series of standard washes are done at 53 degrees C and room temperature for extended times. Processing PtGen2 slides using this technique reduces salt and SDS-derived artifacts often seen when the array is processed less rigorously. Hybridizing targets derived from several different conifer RNA

  12. Genome-Wide Profiling of Yeast DNA:RNA Hybrid Prone Sites with DRIP-Chip

    PubMed Central

    Lu, Phoebe Y. T.; Luo, Zongli; Hamza, Akil; Kobor, Michael S.; Stirling, Peter C.; Hieter, Philip

    2014-01-01

    DNA:RNA hybrid formation is emerging as a significant cause of genome instability in biological systems ranging from bacteria to mammals. Here we describe the genome-wide distribution of DNA:RNA hybrid prone loci in Saccharomyces cerevisiae by DNA:RNA immunoprecipitation (DRIP) followed by hybridization on tiling microarray. These profiles show that DNA:RNA hybrids preferentially accumulated at rDNA, Ty1 and Ty2 transposons, telomeric repeat regions and a subset of open reading frames (ORFs). The latter are generally highly transcribed and have high GC content. Interestingly, significant DNA:RNA hybrid enrichment was also detected at genes associated with antisense transcripts. The expression of antisense-associated genes was also significantly altered upon overexpression of RNase H, which degrades the RNA in hybrids. Finally, we uncover mutant-specific differences in the DRIP profiles of a Sen1 helicase mutant, RNase H deletion mutant and Hpr1 THO complex mutant compared to wild type, suggesting different roles for these proteins in DNA:RNA hybrid biology. Our profiles of DNA:RNA hybrid prone loci provide a resource for understanding the properties of hybrid-forming regions in vivo, extend our knowledge of hybrid-mitigating enzymes, and contribute to models of antisense-mediated gene regulation. A summary of this paper was presented at the 26th International Conference on Yeast Genetics and Molecular Biology, August 2013. PMID:24743342

  13. Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip.

    PubMed

    Chan, Yujia A; Aristizabal, Maria J; Lu, Phoebe Y T; Luo, Zongli; Hamza, Akil; Kobor, Michael S; Stirling, Peter C; Hieter, Philip

    2014-04-01

    DNA:RNA hybrid formation is emerging as a significant cause of genome instability in biological systems ranging from bacteria to mammals. Here we describe the genome-wide distribution of DNA:RNA hybrid prone loci in Saccharomyces cerevisiae by DNA:RNA immunoprecipitation (DRIP) followed by hybridization on tiling microarray. These profiles show that DNA:RNA hybrids preferentially accumulated at rDNA, Ty1 and Ty2 transposons, telomeric repeat regions and a subset of open reading frames (ORFs). The latter are generally highly transcribed and have high GC content. Interestingly, significant DNA:RNA hybrid enrichment was also detected at genes associated with antisense transcripts. The expression of antisense-associated genes was also significantly altered upon overexpression of RNase H, which degrades the RNA in hybrids. Finally, we uncover mutant-specific differences in the DRIP profiles of a Sen1 helicase mutant, RNase H deletion mutant and Hpr1 THO complex mutant compared to wild type, suggesting different roles for these proteins in DNA:RNA hybrid biology. Our profiles of DNA:RNA hybrid prone loci provide a resource for understanding the properties of hybrid-forming regions in vivo, extend our knowledge of hybrid-mitigating enzymes, and contribute to models of antisense-mediated gene regulation. A summary of this paper was presented at the 26th International Conference on Yeast Genetics and Molecular Biology, August 2013. PMID:24743342

  14. Quantitative genotyping of single-nucleotide polymorphisms by allele-specific oligonucleotide hybridization on DNA microarrays.

    PubMed

    Rickert, Andreas M; Ballvora, Agim; Matzner, Ulrich; Klemm, Manfred; Gebhardt, Christiane

    2005-08-01

    Genotyping of SNPs (single-nucleotide polymorphisms) has challenged the development of several novel techniques. Most of these methods have been introduced to discriminate binary SNPs in diploid species. In the present study, the quantitative genotyping of SNPs in natural DNA pools of a polyploid organism via DNA microarrays was analysed. Three randomly selected SNP loci were genotyped in the tetraploid species potato (Solanum tuberosum). For each SNP, 24 oligomers were designed, 12 with forward and 12 with reverse orientation. They contained the polymorphic site at one of the positions 11, 14 and 17. Several steps of optimizations were performed, including the 'materials' used and the establishment of hybridization conditions. Glass surfaces were either epoxy- or aldehyde-modified, and allele-specific oligonucleotides contained either SH or NH2 groups. Hybridization stringency conditions were established by varying the concentration of formamide in the hybridization buffer. For SNP BA213c14t7/403, the quantitative discrimination between all four different naturally occurring genotypes could be demonstrated. PMID:15847606

  15. Improved DNA microarray detection sensitivity through immobilization of preformed in solution streptavidin/biotinylated oligonucleotide conjugates.

    PubMed

    Mavrogiannopoulou, E; Petrou, P S; Koukouvinos, G; Yannoukakos, D; Siafaka-Kapadai, A; Fornal, K; Awsiuk, K; Budkowski, A; Kakabakos, S E

    2015-04-01

    A novel immobilization approach involving binding of preformed streptavidin/biotinylated oligonucleotide conjugates onto surfaces coated with biotinylated bovine serum albumin is presented. Microarrays prepared according to the proposed method were compared, in terms of detection sensitivity and specificity, with other immobilization schemes employing coupling of biotinylated oligonucleotides onto directly adsorbed surface streptavidin, or sequential coupling of streptavidin and biotinylated oligonucleotides onto a layer of adsorbed biotinylated bovine serum albumin. A comparison was performed employing biotinylated oligonucleotides corresponding to wild- and mutant-type sequences of seven single point mutations of the BRCA1 gene. With respect to the other immobilization protocols, the proposed oligonucleotide immobilization approach offered the highest hybridization signals (at least 5 times higher) and permitted more elaborative washings, thus providing considerably higher discrimination between complimentary and non-complementary DNA sequences for all mutations tested. In addition, the hybridization kinetics were significantly enhanced compared to two other immobilization protocols, permitting PCR sample analysis in less than 40 min. Thus, the proposed oligonucleotide immobilization approach offered improved detection sensitivity and discrimination ability along with considerably reduced analysis time, and it is expected to find wide application in DNA mutation detection. PMID:25805150

  16. Efficiency, error and yield in light-directed maskless synthesis of DNA microarrays

    PubMed Central

    2011-01-01

    Background Light-directed in situ synthesis of DNA microarrays using computer-controlled projection from a digital micromirror device--maskless array synthesis (MAS)--has proved to be successful at both commercial and laboratory scales. The chemical synthetic cycle in MAS is quite similar to that of conventional solid-phase synthesis of oligonucleotides, but the complexity of microarrays and unique synthesis kinetics on the glass substrate require a careful tuning of parameters and unique modifications to the synthesis cycle to obtain optimal deprotection and phosphoramidite coupling. In addition, unintended deprotection due to scattering and diffraction introduce insertion errors that contribute significantly to the overall error rate. Results Stepwise phosphoramidite coupling yields have been greatly improved and are now comparable to those obtained in solid phase synthesis of oligonucleotides. Extended chemical exposure in the synthesis of complex, long oligonucleotide arrays result in lower--but still high--final average yields which approach 99%. The new synthesis chemistry includes elimination of the standard oxidation until the final step, and improved coupling and light deprotection. Coupling Insertions due to stray light are the limiting factor in sequence quality for oligonucleotide synthesis for gene assembly. Diffraction and local flare are by far the largest contributors to loss of optical contrast. Conclusions Maskless array synthesis is an efficient and versatile method for synthesizing high density arrays of long oligonucleotides for hybridization- and other molecular binding-based experiments. For applications requiring high sequence purity, such as gene assembly, diffraction and flare remain significant obstacles, but can be significantly reduced with straightforward experimental strategies. PMID:22152062

  17. Local Renyi entropic profiles of DNA sequences

    PubMed Central

    Vinga, Susana; Almeida, Jonas S

    2007-01-01

    Background In a recent report the authors presented a new measure of continuous entropy for DNA sequences, which allows the estimation of their randomness level. The definition therein explored was based on the Rényi entropy of probability density estimation (pdf) using the Parzen's window method and applied to Chaos Game Representation/Universal Sequence Maps (CGR/USM). Subsequent work proposed a fractal pdf kernel as a more exact solution for the iterated map representation. This report extends the concepts of continuous entropy by defining DNA sequence entropic profiles using the new pdf estimations to refine the density estimation of motifs. Results The new methodology enables two results. On the one hand it shows that the entropic profiles are directly related with the statistical significance of motifs, allowing the study of under and over-representation of segments. On the other hand, by spanning the parameters of the kernel function it is possible to extract important information about the scale of each conserved DNA region. The computational applications, developed in Matlab m-code, the corresponding binary executables and additional material and examples are made publicly available at . Conclusion The ability to detect local conservation from a scale-independent representation of symbolic sequences is particularly relevant for biological applications where conserved motifs occur in multiple, overlapping scales, with significant future applications in the recognition of foreign genomic material and inference of motif structures. PMID:17939871

  18. Rapid quantification and taxonomic classification of environmentalDNA from both prokaryotic and eukaryotic origins using a microarray

    SciTech Connect

    DeSantis, Todd Z.; Stone, Carol E.; Murray, Sonya R.; Moberg,Jordan P.; Andersen, Gary L.

    2005-02-22

    A microarray has been designed using 62,358 probes matched to both prokaryotic and eukaryotic small-subunit ribosomal RNA genes. The array categorized environmental DNA to specific phylogenetic clusters in under 9 h. To a background of DNA generated from natural outdoor aerosols, known quantities of rRNA gene copies from distinct organisms were added producing corresponding hybridization intensity scores that correlated well with their concentrations (r=0.917). Reproducible differences in microbial community composition were observed by altering the genomic DNA extraction method. Notably, gentle extractions produced peak intensities for Mycoplasmatales and Burkholderiales, whereas a vigorous disruption produced peak intensities for Vibrionales,Clostridiales, and Bacillales.

  19. Detecting variants with Metabolic Design, a new software tool to design probes for explorative functional DNA microarray development

    PubMed Central

    2010-01-01

    Background Microorganisms display vast diversity, and each one has its own set of genes, cell components and metabolic reactions. To assess their huge unexploited metabolic potential in different ecosystems, we need high throughput tools, such as functional microarrays, that allow the simultaneous analysis of thousands of genes. However, most classical functional microarrays use specific probes that monitor only known sequences, and so fail to cover the full microbial gene diversity present in complex environments. We have thus developed an algorithm, implemented in the user-friendly program Metabolic Design, to design efficient explorative probes. Results First we have validated our approach by studying eight enzymes involved in the degradation of polycyclic aromatic hydrocarbons from the model strain Sphingomonas paucimobilis sp. EPA505 using a designed microarray of 8,048 probes. As expected, microarray assays identified the targeted set of genes induced during biodegradation kinetics experiments with various pollutants. We have then confirmed the identity of these new genes by sequencing, and corroborated the quantitative discrimination of our microarray by quantitative real-time PCR. Finally, we have assessed metabolic capacities of microbial communities in soil contaminated with aromatic hydrocarbons. Results show that our probe design (sensitivity and explorative quality) can be used to study a complex environment efficiently. Conclusions We successfully use our microarray to detect gene expression encoding enzymes involved in polycyclic aromatic hydrocarbon degradation for the model strain. In addition, DNA microarray experiments performed on soil polluted by organic pollutants without prior sequence assumptions demonstrate high specificity and sensitivity for gene detection. Metabolic Design is thus a powerful, efficient tool that can be used to design explorative probes and monitor metabolic pathways in complex environments, and it may also be used to

  20. Detecting Staphylococcus aureus Virulence and Resistance Genes: a Comparison of Whole-Genome Sequencing and DNA Microarray Technology.

    PubMed

    Strauß, Lena; Ruffing, Ulla; Abdulla, Salim; Alabi, Abraham; Akulenko, Ruslan; Garrine, Marcelino; Germann, Anja; Grobusch, Martin Peter; Helms, Volkhard; Herrmann, Mathias; Kazimoto, Theckla; Kern, Winfried; Mandomando, Inácio; Peters, Georg; Schaumburg, Frieder; von Müller, Lutz; Mellmann, Alexander

    2016-04-01

    Staphylococcus aureusis a major bacterial pathogen causing a variety of diseases ranging from wound infections to severe bacteremia or intoxications. Besides host factors, the course and severity of disease is also widely dependent on the genotype of the bacterium. Whole-genome sequencing (WGS), followed by bioinformatic sequence analysis, is currently the most extensive genotyping method available. To identify clinically relevant staphylococcal virulence and resistance genes in WGS data, we developed anin silicotyping scheme for the software SeqSphere(+)(Ridom GmbH, Münster, Germany). The implemented target genes (n= 182) correspond to those queried by the IdentibacS. aureusGenotyping DNA microarray (Alere Technologies, Jena, Germany). Thein silicoscheme was evaluated by comparing the typing results of microarray and of WGS for 154 humanS. aureusisolates. A total of 96.8% (n= 27,119) of all typing results were equally identified with microarray and WGS (40.6% present and 56.2% absent). Discrepancies (3.2% in total) were caused by WGS errors (1.7%), microarray hybridization failures (1.3%), wrong prediction of ambiguous microarray results (0.1%), or unknown causes (0.1%). Superior to the microarray, WGS enabled the distinction of allelic variants, which may be essential for the prediction of bacterial virulence and resistance phenotypes. Multilocus sequence typing clonal complexes and staphylococcal cassette chromosomemecelement types inferred from microarray hybridization patterns were equally determined by WGS. In conclusion, WGS may substitute array-based methods due to its universal methodology, open and expandable nature, and rapid parallel analysis capacity for different characteristics in once-generated sequences. PMID:26818676

  1. Studies on the molecular pathogenesis of extraskeletal myxoid chondrosarcoma-cytogenetic, molecular genetic, and cDNA microarray analyses.

    PubMed

    Sjögren, Helene; Meis-Kindblom, Jeanne M; Orndal, Charlotte; Bergh, Peter; Ptaszynski, Konrad; Aman, Pierre; Kindblom, Lars-Gunnar; Stenman, Göran

    2003-03-01

    Extraskeletal myxoid chondrosarcomas (EMCs) are characterized by recurrent chromosome translocations resulting in fusions of the nuclear receptor TEC to various NH(2)-terminal partners. Here we describe the phenotypic, cytogenetic, and molecular genetic characteristics of a series of 10 EMCs. Using spectral karyotyping and fluorescence in situ hybridization, clonal chromosome abnormalities were detected in all but one tumor. A t(9;22)(q22;q12) translocation was found in three cases; a del(22)(q12-13)in one case; and variant translocations, including t(9;17)(q22;q11-12), t(7;9;17)(q32;q22;q11), and t(9;15)(q22;q21), were detected in one case each. Recurrent, secondary abnormalities, including trisomy 1q, 7, 8, 12, and 19, were found in seven tumors. All tumors contained translocation-generated or cryptic gene fusions, including EWS-TEC (five cases, of which one was a novel fusion), TAF2N-TEC (four cases), and TCF12-TEC (one case). cDNA microarray analysis of the gene expression patterns of two EMCs and a myxoid liposarcoma reference tumor revealed a remarkably distinct and uniform expression profile in both EMCs despite the fact that they had different histologies and expressed different fusion transcripts. The most differentially expressed gene in both tumors was CHI3L1, which encodes a secreted glycoprotein (YKL-40) previously implicated in various pathological conditions of extracellular matrix degradation as well as in cancer. Our findings suggests that EMC exhibits a tumor-specific gene expression profile, including overexpression of several cancer-related genes as well as genes implicated in chondrogenesis and neural-neuroendocrine differentiation, thus distinguishing it from other soft tissue sarcomas. PMID:12598313

  2. Expression Profiling Identifies Epoxy Anthraquinone Derivative as a DNA Topoisomerase Inhibitor

    PubMed Central

    Gheeya, Jinesh; Johansson, Peter; Chen, Qing-Rong; Dexheimer, Thomas; Metaferia, Belhu; Song, Young K.; Wei, Jun S.; He, Jianbin; Pommier, Yves

    2014-01-01

    To discover novel drugs for neuroblastoma treatment, we have previously screened a panel of drugs and identified 30 active agents against neuroblastoma cells. Here we performed microarray gene expression analysis to monitor the impact of these agents on a neuroblastoma cell line and used the connectivity map (cMAP) to explore putative mechanism of action of unknown drugs. We first compared the expression profiles of ten compounds shared in both our dataset and cMAP database and observed the high connectivity scores for 7 of 10 matched drugs regardless of the differences of cell lines utilized. The screen of cMAP for uncharacterized drugs indicated the signature of Epoxy anthraquinone derivative (EAD) matched the profiles of multiple known DNA targeted agents (topoisomerase I/II inhibitors, DNA intercalators, and DNA alkylation agents) as predicted by its structure. Similar result was obtained by querying against our internal NB-cMAP (http://pob.abcc.ncifcrf.gov/cgi-bin/cMAP), a database containing the profiles of 30 active drugs. These results suggest that Epoxy anthraquinone derivative may inhibit neuroblastoma cells by targeting DNA replication inhibition. Experimental data also demonstrate that Epoxy anthraquinone derivative indeed induces DNA double-strand breaks through DNA alkylation and inhibition of topoisomerase activity. Our study indicates that Epoxy anthraquinone derivative may be a novel DNA topoisomerase inhibitor that can be potentially used for treatment of neuroblastoma or other cancer patients. PMID:20133050

  3. Transcriptomic profiling of long non-coding RNAs in dermatomyositis by microarray analysis

    PubMed Central

    Peng, Qing-Lin; Zhang, Ya-Mei; Yang, Han-Bo; Shu, Xiao-Ming; Lu, Xin; Wang, Guo-Chun

    2016-01-01

    Long non-coding RNAs (lncRNAs) are prevalently transcribed in the genome and have been found to be of functional importance. However, the potential roles of lncRNAs in dermatomyositis (DM) remain unknown. In this study, a lncRNA + mRNA microarray analysis was performed to profile lncRNAs and mRNAs from 15 treatment-naive DM patients and 5 healthy controls. We revealed a total of 1198 lncRNAs (322 up-regulated and 876 down-regulated) and 1213 mRNAs (665 up-regulated and 548 down-regulated) were significantly differentially expressed in DM patients compared with the healthy controls (fold change>2, P < 0.05). Subgrouping DM patients according to the presence of interstitial lung disease and anti-Jo-1 antibody revealed different expression patterns of the lncRNAs. Pathway and gene ontology analysis for the differentially expressed mRNAs confirmed that type 1 interferon signaling was the most significantly dysregulated pathway in all DM subgroups. In addition, distinct pathways that uniquely associated with DM subgroup were also identified. Bioinformatics prediction suggested that linc-DGCR6-1 may be a lncRNA that regulates type 1 interferon-inducible gene USP18, which was found highly expressed in the perifascicular areas of the muscle fibers of DM patients. Our findings provide an overview of aberrantly expressed lncRNAs in DM muscle and further broaden the understanding of DM pathogenesis. PMID:27605457

  4. Identification of novel biomarkers in chronic immune thrombocytopenia (ITP) by microarray-based serum protein profiling.

    PubMed

    Bal, Gürkan; Futschik, Matthias E; Hartl, Daniela; Ringel, Frauke; Kamhieh-Milz, Julian; Sterzer, Viktor; Hoheisel, Jörg D; Alhamdani, Mohamed S S; Salama, Abdulgabar

    2016-02-01

    The pathological mechanisms underlying the development of immune thrombocytopenia (ITP) are unclear and its diagnosis remains a process of exclusion. Currently, there are no known specific biomarkers for ITP to support differential diagnosis and treatment decisions. Profiling of serum proteins may be valuable for identifying such biomarkers. Sera from 46 patients with primary chronic ITP and 34 healthy blood donors were analysed using a microarray of 755 antibodies. We identified 161 differentially expressed proteins. In addition to oncoproteins and tumour-suppressor proteins, including apoptosis regulator BCL2, breast cancer type 1 susceptibility protein (BRCA1), Fanconi anaemia complementation group C (FANCC) and vascular endothelial growth factor A (VEGFA), we detected six anti-nuclear autoantibodies in a subset of ITP patients: anti-PCNA, anti-SmD, anti-Ro/SSA60, anti-Ro/SSA52, anti-La/SSB and anti-RNPC antibodies. This finding may provide a rational explanation for the association of ITP with malignancies and other autoimmune diseases. While RUNX1mRNA expression in the peripheral blood mononuclear cells (PBMC) of patients was significantly downregulated, an accumulation of RUNX1 protein was observed in the platelets of ITP patients. This may indicate dysregulation of RUNX1 expression in PBMC and megakaryocytes and may lead to an imbalanced immune response and impaired thrombopoiesis. In conclusion, we provide novel insights into the pathogenic mechanisms of ITP that warrant further exploration. PMID:26628061

  5. Microarray gene expression profiling of developmental transitions in Sitka spruce (Picea sitchensis) apical shoots.

    PubMed

    Friedmann, Michael; Ralph, Steven G; Aeschliman, Dana; Zhuang, Jun; Ritland, Kermit; Ellis, Brian E; Bohlmann, Joerg; Douglas, Carl J

    2007-01-01

    The apical shoot drives the yearly new stem growth of conifer trees, is the primary site for the establishment of chemical and physical defences, and is important in establishing subsequent perennial growth. This organ presents an interesting developmental system, with growth and development progressing from a meristematic tip through development of a primary vascular system, to a base with fully differentiated and lignified secondary xylem on the inside and bark tissue with constitutive defence structures such as resin, polyphenolic phloem parenchyma cells, and sclereids on the outside. A spruce (Picea spp.) microarray containing approximately 16.7K unique cDNAs was used to study transcript profiles that characterize the developmental transition in apical shoots of Sitka spruce (Picea sitchensis) from their vegetative tips to their woody bases. Along with genes involved in cell-wall modification and lignin biosynthesis, a number of differentially regulated genes encoding protein kinases and transcription factors with base-preferred expression patterns were identified, which could play roles in the formation of woody tissues inside the apical shoot, as well as in regulating other developmental transitions associated with organ maturation. Preferential expression of known conifer defence genes, genes encoding defence-related proteins, and genes encoding regulatory proteins was observed at the apical shoot tip and in the green bark tissues at the apical shoot base, suggesting a commitment to constitutive defence in the apical shoot that is co-ordinated with rapid development of secondary xylem. PMID:17220514

  6. Transcriptomic profiling of long non-coding RNAs in dermatomyositis by microarray analysis.

    PubMed

    Peng, Qing-Lin; Zhang, Ya-Mei; Yang, Han-Bo; Shu, Xiao-Ming; Lu, Xin; Wang, Guo-Chun

    2016-01-01

    Long non-coding RNAs (lncRNAs) are prevalently transcribed in the genome and have been found to be of functional importance. However, the potential roles of lncRNAs in dermatomyositis (DM) remain unknown. In this study, a lncRNA + mRNA microarray analysis was performed to profile lncRNAs and mRNAs from 15 treatment-naive DM patients and 5 healthy controls. We revealed a total of 1198 lncRNAs (322 up-regulated and 876 down-regulated) and 1213 mRNAs (665 up-regulated and 548 down-regulated) were significantly differentially expressed in DM patients compared with the healthy controls (fold change>2, P < 0.05). Subgrouping DM patients according to the presence of interstitial lung disease and anti-Jo-1 antibody revealed different expression patterns of the lncRNAs. Pathway and gene ontology analysis for the differentially expressed mRNAs confirmed that type 1 interferon signaling was the most significantly dysregulated pathway in all DM subgroups. In addition, distinct pathways that uniquely associated with DM subgroup were also identified. Bioinformatics prediction suggested that linc-DGCR6-1 may be a lncRNA that regulates type 1 interferon-inducible gene USP18, which was found highly expressed in the perifascicular areas of the muscle fibers of DM patients. Our findings provide an overview of aberrantly expressed lncRNAs in DM muscle and further broaden the understanding of DM pathogenesis. PMID:27605457

  7. Microarray-Based Analysis of Methylation Status of CpGs in Placental DNA and Maternal Blood DNA – Potential New Epigenetic Biomarkers for Cell Free Fetal DNA-Based Diagnosis

    PubMed Central

    Hatt, Lotte; Aagaard, Mads M.; Graakjaer, Jesper; Bach, Cathrine; Sommer, Steffen; Agerholm, Inge E.; Kølvraa, Steen; Bojesen, Anders

    2015-01-01

    Epigenetic markers for cell free fetal DNA in the maternal blood circulation are highly interesting in the field of non-invasive prenatal testing since such markers will offer a possibility to quantify the amount of fetal DNA derived from different chromosomes in a maternal blood sample. The aim of the present study was to define new fetal specific epigenetic markers present in placental DNA that can be utilized in non-invasive prenatal diagnosis. We have conducted a high-resolution methylation specific beadchip microarray study assessing more than 450.000 CpG sites. We have analyzed the DNA methylation profiles of 10 maternal blood samples and compared them to 12 1st trimesters chorionic samples from normal placentas, identifying a number of CpG sites that are differentially methylated in maternal blood cells compared to chorionic tissue. To strengthen the utility of these differentially methylated CpG sites to be used with methyl-sensitive restriction enzymes (MSRE) in PCR-based NIPD, we furthermore refined the list of selected sites, containing a restriction sites for one of 16 different methylation-sensitive restriction enzymes. We present a list of markers on chromosomes 13, 18 and 21 with a potential for aneuploidy testing as well as a list of markers for regions harboring sub-microscopic deletion- or duplication syndromes. PMID:26230497

  8. Validation of tissue microarray for molecular profiling of canine and feline mammary tumours.

    PubMed

    Muscatello, L V; Sarli, G; Beha, G; Asproni, P; Millanta, F; Poli, A; De Tolla, L J; Benazzi, C; Brunetti, B

    2015-01-01

    Tissue microarray (TMA) is a high-throughput method adopted for simultaneous molecular profiling of tissue samples from large patient cohorts. The aim of this study was to validate the TMA method for the molecular classification of canine and feline mammary tumours. Twelve samples, five feline and five canine mammary tumours and two canine haemangiosarcomas, were collected. TMA construction was based on Kononen's method of extracting a cylindrical core of paraffin wax-embedded 'donor' tissue and inserting it into a 'recipient' wax block. Seven consecutive sections from each tissue array block were subjected to immunohistochemistry (IHC) using primary antibodies specific for oestrogen receptor (OR), progesterone receptor (PR), c-erbB-2, cytokeratin (CK) 5/6, CK14, CK19 and p63. The same panel of antibodies was applied to the full sections from all cases. Comparison between full sections and TMA scores revealed different results depending on the antibodies. Labelling for OR, PR, CK19 and p63 showed total concordance, c-erbB2 (score +2, +3) was concordant in nine out of ten cases, CK5/6 and CK14 in eight out of ten cases. The TMA platform preserves the molecular profile of canine and feline mammary tumour markers, representing a useful tool for rapid and cost-effective analysis for the first phenotypic screening using OR, PR and c-erbB2 antibodies. Basal cytokeratin, used for triple negative identification, shows a multifocal 'niche' expression pattern, for which IHC of the full section or multiple core array is recommended. PMID:25670670

  9. Moving Toward Integrating Gene Expression Profiling Into High-Throughput Testing: A Gene Expression Biomarker Accurately Predicts Estrogen Receptor α Modulation in a Microarray Compendium.

    PubMed

    Ryan, Natalia; Chorley, Brian; Tice, Raymond R; Judson, Richard; Corton, J Christopher

    2016-05-01

    Microarray profiling of chemical-induced effects is being increasingly used in medium- and high-throughput formats. Computational methods are described here to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (ERα), often modulated by potential endocrine disrupting chemicals. ERα biomarker genes were identified by their consistent expression after exposure to 7 structurally diverse ERα agonists and 3 ERα antagonists in ERα-positive MCF-7 cells. Most of the biomarker genes were shown to be directly regulated by ERα as determined by ESR1 gene knockdown using siRNA as well as through chromatin immunoprecipitation coupled with DNA sequencing analysis of ERα-DNA interactions. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression datasets from experiments using MCF-7 cells, including those evaluating the transcriptional effects of hormones and chemicals. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% and 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) ER reference chemicals including "very weak" agonists. Importantly, the biomarker predictions accurately replicated predictions based on 18 in vitro high-throughput screening assays that queried different steps in ERα signaling. For 114 chemicals, the balanced accuracies were 95% and 98% for activation or suppression, respectively. These results demonstrate that the ERα gene expression biomarker can accurately identify ERα modulators in large collections of microarray data derived from MCF-7 cells. PMID:26865669

  10. Parallel Characterization of Anaerobic Toluene- and Ethylbenzene-Degrading Microbial Consortia by PCR-Denaturing Gradient Gel Electrophoresis, RNA-DNA Membrane Hybridization, and DNA Microarray Technology

    PubMed Central

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Saïd; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis. PMID:12088997

  11. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology

    NASA Technical Reports Server (NTRS)

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Said; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.

  12. A Hidden Markov model web application for analysing bacterial genomotyping DNA microarray experiments.

    PubMed

    Newton, Richard; Hinds, Jason; Wernisch, Lorenz

    2006-01-01

    Whole genome DNA microarray genomotyping experiments compare the gene content of different species or strains of bacteria. A statistical approach to analysing the results of these experiments was developed, based on a Hidden Markov model (HMM), which takes adjacency of genes along the genome into account when calling genes present or absent. The model was implemented in the statistical language R and applied to three datasets. The method is numerically stable with good convergence properties. Error rates are reduced compared with approaches that ignore spatial information. Moreover, the HMM circumvents a problem encountered in a conventional analysis: determining the cut-off value to use to classify a gene as absent. An Apache Struts web interface for the R script was created for the benefit of users unfamiliar with R. The application may be found at http://hmmgd.cryst.bbk.ac.uk/hmmgd. The source code illustrating how to run R scripts from an Apache Struts-based web application is available from the corresponding author on request. The application is also available for local installation if required. PMID:17140267

  13. Screening for beneficial effects of oral intake of sweet corn by DNA microarray analysis.

    PubMed

    Tokuji, Yoshihiko; Akiyama, Kyoko; Yunoki, Keita; Kinoshita, Mikio; Sasaki, Keiko; Kobayashi, Hitoshi; Wada, Masahiro; Ohnishi, Masao

    2009-09-01

    To identify novel functions of the oral intake of sweet corn, we performed DNA microarray analysis of the livers of sweet corn-fed mice. Functional annotation clustering 1600 genes with expression levels that were affected (more than 1.5-fold change) by dietary sweet corn indicated that both cell proliferation and programmed cell death were modulated by sweet corn intake. In the Wnt signaling pathway, which is involved in cell proliferation, the levels of Jun and beta-catenin expression were downregulated by dietary sweet corn. The mRNA levels of Rb and p53, negative regulators of the cell cycle, were increased in mice fed with sweet corn. Dietary corn upregulated expression levels of genes that regulate apoptosis positively (for example, BOK, BID, CASP4). These results suggested that sweet corn is a valuable food for suppressing cancer. Oral administration of sweet corn inhibited tumor growth (36.6% reduce in tumor weight, P < 0.05) in mice inoculated with Ehrlich tumor cells. PMID:19895470

  14. Application of wavelet-based neural network on DNA microarray data.

    PubMed

    Lee, Jack; Zee, Benny

    2008-01-01

    The advantage of using DNA microarray data when investigating human cancer gene expressions is its ability to generate enormous amount of information from a single assay in order to speed up the scientific evaluation process. The number of variables from the gene expression data coupled with comparably much less number of samples creates new challenges to scientists and statisticians. In particular, the problems include enormous degree of collinearity among genes expressions, likely violation of model assumptions as well as high level of noise with potential outliers. To deal with these problems, we propose a block wavelet shrinkage principal component (BWSPCA) analysis method to optimize the information during the noise reduction process. This paper firstly uses the National Cancer Institute database (NC160) as an illustration and shows a significant improvement in dimension reduction. Secondly we combine BWSPCA with an artificial neural network-based gene minimization strategy to establish a Block Wavelet-based Neural Network model in a robust and accurate cancer classification process (BWNN). Our extensive experiments on six public cancer datasets have shown that the method of BWNN for tumor classification performed well, especially on some difficult instances with large-class (more than two) expression data. This proposed method is extremely useful for data denoising and is competitiveness with respect to other methods such as BagBoost, RandomForest (RanFor), Support Vector Machines (SVM), K-Nearest Neighbor (KNN) and Artificial Neural Network (ANN). PMID:19255638

  15. Identification of marker genes for intestinal immunomodulating effect of a fructooligosaccharide by DNA microarray analysis.

    PubMed

    Fukasawa, Tomoyuki; Murashima, Koichiro; Matsumoto, Ichiro; Hosono, Akira; Ohara, Hiroki; Nojiri, Chuhei; Koga, Jinnichiro; Kubota, Hidetoshi; Kanegae, Minoru; Kaminogawa, Shuichi; Abe, Keiko; Kono, Toshiaki

    2007-04-18

    Prebiotic fructooligosaccharides are noted for their intestinal immunodulating effects, and the identification of markers for the effects is a matter of great concern. This study aimed to identify marker genes for physiological effects of a particular fructooligosaccharide (FOS) on a host animal and also to define the target of its function in the small intestine. DNA microarray technology was used to screen candidate marker genes, and comprehensive changes in gene expressions in the ileum of mice fed with FOS were investigated. One of the major physiological effects of FOS was intestinal immunomodulation. Marker genes were then identified for major histocompatibility complex classes I and II, interferon, and phosphatidylinositol metabolites. Also, the ileum was segmented into Peyer's patch (PP) and the other ileal organ (DeltaPP), and these were analyzed by quantitative RT-PCR method, with the result that the site for recognizing the FOS function was the DeltaPP rather than the PP. This is the first paper showing the markers for the physiological effects of FOS in the small intestine at gene expression level. Applying these marker genes would make it possible to clarify the mechanisms of how the administration of dietary FOS and associated changes in the intestinal environment are recognized by host organisms as well as how its immunomodulating effects are expressed in the body. PMID:17378576

  16. Identification of marker genes for lipid-lowering effect of a short-chain fructooligosaccharide by DNA microarray analysis.

    PubMed

    Fukasawa, Tomoyuki; Murashima, Koichiro; Nemoto, Tomoko; Matsumoto, Ichiro; Koga, Jinichiro; Kubota, Hidetoshi; Kanegae, Minoru

    2009-01-01

    Administration of short-chain fructooligosaccharide (scFOS) is known to lower serum triglyceride levels in rats fed a high-fat diet, but the molecular mechanisms remain unclear. This study aimed to identify marker genes for lipid-lowering effect of scFOS administration. The changes in hepatic gene expressions in rats fed scFOS were investigated using DNA microarray and quantitative RT-PCR analysis. The DNA microarray showed that phytanoyl-CoA 2-hydroxylase 2 (Phyh2), lipoprotein lipase (Lpl) and tyrosine aminotransferase (Tat) were significantly affected by scFOS administration (p < .05). Since Lpl is involved in lipid metabolism, the up-regulation of Lpl in the liver can be a potential marker of the lipid-lowering effect of scFOS. PMID:22435477

  17. Methylation profiles of genes utilizing newly developed CpG island methylation microarray on colorectal cancer patients

    PubMed Central

    Kimura, Naoki; Nagasaka, Takeshi; Murakami, Jun; Sasamoto, Hiromi; Murakami, Masahiro; Tanaka, Noriaki; Matsubara, Nagahide

    2005-01-01

    Aberrant methylation of DNA has been shown to play an important role in a variety of human cancers, developmental disorders and aging. Hence, aberrant methylation patterns in genes can be a molecular marker for such conditions. Therefore, a reliable but uncomplicated method to detect DNA methylation is preferred, not merely for research purposes but for daily clinical practice. To achieve these aims, we have established a precise system to identify DNA methylation patterns based on an oligonucleotide microarray technology. Our microarray method has an advantage over conventional methods and is unique because it allows the precise measurement of the methylation patterns within a target region. Our simple signal detection system depends on using an avidin–biotinylated peroxidase complex and does not require an expensive laser scanner or hazardous radioisotope. In this study, we applied our technique to detect promoter methylation status of O6-methylguanine-DNA methyltransferase (MGMT) gene. Our easy-handling technology provided reproducible and precise measurement of methylated CpGs in MGMT promoter and, thus, our method may bring about a potential evolution in the handling of a variety of high-throughput DNA methylation analyses for clinical purposes. PMID:15760842

  18. Role for E2F in Control of Both DNA Replication and Mitotic Functions as Revealed from DNA Microarray Analysis

    PubMed Central

    Ishida, Seiichi; Huang, Erich; Zuzan, Harry; Spang, Rainer; Leone, Gustavo; West, Mike; Nevins, Joseph R.

    2001-01-01

    We have used high-density DNA microarrays to provide an analysis of gene regulation during the mammalian cell cycle and the role of E2F in this process. Cell cycle analysis was facilitated by a combined examination of gene control in serum-stimulated fibroblasts and cells synchronized at G1/S by hydroxyurea block that were then released to proceed through the cell cycle. The latter approach (G1/S synchronization) is critical for rigorously maintaining cell synchrony for unambiguous analysis of gene regulation in later stages of the cell cycle. Analysis of these samples identified seven distinct clusters of genes that exhibit unique patterns of expression. Genes tend to cluster within these groups based on common function and the time during the cell cycle that the activity is required. Placed in this context, the analysis of genes induced by E2F proteins identified genes or expressed sequence tags not previously described as regulated by E2F proteins; surprisingly, many of these encode proteins known to function during mitosis. A comparison of the E2F-induced genes with the patterns of cell growth-regulated gene expression revealed that virtually all of the E2F-induced genes are found in only two of the cell cycle clusters; one group was regulated at G1/S, and the second group, which included the mitotic activities, was regulated at G2. The activation of the G2 genes suggests a broader role for E2F in the control of both DNA replication and mitotic activities. PMID:11416145

  19. Profiling Lipid–protein Interactions Using Nonquenched Fluorescent Liposomal Nanovesicles and Proteome Microarrays*

    PubMed Central

    Lu, Kuan-Yi; Tao, Sheng-Ce; Yang, Tzu-Ching; Ho, Yu-Hsuan; Lee, Chia-Hsien; Lin, Chen-Ching; Juan, Hsueh-Fen; Huang, Hsuan-Cheng; Yang, Chin-Yu; Chen, Ming-Shuo; Lin, Yu-Yi; Lu, Jin-Ying; Zhu, Heng; Chen, Chien-Sheng

    2012-01-01

    Fluorescent liposomal nanovesicles (liposomes) are commonly used for lipid research and/or signal enhancement. However, the problem of self-quenching with conventional fluorescent liposomes limits their applications because these liposomes must be lysed to detect the fluorescent signals. Here, we developed a nonquenched fluorescent (NQF)1 liposome by optimizing the proportion of sulforhodamine B (SRB) encapsulant and lissamine rhodamine B-dipalmitoyl phosphatidylethanol (LRB-DPPE) on a liposomal surface for signal amplification. Our study showed that 0.3% of LRB-DPPE with 200 μm of SRB provided the maximal fluorescent signal without the need to lyse the liposomes. We also observed that the NQF liposomes largely eliminated self-quenching effects and produced greatly enhanced signals than SRB-only liposomes by 5.3-fold. To show their application in proteomics research, we constructed NQF liposomes that contained phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and profiled its protein interactome using a yeast proteome microarray. Our profiling led to the identification of 162 PI(3,5)P2-specific binding proteins (PI(3,5)P2-BPs). We not only recovered many proteins that possessed known PI(3,5)P2-binding domains, but we also found two unknown Pfam domains (Pfam-B_8509 and Pfam-B_10446) that were enriched in our dataset. The validation of many newly discovered PI(3,5)P2-BPs was performed using a bead-based affinity assay. Further bioinformatics analyses revealed that the functional roles of 22 PI(3,5)P2-BPs were similar to those associated with PI(3,5)P2, including vesicle-mediated transport, GTPase, cytoskeleton, and kinase. Among the 162 PI(3,5)P2-BPs, we found a novel motif, HRDIKP[ES]NJLL that showed statistical significance. A docking simulation showed that PI(3,5)P2 interacted primarily with lysine or arginine side chains of the newly identified PI(3,5)P2-binding kinases. Our study showed that this new tool would greatly benefit profiling lipid

  20. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    NASA Astrophysics Data System (ADS)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  1. High-throughput DNA microarray detection of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley, Nepal.

    PubMed

    Inoue, Daisuke; Hinoura, Takuji; Suzuki, Noriko; Pang, Junqin; Malla, Rabin; Shrestha, Sadhana; Chapagain, Saroj Kumar; Matsuzawa, Hiroaki; Nakamura, Takashi; Tanaka, Yasuhiro; Ike, Michihiko; Nishida, Kei; Sei, Kazunari

    2015-01-01

    Because of heavy dependence on groundwater for drinking water and other domestic use, microbial contamination of groundwater is a serious problem in the Kathmandu Valley, Nepal. This study investigated comprehensively the occurrence of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley by applying DNA microarray analysis targeting 941 pathogenic bacterial species/groups. Water quality measurements found significant coliform (fecal) contamination in 10 of the 11 investigated groundwater samples and significant nitrogen contamination in some samples. The results of DNA microarray analysis revealed the presence of 1-37 pathogen species/groups, including 1-27 biosafety level 2 ones, in 9 of the 11 groundwater samples. While the detected pathogens included several feces- and animal-related ones, those belonging to Legionella and Arthrobacter, which were considered not to be directly associated with feces, were detected prevalently. This study could provide a rough picture of overall pathogenic bacterial contamination in the Kathmandu Valley, and demonstrated the usefulness of DNA microarray analysis as a comprehensive screening tool of a wide variety of pathogenic bacteria. PMID:25146188

  2. eSensor: an electrochemical detection-based DNA microarray technology enabling sample-to-answer molecular diagnostics

    NASA Astrophysics Data System (ADS)

    Liu, Robin H.; Longiaru, Mathew

    2009-05-01

    DNA microarrays are becoming a widespread tool used in life science and drug screening due to its many benefits of miniaturization and integration. Microarrays permit a highly multiplexed DNA analysis. Recently, the development of new detection methods and simplified methodologies has rapidly expanded the use of microarray technologies from predominantly gene expression analysis into the arena of diagnostics. Osmetech's eSensor® is an electrochemical detection platform based on a low-to- medium density DNA hybridization array on a cost-effective printed circuit board substrate. eSensor® has been cleared by FDA for Warfarin sensitivity test and Cystic Fibrosis Carrier Detection. Other genetic-based diagnostic and infectious disease detection tests are under development. The eSensor® platform eliminates the need for an expensive laser-based optical system and fluorescent reagents. It allows one to perform hybridization and detection in a single and small instrument without any fluidic processing and handling. Furthermore, the eSensor® platform is readily adaptable to on-chip sample-to-answer genetic analyses using microfluidics technology. The eSensor® platform provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus have a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.

  3. An automated method for gridding and clustering-based segmentation of cDNA microarray images.

    PubMed

    Giannakeas, Nikolaos; Fotiadis, Dimitrios I

    2009-01-01

    Microarrays are widely used to quantify gene expression levels. Microarray image analysis is one of the tools, which are necessary when dealing with vast amounts of biological data. In this work we propose a new method for the automated analysis of microarray images. The proposed method consists of two stages: gridding and segmentation. Initially, the microarray images are preprocessed using template matching, and block and spot finding takes place. Then, the non-expressed spots are detected and a grid is fit on the image using a Voronoi diagram. In the segmentation stage, K-means and Fuzzy C means (FCM) clustering are employed. The proposed method was evaluated using images from the Stanford Microarray Database (SMD). The results that are presented in the segmentation stage show the efficiency of our Fuzzy C means-based work compared to the two already developed K-means-based methods. The proposed method can handle images with artefacts and it is fully automated. PMID:19046850

  4. A highly oriented hybrid microarray modified electrode fabricated by a template-free method for ultrasensitive electrochemical DNA recognition.

    PubMed

    Shi, Lei; Chu, Zhenyu; Dong, Xueliang; Jin, Wanqin; Dempsey, Eithne

    2013-11-01

    Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and influence the morphologies of hybrid films. A highly oriented hybrid microarray was formed on the highly aligned and vertical SAMs of 1,4-benzenedithiol molecules with rigid backbones, which afforded an intense structure-directing power for the oriented growth of hybrid crystals. Additionally, the density of the microarray could be adjusted by controlling the surface coverage of assembled molecules. Based on the hybrid microarray modified electrode with a large specific area (ca. 10 times its geometrical area), a label-free electrochemical DNA biosensor was constructed for the detection of an oligonucleotide fragment of the avian flu virus H5N1. The DNA biosensor displayed a significantly low detection limit of 5 pM (S/N = 3), a wide linear response from 10 pM to 10 nM, as well as excellent selectivity, good regeneration and high stability. We expect that the proposed template-free method can provide a new reference for the fabrication of a highly oriented hybrid array and the as-prepared microarray modified electrode will be a promising paradigm in constructing highly sensitive and selective biosensors. PMID:24061929

  5. DNA microarray analysis reveals a role for lysophosphatidic acid in the regulation of anti-inflammatory genes in MC3T3-E1 cells

    SciTech Connect

    Waters, Katrina M.; Tan, Ruimin; Genetos, Damian C.; Verma, Seema; Yellowley, Clare E.; Karin, Norm J.

    2007-11-01

    DNA microarray analysis revealed that treatment of bone cells with a lipid growth factor led to extensive changes in gene expression. Particular relevance to fracture healing and inflammation was revealed.

  6. Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole genome microarray.

    PubMed

    Reichert, Kerstin; Menzel, Ralph

    2005-10-01

    The soil nematode Caenorhabditis elegans is frequently used in ecotoxicological studies due to its wide distribution in terrestrial habitats, its easy handling in the laboratory, and its sensitivity against different kinds of stress. Since its genome has been completely sequenced, more and more studies are investigating the functional relation of gene expression and phenotypic response. For these reasons C. elegans seems to be an attractive animal for the development of a new, genome based, ecotoxicological test system. In recent years, the DNA array technique has been established as a powerful tool to obtain distinct gene expression patterns in response to different experimental conditions. Using a C. elegans whole genome DNA microarray in this study, the effects of five different xenobiotics on the gene expression of the nematode were investigated. The exposure time for the following five applied compounds beta-NF (5 mg/l), Fla (0.5 mg/l), atrazine (25 mg/l), clofibrate (10 mg/l) and DES (0.5 mg/l) was 48+/-5 h. The analysis of the data showed a clear induction of 203 genes belonging to different families like the cytochromes P450, UDP-glucoronosyltransferases (UDPGT), glutathione S-transferases (GST), carboxylesterases, collagenes, C-type lectins and others. Under the applied conditions, fluoranthene was able to induce most of the induceable genes, followed by clofibrate, atrazine, beta-naphthoflavone and diethylstilbestrol. A decreased expression could be shown for 153 genes with atrazine having the strongest effect followed by fluoranthene, diethylstilbestrol, beta-naphthoflavone and clofibrate. For upregulated genes a change ranging from approximately 2.1- till 42.3-fold and for downregulated genes from approximately 2.1 till 6.6-fold of gene expression could be affected through the applied xenobiotics. The results confirm the applicability of the gene expression for the development of an ecotoxicological test system. Compared to classical tests the main

  7. Microarray expression profile analysis of aberrant long non-coding RNAs in esophageal squamous cell carcinoma.

    PubMed

    Yao, Juan; Huang, Jun-Xing; Lin, Mei; Wu, Zheng-Dong; Yu, Hong; Wang, Peng-Cheng; Ye, Jun; Chen, Ping; Wu, Jing; Zhao, Guo-Jun

    2016-06-01

    Increasing evidence indicates that long non-coding RNA (lncRNA) plays an important role in tumorigenesis. However, the function and regulatory mechanism of lncRNAs are still unclear in esophageal squamous cell carcinoma (ESCC). To address this challenge, we screened lncRNAs expression profiles in 3 pairs of ESCC and matched non-cancerous tissues by microarray assay and identified the relationship between lncRNAs expression in ESCC tissue and clinicopathological characteristics and prognosis of patients with ESCC. We found 182 lncRNAs that were significantly differently expressed in ESCC tissues versus the matched non-cancerous tissues. Gene ontology and pathway analysis results suggested that the primary biological processes of these genes were involved in extracellular matrix, immune responses, cell differentiation and cell proliferation. Through cis and trans analyzing, we found 4 lncRNAs (ENST00000480669, NONHSAT104436, NONHSAT126998 and NONHSAT112918) may play important roles in tumorigenesis of ESCC. The four lncRNAs were checked in 73 patients with ESCC. The results showed that they mainly related to tumor metastasis. Kaplan-Meier survival analysis showed that high expression of NONHSAT104436, NONHSAT126998 and low expression of ENST00000480669 were related to poor 3-year overall survival (P=0.003, 0.032 and 0.040, respectively). Multivariate analysis showed that NONHSAT104436 was an independent prognostic factor (P=0.017). Thus we concluded that, lncRNAs showed differently expression patterns in ESCC versus matched non-cancerous tissues, and aberrantly expressed lncRNA may play important roles in ESCC development and progression. Interestingly, the overexpression of NONHSAT104436 was tightly correlated with distant metastasis and, poor survival rate, which might indicate that NONHSAT104436 might play a very important part in ESCC tumor progression. PMID:27035335

  8. Microarrays, Integrated Analytical Systems

    NASA Astrophysics Data System (ADS)

    Combinatorial chemistry is used to find materials that form sensor microarrays. This book discusses the fundamentals, and then proceeds to the many applications of microarrays, from measuring gene expression (DNA microarrays) to protein-protein interactions, peptide chemistry, carbodhydrate chemistry, electrochemical detection, and microfluidics.

  9. DNA microarray-based analysis of voluntary resistance wheel running reveals novel transcriptome leading robust hippocampal plasticity.

    PubMed

    Lee, Min Chul; Rakwal, Randeep; Shibato, Junko; Inoue, Koshiro; Chang, Hyukki; Soya, Hideaki

    2014-11-01

    In two separate experiments, voluntary resistance wheel running with 30% of body weight (RWR), rather than wheel running (WR), led to greater enhancements, including adult hippocampal neurogenesis and cognitive functions, in conjunction with hippocampal brain-derived neurotrophic factor (BDNF) signaling (Lee et al., J Appl Physiol, 2012; Neurosci Lett., 2013). Here we aimed to unravel novel molecular factors and gain insight into underlying molecular mechanisms for RWR-enhanced hippocampal functions; a high-throughput whole-genome DNA microarray approach was applied to rats performing voluntary running for 4 weeks. RWR rats showed a significant decrease in average running distances although average work levels increased immensely, by about 11-fold compared to WR, resulting in muscular adaptation for the fast-twitch plantaris muscle. Global transcriptome profiling analysis identified 128 (sedentary × WR) and 169 (sedentary × RWR) up-regulated (>1.5-fold change), and 97 (sedentary × WR) and 468 (sedentary × RWR) down-regulated (<0.75-fold change) genes. Functional categorization using both pathway- or specific-disease-state-focused gene classifications and Ingenuity Pathway Analysis (IPA) revealed expression pattern changes in the major categories of disease and disorders, molecular functions, and physiological system development and function. Genes specifically regulated with RWR include the newly identified factors of NFATc1, AVPR1A, and FGFR4, as well as previously known factors, BDNF and CREB mRNA. Interestingly, RWR down-regulated multiple inflammatory cytokines (IL1B, IL2RA, and TNF) and chemokines (CXCL1, CXCL10, CCL2, and CCR4) with the SYCP3, PRL genes, which are potentially involved in regulating hippocampal neuroplastic changes. These results provide understanding of the voluntary-RWR-related hippocampal transcriptome, which will open a window to the underlying mechanisms of the positive effects of exercise, with therapeutic value for enhancing

  10. Cross-species hybridisation of human and bovine orthologous genes on high density cDNA microarrays

    PubMed Central

    Adjaye, James; Herwig, Ralf; Herrmann, Doris; Wruck, Wasco; BenKahla, Alia; Brink, Thore C; Nowak, Monika; Carnwath, Joseph W; Hultschig, Claus; Niemann, Heiner; Lehrach, Hans

    2004-01-01

    Background Cross-species gene-expression comparison is a powerful tool for the discovery of evolutionarily conserved mechanisms and pathways of expression control. The usefulness of cDNA microarrays in this context is that broad areas of homology are compared and hybridization probes are sufficiently large that small inter-species differences in nucleotide sequence would not affect the analytical results. This comparative genomics approach would allow a common set of genes within a specific developmental, metabolic, or disease-related gene pathway to be evaluated in experimental models of human diseases. The objective of this study was to investigate the feasibility and reproducibility of cross-species analysis employing a human cDNA microarray as probe. Results As a proof of principle, total RNA derived from human and bovine fetal brains was used as a source of labelled targets for hybridisation onto a human cDNA microarray composed of 349 characterised genes. Each gene was spotted 20 times representing 6,980 data points thus enabling highly reproducible spot quantification. Employing high stringency hybridisation and washing conditions, followed by data analysis, revealed slight differences in the expression levels and reproducibility of the signals between the two species. We also assigned each of the genes into three expression level categories- i.e. high, medium and low. The correlation co-efficient of cross hybridisation between the orthologous genes was 0.94. Verification of the array data by semi-quantitative RT-PCR using common primer sequences enabled co-amplification of both human and bovine transcripts. Finally, we were able to assign gene names to previously uncharacterised bovine ESTs. Conclusions Results of our study demonstrate the harnessing and utilisation power of comparative genomics and prove the feasibility of using human microarrays to facilitate the identification of co-expressed orthologous genes in common tissues derived from different

  11. Rapid virological diagnosis of central nervous system infections by use of a multiplex reverse transcription-PCR DNA microarray.

    PubMed

    Leveque, Nicolas; Van Haecke, Adrien; Renois, Fanny; Boutolleau, David; Talmud, Deborah; Andreoletti, Laurent

    2011-11-01

    Viruses are the main etiological cause of central nervous system (CNS) infections. A rapid molecular diagnosis is recommended to improve the therapeutic management of patients. The aim of this study was to evaluate the performances of a DNA microarray, the Clart Entherpex kit (Genomica, Coslada, Spain), allowing the rapid and simultaneous detection of 9 DNA and RNA neurotropic viruses: herpes simplex virus 1 (HSV-1), HSV-2, varicella-zoster virus (VZV), cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6), HHV-7, HHV-8, and the human enteroviruses (HEVs). This evaluation was performed with 28 samples from the European proficiency panels (Quality Control for Molecular Diagnostics [QCMD]; Glasgow, Scotland) and then with 78 cerebrospinal fluid (CSF) specimens. The majority of the QCMD results obtained by the DNA microarray were similar to those recorded by the overall QCMD participants. The main discrepant results were observed for low concentrations of HSV-2 and HEVs. From the clinical samples, the kit detected 27 of the 28 herpesvirus CNS infections and all of the 30 HEV-positive CSF samples. No false-positive result was observed among the 20 virus-negative CSF samples. The clinical sensitivity, specificity, and negative and positive predictive values of the assay were 98.3, 100, 95.2, and 100%, respectively, when the results were compared to those of commercially available PCR assays. Interestingly, HHV-7 was detected in 11 (37%) of the 30 HEV-positive CSF samples from children suffering from aseptic meningitis causing significantly longer lengths of stay at the hospital than infection with HEVs alone (2.4 versus 1.4 days; P = 0.038). In conclusion, this preliminary study showed that this DNA microarray could be a valuable molecular diagnostic tool for single and mixed DNA and RNA virus infections of the CNS. PMID:21918017

  12. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

    PubMed Central

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems. PMID:25961028

  13. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling.

    PubMed

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems. PMID:25961028

  14. cDNA Microarray Analysis Revealing Candidate Biomineralization Genes of the Pearl Oyster, Pinctada fucata martensii.

    PubMed

    Shi, Yaohua; Zheng, Xing; Zhan, Xin; Wang, Aimin; Gu, Zhifeng

    2016-06-01

    Biomineralization is a common biological phenomenon resulting in strong tissue, such as bone, tooth, and shell. Pinctada fucata martensii is an ideal animal for the study of biomineralization. Here, microarray technique was used to identify biomineralization gene in mantle edge (ME), mantle center (MC), and both ME and MC (ME-MC) for this pearl oyster. Results revealed that 804, 306, and 1127 contigs expressed at least three times higher in ME, MC, and ME-MC as those in other tissues. Blast against non-redundant database showed that 130 contigs (16.17 %), 53 contigs (17.32 %), and 248 contigs (22.01 %) hit reference genes (E ≤ -10), among which 91 contigs, 48 contigs, and 168 contigs could be assigned to 32, 26, and 63 biomineralization genes in tissue of ME, MC, and ME-MC at a threshold of 3 times upregulated expression level. The ratios of biomineralization contigs to homologous contigs were similar at 3 times, 10 times, and 100 times of upregulated expression level in either ME, MC, or ME-MC. Moreover, the ratio of biomineralization contigs was highest in MC. Although mRNA distribution characters were similar to those in other studies for eight biomineralization genes of PFMG3, Pif, nacrein, MSI7, mantle gene 6, Pfty1, prismin, and the shematrin, most biomineralization genes presented different expression profiles from existing reports. These results provided massive fundamental information for further study of biomineralization gene function, and it may be helpful for revealing gene nets of biomineralization and the molecular mechanisms underlining formation of shell and pearl for the oyster. PMID:27184264

  15. DNA Microarray Analysis in Screening Features of Genes Involved in Spinal Cord Injury.

    PubMed

    Liu, Yugang; Wang, Ying; Teng, Zhaowei; Zhang, Xiufeng; Ding, Min; Zhang, Zhaojun; Chen, Junli; Xu, Yanli

    2016-01-01

    BACKGROUND Spinal cord injury (SCI) is the most critical complication of spinal injury. We aimed to identify differentially expressed genes (DEGs) and to find associated pathways that may function as targets for SCI prognosis and therapy. MATERIAL AND METHODS Seven gene microarray expression profiles, downloaded from the GEO database (ID: GSE33886), were used to screen the DEGs of leg tissue and to compare these between SCI patients and corresponding normal specimens. Then, GO enrichment analysis was performed on these selected DEGs. Afterwards, interactions among these DEGs were analyzed by String database and then a PPI network was constructed to obtain topology character and modules in the PPI network. Finally, roles of the critical proteins in the pathway were explained by comparing the enrichment results of the genes in sub-modules and all the DEGs. RESULTS A total of 113 DEGs were determined. We found that 21 up-regulated genes were enriched in 7 biological processes, while 9 down-regulated genes were significantly enriched in 4 KEGG pathways. The PPI network was constructed, including 40 interacting genes and 73 interactions. Three obvious function modules were identified by exploring the PPI network, and ACTC1 was identified as the critical protein in the 3 enriched signal pathways. However, no obvious difference was found in the signal pathway in which both the 11 genes in module 1 and all 113 DEGs participated. CONCLUSIONS Core proteins in the signal pathway associated with spinal cord injury may serve as potential prognostic and predictive markers for the diagnosis and treatment of spinal cord injury in clinical applications. PMID:27160807

  16. DNA Microarray Analysis in Screening Features of Genes Involved in Spinal Cord Injury

    PubMed Central

    Liu, Yugang; Wang, Ying; Teng, Zhaowei; Zhang, Xiufeng; Ding, Min; Zhang, Zhaojun; Chen, Junli; Xu, Yanli

    2016-01-01

    Background Spinal cord injury (SCI) is the most critical complication of spinal injury. We aimed to identify differentially expressed genes (DEGs) and to find associated pathways that may function as targets for SCI prognosis and therapy. Material/Methods Seven gene microarray expression profiles, downloaded from the GEO database (ID: GSE33886), were used to screen the DEGs of leg tissue and to compare these between SCI patients and corresponding normal specimens. Then, GO enrichment analysis was performed on these selected DEGs. Afterwards, interactions among these DEGs were analyzed by String database and then a PPI network was constructed to obtain topology character and modules in the PPI network. Finally, roles of the critical proteins in the pathway were explained by comparing the enrichment results of the genes in sub-modules and all the DEGs. Results A total of 113 DEGs were determined. We found that 21 up-regulated genes were enriched in 7 biological processes, while 9 down-regulated genes were significantly enriched in 4 KEGG pathways. The PPI network was constructed, including 40 interacting genes and 73 interactions. Three obvious function modules were identified by exploring the PPI network, and ACTC1 was identified as the critical protein in the 3 enriched signal pathways. However, no obvious difference was found in the signal pathway in which both the 11 genes in module 1 and all 113 DEGs participated. Conclusions Core proteins in the signal pathway associated with spinal cord injury may serve as potential prognostic and predictive markers for the diagnosis and treatment of spinal cord injury in clinical applications. PMID:27160807

  17. Single-cell multiple gene expression analysis based on single-molecule-detection microarray assay for multi-DNA determination.

    PubMed

    Li, Lu; Wang, Xianwei; Zhang, Xiaoli; Wang, Jinxing; Jin, Wenrui

    2015-01-01

    We report a novel ultra-sensitive and high-selective single-molecule-detection microarray assay (SMA) for multiple DNA determination. In the SMA, a capture DNA (DNAc) microarray consisting of 10 subarrays with 9 spots for each subarray is fabricated on a silanized glass coverslip as the substrate. On the subarrays, the spot-to-spot spacing is 500 μm and each spot has a diameter of ∼300 μm. The sequence of the DNAcs on the 9 spots of a subarray is different, to determine 8 types of target DNAs (DNAts). Thus, 8 types of DNAts are captured to their complementary DNAcs at 8 spots of a subarray, respectively, and then labeled with quantum dots (QDs) attached to 8 types of detection DNAs (DNAds) with different sequences. The ninth spot is used to detect the blank value. In order to determine the same 8 types of DNAts in 10 samples, the 10 DNAc-modified subarrays on the microarray are identical. Fluorescence single-molecule images of the QD-labeled DNAts on each spot of the subarray are acquired using a home-made single-molecule microarray reader. The amounts of the DNAts are quantified by counting the bright dots from the QDs. For a microarray, 8 types of DNAts in 10 samples can be quantified in parallel. The limit of detection of the SMA for DNA determination is as low as 1.3×10(-16) mol L(-1). The SMA for multi-DNA determination can also be applied in single-cell multiple gene expression analysis through quantification of complementary DNAs (cDNAs) corresponding to multiple messenger RNAs (mRNAs) in single cells. To do so, total RNA in single cells is extracted and reversely transcribed into their cDNAs. Three types of cDNAs corresponding to beta-2-microglobulin, glyceraldehyde-3-phosphate dehydrogenase and ribosomal protein, large, P2 mRNAs in single human breast cancer cells and 5 random synthetic DNAts are simultaneously quantified to examine the SMA and SMA-based single-cell multiple gene expression analysis. PMID:25479875

  18. Peptide microarrays for the profiling of cytotoxic T-lymphocyte activity using minimum numbers of cells

    PubMed Central

    Hoff, Antje; Bagû, Ana-Cristina; André, Thomas; Roth, Günter; Wiesmüller, Karl-Heinz; Gückel, Brigitte

    2010-01-01

    The identification of epitopes that elicit cytotoxic T-lymphocyte activity is a prerequisite for the development of cancer-specific immunotherapies. However, especially the parallel characterization of several epitopes is limited by the availability of T cells. Microarrays have enabled an unprecedented miniaturization and parallelization in biological assays. Here, we developed peptide microarrays for the detection of CTL activity. MHC class I-binding peptide epitopes were pipetted onto polymer-coated glass slides. Target cells, loaded with the cell-impermeant dye calcein, were incubated on these arrays, followed by incubation with antigen-expanded CTLs. Cytotoxic activity was detected by release of calcein and detachment of target cells. With only 200,000 cells per microarray, CTLs could be detected at a frequency of 0.5% corresponding to 1,000 antigen-specific T cells. Target cells and CTLs only settled on peptide spots enabling a clear separation of individual epitopes. Even though no physical boundaries were present between the individual spots, peptide loading only occurred locally and cytolytic activity was confined to the spots carrying the specific epitope. The peptide microarrays provide a robust platform that implements the whole process from antigen presentation to the detection of CTL activity in a miniaturized format. The method surpasses all established methods in the minimum numbers of cells required. With antigen uptake occurring on the microarray, further applications are foreseen in the testing of antigen precursors that require uptake and processing prior to presentation. PMID:20512327

  19. Gene expression profiles in the rat streptococcal cell wall-induced arthritis model identified using microarray analysis.

    PubMed

    Rioja, Inmaculada; Clayton, Chris L; Graham, Simon J; Life, Paul F; Dickson, Marion C

    2005-01-01

    Experimental arthritis models are considered valuable tools for delineating mechanisms of inflammation and autoimmune phenomena. Use of microarray-based methods represents a new and challenging approach that allows molecular dissection of complex autoimmune diseases such as arthritis. In order to characterize the temporal gene expression profile in joints from the reactivation model of streptococcal cell wall (SCW)-induced arthritis in Lewis (LEW/N) rats, total RNA was extracted from ankle joints from naive, SCW injected, or phosphate buffered saline injected animals (time course study) and gene expression was analyzed using Affymetrix oligonucleotide microarray technology (RAE230A). After normalization and statistical analysis of data, 631 differentially expressed genes were sorted into clusters based on their levels and kinetics of expression using Spotfire profile search and K-mean cluster analysis. Microarray-based data for a subset of genes were validated using real-time PCR TaqMan analysis. Analysis of the microarray data identified 631 genes (441 upregulated and 190 downregulated) that were differentially expressed (Delta > 1.8, P < 0.01), showing specific levels and patterns of gene expression. The genes exhibiting the highest fold increase in expression on days -13.8, -13, or 3 were involved in chemotaxis, inflammatory response, cell adhesion and extracellular matrix remodelling. Transcriptome analysis identified 10 upregulated genes (Delta > 5), which have not previously been associated with arthritis pathology and are located in genomic regions associated with autoimmune disease. The majority of the downregulated genes were associated with metabolism, transport and regulation of muscle development. In conclusion, the present study describes the temporal expression of multiple disease-associated genes with potential pathophysiological roles in the reactivation model of SCW-induced arthritis in Lewis (LEW/N) rat. These findings improve our understanding of

  20. Gene expression profiles in the rat streptococcal cell wall-induced arthritis model identified using microarray analysis

    PubMed Central

    Rioja, Inmaculada; Clayton, Chris L; Graham, Simon J; Life, Paul F; Dickson, Marion C

    2005-01-01

    Experimental arthritis models are considered valuable tools for delineating mechanisms of inflammation and autoimmune phenomena. Use of microarray-based methods represents a new and challenging approach that allows molecular dissection of complex autoimmune diseases such as arthritis. In order to characterize the temporal gene expression profile in joints from the reactivation model of streptococcal cell wall (SCW)-induced arthritis in Lewis (LEW/N) rats, total RNA was extracted from ankle joints from naïve, SCW injected, or phosphate buffered saline injected animals (time course study) and gene expression was analyzed using Affymetrix oligonucleotide microarray technology (RAE230A). After normalization and statistical analysis of data, 631 differentially expressed genes were sorted into clusters based on their levels and kinetics of expression using Spotfire® profile search and K-mean cluster analysis. Microarray-based data for a subset of genes were validated using real-time PCR TaqMan® analysis. Analysis of the microarray data identified 631 genes (441 upregulated and 190 downregulated) that were differentially expressed (Delta > 1.8, P < 0.01), showing specific levels and patterns of gene expression. The genes exhibiting the highest fold increase in expression on days -13.8, -13, or 3 were involved in chemotaxis, inflammatory response, cell adhesion and extracellular matrix remodelling. Transcriptome analysis identified 10 upregulated genes (Delta > 5), which have not previously been associated with arthritis pathology and are located in genomic regions associated with autoimmune disease. The majority of the downregulated genes were associated with metabolism, transport and regulation of muscle development. In conclusion, the present study describes the temporal expression of multiple disease-associated genes with potential pathophysiological roles in the reactivation model of SCW-induced arthritis in Lewis (LEW/N) rat. These findings improve our

  1. Development of a DNA-based microarray for the detection of zoonotic pathogens in rodent species.

    PubMed

    Giles, Timothy; Yon, Lisa; Hannant, Duncan; Barrow, Paul; Abu-Median, Abu-Bakr

    2015-12-01

    The demand for diagnostic tools that allow simultaneous screening of samples for multiple pathogens is increasing because they overcome the limitations of other methods, which can only screen for a single or a few pathogens at a time. Microarrays offer the advantages of being capable to test a large number of samples simultaneously, screening for multiple pathogen types per sample and having comparable sensitivity to existing methods such as PCR. Array design is often considered the most important process in any microarray experiment and can be the deciding factor in the success of a study. There are currently no microarrays for simultaneous detection of rodent-borne pathogens. The aim of this report is to explicate the design, development and evaluation of a microarray platform for use as a screening tool that combines ease of use and rapid identification of a number of rodent-borne pathogens of zoonotic importance. Nucleic acid was amplified by multiplex biotinylation PCR prior to hybridisation onto microarrays. The array sensitivity was comparable to standard PCR, though less sensitive than real-time PCR. The array presented here is a prototype microarray identification system for zoonotic pathogens that can infect rodent species. PMID:26188129

  2. A multivariate approach for high throughput pectin profiling by combining glycan microarrays with monoclonal antibodies.

    PubMed

    Sousa, António G; Ahl, Louise I; Pedersen, Henriette L; Fangel, Jonatan U; Sørensen, Susanne O; Willats, William G T

    2015-05-29

    Pectin-one of the most complex biomacromolecules in nature has been extensively studied using various techniques. This has been done so in an attempt to understand the chemical composition and conformation of pectin, whilst discovering and optimising new industrial applications of the polymer. For the last decade the emergence of glycan microarray technology has led to a growing capacity of acquiring simultaneous measurements related to various carbohydrate characteristics while generating large collections of data. Here we used a multivariate analysis approach in order to analyse a set of 359 pectin samples probed with 14 different monoclonal antibodies (mAbs). Principal component analysis (PCA) and partial least squares (PLS) regression were utilised to obtain the most optimal qualitative and quantitative information from the spotted microarrays. The potential use of microarray technology combined with chemometrics for the accurate determination of degree of methyl-esterification (DM) and degree of blockiness (DB) was assessed. PMID:25950120

  3. Correlation Index-Based Responsible-Enzyme Gene Screening (CIRES), a Novel DNA Microarray-Based Method for Enzyme Gene Involved in Glycan Biosynthesis

    PubMed Central

    Yamamoto, Harumi; Takematsu, Hiromu; Fujinawa, Reiko; Naito, Yuko; Okuno, Yasushi; Tsujimoto, Gozoh; Suzuki, Akemi; Kozutsumi, Yasunori

    2007-01-01

    Background Glycan biosynthesis occurs though a multi-step process that requires a variety of enzymes ranging from glycosyltransferases to those involved in cytosolic sugar metabolism. In many cases, glycan biosynthesis follows a glycan-specific, linear pathway. As glycosyltransferases are generally regulated at the level of transcription, assessing the overall transcriptional profile for glycan biosynthesis genes seems warranted. However, a systematic approach for assessing the correlation between glycan expression and glycan-related gene expression has not been reported previously. Methodology To facilitate genetic analysis of glycan biosynthesis, we sought to correlate the expression of genes involved in cell-surface glycan formation with the expression of the glycans, as detected by glycan-recognizing probes. We performed cross-sample comparisons of gene expression profiles using a newly developed, glycan-focused cDNA microarray. Cell-surface glycan expression profiles were obtained using flow cytometry of cells stained with plant lectins. Pearson's correlation coefficients were calculated for these profiles and were used to identify enzyme genes correlated with glycan biosynthesis. Conclusions This method, designated correlation index-based responsible-enzyme gene screening (CIRES), successfully identified genes already known to be involved in the biosynthesis of certain glycans. Our evaluation of CIRES indicates that it is useful for identifying genes involved in the biosynthesis of glycan chains that can be probed with lectins using flow cytometry. PMID:18043739

  4. Oligonucleotide microarray expression profiling of contrasting invasive phenotypes in colorectal cancer.

    PubMed

    Thorn, Christopher C; Williams, Deborah; Freeman, Thomas C

    2011-01-01

    This chapter refers to the application of laser-capture microdissection with oligonucleotide microarray analysis. The protocol described has been successfully used to identify differential transcript expression between contrasting colorectal cancer invasive phenotypes. Tissue processing, RNA extraction, quality control, amplification, fluorescent labelling, purification, hybridisation, and elements of data analysis are covered. PMID:21761306

  5. Gene expression profiles of corn developing kernels of Tex6 using maize oligo-microarray

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize oligonuleotide microarray was used to analyze the temporal patterns of gene expression in late developmental maize kernels of Tex6 after 25 days after pollination (DAP). There was a total of 57,452 70-mer oligonucleotides on a set of two array-slides. Because of the resistant traits of Tex6, w...

  6. An on-chip thin film photodetector for the quantification of DNA probes and targets in microarrays

    PubMed Central

    Fixe, F.; Chu, V.; Prazeres, D. M. F.; Conde, J. P.

    2004-01-01

    A flat microdevice which incorporates a thin-film amorphous silicon (a-Si:H) photodetector with an upper layer of functionalized SiO2 is used to quantify the density of both immobilized and hybridized DNA oligonucleotides labeled with a fluorophore. The device is based on the photoconductivity of hydrogenated amorphous silicon in a coplanar electrode configuration. Excitation, with near UV/blue light, of a single-stranded DNA molecule tagged with the fluorophore 1-(3-(succinimidyloxycarbonyl)benzyl)-4-(5-(4-methoxyphenyl)oxazol-2-yl) pyridinium bromide (PyMPO), results in the emission of visible light. The emitted light is then converted into an electrical signal in the photodetector, thus allowing the optoelectronic detection of the DNA molecules. The detection limit of the present device is of the order of 1 × 1012 molecules/cm2 and is limited by the efficiency of the filtering of the excitation light. A surface density of 33.5 ± 4.0 pmol/cm2 was measured for DNA covalently immobilized to the functionalized SiO2 thin film and a surface density of 3.7 ± 1.5 pmol/cm2 was measured for the complementary DNA hybridized to the bound DNA. The detection concept explored can enable on-chip electronic data acquisition, improving both the speed and the reliability of DNA microarrays. PMID:15148343

  7. An automated microfluidic system for single-stranded DNA preparation and magnetic bead-based microarray analysis

    PubMed Central

    Wang, Shuaiqin; Sun, Yujia; Liu, Yan; Xiang, Guangxin; Wang, Lei; Cheng, Jing; Liu, Peng

    2015-01-01

    We present an integrated microfluidic device capable of performing single-stranded DNA (ssDNA) preparation and magnetic bead-based microarray analysis with a white-light detection for detecting mutations that account for hereditary hearing loss. The entire operation process, which includes loading of streptavidin-coated magnetic beads (MBs) and biotin-labeled polymerase chain reaction products, active dispersion of the MBs with DNA for binding, alkaline denaturation of DNA, dynamic hybridization of the bead-labeled ssDNA to a tag array, and white-light detection, can all be automatically accomplished in a single chamber of the microchip, which was operated on a self-contained instrument with all the necessary components for thermal control, fluidic control, and detection. Two novel mixing valves with embedded polydimethylsiloxane membranes, which can alternately generate a 3-μl pulse flow at a peak rate of around 160 mm/s, were integrated into the chip for thoroughly dispersing magnetic beads in 2 min. The binding efficiency of biotinylated oligonucleotides to beads was measured to be 80.6% of that obtained in a tube with the conventional method. To critically test the performance of this automated microsystem, we employed a commercial microarray-based detection kit for detecting nine mutation loci that account for hereditary hearing loss. The limit of detection of the microsystem was determined as 2.5 ng of input K562 standard genomic DNA using this kit. In addition, four blood samples obtained from persons with mutations were all correctly typed by our system in less than 45 min per run. The fully automated, “amplicon-in-answer-out” operation, together with the white-light detection, makes our system an excellent platform for low-cost, rapid genotyping in clinical diagnosis. PMID:25825617

  8. An automated microfluidic system for single-stranded DNA preparation and magnetic bead-based microarray analysis.

    PubMed

    Wang, Shuaiqin; Sun, Yujia; Gan, Wupeng; Liu, Yan; Xiang, Guangxin; Wang, Dong; Wang, Lei; Cheng, Jing; Liu, Peng

    2015-03-01

    We present an integrated microfluidic device capable of performing single-stranded DNA (ssDNA) preparation and magnetic bead-based microarray analysis with a white-light detection for detecting mutations that account for hereditary hearing loss. The entire operation process, which includes loading of streptavidin-coated magnetic beads (MBs) and biotin-labeled polymerase chain reaction products, active dispersion of the MBs with DNA for binding, alkaline denaturation of DNA, dynamic hybridization of the bead-labeled ssDNA to a tag array, and white-light detection, can all be automatically accomplished in a single chamber of the microchip, which was operated on a self-contained instrument with all the necessary components for thermal control, fluidic control, and detection. Two novel mixing valves with embedded polydimethylsiloxane membranes, which can alternately generate a 3-μl pulse flow at a peak rate of around 160 mm/s, were integrated into the chip for thoroughly dispersing magnetic beads in 2 min. The binding efficiency of biotinylated oligonucleotides to beads was measured to be 80.6% of that obtained in a tube with the conventional method. To critically test the performance of this automated microsystem, we employed a commercial microarray-based detection kit for detecting nine mutation loci that account for hereditary hearing loss. The limit of detection of the microsystem was determined as 2.5 ng of input K562 standard genomic DNA using this kit. In addition, four blood samples obtained from persons with mutations were all correctly typed by our system in less than 45 min per run. The fully automated, "amplicon-in-answer-out" operation, together with the white-light detection, makes our system an excellent platform for low-cost, rapid genotyping in clinical diagnosis. PMID:25825617

  9. Gene Expression Profiling and Identification of Resistance Genes to Aspergillus flavus Infection in Peanut through EST and Microarray Strategies

    PubMed Central

    Guo, Baozhu; Fedorova, Natalie D.; Chen, Xiaoping; Wan, Chun-Hua; Wang, Wei; Nierman, William C.; Bhatnagar, Deepak; Yu, Jiujiang

    2011-01-01

    Aspergillus flavus and A. parasiticus infect peanut seeds and produce aflatoxins, which are associated with various diseases in domestic animals and humans throughout the world. The most cost-effective strategy to minimize aflatoxin contamination involves the development of peanut cultivars that are resistant to fungal infection and/or aflatoxin production. To identify peanut Aspergillus-interactive and peanut Aspergillus-resistance genes, we carried out a large scale peanut Expressed Sequence Tag (EST) project which we used to construct a peanut glass slide oligonucleotide microarray. The fabricated microarray represents over 40% of the protein coding genes in the peanut genome. For expression profiling, resistant and susceptible peanut cultivars were infected with a mixture of Aspergillus flavus and parasiticus spores. The subsequent microarray analysis identified 62 genes in resistant cultivars that were up-expressed in response to Aspergillus infection. In addition, we identified 22 putative Aspergillus-resistance genes that were constitutively up-expressed in the resistant cultivar in comparison to the susceptible cultivar. Some of these genes were homologous to peanut, corn, and soybean genes that were previously shown to confer resistance to fungal infection. This study is a first step towards a comprehensive genome-scale platform for developing Aspergillus-resistant peanut cultivars through targeted marker-assisted breeding and genetic engineering. PMID:22069737

  10. Transcriptional profiling of phenotypically different Epo-Fc expressing CHO clones by cross-species microarray analysis.

    PubMed

    Trummer, Evelyn; Ernst, Wolfgang; Hesse, Friedemann; Schriebl, Kornelia; Lattenmayer, Christine; Kunert, Renate; Vorauer-Uhl, Karola; Katinger, Hermann; Müller, Dethardt

    2008-07-01

    Chinese hamster ovary (CHO) cells exhibit large variabilities regarding growth, recombinant protein production and post-translational processing during cell line development and clone selection. To accelerate the development of stable high quality cell factories, new efficient strategies for cell screening and clone selection are required. In our work, we combined phenotypic characterisation of recombinant CHO clones during early cell line development with transcription profile analysis using cross-species microarrays. The objective was to identify genes or gene patterns that correlate with clone specific alterations in terms of productivity, sialylation capacity and stress resistance. In all high producer clones transcriptional profiling revealed a common enrichment of gene ontology categories related to protein metabolism, transcription, nucleus and nucleolus, whereas no common genes were differentially regulated in clones showing higher sialylation capacities. Furthermore, we identified predictive stress-related marker genes that were up-regulated in one clone without showing the corresponding phenotype at an early stage of development. Thus, we successfully applied gene expression profiling to allocate transcriptomal differences to specific phenotypes that changed during cell line development. These promising results will further increase our efforts to develop CHO specific microarrays that deliver information about the suitability of a clone candidate for industrial production. PMID:18481264

  11. Evaluation of a Field-Portable DNA Microarray Platform and Nucleic Acid Amplification Strategies for the Detection of Arboviruses, Arthropods, and Bloodmeals

    PubMed Central

    Grubaugh, Nathan D.; Petz, Lawrence N.; Melanson, Vanessa R.; McMenamy, Scott S.; Turell, Michael J.; Long, Lewis S.; Pisarcik, Sarah E.; Kengluecha, Ampornpan; Jaichapor, Boonsong; O'Guinn, Monica L.; Lee, John S.

    2013-01-01

    Highly multiplexed assays, such as microarrays, can benefit arbovirus surveillance by allowing researchers to screen for hundreds of targets at once. We evaluated amplification strategies and the practicality of a portable DNA microarray platform to analyze virus-infected mosquitoes. The prototype microarray design used here targeted the non-structural protein 5, ribosomal RNA, and cytochrome b genes for the detection of flaviviruses, mosquitoes, and bloodmeals, respectively. We identified 13 of 14 flaviviruses from virus inoculated mosquitoes and cultured cells. Additionally, we differentiated between four mosquito genera and eight whole blood samples. The microarray platform was field evaluated in Thailand and successfully identified flaviviruses (Culex flavivirus, dengue-3, and Japanese encephalitis viruses), differentiated between mosquito genera (Aedes, Armigeres, Culex, and Mansonia), and detected mammalian bloodmeals (human and dog). We showed that the microarray platform and amplification strategies described here can be used to discern specific information on a wide variety of viruses and their vectors. PMID:23249687

  12. Hypoxia-induced regulation of MAPK phosphatase-1 as identified by subtractive suppression hybridization and cDNA microarray analysis.

    PubMed

    Seta, K A; Kim, R; Kim, H W; Millhorn, D E; Beitner-Johnson, D

    2001-11-30

    Subtractive suppression hybridization was used to generate a cDNA library enriched in cDNA sequences corresponding to mRNA species that are specifically up-regulated by hypoxia (6 h, 1% O(2)) in the oxygen-responsive pheochromocytoma cell line. The dual specificity protein-tyrosine phosphatase MAPK phosphatase-1 (MKP-1) was highly represented in this library. Clones were arrayed on glass slides to create a hypoxia-specific cDNA microarray chip. Microarray, northern blot, and western blot analyses confirmed that MKP-1 mRNA and protein levels were up-regulated by hypoxia by approximately 8-fold. The magnitude of the effect of hypoxia on MKP-1 was approximately equal to that induced by KCl depolarization and much larger than the effects of either epidermal growth factor or nerve growth factor on MKP-1 mRNA levels. In contrast to the calcium-dependent induction of MKP-1 by KCl depolarization, the effect of hypoxia on MKP-1 persisted under calcium-free conditions. Cobalt and deferoxamine also increased MKP-1 mRNA levels, suggesting that hypoxia-inducible factor proteins may play a role in the regulation of MKP-1 by hypoxia. Pretreatment of cells with SB203580, which inhibits p38 kinase activity, significantly reduced the hypoxia-induced increase in MKP-1 RNA levels. Thus, hypoxia robustly increases MKP-1 levels, at least in part through a p38 kinase-mediated mechanism. PMID:11577072

  13. Microarray-based transcriptional and epigenetic profiling of matrix metalloproteinases, collagens, and related genes in cancer.

    PubMed

    Chernov, Andrei V; Baranovskaya, Svetlana; Golubkov, Vladislav S; Wakeman, Dustin R; Snyder, Evan Y; Williams, Roy; Strongin, Alex Y

    2010-06-18

    Epigenetic parameters (DNA methylation, histone modifications, and miRNAs) play a significant role in cancer. To identify the common epigenetic signatures of both the individual matrix metalloproteinases (MMPs) and the additional genes, the function of which is also linked to proteolysis, migration, and tumorigenesis, we performed epigenetic profiling of 486 selected genes in unrelated non-migratory MCF-7 breast carcinoma and highly migratory U251 glioma cells. Genome-wide transcriptional profiling, quantitative reverse transcription-PCR, and microRNA analyses were used to support the results of our epigenetic studies. Transcriptional silencing in both glioma and breast carcinoma cells predominantly involved the repressive histone H3 Lys-27 trimethylation (H3K27me3) mark. In turn, epigenetic stimulation was primarily performed through a gain in the histone H3 Lys-4 dimethylation (H3K4me2) and H3 hyperacetylation and by a global reduction of H3K27me3. Inactive pro-invasive genes in MCF-7 cells but not in U251 cells frequently exhibited a stem cell-like bivalent mark (enrichment in both H3K27me3 and H3K4me2), a characteristic of developmental genes. In contrast with other MMPs, MMP-8 was epigenetically silenced in both cell types, thus providing evidence for the strict epigenetic control of this anti-tumorigenic proteinase in cancer. Epigenetic stimulation of multiple collagen genes observed in cultured glioma cells was then directly confirmed using orthotopic xenografts and tumor specimens. We suggest that the epigenetic mechanisms allow gliomas to deposit an invasion-promoting collagen-enriched matrix and then to use this matrix to accomplish their rapid migration through the brain tissue. PMID:20404328

  14. Development of a DNA Microarray for Enterococcal Species, Virulence, and Antibiotic Resistance Gene Determinations among Isolates from Poultry▿

    PubMed Central

    Champagne, J.; Diarra, M. S.; Rempel, H.; Topp, E.; Greer, C. W.; Harel, J.; Masson, L.

    2011-01-01

    A DNA microarray (Enteroarray) was designed with probes targeting four species-specific taxonomic identifiers to discriminate among 18 different enterococcal species, while other probes were designed to identify 18 virulence factors and 174 antibiotic resistance genes. In total, 262 genes were utilized for rapid species identification of enterococcal isolates, while characterizing their virulence potential through the simultaneous identification of endogenous antibiotic resistance and virulence genes. Enterococcal isolates from broiler chicken farms were initially identified by using the API 20 Strep system, and the results were compared to those obtained with the taxonomic genes atpA, recA, pheS, and ddl represented on our microarray. Among the 171 isolates studied, five different enterococcal species were identified by using the API 20 Strep system: Enterococcus faecium, E. faecalis, E. durans, E. gallinarum, and E. avium. The Enteroarray detected the same species as API 20 Strep, as well as two more: E. casseliflavus and E. hirae. Species comparisons resulted in 15% (27 isolates) disagreement between the two methods among the five API 20 Strep identifiable species and 24% (42 isolates) disagreement when considering the seven Enteroarray identified species. The species specificity of key antibiotic and virulence genes identified by the Enteroarray were consistent with the literature adding further robustness to the redundant taxonomic probe data. Sequencing of the cpn60 gene further confirmed the complete accuracy of the microarray results. The new Enteroarray should prove to be a useful tool to accurately genotype strains of enterococci and assess their virulence potential. PMID:21335389

  15. Development of a Custom-Designed, Pan Genomic DNA Microarray to Characterize Strain-Level Diversity among Cronobacter spp.

    PubMed Central

    Tall, Ben Davies; Gangiredla, Jayanthi; Gopinath, Gopal R.; Yan, Qiongqiong; Chase, Hannah R.; Lee, Boram; Hwang, Seongeun; Trach, Larisa; Park, Eunbi; Yoo, YeonJoo; Chung, TaeJung; Jackson, Scott A.; Patel, Isha R.; Sathyamoorthy, Venugopal; Pava-Ripoll, Monica; Kotewicz, Michael L.; Carter, Laurenda; Iversen, Carol; Pagotto, Franco; Stephan, Roger; Lehner, Angelika; Fanning, Séamus; Grim, Christopher J.

    2015-01-01

    Cronobacter species cause infections in all age groups; however neonates are at highest risk and remain the most susceptible age group for life-threatening invasive disease. The genus contains seven species:Cronobacter sakazakii, Cronobacter malonaticus, Cronobacter turicensis, Cronobacter muytjensii, Cronobacter dublinensis, Cronobacter universalis, and Cronobacter condimenti. Despite an abundance of published genomes of these species, genomics-based epidemiology of the genus is not well established. The gene content of a diverse group of 126 unique Cronobacter and taxonomically related isolates was determined using a pan genomic-based DNA microarray as a genotyping tool and as a means to identify outbreak isolates for food safety, environmental, and clinical surveillance purposes. The microarray constitutes 19,287 independent genes representing 15 Cronobacter genomes and 18 plasmids and 2,371 virulence factor genes of phylogenetically related Gram-negative bacteria. The Cronobacter microarray was able to distinguish the seven Cronobacter species from one another and from non-Cronobacter species; and within each species, strains grouped into distinct clusters based on their genomic diversity. These results also support the phylogenic divergence of the genus and clearly highlight the genomic diversity among each member of the genus. The current study establishes a powerful platform for further genomics research of this diverse genus, an important prerequisite toward the development of future countermeasures against this foodborne pathogen in the food safety and clinical arenas. PMID:25984509

  16. Global analysis of ligand sensitivity of estrogen inducible and suppressible genes in MCF7/BUS breast cancer cells by DNA microarray

    PubMed Central

    Coser, Kathryn R.; Chesnes, Jessica; Hur, Jingyung; Ray, Sandip; Isselbacher, Kurt J.; Shioda, Toshi

    2003-01-01

    To obtain comprehensive information on 17β-estradiol (E2) sensitivity of genes that are inducible or suppressible by this hormone, we designed a method that determines ligand sensitivities of large numbers of genes by using DNA microarray and a set of simple Perl computer scripts implementing the standard metric statistics. We used it to characterize effects of low (0–100 pM) concentrations of E2 on the transcriptome profile of MCF7/BUS human breast cancer cells, whose E2 dose-dependent growth curve saturated with 100 pM E2. Evaluation of changes in mRNA expression for all genes covered by the DNA microarray indicated that, at a very low concentration (10 pM), E2 suppressed ≈3–5 times larger numbers of genes than it induced, whereas at higher concentrations (30–100 pM) it induced ≈1.5–2 times more genes than it suppressed. Using clearly defined statistical criteria, E2-inducible genes were categorized into several classes based on their E2 sensitivities. This approach of hormone sensitivity analysis revealed that expression of two previously reported E2-inducible autocrine growth factors, transforming growth factor α and stromal cell-derived factor 1, was not affected by 100 pM and lower concentrations of E2 but strongly enhanced by 10 nM E2, which was far higher than the concentration that saturated the E2 dose-dependent growth curve of MCF7/BUS cells. These observations suggested that biological actions of E2 are derived from expression of multiple genes whose E2 sensitivities differ significantly and, hence, depend on the E2 concentration, especially when it is lower than the saturating level, emphasizing the importance of characterizing the ligand dosedependent aspects of E2 actions. PMID:14610279

  17. Global analysis of ligand sensitivity of estrogen inducible and suppressible genes in MCF7/BUS breast cancer cells by DNA microarray.

    PubMed

    Coser, Kathryn R; Chesnes, Jessica; Hur, Jingyung; Ray, Sandip; Isselbacher, Kurt J; Shioda, Toshi

    2003-11-25

    To obtain comprehensive information on 17beta-estradiol (E2) sensitivity of genes that are inducible or suppressible by this hormone, we designed a method that determines ligand sensitivities of large numbers of genes by using DNA microarray and a set of simple Perl computer scripts implementing the standard metric statistics. We used it to characterize effects of low (0-100 pM) concentrations of E2 on the transcriptome profile of MCF7/BUS human breast cancer cells, whose E2 dose-dependent growth curve saturated with 100 pM E2. Evaluation of changes in mRNA expression for all genes covered by the DNA microarray indicated that, at a very low concentration (10 pM), E2 suppressed approximately 3-5 times larger numbers of genes than it induced, whereas at higher concentrations (30-100 pM) it induced approximately 1.5-2 times more genes than it suppressed. Using clearly defined statistical criteria, E2-inducible genes were categorized into several classes based on their E2 sensitivities. This approach of hormone sensitivity analysis revealed that expression of two previously reported E2-inducible autocrine growth factors, transforming growth factor alpha and stromal cell-derived factor 1, was not affected by 100 pM and lower concentrations of E2 but strongly enhanced by 10 nM E2, which was far higher than the concentration that saturated the E2 dose-dependent growth curve of MCF7/BUS cells. These observations suggested that biological actions of E2 are derived from expression of multiple genes whose E2 sensitivities differ significantly and, hence, depend on the E2 concentration, especially when it is lower than the saturating level, emphasizing the importance of characterizing the ligand dose-dependent aspects of E2 actions. PMID:14610279

  18. Anti-heat shock protein autoantibody profiling in breast cancer using customized protein microarray.

    PubMed

    Shi, Liu; Gehin, Thomas; Chevolot, Yann; Souteyrand, Eliane; Mangé, Alain; Solassol, Jérôme; Laurenceau, Emmanuelle

    2016-02-01

    Heat shock proteins (HSPs) are over-expressed in a wide range of human cancers. It results in the stimulation of the immune system and consequently in elevated concentration of anti-HSP autoantibodies. Elevated anti-HSP autoantibodies were found in breast cancer patients, and they are associated with tumor metastasis. Therefore, screening these autoantibodies could be of diagnostic and prognostic values. Protein microarrays have already demonstrated their great potential as a diagnostic tool. However, protein diversity requires optimization of the microarray fabrication to achieve high sensitivity and specificity. In this study, seven HSPs were immobilized on six different surface chemistries. After evaluation and optimization with purified antibodies of the six surface chemistries, two surfaces were selected to detect anti-HSP autoantibodies in breast cancer sera. Multiplex detection of anti-HSP autoantibodies allowed discrimination of breast cancer patients (50) from healthy controls (26) with a sensitivity of 86% and a specificity of 100%. PMID:26715250

  19. Long synthetic oligonucleotides for microarray expression measurement

    NASA Astrophysics Data System (ADS)

    Li, Jiong; Wang, Hong; Liu, Heping; Zhang, M.; Zhang, Chunxiu; Lu, Zu-Hong; Gao, Xiang; Kong, Dong

    2001-09-01

    There are generally two kinds of DNA microarray used for genomic-scale gene expression profiling of mRNA: cDNA and DNA chip, but both of them suffer from some drawbacks. To meet more requirements, another oligonucleotide microarray with long was produced. This type of microarray had the advantages of low cost, minimal Cross-hybridization, flexible and easy to make, which is most fit for small laboratories with special purposes. In this paper, we devised different probes with different probe lengths, GC contents and gene positions to optimization the probe design. Experiments showed 70 mer probes are suitable for both sufficient sensitivity and reasonable costs. Higher G-C content produces stronger signal intensity thus better sensitivity and probes designed at 3 untranslated region of gene within the range of 300 pb should be best for both sensitivity and specificity.

  20. Genetic lineages of undifferentiated-type gastric carcinomas analysed by unsupervised clustering of genomic DNA microarray data

    PubMed Central

    2013-01-01

    Background It is suspected that early gastric carcinoma (GC) is a dormant variant that rarely progresses to advanced GC. We demonstrated that the dormant and aggressive variants of tubular adenocarcinomas (TUBs) of the stomach are characterized by loss of MYC and gain of TP53 and gain of MYC and/or loss of TP53, respectively. The aim of this study is to determine whether this is also the case in undifferentiated-type GCs (UGCs) of different genetic lineages: one with a layered structure (LS+), derived from early signet ring cell carcinomas (SIGs), and the other, mostly poorly differentiated adenocarcinomas, without LS but with a minor tubular component (TC), dedifferentiated from TUBs (LS−/TC+). Methods Using 29 surgically resected stomachs with 9 intramucosal and 20 invasive UGCs (11 LS+ and 9 LS−/TC+), 63 genomic DNA samples of mucosal and invasive parts and corresponding reference DNAs were prepared from formalin-fixed, paraffin-embedded tissues with laser microdissection, and were subjected to array-based comparative genomic hybridization (aCGH), using 60K microarrays, and subsequent unsupervised, hierarchical clustering. Of 979 cancer-related genes assessed, we selected genes with mean copy numbers significantly different between the two major clusters. Results Based on similarity in genomic copy-number profile, the 63 samples were classified into two major clusters. Clusters A and B, which were rich in LS+ UGC and LS−/TC+ UGC, respectively, were discriminated on the basis of 40 genes. The aggressive pattern was more frequently detected in LS−/TC+ UGCs, (20/26; 77%), than in LS+UGCs (17/37; 46%; P = 0.0195), whereas no dormant pattern was detected in any of the UGC samples. Conclusions In contrast to TUBs, copy number alterations of MYC and TP53 exhibited an aggressive pattern in LS+ SIG at early and advanced stages, indicating that early LS+ UGCs inevitably progress to an advanced GC. Cluster B (enriched in LS−/TC+) exhibited more

  1. Effect of data normalization on fuzzy clustering of DNA microarray data

    PubMed Central

    Kim, Seo Young; Lee, Jae Won; Bae, Jong Sung

    2006-01-01

    Background Microarray technology has made it possible to simultaneously measure the expression levels of large numbers of genes in a short time. Gene expression data is information rich; however, extensive data mining is required to identify the patterns that characterize the underlying mechanisms of action. Clustering is an important tool for finding groups of genes with similar expression patterns in microarray data analysis. However, hard clustering methods, which assign each gene exactly to one cluster, are poorly suited to the analysis of microarray datasets because in such datasets the clusters of genes frequently overlap. Results In this study we applied the fuzzy partitional clustering method known as Fuzzy C-Means (FCM) to overcome the limitations of hard clustering. To identify the effect of data normalization, we used three normalization methods, the two common scale and location transformations and Lowess normalization methods, to normalize three microarray datasets and three simulated datasets. First we determined the optimal parameters for FCM clustering. We found that the optimal fuzzification parameter in the FCM analysis of a microarray dataset depended on the normalization method applied to the dataset during preprocessing. We additionally evaluated the effect of normalization of noisy datasets on the results obtained when hard clustering or FCM clustering was applied to those datasets. The effects of normalization were evaluated using both simulated datasets and microarray datasets. A comparative analysis showed that the clustering results depended on the normalization method used and the noisiness of the data. In particular, the selection of the fuzzification parameter value for the FCM method was sensitive to the normalization method used for datasets with large variations across samples. Conclusion Lowess normalization is more robust for clustering of genes from general microarray data than the two common scale and location adjustment methods

  2. Population Screening for Hemoglobinopathy Profiling: Is the Development of a Microarray Worthwhile?

    PubMed

    Kambouris, Manousos E

    2016-08-01

    In order to perform affordable and expedient whole population scans for the single nucleotide polymorphisms (SNPs) involved in hemoglobinopathies, microarrays based on single nucleotide extension (SNE) might prove advantageous to whole genome/exome sequencing in terms of cost, speed, interpretation and discretion as they focus on a very small part of the tested genome. The development of a microarray assay entails most of the cost, to be deferred by the massive use of the end product. A microarray assay development project, involving multiplex polymerase chain reaction (PCR), labeling, hybridization and scanning/scoring steps is presented as a paradigm of objective bug ratios expected to such procedures and of ways to cope with them. Qualification of the microarray genotypes needs a reference method, which may still be restriction digestion or other, as sequencing remains an expensive commodity. Optimization of wet steps should also be followed by careful and perhaps individualized dye excitation and in silico scoring rules, taking into consideration decay and bleaching effects that perplex development. The strategy of successive elimination of problems, a top-bottom procedure, which had been used and is usually preferred by developing agencies, might have been erroneous; a bottom-up course to delineate issues in different levels, although more laborious, might be the correct choice, especially as software and robotic hardware, high throughput tools become more mature and available. The testing for interlocus compatibility, specificity and robustness is demanding and warranted only in the case of steady, high volume use of an assay for territorial, national or international use. PMID:27250938

  3. Profiling DNA supercoiling domains in vivo

    PubMed Central

    Corless, Samuel; Naughton, Catherine; Gilbert, Nick

    2014-01-01

    Transitions in DNA structure have the capacity to regulate genes, but have been poorly characterised in eukaryotes due to a lack of appropriate techniques. One important example is DNA supercoiling, which can directly regulate transcription initiation, elongation and coordinated expression of neighbouring genes. DNA supercoiling is the over- or under-winding of the DNA double helix, which occurs as a consequence of polymerase activity and is modulated by topoisomerase activity [5]. To map the distribution of DNA supercoiling in nuclei, we developed biotinylated 4,5,8-trimethylpsoralen (bTMP) pull-down to preferentially enrich for under-wound DNA. Here we describe in detail the experimental design, quality controls and analyses associated with the study by Naughton et al. [13] that characterised for the first time the large-scale distribution of DNA supercoiling in human cells (GEO: GSE43488 and GSE43450GSE43488GSE43450). PMID:26484106

  4. Profiling DNA supercoiling domains in vivo.

    PubMed

    Corless, Samuel; Naughton, Catherine; Gilbert, Nick

    2014-12-01

    Transitions in DNA structure have the capacity to regulate genes, but have been poorly characterised in eukaryotes due to a lack of appropriate techniques. One important example is DNA supercoiling, which can directly regulate transcription initiation, elongation and coordinated expression of neighbouring genes. DNA supercoiling is the over- or under-winding of the DNA double helix, which occurs as a consequence of polymerase activity and is modulated by topoisomerase activity [5]. To map the distribution of DNA supercoiling in nuclei, we developed biotinylated 4,5,8-trimethylpsoralen (bTMP) pull-down to preferentially enrich for under-wound DNA. Here we describe in detail the experimental design, quality controls and analyses associated with the study by Naughton et al. [13] that characterised for the first time the large-scale distribution of DNA supercoiling in human cells (GEO: GSE43488 and GSE43450GSE43488GSE43450). PMID:26484106

  5. Lectin microarray reveals binding profiles of Lactobacillus casei strains in a comprehensive analysis of bacterial cell wall polysaccharides.

    PubMed

    Yasuda, Emi; Tateno, Hiroaki; Hirabayashi, Jun; Hirabarashi, Jun; Iino, Tohru; Sako, Tomoyuki

    2011-07-01

    We previously showed a pivotal role of the polysaccharide (PS) moiety in the cell wall of the Lactobacillus casei strain Shirota (YIT 9029) as a possible immune modulator (E. Yasuda M. Serata, and T. Sako, Appl. Environ. Microbiol. 74:4746-4755, 2008). To distinguish PS structures on the bacterial cell surface of individual strains in relation to their activities, it would be useful to have a rapid and high-throughput methodology. Recently, a new technique called lectin microarray was developed for rapid profiling of glycosylation in eukaryotic polymers and cell surfaces. Here, we report on the development of a simple and sensitive method based on this technology for direct analysis of intact bacterial cell surface glycomes. The method involves labeling bacterial cells with SYTOX Orange before incubation with the lectin microarray. After washing, bound cells are directly detected using an evanescent-field fluorescence scanner in a liquid phase. Using this method, we compared the cell surface glycomes from 16 different strains of L. casei. The patterns of lectin-binding affinity of most strains were found to be unique. There appears to be two types of lectin-binding profiles: the first is characterized by a few lectins, and the other is characterized by multiple lectins with different specificities. We also showed a dramatic change in the lectin-binding profile of a YIT 9029 derivative with a mutation in the cps1C gene, encoding a putative glycosyltransferase. In conclusion, the developed technique provided a novel strategy for rapid profiling and, more importantly, differentiating numerous bacterial strains with relevance to the biological functions of PS. PMID:21602390

  6. Lectin Microarray Reveals Binding Profiles of Lactobacillus casei Strains in a Comprehensive Analysis of Bacterial Cell Wall Polysaccharides▿†

    PubMed Central

    Yasuda, Emi; Tateno, Hiroaki; Hirabarashi, Jun; Iino, Tohru; Sako, Tomoyuki

    2011-01-01

    We previously showed a pivotal role of the polysaccharide (PS) moiety in the cell wall of the Lactobacillus casei strain Shirota (YIT 9029) as a possible immune modulator (E. Yasuda M. Serata, and T. Sako, Appl. Environ. Microbiol. 74:4746-4755, 2008). To distinguish PS structures on the bacterial cell surface of individual strains in relation to their activities, it would be useful to have a rapid and high-throughput methodology. Recently, a new technique called lectin microarray was developed for rapid profiling of glycosylation in eukaryotic polymers and cell surfaces. Here, we report on the development of a simple and sensitive method based on this technology for direct analysis of intact bacterial cell surface glycomes. The method involves labeling bacterial cells with SYTOX Orange before incubation with the lectin microarray. After washing, bound cells are directly detected using an evanescent-field fluorescence scanner in a liquid phase. Using this method, we compared the cell surface glycomes from 16 different strains of L. casei. The patterns of lectin-binding affinity of most strains were found to be unique. There appears to be two types of lectin-binding profiles: the first is characterized by a few lectins, and the other is characterized by multiple lectins with different specificities. We also showed a dramatic change in the lectin-binding profile of a YIT 9029 derivative with a mutation in the cps1C gene, encoding a putative glycosyltransferase. In conclusion, the developed technique provided a novel strategy for rapid profiling and, more importantly, differentiating numerous bacterial strains with relevance to the biological functions of PS. PMID:21602390

  7. Large-scale gene expression profiling reveals physiological response to deletion of chaperone dnaKJ in Escherichia coli.

    PubMed

    Fan, Dongjie; Liu, Chuanpeng; Liu, Lushan; Zhu, Lingxiang; Peng, Fang; Zhou, Qiming

    2016-01-01

    Chaperone DnaK and its co-chaperone DnaJ plays various essential roles such as in assisting in the folding of nascent peptides, preventing protein aggregation and maintaining cellular protein homeostasis. Global transcriptional changes in vivo associated with deletion of dnaKJ were monitored using DNA microarray to elucidate the role of DnaKJ at the transcriptional level. Microarray profiling and bioinformatics analysis revealed that a few chaperone and protease genes, stress-related genes and genes involved in the tricarboxylic acid cycle and oxidative phosphorylation were up-regulated, whereas various transporter genes, pentose phosphate pathway and transcriptional regulation related genes were down-regulated. This study is the first to systematically analyze the alterations at the transcriptional level in vivo in deletion of dnaKJ. Fatty acid methyl esters analysis indicated that the amount of unsaturated fatty acid sharply increased and subcellular location prediction analysis showed a marked decrease in transcription of inner-membrane protein genes, which might have triggered the development of aberrant cell shape and susceptibility for some antibiotics in the ΔdnaKJ strain. PMID:27242140

  8. DNA Profiling Success Rates from Degraded Skeletal Remains in Guatemala.

    PubMed

    Johnston, Emma; Stephenson, Mishel

    2016-07-01

    No data are available regarding the success of DNA Short Tandem Repeat (STR) profiling from degraded skeletal remains in Guatemala. Therefore, DNA profiling success rates relating to 2595 skeletons from eleven cases at the Forensic Anthropology Foundation of Guatemala (FAFG) are presented. The typical postmortem interval was 30 years. DNA was extracted from bone powder and amplified using Identifiler and Minifler. DNA profiling success rates differed between cases, ranging from 50.8% to 7.0%, the overall success rate for samples was 36.3%. The best DNA profiling success rates were obtained from femur (36.2%) and tooth (33.7%) samples. DNA profiles were significantly better from lower body bones than upper body bones (p = <0.0001). Bone samples from males gave significantly better profiles than samples from females (p = <0.0001). These results are believed to be related to bone density. The findings are important for designing forensic DNA sampling strategies in future victim recovery investigations. PMID:27364268

  9. Chemically-blocked Antibody Microarray for Multiplexed High-throughput Profiling of Specific Protein Glycosylation in Complex Samples

    PubMed Central

    Lu, Chen; Wonsidler, Joshua L.; Li, Jianwei; Du, Yanming; Block, Timothy; Haab, Brian; Chen, Songming

    2012-01-01

    In this study, we describe an effective protocol for use in a multiplexed high-throughput antibody microarray with glycan binding protein detection that allows for the glycosylation profiling of specific proteins. Glycosylation of proteins is the most prevalent post-translational modification found on proteins, and leads diversified modifications of the physical, chemical, and biological properties of proteins. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases. However, current methods to study protein glycosylation typically are too complicated or expensive for use in most normal laboratory or clinical settings and a more practical method to study protein glycosylation is needed. The new protocol described in this study makes use of a chemically blocked antibody microarray with glycan-binding protein (GBP) detection and significantly reduces the time, cost, and lab equipment requirements needed to study protein glycosylation. In this method, multiple immobilized glycoprotein-specific antibodies are printed directly onto the microarray slides and the N-glycans on the antibodies are blocked. The blocked, immobilized glycoprotein-specific antibodies are able to capture and isolate glycoproteins from a complex sample that is applied directly onto the microarray slides. Glycan detection then can be performed by the application of biotinylated lectins and other GBPs to the microarray slide, while binding levels can be determined using Dylight 549-Streptavidin. Through the use of an antibody panel and probing with multiple biotinylated lectins, this method allows for an effective glycosylation profile of the different proteins found in a given human or animal sample to be developed. Introduction Glycosylation of protein, which is the most ubiquitous post-translational modification on proteins, modifies

  10. DNA Microarrays: a Powerful Genomic Tool for Biomedical and Clinical Research

    PubMed Central

    Trevino, Victor; Falciani, Francesco; Barrera-Saldaña, Hugo A

    2007-01-01

    Among the many benefits of the Human Genome Project are new and powerful tools such as the genome-wide hybridization devices referred to as microarrays. Initially designed to measure gene transcriptional levels, microarray technologies are now used for comparing other genome features among individuals and their tissues and cells. Results provide valuable information on disease subcategories, disease prognosis, and treatment outcome. Likewise, they reveal differences in genetic makeup, regulatory mechanisms, and subtle variations and move us closer to the era of personalized medicine. To understand this powerful tool, its versatility, and how dramatically it is changing the molecular approach to biomedical and clinical research, this review describes the technology, its applications, a didactic step-by-step review of a typical microarray protocol, and a real experiment. Finally, it calls the attention of the medical community to the importance of integrating multidisciplinary teams to take advantage of this technology and its expanding applications that, in a slide, reveals our genetic inheritance and destiny. PMID:17660860

  11. A model of binding on DNA microarrays: understanding the combined effect of probe synthesis failure, cross-hybridization, DNA fragmentation and other experimental details of affymetrix arrays

    PubMed Central

    2012-01-01

    Background DNA microarrays are used both for research and for diagnostics. In research, Affymetrix arrays are commonly used for genome wide association studies, resequencing, and for gene expression analysis. These arrays provide large amounts of data. This data is analyzed using statistical methods that quite often discard a large portion of the information. Most of the information that is lost comes from probes that systematically fail across chips and from batch effects. The aim of this study was to develop a comprehensive model for hybridization that predicts probe intensities for Affymetrix arrays and that could provide a basis for improved microarray analysis and probe development. The first part of the model calculates probe binding affinities to all the possible targets in the hybridization solution using the Langmuir isotherm. In the second part of the model we integrate details that are specific to each experiment and contribute to the differences between hybridization in solution and on the microarray. These details include fragmentation, wash stringency, temperature, salt concentration, and scanner settings. Furthermore, the model fits probe synthesis efficiency and target concentration parameters directly to the data. All the parameters used in the model have a well-established physical origin. Results For the 302 chips that were analyzed the mean correlation between expected and observed probe intensities was 0.701 with a range of 0.88 to 0.55. All available chips were included in the analysis regardless of the data quality. Our results show that batch effects arise from differences in probe synthesis, scanner settings, wash strength, and target fragmentation. We also show that probe synthesis efficiencies for different nucleotides are not uniform. Conclusions To date this is the most complete model for binding on microarrays. This is the first model that includes both probe synthesis efficiency and hybridization kinetics/cross-hybridization. These

  12. A Mathematical Approach to the Analysis of Multiplex DNA Profiles

    PubMed Central

    Goor, Robert M.; Neall, Lisa Forman; Hoffman, Douglas; Sherry, Stephen T.

    2010-01-01

    Multiplex DNA profiles are used extensively for biomedical and forensic purposes. However, while DNA profile data generation is automated, human analysis of those data is not, and the need for speed combined with accuracy demands a computer-automated approach to sample interpretation and quality assessment. In this paper, we describe an integrated mathematical approach to modeling the data and extracting the relevant information, while rejecting noise and sample artifacts. We conclude with examples showing the effectiveness of our algorithms. PMID:21103945

  13. Quantitative profiling of housekeeping and Epstein-Barr virus gene transcription in Burkitt lymphoma cell lines using an oligonucleotide microarray

    PubMed Central

    Bernasconi, Michele; Berger, Christoph; Sigrist, Jürg A; Bonanomi, Athos; Sobek, Jens; Niggli, Felix K; Nadal, David

    2006-01-01

    Background The Epstein-Barr virus (EBV) is associated with lymphoid malignancies, including Burkitt's lymphoma (BL), and can transform human B cells in vitro. EBV-harboring cell lines are widely used to investigate lymphocyte transformation and oncogenesis. Qualitative EBV gene expression has been extensively described, but knowledge of quantitative transcription is lacking. We hypothesized that transcription levels of EBNA1, the gene essential for EBV persistence within an infected cell, are similar in BL cell lines. Results To compare quantitative gene transcription in the BL cell lines Namalwa, Raji, Akata, Jijoye, and P3HR1, we developed an oligonucleotide microarray chip, including 17 housekeeping genes, six latent EBV genes (EBNA1, EBNA2, EBNA3A, EBNA3C, LMP1, LMP2), and four lytic EBV genes (BZLF1, BXLF2, BKRF2, BZLF2), and used the cell line B95.8 as a reference for EBV gene transcription. Quantitative polymerase chain reaction assays were used to validate microarray results. We found that transcription levels of housekeeping genes differed considerably among BL cell lines. Using a selection of housekeeping genes with similar quantitative transcription in the tested cell lines to normalize EBV gene transcription data, we showed that transcription levels of EBNA1 were quite similar in very different BL cell lines, in contrast to transcription levels of other EBV genes. As demonstrated with Akata cells, the chip allowed us to accurately measure EBV gene transcription changes triggered by treatment interventions. Conclusion Our results suggest uniform EBNA1 transcription levels in BL and that microarray profiling can reveal novel insights on quantitative EBV gene transcription and its impact on lymphocyte biology. PMID:16756670

  14. Gene microarray analysis of lncRNA and mRNA expression profiles in patients with hypopharyngeal squamous cell carcinoma

    PubMed Central

    Zhou, Jieyu; Li, Wenming; Jin, Tong; Xiang, Xuan; Li, Maocai; Wang, Juan; Li, Guojun; Pan, Xinliang; Lei, Dapeng

    2015-01-01

    Background: Studies have shown that long noncoding RNAs (lncRNAs) are involved in the development and progression of many types of cancer. However, the mechanisms by which lncRNAs influence development and progression of hypopharyngeal squamous cell carcinoma (HSCC) are unclear. Method: We investigated differences in lncRNA and mRNA expression profiles between 3 pairs of HSCC tissues and adjacent nontumor tissues by microarray analysis. Results: In HSCC tissues, 1299 lncRNAs were significantly upregulated (n=669) or downregulated (n=630) compared to levels in adjacent nontumor tissues. Moreover, 1432 mRNAs were significantly upregulated (n=684) or downregulated (n=748) in HSCC tissues. We randomly selected 2 differentially expressed lncRNAs (AB209630, AB019562) and 2 differentially expressed mRNAs (SPP1, TJP2) for confirmation of microarray results using qRT-PCR. The qRT-PCR results matched well with the microarray data. The differentially expressed lncRNAs and mRNAs were distributed on each of the chromosomes, including the X and Y chromosomes. Pathway analysis indicated that the biological functions of differentially expressed mRNAs were related to 48 cellular pathways that may be associated with HSCC development. GO analysis revealed that 593 mRNAs involved in biological processes, 50 mRNAs involved in cellular components, and 46 mRNAs involved in molecular functions were upregulated in the carcinomas; 280 mRNAs involved in biological processes, 58 mRNAs involved in cellular components, and 71 mRNAs involved in molecular functions were downregulated in the carcinomas. In addition, 8 enhancer-like lncRNAs and 21 intergenic lncRNAs with their adjacent mRNA pairs were identified as coregulated transcripts. Conclusion: These findings provide insight into the mechanisms underlying HSCC tumorigenesis and will facilitate identification of new therapeutic targets and diagnostic biomarkers for this disease. PMID:26131061

  15. Alternations in genes expression of pathway signaling in esophageal tissue with atresia: results of expression microarray profiling.

    PubMed

    Smigiel, R; Lebioda, A; Blaszczyński, M; Korecka, K; Czauderna, P; Korlacki, W; Jakubiak, A; Bednarczyk, D; Maciejewski, H; Wizinska, P; Sasiadek, M M; Patkowski, D

    2015-04-01

    Esophageal atresia (EA) is a congenital defect of the esophagus involving the interruption of the esophagus with or without connection to the trachea (tracheoesophageal fistula [TEF]). EA/TEF may occur as an isolated anomaly, may be part of a complex of congenital defects (syndromic), or may develop within the context of a known syndrome or association. The molecular mechanisms underlying the development of EA are poorly understood. It is supposed that a combination of multigenic factors and epigenetic modification of genes play a role in its etiology. The aim of our work was to assess the human gene expression microarray study in esophageal tissue samples. Total RNA was extracted from 26 lower pouches of esophageal tissue collected during thoracoscopic EA repair in neonates with the isolated (IEA) and the syndromic form (SEA). We identified 787 downregulated and 841 upregulated transcripts between SEA and controls, and about 817 downregulated and 765 upregulated probes between IEA and controls. Fifty percent of these genes showed differential expression specific for either IEA or SEA. Functional pathway analysis revealed substantial enrichment for Wnt and Sonic hedgehog, as well as cytokine and chemokine signaling pathways. Moreover, we performed reverse transcription polymerase chain reaction study in a group of SHH and Wnt pathways genes with differential expression in microarray profiling to confirm the microarray expression results. We verified the altered expression in SFRP2 gene from the Wnt pathway as well as SHH, GLI1, GLI2, and GLI3 from the Sonic hedgehog pathway. The results suggest an important role of these pathways and genes for EA/TEF etiology. PMID:24460849

  16. Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis.

    PubMed

    Gürgan, Muazzez; Erkal, Nilüfer Afşar; Özgür, Ebru; Gündüz, Ufuk; Eroglu, Inci; Yücel, Meral

    2015-01-01

    Biohydrogen is a clean and renewable form of hydrogen, which can be produced by photosynthetic bacteria in outdoor large-scale photobioreactors using sunlight. In this study, the transcriptional response of Rhodobacter capsulatus to cold (4 °C) and heat (42 °C) stress was studied using microarrays. Bacteria were grown in 30/2 acetate/glutamate medium at 30 °C for 48 h under continuous illumination. Then, cold and heat stresses were applied for two and six hours. Growth and hydrogen production were impaired under both stress conditions. Microarray chips for R. capsulatus were custom designed by Affymetrix (GeneChip®. TR_RCH2a520699F). The numbers of significantly changed genes were 328 and 293 out of 3685 genes under cold and heat stress, respectively. Our results indicate that temperature stress greatly affects the hydrogen production metabolisms of R. capsulatus. Specifically, the expression of genes that participate in nitrogen metabolism, photosynthesis and the electron transport system were induced by cold stress, while decreased by heat stress. Heat stress also resulted in down regulation of genes related to cell envelope, transporter and binding proteins. Transcriptome analysis and physiological results were consistent with each other. The results presented here may aid clarification of the genetic mechanisms for hydrogen production in purple non-sulfur (PNS) bacteria under temperature stress. PMID:26086826

  17. Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis

    PubMed Central

    Gürgan, Muazzez; Afşar Erkal, Nilüfer; Özgür, Ebru; Gündüz, Ufuk; Eroglu, Inci; Yücel, Meral

    2015-01-01

    Biohydrogen is a clean and renewable form of hydrogen, which can be produced by photosynthetic bacteria in outdoor large-scale photobioreactors using sunlight. In this study, the transcriptional response of Rhodobacter capsulatus to cold (4 °C) and heat (42 °C) stress was studied using microarrays. Bacteria were grown in 30/2 acetate/glutamate medium at 30 °C for 48 h under continuous illumination. Then, cold and heat stresses were applied for two and six hours. Growth and hydrogen production were impaired under both stress conditions. Microarray chips for R. capsulatus were custom designed by Affymetrix (GeneChip®. TR_RCH2a520699F). The numbers of significantly changed genes were 328 and 293 out of 3685 genes under cold and heat stress, respectively. Our results indicate that temperature stress greatly affects the hydrogen production metabolisms of R. capsulatus. Specifically, the expression of genes that participate in nitrogen metabolism, photosynthesis and the electron transport system were induced by cold stress, while decreased by heat stress. Heat stress also resulted in down regulation of genes related to cell envelope, transporter and binding proteins. Transcriptome analysis and physiological results were consistent with each other. The results presented here may aid clarification of the genetic mechanisms for hydrogen production in purple non-sulfur (PNS) bacteria under temperature stress. PMID:26086826

  18. Profiling Pre-MicroRNA and Mature MicroRNA Expressions Using a Single Microarray and Avoiding Separate Sample Preparation

    PubMed Central

    Gan, Lin; Denecke, Bernd

    2013-01-01

    Mature microRNA is a crucial component in the gene expression regulation network. At the same time, microRNA gene expression and procession is regulated in a precise and collaborated way. Pre-microRNAs mediate products during the microRNA transcription process, they can provide hints of microRNA gene expression regulation or can serve as alternative biomarkers. To date, little effort has been devoted to pre-microRNA expression profiling. In this study, three human and three mouse microRNA profile data sets, based on the Affymetrix miRNA 2.0 array, have been re-analyzed for both mature and pre-microRNA signals as a primary test of parallel mature/pre-microRNA expression profiling on a single platform. The results not only demonstrated a glimpse of pre-microRNA expression in human and mouse, but also the relationship of microRNA expressions between pre- and mature forms. The study also showed a possible application of currently available microRNA microarrays in profiling pre-microRNA expression in a time and cost effective manner.

  19. Development of a Method for Profiling Protein Interactions with LNA-Modified Antisense Oligonucleotides Using Protein Microarrays.

    PubMed

    Kakiuchi-Kiyota, Satoko; Whiteley, Lawrence O; Ryan, Anne M; Mathialagan, Nagappan

    2016-04-01

    Development of locked nucleic acid (LNA) gapmers, antisense oligonucleotides used for efficient inhibition of target RNA expression, is limited by nontarget-mediated hepatotoxicity. Increased binding of hepatocellular proteins to toxic LNA gapmers may be one of the mechanisms contributing to LNA gapmer-induced hepatotoxicity in vivo. In the present study, we investigated the protein binding propensity of nontoxic sequence-1 (NTS-1), toxic sequence-2 (TS-2), and severely highly toxic sequence-3 (HTS-3) LNA gapmers using human protein microarrays. We previously demonstrated by the transcription profiling analysis of liver RNA isolated from mice that TS-2 and HTS-3 gapmers modulate different transcriptional pathways in mice leading to hepatotoxicity. Our protein array profiling demonstrated that a greater number of proteins, including ones associated with hepatotoxicity, hepatic system disorder, and cell functions, were bound by TS-2 and HTS-3 compared with NTS-1. However, the profiles of proteins bound by TS-2 and HTS-3 were similar and did not distinguish proteins contributing to severe in vivo toxicity. These results, together with the previous transcription profiling analysis, indicate that the combination of sequence-dependent transcription modulation and increased protein binding of toxic LNA gapmers contributes to hepatotoxicity. PMID:26643897

  20. High-throughput microarray profiling of cell wall polymers during hydrothermal pre-treatment of wheat straw.

    PubMed

    Alonso-Simón, Ana; Kristensen, Jan Bach; Obro, Jens; Felby, Claus; Willats, William G T; Jørgensen, Henning

    2010-02-15

    Lignocellulosic plant material is potentially a sustainable source of fermentable sugars for bioethanol production. However, a barrier to this is the high resistance or recalcitrance of plant cell walls to be hydrolyzed. Therefore, a detailed knowledge of the structural features of plant cell walls that contribute to recalcitrance is important for improving the efficiency of bioethanol production. In this work we have used a technique known as Comprehensive Microarray Polymer Profiling (CoMPP) to analyze wheat straw before and after being subjected to hydrothermal pre-treatments at four different temperatures. The CoMPP technique combines the specificity of monoclonal antibodies with the high-throughput capacity of microarrays. Changes in the relative abundance of cell wall polysaccharides could be tracked during processing, and a reduction in xylan, arabinoxylans, xyloglucan, and mixed-linked glucan epitopes was detected at the two highest temperatures of pre-treatment used. This work demonstrates the potential of CoMPP as a complementally technique to conventional methods for analyzing biomass composition. PMID:19777595

  1. DNA methylation profiles in placenta and its association with gestational diabetes mellitus.

    PubMed

    Rong, C; Cui, X; Chen, J; Qian, Y; Jia, R; Hu, Y

    2015-05-01

    Emerging evidences indicate that placenta plays a critical role in gestational diabetes mellitus (GDM). DNA methylation could be associated with altered placental development and functions. This study is to uncover the genome-wide DNA methylation patterns in this disorder. DNA methylation was measured at >385,000 CpG sites using methylated DNA immunoprecipitation (MeDIP) and a huamn CpG island plus promoter microarray. We totally identified 6,641 differentially methylated regions (DMRs) targeting 3,320 genes, of which 2,729 DMRs targeting 1,399 genes, showed significant hypermethylation in GDM relative to the controls, whereas 3,912 DMRs targeting 1,970 genes showed significant hypomethylation. Functional analysis divided these genes into different functional networks, which mainly involved in the pathways of cell growth and death regulation, immune and inflammatory response and nervous system development. In addition, the methylation profiles and expressions of 4 loci (RBP4, GLUT3, Resistin and PPARα) were validated by BSP for their higher log2 ratio and potential functions with energy metabolism. This study demonstrates aberrant patterns of DNA methylation in GDM which may be involved in the pathophysiology of GDM and reflect the fetal development. Future work will assess the potential prognostic and therapeutic value for these findings in GDM. PMID:25962407

  2. Real-time detection of DNA hybridization on microarray using a CCD-based imaging system equipped with a rotated microlens array disk.

    PubMed

    Mogi, Takeyuki; Hatakeyama, Keiichi; Taguchi, Tomoyuki; Wake, Hitoshi; Tanaami, Takeo; Hosokawa, Masahito; Tanaka, Tsuyoshi; Matsunaga, Tadashi

    2011-01-15

    This work describes a novel charge-coupled device (CCD)-based imaging system (MB Biochip Reader™) for real-time detection of DNA hybridization to DNA microarrays. The MB Biochip Reader™ consisted of a laser light source (532 nm), a microlens array for generation of a multi-beam laser, and a CCD for 2-D signal imaging. The MB Biochip Reader™ with a rotated microlens array, allowed large-field imaging (6.2 mm × 7.6 mm with 6.45 μm resolution) with fast time-resolution at 0.2 s without speckle noise. Furthermore, real-time detection of DNA hybridization, which is sufficient to obtain accurate data from tens of thousands of array element per field, was successfully performed without the need for laser scanning. The performance of the MB Biochip Reader™ for DNA microarray imaging was similar to the commercially available photomultiplier tube (PMT)-based microarray scanner, ScanArray Lite. The system potentially could be applied toward real-time analysis in many other fluorescent techniques in addition to real-time DNA microarray analysis. PMID:20951567

  3. Development of a DNA Microarray-Based Assay for the Detection of Sugar Beet Root Rot Pathogens.

    PubMed

    Liebe, Sebastian; Christ, Daniela S; Ehricht, Ralf; Varrelmann, Mark

    2016-01-01

    Sugar beet root rot diseases that occur during the cropping season or in storage are accompanied by high yield losses and a severe reduction of processing quality. The vast diversity of microorganism species involved in rot development requires molecular tools allowing simultaneous identification of many different targets. Therefore, a new microarray technology (ArrayTube) was applied in this study to improve diagnosis of sugar beet root rot diseases. Based on three marker genes (internal transcribed spacer, translation elongation factor 1 alpha, and 16S ribosomal DNA), 42 well-performing probes enabled the identification of prevalent field pathogens (e.g., Aphanomyces cochlioides), storage pathogens (e.g., Botrytis cinerea), and ubiquitous spoilage fungi (e.g., Penicillium expansum). All probes were proven for specificity with pure cultures from 73 microorganism species as well as for in planta detection of their target species using inoculated sugar beet tissue. Microarray-based identification of root rot pathogens in diseased field beets was successfully confirmed by classical detection methods. The high discriminatory potential was proven by Fusarium species differentiation based on a single nucleotide polymorphism. The results demonstrate that the ArrayTube constitute an innovative tool allowing a rapid and reliable detection of plant pathogens particularly when multiple microorganism species are present. PMID:26524545

  4. Use of a multi-thermal washer for DNA microarrays simplifies probe design and gives robust genotyping assays

    PubMed Central

    Petersen, Jesper; Poulsen, Lena; Petronis, Sarunas; Birgens, Henrik; Dufva, Martin

    2008-01-01

    DNA microarrays are generally operated at a single condition, which severely limits the freedom of designing probes for allele-specific hybridization assays. Here, we demonstrate a fluidic device for multi-stringency posthybridization washing of microarrays on microscope slides. This device is called a multi-thermal array washer (MTAW), and it has eight individually controlled heating zones, each of which corresponds to the location of a subarray on a slide. Allele-specific oligonucleotide probes for nine mutations in the beta-globin gene were spotted in eight identical subarrays at positions corresponding to the temperature zones of the MTAW. After hybridization with amplified patient material, the slides were mounted in the MTAW, and each subarray was exposed to different temperatures ranging from 22 to 40°C. When processed in the MTAW, probes selected without considering melting temperature resulted in improved genotyping compared with probes selected according to theoretical melting temperature and run under one condition. In conclusion, the MTAW is a versatile tool that can facilitate screening of a large number of probes for genotyping assays and can also enhance the performance of diagnostic arrays. PMID:18063568

  5. Large-scale microarray profiling reveals four stages of immune escape in non-Hodgkin lymphomas.

    PubMed

    Tosolini, Marie; Algans, Christelle; Pont, Frédéric; Ycart, Bernard; Fournié, Jean-Jacques

    2016-07-01

    Non-Hodgkin B-cell lymphoma (B-NHL) are aggressive lymphoid malignancies that develop in patients due to oncogenic activation, chemo-resistance, and immune evasion. Tumor biopsies show that B-NHL frequently uses several immune escape strategies, which has hindered the development of checkpoint blockade immunotherapies in these diseases. To gain a better understanding of B-NHL immune editing, we hypothesized that the transcriptional hallmarks of immune escape associated with these diseases could be identified from the meta-analysis of large series of microarrays from B-NHL biopsies. Thus, 1446 transcriptome microarrays from seven types of B-NHL were downloaded and assembled from 33 public Gene Expression Omnibus (GEO) datasets, and a method for scoring the transcriptional hallmarks in single samples was developed. This approach was validated by matching scores to phenotypic hallmarks of B-NHL such as proliferation, signaling, metabolic activity, and leucocyte infiltration. Through this method, we observed a significant enrichment of 33 immune escape genes in most diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) samples, with fewer in mantle cell lymphoma (MCL) and marginal zone lymphoma (MZL) samples. Comparing these gene expression patterns with overall survival data evidenced four stages of cancer immune editing in B-NHL: non-immunogenic tumors (stage 1), immunogenic tumors without immune escape (stage 2), immunogenic tumors with immune escape (stage 3), and fully immuno-edited tumors (stage 4). This model complements the standard international prognostic indices for B-NHL and proposes that immune escape stages 3 and 4 (76% of the FL and DLBCL samples in this data set) identify patients relevant for checkpoint blockade immunotherapies. PMID:27622044

  6. Forensic DNA methylation profiling from evidence material for investigative leads.

    PubMed

    Lee, Hwan Young; Lee, Soong Deok; Shin, Kyoung-Jin

    2016-07-01

    DNA methylation is emerging as an attractive marker providing investigative leads to solve crimes in forensic genetics. The identification of body fluids that utilizes tissue-specific DNA methylation can contribute to solving crimes by predicting activity related to the evidence material. The age estimation based on DNA methylation is expected to reduce the number of potential suspects, when the DNA profile from the evidence does not match with any known person, including those stored in the forensic database. Moreover, the variation in DNA implicates environmental exposure, such as cigarette smoking and alcohol consumption, thereby suggesting the possibility to be used as a marker for predicting the lifestyle of potential suspect. In this review, we describe recent advances in our understanding of DNA methylation variations and the utility of DNA methylation as a forensic marker for advanced investigative leads from evidence materials. [BMB Reports 2016; 49(7): 359-369]. PMID:27099236

  7. cDNA Microarray Analysis of Serially Sampled Cervical Cancer Specimens From Patients Treated With Thermochemoradiotherapy

    SciTech Connect

    Borkamo, Erling Dahl; Schem, Baard-Christian; Fluge, Oystein; Bruland, Ove; Dahl, Olav; Mella, Olav

    2009-12-01

    Purpose: To elucidate changes in gene expression after treatment with regional thermochemoradiotherapy in locally advanced squamous cell cervical cancer. Methods and Materials: Tru-Cut biopsy specimens were serially collected from 16 patients. Microarray gene expression levels before and 24 h after the first and second trimodality treatment sessions were compared. Pathway and network analyses were conducted by use of Ingenuity Pathways Analysis (IPA; Ingenuity Systems, Redwood City, CA). Single gene expressions were analyzed by quantitative real-time reverse transcription-polymerase chain reaction. Results: We detected 53 annotated genes that were differentially expressed after trimodality treatment. Central in the three top networks detected by IPA were interferon alfa, interferon beta, and interferon gamma receptor; nuclear factor kappaB; and tumor necrosis factor, respectively. These genes encode proteins that are important in regulation cell signaling, proliferation, gene expression, and immune stimulation. Biological processes over-represented among the 53 genes were fibrosis, tumorigenesis, and immune response. Conclusions: Microarrays showed minor changes in gene expression after thermochemoradiotherapy in locally advanced cervical cancer. We detected 53 differentially expressed genes, mainly involved in fibrosis, tumorigenesis, and immune response. A limitation with the use of serial biopsy specimens was low quality of ribonucleic acid from tumors that respond to highly effective therapy. Another 'key limitation' is timing of the post-treatment biopsy, because 24 h may be too late to adequately assess the impact of hyperthermia on gene expression.

  8. Direct-to-PCR tissue preservation for DNA profiling.

    PubMed

    Sorensen, Amy; Berry, Clare; Bruce, David; Gahan, Michelle Elizabeth; Hughes-Stamm, Sheree; McNevin, Dennis

    2016-05-01

    Disaster victim identification (DVI) often occurs in remote locations with extremes of temperatures and humidities. Access to mortuary facilities and refrigeration are not always available. An effective and robust DNA sampling and preservation procedure would increase the probability of successful DNA profiling and allow faster repatriation of bodies and body parts. If the act of tissue preservation also released DNA into solution, ready for polymerase chain reaction (PCR), the DVI process could be further streamlined. In this study, we explored the possibility of obtaining DNA profiles without DNA extraction, by adding aliquots of preservative solutions surrounding fresh human muscle and decomposing human muscle and skin tissue samples directly to PCR. The preservatives consisted of two custom preparations and two proprietary solutions. The custom preparations were a salt-saturated solution of dimethyl sulfoxide (DMSO) with ethylenediaminetetraacetic (EDTA) and TENT buffer (Tris, EDTA, NaCl, Tween 20). The proprietary preservatives were DNAgard (Biomatrica(®)) and Tissue Stabilising Kit (DNA Genotek). We obtained full PowerPlex(®) 21 (Promega) and GlobalFiler(®) (Life Technologies) DNA profiles from fresh and decomposed tissue preserved at 35 °C for up to 28 days for all four preservatives. The preservative aliquots removed from the fresh muscle tissue samples had been stored at -80 °C for 4 years, indicating that long-term archival does not diminish the probability of successful DNA typing. Rather, storage at -80 °C seems to reduce PCR inhibition. PMID:26530406

  9. Discovery of Possible Gene Relationships through the Application of Self-Organizing Maps to DNA Microarray Databases

    PubMed Central

    Chavez-Alvarez, Rocio; Chavoya, Arturo; Mendez-Vazquez, Andres

    2014-01-01

    DNA microarrays and cell cycle synchronization experiments have made possible the study of the mechanisms of cell cycle regulation of Saccharomyces cerevisiae by simultaneously monitoring the expression levels of thousands of genes at specific time points. On the other hand, pattern recognition techniques can contribute to the analysis of such massive measurements, providing a model of gene expression level evolution through the cell cycle process. In this paper, we propose the use of one of such techniques –an unsupervised artificial neural network called a Self-Organizing Map (SOM)–which has been successfully applied to processes involving very noisy signals, classifying and organizing them, and assisting in the discovery of behavior patterns without requiring prior knowledge about the process under analysis. As a test bed for the use of SOMs in finding possible relationships among genes and their possible contribution in some biological processes, we selected 282 S. cerevisiae genes that have been shown through biological experiments to have an activity during the cell cycle. The expression level of these genes was analyzed in five of the most cited time series DNA microarray databases used in the study of the cell cycle of this organism. With the use of SOM, it was possible to find clusters of genes with similar behavior in the five databases along two cell cycles. This result suggested that some of these genes might be biologically related or might have a regulatory relationship, as was corroborated by comparing some of the clusters obtained with SOMs against a previously reported regulatory network that was generated using biological knowledge, such as protein-protein interactions, gene expression levels, metabolism dynamics, promoter binding, and modification, regulation and transport of proteins. The methodology described in this paper could be applied to the study of gene relationships of other biological processes in different organisms. PMID:24699245

  10. A genome-wide study of preferential amplification/hybridization in microarray-based pooled DNA experiments

    PubMed Central

    Yang, H.-C.; Liang, Y.-J.; Huang, M.-C.; Li, L.-H.; Lin, C.-H.; Wu, J.-Y.; Chen, Y.-T.; Fann, C.S.J.

    2006-01-01

    Microarray-based pooled DNA methods overcome the cost bottleneck of simultaneously genotyping more than 100 000 markers for numerous study individuals. The success of such methods relies on the proper adjustment of preferential amplification/hybridization to ensure accurate and reliable allele frequency estimation. We performed a hybridization-based genome-wide single nucleotide polymorphisms (SNPs) genotyping analysis to dissect preferential amplification/hybridization. The majority of SNPs had less than 2-fold signal amplification or suppression, and the lognormal distributions adequately modeled preferential amplification/hybridization across the human genome. Comparative analyses suggested that the distributions of preferential amplification/hybridization differed among genotypes and the GC content. Patterns among different ethnic populations were similar; nevertheless, there were striking differences for a small proportion of SNPs, and a slight ethnic heterogeneity was observed. To fulfill appropriate and gratuitous adjustments, databases of preferential amplification/hybridization for African Americans, Caucasians and Asians were constructed based on the Affymetrix GeneChip Human Mapping 100 K Set. The robustness of allele frequency estimation using this database was validated by a pooled DNA experiment. This study provides a genome-wide investigation of preferential amplification/hybridization and suggests guidance for the reliable use of the database. Our results constitute an objective foundation for theoretical development of preferential amplification/hybridization and provide important information for future pooled DNA analyses. PMID:16931491

  11. Enhancing the Sensitivity of DNA Microarray Using Dye-Doped Silica Nanoparticles: Detection of Human Papilloma Virus

    NASA Astrophysics Data System (ADS)

    Enrichi, F.; Riccò, R.; Meneghello, A.; Pierobon, R.; Canton, G.; Cretaio, E.

    2010-10-01

    DNA microarray is a high-throughput technology used for detection and quantification of nucleic acid molecules and others of biological interest. The analysis is based on the specific hybridization between probe sequences deposited in array and a target ss-DNA amplified by PCR and functionalized by a fluorescent dye. Organic labels have well known disadvantages like photobleaching and low signal intensities, which put a limitation to the lower amount of DNA material that can be detected. Therefore for trace analysis the development of more efficient biomarkers is required. With this aim we present in this paper the synthesis and application of alternative hybrid nanosystems obtained by incorporating standard fluorescent molecules into monodisperse silica nanoparticles. Efficient application to the detection of Human Papilloma Virus is demonstrated. This virus is associated to the formation of cervical cancer, a leading cause of death by cancer for women worldwide. It is shown that the use of the novel biomarkers increases the optical signal of about one order of magnitude with respect to the free dyes or quantum dots in conventional instruments. This is due to the high number of molecules that can be accommodated into each nanoparticle, to the reduced photobleaching and to the improved environmental protection of the dyes when encapsulated in the silica matrix. The cheap and easy synthesis of these luminescent particles, the stability in water, the surface functionalizability and bio-compatibility make them very promising for present and future bio-labeling and bio-imaging applications.

  12. Use of a multiplexed CMOS microarray to optimize and compare oligonucleotide binding to DNA probes synthesized or immobilized on individual electrodes.

    PubMed

    Maurer, Karl; Yazvenko, Nina; Wilmoth, Jodi; Cooper, John; Lyon, Wanda; Danley, David

    2010-01-01

    The CombiMatrix microarray with 12,544 electrodes supports in situ electrochemical synthesis of user-defined DNA probes. As an alternative, we immobilized commercially synthesized DNA probes on individual electrodes coated with electropolymerized polypyrrole (Ppy). Hybridization was measured using a biotinylated target oligonucleotide and either Cy5-streptavidin and fluorescence detection or horseradish peroxidase-streptavidin and enzyme-enhanced electrochemical detection. Detection efficiencies were optimized by varying the deposition of the Ppy, the terminal groups on the DNA probes, and other factors that impacted fluorescence quenching and electrical conductivity. Optimized results were compared against those obtained using a microarray with the same DNA sequences synthesized in situ. Immobilized probes produced higher fluorescence signals, possibly by providing a greater stand off between the Cy5 on the target oligonucleotide and the quenching effects of the Ppy and the platinum electrode. PMID:22163607

  13. Use of a Multiplexed CMOS Microarray to Optimize and Compare Oligonucleotide Binding to DNA Probes Synthesized or Immobilized on Individual Electrodes

    PubMed Central

    Maurer, Karl; Yazvenko, Nina; Wilmoth, Jodi; Cooper, John; Lyon, Wanda; Danley, David

    2010-01-01

    The CombiMatrix microarray with 12,544 electrodes supports in situ electrochemical synthesis of user-defined DNA probes. As an alternative, we immobilized commercially synthesized DNA probes on individual electrodes coated with electropolymerized polypyrrole (Ppy). Hybridization was measured using a biotinylated target oligonucleotide and either Cy5-streptavidin and fluorescence detection or horseradish peroxidase-streptavidin and enzyme-enhanced electrochemical detection. Detection efficiencies were optimized by varying the deposition of the Ppy, the terminal groups on the DNA probes, and other factors that impacted fluorescence quenching and electrical conductivity. Optimized results were compared against those obtained using a microarray with the same DNA sequences synthesized in situ. Immobilized probes produced higher fluorescence signals, possibly by providing a greater stand off between the Cy5 on the target oligonucleotide and the quenching effects of the Ppy and the platinum electrode. PMID:22163607

  14. Identification of invasive fungal diseases in immunocompromised patients by combining an Aspergillus specific PCR with a multifungal DNA-microarray from primary clinical samples.

    PubMed

    Boch, T; Reinwald, M; Postina, P; Cornely, O A; Vehreschild, J J; Heußel, C P; Heinz, W J; Hoenigl, M; Eigl, S; Lehrnbecher, T; Hahn, J; Claus, B; Lauten, M; Egerer, G; Müller, M C; Will, S; Merker, N; Hofmann, W-K; Buchheidt, D; Spiess, B

    2015-12-01

    The increasing incidence of invasive fungal diseases (IFD), most of all invasive aspergillosis (IA) in immunocompromised patients emphasises the need to improve the diagnostic tools for detection of fungal pathogens. We investigated the diagnostic performance of a multifungal DNA-microarray detecting 15 different fungi [Aspergillus, Candida, Fusarium, Mucor, Rhizopus, Scedosporium and Trichosporon species (spp.)] in addition to an Aspergillus specific polymerase chain reaction (PCR) assay. Biopsies, bronchoalveolar lavage and peripheral blood samples of 133 immunocompromised patients (pts) were investigated by a multifungal DNA-microarray as well as a nested Aspergillus specific PCR assay. Patients had proven (n = 18), probable (n = 29), possible (n = 48) and no IFD (n = 38) and were mostly under antifungal therapy at the time of sampling. The results were compared to culture, histopathology, imaging and serology, respectively. For the non-Aspergillus IFD the microarray analysis yielded in all samples a sensitivity of 64% and a specificity of 80%. Best results for the detection of all IFD were achieved by combining DNA-microarray and Aspergillus specific PCR in biopsy samples (sensitivity 79%; specificity 71%). The molecular assays in combination identify genomic DNA of fungal pathogens and may improve identification of causative pathogens of IFD and help overcoming the diagnostic uncertainty of culture and/or histopathology findings, even during antifungal therapy. PMID:26497302

  15. Epigenetic profiling of heterochromatic satellite DNA.

    PubMed

    Zakrzewski, Falk; Weisshaar, Bernd; Fuchs, Jörg; Bannack, Ekaterina; Minoche, André E; Dohm, Juliane C; Himmelbauer, Heinz; Schmidt, Thomas

    2011-08-01

    Sugar beet (Beta vulgaris) chromosomes consist of large heterochromatic blocks in pericentromeric, centromeric, and intercalary regions comprised of two different highly abundant DNA satellite families. To investigate DNA methylation at single base resolution at heterochromatic regions, we applied a method for strand-specific bisulfite sequencing of more than 1,000 satellite monomers followed by statistical analyses. As a result, we uncovered diversity in the distribution of different methylation patterns in both satellite families. Heavily methylated CG and CHG (H=A, T, or C) sites occur more frequently in intercalary heterochromatin, while CHH sites, with the exception of CAA, are only sparsely methylated, in both intercalary and pericentromeric/centromeric heterochromatin. We show that the difference in DNA methylation intensity is correlated to unequal distribution of heterochromatic histone H3 methylation marks. While clusters of H3K9me2 were absent from pericentromeric heterochromatin and restricted only to intercalary heterochromatic regions, H3K9me1 and H3K27me1 were observed in all types of heterochromatin. By sequencing of a small RNA library consisting of 6.76 million small RNAs, we identified small interfering RNAs (siRNAs) of 24 nucleotides in size which originated from both strands of the satellite DNAs. We hypothesize an involvement of these siRNAs in the regulation of DNA and histone methylation for maintaining heterochromatin. PMID:21594600

  16. Quantitative Detection of Small Molecule/DNA Complexes Employing a Force-Based and Label-Free DNA-Microarray

    PubMed Central

    Ho, Dominik; Dose, Christian; Albrecht, Christian H.; Severin, Philip; Falter, Katja; Dervan, Peter B.; Gaub, Hermann E.

    2009-01-01

    Force-based ligand detection is a promising method to characterize molecular complexes label-free at physiological conditions. Because conventional implementations of this technique, e.g., based on atomic force microscopy or optical traps, are low-throughput and require extremely sensitive and sophisticated equipment, this approach has to date found only limited application. We present a low-cost, chip-based assay, which combines high-throughput force-based detection of dsDNA·ligand interactions with the ease of fluorescence detection. Within the comparative unbinding force assay, many duplicates of a target DNA duplex are probed against a defined reference DNA duplex each. The fractions of broken target and reference DNA duplexes are determined via fluorescence. With this assay, we investigated the DNA binding behavior of artificial pyrrole-imidazole polyamides. These small compounds can be programmed to target specific dsDNA sequences and distinguish between D- and L-DNA. We found that titration with polyamides specific for a binding motif, which is present in the target DNA duplex and not in the reference DNA duplex, reliably resulted in a shift toward larger fractions of broken reference bonds. From the concentration dependence nanomolar to picomolar dissociation constants of dsDNA·ligand complexes were determined, agreeing well with prior quantitative DNAase footprinting experiments. This finding corroborates that the forced unbinding of dsDNA in presence of a ligand is a nonequilibrium process that produces a snapshot of the equilibrium distribution between dsDNA and dsDNA·ligand complexes. PMID:19486688

  17. Rapid extraction of genomic DNA from saliva for HLA typing on microarray based on magnetic nanobeads

    NASA Astrophysics Data System (ADS)

    Xie, Xin; Zhang, Xu; Yu, Bingbin; Gao, Huafang; Zhang, Huan; Fei, Weiyang

    2004-09-01

    A series of simplified protocols are developed for extracting genomic DNA from saliva by using the magnetic nanobeads as absorbents. In these protocols, both the enrichment of the target cells and the adsorption of DNA can be achieved simultaneously by our functionally modified magnetic beads in one step, and the DNA-nanobeads complex can be used as PCR templates. HLA typing based on an oligonucleotide array was conducted by hybridization with the PCR products. The result shows that the protocols are robust and sensitive.

  18. A Condition-Enumeration Tree method for mining biclusters from DNA microarray data sets.

    PubMed

    Chen, Jiun-Rung; Chang, Ye-In

    2009-07-01

    Biclustering, which performs simultaneous clustering of rows (e.g., genes) and columns (e.g., conditions), has proved of great value for finding interesting patterns from microarray data. To find biclusters, a model called pCluster was proposed. A pCluster consists of a set of genes and a set of conditions, where the expression levels of these genes have a similar variation under these conditions. Based on this model, most of the previous methods need to compute MDSs (maximum dimension sets) for every two genes in the microarray data. Since the number of genes is far larger than the number of conditions, this step is inefficient. Another method called MicroCluster was proposed. This method does not compute MDSs for every two genes, and transforms the problem into a graph problem. However, it needs to solve the Maximal Clique problem, which is NP-Complete. To avoid the above disadvantages, in this paper, we propose a new method, CE-Tree (Condition-Enumeration Tree), for finding pClusters. Instead of generating MDSs for every two genes, we generate only MDSs for every two conditions. Then, based only on these MDSs, we expand the CE-Tree in a special local breadth-first within global depth-first manner to efficiently find all pClusters. We also utilize the idea of the traditional hash join approach to efficiently support the CE-Tree. From the simulation results, we show that the CE-Tree method could find pClusters more efficiently than those previous methods. PMID:19393714

  19. cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment.

    PubMed

    Qian, Airong; Di, Shengmeng; Gao, Xiang; Zhang, Wei; Tian, Zongcheng; Li, Jingbao; Hu, Lifang; Yang, Pengfei; Yin, Dachuan; Shang, Peng

    2009-07-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has been widely applied in many fields. In this study, a special designed superconducting magnet, which can produce three apparent gravity levels (0, 1, and 2 g), namely high magneto-gravitational environment (HMGE), was used to simulate space gravity environment. The effects of HMGE on osteoblast gene expression profile were investigated by microarray. Genes sensitive to diamagnetic levitation environment (0 g), gravity changes, and high magnetic field changes were sorted on the basis of typical cell functions. Cytoskeleton, as an intracellular load-bearing structure, plays an important role in gravity perception. Therefore, 13 cytoskeleton-related genes were chosen according to the results of microarray analysis, and the expressions of these genes were found to be altered under HMGE by real-time PCR. Based on the PCR results, the expressions of WASF2 (WAS protein family, member 2), WIPF1 (WAS/WASL interacting protein family, member 1), paxillin, and talin 1 were further identified by western blot assay. Results indicated that WASF2 and WIPF1 were more sensitive to altered gravity levels, and talin 1 and paxillin were sensitive to both magnetic field and gravity changes. Our findings demonstrated that HMGE can affect osteoblast gene expression profile and cytoskeleton-related genes expression. The identification of mechanosensitive genes may enhance our understandings to the mechanism of bone loss induced by microgravity and may provide some potential targets for preventing and treating bone loss or osteoporosis. PMID:19578720

  20. Microbial Profiling of Combat Wound Infection through Detection Microarray and Next-Generation Sequencing

    PubMed Central

    Allen, Jonathan E.; Brown, Trevor S.; Gardner, Shea N.; McLoughlin, Kevin S.; Forsberg, Jonathan A.; Kirkup, Benjamin C.; Chromy, Brett A.; Luciw, Paul A.; Elster, Eric A.

    2014-01-01

    Combat wound healing and resolution are highly affected by the resident microbial flora. We therefore sought to achieve comprehensive detection of microbial populations in wounds using novel genomic technologies and bioinformatics analyses. We employed a microarray capable of detecting all sequenced pathogens for interrogation of 124 wound samples from extremity injuries in combat-injured U.S. service members. A subset of samples was also processed via next-generation sequencing and metagenomic analysis. Array analysis detected microbial targets in 51% of all wound samples, with Acinetobacter baumannii being the most frequently detected species. Multiple Pseudomonas species were also detected in tissue biopsy specimens. Detection of the Acinetobacter plasmid pRAY correlated significantly with wound failure, while detection of enteric-associated bacteria was associated significantly with successful healing. Whole-genome sequencing revealed broad microbial biodiversity between samples. The total wound bioburden did not associate significantly with wound outcome, although temporal shifts were observed over the course of treatment. Given that standard microbiological methods do not detect the full range of microbes in each wound, these data emphasize the importance of supplementation with molecular techniques for thorough characterization of wound-associated microbes. Future application of genomic protocols for assessing microbial content could allow application of specialized care through early and rapid identification and management of critical patterns in wound bioburden. PMID:24829242

  1. Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays

    NASA Technical Reports Server (NTRS)

    Moseyko, Nick; Zhu, Tong; Chang, Hur-Song; Wang, Xun; Feldman, Lewis J.

    2002-01-01

    Studies of plant tropisms, the directed growth toward or away from external stimuli such as light and gravity, began more than a century ago. Yet biochemical, physiological, and especially molecular mechanisms of plant tropic responses remain for the most part unclear. We examined expression of 8,300 genes during early stages of the gravitropic response using high-density oligonucleotide probe microarrays. Approximately 1.7% of the genes represented on the array exhibited significant expression changes within the first 30 min of gravity stimulation. Among gravity-induced genes were a number of genes previously implicated to be involved in gravitropism. However, a much larger number of the identified genes have not been previously associated with gravitropism. Because reorientation of plants may also expose plants to mechanical perturbations, we also compared the effects of a gentle mechanical perturbation on mRNA levels during the gravity response. It was found that approximately 39% of apparently gravity-regulated genes were also regulated by the mechanical perturbation caused by plant reorientation. Our study revealed the induction of complex gene expression patterns as a consequence of gravitropic reorientation and points to an interplay between the gravitropic and mechanical responses and to the extreme sensitivity of plants to even very gentle mechanical perturbations.

  2. Microbial profiling of combat wound infection through detection microarray and next-generation sequencing.

    PubMed

    Be, Nicholas A; Allen, Jonathan E; Brown, Trevor S; Gardner, Shea N; McLoughlin, Kevin S; Forsberg, Jonathan A; Kirkup, Benjamin C; Chromy, Brett A; Luciw, Paul A; Elster, Eric A; Jaing, Crystal J

    2014-07-01

    Combat wound healing and resolution are highly affected by the resident microbial flora. We therefore sought to achieve comprehensive detection of microbial populations in wounds using novel genomic technologies and bioinformatics analyses. We employed a microarray capable of detecting all sequenced pathogens for interrogation of 124 wound samples from extremity injuries in combat-injured U.S. service members. A subset of samples was also processed via next-generation sequencing and metagenomic analysis. Array analysis detected microbial targets in 51% of all wound samples, with Acinetobacter baumannii being the most frequently detected species. Multiple Pseudomonas species were also detected in tissue biopsy specimens. Detection of the Acinetobacter plasmid pRAY correlated significantly with wound failure, while detection of enteric-associated bacteria was associated significantly with successful healing. Whole-genome sequencing revealed broad microbial biodiversity between samples. The total wound bioburden did not associate significantly with wound outcome, although temporal shifts were observed over the course of treatment. Given that standard microbiological methods do not detect the full range of microbes in each wound, these data emphasize the importance of supplementation with molecular techniques for thorough characterization of wound-associated microbes. Future application of genomic protocols for assessing microbial content could allow application of specialized care through early and rapid identification and management of critical patterns in wound bioburden. PMID:24829242

  3. Knowledge-based image processing for on-off type DNA microarray

    NASA Astrophysics Data System (ADS)

    Kim, Jong D.; Kim, Seo K.; Cho, Jeong S.; Kim, Jongwon

    2002-06-01

    This paper addresses the image processing technique for discriminating whether the probes are hybrized with target DNA in the Human Papilloma Virus (HPV) DNA Chip designed for genotyping HPV. In addition to the probes, the HPV DNA chip has markers that always react with the sample DNA. The positions of probe-dots in the final scanned image are fixed relative to the marker-dot locations with a small variation according to the accuracy of the dotter and the scanner. The probes are duplicated 4 times for the diagnostic stability. The prior knowledges such as the maker relative distance and the duplication information of probes is integrated into the template matching technique with the normalized correlation measure. Results show that the employment of both of the prior knowledges is to simply average the template matching measures over the positions of the markers and probes. The eventual proposed scheme yields stable marker locating and probe classification.

  4. Microarray expression profile analysis of long noncoding RNAs in premature brain injury: A novel point of view.

    PubMed

    Chen, Rj; Liu, L; Xiao, M; Wang, F; Lin, Xj

    2016-04-01

    Long noncoding RNAs (lncRNAs) are abundant in the central nervous system and have a key role in brain function as well as many neurological disorders. However, the regulatory function of lncRNAs in the premature brain has not been well studied. This study described the expression profile of lncRNAs in premature mice using microarray technology. 1999 differentially expressed lncRNAs and 955 differentially expressed mRNAs were identified. Gene Ontology (GO) and pathway analysis showed that these lncRNAs were involved in multiple biological processes, including the nervous system development and inflammatory response. Additionally, the lncRNA-mRNA-network and TF-gene-lncRNA-network were constructed to identify core regulatory lncRNAs and transcription factors. The sex-determining region of Y chromosome (SRY) gene may be a key transcription factor that regulates premature brain development and injury. This study for the first time represents an expression profile of differentially expressed lncRNAs in the premature brain and may provide a novel point of view into the mechanisms of premature brain injury. PMID:26812036

  5. Unique gene expression profile in osteoarthritis synovium compared with cartilage: analysis of publicly accessible microarray datasets.

    PubMed

    Park, Robin; Ji, Jong Dae

    2016-06-01

    The purpose of this study was to identify a gene expression signature in osteoarthritis (OA) synovium and genomic pathways likely to be involved in the pathogenesis of OA. Four publicly accessible microarray studies from synovium of OA patients were integrated, and a transcriptomic and network-based meta-analysis was performed. Based on pathways according to the Kyoto Encyclopedia of Genes and Genomes, functional enrichment analysis was performed. Meta-analysis results of OA synovium were compared to two previously published studies of OA cartilage to determine the relative number of common and specific DEGs of the cartilage and synovium. According to our meta-analysis, a total of 1350 genes were found to be differentially expressed in the synovium of OA patients as compared to that of healthy controls. Pathway analysis found 41 significant pathways in the total DEGs, and 22 and 16 pathways in the upregulated and downregulated DEGs, respectively. Cell adhesion molecules and cytokine-cytokine receptor interaction were the most significant pathway in the upregulated and downregulated DEGs, respectively. Comparison of meta-analysis results of OA synovium with results of two previous studies of OA cartilage identified 85 common genes and 1632 cartilage-specific DEGs and 1265 synovium-specific DEGs in the first study; and 142 common genes, and 856 cartilage-specific DEGs and 1208 synovium-specific DEGs in the second study. Our results show a small overlap between the DEGs of the synovium compared to DEGs of the cartilage, suggesting different pathogenic mechanisms that are specific to the synovium. PMID:26942917

  6. GTI: A Novel Algorithm for Identifying Outlier Gene Expression Profiles from Integrated Microarray Datasets

    PubMed Central

    Mpindi, John Patrick; Sara, Henri; Haapa-Paananen, Saija; Kilpinen, Sami; Pisto, Tommi; Bucher, Elmar; Ojala, Kalle; Iljin, Kristiina; Vainio, Paula; Björkman, Mari; Gupta, Santosh; Kohonen, Pekka; Nees, Matthias; Kallioniemi, Olli

    2011-01-01

    Background Meta-analysis of gene expression microarray datasets presents significant challenges for statistical analysis. We developed and validated a new bioinformatic method for the identification of genes upregulated in subsets of samples of a given tumour type (‘outlier genes’), a hallmark of potential oncogenes. Methodology A new statistical method (the gene tissue index, GTI) was developed by modifying and adapting algorithms originally developed for statistical problems in economics. We compared the potential of the GTI to detect outlier genes in meta-datasets with four previously defined statistical methods, COPA, the OS statistic, the t-test and ORT, using simulated data. We demonstrated that the GTI performed equally well to existing methods in a single study simulation. Next, we evaluated the performance of the GTI in the analysis of combined Affymetrix gene expression data from several published studies covering 392 normal samples of tissue from the central nervous system, 74 astrocytomas, and 353 glioblastomas. According to the results, the GTI was better able than most of the previous methods to identify known oncogenic outlier genes. In addition, the GTI identified 29 novel outlier genes in glioblastomas, including TYMS and CDKN2A. The over-expression of these genes was validated in vivo by immunohistochemical staining data from clinical glioblastoma samples. Immunohistochemical data were available for 65% (19 of 29) of these genes, and 17 of these 19 genes (90%) showed a typical outlier staining pattern. Furthermore, raltitrexed, a specific inhibitor of TYMS used in the therapy of tumour types other than glioblastoma, also effectively blocked cell proliferation in glioblastoma cell lines, thus highlighting this outlier gene candidate as a potential therapeutic target. Conclusions/Significance Taken together, these results support the GTI as a novel approach to identify potential oncogene outliers and drug targets. The algorithm is implemented in

  7. Microarray analyses and molecular profiling of steatosis induction in immortalized human hepatocytes.

    PubMed

    De Gottardi, Andrea; Vinciguerra, Manlio; Sgroi, Antonino; Moukil, Moulay; Ravier-Dall'Antonia, Florence; Pazienza, Valerio; Pugnale, Paolo; Foti, Michelangelo; Hadengue, Antoine

    2007-08-01

    Hepatic steatosis is an important risk factor for the development of inflammation, fibrosis and impaired liver regeneration. The factors regulating lipid accumulation and driving hepatic steatosis toward inflammation, fibrosis and impaired regeneration are largely unknown. The aim of this study was to identify major alterations in gene expression occurring in steatotic hepatocytes, and to analyze how these changes impact cellular processes associated with steatosis. Microarray gene chips and RT-PCR were performed to analyze changes in gene expression induced in fatty human immortalized hepatocytes after treatment with 50 muM oleic acid for 7 days. Lipid metabolism and triglyceride accumulation in these cells was examined by Oil-Red-O staining, thin-layer chromatography (TLC) and immunofluorescence. Caspase 3 activity, BrdU incorporation and trypan blue exclusion were used to study apoptosis, proliferation and cell viability. Finally, quantitative analysis of signalling induced by insulin was performed by Western blot. Characterization of steatosis in three hepatocyte-derived cell lines indicated that the immortalized human hepatocytes (IHH) line was the most appropriate cell line for this study. Gene expression analysis showed significant alterations in the transcription of two major classes of genes involved either in cholesterol and fatty acid biosynthesis, as well as lipid export, or in apoptosis and cell proliferation. Such changes were functionally relevant, since TLC indicated that synthesis and accumulation of triglycerides were increased in steatotic cells, while synthesis of cholesterol and fatty acids were decreased. Lipid accumulation in IHH was associated with an increased apoptosis and an inhibition of cell proliferation and viability. No detectable changes in genes associated with insulin resistance were observed in steatotic cells, but signalling induced by insulin was more efficient in steatotic IHH as compared to control cells. We conclude that IHH

  8. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis.

    PubMed

    Kempsell, Karen E; Kidd, Stephen P; Lewandowski, Kuiama; Elmore, Michael J; Charlton, Sue; Yeates, Annemarie; Cuthbertson, Hannah; Hallis, Bassam; Altmann, Daniel M; Rogers, Mitch; Wattiau, Pierre; Ingram, Rebecca J; Brooks, Tim; Vipond, Richard

    2015-01-01

    A commercial Bacillus anthracis (Anthrax) whole genome protein microarray has been used to identify immunogenic Anthrax proteins (IAP) using sera from groups of donors with (a) confirmed B. anthracis naturally acquired cutaneous infection, (b) confirmed B. anthracis intravenous drug use-acquired infection, (c) occupational exposure in a wool-sorters factory, (d) humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups. Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However, a number of other chromosomally-located and plasmid encoded open reading frame proteins were also recognized by infected or exposed groups in comparison to controls. Some of these antigens e.g., BA4182 are not recognized by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo that are not currently found in the UK licensed Anthrax Vaccine (AVP). These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis "infectome." These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesized, tested in mouse immunogenicity studies and validated in parallel using human sera from the

  9. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis

    PubMed Central

    Kempsell, Karen E.; Kidd, Stephen P.; Lewandowski, Kuiama; Elmore, Michael J.; Charlton, Sue; Yeates, Annemarie; Cuthbertson, Hannah; Hallis, Bassam; Altmann, Daniel M.; Rogers, Mitch; Wattiau, Pierre; Ingram, Rebecca J.; Brooks, Tim; Vipond, Richard

    2015-01-01

    A commercial Bacillus anthracis (Anthrax) whole genome protein microarray has been used to identify immunogenic Anthrax proteins (IAP) using sera from groups of donors with (a) confirmed B. anthracis naturally acquired cutaneous infection, (b) confirmed B. anthracis intravenous drug use-acquired infection, (c) occupational exposure in a wool-sorters factory, (d) humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups. Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However, a number of other chromosomally-located and plasmid encoded open reading frame proteins were also recognized by infected or exposed groups in comparison to controls. Some of these antigens e.g., BA4182 are not recognized by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo that are not currently found in the UK licensed Anthrax Vaccine (AVP). These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis “infectome.” These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesized, tested in mouse immunogenicity studies and validated in parallel using human sera from

  10. Whole DNA methylome profiling in mice exposed to secondhand smoke

    PubMed Central

    Tommasi, Stella; Zheng, Albert; Yoon, Jae-In; Li, Arthur Xuejun; Wu, Xiwei; Besaratinia, Ahmad

    2012-01-01

    Aberration of DNA methylation is a prime epigenetic mechanism of carcinogenesis. Aberrant DNA methylation occurs frequently in lung cancer, with exposure to secondhand smoke (SHS) being an established risk factor. The causal role of SHS in the genesis of lung cancer, however, remains elusive. To investigate whether SHS can cause aberrant DNA methylation in vivo, we have constructed the whole DNA methylome in mice exposed to SHS for a duration of 4 mo, both after the termination of exposure and at ensuing intervals post-exposure (up to 10 mo). Our genome-wide and gene-specific profiling of DNA methylation in the lung of SHS-exposed mice revealed that all groups of SHS-exposed mice and controls share a similar pattern of DNA methylation. Furthermore, the methylation status of major repetitive DNA elements, including long-interspersed nuclear elements (LINE L1), intracisternal A particle long-terminal repeat retrotransposons (IAP-LTR), and short-interspersed nuclear elements (SINE B1), in the lung of all groups of SHS-exposed mice and controls remains comparable. The absence of locus-specific gain of DNA methylation and global loss of DNA methylation in the lung of SHS-exposed mice within a timeframe that precedes neoplastic-lesion formation underscore the challenges of lung cancer biomarker development. Identifying the initiating events that cause aberrant DNA methylation in lung carcinogenesis may help improve future strategies for prevention, early detection and treatment of this highly lethal disease. PMID:23051858

  11. A microarray-based analysis of gene expression profiles of maize kernel during late development stages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize oligonuleotide array was used to analyze the temporal patterns of gene expression in maize kernels during late developmental stages. There is a total of 57,452 70-mer oligonucleotides on the array. In this study, we analyzed gene expression profiles in the process of kernel development of inbr...

  12. Development of the first oligonucleotide microarray for global gene expression profiling in guinea pigs: defining the transcription signature of infectious diseases

    PubMed Central

    2012-01-01

    Background The Guinea pig (Cavia porcellus) is one of the most extensively used animal models to study infectious diseases. However, despite its tremendous contribution towards understanding the establishment, progression and control of a number of diseases in general and tuberculosis in particular, the lack of fully annotated guinea pig genome sequence as well as appropriate molecular reagents has severely hampered detailed genetic and immunological analysis in this animal model. Results By employing the cross-species hybridization technique, we have developed an oligonucleotide microarray with 44,000 features assembled from different mammalian species, which to the best of our knowledge is the first attempt to employ microarray to study the global gene expression profile in guinea pigs. To validate and demonstrate the merit of this microarray, we have studied, as an example, the expression profile of guinea pig lungs during the advanced phase of M. tuberculosis infection. A significant upregulation of 1344 genes and a marked down regulation of 1856 genes in the lungs identified a disease signature of pulmonary tuberculosis infection. Conclusion We report the development of first comprehensive microarray for studying the global gene expression profile in guinea pigs and validation of its usefulness with tuberculosis as a case study. An important gap in the area of infectious diseases has been addressed and a valuable molecular tool is provided to optimally harness the potential of guinea pig model to develop better vaccines and therapies against human diseases. PMID:23031549

  13. Investigating the Biological Significance of Metallointercalators with cDNA Microarrays

    NASA Astrophysics Data System (ADS)

    Wright, Elise P.; Lyons, Victoria; Wang, Shaoyu; Higgins, Vincent J.

    The double helix coded sequence of nucleotide bases with its protective sugar phosphate backbone forms deoxyribonucleic acid (DNA) which is the genetic blueprint of all living things. All the information required for the development, operation and maintenance of cells is contained in a sequence of adenine (A), thymine (T), cytosine (C) and guanine (G) bases, where adenine is paired with thymine and cytosine is paired with guanine [1]. The DNA sequence is made usable by transcription of the nucleotide sequence into single stranded messenger RNA (mRNA).. This means that the four member nucleic acid base code sequence is converted into a 22 member amino acid code [2].

  14. Multipurpose high-throughput filtering microarrays (HiFi) for DNA and protein assays.

    PubMed

    Le Goff, Gaelle C; Desmet, Cloé; Brès, Jean-Charles; Rigal, Dominique; Blum, Loïc J; Marquette, Christophe A

    2010-12-15

    We are reporting here a low cost colorimetric device for high-throughput multiplexed blood group genotyping and allergy diagnosis, displayed as an automated 96-well microtiter plate format. A porous polymeric membrane sealed at the bottom of each well accounts for the sensor support. For each sensing unit, a 6×6 matrix of specific probes is spotted on the external surface of the membrane resulting in 5 mm(2) microarrays. Thanks to the membrane porosity, reagents dispensed into the well can be eliminated through vacuum soaking. This unusual design drastically reduces the assay background signal. The system was first validated on robust models composed of either two complementary oligonucleotide sequences or one allergen/specific rabbit IgG pair. The quality of both oligonucleotide and protein immobilisation on the membrane substrate was then demonstrated together with the capacity to use the arrayed biomolecules as probes for the quantitative detection of specific targets (respectively complementary oligonucleotide and specific antibody). On the basis of these good results, two multiplex assays were developed for crude biological samples testing, focussing on two human in vitro diagnosis applications: a hybridisation assay for multiplex blood group genotyping and a multiparametric immunoassay for allergy diagnosis. In both cases, the transfer to crude biological samples testing was successful i.e. high signal to noise ratio of the stained membranes, reproducibility and good correlation with results obtained using routine testing procedures. PMID:20663657

  15. Coupled equilibrium model of hybridization error for the DNA microarray and tag-antitag systems.

    PubMed

    Rose, John A; Deaton, Russell J; Hagiya, Masami; Suyama, Akira

    2007-03-01

    In this work, a detailed coupled equilibrium model is presented for predicting the ensemble average probability of hybridization error per chip-hybridized input strand, providing the first ensemble average method for estimating postannealing microarray/TAT system error rates. Following a detailed presentation of the model and implementation via the software package NucleicPark, under a mismatched statistical zipper model of duplex formation, error response is simulated for both mean-energy and randomly encoded TAT systems versus temperature and input concentration. Limiting expressions and simulated model behavior indicate the occurrence of a transition in hybridization error response, from a logarithmically convex function of temperature for excess inputs (high-error behavior), to a monotonic, log-linear function of temperature for dilute inputs (low-error behavior), a novel result unpredicted by uncoupled equilibrium models. Model scaling behavior for random encodings is investigated versus system size and strand-length. Application of the model to TAT system design is also undertaken, via the in silico evolution of a high-fidelity 100-strand TAT system, with an error response improved by nine standard deviations over the performance of the mean random encoding. PMID:17393846

  16. DNA microarray for genotyping antibiotic resistance determinants in Acinetobacter baumannii clinical isolates.

    PubMed

    Dally, Simon; Lemuth, Karin; Kaase, Martin; Rupp, Steffen; Knabbe, Cornelius; Weile, Jan

    2013-10-01

    In recent decades, Acinetobacter baumannii has emerged as an organism of great concern due to its ability to accumulate antibiotic resistance. In order to improve the diagnosis of resistance determinants in A. baumannii in terms of lead time and accuracy, we developed a microarray that can be used to detect 91 target sequences associated with antibiotic resistance within 4 h from bacterial culture to result. The array was validated with 60 multidrug-resistant strains of A. baumannii in a blinded, prospective study. The results were compared to phenotype results determined by the automated susceptibility testing system VITEK2. Antibiotics considered were piperacillin-tazobactam, ceftazidime, imipenem, meropenem, trimethoprim-sulfamethoxazole, amikacin, gentamicin, tobramycin, ciprofloxacin, and tigecycline. The average positive predictive value, negative predictive value, sensitivity, and specificity were 98, 98, 99, and 94%, respectively. For carbapenemase genes, the array results were compared to singleplex PCR results provided by the German National Reference Center for Gram-Negative Pathogens, and results were in complete concordance. The presented array is able to detect all relevant resistance determinants of A. baumannii in parallel. The short handling time of 4 h from culture to result helps to provide fast results in order to initiate adequate anti-infective therapy for critically ill patients. Another application would be data acquisition for epidemiologic surveillance. PMID:23856783

  17. Microarray Analysis of the Gene Expression Profile and Lipid Metabolism in Fat-1 Transgenic Cattle.

    PubMed

    Liu, Xinfeng; Bai, Chunling; Ding, Xiangbin; Wei, Zhuying; Guo, Hong; Li, Guangpeng

    2015-01-01

    Long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) are beneficial for human health. However, humans and mammals are unable to synthesize n-3 PUFAs because they lack the n-3 desaturase gene fat-1 and must therefore obtain this type of fatty acid through their diet. Through the production of fat-1 transgenic animals, it is possible to obtain animal products that are rich in n-3 PUFAs, such as meat and milk. The aim of this study was to analyze the gene expression profile and the mechanism of lipid metabolism in fat-1 transgenic cattle and to accumulate important basic data that are required to obtain more efficient fat-1 transgenic cattle. Transcriptome profiling of fat-1 transgenic and wild-type cattle identified differentially expressed genes that are involved in 90 biological pathways, eight pathways of which were related to lipid metabolism processes 36 genes of which were related to lipid metabolism. This analysis also identified 11 significantly enriched genes that were involved in the peroxisome proliferator-activated receptor signaling pathway. These findings were verified by quantitative polymerase chain reaction. The information obtained in this study indicated that the introduction of an exogenous fat-1 gene into cattle affects the gene expression profile and the process of lipid metabolism in these animals. These results may provide important insights into how an exogenous fat-1 gene synthesizes n-3 PUFAs in transgenic cattle and other mammals. PMID:26426396

  18. Optical mapping discerns genome wide DNA methylation profiles

    PubMed Central

    Ananiev, Gene E; Goldstein, Steve; Runnheim, Rod; Forrest, Dan K; Zhou, Shiguo; Potamousis, Konstantinos; Churas, Chris P; Bergendahl, Veit; Thomson, James A; Schwartz, David C

    2008-01-01

    Background Methylation of CpG dinucleotides is a fundamental mechanism of epigenetic regulation in eukaryotic genomes. Development of methods for rapid genome wide methylation profiling will greatly facilitate both hypothesis and discovery driven research in the field of epigenetics. In this regard, a single molecule approach to methylation profiling offers several unique advantages that include elimination of chemical DNA modification steps and PCR amplification. Results A single molecule approach is presented for the discernment of methylation profiles, based on optical mapping. We report results from a series of pilot studies demonstrating the capabilities of optical mapping as a platform for methylation profiling of whole genomes. Optical mapping was used to discern the methylation profile from both an engineered and wild type Escherichia coli. Furthermore, the methylation status of selected loci within the genome of human embryonic stem cells was profiled using optical mapping. Conclusion The optical mapping platform effectively detects DNA methylation patterns. Due to single molecule detection, optical mapping offers significant advantages over other technologies. This advantage stems from obviation of DNA modification steps, such as bisulfite treatment, and the ability of the platform to assay repeat dense regions within mammalian genomes inaccessible to techniques using array-hybridization technologies. PMID:18667073

  19. Validation and implementation of a method for microarray gene expression profiling of minor B-cell subpopulations in man

    PubMed Central

    2014-01-01

    Background This report describes a method for the generation of global gene expression profiles from low frequent B-cell subsets by using fluorescence-activated cell sorting and RNA amplification. However, some of the differentiating compartments involve a low number of cells and therefore it is important to optimize and validate each step in the procedure. Methods Normal lymphoid tissues from blood, tonsils, thymus and bone marrow were immunophenotyped by the 8-colour Euroflow panel using multiparametric flow cytometry. Subsets of B-cells containing cell numbers ranging from 800 to 33,000 and with frequencies varying between 0.1 and 10 percent were sorted, subjected to mRNA purification, amplified by the NuGEN protocol and finally analysed by the Affymetrix platform. Results Following a step by step strategy, each step in the workflow was validated and the sorting/storage conditions optimized as described in this report. First, an analysis of four cancer cell lines on Affymetrix arrays, using either 100 ng RNA labelled with the Ambion standard protocol or 1 ng RNA amplified and labelled by the NuGEN protocol, revealed a significant correlation of gene expressions (r ≥ 0.9 for all). Comparison of qPCR data in samples with or without amplification for 8 genes showed that a relative difference between six cell lines was preserved (r ≥ 0.9). Second, a comparison of cells sorted into PrepProtect, RNAlater or directly into lysis/binding buffer showed a higher yield of purified mRNA following storage in lysis/binding buffer (p < 0.001). Third, the identity of the B-cell subsets validated by the cluster of differentiation (CD) membrane profile was highly concordant with the transcriptional gene expression (p-values <0.001). Finally, in normal bone marrow and tonsil samples, eight evaluated genes were expressed in accordance with the biology of lymphopoiesis (p-values < 0.001), which enabled the generation of a gene-specific B-cell atlas. Conclusion A

  20. Screening for key genes associated with atopic dermatitis with DNA microarrays.

    PubMed

    Zhang, Zhong-Kui; Yang, Yong; Bai, Shu-Rong; Zhang, Gui-Zhen; Liu, Tai-Hua; Zhou, Zhou; Wang, Chun-Mei; Tang, Li-Jun; Wang, Jun; He, Si-Xian

    2014-03-01

    The aim of the present study was to identify key genes associated with atopic dermatitis (AD) using microarray data and bioinformatic analyses. The dataset GSE6012, downloaded from the Gene Expression Omnibus (GEO) database, contains gene expression data from 10 AD skin samples and 10 healthy skin samples. Following data preprocessing, differentially expressed genes (DEGs) were identified using the limma package of the R project. Interaction networks were constructed comprising DEGs that showed a degree of node of >3, >5 and >10, using the Osprey software. Functional enrichment and pathway enrichment analysis of the network comprising all DEGs and of the network comprising DEGs with a high degree of node, were performed with the DAVID and WebGestalt toolkits, respectively. A total of 337 DEGs were identified. The functional enrichment analysis revealed that the list of DEGs was significantly enriched for proteins related to epidermis development (P=2.95E-07), including loricrin (LOR), keratin 17 (KRT17), small proline-rich repeat proteins (SPRRs) and involucrin (IVL). The chemokine signaling pathway was the most significantly enriched pathway (P=0.0490978) in the network of all DEGs and in the network consisting of high degree‑node DEGs (>10), which comprised the genes coding for chemokine receptor 7 (CCR7), chemokine ligand (CCL19), signal transducer and activator of transcription 1 (STAT1), and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1). In conclusion, the list of AD-associated proteins identified in this study, including LOR, KRT17, SPRRs, IVL, CCR7, CCL19, PIK3R1 and STAT1 may prove useful for the development of methods to treat AD. From these proteins, PIK3R1 and KRT17 are novel and promising targets for AD therapy. PMID:24452877

  1. DNA Microarray Analysis of Anaerobic Methanosarcina Barkeri Reveals Responses to Heat Shock and Air Exposure

    SciTech Connect

    Zhang, Weiwen; Culley, David E.; Nie, Lei; Brockman, Fred J.

    2006-04-08

    Summary Methanosarcina barkeri can grow only under strictly anoxic conditions because enzymes in methane formation pathways of are very oxygen sensitive. However, it has been determined that M. barkeri can survive oxidative stress. To obtain further knowledge of cellular changes in M. barkeri in responsive to oxidative and other environmental stress, a first whole-genome M. barkeri oligonucleotide microarray was constructed according to the draft genome sequence that contains 5072 open reading frames (ORFs) and was used to investigate the global transcriptomic response of M. barkeri to oxidative stress and heat shock. The result showed that 552 genes in the M. barkeri genome were responsive to oxidative stress, while 177 genes responsive to heat-shock, respectively using a cut off of 2.5 fold change. Among them, 101 genes were commonly responsive to both environmental stimuli. In addition to various house-keeping genes, large number of functionally unknown genes (38-57% of total responsive genes) was regulated by both stress conditions. The result showed that the Hsp60 (GroEL) system, which was previously thought not present in archaea, was up-regulated and may play important roles in protein biogenesis in responsive to heat shock in M. barkeri. No gene encoding superoxide dismutase, catalase, nonspecific peroxidases or thioredoxin reductase was differentially expressed when subjected to oxidative stress. Instead, significant downregulation of house-keeping genes and up-regulation of genes encoding transposase was found in responsive to oxidative stress, suggesting that M. barkeri may be adopting a passive protective mechanism by slowing down cellular activities to survive the stress rather than activating a means against oxidative stress.

  2. DNA profiling: evaluation of the evidentiary value.

    PubMed

    Bär, Walter

    2003-03-01

    The evaluation of the evidentiary value of scientific evidence is the assessment of the strength of the link between a finding and a person. It is usually a statistical assessment but its presentation is full of pitfalls. The evaluation of scientific evidence must be based on a established methodology to both evaluate, expose and interpret the evidence. It is best based on a logical framework, e.g. the Bayesian theorem, and on likelihood ratios. The information of the scientist is usually a numerical one, e.g. the probability of observing two matching profiles. Assessments of simple stains as well as of stain mixtures with contributors of different ethnic origin and/or with related contributors or reference persons and even artifacts can be quantified and expressed by likelihood ratio(s). Thereby, scientific evidence can be integrated by juries into the continuous process of evaluating prior odds and changing them into posterior odds by new information in the case. PMID:12935550

  3. Monitoring of malaria parasite resistance to chloroquine and sulphadoxine-pyrimethamine in the Solomon Islands by DNA microarray technology

    PubMed Central

    2010-01-01

    Background Little information is available on resistance to anti-malarial drugs in the Solomon Islands (SI). The analysis of single nucleotide polymorphisms (SNPs) in drug resistance associated parasite genes is a potential alternative to classical time- and resource-consuming in vivo studies to monitor drug resistance. Mutations in pfmdr1 and pfcrt were shown to indicate chloroquine (CQ) resistance, mutations in pfdhfr and pfdhps indicate sulphadoxine-pyrimethamine (SP) resistance, and mutations in pfATPase6 indicate resistance to artemisinin derivatives. Methods The relationship between the rate of treatment failure among 25 symptomatic Plasmodium falciparum-infected patients presenting at the clinic and the pattern of resistance-associated SNPs in P. falciparum infecting 76 asymptomatic individuals from the surrounding population was investigated. The study was conducted in the SI in 2004. Patients presenting at a local clinic with microscopically confirmed P. falciparum malaria were recruited and treated with CQ+SP. Rates of treatment failure were estimated during a 28-day follow-up period. In parallel, a DNA microarray technology was used to analyse mutations associated with CQ, SP, and artemisinin derivative resistance among samples from the asymptomatic community. Mutation and haplotype frequencies were determined, as well as the multiplicity of infection. Results The in vivo study showed an efficacy of 88% for CQ+SP to treat P. falciparum infections. DNA microarray analyses indicated a low diversity in the parasite population with one major haplotype present in 98.7% of the cases. It was composed of fixed mutations at position 86 in pfmdr1, positions 72, 75, 76, 220, 326 and 356 in pfcrt, and positions 59 and 108 in pfdhfr. No mutation was observed in pfdhps or in pfATPase6. The mean multiplicity of infection was 1.39. Conclusion This work provides the first insight into drug resistance markers of P. falciparum in the SI. The obtained results indicated the

  4. Development and evaluation of a DNA microarray assay for the simultaneous detection of nine harmful algal species in ship ballast and seaport waters

    NASA Astrophysics Data System (ADS)

    Chen, Xianfeng; Zhou, Qianjin; Duan, Weijun; Zhou, Chengxu; Duan, Lijun; Zhang, Huili; Sun, Aili; Yan, Xiaojun; Chen, Jiong

    2016-01-01

    Rapid, high-throughput and reliable methods are urgently required to accurately detect and monitor harmful algae, which are responsible for algal blooms, such as red and green tides. In this study, we successfully developed a multiplex PCR-based DNA microarray method capable of detecting nine harmful algal species simultaneously, namely Alexandrium tamarense, Gyrodinium instriatum, Heterosigma akashiwo, Karenia mikimotoi, Prorocentrum donghaiense, Prorocentrum minimum, Ulva compressa, Ulva ohnoi and Ulva prolifera. This method achieved a limit of detection (LOD) of 0.5 ng of genomic DNA (orders of magnitude of the deci-nanogram range) in the tested algae cultures. Altogether, 230 field samples from ship ballast waters and seaport waters were used to evaluate the DNA microarray. The clinical sensitivity and specificity of the DNA microarray assay in detecting field samples were 96.4% and 90.9%, respectively, relative to conventional morphological methods. This indicated that this high-throughput, automatic, and specific method is well suited for the detection of algae in water samples.

  5. Microarray-based gene expression profiles in rabbit retina due to negative pressure suction.

    PubMed

    Zhao, H X; Niu, C M; Guan, W Y

    2012-01-01

    We investigated a possible molecular pathogenesis involving retinal ganglion cell apoptosis following transient high intraocular pressure. Changes in the gene expression profiles of the retina were detected via gene chip methodology. Twelve New Zealand white rabbits were randomly assigned to control and 3-min negative pressure suction groups. The control group was treated only with a laser, and the experimental group was also treated with suction for 3 min, using a negative pressure generator. Total RNA was then extracted from the retinal tissue at different recovery stages to analyze gene expression profiles using the Agilent rabbit one-way gene chip. The groups were then compared. Immediately after negative pressure suction induction, 704 genes were differentially expressed. Among these, 485 genes were upregulated, and 219 were downregulated. Expression of the genes encoding CRYAA, CRYAB, and TLR3 genes, which are involved in apoptosis, was elevated. The KRT18 gene, which is involved in apoptosis, had reduced expression. Seven days after negative pressure suction, 482 genes were differentially expressed. Among these, 178 genes were upregulated, and 304 were downregulated. Expression of the genes encoding CRYAB, IL1-BETA and IL1R1, which are involved in apoptosis, was upregulated. Ten days after negative pressure suction, 402 genes were differentially expressed. Of these, 213 genes were upregulated, and 189 were downregulated. Apoptosis genes CRYAB, CRYBA3, CRYBB2, IL1- BETA, and IL1R1 showed higher expression levels. We concluded that negative pressure suction for long periods of time (for example, 3 min) results in changes in gene expression. Genes with higher fold changes help protect retinal ganglion cells from apoptosis. We suggest that promoting the expression of these genes should be considered as a new means for treating ischemic-hypoxic retinopathy. PMID:22653643

  6. An assessment on DNA microarray and sequence-based methods for the characterization of methicillin-susceptible Staphylococcus aureus from Nigeria

    PubMed Central

    Shittu, Adebayo O.; Oyedara, Omotayo; Okon, Kenneth; Raji, Adeola; Peters, Georg; von Müller, Lutz; Schaumburg, Frieder; Herrmann, Mathias; Ruffing, Ulla

    2015-01-01

    Staphylococcus aureus is an important human pathogen causing nosocomial and community-acquired infections worldwide. In the characterization of this opportunistic pathogen, DNA microarray hybridization technique is used as an alternative to sequence based genotyping to obtain a comprehensive assessment on the virulence, resistance determinants, and population structure. The objective of this study was to characterize a defined collection of S. aureus isolates from Nigeria using the microarray technique, and to assess the extent that it correlates with sequence-based genotyping methods. The clonal diversity and genomic content of 52 methicillin-susceptible Staphylococcus aureus (MSSA) were investigated by spa typing, MLST and DNA microarray hybridization. More than half (55.8%) of these isolates were associated with clonal complexes (CCs) typically associated with methicillin-resistant S. aureus (MRSA) clones i.e., CC1, CC5, CC8, CC30, and CC45. Certain genes linked with virulence (hlgA and clfA) and adherence (ebpS, fnbA, sspA, sspB, and sspP) were detected in all isolates. A number of genes or gene clusters were associated with distinct clonal types. The enterotoxin gene cluster (egc) was linked with CC5, CC25, CC30, CC45, and CC121, enterotoxin H gene (seh) with CC1, exfoliative toxin D gene (etd) with CC25 and CC80, and the epidermal cell differentiation inhibitor B gene (edinB) with CC25, CC80, and CC152. The excellent agreement between data from DNA microarray and MLST in the delineation of Nigerian MSSA isolates indicates that the microarray technique is a useful tool to provide information on antibiotic resistance, clonal diversity and virulence factors associated with infection and disease. PMID:26539185

  7. A DNA Microarray Platform Based on Direct Detection of rRNA for Characterization of Freshwater Sediment-Related Prokaryotic Communities

    PubMed Central

    Peplies, Jörg; Lachmund, Christine; Glöckner, Frank Oliver; Manz, Werner

    2006-01-01

    A DNA microarray platform for the characterization of bacterial communities in freshwater sediments based on a heterogeneous set of 70 16S rRNA-targeted oligonucleotide probes and directly labeled environmental RNA was developed and evaluated. Application of a simple protocol for the efficient background blocking of aminosilane-coated slides resulted in an improved signal-to-noise ratio and a detection limit of 10 ng for particular 16S rRNA targets. An initial specificity test of the system using RNA from pure cultures of different phylogenetic lineages showed a fraction of false-positive signals of ∼5% after protocol optimization and a marginal loss of correct positive signals. Subsequent microarray analysis of sediment-related community RNA from four different German river sites suggested low diversity for the groups targeted but indicated distinct differences in community composition. The results were supported by parallel fluorescence in situ hybridization in combination with sensitive catalyzed reporter deposition (CARD-FISH). In comparisons of the data of different sampling sites, specific detection of populations with relative cellular abundances down to 2% as well as a correlation of microarray signal intensities and population size is suggested. Our results demonstrate that DNA microarray technology allows for the fast and efficient precharacterization of complex bacterial communities by the use of standard single-cell hybridization probes and the direct detection of environmental rRNA, also in methodological challenging habitats such as heterogeneous lotic freshwater sediments. PMID:16820477

  8. Hybrid microarray based on double biomolecular markers of DNA and carbohydrate for simultaneous genotypic and phenotypic detection of cholera toxin-producing Vibrio cholerae.

    PubMed

    Shin, Hwa Hui; Seo, Jeong Hyun; Kim, Chang Sup; Hwang, Byeong Hee; Cha, Hyung Joon

    2016-05-15

    Life-threatening diarrheal cholera is usually caused by water or food contaminated with cholera toxin-producing Vibrio cholerae. For the prevention and surveillance of cholera, it is crucial to rapidly and precisely detect and identify the etiological causes, such as V. cholerae and/or its toxin. In the present work, we propose the use of a hybrid double biomolecular marker (DBM) microarray containing 16S rRNA-based DNA capture probe to genotypically identify V. cholerae and GM1 pentasaccharide capture probe to phenotypically detect cholera toxin. We employed a simple sample preparation method to directly obtain genomic DNA and secreted cholera toxin as target materials from bacterial cells. By utilizing the constructed DBM microarray and prepared samples, V. cholerae and cholera toxin were detected successfully, selectively, and simultaneously; the DBM microarray was able to analyze the pathogenicity of the identified V. cholerae regardless of whether the bacteria produces toxin. Therefore, our proposed DBM microarray is a new effective platform for identifying bacteria and analyzing bacterial pathogenicity simultaneously. PMID:26735874

  9. Screening and functional pathway analysis of genes associated with pediatric allergic asthma using a DNA microarray

    PubMed Central

    LU, LI-QUN; LIAO, WEI

    2015-01-01

    The present study aimed to identify differentially expressed genes (DEGs) associated with pediatric allergic asthma, and to analyze the functional pathways of the selected target genes, in order to explore the pathogenesis of the disease. The GSE18965 gene expression profile was downloaded from the Gene Expression Omnibus database and was preprocessed. This gene expression profile consisted of seven normal samples and nine samples from patients with pediatric allergic asthma. The DEGs between the normal and pediatric allergic asthma samples were screened using limma package in R, and the cut-off value was set at false discovery rate <0.05 and log fold change >1. Following hierarchical clustering of the DEGs based on the expression profiles, the up- and downregulated genes underwent a functional enrichment analysis by topological approach (P<0.05), using the Database for Annotation, Visualization and Integrated Discovery. A total of 127 DEGs were identified between the normal and pediatric allergic asthma samples. The up- and downregulated genes were significantly enriched in the actin filament-based process and the monosaccharide metabolic process, respectively. Seven downregulated DEGs (M6PR, TPP1, GLB1, NEU1, ACP2, LAMP1 and HGSNAT) were identified in the lysosomal pathway, with P=6.4×10−9. These results suggested that variation in lysosomal function, triggered by the seven downregulated genes, may lead to aberrant functioning of the T lymphocytes, resulting in asthma. Further research regarding the treatment of pediatric allergic asthma through targeting lysosomal function is required. PMID:25633562

  10. Adiposity is associated with DNA methylation profile in adipose tissue

    PubMed Central

    Agha, Golareh; Houseman, E Andres; Kelsey, Karl T; Eaton, Charles B; Buka, Stephen L; Loucks, Eric B

    2015-01-01

    Background: Adiposity is a risk factor for type 2 diabetes and cardiovascular disease, suggesting an important role for adipose tissue in the development of these conditions. The epigenetic underpinnings of adiposity are not well understood, and studies of DNA methylation in relation to adiposity have rarely focused on target adipose tissue. Objectives were to evaluate whether genome-wide DNA methylation profiles in subcutaneous adipose tissue and peripheral blood leukocytes are associated with measures of adiposity, including central fat mass, body fat distribution and body mass index. Methods: Participants were 106 men and women (mean age 47 years) from the New England Family Study. DNA methylation was evaluated using the Infinium HumanMethylation450K BeadChip. Adiposity phenotypes included dual-energy X-ray absorptiometry-assessed android fat mass, android:gynoid fat ratio and trunk:limb fat ratio, as well as body mass index. Results: Adipose tissue genome-wide DNA methylation profiles were associated with all four adiposity phenotypes, after adjusting for race, sex and current smoking (omnibus p-values <0.001). After further adjustment for adipose cell-mixture effects, associations with android fat mass, android:gynoid fat ratio, and trunk:limb fat ratio remained. In gene-specific analyses, adiposity phenotypes were associated with adipose tissue DNA methylation in several genes that are biologically relevant to the development of adiposity, such as AOC3, LIPE, SOD3, AQP7 and CETP. Blood DNA methylation profiles were not associated with adiposity, before or after adjustment for blood leukocyte cell mixture effects. Conclusion: Findings show that DNA methylation patterns in adipose tissue are associated with adiposity. PMID:25541553

  11. Cri-Du-Chat Syndrome: Clinical Profile and Chromosomal Microarray Analysis in Six Patients.

    PubMed

    Espirito Santo, Layla Damasceno; Moreira, Lília Maria Azevedo; Riegel, Mariluce

    2016-01-01

    Cri-du-chat syndrome is a chromosomal disorder caused by a deletion of the short arm of chromosome 5. The disease severity, levels of intellectual and developmental delay, and patient prognosis have been related to the size and position of the deletion. Aiming to establish genotype-phenotype correlations, we applied array-CGH to evaluate six patients carrying cytogenetically detected deletions of the short arm of chromosome 5 who were followed at a genetics community service. The patients' cytogenetic and clinical profiles were reevaluated. A database review was performed to predict additional genes and regulatory elements responsible for the characteristic phenotypic and behavioral traits of this disorder. Array-CGH analysis allowed for delineation of the terminal deletions, which ranged in size from approximately 11.2 Mb to 28.6 Mb, with breakpoints from 5p15.2 to 5p13. An additional dup(8)(p23) (3.5 Mb), considered to be a benign copy number variation, was also observed in one patient. The correlation coefficient value (ρ = 0.13) calculated indicated the presence of a weak relationship between developmental delay and deletion size. Genetic background, family history, epigenetic factors, quantitative trait locus polymorphisms, and environmental factors may also affect patient phenotype and must be taken into account in genotype-phenotype correlations. PMID:27144168

  12. Cri-Du-Chat Syndrome: Clinical Profile and Chromosomal Microarray Analysis in Six Patients

    PubMed Central

    Espirito Santo, Layla Damasceno; Moreira, Lília Maria Azevedo; Riegel, Mariluce

    2016-01-01

    Cri-du-chat syndrome is a chromosomal disorder caused by a deletion of the short arm of chromosome 5. The disease severity, levels of intellectual and developmental delay, and patient prognosis have been related to the size and position of the deletion. Aiming to establish genotype-phenotype correlations, we applied array-CGH to evaluate six patients carrying cytogenetically detected deletions of the short arm of chromosome 5 who were followed at a genetics community service. The patients' cytogenetic and clinical profiles were reevaluated. A database review was performed to predict additional genes and regulatory elements responsible for the characteristic phenotypic and behavioral traits of this disorder. Array-CGH analysis allowed for delineation of the terminal deletions, which ranged in size from approximately 11.2 Mb to 28.6 Mb, with breakpoints from 5p15.2 to 5p13. An additional dup(8)(p23) (3.5 Mb), considered to be a benign copy number variation, was also observed in one patient. The correlation coefficient value (ρ = 0.13) calculated indicated the presence of a weak relationship between developmental delay and deletion size. Genetic background, family history, epigenetic factors, quantitative trait locus polymorphisms, and environmental factors may also affect patient phenotype and must be taken into account in genotype-phenotype correlations. PMID:27144168

  13. A comparative cDNA microarray analysis reveals a spectrum of genes regulated by Pax6 in mouse lens

    PubMed Central

    Chauhan, Bharesh K.; Reed, Nathan A.; Yang, Ying; Čermák, Lukáš; Reneker, Lixing; Duncan, Melinda K.; Cvekl, Aleš

    2007-01-01

    Background Pax6 is a transcription factor that is required for induction, growth, and maintenance of the lens; however, few direct target genes of Pax6 are known. Results In this report, we describe the results of a cDNA microarray analysis of lens transcripts from transgenic mice over-expressing Pax6 in lens fibre cells in order to narrow the field of potential direct Pax6 target genes. This study revealed that the transcript levels were significantly altered for 508 of the 9700 genes analysed, including five genes encoding the cell adhesion molecules β1-integrin, JAM1, L1 CAM, NCAM-140 and neogenin. Notably, comparisons between the genes differentially expressed in Pax6 heterozygous and Pax6 over-expressing lenses identified 13 common genes, including paralemmin, GDIβ, ATF1, Hrp12 and Brg1. Immunohistochemistry and Western blotting demonstrated that Brg1 is expressed in the embryonic and neonatal (2-week-old) but not in 14-week adult lenses, and confirmed altered expression in transgenic lenses over-expressing Pax6. Furthermore, EMSA demonstrated that the BRG1 promoter contains Pax6 binding sites, further supporting the proposition that it is directly regulated by Pax6. Conclusions These results provide a list of genes with possible roles in lens biology and cataracts that are directly or indirectly regulated by Pax6. PMID:12485166

  14. Elucidating the transcription cycle of the UV-inducible hyperthermophilic archaeal virus SSV1 by DNA microarrays

    SciTech Connect

    Froels, Sabrina; Gordon, Paul M.K.; Panlilio, Mayi Arcellana; Schleper, Christa . E-mail: christa.schleper@bio.uib.no; Sensen, Christoph W.

    2007-08-15

    The spindle-shaped Sulfolobus virus SSV1 was the first of a series of unusual and uniquely shaped viruses isolated from hyperthermophilic Archaea. Using whole-genome microarrays we show here that the circular 15.5 kb DNA genome of SSV1 exhibits a chronological regulation of its transcription upon UV irradiation, reminiscent to the life cycles of bacteriophages and eukaryotic viruses. The transcriptional cycle starts with a small UV-specific transcript and continues with early transcripts on both its flanks. The late transcripts appear after the onset of viral replication and are extended to their full lengths towards the end of the approximately 8.5 h cycle. While we detected only small differences in genome-wide analysis of the host Sulfolobus solfataricus comparing infected versus uninfected strains, we found a marked difference with respect to the strength and speed of the general UV response of the host. Models for the regulation of the virus cycle, and putative functions of genes in SSV1 are presented.

  15. DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate.

    PubMed

    Polen, T; Rittmann, D; Wendisch, V F; Sahm, H

    2003-03-01

    In its natural environment, Escherichia coli is exposed to short-chain fatty acids, such as acetic acid or propionic acid, which can be utilized as carbon sources but which inhibit growth at higher concentrations. DNA microarray experiments revealed expression changes during exponential growth on complex medium due to the presence of sodium acetate or sodium propionate at a neutral external pH. The adaptive responses to acetate and propionate were similar and involved genes in three categories. First, the RNA levels for chemotaxis and flagellum genes increased. Accordingly, the expression of chromosomal fliC'-'lacZ and flhDC'-'lacZ fusions and swimming motility increased after adaptation to acetate or propionate. Second, the expression of many genes that are involved in the uptake and utilization of carbon sources decreased, indicating some kind of catabolite repression by acetate and propionate. Third, the expression of some genes of the general stress response increased, but the increases were more pronounced after short-term exposure for this response than for the adaptive response. Adaptation to propionate but not to acetate involved increased expression of threonine and isoleucine biosynthetic genes. The gene expression changes after adaptation to acetate or propionate were not caused solely by uncoupling or osmotic effects but represented specific characteristics of the long-term response of E. coli to either compound. PMID:12620868

  16. Identifying type 1 diabetes candidate genes by DNA microarray analysis of islet-specific CD4 + T cells.

    PubMed

    Berry, Gregory J; Frielle, Christine; Brucklacher, Robert M; Salzberg, Anna C; Waldner, Hanspeter

    2015-09-01

    Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease resulting from the destruction of insulin-producing pancreatic beta cells and is fatal unless treated with insulin. During the last four decades, multiple insulin-dependent diabetes (Idd) susceptibility/resistance loci that regulate T1D development have been identified in humans and non-obese diabetic (NOD) mice, an established animal model for T1D. However, the exact mechanisms by which these loci confer diabetes risk and the identity of the causative genes remain largely elusive. To identify genes and molecular mechanisms that control the function of diabetogenic T cells, we conducted DNA microarray analysis in islet-specific CD4 + T cells from BDC2.5 TCR transgenic NOD mice that contain the Idd9 locus from T1D-susceptible NOD mice or T1D-resistant C57BL/10 mice. Here we describe in detail the contents and analyses for these gene expression data associated with our previous study [1]. Gene expression data are available at the Gene Expression Omnibus (GEO) repository from the National Center for Biotechnology Information (accession number GSE64674). PMID:26484253

  17. A novel time-course cDNA microarray analysis method identifies genes associated with the development of cisplatin resistance.

    PubMed

    Whiteside, Martin A; Chen, Dung-Tsa; Desmond, Renee A; Abdulkadir, Sarki A; Johanning, Gary L

    2004-01-22

    In recent years, most cDNA microarray studies of chemotherapeutic drug resistance have not considered the temporal pattern of gene expression. The objective of this study was to examine systematically changes in gene expression of NCI-H226 and NCI-H2170 lung cancer cells treated weekly with IC10 doses of cisplatin. NCI-H226 lung cancer cells were treated weekly with an IC10 dose of cisplatin. Candidate genes with a fold change of 2.0 or more were identified from this study. A second experiment was conducted by exposing NCI-H2170 cells to cisplatin doses that were increased in week 4 and decreased in week 5. Overall, 44 genes were differentially expressed in both the NCI-H226 and NCI-H2170 cell lines. In the NCI-H2170 cell line, 24 genes had a twofold gene expression change from weeks 3 to 4. Real-time PCR found a significant correlation of the gene expression changes for seven genes of interest. This small time-ordered series identified novel genes associated with cisplatin resistance. This kind of analysis should be viewed as a first step towards building gene-regulatory networks. PMID:14737109

  18. Comprehensive Screening of Gene Function and Networks by DNA Microarray Analysis in Japanese Patients with Idiopathic Portal Hypertension

    PubMed Central

    Kotani, Kohei; Kawabe, Joji; Morikawa, Hiroyasu; Akahoshi, Tomohiko; Hashizume, Makoto; Shiomi, Susumu

    2015-01-01

    The functions of genes involved in idiopathic portal hypertension (IPH) remain unidentified. The present study was undertaken to identify the functions of genes expressed in blood samples from patients with IPH through comprehensive analysis of gene expression using DNA microarrays. The data were compared with data from healthy individuals to explore the functions of genes showing increased or decreased expression in patients with IPH. In cluster analysis, no dominant probe group was shown to differ between patients with IPH and healthy controls. In functional annotation analysis using the Database for Annotation Visualization and Integrated Discovery tool, clusters showing dysfunction in patients with IPH involved gene terms related to the immune system. Analysis using network-based pathways revealed decreased expression of adenosine deaminase, ectonucleoside triphosphate diphosphohydrolase 4, ATP-binding cassette, subfamily C, member 1, transforming growth factor-β, and prostaglandin E receptor 2; increased expression of cytochrome P450, family 4, subfamily F, polypeptide 3, and glutathione peroxidase 3; and abnormalities in the immune system, nucleic acid metabolism, arachidonic acid/leukotriene pathways, and biological processes. These results suggested that IPH involved compromised function of immunocompetent cells and that such dysfunction may be associated with abnormalities in nucleic acid metabolism and arachidonic acid/leukotriene-related synthesis/metabolism. PMID:26549939

  19. DNA microarray analysis of the epithelial-mesenchymal transition of mesothelial cells in a rat model of peritoneal dialysis.

    PubMed

    Imai, Toshimi; Hirahara, Ichiro; Morishita, Yoshiyuki; Onishi, Akir; Inoue, Makoto; Muto, Shigeaki; Kusano, Eiji

    2011-01-01

    Long-term peritoneal dialysis induces peritoneal hyperpermeability, and the subsequent loss of ultra-filtration causes patients to discontinue peritoneal dialysis. Glucose degradation products (GDPs) in peritoneal dialysis fluids (PDFs) are probably one of the primary causes for peritoneal injury. In the present study, we used a transcriptome analysis to determine the mechanism of peritoneal injury by GDPs. Rats were administered 20 mmol/L methylglyoxal (MGO) in PDF or 20 mmol/L formaldehyde in PDF (100 mL/kg) intraperitoneally for 21 days. The peritoneal membrane in rats that received MGO showed increased thickness and fibrosis. Mesenchymal-like cells over-proliferated on the surface of the peritoneum. A DNA microarray analysis revealed that the expression of 168 genes had increased by more than a factor of 4. The upregulated genes included those that code for extracellular matrix components (such as types III and lV collagen, among others), cell division cycle 42 (Cdc42), an enabled/vasodilator-stimulated phosphoprotein-like protein [Ena/VASP (Evl)], and actin-related protein 2/3 complex subunits (Arp2/3). In conclusion, a rat model of peritoneal injury by GDPs induced mesothelial cells to redifferentiate and proliferate, with upregulation of Cdc42, the Evl Ena/VASP, and Arp2/3, suggesting that GDPs induce fibrous thickening of the peritoneal membrane by redifferentiation of mesothelial cells, resulting in hyperpermeability of the peritoneum. PMID:22073821

  20. Elucidating the transcription cycle of the UV-inducible hyperthermophilic archaeal virus SSV1 by DNA microarrays.

    PubMed

    Fröls, Sabrina; Gordon, Paul M K; Panlilio, Mayi Arcellana; Schleper, Christa; Sensen, Christoph W

    2007-08-15

    The spindle-shaped Sulfolobus virus SSV1 was the first of a series of unusual and uniquely shaped viruses isolated from hyperthermophilic Archaea. Using whole-genome microarrays we show here that the circular 15.5 kb DNA genome of SSV1 exhibits a chronological regulation of its transcription upon UV irradiation, reminiscent to the life cycles of bacteriophages and eukaryotic viruses. The transcriptional cycle starts with a small UV-specific transcript and continues with early transcripts on both its flanks. The late transcripts appear after the onset of viral replication and are extended to their full lengths towards the end of the approximately 8.5 h cycle. While we detected only small differences in genome-wide analysis of the host Sulfolobus solfataricus comparing infected versus uninfected strains, we found a marked difference with respect to the strength and speed of the general UV response of the host. Models for the regulation of the virus cycle, and putative functions of genes in SSV1 are presented. PMID:17467765

  1. Input of DNA microarrays to identify novel mechanisms in multiple myeloma biology and therapeutic applications

    PubMed Central

    Mahtouk, Karène; Hose, Dirk; De Vos, John; Moreaux, Jérôme; Jourdan, Michel; Rossi, Jean François; Rème, Thierry; Goldschmidt, Harmut; Klein, Bernard

    2007-01-01

    Multiple myeloma (MM) is a B cell neoplasia characterized by the proliferation of a clone of malignant plasma cells in the bone marrow. We review here the input of gene expression profiling (GEP) of myeloma cells and of their tumor microenvironment to develop new tumor classifiers, to better understand the biology of myeloma cells, to identify some mechanisms of drug sensitivity and resistance, to identify new myeloma growth factors, and to depict the complex interactions between tumor cells and their microenvironment. We discuss how these findings may improve the clinical outcome of this still incurable disease. PMID:18094409

  2. Towards zirconium phosphonate-based microarrays for probing DNA-protein interactions: critical influence of the location of the probe anchoring groups.

    PubMed

    Monot, Julien; Petit, Marc; Lane, Sarah M; Guisle, Isabelle; Léger, Jean; Tellier, Charles; Talham, Daniel R; Bujoli, Bruno

    2008-05-14

    Terminal phosphate groups on double-stranded DNA probes bind strongly to glass substrates coated with a zirconium phosphonate monolayer, and probes immobilized in this way as microarrays can be used to detect protein targets. The sensitivity of the microarray was shown to be enhanced by the use of a polyguanine segment ((G)n , n > or = 5) as a spacer between the phosphate linker and the protein interaction domain. More importantly, the presence of phosphate linkers on both ends of the dsDNA probes leads to significant enhancement of target capture. The relevant characteristics of the different probes when bound to the surface were determined, by the original use of a combination of surface characterization techniques (XPS, AFM, and Sarfus). In this context, the location of the phosphate linkers in the duplex probes was found to result in different probe surface coverage and presentation on the surface, which affect subsequent interactions with the target protein. PMID:18407629

  3. High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles

    PubMed Central

    Moller, Isabel; Marcus, Susan E.; Haeger, Ash; Verhertbruggen, Yves; Verhoef, Rene; Schols, Henk; Ulvskov, Peter; Mikkelsen, Jørn Dalgaard; Knox, J. Paul

    2007-01-01

    Antibody-producing hybridoma cell lines were created following immunisation with a crude extract of cell wall polymers from the plant Arabidopsis thaliana. In order to rapidly screen the specificities of individual monoclonal antibodies (mAbs), their binding to microarrays containing 50 cell wall glycans immobilized on nitrocellulose was assessed. Hierarchical clustering of microarray binding profiles from newly produced mAbs, together with the profiles for mAbs with previously defined specificities allowed the rapid assignments of mAb binding to antigen classes. mAb specificities were further investigated using subsequent immunochemical and biochemical analyses and two novel mAbs are described in detail. mAb LM13 binds to an arabinanase-sensitive pectic epitope and mAb LM14, binds to an epitope occurring on arabinogalactan-proteins. Both mAbs display novel patterns of recognition of cell walls in plant materials. PMID:17629746

  4. Gene function analysis in osteosarcoma based on microarray gene expression profiling

    PubMed Central

    Zhao, Liang; Zhang, Jinghua; Tan, Hongyu; Wang, Weidong; Liu, Yilin; Song, Ruipeng; Wang, Limin

    2015-01-01

    Osteosa rcoma is an aggressive malignant neoplasm that exhibits osteoblastic differentiation and produces malignant osteoid. The aim of this study was to find feature genes associated with osteosarcoma and correlative gene functions which can distinguish cancer tissues from non-tumor tissues. Gene expression profile GSE14359 was downloaded from Gene Expression Omnibus (GEO) database, including 10 osteosarcoma samples and 2 normal samples. The differentially expressed genes (DEGs) between osteosarcoma and normal specimens were identified using limma package of R. DAVID was applied to mine osteosarcoma associated genes and analyze the GO enrichment on gene functions and KEGG pathways. Then, corresponding protein-protein interaction (PPI) network of DEGs was constructed based on the data collected from STRING datasets. Principal component of top10 DEGs and PPI network of top 20 DEGs were further analyzed. Finally, transcription factors were predicted by uploading the two groups of DEGs to TfactS database. A total of 437 genes, including 114 up-regulated genes and 323 down-regulated genes, were filtered as DEGs, of which 46 were associated with osteosarcoma by Disease Module. GO and KEGG pathway enrichment analysis showed that genes mainly affected the process of immune response and the development of skeletal and vascular system. The PPI network analysis elucidated that hemoglobin and histocompatibility proteins and enzymes, which were associated with immune response, were closely associated with osteosarcoma. Transcription factors MYC and SP1 were predicted to be significantly related to osteosarcoma. The discovery of gene functions and transcription factors has the potential to use in clinic for diagnosis of osteosarcoma in future. In addition, it will pave the way to studying mechanism and effective therapies for osteosarcoma. PMID:26379830

  5. Microarray Analysis of the Major Depressive Disorder mRNA Profile Data

    PubMed Central

    Gao, Lishu; Xu, Enping; Xie, Jian

    2015-01-01

    Objective Major depressive disorder (MDD) is a common mood disorder associated with several psychophysiological changes like disturbances of sleep, appetite, or sexual desire, and it affects the patients' life seriously. We aimed to explore a genetic method to investigate the mechanism of MDD. Methods The mRNA expression profile (GSE53987) of MDD was downloaded from Gene Expression Omnibus database, including 105 samples of three brain regions in post-mortem tissue suffered from MDD and unaffected controls. Differentially expressed genes (DEGs) in MDD were identified using the Limma package in R. Gene Ontology functions and Kyoto Enrichment of Genes and Genomes pathways of the selected DEGs were enriched using Database for Annotation, Visualization and Integrated Discovery. Protein-protein interactive network of DEGs was constructed using the Cytoscape software. Results Totally, 241 DEGs in MDD-hip group, 218 DEGs in MDD-pfc group, and 327 DEGs in MDD-str group were identified. Also, different kinds of biological processes of DEGs in each group were enriched. Besides, glycan biosynthesis of DEGs in MDD-str group, RIG-I-like receptor signaling and pyrimidine metabolism of DEGs in the MDD-hip group were enriched, respectively. Moreover, several DEGs like PTK2, TDG and CETN2 in MDD-str group, DCT, AR and GNRHR in MDD-pfc group, and AKT1 and IRAK1 in MDD-hip group were selected from PPI network. Conclusion Our data suggests that the brain striatum tissue may be greatly affected by MDD, and DEGs like PTK2, GALNT2 and GALNT2 in striatum, AR in prefrontal cortex and IRAK1 and IL12A in hippocampus may provide novel therapeutic basis for MDD treatment. PMID:26207134

  6. GENE PROFILING: IMPLICATIONS IN DERMATOLOGY

    PubMed Central

    Blumenberg, Miroslav; Tomic-Canic, Marjana

    2016-01-01

    Summary DNA microarrays are capable of following the level of expression of, virtually, all genes in a human tissue. This has been employed to determine the aberrant gene expression profiles in many skin diseases, including ultraviolet light damage, inflammatory processes and cancers. Because of its accessibility, skin also served as one of the initial targets of basic research using DNA microarrays. Both the epidermis and dermis have been extensively investigated. Development of bed-side uses of DNA arrays, and the concomitant price reduction of the materials and methods of microarray analyses, holds great promise for improved diagnosis, treatment and prevention of dermatologic disorders.

  7. Single-cell microarray enables high-throughput evaluation of DNA double-strand breaks and DNA repair inhibitors.

    PubMed

    Weingeist, David M; Ge, Jing; Wood, David K; Mutamba, James T; Huang, Qiuying; Rowland, Elizabeth A; Yaffe, Michael B; Floyd, Scott; Engelward, Bevin P

    2013-03-15

    A key modality of non-surgical cancer management is DNA damaging therapy that causes DNA double-strand breaks that are preferentially toxic to rapidly dividing cancer cells. Double-strand break repair capacity is recognized as an important mechanism in drug resistance and is therefore a potential target for adjuvant chemotherapy. Additionally, spontaneous and environmentally induced DSBs are known to promote cancer, making DSB evaluation important as a tool in epidemiology, clinical evaluation and in the development of novel pharmaceuticals. Currently available assays to detect double-strand breaks are limited in throughput and specificity and offer minimal information concerning the kinetics of repair. Here, we present the CometChip, a 96-well platform that enables assessment of double-strand break levels and repair capacity of multiple cell types and conditions in parallel and integrates with standard high-throughput screening and analysis technologies. We demonstrate the ability to detect multiple genetic deficiencies in double-strand break repair and evaluate a set of clinically relevant chemical inhibitors of one of the major double-strand break repair pathways, non-homologous end-joining. While other high-throughput repair assays measure residual damage or indirect markers of damage, the CometChip detects physical double-strand breaks, providing direct measurement of damage induction and repair capacity, which may be useful in developing and implementing treatment strategies with reduced side effects. PMID:23422001

  8. Single-cell microarray enables high-throughput evaluation of DNA double-strand breaks and DNA repair inhibitors

    PubMed Central

    Weingeist, David M.; Ge, Jing; Wood, David K.; Mutamba, James T.; Huang, Qiuying; Rowland, Elizabeth A.; Yaffe, Michael B.; Floyd, Scott; Engelward, Bevin P.

    2013-01-01

    A key modality of non-surgical cancer management is DNA damaging therapy that causes DNA double-strand breaks that are preferentially toxic to rapidly dividing cancer cells. Double-strand break repair capacity is recognized as an important mechanism in drug resistance and is therefore a potential target for adjuvant chemotherapy. Additionally, spontaneous and environmentally induced DSBs are known to promote cancer, making DSB evaluation important as a tool in epidemiology, clinical evaluation and in the development of novel pharmaceuticals. Currently available assays to detect double-strand breaks are limited in throughput and specificity and offer minimal information concerning the kinetics of repair. Here, we present the CometChip, a 96-well platform that enables assessment of double-strand break levels and repair capacity of multiple cell types and conditions in parallel and integrates with standard high-throughput screening and analysis technologies. We demonstrate the ability to detect multiple genetic deficiencies in double-strand break repair and evaluate a set of clinically relevant chemical inhibitors of one of the major double-strand break repair pathways, non-homologous end-joining. While other high-throughput repair assays measure residual damage or indirect markers of damage, the CometChip detects physical double-strand breaks, providing direct measurement of damage induction and repair capacity, which may be useful in developing and implementing treatment strategies with reduced side effects. PMID:23422001

  9. DNA transfer during laundering may yield complete genetic profiles.

    PubMed

    Noël, Sarah; Lagacé, Karine; Rogic, Anita; Granger, Dominic; Bourgoin, Sarah; Jolicoeur, Christine; Séguin, Diane

    2016-07-01

    In a number of child sexual abuse cases, the alleged perpetrator is a member of the nuclear family. In those cases, there is a possibility that the suspect's DNA was innocently deposited onto the child's clothing without acts of sexual assault ever occurring, for example via secondary transfer within the washing machine. To assess the quantity and quality of DNA that may be transferred among clothing during laundering, we conducted three series of experiments. First, we evaluated the level of spermatozoa that may be transferred by washing pristine pairs of underwear with bed sheets containing a varying number of ejaculates. Secondly, we explored whether current genetic methods may also detect the transfer of DNA from vaginal secretions during a machine wash. Finally, we analyzed the background levels of DNA on children's underwear collected from control families where sexual abuse never occurred. For both spermatozoa and vaginal secretions, we revealed that sufficient amounts of DNA may transfer onto laundered clothing to yield complete genetic profiles. Furthermore, DNA from relatives living within the same household was found in most cuttings taken from control children's underwear. Based on these findings, we present a framework for the handling and interpretation of intrafamilial sexual abuse cases. These suggestions should help determine whether DNA was deposited directly onto a fabric or merely transferred during a wash. PMID:27236542

  10. DNA damage profiles induced by sunlight at different latitudes.

    PubMed

    Schuch, André Passaglia; Yagura, Teiti; Makita, Kazuo; Yamamoto, Hiromasa; Schuch, Nelson Jorge; Agnez-Lima, Lucymara Fassarella; MacMahon, Ricardo Monreal; Menck, Carlos Frederico Martins

    2012-04-01

    Despite growing knowledge on the biological effects of ultraviolet (UV) radiation on human health and ecosystems, it is still difficult to predict the negative impacts of the increasing incidence of solar UV radiation in a scenario of global warming and climate changes. Hence, the development and application of DNA-based biological sensors to monitor the solar UV radiation under different environmental conditions is of increasing importance. With a mind to rendering a molecular view-point of the genotoxic impact of sunlight, field experiments were undertaken with a DNA-dosimeter system in parallel with physical photometry of solar UVB/UVA radiation, at various latitudes in South America. On applying biochemical and immunological approaches based on specific DNA-repair enzymes and antibodies, for evaluating sunlight-induced DNA damage profiles, it became clear that the genotoxic potential of sunlight does indeed vary according to latitude. Notwithstanding, while induction of oxidized DNA bases is directly dependent on an increase in latitude, the generation of 6-4PPs is inversely so, whereby the latter can be regarded as a biomolecular marker of UVB incidence. This molecular DNA lesion-pattern largely reflects the relative incidence of UVA and UVB energy at any specific latitude. Hereby is demonstrated the applicability of this DNA-based biosensor for additional, continuous field experiments, as a means of registering variations in the genotoxic impact of solar UV radiation. PMID:22674547

  11. Utilising the left-helical conformation of L-DNA for analysing different marker types on a single universal microarray platform

    PubMed Central

    Hauser, Nicole C.; Martinez, Rafael; Jacob, Anette; Rupp, Steffen; Hoheisel, Jörg D.; Matysiak, Stefan

    2006-01-01

    L-DNA is the perfect mirror-image form of the naturally occurring d-conformation of DNA. Therefore, L-DNA duplexes have the same physical characteristics in terms of solubility, duplex stability and selectivity as D-DNA but form a left-helical double-helix. Because of its chiral difference, L-DNA does not bind to its naturally occurring D-DNA counterpart, however. We analysed some of the properties that are typical for L-DNA. For all the differences, L-DNA is chemically compatible with the D-form of DNA, so that chimeric molecules can be synthesized. We take advantage of the characteristics of L-DNA toward the establishment of a universal microarray that permits the analysis of different kinds of molecular diagnostic information in a single experiment on a single platform, in various combinations. Typical results for the measurement of transcript level variations, genotypic differences and DNA–protein interactions are presented. However, on the basis of the characteristic features of L-DNA, also other applications of this molecule type are discussed. PMID:16990248

  12. Epigenetic Basis of Regeneration: Analysis of Genomic DNA Methylation Profiles in the MRL/MpJ Mouse

    PubMed Central

    Górnikiewicz, Bartosz; Ronowicz, Anna; Podolak, Justyna; Madanecki, Piotr; Stanisławska-Sachadyn, Anna; Sachadyn, PaweŁ

    2013-01-01

    Epigenetic regulation plays essential role in cell differentiation and dedifferentiation, which are the intrinsic processes involved in regeneration. To investigate the epigenetic basis of regeneration capacity, we choose DNA methylation as one of the most important epigenetic mechanisms and the MRL/MpJ mouse as a model of mammalian regeneration known to exhibit enhanced regeneration response in different organs. We report the comparative analysis of genomic DNA methylation profiles of the MRL/MpJ and the control C57BL/6J mouse. Methylated DNA immunoprecipitation followed by microarray analysis using the Nimblegen ‘3 × 720 K CpG Island Plus RefSeq Promoter’ platform was applied in order to carry out genome-wide DNA methylation profiling covering 20 404 promoter regions. We identified hundreds of hypo- and hypermethylated genes and CpG islands in the heart, liver, and spleen, and 37 of them in the three tissues. Decreased inter-tissue diversification and the shift of DNA methylation balance upstream the genes distinguish the genomic methylation patterns of the MRL/MpJ mouse from the C57BL/6J. Homeobox genes and a number of other genes involved in embryonic morphogenesis are significantly overrepresented among the genes hypomethylated in the MRL/MpJ mouse. These findings indicate that epigenetic patterning might be a likely molecular basis of regeneration capability in the MRL/MpJ mouse. PMID:23929942

  13. Machine learning-based receiver operating characteristic (ROC) curves for crisp and fuzzy classification of DNA microarrays in cancer research

    PubMed Central

    Peterson, Leif E.; Coleman, Matthew A.

    2008-01-01

    Receiver operating characteristic (ROC) curves were generated to obtain classification area under the curve (AUC) as a function of feature standardization, fuzzification, and sample size from nine large sets of cancer-related DNA microarrays. Classifiers used included k nearest neighbor (kNN), näive Bayes classifier (NBC), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), learning vector quantization (LVQ1), logistic regression (LOG), polytomous logistic regression (PLOG), artificial neural networks (ANN), particle swarm optimization (PSO), constricted particle swarm optimization (CPSO), kernel regression (RBF), radial basis function networks (RBFN), gradient descent support vector machines (SVMGD), and least squares support vector machines (SVMLS). For each data set, AUC was determined for a number of combinations of sample size, total sum[−log(p)] of feature t-tests, with and without feature standardization and with (fuzzy) and without (crisp) fuzzification of features. Altogether, a total of 2,123,530 classification runs were made. At the greatest level of sample size, ANN resulted in a fitted AUC of 90%, while PSO resulted in the lowest fitted AUC of 72.1%. AUC values derived from 4NN were the most dependent on sample size, while PSO was the least. ANN depended the most on total statistical significance of features used based on sum[−log(p)], whereas PSO was the least dependent. Standardization of features increased AUC by 8.1% for PSO and -0.2% for QDA, while fuzzification increased AUC by 9.4% for PSO and reduced AUC by 3.8% for QDA. AUC determination in planned microarray experiments without standardization and fuzzification of features will benefit the most if CPSO is used for lower levels of feature significance (i.e., sum[−log(p)] ~ 50) and ANN is used for greater levels of significance (i.e., sum[−log(p)] ~ 500). When only standardization of features is performed, studies are likely to benefit most by using CPSO for low

  14. Identification of key genes associated with gastric cancer based on DNA microarray data

    PubMed Central

    SUN, HUI

    2016-01-01

    The present study aimed to identify genes with a differential pattern of expression in gastric cancer (GC), and to find novel molecular biomarkers for GC diagnosis and therapeutic treatment. The gene expression profile of GSE19826, including 12 GC samples and 15 normal controls, was downloaded from the Gene Expression Omnibus database. Differentially-expressed genes (DEGs) were screened in the GC samples compared with the normal controls. Two-way hierarchical clustering of DEGs was performed to distinguish the normal controls from the GC samples. The co-expression coefficient was analyzed among the DEGs using the data from COXPRESdb. The gene co-expression network was constructed based on the DEGs using Cytoscape software, and modules in the network were analyzed by ClusterOne and Bingo. Furthermore, enrichment analysis of the DEGs in the modules was performed using the Database for Annotation, Visualization and Integrated Discovery. In total, 596 DEGs in the GC samples and 57 co-expression gene pairs were identified. A total of 7 genes were enriched in the same module, for which the function was phosphate transport and which was annotated to participate in the extracellular matrix-receptor interaction pathway. These genes were collagen, type VI, α3 (COL6A3), COL1A2, COL1A1, COL5A2, thrombospondin 2, COL11A1 and COL5A1. Overall, the present study identified several biomarkers for GC using the gene expression profiling of human GC samples. The COL family is a promising prognostic marker for GC. Gene expression products represent candidate biomarkers endowed with great potential for the early screening and therapy of GC patients. PMID:26870242

  15. Identification of Novel Protein–Ligand Interactions by Exon Microarray Analysis of Yeast Surface Displayed cDNA Library Selection Outputs

    PubMed Central

    Bidlingmaier, Scott; Liu, Bin

    2016-01-01

    Yeast surface display is widely utilized to screen large libraries for proteins or protein fragments with specific binding properties. We have previously constructed and utilized yeast surface displayed human cDNA libraries to identify protein fragments that bind to various target ligands. Conventional approaches employ monoclonal screening and sequencing of polyclonal outputs that have been enriched for binding to a target molecule by several rounds of affinity-based selection. Frequently, a small number of clones will dominate the selection output, making it difficult to comprehensively identify potentially important interactions due to low representation in the selection output. We have developed a novel method to address this problem. By analyzing selection outputs using high-density human exon microarrays, the full potential of selection output diversity can be revealed in one experiment. FACS-based selection using yeast surface displayed human cDNA libraries combined with exon microarray analysis of the selection outputs is a powerful way of rapidly identifying protein fragments with affinity for any soluble ligand that can be fluorescently detected, including small biological molecules and drugs. In this report we present protocols for exon microarray-based analysis of yeast surface display human cDNA library selection outputs. PMID:26060075

  16. Verifying likelihoods for low template DNA profiles using multiple replicates

    PubMed Central

    Steele, Christopher D.; Greenhalgh, Matthew; Balding, David J.

    2014-01-01

    To date there is no generally accepted method to test the validity of algorithms used to compute likelihood ratios (LR) evaluating forensic DNA profiles from low-template and/or degraded samples. An upper bound on the LR is provided by the inverse of the match probability, which is the usual measure of weight of evidence for standard DNA profiles not subject to the stochastic effects that are the hallmark of low-template profiles. However, even for low-template profiles the LR in favour of a true prosecution hypothesis should approach this bound as the number of profiling replicates increases, provided that the queried contributor is the major contributor. Moreover, for sufficiently many replicates the standard LR for mixtures is often surpassed by the low-template LR. It follows that multiple LTDNA replicates can provide stronger evidence for a contributor to a mixture than a standard analysis of a good-quality profile. Here, we examine the performance of the likeLTD software for up to eight replicate profiling runs. We consider simulated and laboratory-generated replicates as well as resampling replicates from a real crime case. We show that LRs generated by likeLTD usually do exceed the mixture LR given sufficient replicates, are bounded above by the inverse match probability and do approach this bound closely when this is expected. We also show good performance of likeLTD even when a large majority of alleles are designated as uncertain, and suggest that there can be advantages to using different profiling sensitivities for different replicates. Overall, our results support both the validity of the underlying mathematical model and its correct implementation in the likeLTD software. PMID:25082140

  17. Verifying likelihoods for low template DNA profiles using multiple replicates.

    PubMed

    Steele, Christopher D; Greenhalgh, Matthew; Balding, David J

    2014-11-01

    To date there is no generally accepted method to test the validity of algorithms used to compute likelihood ratios (LR) evaluating forensic DNA profiles from low-template and/or degraded samples. An upper bound on the LR is provided by the inverse of the match probability, which is the usual measure of weight of evidence for standard DNA profiles not subject to the stochastic effects that are the hallmark of low-template profiles. However, even for low-template profiles the LR in favour of a true prosecution hypothesis should approach this bound as the number of profiling replicates increases, provided that the queried contributor is the major contributor. Moreover, for sufficiently many replicates the standard LR for mixtures is often surpassed by the low-template LR. It follows that multiple LTDNA replicates can provide stronger evidence for a contributor to a mixture than a standard analysis of a good-quality profile. Here, we examine the performance of the likeLTD software for up to eight replicate profiling runs. We consider simulated and laboratory-generated replicates as well as resampling replicates from a real crime case. We show that LRs generated by likeLTD usually do exceed the mixture LR given sufficient replicates, are bounded above by the inverse match probability and do approach this bound closely when this is expected. We also show good performance of likeLTD even when a large majority of alleles are designated as uncertain, and suggest that there can be advantages to using different profiling sensitivities for different replicates. Overall, our results support both the validity of the underlying mathematical model and its correct implementation in the likeLTD software. PMID:25082140

  18. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays

    PubMed Central

    Aryee, Martin J.; Jaffe, Andrew E.; Corrada-Bravo, Hector; Ladd-Acosta, Christine; Feinberg, Andrew P.; Hansen, Kasper D.; Irizarry, Rafael A.

    2014-01-01

    Motivation: The recently released Infinium HumanMethylation450 array (the ‘450k’ array) provides a high-throughput assay to quantify DNA methylation (DNAm) at ∼450 000 loci across a range of genomic features. Although less comprehensive than high-throughput sequencing-based techniques, this product is more cost-effective and promises to be the most widely used DNAm high-throughput measurement technology over the next several years. Results: Here we describe a suite of computational tools that incorporate state-of-the-art statistical techniques for the analysis of DNAm data. The software is structured to easily adapt to future versions of the technology. We include methods for preprocessing, quality assessment and detection of differentially methylated regions from the kilobase to the megabase scale. We show how our software provides a powerful and flexible development platform for future methods. We also illustrate how our methods empower the technology to make discoveries previously thought to be possible only with sequencing-based methods. Availability and implementation: http://bioconductor.org/packages/release/bioc/html/minfi.html. Contact: khansen@jhsph.edu; rafa@jimmy.harvard.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24478339

  19. Identifying molecular subtypes in human colon cancer using gene expression and DNA methylation microarray data

    PubMed Central

    REN, ZHONGLU; WANG, WENHUI; LI, JINMING

    2016-01-01

    Identifying colon cancer subtypes based on molecular signatures may allow for a more rational, patient-specific approach to therapy in the future. Classifications using gene expression data have been attempted before with little concordance between the different studies carried out. In this study we aimed to uncover subtypes of colon cancer that have distinct biological characteristics and identify a set of novel biomarkers which could best reflect the clinical and/or biological characteristics of each subtype. Clustering analysis and discriminant analysis were utilized to discover the subtypes in two different molecular levels on 153 colon cancer samples from The Cancer Genome Atlas (TCGA) Data Portal. At gene expression level, we identified two major subtypes, ECL1 (expression cluster 1) and ECL2 (expression cluster 2) and a list of signature genes. Due to the heterogeneity of colon cancer, the subtype ECL1 can be further subdivided into three nested subclasses, and HOTAIR were found upregulated in subclass 2. At DNA methylation level, we uncovered three major subtypes, MCL1 (methylation cluster 1), MCL2 (methylation cluster 2) and MCL3 (methylation cluster 3). We found only three subtypes of CpG island methylator phenotype (CIMP) in colon cancer instead of the four subtypes in the previous reports, and we found no sufficient evidence to subdivide MCL3 into two distinct subgroups. PMID:26647925

  20. DNA Microarray-Based Identification of Genes Regulated by NtrC in Bradyrhizobium japonicum

    PubMed Central

    Franck, William L.; Qiu, Jing; Lee, Hae-In; Stacey, Gary

    2015-01-01

    The Bradyrhizobium japonicum NtrBC two-component system is a critical regulator of cellular nitrogen metabolism, including the acquisition and catabolism of nitrogenous compounds. To better define the roles of this system, genome-wide transcriptional profiling was performed to identify the NtrC regulon during the response to nitrogen limitation. Upon cells perceiving low intracellular nitrogen, they stimulate the phosphorylation of NtrC, which induces genes responsible for alteration of the core glutamine synthetase/glutamate synthase nitrogen assimilation pathway, including the genes for the glutamine synthetases and PII proteins. In addition, genes responsible for the import and utilization of multiple nitrogen sources, specifically nitrate and nitrite, were upregulated by NtrC activation. Mutational analysis of a candidate nitrite reductase revealed a role for NtrC in regulating the assimilation of nitrite, since mutations in both ntrC and the gene encoding the candidate nitrite reductase abolished the ability to grow on nitrite as a sole nitrogen source. PMID:26025905

  1. An annotated cDNA library and microarray for large-scale gene-expression studies in the ant Solenopsis invicta

    PubMed Central

    Wang, John; Jemielity, Stephanie; Uva, Paolo; Wurm, Yannick; Gräff, Johannes; Keller, Laurent

    2007-01-01

    Ants display a range of fascinating behaviors, a remarkable level of intra-species phenotypic plasticity and many other interesting characteristics. Here we present a new tool to study the molecular mechanisms underlying these traits: a tentatively annotated expressed sequence tag (EST) resource for the fire ant Solenopsis invicta. From a normalized cDNA library we obtained 21,715 ESTs, which represent 11,864 putatively different transcripts with very diverse molecular functions. All ESTs were used to construct a cDNA microarray. PMID:17224046

  2. Metabolic parameters linked by Phenotype MicroArray to acid resistance profiles of poultry-associated Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenotype microarrays were analyzed for 51 datasets derived from Salmonella enterica. The top 4 serovars associated with poultry products and one associated with turkey, respectively Typhimurium, Enteritidis, Heidelberg, Infantis and Senftenberg, were represented. Datasets were clustered into two ...

  3. Discovering Hidden Connections among Diseases, Genes and Drugs Based on Microarray Expression Profiles with Negative-Term Filtering

    PubMed Central

    2014-01-01

    Microarrays based on gene expression profiles (GEPs) can be tailored specifically for a variety of topics to provide a precise and efficient means with which to discover hidden information. This study proposes a novel means of employing existing GEPs to reveal hidden relationships among diseases, genes, and drugs within a rich biomedical database, PubMed. Unlike the co-occurrence method, which considers only the appearance of keywords, the proposed method also takes into account negative relationships and non-relationships among keywords, the importance of which has been demonstrated in previous studies. Three scenarios were conducted to verify the efficacy of the proposed method. In Scenario 1, disease and drug GEPs (disease: lymphoma cancer, lymph node cancer, and drug: cyclophosphamide) were used to obtain lists of disease- and drug-related genes. Fifteen hidden connections were identified between the diseases and the drug. In Scenario 2, we adopted different diseases and drug GEPs (disease: AML-ALL dataset and drug: Gefitinib) to obtain lists of important diseases and drug-related genes. In this case, ten hidden connections were identified. In Scenario 3, we obtained a list of disease-related genes from the disease-related GEP (liver cancer) and the drug (Capecitabine) on the PharmGKB website, resulting in twenty-two hidden connections. Experimental results demonstrate the efficacy of the proposed method in uncovering hidden connections among diseases, genes, and drugs. Following implementation of the weight function in the proposed method, a large number of the documents obtained in each of the scenarios were judged to be related: 834 of 4028 documents, 789 of 1216 documents, and 1928 of 3791 documents in Scenarios 1, 2, and 3, respectively. The negative-term filtering scheme also uncovered a large number of negative relationships as well as non-relationships among these connections: 97 of 834, 38 of 789, and 202 of 1928 in Scenarios 1, 2, and 3, respectively

  4. Endocrine-disrupting potentials of equine estrogens equilin, equilenin, and their metabolites, in the medaka Oryzias latipes: in silico and DNA microarray studies.

    PubMed

    Uchida, Masaya; Ishibashi, Hiroshi; Yamamoto, Ryoko; Koyanagi, Akiko; Kusano, Teruhiko; Tominaga, Nobuaki; Ishibashi, Yasuhiro; Arizono, Koji

    2015-09-01

    Although several previous studies have demonstrated the presence of equine estrogens in the aquatic environment, limited data are currently available on the endocrine-disrupting potentials in fish and the risks they pose to aquatic organisms. To investigate the interactions of major equine estrogens equilin (Eq) and equilenin (Eqn), as well as their metabolites 17α-dihydroequilin, 17β-dihydroequilin, 17α-dihydroequilenin and 17β-dihydroequilenin, with the estrogen receptor α (ERα) of medaka (Oryzias latipes), a three-dimensional model of the ligand-binding domain (LBD) of ERα was built in silico, and docking simulations were performed. The docking simulation analysis indicated that the interaction of 17β-dihydroequilenin with the ERα LBD is the most potent, followed by those of 17α-dihydroequilin and 17β-dihydroequilin, whereas those of Eq and Eqn were least potent. We further analyzed gene expression profiles in the livers of male medaka exposed to Eq and Eqn. A DNA microarray representing 6000 genes revealed that 24-h exposure to Eq and Eqn (100 ng/L) upregulated the expression of 6 and 34 genes in the livers of males, respectively. Genes upregulated by Eq included the estrogenic biomarker genes vitellogenins and choriogenins, suggesting the estrogenic potential of Eq. In contrast, Eqn exposure upregulated several cancer-related genes, such as mediator complex subunit 16 and RAS oncogene family members, suggesting a carcinogenic potential for Eqn. These results suggest that equine estrogens may have not only endocrine-disrupting potentials via the ERα signaling pathway but also carcinogenic potency in male medaka. PMID:25611945

  5. Identification of Transcriptional Factors and Key Genes in Primary Osteoporosis by DNA Microarray

    PubMed Central

    Xie, Wengui; Ji, Lixin; Zhao, Teng; Gao, Pengfei

    2015-01-01

    Background A number of genes have been identified to be related with primary osteoporosis while less is known about the comprehensive interactions between regulating genes and proteins. We aimed to identify the differentially expressed genes (DEGs) and regulatory effects of transcription factors (TFs) involved in primary osteoporosis. Material/Methods The gene expression profile GSE35958 was obtained from Gene Expression Omnibus database, including 5 primary osteoporosis and 4 normal bone tissues. The differentially expressed genes between primary osteoporosis and normal bone tissues were identified by the same package in R language. The TFs of these DEGs were predicted with the Essaghir A method. DAVID (The Database for Annotation, Visualization and Integrated Discovery) was applied to perform the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of DEGs. After analyzing regulatory effects, a regulatory network was built between TFs and the related DEGs. Results A total of 579 DEGs was screened, including 310 up-regulated genes and 269 down-regulated genes in primary osteoporosis samples. In GO terms, more up-regulated genes were enriched in transcription regulator activity, and secondly in transcription factor activity. A total 10 significant pathways were enriched in KEGG analysis, including colorectal cancer, Wnt signaling pathway, Focal adhesion, and MAPK signaling pathway. Moreover, total 7 TFs were enriched, of which CTNNB1, SP1, and TP53 regulated most up-regulated DEGs. Conclusions The discovery of the enriched TFs might contribute to the understanding of the mechanism of primary osteoporosis. Further research on genes and TFs related to the WNT signaling pathway and MAPK pathway is urgent for clinical diagnosis and directing treatment of primary osteoporosis. PMID:25957414

  6. DNA microarray analysis identifies CKS2 and LEPR as potential markers of meningioma recurrence.

    PubMed

    Menghi, Francesca; Orzan, Francesca N; Eoli, Marica; Farinotti, Mariangela; Maderna, Emanuela; Pisati, Federica; Bianchessi, Donatella; Valletta, Lorella; Lodrini, Sandro; Galli, Giuseppe; Anghileri, Elena; Pellegatta, Serena; Pollo, Bianca; Finocchiaro, Gaetano

    2011-01-01

    Meningiomas are the most frequent intracranial tumors. Surgery can be curative, but recurrences are possible. We performed gene expression analyses and loss of heterozygosity (LOH) studies looking for new markers predicting the recurrence risk. We analyzed expression profiles of 23 meningiomas (10 grade I, 10 grade II, and 3 grade III) and validated the data using quantitative polymerase chain reaction (qPCR). We performed LOH analysis on 40 meningiomas, investigating chromosomal regions on 1p, 9p, 10q, 14q, and 22q. We found 233 and 268 probe sets to be significantly down- and upregulated, respectively, in grade II or III meningiomas. Genes downregulated in high-grade meningiomas were overrepresented on chromosomes 1, 6, 9, 10, and 14. Based on functional enrichment analysis, we selected LIM domain and actin binding 1 (LIMA1), tissue inhibitor of metalloproteinases 3 (TIMP3), cyclin-dependent kinases regulatory subunit 2 (CKS2), leptin receptor (LEPR), and baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) for validation using qPCR and confirmed their differential expression in the two groups of tumors. We calculated ΔCt values of CKS2 and LEPR and found that their differential expression (C-L index) was significantly higher in grade I than in grade II or III meningiomas (p < .0001). Interestingly, the C-L index of nine grade I meningiomas from patients who relapsed in <5 years was significantly lower than in grade I meningiomas from patients who did not relapse. These findings indicate that the C-L index may be relevant to define the progression risk in meningioma patients, helping guide their clinical management. A prospective analysis on a larger number of cases is warranted. PMID:21948653

  7. Identification of candidate target genes of pituitary adenomas based on the DNA microarray.

    PubMed

    Zhou, Wei; Ma, Chun-Xiao; Xing, Ya-Zhou; Yan, Zhao-Yue

    2016-03-01

    The present study aimed to explore molecular mechanisms involved in pituitary adenomas (PAs) and to discover target genes for their treatment. The gene expression profile GSE4488 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using the Limma package and analyzed by two‑dimensional hierarchical clustering. Gene ontology (GO) and pathway enrichment analyses were performed in order to investigate the functions of DEGs. Subsequently, the protein‑protein interaction (PPI) network was constructed using Cytoscape software. DEGs were then mapped to the connectivity map database to identify molecular agents associated with the underlying mechanisms of PAs. A total of 340 upregulated and 49 downregulated DEGs in PA samples compared with those in normal controls were identified. Hierarchical clustering analysis showed that DEGs were highly differentially expressed, indicating their aptness for distinguishing PA samples from normal controls. Significant gene ontology terms were positive regulation of immune system-associated processes for downregulated DEGs and skeletal system development for upregulated DEGs. Pathways significantly enriched by DEGs included extracellular matrix (ECM)‑receptor interaction, the Hedgehog (Hh) signaling pathway and neuroactive ligand‑receptor interaction. The PPI network was constructed with 117 nodes, 123 edges and CD44 and Gli2 as hub nodes. Furthermore, depudecin, a small molecule drug, was identified to be mechanistically associated with PA. The genes CD44 and Gli2 have important roles in the progression of PAs via ECM‑receptor interaction and the Hh signaling pathway and are therefore potential target genes of PA. In addition, depudecin may be a candidate drug for the treatment of PAs. PMID:26782791

  8. Screening of differentially expressed genes associated with human glioblastoma and functional analysis using a DNA microarray.

    PubMed

    Wang, Lina; Wei, Bo; Hu, Guozhang; Wang, Le; Bi, Miaomiao; Sun, Zhigang; Jin, Ying

    2015-08-01

    Glioblastoma multiforme (GBM) is the most malignant type of human glioma, and has a poor prognosis. Screening differentially expressed genes (DEGs) in brain tumor samples and normal brain samples is of importance for identifying GBM and to design specific-targeting drugs. The transcriptional profile of GSE30563, containing three genechips of brain tumor samples and three genechips of normal brain samples, was downloaded from Gene Expression Omnibus to identify the DEGs. The differences in the expression of the DEGs in the two different samples were compared through hierarchical biclustering. The co-expression coefficient of the DEGs was calculated using the information from COXPRESdb, the network of the DEGs was constructed and functional enrichment and pathway analysis were performed. Finally, the transcription factors of important DEGs were predicted. A total of 1,006 DEGs, including 368 upregulated and 638 downregulated DEGs, were identified. A close correlation was demonstrated between six important genes, associated with immune response, HLA-DQB1, HLA-DRB1, HLA-DPA1, HLA-B, HLA-DMA and HLA-DRA, and the immune response. Allograft rejection was selected as the most significant pathway. A total of 17 transcription factors, including nuclear factor (NF)-κB and NF-κB1, and their binding sites containing these six DEGs, were also identified. The DEGs, including major histocompatibility complex (MHC) class II, DQβ1, MHC class II, DRβ1, MHC class IB, MHC class II, DMα, MHC class II, DPα1, MHC class II, DRα, may provide novel targets for the diagnosis and treatment of GBM. The transcription factors of these six genes and their binding sites may also provide evidence and direction for identifying target-specific drugs. PMID:25901754

  9. A description of the origins, design and performance of the TRAITS–SGP Atlantic salmon Salmo salar L. cDNA microarray

    PubMed Central

    Taggart, J B; Bron, J E; Martin, S A M; Seear, P J; Høyheim, B; Talbot, R; Carmichael, S N; Villeneuve, L A N; Sweeney, G E; Houlihan, D F; Secombes, C J; Tocher, D R; Teale, A J

    2008-01-01

    The origins, design, fabrication and performance of an Atlantic salmon microarray are described. The microarray comprises 16 950 Atlantic salmon-derived cDNA features, printed in duplicate and mostly sourced from pre-existing expressed sequence tag (EST) collections [SALGENE and salmon genome project (SGP)] but also supplemented with cDNAs from suppression subtractive hybridization libraries and candidate genes involved in immune response, protein catabolism, lipid metabolism and the parr–smolt transformation. A preliminary analysis of a dietary lipid experiment identified a number of genes known to be involved in lipid metabolism. Significant fold change differences (as low as 1·2×) were apparent from the microarray analysis and were confirmed by quantitative real-time polymerase chain reaction analysis. The study also highlighted the potential for obtaining artefactual expression patterns as a result of cross-hybridization of similar transcripts. Examination of the robustness and sensitivity of the experimental design employed demonstrated the greater importance of biological replication over technical (dye flip) replication for identification of a limited number of key genes in the studied system. The TRAITS (TRanscriptome Analysis of Important Traits of Salmon)–salmon genome project microarray has been proven, in a number of studies, to be a powerful tool for the study of key traits of Atlantic salmon biology. It is now available for use by researchers in the wider scientific community. PMID:19125201

  10. Matrix formulation of a universal microbial transcript profiling system

    SciTech Connect

    Fitch, J P; Ng, J; Sokhansanj, B A

    2000-11-01

    DNA chips and microarrays are used to profile gene transcription. Unfortunately, the initial fabrication cost for a chip and the reagent costs to amplify thousands of open reading frames for a microarray are over $100K for a typical 4 Mbase bacterial genome. To avoid these expensive steps, a matrix formulation of a universal hybrid chip-microarray approach to transcript profiling is demonstrated for synthetic data. Initial considerations for application to the 4.3 Mbase bacterium Yersinia pestis are also presented. This approach can be applied to arbitrary bacteria by recalculating a matrix and pseudoinverse. This approach avoids the large upfront expenses associated with DNA chips and microarrays.

  11. Quantitative multiplex quantum dot in-situ hybridisation based gene expression profiling in tissue microarrays identifies prognostic genes in acute myeloid leukaemia

    SciTech Connect

    Tholouli, Eleni; MacDermott, Sarah; Hoyland, Judith; Yin, John Liu; Byers, Richard

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Development of a quantitative high throughput in situ expression profiling method. Black-Right-Pointing-Pointer Application to a tissue microarray of 242 AML bone marrow samples. Black-Right-Pointing-Pointer Identification of HOXA4, HOXA9, Meis1 and DNMT3A as prognostic markers in AML. -- Abstract: Measurement and validation of microarray gene signatures in routine clinical samples is problematic and a rate limiting step in translational research. In order to facilitate measurement of microarray identified gene signatures in routine clinical tissue a novel method combining quantum dot based oligonucleotide in situ hybridisation (QD-ISH) and post-hybridisation spectral image analysis was used for multiplex in-situ transcript detection in archival bone marrow trephine samples from patients with acute myeloid leukaemia (AML). Tissue-microarrays were prepared into which white cell pellets were spiked as a standard. Tissue microarrays were made using routinely processed bone marrow trephines from 242 patients with AML. QD-ISH was performed for six candidate prognostic genes using triplex QD-ISH for DNMT1, DNMT3A, DNMT3B, and for HOXA4, HOXA9, Meis1. Scrambled oligonucleotides were used to correct for background staining followed by normalisation of expression against the expression values for the white cell pellet standard. Survival analysis demonstrated that low expression of HOXA4 was associated with poorer overall survival (p = 0.009), whilst high expression of HOXA9 (p < 0.0001), Meis1 (p = 0.005) and DNMT3A (p = 0.04) were associated with early treatment failure. These results demonstrate application of a standardised, quantitative multiplex QD-ISH method for identification of prognostic markers in formalin-fixed paraffin-embedded clinical samples, facilitating measurement of gene expression signatures in routine clinical samples.

  12. Choice of population database for forensic DNA profile analysis.

    PubMed

    Steele, Christopher D; Balding, David J

    2014-12-01

    When evaluating the weight of evidence (WoE) for an individual to be a contributor to a DNA sample, an allele frequency database is required. The allele frequencies are needed to inform about genotype probabilities for unknown contributors of DNA to the sample. Typically databases are available from several populations, and a common practice is to evaluate the WoE using each available database for each unknown contributor. Often the most conservative WoE (most favourable to the defence) is the one reported to the court. However the number of human populations that could be considered is essentially unlimited and the number of contributors to a sample can be large, making it impractical to perform every possible WoE calculation, particularly for complex crime scene profiles. We propose instead the use of only the database that best matches the ancestry of the queried contributor, together with a substantial FST adjustment. To investigate the degree of conservativeness of this approach, we performed extensive simulations of one- and two-contributor crime scene profiles, in the latter case with, and without, the profile of the second contributor available for the analysis. The genotypes were simulated using five population databases, which were also available for the analysis, and evaluations of WoE using our heuristic rule were compared with several alternative calculations using different databases. Using FST=0.03, we found that our heuristic gave WoE more favourable to the defence than alternative calculations in well over 99% of the comparisons we considered; on average the difference in WoE was just under 0.2 bans (orders of magnitude) per locus. The degree of conservativeness of the heuristic rule can be adjusted through the FST value. We propose the use of this heuristic for DNA profile WoE calculations, due to its ease of implementation, and efficient use of the evidence while allowing a flexible degree of conservativeness. PMID:25498938

  13. Cell-Based Microarrays for In Vitro Toxicology

    NASA Astrophysics Data System (ADS)

    Wegener, Joachim

    2015-07-01

    DNA/RNA and protein microarrays have proven their outstanding bioanalytical performance throughout the past decades, given the unprecedented level of parallelization by which molecular recognition assays can be performed and analyzed. Cell microarrays (CMAs) make use of similar construction principles. They are applied to profile a given cell population with respect to the expression of specific molecular markers and also to measure functional cell responses to drugs and chemicals. This review focuses on the use of cell-based microarrays for assessing the cytotoxicity of drugs, toxins, or chemicals in general. It also summarizes CMA construction principles with respect to the cell types that are used for such microarrays, the readout parameters to assess toxicity, and the various formats that have been established and applied. The review ends with a critical comparison of CMAs and well-established microtiter plate (MTP) approaches.

  14. Cell-Based Microarrays for In Vitro Toxicology.

    PubMed

    Wegener, Joachim

    2015-01-01

    DNA/RNA and protein microarrays have proven their outstanding bioanalytical performance throughout the past decades, given the unprecedented level of parallelization by which molecular recognition assays can be performed and analyzed. Cell microarrays (CMAs) make use of similar construction principles. They are applied to profile a given cell population with respect to the expression of specific molecular markers and also to measure functional cell responses to drugs and chemicals. This review focuses on the use of cell-based microarrays for assessing the cytotoxicity of drugs, toxins, or chemicals in general. It also summarizes CMA construction principles with respect to the cell types that are used for such microarrays, the readout parameters to assess toxicity, and the various formats that have been established and applied. The review ends with a critical comparison of CMAs and well-established microtiter plate (MTP) approaches. PMID:26077916

  15. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparison with Other Methods

    SciTech Connect

    Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy; Zhou, Jizhong

    2010-05-17

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the average nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.

  16. Development of a DNA Microarray Method for Detection and Identification of All 15 Distinct O-Antigen Forms of Legionella pneumophila

    PubMed Central

    Cao, Boyang; Yao, Fangfang; Liu, Xiangqian; Feng, Lu

    2013-01-01

    Legionella is ubiquitous in many environments. At least 50 species and 70 serogroups of the Gram-negative bacterium have been identified. Of the 50 species, 20 are pathogenic, and Legionella pneumophila is responsible for the great majority (approximately 90%) of the Legionnaires' disease cases that occur. Furthermore, of the 15 L. pneumophila serogroups identified, O1 alone causes more than 84% of the Legionnaires' disease cases that occur worldwide. Rapid and reliable assays for the detection and identification of L. pneumophila in water, environmental, and clinical samples are in great demand. L. pneumophila bacteria are traditionally identified by their O antigens by immunological methods. We have recently developed an O serogroup-specific DNA microarray for the detection of all 15 distinct O-antigen forms of L. pneumophila, including serogroups O1 to O15. A total of 35 strains were used to verify the specificity of the microarray, including 15 L. pneumophila O-antigen standard reference strains and seven L. pneumophila clinical isolates as target strains, seven reference strains of other non-pneumophila Legionella species as closely related strains, and six non-Legionella bacterial species as nonrelated strains. The detection sensitivity was 1 ng of genomic DNA or 0.4 CFU/ml in water samples with filter enrichment and plate culturing. This study demonstrated that the microarray allows specific, sensitive, and reproducible detection of L. pneumophila serogroups. To the best of our knowledge, this is the first report of a microarray serotyping method for all 15 distinct O-antigen forms of L. pneumophila. PMID:23974134

  17. Global DNA methylation profiling technologies and the ovarian cancer methylome.

    PubMed

    Tang, Jessica; Fang, Fang; Miller, Dave F; Pilrose, Jay M; Matei, Daniela; Huang, Tim Hui-Ming; Nephew, Kenneth P

    2015-01-01

    Cytosine methylation in DNA constitutes an important epigenetic layer of transcriptional and regulatory control in many eukaryotes. Profiling DNA methylation across the genome is critical to understanding the influence of epigenetics in normal biology and disease, such as cancer. Genome-wide analyses such as arrays and next-generation sequencing (NGS) technologies have been used to assess large fractions of the methylome at a single-base-pair resolution. However, the range of DNA methylation profiling techniques can make selecting the appropriate protocol a challenge. This chapter discusses the advantages and disadvantages of various methylome detection approaches to assess which is appropriate for the question at hand. Here, we focus on four prominent genome-wide approaches: whole-genome bisulfite sequencing (WGBS); methyl-binding domain capture sequencing (MBDCap-Seq); reduced-representation-bisulfite-sequencing (RRBS); and Infinium Methylation450 BeadChips (450 K, Illumina). We discuss some of the requirements, merits, and challenges that should be considered when choosing a methylome technology to ensure that it will be informative. In addition, we show how genome-wide methylation detection arrays and high-throughput sequencing have provided immense insight into ovarian cancer-specific methylation signatures that may serve as diagnostic biomarkers or predict patient response to epigenetic therapy. PMID:25421685

  18. Multiplex single-molecule interaction profiling of DNA barcoded proteins

    PubMed Central

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E.; Vidal, Marc; Church, George M.

    2014-01-01

    In contrast with advances in massively parallel DNA sequencing1, high-throughput protein analyses2-4 are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule (SM) protein detection achieved using optical methods5 is limited by the number of spectrally nonoverlapping chromophores. Here, we introduce a single molecular interaction-sequencing (SMI-Seq) technology for parallel protein interaction profiling leveraging SM advantages. DNA barcodes are attached to proteins collectively via ribosome display6 or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide (PAA) thin film to construct a random SM array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies)7 and analyzed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimeter. Furthermore, protein interactions can be measured based on the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor (GPCR) and antibody binding profiling, were demonstrated. SMI-Seq enables “library vs. library” screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity. PMID:25252978

  19. Genomic profiling reveals extensive heterogeneity in somatic DNA copy number aberrations of canine hemangiosarcoma.

    PubMed

    Thomas, Rachael; Borst, Luke; Rotroff, Daniel; Motsinger-Reif, Alison; Lindblad-Toh, Kerstin; Modiano, Jaime F; Breen, Matthew

    2014-09-01

    Canine hemangiosarcoma is a highly aggressive vascular neoplasm associated with extensive clinical and anatomical heterogeneity and a grave prognosis. Comprehensive molecular characterization of hemangiosarcoma may identify novel therapeutic targets and advanced clinical management strategies, but there are no published reports of tumor-associated genome instability and disrupted gene dosage in this cancer. We performed genome-wide microarray-based somatic DNA copy number profiling of 75 primary intra-abdominal hemangiosarcomas from five popular dog breeds that are highly predisposed to this disease. The cohort exhibited limited global genomic instability, compared to other canine sarcomas studied to date, and DNA copy number aberrations (CNAs) were predominantly of low amplitude. Recurrent imbalances of several key cancer-associated genes were evident; however, the global penetrance of any single CNA was low and no distinct hallmark aberrations were evident. Copy number gains of dog chromosomes 13, 24, and 31, and loss of chromosome 16, were the most recurrent CNAs involving large chromosome regions, but their relative distribution within and between cases suggests they most likely represent passenger aberrations. CNAs involving CDKN2A, VEGFA, and the SKI oncogene were identified as potential driver aberrations of hemangiosarcoma development, highlighting potential targets for therapeutic modulation. CNA profiles were broadly conserved between the five breeds, although subregional variation was evident, including a near twofold lower incidence of VEGFA gain in Golden Retrievers versus other breeds (22 versus 40 %). These observations support prior transcriptional studies suggesting that the clinical heterogeneity of this cancer may reflect the existence of multiple, molecularly distinct subtypes of canine hemangiosarcoma. PMID:24599718

  20. Simulated radioactive decontamination of biological samples using a portable DNA extraction instrument for rapid DNA profiling.

    PubMed

    Frégeau, Chantal J; Dalpé, Claude

    2016-02-01

    A portable DNA extraction instrument was evaluated for its ability to decontaminate blood and sali