Science.gov

Sample records for dna restriction fragment

  1. Changes in restricted human cellular DNA fragments containing globin gene sequences in thalassemias and related disorders

    PubMed Central

    Mears, J. Gregory; Ramirez, Francesco; Leibowitz, David; Nakamura, Frank; Bloom, Arthur; Konotey-Ahulu, Felix; Bank, Arthur

    1978-01-01

    Human cellular DNA fragments from cells of normal subjects and patients with thalassemia obtained by restriction enzyme digestion were analyzed for their globin gene content. The fragments were separated on agarose gels, transferred to nitrocellulose filters, hybridized to globin [32P]cDNA, and radioautographed. One to ten picograms of globin gene sequences were detectable. With EcoRI digestion, eight to nine cellular DNA fragments were found to contain globin genes. Three of these contained β-like gene sequences assayed with β globin cDNA probe. One β-like fragment was absent in DNA from a homozygous subject for hemoglobin Lepore. Two of the three β gene-containing fragments present in normal DNA were absent in DNA from a patient with hereditary persistence of fetal hemoglobin. The same two fragments containing β-like genes were absent from δβ thalassemic DNA and one new fragment containing β-like genes was found. Together with results obtained by hybridization of these DNAs in solution, the data are consistent with deletion of specific restriction human DNA fragments in subjects with these disorders and a greater deletion of β-like gene sequences in subjects with hereditary persistence of fetal hemoglobin than in those with δβ thalassemia. Images PMID:274714

  2. Methods for producing partially digested restriction DNA fragments and for producing a partially modified PCR product

    DOEpatents

    Wong, Kwong-Kwok

    2000-01-01

    The present invention is an improved method of making a partially modified PCR product from a DNA fragment with a polymerase chain reaction (PCR). In a standard PCR process, the DNA fragment is combined with starting deoxynucleoside triphosphates, a primer, a buffer and a DNA polymerase in a PCR mixture. The PCR mixture is then reacted in the PCR producing copies of the DNA fragment. The improvement of the present invention is adding an amount of a modifier at any step prior to completion of the PCR process thereby randomly and partially modifying the copies of the DNA fragment as a partially modified PCR product. The partially modified PCR product may then be digested with an enzyme that cuts the partially modified PCR product at unmodified sites thereby producing an array of DNA restriction fragments.

  3. Nondetectability of restriction fragments and independence of DNA fragment sizes within and between loci in RFLP typing of DNA.

    PubMed Central

    Chakraborty, R.; Zhong, Y.; Jin, L.; Budowle, B.

    1994-01-01

    We provide experimental evidence showing that, during the restriction-enzyme digestion of DNA samples, some of the HaeIII-digested DNA fragments are small enough to prevent their reliable sizing on a Southern gel. As a result of such nondetectability of DNA fragments, individuals who show a single-band DNA profile at a VNTR locus may not necessarily be true homozygotes. In a population database, when the presence of such nondetectable alleles is ignored, we show that a pseudodependence of alleles within as well as across loci may occur. Using a known statistical method, under the hypothesis of independence of alleles within loci, we derive an efficient estimate of null allele frequency, which may be subsequently used for testing allelic independence within and across loci. The estimates of null allele frequencies, thus derived, are shown to agree with direct experimental data on the frequencies of HaeIII-null alleles. Incorporation of null alleles into the analysis of the forensic VNTR database suggests that the assumptions of allelic independence within and between loci are appropriate. In contrast, a failure to incorporate the occurrence of null alleles would provide a wrong inference regarding the independence of alleles within and between loci. Images Figure 1 Figure 2 PMID:7913584

  4. Nondetectability of restriction fragments and independence of DNA fragment sizes within and between loci in RFLP typing of DNA

    SciTech Connect

    Chakraborty, R.; Zhong, Y.; Jin, L. ); Budowle, B. )

    1994-08-01

    The authors provide experimental evidence showing that, during the restriction-enzyme digestion of DNA samples, some of the HaeIII-digested DNA fragments are small enough to prevent their reliable sizing on a Southern gel. As a result of such nondetectability of DNA fragments, individuals who show a single-band DNA profile at a VNTR locus may not necessarily be true homozygotes. In a population database, when the presence of such nondetectable alleles is ignored, they show that a pseudodependence of alleles within as well as across loci may occur. Using a known statistical method, under the hypothesis of independence of alleles within loci, they derive an efficient estimate of null allele frequency, which may be subsequently used for testing allelic independence within and across loci. The estimates of null allele frequencies, thus derived, are shown to agree with direct experimental data on the frequencies of HaeIII-null alleles. Incorporation of null alleles into the analysis of the forensic VNTR database suggests that the assumptions of allelic independence within and between loci are appropriate. In contrast, a failure to incorporate the occurrence of null alleles would provide a wrong inference regarding the independence of alleles within and between loci. 47 refs., 2 figs., 4 tabs.

  5. Evolution of the genus Leishmania as revealed by comparisons of nuclear DNA restriction fragment patterns.

    PubMed Central

    Beverley, S M; Ismach, R B; Pratt, D M

    1987-01-01

    Restriction endonuclease DNA fragment patterns have been used to examine the relationships among 28 isolates of Leishmania as well as Crithidia, Endotrypanum, and Trypanosoma cruzi. Fragments of nuclear DNA were generated with six restriction enzymes, and blots were hybridized with probes from three loci. Among the major lineages the fragment patterns are essentially completely different, while within the major lineages various degrees of divergence are found. Molecular evolutionary trees were constructed using the method of Nei and Li to estimate the percent nucleotide sequence divergence among strains from the fraction of fragments shared. Defined groups, such as species or subspecies within the major lineages, are also grouped by nuclear DNA comparisons. Within the donovani complex, we find Leishmania donovani chagasi and Leishmania donovani infantum to be as similar as strains within Leishmania donovani donovani, consistent with the proposal by other workers that New World visceral leishmaniasis originated quite recently. Images PMID:3025876

  6. Detection of herpes simplex virus type-2 DNA restriction fragments in human cervical carcinoma tissue.

    PubMed Central

    Park, M; Kitchener, H C; Macnab, J C

    1983-01-01

    DNA extracted from eight human cervical carcinomas, one lymph node metastasis and related control tissue was examined for the presence of herpes simplex virus (HSV) DNA sequences. Southern blot transfers of tumour and control DNA were hybridised with radioactively labelled cloned probes representing 70% of the HSV-2 genome. Specific hybridisation to HSV DNA sequences was observed in one of eight carcinoma tissues analysed. Hybridisation of HSV-2 DNA probes to BamHI and XhoI restriction enzyme fragments of tumour cell DNA which co-migrated with authentic HSV-2 viral fragments identified co-linear HSV-2 DNA sequences comprising 3% of the HSV-2 genome, between map coordinates 0.582 and 0.612. The remaining eight tumour and all control tissues analysed, showed no specific hybridisation to any of the probes used at levels of sensitivity which would detect 0.5 copies/cell of HSV-2 DNA restriction fragments of 2 kb or greater. Images Fig. 2. Fig. 3. Fig. 5. PMID:6313349

  7. Reverse-phase HPLC of DNA restriction fragments and ribooligonucleotides on uncoated Kel-F powder.

    PubMed Central

    Usher, D A

    1979-01-01

    Uncoated Kel-F powder offers some unique features as a support for reverse-phase HPLC of oligonucleotides and DNA restriction fragments. Compounds are eluted from the column by a gradient of acetonitrile (0 tto 18% v/v) in 0.1 M aqueous triethylammonium acetate. In contrast to RPC-5 chromatography, oligonucleotides are not eluted by aqueous salt solutions alone, and the separation of restriction fragments depends only on the chainlength. The packing material is cheap, easy to pack, chemically inert, and does not bleed, so that separations are highly reproducible. The DNA loading capacity for Kel-F is presently inferior to RPC-5, but recovery of microgram amounts of material is typically better than 50%. Images PMID:461189

  8. Digital analysis of cDNA abundance; expression profiling by means of restriction fragment fingerprinting

    PubMed Central

    Hof, Peter; Ortmeier, Claudia; Pape, Kirstin; Reitmaier, Birgit; Regenbogen, Johannes; Goppelt, Andreas; Halle, Joern-Peter

    2002-01-01

    Background Gene expression profiling among different tissues is of paramount interest in various areas of biomedical research. We have developed a novel method (DADA, Digital Analysis of cDNA Abundance), that calculates the relative abundance of genes in cDNA libraries. Results DADA is based upon multiple restriction fragment length analysis of pools of clones from cDNA libraries and the identification of gene-specific restriction fingerprints in the resulting complex fragment mixtures. A specific cDNA cloning vector had to be constructed that governed missing or incomplete cDNA inserts which would generate misleading fingerprints in standard cloning vectors. Double stranded cDNA was synthesized using an anchored oligo dT primer, uni-directionally inserted into the DADA vector and cDNA libraries were constructed in E. coli. The cDNA fingerprints were generated in a PCR-free procedure that allows for parallel plasmid preparation, labeling, restriction digest and fragment separation of pools of 96 colonies each. This multiplexing significantly enhanced the throughput in comparison to sequence-based methods (e.g. EST approach). The data of the fragment mixtures were integrated into a relational database system and queried with fingerprints experimentally produced by analyzing single colonies. Due to limited predictability of the position of DNA fragments on the polyacrylamid gels of a given size, fingerprints derived solely from cDNA sequences were not accurate enough to be used for the analysis. We applied DADA to the analysis of gene expression profiles in a model for impaired wound healing (treatment of mice with dexamethasone). Conclusions The method proved to be capable of identifying pharmacologically relevant target genes that had not been identified by other standard methods routinely used to find differentially expressed genes. Due to the above mentioned limited predictability of the fingerprints, the method was yet tested only with a limited number of experimentally determined fingerprints and was able to detect differences in gene expression of transcripts representing 0.05% of the total mRNA population (e.g. medium abundant gene transcripts). PMID:11882253

  9. Polycyclic aromatic hydrocarbon-DNA adducts and the CYP1A1 restriction fragment length polymorphism

    SciTech Connect

    Shields, P.G.; Bowman, E.D.; Weston, A.; Harris, C.C.; Sugimura, H.; Caporaso, N.E.; Petruzzelli, S.F. ); Trump, B.F. )

    1992-11-01

    Human cancer risk assessment at a genetic level involves the investigation of carcinogen metabolism and DNA adduct formation. Wide interindividual differences in metabolism result in different DNA adduct levels. For this and other reasons, many laboratories have considered DNA adducts to be a measure of the biologically effective dose of a carcinogen. Techniques for studying DNA adducts using chemically specific assays are becoming available. A modification of the [sup 32]P-postlabeling assay for polycyclic aromatic hydrocarbon DNA adducts described here provides potential improvements in quantification. DNA adducts, however, reflect only recent exposure to carcinogens; in contrast, genetic testing for metabolic capacity indicates the extent to which carcinogens can be activated and exert genotoxic effects. Such studies may reflect both separate and integrated risk factors together with DNA adduct levels. A recently described restriction fragment length polymorphism for the CYP1A1, which codes for the cytochrome P450 enzyme primarily responsible for the metabolic activation of carcinogenic polycyclic aromatic hydrocarbons, has been found to be associated with lung cancer risk in a Japanese population. In a subset of individuals enrolled in a US lung cancer case-control study, no association with lung cancer was found. 17 refs., 3 figs.

  10. Restriction fragment length polymorphism detected by cDNA and genomic DNA clones in Stylosanthes.

    PubMed

    Liu, C J; Musial, J M

    1995-12-01

    A DNA isolation method suitable for genomic library construction and RFLP analyses of the forage legume Stylosanthes was developed. Probes isolated using this method were used to investigate the feasibility of constructing RFLP-based genetic maps in this genus. Two hundred and seventy-one PstI genomic DNA and 134 cDNA clones were analysed against four Stylosanthes accessions, including two tetraploids and two diploids, with the use of two restriction enzymes, DraI and HindIII. The proportion of clones which detected single-copy sequences from the PstI genomic library was higher than that from the cDNA library, but the percentage of clones which detected low-copy sequences was doubled in the latter. There was no significant difference in the level of RFLPs detected by gDNA and cDNA probes, although the level of polymorphism was lower in the diploids. A large proportion of RFLPs seemed to have resulted from mutation/base substitution events, and this was especially the case in diploids. PMID:24170048

  11. Comparison of DNA restriction fragment length polymorphisms of Nostoc strains in and from cycads.

    PubMed

    Lindblad, P; Haselkorn, R; Bergman, B; Nierzwicki-Bauer, S A

    1989-01-01

    DNA was prepared from cyanobacteria freshly isolated from coralloid roots of natural populations of five cycad species: Ceratozamia mexicana mexicana (Mexico), C. mexicana robusta (Mexico), Dioon spinulosum (Mexico), Zamia furfuraceae (Mexico) and Z. skinneri (Costa Rica). Using the Southern blot technique and cloned Anabaena PCC 7120 nifK and glnA genes as probes, restriction fragment length polymorphisms of these cyanobacterial symbionts were compared. The five cyanobacterial preparations showed differences in the sizes of their DNA fragments hybridizing with both probes, indicating that different cyanobacterial species and/or strains were in the symbiotic associations. On the other hand, a similar comparison of cyanobacteria freshly collected from a single Encephalartos altensteinii coralloid root and from three independently subcultured isolates from the same coralloid root revealed that these were likely to be one and the same organism. Moreover, the complexity of restriction patterns shows that a mixture of Nostoc strains can associate with a single cycad species although a single cyanobacterial strain can predominate in the root of a single cycad plant. Thus, a wide range of Nostoc strains appear to associate with the coralloid roots of cycads. PMID:2569858

  12. Relatedness of Strains of Xanthomonas fragariae by Restriction Fragment Length Polymorphism, DNA-DNA Reassociation, and Fatty Acid Analyses†

    PubMed Central

    Roberts, P. D.; Hodge, N. C.; Bouzar, H.; Jones, J. B.; Stall, R. E.; Berger, R. D.; Chase, A. R.

    1998-01-01

    The levels of relatedness of strains of Xanthomonas fragariae collected over several years from locations in Canada and the United States were compared by determining fatty acid methyl ester profiles, restriction fragment length polymorphisms (RFLP) based on pulsed-field gel electrophoresis (PFGE) analysis, and DNA-DNA reassociation values. Based on qualitative and quantitative differences in fatty acid profiles, the strains were divided into nine groups and four groups by the MIDI “10% rule” and unweighted pair analysis, respectively. Restriction analysis of genomic DNA by PFGE with two endonucleases (XbaI and SpeI) revealed four distinct profiles. When a third endonuclease (VspI) was used, one group was divided into three subgroups. The profile of the American Type Culture Collection type strain differed from the profile of every other strain of X. fragariae. Considerable diversity was observed within X. fragariae, although the majority of the strains represented a clonal population. The four groups based on fatty acid profiles were similar to the four groups based on RFLP, but neither method related groups to the geographic origins of the strains. The DNA-DNA reassociation values were high for representative strains, providing evidence that all of the strains belong to the same species. PMID:9758826

  13. Capillary electrophoretic separation of DNA restriction fragments using dilute polymer solutions

    SciTech Connect

    Braun, B.; Blanch, W.; Prausnitz, J.M.

    1997-02-01

    Because the mechanism of DNA separation in capillary electrophoresis is not well understood, selection of polymers is a {open_quotes}trial-and-error{close_quotes} procedure. We investigated dilute-solution DNA separations by capillary electrophoresis using solutions of four polymers that differ in size, shape and stiffness. Hydroxyethylcellulose of high molecular weight provides excellent separation of large DNA fragments (2027 bp - 23130 bp). Polyvinylpyrrolidone separates DNA from 72 bp to 23 kbp and star-(polyethylene oxide), like linear poly (ethylene oxide), provides separation of fragments up to 1353 bp.

  14. A phylogenetic analysis of the genus Carica L. (Caricaceae) based on restriction fragment length variation in a cpDNA intergenic spacer region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phylogenetic relationships among twelve wild and cultivated species of Carica (Caricaceae) were analyzed using restriction fragment length variation in a 3.2-kb PCR amplified intergenic spacer region of the chloroplast DNA. A total of 138 fragments representing 137 restriction sites accounting f...

  15. DNA large restriction fragment patterns of sporadic and epidemic nosocomial strains of Mycobacterium chelonae and Mycobacterium abscessus.

    PubMed Central

    Wallace, R J; Zhang, Y; Brown, B A; Fraser, V; Mazurek, G H; Maloney, S

    1993-01-01

    Large restriction fragment (LRF) pattern analysis of genomic DNA using pulsed-field gel electrophoresis was performed on three reference strains, 32 sporadic isolates, and 92 nosocomial isolates from 12 epidemics of Mycobacterium chelonae and Mycobacterium abscessus. Only 17 of 30 (57%) unrelated strains of M. abscessus, compared with 10 of 11 (91%) of M. chelonae strains, gave satisfactory DNA extractions, with the remainder resulting in highly fragmented DNA. DraI, AsnI, XbaI, and SpeI gave satisfactory LRF patterns. Sporadic isolates of the two species had highly variable LRF patterns, except for one reference strain and one sporadic isolate of M. chelonae that differed by only two to five bands. Evaluation of repeat isolates from five patients monitored for 8 months to 13 years (mean, 5.8 years) revealed LRF patterns to be stable, with changes of not more than two bands. LRF analysis of the seven nosocomial outbreaks with evaluable DNA revealed identical patterns in most or all of the patient isolates and in three outbreaks revealed identity with environmental isolates. These outbreaks included endoscope contamination, postinjection abscesses, and surgical wound infections. LRF analysis of genomic DNA is a useful technique for epidemiologic studies of M. abscessus and M. chelonae, although improved technology is needed for the approximately 50% of strains of M. abscessus with unsatisfactory DNA extractions. Images PMID:8253968

  16. Mapped DNA probes from loblolly pine can be used for restriction fragment length polymorphism mapping in other conifers.

    PubMed

    Ahuja, M R; Devey, M E; Groover, A T; Jermstad, K D; Neale, D B

    1994-06-01

    A high-density genetic map based on restriction fragment length polymorphisms (RFLPs) is being constructed for loblolly pine (Pinus taeda L.). Consequently, a large number of DNA probes from loblolly pine are potentially available for use in other species. We have used some of these DNA probes to detect RFLPs in 12 conifers and an angiosperm. Thirty complementary DNA and two genomic DNA probes from loblolly pine were hybridized to Southern blots containing DNA from five species of Pinus (P. elliottii, P. lambertiana, P. radiata, P. sylvestris, and P. taeda), one species from each of four other genera of Pinaceae (Abies concolor, Larix laricina, Picea abies, and Pseudotsuga menziesii), one species from each of three other families of Coniferales [Sequoia sempervirens (Taxodiaceae), Torreya californica (Taxaceae) and Calocedrus decurrens (Cupressaceae)], and to one angiosperm species (Populus nigra). Results showed that mapped DNA probes from lobolly pine will cross-hybridize to genomic DNA of other species of Pinus and some other genera of the Pinaceae. Only a small proportion of the probes hybridized to genomic DNA from three other families of the Coniferales and the one angiosperm examined. This study demonstrates that mapped DNA probes from loblolly pine can be used to construct RFLP maps for related species, thus enabling the opportunity for comparative genome mapping in conifers. PMID:24186006

  17. Investigation of hospital-acquired infections due to Alcaligenes denitrificans subsp. xylosoxydans by DNA restriction fragment length polymorphism.

    PubMed Central

    Cheron, M; Abachin, E; Guerot, E; el-Bez, M; Simonet, M

    1994-01-01

    We demonstrate that DNA restriction fragment length polymorphism determined by pulsed-field gel electrophoresis is very useful in the investigation of the epidemiology of hospital-acquired infections caused by Alcaligenes denitrificans subsp. xylosoxydans. This approach showed that hospital-acquired infections caused by this opportunistic pathogen over a 6-month period in 10 patients hospitalized in an intensive care unit and a surgical unit were not a true outbreak. In addition, this molecular typing method established that the respiratory therapy equipment was the source of the contamination of two patients. Images PMID:7913093

  18. Genetic relationships among the members of the family rickettsiaceae as shown by DNA restriction fragment polymorphism analysis.

    PubMed

    Ralph, D; Pretzman, C; Daugherty, N; Poetter, K

    1990-01-01

    The genetic diversity of members of the genus Rickettsia was examined using restriction site polymorphisms found within a series of DNA fragments scattered throughout the genome. Rickettsia belli, R. akari, and R. australis were the most divergent species when compared to the other species examined. These three species were also not closely related to each other. The other examined species were more tightly clustered. This survey also examined the genetic diversity within several species. The unexpected finding of this survey is that several species of rickettsia are as closely related to the surveyed strains of R. rickettsii as these strains are to each other. These results indicate that R. sibirica, R. parkeri, R. rickettsii, and an unnamed isolate from Africa are likely to be strains of a single rickettsial species of worldwide distribution. R. conorii was very closely related to this R. rickettsii-containing group but is likely to remain in a genetically distinct category as the data base expands. PMID:1974127

  19. Polymerase chain reaction-restriction fragment length polymorphism analysis shows divergence among mer determinants from gram-negative soil bacteria indistinguishable by DNA-DNA hybridization.

    PubMed Central

    Osborn, A M; Bruce, K D; Strike, P; Ritchie, D A

    1993-01-01

    Mercury resistant (Hgr) bacteria were isolated from four terrestrial sites: three containing high levels of mercury (sites T2, SE, and SO) and one uncontaminated site (SB). The frequencies of Hgr bacteria in the total cultivable populations were 0.05% (SB), 0.69% (SO), 4.8% (SE), and 25% (T2). Between 35 and 100% of the isolates from the four sites contained DNA sequences homologous to a DNA probe from the mercury resistance (mer) operon of the Tn501 Hgr determinant. The mer sequences of 10 Tn501-homologous Hgr determinants from each site were amplified by the polymerase chain reaction, with primers designed to consensus sequences of the mer determinants of Tn501, Tn21, and pMJ100, and were classified on the basis of the size of the amplified product and the restriction fragment length polymorphism pattern. Two main groups of amplification product were identified. The first, represented by the T2 and SB isolates and one SE isolate, gave an amplification product indistinguishable in size from that amplified from Tn501 (approximately 1,010 bp). The second group, represented by the SO isolates and the majority of the SE isolates, produced larger amplification products of 1,040 or 1,060 bp. Restriction fragment length polymorphism analysis revealed that each amplification product size group could be further subdivided into five subgroups. Images PMID:7904439

  20. Use of pooled DNA samples to detect linkage disequilibrium of polymorphic restriction fragments and human disease: studies of the HLA class II loci.

    PubMed Central

    Arnheim, N; Strange, C; Erlich, H

    1985-01-01

    A rapid method has been developed and used to search for restriction fragment length polymorphisms (RFLPs) that are in linkage disequilibrium with disease-associated loci. By using genomic blot-hybridization analysis with DQ beta-chain and DR beta-chain cDNA probes, we examined DNA polymorphisms within the HLA class II loci associated with susceptibility to insulin-dependent mellitus (IDDM). To facilitate the search for informative RFLPs, we compared pooled DNA samples from IDDM patients with pooled DNA samples from randomly selected control individuals, instead of using the conventional approach of examining DNA samples from individuals in two groups. (The conditions under which this approach is useful are treated theoretically in the Appendix.) Several specific polymorphic restriction fragments associated with IDDM were revealed by using this economical and rapid approach. The restriction enzymes and probes identified as informative in this screening were then used to analyze HLA-DR-typed IDDM families, homozygous typing cells, and unrelated individuals to determine the association of the specific restriction fragments with HLA-DR serological type and the frequency in control and IDDM populations. Some individual polymorphic fragments for which the IDDM population was enriched correlated strongly with HLA-DR3, whereas others correlated strongly with HLA-DR4. Some fragments (e.g., a 10-kilobase Taq I fragment detected with the DR beta probe) that were more prevalent in the IDDM population subdivided the serologically defined HLA-DR type and may be informative markers for IDDM susceptibility. Images PMID:2995996

  1. Repair of x-ray-induced DNA double-strand breaks in specific Not I restriction fragments in human fibroblasts: joining of correct and incorrect ends

    NASA Technical Reports Server (NTRS)

    Lobrich, M.; Rydberg, B.; Cooper, P. K.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    An assay that allows measurement of absolute induction frequencies for DNA double-strand breaks (dsbs) in defined regions of the genome and that quantitates rejoining of correct DNA ends has been used to study repair of dsbs in normal human fibroblasts after x-irradiation. The approach involves hybridization of single-copy DNA probes to Not I restriction fragments separated according to size by pulsed-field gel electrophoresis. Induction of dsbs is quantitated from the decrease in the intensity of the hybridizing restriction fragment and an accumulation of a smear below the band. Rejoining of dsbs results in reconstitution of the intact restriction fragment only if correct DNA ends are joined. By comparing results from this technique with results from a conventional electrophoresis assay that detects all rejoining events, it is possible to quantitate the misrejoining frequency. Three Not I fragments on the long arm of chromosome 21 were investigated with regard to dsb induction, yielding an identical induction rate of 5.8 X 10(-3) break per megabase pair per Gy. Correct dsb rejoining was measured for two of these Not I fragments after initial doses of 80 and 160 Gy. The misrejoining frequency was about 25% for both fragments and was independent of dose. This result appears to be representative for the whole genome as shown by analysis of the entire Not I fragment distribution. The correct rejoining events primarily occurred within the first 2 h, while the misrejoining kinetics included a much slower component, with about half of the events occurring between 2 and 24 h. These misrejoining kinetics are similar to those previously reported for production of exchange aberrations in interphase chromosomes.

  2. Biology of DNA restriction.

    PubMed Central

    Bickle, T A; Krüger, D H

    1993-01-01

    Our understanding of the evolution of DNA restriction and modification systems, the control of the expression of the structural genes for the enzymes, and the importance of DNA restriction in the cellular economy has advanced by leaps and bounds in recent years. This review documents these advances for the three major classes of classical restriction and modification systems, describes the discovery of a new class of restriction systems that specifically cut DNA carrying the modification signature of foreign cells, and deals with the mechanisms developed by phages to avoid the restriction systems of their hosts. PMID:8336674

  3. PCR-restriction fragment length polymorphism analysis of a diagnostic 452-base-pair DNA fragment discriminates between Cryptosporidium parvum and C. meleagridis and between C. parvum isolates of human and animal origin.

    PubMed

    Guyot, K; Follet-Dumoulin, A; Recourt, C; Lelièvre, E; Cailliez, J C; Dei-Cas, E

    2002-04-01

    Genomic DNAs from human Cryptosporidium isolates previously typed by analysis of the 18S ribosomal DNA locus (Cryptosporidium parvum bovine genotype, C. parvum human genotype, Cryptosporidium meleagridis, and Cryptosporidium felis) were used to amplify the diagnostic fragment described by Laxer et al. (M. A. Laxer, B. K. Timblin, and R. J. Patel, Am. J. Trop. Med. Hyg., 45:688-694, 1991). The obtained 452-bp amplified fragments were sequenced and aligned with the homologous Cryptosporidium wrairi sequence. Polymorphism was exploited to develop a restriction fragment length polymorphism method able to discriminate Cryptosporidium species and C. parvum genotypes. PMID:11916736

  4. Chloroplast DNA restriction fragment length polymorphism in Sequoia sempervirens D. Don Endl., Pseudotsuga menziesii (Mirb.) Franco, Calocedrus decurrens (Torr.), and Pinus taeda L.

    PubMed

    Ali, I F; Neale, D B; Marshall, K A

    1991-01-01

    The extent and type of chloroplast DNA restriction fragment length polymorphism was determined among individual tree samples of coast redwood, Douglas fir, incense-cedar, and loblolly pine. A total of 107 trees was surveyed for three restriction enzymes (BamHI, EcoRI, HindIII) and six chloroplast DNA probes from petunia (P3, P4, P6, P8, P10, S8). The probes comprise 64% of the petunia chloroplast genome. Polymorphisms were detected in all species but loblolly pine. Coast redwood and incense-cedar had a small number of rare variants, whereas Douglas fir had one highly polymorphic region of insertions/deletions in sequences revealed by the P6 probe from petunia. The mutation hotspot is currently being studied by DNA sequence analysis. PMID:24221163

  5. Intraspecific variation in Radopholus similis isolates assessed with restriction fragment length polymorphism and DNA sequencing of the internal transcribed spacer region of the ribosomal RNA cistron.

    PubMed

    Elbadri, Gamal A A; De Ley, Paul; Waeyenberge, Lieven; Vierstraete, Andy; Moens, Maurice; Vanfleteren, Jacques

    2002-02-01

    Restriction fragment length polymorphism and direct sequencing of the internal transcribed spacer rDNA region of 19 isolates of Radopholus similis yielded significant diversity, both among isolates and within some individuals. Restriction fragment length polymorphism with HaeIII, AluI and Tru9I yielded two sets of patterns. Digestion with RsaI revealed one or two supernumerary bands in single nematodes from five isolates, and sequencing confirmed microheterogeneity in four of these. Phylogenetic analysis grouped most isolates closely together, except for the five isolates with additional bands for RsaI. Our data reveal more population structure than previously found and lend further support to the synonymy of R. similis and 'Radopholus citrophilus'. PMID:11812497

  6. Differentiation among spotted fever group rickettsiae species by analysis of restriction fragment length polymorphism of PCR-amplified DNA.

    PubMed Central

    Eremeeva, M; Yu, X; Raoult, D

    1994-01-01

    Restriction fragment length polymorphism (RFLP) analysis of PCR-amplified genes was used to study spotted fever group (SFG) rickettsiae, extending the previous work of Regnery et al. (R.L. Regnery, C.L. Spruill, and B.D. Plikaytis, J. Bacteriol. 173:1576-1589, 1991). Twenty-six strains of SFG rickettsia were studied, including several recognized species which have never been studied (R. parkeri, R. helvetica, and R. japonica) as well as strains which are not currently classified. Two previously used primer pairs derived from the R. prowazekii citrate syntase gene and the R. rickettsii 190-kDa protein antigen gene were studied, as were primer pairs obtained from the R. rickettsii 120-kDa protein antigen gene. By using three amplifications and three enzyme digestions, it was possible to differentiate between almost all of the known SFG rickettsia species and to differentiate between several strains of the R. conorii complex. Two human pathogens, "R. africae" and the Israeli tick typhus rickettsia, were first separated by using BG-12 pair primer amplification and then RsaI restriction endonuclease digestion. The proposed simplified model of identification may be useful in studying the geographical distributions of SFG rickettsiae. Images PMID:7910831

  7. Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA.

    PubMed Central

    Kuo, W S; Chak, K F

    1996-01-01

    Two pairs of universal oligonucleotide primers were designed to probe the most conserved regions of all known cryI-type gene sequences so that the amplified PCR fragments of the DNA template from Bacillus thuringiensis strains may contain all possible cryI-type gene sequences. The restriction fragment length polymorphism (RFLP) patterns of the PCR-amplified fragments revealed that 14 distinct cry-type genes have been identified from 20 B. thuringiensis strains. Those cry-type genes included cryIA(a), cryIA(a), cryIA(b), cryIA(b), cryIA(c), cryIB, cryIC, cryIC, cryIC(b), cryID, cryIE, cryIF, cryIF, and cryIII (a dagger at the end of a gene designation indicates a novel cry-type gene determined by restriction mapping or DNA sequences). Among them, the sequences of cryIA(a), cryIA(b), cryIB, cryIC, cryIF, and cryIII were found to be different from the corresponding published cry gene sequences. Interestingly, five cry-type genes [cryIA(a)-, cryIB-, cryIC-, cryIC(b)-, and cryIF-type genes] and seven cry-type genes [cryIA(a)-, cryIA(b)-, cryIB-, cryIC-, cryIC(b)-, cryIF-, and cryIII-type genes] have been detected from B. thuringiensis subsp. morrisoni HD-12 and B. thuringiensis subsp. wuhanensis, respectively. Therefore, the PCR-RFLP typing system is a facile method to detect both known and novel cry genes existing in B. thuringiensis strains. PMID:8919799

  8. Analysis of the rDNA internal transcribed spacer region of the Fusarium species by polymerase chain reaction-restriction fragment length polymorphism

    PubMed Central

    ZARRIN, MAJID; GANJ, FARZANEH; FARAMARZI, SAMA

    2016-01-01

    The Fusarium species are a widely spread phytopathogen identified in an extensive variety of hosts. The Fusarium genus is one of the most heterogeneous fungi and is difficult to classify. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis is a useful method in detection of DNA polymorphism in objective sequences. The aim of the present study was to identify the phylogenetic associations and usefulness of the internal transcribed spacer (ITS) region as a genetic marker within the most clinically important strain of the Fusarium species. A total of 50 strains of Fusarium spp. were used in the study, including environmental, clinical and reference isolates. The primers ITS1 and ITS4 were used in the study. Two restriction enzymes, HaeIII and SmaI, were assessed for the digestion of PCR products. A PCR product of ~550-base pairs was generated for each Fusarium species. The digested products with HaeIII and SmaI demonstrated that the bands generated for the medically significant Fusarium species, including F. solani, F. oxysporum, F. verticillidea, F. proliferatum and F. fujikuri, have different restriction enzyme patterns. In conclusion, it appears that the PCR-RFLP method used in the present study produces a sufficient restriction profile for differentiation of the most medically significant Fusarium species. PMID:27073635

  9. Utility of the polymerase chain reaction-restriction fragment length polymorphisms of the intergenic spacer region of the rDNA for characterizing Gibberella fujikuroi isolates.

    PubMed

    Hinojo, María J; Llorens, Amparo; Mateo, Rufino; Patiño, Belén; González-Jaén, María Teresa; Jiménez, Misericordia

    2004-11-01

    In the present report, a total of thirty-one isolates of Gibberella fujikuroi (Sawada) Wollenw. species complex of Fusarium (section Liseola) morphologically classified as F. moniliforme according to the taxonomy of Nelson, Toussoun and Marasas (1983) were analyzed for their ability to produce fumonisin B1 and fumonisin B2 by an optimized liquid chromatographic method. They were isolated from three hosts (Zea mays, Musa sapientum and Pinus pinea). The results indicate that M. sapientum is a preferential host for G. fujikuroi isolates with low or null capacity for producing fumonisins, while isolates from Z. mays and P. pinea are generally high fumonisin producers. The molecular characterization of isolates was carried out in parallel using an optimized, simple and low-cost method for isolating DNA from filamentous fungi and polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) of the rDNA intergenic spacer (IGS) region. The haplotypes obtained with Hha I enzyme and combinations of Hha I, EcoR I, Alu I, Pst I and Xho I enzymes provided very characteristic groupings of G. fujikuroi isolates as a function of host type and fumonisin B1 and B2 producing capacity. IGS region restriction patterns showed no relationship to isolate geographical origin. This is the first report on this method's capacity to detect polymorphism permitting discrimination between G. fujikuroi isolates from different hosts and with different toxigenic profiles. PMID:15612625

  10. Genotyping of major histocompatibility complex Class II DRB gene in Rohilkhandi goats by polymerase chain reaction-restriction fragment length polymorphism and DNA sequencing

    PubMed Central

    Shrivastava, Kush; Kumar, Pushpendra; Sahoo, Nihar Ranjan; Kumar, Amod; Khan, Mohd. Faheem; Kumar, Amit; Prasad, Arvind; Patel, B. H. M.; Nasir, A.; Bhushan, Bharat; Sharma, Deepak

    2015-01-01

    Aim: To study the major histocompatibility complex (MHC) Class II DRB1 gene polymorphism in Rohilkhandi goat using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and nucleotide sequencing techniques. Materials and Methods: DNA was isolated from 127 Rohilkhandi goats maintained at sheep and goat farm, Indian Veterinary Research Institute, Izatnagar, Bareilly. A 284 bp fragment of exon 2 of DRB1 gene was amplified and digested using BsaI and TaqI restriction enzymes. Population genetic parameters were calculated using Popgene v 1.32 and SAS 9.0. The genotypes were then sequenced using Sanger dideoxy chain termination method and were compared with related breeds/species using MEGA 6.0 and Megalign (DNASTAR) software. Results: TaqI locus showed three and BsaI locus showed two genotypes. Both the loci were found to be in Hardy–Weinberg equilibrium (HWE), however, population genetic parameters suggest that heterozygosity is still maintained in the population at both loci. Percent diversity and divergence matrix, as well as phylogenetic analysis revealed that the MHC Class II DRB1 gene of Rohilkhandi goats was found to be in close cluster with Garole and Scottish blackface sheep breeds as compared to other goat breeds included in the sequence comparison. Conclusion: The PCR-RFLP patterns showed population to be in HWE and absence of one genotype at one locus (BsaI), both the loci showed excess of one or the other homozygote genotype, however, effective number of alleles showed that allelic diversity is present in the population. Sequence comparison of DRB1 gene of Rohilkhandi goat with other sheep and goat breed assigned Rohilkhandi goat in divergence with Jamanupari and Angora goats.

  11. Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes

    NASA Astrophysics Data System (ADS)

    Després, V. R.; Nowoisky, J. F.; Klose, M.; Conrad, R.; Andreae, M. O.; Pöschl, U.

    2007-12-01

    This study explores the applicability of DNA analyses for the characterization of primary biogenic aerosol (PBA) particles in the atmosphere. Samples of fine particulate matter (PM2.5) and total suspended particulates (TSP) have been collected on different types of filter materials at urban, rural, and high-alpine locations along an altitude transect in the south of Germany (Munich, Hohenpeissenberg, Mt. Zugspitze). From filter segments loaded with about one milligram of air particulate matter, DNA could be extracted and DNA sequences could be determined for bacteria, fungi, plants and animals. Sequence analyses were used to determine the identity of biological organisms, and terminal restriction fragment length polymorphism analyses (T-RFLP) were applied to estimate diversities and relative abundances of bacteria. Investigations of blank and background samples showed that filter materials have to be decontaminated prior to use, and that the sampling and handling procedures have to be carefully controlled to avoid artifacts in the analyses. Mass fractions of DNA in PM2.5 were found to be around 0.05% in urban, rural, and high-alpine aerosols. The average concentration of DNA determined for urban air was on the order of ~7 ng m-3, indicating that human adults may inhale about one microgram of DNA per day (corresponding to ~108 haploid bacterial genomes or ~105 haploid human genomes, respectively). Most of the bacterial sequences found in PM2.5 were from Proteobacteria (42) and some from Actinobacteria (10) and Firmicutes (1). The fungal sequences were characteristic for Ascomycota (3) and Basidiomycota (1), which are known to actively discharge spores into the atmosphere. The plant sequences could be attributed to green plants (2) and moss spores (2), while animal DNA was found only for one unicellular eukaryote (protist). Over 80% of the 53 bacterial sequences could be matched to one of the 19 T-RF peaks found in the PM2.5 samples, but only 40% of the T-RF peaks did correspond to one of the detected bacterial sequences. The results demonstrate that the T-RFLP analysis covered more of the bacterial diversity than the sequence analysis. Shannon-Weaver indices calculated from both sequence and T-RFLP data indicate that the bacterial diversity in the rural samples was higher than in the urban and alpine samples. Two of the bacterial sequences (Gammaproteobacteria) and five of the T-RF peaks were found at all sampling locations.

  12. Fragmentation of DNA by sonication.

    PubMed

    Sambrook, Joseph; Russell, David W

    2006-01-01

    INTRODUCTIONDNA fragmentation is often necessary prior to library construction or subcloning for DNA sequencing. This protocol describes a method for DNA fragmentation by sonication. During sonication, DNA samples are subjected to hydrodynamic shearing by exposure to brief periods of sonication. DNA that has been sonicated for excessive periods of time is extremely difficult to clone. Most sonicators will not shear DNA to a size of less than 300-500 bp, and it is tempting to continue sonication until the entire DNA population has been reduced in size. However, the yield of subclones is usually greater if sonication is stopped when the fragments of the target DNA first reach a size of ~700 bp. PMID:22485919

  13. Sizing of single fluorescently stained DNA fragments by scanning microscopy

    PubMed Central

    Laib, Stephan; Rankl, Michael; Ruckstuhl, Thomas; Seeger, Stefan

    2003-01-01

    We describe an approach to determine DNA fragment sizes based on the fluorescence detection of single adsorbed fragments on specifically coated glass cover slips. The brightness of single fragments stained with the DNA bisintercalation dye TOTO-1 is determined by scanning the surface with a confocal microscope. The brightness of adsorbed fragments is found to be proportional to the fragment length. The method needs only minute amount of DNA, beyond inexpensive and easily available surface coatings, like poly-l-lysine, 3-aminoproyltriethoxysilane and polyornithine, are utilizable. We performed DNA-sizing of fragment lengths between 2 and 14 kb. Further, we resolved the size distribution before and after an enzymatic restriction digest. At this a separation of buffers or enzymes was unnecessary. DNA sizes were determined within an uncertainty of 7–14%. The proposed method is straightforward and can be applied to standardized microtiter plates. PMID:14602931

  14. Process for producing shortened target DNA fragments usable in sequencing large DNA segments

    SciTech Connect

    Henikoff, S.; Gelinas, R.E.

    1989-06-27

    This patent describes a process for producing cloned, circular DNA molecules containing shortened target DNA fragments, the fragments derived from a long target DNA segment. The cloned, circular DNA molecules suitable for use in determining the nucleotide sequence of the long target DNA segment. The process consists the steps of: producing, by molecular cloning, double-stranded circular recombinant DNA molecules, each molecule containing vector DNA, a sequencing primer binding site, and a DNA region comprising a long target DNA segment, a first restriction site adjacent to the long target DNA segment adapted to be cut by a first restriction endonuclease in a manner that creates a first terminus on the DNA molecules adjacent the long target DNA segment that is susceptible to digestion by an exonuclease, and a second restriction site located between the first restriction site and the sequencing primer binding site adapted to be cut by a second restriction endonuclease in a manner that creates, without additional terminus blocking or digestion, a second terminus on the DNA molecules that is not susceptible to digestion by an exonuclease; cutting the double-stranded circular recombinant DNA molecules at the first restriction site using a first restriction endonuclease and at the second restriction site using a second restriction endonuclease to form double-stranded linear recombinant DNA molecules having a first terminus that is susceptible to digestion by an exonuclease and a second terminus that is not susceptible to digestion by an exonuclease.

  15. Differentiation of spotted fever group rickettsiae by sequencing and analysis of restriction fragment length polymorphism of PCR-amplified DNA of the gene encoding the protein rOmpA.

    PubMed

    Roux, V; Fournier, P E; Raoult, D

    1996-09-01

    Currently, the genotypic identification of the spotted fever group (SFG) rickettsiae is based on restriction fragment length polymorphism analysis of PCR-amplified genes coding for the enzyme citrate synthase and the surface proteins rOmpA and rOmpB. A set of useful restriction endonucleases was found following comparison of Rickettsia rickettsii and R. prowazekii sequences. However, by using three PCR amplifications and four enzyme digestions with this set, it was impossible to differentiate between all of the known serotypes of the SFG rickettsiae. We amplified by PCR and sequenced using an automated laser fluorescent DNA sequencer a fragment of the gene encoding the protein rOmpA from 21 serotypes of the SFG rickettsiae. A 632-bp amplification product was obtained for most of the strains, although no product could be obtained by using R. akari, R. australis, R. helvetica, and R. bellii DNAs. We found a characteristic sequence for all strains studied except the two isolates of R. massiliae, isolates GS and Mtul. Using the software package BISANCE, we determined the restriction map of this fragment and identified five potentially useful endonucleases, RsaI, AluI, PstI, XbaI, and AvaII. We confirmed the computer analysis-derived profiles by PCR-restriction fragment length polymorphism analysis. The combination of the profiles obtained after digestion of the PCR product by RsaI and PstI allowed for the differentiation of 16 strains. The use of AluI and XbaI allowed for the characterization of R. parkeri and strain HA-91, respectively. R. africae and strain S were differentiated by AvaII digestion. Thus, using a single PCR amplification, we were able to differentiate all of the SFG rickettsiae whose ompA gene was amplified by PCR. PMID:8862558

  16. Differentiation of spotted fever group rickettsiae by sequencing and analysis of restriction fragment length polymorphism of PCR-amplified DNA of the gene encoding the protein rOmpA.

    PubMed Central

    Roux, V; Fournier, P E; Raoult, D

    1996-01-01

    Currently, the genotypic identification of the spotted fever group (SFG) rickettsiae is based on restriction fragment length polymorphism analysis of PCR-amplified genes coding for the enzyme citrate synthase and the surface proteins rOmpA and rOmpB. A set of useful restriction endonucleases was found following comparison of Rickettsia rickettsii and R. prowazekii sequences. However, by using three PCR amplifications and four enzyme digestions with this set, it was impossible to differentiate between all of the known serotypes of the SFG rickettsiae. We amplified by PCR and sequenced using an automated laser fluorescent DNA sequencer a fragment of the gene encoding the protein rOmpA from 21 serotypes of the SFG rickettsiae. A 632-bp amplification product was obtained for most of the strains, although no product could be obtained by using R. akari, R. australis, R. helvetica, and R. bellii DNAs. We found a characteristic sequence for all strains studied except the two isolates of R. massiliae, isolates GS and Mtul. Using the software package BISANCE, we determined the restriction map of this fragment and identified five potentially useful endonucleases, RsaI, AluI, PstI, XbaI, and AvaII. We confirmed the computer analysis-derived profiles by PCR-restriction fragment length polymorphism analysis. The combination of the profiles obtained after digestion of the PCR product by RsaI and PstI allowed for the differentiation of 16 strains. The use of AluI and XbaI allowed for the characterization of R. parkeri and strain HA-91, respectively. R. africae and strain S were differentiated by AvaII digestion. Thus, using a single PCR amplification, we were able to differentiate all of the SFG rickettsiae whose ompA gene was amplified by PCR. PMID:8862558

  17. Detection of single lambda DNA fragments by flow cytometry

    SciTech Connect

    Johnson, M.E.; Goodwin, P.M.; Ambrose, W.P.; Martin, J.C.; Marrone, B.L.; Keller, R.A. )

    1993-01-01

    The authors have demonstrated flow cytometric detection and sizing of single pieces of fluorescently stained lambda DNA (48.5 kb) and individual Kpn I restriction fragments of lambda DNA at 17.05 kb and 29.95 kb. DNA fragments were stained stoichiometrically with an intercalating dye such that the fluorescence from each fragment was directly proportional to fragment length. Laser powers range from 10 to 100 mW and transit times through the focused laser beam were several milliseconds. Measurements were made using time-resolved single photon counting of the detected fluorescence emission from individual stained DNA fragments. Samples were analyzed at rates of about 50 fragments per second. The measured fluorescence intensities are linearly correlated with DNA fragment length over the range measured. Detection sensitivity and resolution needed for analysis of small pieces of DNA are discussed and a comparison of single photon counting measurements of DNA fragments to measurements using more conventional flow cytometers is made. Applications of this methodology to DNA sizing and DNA fingerprinting are discussed.

  18. Restriction enzyme cutting site distribution regularity for DNA looping technology.

    PubMed

    Shang, Ying; Zhang, Nan; Zhu, Pengyu; Luo, Yunbo; Huang, Kunlun; Tian, Wenying; Xu, Wentao

    2014-01-25

    The restriction enzyme cutting site distribution regularity and looping conditions were studied systematically. We obtained the restriction enzyme cutting site distributions of 13 commonly used restriction enzymes in 5 model organism genomes through two novel self-compiled software programs. All of the average distances between two adjacent restriction sites fell sharply with increasing statistic intervals, and most fragments were 0-499 bp. A shorter DNA fragment resulted in a lower looping rate, which was also directly proportional to the DNA concentration. When the length was more than 500 bp, the concentration did not affect the looping rate. Therefore, the best known fragment length was longer than 500 bp, and did not contain the restriction enzyme cutting sites which would be used for digestion. In order to make the looping efficiencies reach nearly 100%, 4-5 single cohesive end systems were recommended to digest the genome separately. PMID:24211387

  19. Bacterial community profiles on feathers during composting as determined by terminal restriction fragment length polymorphism analysis of 16S rDNA genes.

    PubMed

    Tiquia, S M; Ichida, J M; Keener, H M; Elwell, D L; Burtt, E H; Michel, F C

    2005-05-01

    Composting is one of the more economical and environmentally safe methods of recycling feather waste generated by the poultry industry, since 90% of the feather weight consists of crude keratin protein, and feathers contain 15% N. However, the keratin in waste feathers is resistant to biodegradation and may require the addition of bacterial inocula to enhance the degradation process during composting. Two keratin-degrading bacteria isolated from plumage of wild songbirds and identified as Bacillus licheneformis (OWU 1411T) and Streptomyces sp. (OWU 1441) were inoculated into poultry feather composts (1.13 x 10(8) cfu g(-1) feathers) and co-composted with poultry litter and straw in 200-l compost vessels. Composting temperatures, as well as CO(2) and NH(3) evolution, were measured in these vessels to determine the effects of inoculation on the rate and extent of poultry feather decomposition during composting. Terminal restriction fragment length polymorphisms of 16S rRNA genes were used to follow changes in microbial community structure during composting. The results indicated that extensive carbon conversion occurred in both treatments (55.5 and 56.1%). The addition of the bacterial inocula did not enhance the rate of waste feather composting. The microbial community structure over time was very similar in inoculated and uninoculated waste feather composts. PMID:15614566

  20. Non-random DNA fragmentation in next-generation sequencing

    NASA Astrophysics Data System (ADS)

    Poptsova, Maria S.; Il'Icheva, Irina A.; Nechipurenko, Dmitry Yu.; Panchenko, Larisa A.; Khodikov, Mingian V.; Oparina, Nina Y.; Polozov, Robert V.; Nechipurenko, Yury D.; Grokhovsky, Sergei L.

    2014-03-01

    Next Generation Sequencing (NGS) technology is based on cutting DNA into small fragments, and their massive parallel sequencing. The multiple overlapping segments termed ``reads'' are assembled into a contiguous sequence. To reduce sequencing errors, every genome region should be sequenced several dozen times. This sequencing approach is based on the assumption that genomic DNA breaks are random and sequence-independent. However, previously we showed that for the sonicated restriction DNA fragments the rates of double-stranded breaks depend on the nucleotide sequence. In this work we analyzed genomic reads from NGS data and discovered that fragmentation methods based on the action of the hydrodynamic forces on DNA, produce similar bias. Consideration of this non-random DNA fragmentation may allow one to unravel what factors and to what extent influence the non-uniform coverage of various genomic regions.

  1. Non-random DNA fragmentation in next-generation sequencing

    PubMed Central

    Poptsova, Maria S.; Il'icheva, Irina A.; Nechipurenko, Dmitry Yu.; Panchenko, Larisa A.; Khodikov, Mingian V.; Oparina, Nina Y.; Polozov, Robert V.; Nechipurenko, Yury D.; Grokhovsky, Sergei L.

    2014-01-01

    Next Generation Sequencing (NGS) technology is based on cutting DNA into small fragments, and their massive parallel sequencing. The multiple overlapping segments termed “reads” are assembled into a contiguous sequence. To reduce sequencing errors, every genome region should be sequenced several dozen times. This sequencing approach is based on the assumption that genomic DNA breaks are random and sequence-independent. However, previously we showed that for the sonicated restriction DNA fragments the rates of double-stranded breaks depend on the nucleotide sequence. In this work we analyzed genomic reads from NGS data and discovered that fragmentation methods based on the action of the hydrodynamic forces on DNA, produce similar bias. Consideration of this non-random DNA fragmentation may allow one to unravel what factors and to what extent influence the non-uniform coverage of various genomic regions. PMID:24681819

  2. Size distributions of misrejoining DNA fragments in irradiated cells.

    PubMed

    Radivoyevitch, T; Hoel, D G; Hahnfeldt, P; Sachs, R K

    1998-05-01

    When ionizing radiation strikes a cell it induces DNA double strand breaks (DSBs). Subsequently, some of the DSBs misrejoin and thus cause alterations in the size distribution of the DNA fragments. We derive a system of non-linear integro-differential equations describing the misrejoining interactions of five classes of DNA fragments, including rings and various types of linear fragments. The fragment classes are represented by density functions; the shape of a density function determines the probability that a fragment has a particular size and the amplitude (integral) equals the expected number of such fragments per cell. The equations are solved: analytically for exponentially distributed initial fragment sizes (corresponding to high doses) and numerically for arbitrary initial conditions. Computed final fragment size distributions are applied to situations representative of flow karyotypes and pulsed-field gel assays. For human flow karyotypes, the model can be used to obtain misrejoining estimates at doses too high for conventional methods of data analysis. For pulsed-field gel assays in which human chromosomes are digested with restriction endonucleases to form 'cut-somes' (restriction fragments), the model provides a means of misrejoining estimation when the cut-some sizes are non-random. The model suggests that if the cut-some size distribution for unirradiated cells is completely random, misrejoining of radiation-induced DSBs will not be detectable in the final size distribution. PMID:9621680

  3. A stochastic model of DNA fragments rejoining.

    PubMed

    Li, Yongfeng; Qian, Hong; Wang, Ya; Cucinotta, Francis A

    2012-01-01

    When cells are exposed to ionizing radiation, DNA damages in the form of single strand breaks (SSBs), double strand breaks (DSBs), base damage or their combinations are frequent events. It is known that the complexity and severity of DNA damage depends on the quality of radiation, and the microscopic dose deposited in small segments of DNA, which is often related to the linear transfer energy (LET) of the radiation. Experimental studies have suggested that under the same dose, high LET radiation induces more small DNA fragments than low-LET radiation, which affects Ku efficiently binding with DNA end and might be a main reason for high-LET radiation induced RBE [1] since DNA DSB is a major cause for radiation-induced cell death. In this work, we proposed a mathematical model of DNA fragments rejoining according to non-homologous end joining (NHEJ) mechanism. By conducting Gillespie's stochastic simulation, we found several factors that impact the efficiency of DNA fragments rejoining. Our results demonstrated that aberrant DNA damage repair can result predominantly from the occurrence of a spatial distribution of DSBs leading to short DNA fragments. Because of the low efficiency that short DNA fragments recruit repair protein and release the protein residue after fragments rejoining, Ku-dependent NHEJ is significantly interfered with short fragments. Overall, our work suggests that inhibiting the Ku-dependent NHEJ may significantly contribute to the increased efficiency for cell death and mutation observed for high LET radiation. PMID:23028515

  4. A Stochastic Model of DNA Fragments Rejoining

    PubMed Central

    Li, Yongfeng; Qian, Hong; Wang, Ya; Cucinotta, Francis A.

    2012-01-01

    When cells are exposed to ionizing radiation, DNA damages in the form of single strand breaks (SSBs), double strand breaks (DSBs), base damage or their combinations are frequent events. It is known that the complexity and severity of DNA damage depends on the quality of radiation, and the microscopic dose deposited in small segments of DNA, which is often related to the linear transfer energy (LET) of the radiation. Experimental studies have suggested that under the same dose, high LET radiation induces more small DNA fragments than low-LET radiation, which affects Ku efficiently binding with DNA end and might be a main reason for high-LET radiation induced RBE [1] since DNA DSB is a major cause for radiation-induced cell death. In this work, we proposed a mathematical model of DNA fragments rejoining according to non-homologous end joining (NHEJ) mechanism. By conducting Gillespie's stochastic simulation, we found several factors that impact the efficiency of DNA fragments rejoining. Our results demonstrated that aberrant DNA damage repair can result predominantly from the occurrence of a spatial distribution of DSBs leading to short DNA fragments. Because of the low efficiency that short DNA fragments recruit repair protein and release the protein residue after fragments rejoining, Ku-dependent NHEJ is significantly interfered with short fragments. Overall, our work suggests that inhibiting the Ku-dependent NHEJ may significantly contribute to the increased efficiency for cell death and mutation observed for high LET radiation. PMID:23028515

  5. Taxonomy and phylogeny of some Eimeria (Apicomplexa:Eimeriidae) species of rodents as determined by polymerase chain reaction/restriction-fragment-length polymorphism analysis of 18S rDNA.

    PubMed

    Hnida, J A; Duszynski, D W

    1999-11-01

    The 18S rDNA genes of 10 Eimeria species from rodents (E. albigulae, E. arizonensis, E. falciformis, E. langebarteli, E. nieschulzi, E. onychomysis, E. papillata, E. reedi, E. separata, E. sevilletensis) were polymerase-chain-reaction (PCR)-amplified, digested with 12 restriction endonucleases, and electophoresed in agarose gels. The resulting fragment patterns (riboprints) distinguished all species except E. sevilletensis from E. falciformis, and E. arizonensis from E. albigulae; the sporulated oocysts of the latter two species and of E. onychomysis are often indistinguishable morphologically. When the restriction fragment data were analyzed using distance and parsimony phylogenetic methods a clade was found consistently, which contained E. arizonensis, E. albigulae, E. onychomysis, E. reedi, and E. papillata. This finding and other results of the phylogenetic analyses agreed and supplemented previous phylogenetic work on the Eimeria of rodents. Riboprinting appears to provide useful data for taxonomic and phylogenetic studies on the genus Eimeria and may be especially practical when samples do not contain enough oocysts for other molecular-based methods. PMID:10540948

  6. Restriction fragment length polymorphisms associated with substance P gene

    SciTech Connect

    de Miguel, C.; Bonner, T.; Detera-Wadleigh, S.

    1987-05-01

    Substance P (SP) is an important neuropepetide detected in a variety of locations in the central nervous system. Variations in SP content or SP receptors in psychiatric disorders have been described. Using SP clones as probes the authors have found three restriction fragment length polymorphisms (RFLPs) in the SP gene. The RFLPs are generated by digestion of genomic DNA with the MspI, and RsaI and NcoI restriction endonucleases. The MspI RFLP is detected by two genomic clones mapping to the 5' end of the gene while the RsaI and NcoI rFLPs are both detected by two genomic clones on the 3' end and also by a full-length cDNA clone of the gene. All three RFLPs are characterized by two alleles. For the MspI RFLP the frequency of both alleles is similar, for the Rsa I and NcoI RFLP one of the alleles is significantly more abundant than the other. These RFLPs are now being used to determine whether any of the alleles correlate with either schizophrenia or affective disorder.

  7. Sizing of DNA fragments by flow cytometry

    SciTech Connect

    Johnson, M.E.; Goodwin, P.M.; Ambrose, W.P.; Martin, J.C.; Marrone, B.L.; Jett, J.H.; Keller, R.A.

    1993-02-01

    Individual, stained DNA fragments were sized using a modified flow cytometer with high sensitivity fluorescence detection. The fluorescent intercalating dye ethidium homodimer was used to stain stoichiometrically lambda phage DNA and a Kpn I digest of lambda DNA. Stained, individual fragments of DNA were passed through a low average power, focused, mode-locked laser beam, and the fluorescence from each fragment was collected and quantified. Time-gated detection was used to discriminate against Raman scattering from the water solvent. The fluorescence burst from each fragment was related directly to its length, thus providing a means to size small quantities of kilobase lengths of DNA quickly. Improvements of several orders of magnitude in analysis time and sample size over current gel electrophoresis techniques were realized. Fragments of 17.1,29.9, and 48.5 thousand base pairs were well resolved, and were sized in 164 seconds. Less than one pg of DNA was required for analysis. We have demonstrated sizing of individual, stained DNA fragments with resolution approaching that of gel electrophoresis for moderately large fragments, but with significant reductions in the analysis time and the amount of sample required. Furthermore, system response is linear with DNA fragment length, in contrast to the logarithmic response in gel electrophoresis. There exists the potential to perform this sizing using relatively simple instrumentation, i.e. a continuous wave laser of low power and current mode detection.

  8. Sizing of DNA fragments by flow cytometry

    SciTech Connect

    Johnson, M.E.; Goodwin, P.M.; Ambrose, W.P.; Martin, J.C.; Marrone, B.L.; Jett, J.H.; Keller, R.A.

    1993-01-01

    Individual, stained DNA fragments were sized using a modified flow cytometer with high sensitivity fluorescence detection. The fluorescent intercalating dye ethidium homodimer was used to stain stoichiometrically lambda phage DNA and a Kpn I digest of lambda DNA. Stained, individual fragments of DNA were passed through a low average power, focused, mode-locked laser beam, and the fluorescence from each fragment was collected and quantified. Time-gated detection was used to discriminate against Raman scattering from the water solvent. The fluorescence burst from each fragment was related directly to its length, thus providing a means to size small quantities of kilobase lengths of DNA quickly. Improvements of several orders of magnitude in analysis time and sample size over current gel electrophoresis techniques were realized. Fragments of 17.1,29.9, and 48.5 thousand base pairs were well resolved, and were sized in 164 seconds. Less than one pg of DNA was required for analysis. We have demonstrated sizing of individual, stained DNA fragments with resolution approaching that of gel electrophoresis for moderately large fragments, but with significant reductions in the analysis time and the amount of sample required. Furthermore, system response is linear with DNA fragment length, in contrast to the logarithmic response in gel electrophoresis. There exists the potential to perform this sizing using relatively simple instrumentation, i.e. a continuous wave laser of low power and current mode detection.

  9. RESTRICTION FRAGMENT LENGTH POLYMORPHISMS DISTINGUISH ECTOMYCORRHIZAL FUNGI

    EPA Science Inventory

    Basidiomycetous fungi, two saprophytes and three mycorrhizal, were used to assess the specificity of DNA hybridization for distinguishing genera from one another. nterspecific comparisons were done with several isolates of mycorrhizal fungi, Laccaria bicolor and L. laccata, colle...

  10. Yeast-based recombineering of DNA fragments into plant transformation vectors by one-step transformation.

    PubMed

    Nagano, Yukio; Takao, Syoko; Kudo, Takahiro; Iizasa, Ei'ichi; Anai, Toyoaki

    2007-12-01

    T-DNA binary vectors are often used in plant transformation experiments. Because they are usually very large and have few restriction sites suitable for DNA ligation reactions, cloning DNA fragments into these vectors is difficult. We provide herein an alternative to cloning DNA fragments into very large vectors. Our yeast-based recombineering method enables DNA fragments to be cloned into certain types of T-DNA binary vectors by one-step transformation without the requirement of specific recombination sites or precisely positioned restriction ends, thus making the cloning process more flexible. Moreover, this method is inexpensive and is applicable to multifragment cloning. PMID:17680244

  11. Fragmentation of genomic DNA using microwave irradiation.

    PubMed

    Yang, Yu; Hang, Jun

    2013-07-01

    An unconventional approach for DNA fragmentation was investigated to explore its feasibility as an alternative to the existing DNA fragmentation techniques for next-generation DNA sequencing application. Current methods are based on strong-force liquid shearing or specialized enzymatic treatments. There are shortcomings for these platforms yet to be addressed, including aerosolization of genomic materials, which may result in the cross-contamination and biohazards; the difficulty in multiplexing; and the potential sequence biases. In this proof-of-concept study, we investigated the microwave irradiation as a simple, unbiased, and easy-to-multiplex way to fragment genomic DNA randomly. In addition, heating DNA at high temperature was attempted for the same purpose and for comparison. Adaptive focused acoustic sonication was used as the control. The yield and functionality for the DNA fragments and DNA fragment libraries were analyzed to assess the feasibility and use of the proposed approach. Both microwave irradiation and thermal heating can fragment genomic DNA to the size ranges suitable for next-generation sequencing (NGS) shotgun library preparation. However, both treatments caused severe reduction in PCR amplification efficiency, which led to low production in emulsion PCR (emPCR). The result was improved by amplification prior to emPCR. Further improvements, such as DNA strand repairing, are needed for the method to be applied practically in NGS. PMID:23814501

  12. Effects of DNA Extraction Procedures on Bacteroides Profiles in Fecal Samples From Various Animals Determined by Terminal Restriction Fragment Length Polymorphism Analysis

    EPA Science Inventory

    A major assumption in microbial source tracking is that some fecal bacteria are specific to a host animal, and thus provide unique microbial fingerprints that can be used to differentiate hosts. However, the DNA information obtained from a particular sample may be biased dependi...

  13. Molecular cloning of Renibacterium salmoninarum DNA fragments.

    PubMed

    Etchegaray, J P; Martínez, M A; Krauskopf, M; León, G

    1991-03-15

    A Renibacterium salmoninarum enriched recombinant DNA library was constructed to isolate DNA fragments which could be used as probes to detect gene sequences specific for the causative agent of bacterial kidney disease in salmonid fish. One fragment of 149 base pairs was isolated and its specificity and sequence determined. This probe may prove useful in the design of diagnostic tests for the disease in asymptomatic fish and ova. PMID:2044941

  14. Haplotypes of the human immunoglobulin lambda IGLV7SI and IGLVISI genes defined by restriction-site polymorphism and insertion/deletion of a 6-kb DNA fragment

    SciTech Connect

    Chuchana, P.; Frippiat, J.P.; Blancher, A.; Lefranc, G.; Lefranc, M.P. )

    1993-08-01

    Haplotypes were defined in the human immunoglobulin lambda locus by using three probes - V[lambda]VII, V[lambda]A, and V[lambda]I - hybridized to BamHI, KpnI, EcoRI, and HindIII digests. Four Kpnl alleles were described. Two of them, 13 kb and 16 kb, detected with both the V[lambda]VII and V[lambda]A probes, were correlated with 4.6-kb and 10.5-kb KpnI fragments, respectively, which hybridize to the V[lambda]I probe. The two others (17 kb and 24 kb) were detected with the three probes V[lambda]VII, V[lambda]A, and V[lambda]I. Moreover, the authors show that two of those haplotypes may reflect an insertion of 6 kb between V[lambda]A and V[lambda]1S1. Familial studies were performed to demonstrate the Mendelian inheritance. These results demonstrate the absence of association between the C[lambda] alleles and V[lambda] haplotypes. 29 refs., 5 figs., 2 tabs.

  15. Isolation of DNA from agarose gels using DEAE-paper. Application to restriction site mapping of adenovirus type 16 DNA.

    PubMed Central

    Winberg, G; Hammarskjöld, M L

    1980-01-01

    A new method for isolating DNA from agarose gels is described. The method involves the simultaneous transfer of all DNA-fragments from an agarose slab gel onto DEAE-cellulose paper and the elution of the individual fragments from the paper with 1 M NaCl. DNA isolated from agarose gels in this way is susceptible to cleavage with several restriction endonucleases, and can be labeled in vitro with E coli DNA-polymerase I, T4 DNA-polymerase and T4 polynucleotide kinase. We have used the method to construct restriction endonuclease maps of adenovirus type 16 DNA. Images PMID:6252542

  16. DNA fragment sizing and sorting by laser-induced fluorescence

    DOEpatents

    Hammond, Mark L.; Jett, James H.; Keller, Richard A.; Marrone, Babetta L.; Martin, John C.

    1996-01-01

    A method is provided for sizing DNA fragments using high speed detection systems, such as flow cytometry to determine unique characteristics of DNA pieces from a sample. In one characterization the DNA piece is fragmented at preselected sites to produce a plurality of DNA fragments. The DNA piece or the resulting DNA fragments are treated with a dye effective to stain stoichiometrically the DNA piece or the DNA fragments. The fluorescence from the dye in the stained fragments is then examined to generate an output functionally related to the number of nucleotides in each one of the DNA fragments. In one embodiment, the intensity of the fluorescence emissions from each fragment is linearly related to the fragment length. The distribution of DNA fragment sizes forms a characterization of the DNA piece for use in forensic and research applications.

  17. DNA fragmentation by charged particle tracks

    NASA Astrophysics Data System (ADS)

    Stenerlöw, B.; Höglund, E.; Carlsson, J.

    High-LET (linear energy transfer) charged particles induce DNA double-strand breaks (DSB) in a non-random fashion in mammalian cells. The clustering of DSB, probably determined by track structure as well as chromatin conformation, results in an excess of small- and intermediate-sized DNA fragments. DNA fragmentation in normal human fibroblasts (GM5758) was analyzed by pulsed-field gel electrophoresis after irradiation with photons ( 60Co) or 125 keV/μm nitrogen ions. Compared to conventional DSB analysis, i.e. assays only measuring the fraction of DNA smaller than a single threshold, the relative biological effectiveness (RBE) for DSB induction increased with 100%. Further, the size distribution of DNA fragments showed a significant dependence on radiation quality, with an excess of fragments up to 1 Mbp. Irradiation of naked genomic DNA without histone proteins increased the DSB yields 25 and 13 times for photons and nitrogen ions, respectively. The results suggest possible roles of both track structure and chromatin organization in the distribution of DNA double-strand breaks along the chromosome.

  18. Inhibition of restriction enzyme's DNA sequence recognition by PUVA treatment.

    PubMed

    Hanawa, Fujinori; Okamoto, Mamoru; Towers, G H Neil

    2003-01-01

    Applying various restriction enzymes on a specially designed 1.5 kb DNA fragment revealed that the inhibitory effects of PUVA treatment on restriction endonuclease activities are caused by recognition inhibition. In this study, Restriction enzymes which have a 5'-TpA sequence at the cleaving site (Kpn I, Xba I, Pme I, and Dra I), and non-cleaving site (Pac I) in recognition sites, or have two 5'-TpA sequences at the recognition site and a non-specific sequence between recognition and cleaving site (BciV I) were inhibited by PUVA treatment. Most of the other restriction enzymes used in this study which do not have a 5'-TpA sequence at their restriction site were not inhibited by PUVA treatment, although a 5'-TpA sequence is located adjacent (Sma I) or very close (BamH I, Sac I and Pst I) to the recognition and cleaving site for them. PMID:14510498

  19. Rapid sizing of individual fluorescently stained DNA fragments by flow cytometry.

    PubMed Central

    Goodwin, P M; Johnson, M E; Martin, J C; Ambrose, W P; Marrone, B L; Jett, J H; Keller, R A

    1993-01-01

    Large, fluorescently stained restriction fragments of lambda phage DNA are sized by passing individual fragments through a focused continuous wave laser beam in an ultrasensitive flow cytometer at a rate of 60 fragments per second. The size of the fluorescence burst emitted by each stained DNA fragment, as it passes through the laser beam, is measured in one millisecond. One hundred sixty four seconds of fluorescence burst data allow linear sizing of DNA with an accuracy of better than two percent over a range of 10 to 50 kbp. This corresponds to analyzing less than 1 pg of DNA. Sizing of DNA fragments by this approach is much faster, requires much less DNA, and can potentially analyze large fragments with better resolution and accuracy than with gel-based electrophoresis. Images PMID:8451182

  20. DNA fragmentation in mouse organs during endotoxic shock.

    PubMed Central

    Bohlinger, I.; Leist, M.; Gantner, F.; Angermüller, S.; Tiegs, G.; Wendel, A.

    1996-01-01

    The systemic inflammatory response syndrome has still an unpredictable outcome, and patients often die of multiple organ failure despite circulatory stabilization therapy. The still incompletely understood pathophysiological mechanisms include organ damage due to direct toxic actions of cytokines elicited by overactivation of the host response. To study this process of organ failure in experimental septic shock, we injected mice with a lethal dose of endotoxin and examined apoptotic and necrotic tissue damage biochemically, histologically, and ultrastructurally. Endotoxin administration caused oligonucleosomal as well as random DNA fragmentation in liver, lung, kidney, and intestine. In the liver, DNA fragmentation was not restricted to hepatocytes but also occurred in nonparenchymal cells. The DNA fragmentation was mediated by tumor necrosis factor and attenuated by endogenous nitric oxide release. Unlike the situation in D-galactosamine-sensitized mice, in which injection or release of tumor necrosis factor causes massive hepatocyte apoptosis, liver failure due to high doses of endotoxin was characterized by single-cell necrosis, a low incidence of apoptosis, and simultaneous damage to nonparenchymal cells. We conclude that, even though endotoxin causes cytokine-mediated DNA fragmentation in several organs including the liver, hepatocyte apoptosis itself seems to be a minor phenomenon in high-dose endotoxic shock in mice. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:8863685

  1. Unit cloning and amplification as novel and universal strategies for complex vector construction and small DNA fragment preparation.

    PubMed

    Ye, Chunjiang; Gu, Jingsong; Chen, Sunxiao; Deng, Anmei; Li, Yue Zhong; Li, Dianxiang

    2010-09-01

    With a novel and universal strategy for the cloning of multiple DNA fragments, a complex synthetic vector (pVEC100), harboring the target DNA fragments in conventional 100-bp DNA ladder, was constructed for efficient and large-scale production of 100-bp DNA marker through bacteria fermentation, plasmid extraction and restrictive digestion. Since the restrictive digestion of complex vectors yields insufficient small DNA fragments, an innovative PCR model was developed as an alternative. The PCR model comprised a specially designed template vector and a unit amplification model for producing groups of small DNA fragments. The unit amplification model improved the efficiency of the PCR protocol and made it more economical and easier for small DNA fragment amplification. The approach presented in this paper--a unit cloning model for constructing complex synthetic vectors combined with the modular design of unit amplification by PCR--is a powerful method for preparing small DNA fragments of DNA molecular weight standards. PMID:20690148

  2. Ultraviolet ray induces chromosomal giant DNA fragmentation followed by internucleosomal DNA fragmentation associated with apoptosis in rat glioma cells.

    PubMed

    Higuchi, Yoshiro; Mizukami, Yuji; Yoshimoto, Tanihiro

    2003-12-01

    Giant DNA fragments (1-2 Mbp) were found in C6 rat glioma cells irradiated by a lethal dose of ultraviolet-C (UV-C, 254 nm) at 50 J/m(2). After irradiation, the fragments mutated into high-molecular-weight (100-800 kbp) DNA fragments and then into ladder-formed internucleosomal DNA fragments. Poly-ADP-ribose polymerase (PARP) activity and NAD levels were reduced during DNA fragmentation. Some inhibitors of caspase and protease inhibited DNA ladder formation, but not giant DNA fragmentation, whereas antioxidants did not inhibit DNA fragmentation. These results suggest that a lethal dose of UV radiation induces giant DNA fragmentation and leads to internucleosomal DNA fragmentation associated with apoptosis through some caspases and nonreactive oxygen species in cells. PMID:15033744

  3. Polymerase chain reaction-restriction fragment length polymorphism authentication of raw meats from game birds.

    PubMed

    Rojas, María; González, Isabel; Fajardo, Violeta; Martín, Irene; Hernández, Pablo E; García, Teresa; Martín, Rosario

    2008-01-01

    Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis has been applied to the identification of meats from quail (Coturnix coturnix), pheasant (Phasianus colchicus), red-legged partridge (Alectoris rufa), guinea fowl (Numida meleagris), capercaillie (Tetrao urogallus), Eurasian woodcock (Scolopax rusticola), woodpigeon (Columba palumbus), and song thrush (Turdus philomelos). PCR amplification was performed using a set of primers flanking a conserved region of approximately 720 base pairs (bp) from the mitochondrial 12S rRNA gene. Restriction site analysis based on sequence data from this DNA fragment permitted the selection of AluI and BfaI endonucleases for species identification. The restriction profiles obtained when amplicons were digested with the chosen enzymes allowed the unequivocal identification of all game bird species analyzed. However, the use of the PCR-RFLP technique described is limited to raw meat authentication. It is not suitable for cooked products because thermal treatment strongly accelerates DNA degradation leading to difficulties in amplifying the 720 bp fragment. PMID:19202803

  4. DNA fragment sizing and sorting by laser-induced fluorescence

    SciTech Connect

    Jett, J.H.; Hammond, M.L.; Keller, R.A.; Marrone, B.L.; Martin, J.C.

    1992-12-31

    A method is provided for obtaining DNA fingerprints using high speed detection systems, such as flow cytometry to determine unique characteristics of DNA pieces from a selected sample. In one characterization the DNA piece is fragmented at preselected sites to produce a plurality of DNA fragments. The DNA piece or the resulting DNA fragments are treated with a dye effective to stain stoichiometrically the DNA fragments. The fluorescence from the dye in the stained fragments is then examined to generate an output functionally related to the number of nucleotides in each one of the DNA fragments. In one embodiment, the intensity of the fluorescence emissions from each fragment is directly proportional to the fragment length. Additional dyes can be bound to the DNA piece and DNA fragments to provide information additional to length information. Oligonucleotide specific dyes and/or hybridization probes can be bound to the DNA fragments to provide information on oligonucleotide distribution or probe hybridization to DNA fragments of different sizes.

  5. Effect of ultrasound on the separation of DNA fragments in agarose gel electrophoresis

    SciTech Connect

    Ma, Yinfa; Yeung, E.S. )

    1990-06-01

    Since its first use in 1966 interest in and the applications of electrophoresis of DNA fragments in agarose gel have grown rapidly. Nowadays, agarose gel electrophoresis has become a standard technique with high resolving power for the analysis of DNA structure, for example for the determination of the length of DNA fragments obtained by the action of restriction enzymes. The electrophoretic mobility ({mu}) of DNA fragments is influenced by various parameters-molecular weight, gel concentration, temperature, electric field, and DNA-agarose affinity. A comprehensive study of the influence of these main parameters has been reported. In this paper, the authors investigate a new effect on the electrophoretic mobility of DNA fragments in agarose gels, viz. the influence of ultrasound.

  6. Optical selection and collection of DNA fragments

    DOEpatents

    Roslaniec, Mary C.; Martin, John C.; Jett, James H.; Cram, L. Scott

    1998-01-01

    Optical selection and collection of DNA fragments. The present invention includes the optical selection and collection of large (>.mu.g) quantities of clonable, chromosome-specific DNA from a sample of chromosomes. Chromosome selection is based on selective, irreversible photoinactivation of unwanted chromosomal DNA. Although more general procedures may be envisioned, the invention is demonstrated by processing chromosomes in a conventional flow cytometry apparatus, but where no droplets are generated. All chromosomes in the sample are first stained with at least one fluorescent analytic dye and bonded to a photochemically active species which can render chromosomal DNA unclonable if activated. After passing through analyzing light beam(s), unwanted chromosomes are irradiated using light which is absorbed by the photochemically active species, thereby causing photoinactivation. As desired chromosomes pass this photoinactivation point, the inactivating light source is deflected by an optical modulator; hence, desired chromosomes are not photoinactivated and remain clonable. The selection and photoinactivation processes take place on a microsecond timescale. By eliminating droplet formation, chromosome selection rates 50 times greater than those possible with conventional chromosome sorters may be obtained. Thus, usable quantities of clonable DNA from any source thereof may be collected.

  7. Large-scale production of palindrome DNA fragments

    SciTech Connect

    Palmer, E.L.; Gewiess, A.; Harp, J.M.

    1995-10-10

    Our structural studies of nucleosomes necessitated the production of over 100 mg of a 146-bp perfect palindrome DNA for use in the reconstitution of perfectly symmetrical nucleosome core particles for detailed X-ray crystallographic analysis. The propagation of palindromic DNA sequences by bacterial culture is hindered by the instability of these sequences during bacterial replication and recombination. While the loss of some palindrome sequences can be elminated by the use of sbcB or sbcC mutants of Escherichia coli, not all palindrome-containing plasmids are faithfully maintained by these strains. The production of large quantities of palindrome DNA can therefore be extremely difficult. After trying several approaches, we were able to develop a reliable procedure for production of large quantities of palindrome DNA that involves production of plasmid containing multiple copies of the repeating unit of the palindrome which are isolated by restriction digestion and ligated in vitro to form the palindrome DNA. The procedure has resulted in the production of over 20 mg of a 146-bp DNA fragment in 2 weeks.

  8. MULTIPLE ENZYME RESTRICTION FRAGMENT LENGTH POLYMORPHISM ANALYSIS FOR HIGH RESOLUTION DISTINCTION OF PSEUDOMONAS (SENSU STRICTO) 16S RRNA GENES

    EPA Science Inventory

    Pseudomonas specific 16S rDNA PCR amplification and multiple enzyme restriction fragment length polymorphism (MERFLP) analysis using a single digestion mixture of Alu I, Hinf I, Rsa I, and Tru 9I distinguished 150 published sequences and reference strains of authentic Pseudomonas...

  9. Optimizing restriction fragment fingerprinting methods for ordering large genomic libraries

    SciTech Connect

    Branscomb, E.; Slezak, T.; Pae, R.; Carrano, A.V. ); Galas, D.; Waterman, M. )

    1990-01-01

    The authors present a statistical analysis of the problem of ordering large genomic cloned libraries through overlap detection based on restriction fingerprinting. Such ordering projects involve a large investment of effort involving many repetitious experiments. Their primary purpose here is to provide methods of maximizing the efficiency of such efforts. To this end, they adopt a statistical approach that uses the likelihood ratio as a statistic to detect overlap. The main advantages of this approach are that (1) it allows the relatively straightforward incorporation of the observed statistical properties of the data; (2) it permits the efficiency of a particular experimental method for detecting overlap to be quantitatively defined so that alternative experimental designs may be compared and optimized; and (3) it yields a direct estimate of the probability that any two library members overlap. This estimate is a critical tool for the accurate, automatic assembly of overlapping sets of fragments into islands called contigs.' These contigs must subsequently be connected by other methods to provide an ordered set of overlapping fragments covering the entire genome.

  10. Restriction Fragment Length Polymorphism Analysis Using Random Chromosomal Gene Probes for Epidemiological Analysis of Campylobacter jejuni Infections

    PubMed Central

    Fujimoto, Shuji; Umene, Kenichi; Saito, Mitsumasa; Horikawa, Kazumi; Blaser, Martin J.

    2000-01-01

    We have evaluated the ability of a new genotyping method for Campylobacter jejuni based on restriction fragment length polymorphisms using random chromosomal gene probes. DNAs from C. jejuni strains digested with each of three restriction enzymes, HhaI, HaeIII, and HpaII, were analyzed by Southern hybridization using each of two unrelated cosmid clones, P14 and P15 (respectively containing 30- and 35-kb genomic DNA fragments of C. jejuni strain OH4384). The method reported provides a stable and discriminating means for identifying C. jejuni strains and should be useful for epidemiological analyses. PMID:10747164

  11. Restriction cleavage map of mitochonrial DNA from the yeast Saccharomyces cerevisiae.

    PubMed Central

    Morimoto, R; Lewin, A; Rabinowitz, M

    1977-01-01

    Mitochondrial DNA (mtDNA) from the yeast Saccharomyces cerevisiae was cleaved by restriction endonucleases Eco RI, Hpa I, Bam HI, Hind III, Pst I, and Sal I, yielding 10, 7, 5, 6, 1, and 1 fragments, respectively. A physical ordering of the restriction sites on yeast mtDNA has been derived. Yeast mtDNA cannot be isolated as intact molecules, and it contains nicks and gaps which complicate the use of conventional fragment mapping procedures. Nevertheless, the position of each of the restriction sites was obtained primarily by reciprocal redigestion of isolated restriction fragments. This procedure was supplemented by co-digestion of mtDNA with a multisite enzyme and a single-site enzyme (i.e., Sal I or Pst I) which provided a unique orientation for overlapping fragments cleaved by Sal I or Pst I. The data obtained from these approaches were confirmed by analysis of double and triple enzyme digests. Analysis of partial digest fragments was used for positioning of the smallest Eco RI fragment. A comparison of mtDNA from four grande strains (MH41-7B, 19d, TR3-15A, and MH32-12D) revealed similar, but slightly varying restriction patterns, with an identical genome size for each of approximately 5 X 10(-7) d or 75 kb. A fifth grande strain, D273-10B from S. cerevisiae, revealed restriction patterns different from those of the above strains, with a smaller genome size of 70 kb. Images PMID:333388

  12. Using Terminal Restriction Fragment Length Polymorphism (T-RFLP) Analysis to Assess Microbial Community Structure in Compost Systems

    NASA Astrophysics Data System (ADS)

    Tiquia, Sonia M.

    Terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR-amplified genes is a widely used fingerprinting technique in composting systems. This analysis is based on the restriction endonuclease digestion of fluorescently end-labeled PCR products. The digested product is mixed with a DNA size standard, itself labeled with a distinct fluorescent dye, and the fragments are then separated by capillary or gel electrophoresis using an automated sequencer. Upon analysis, only the terminal end-labeled restriction fragments are detected. An electropherogram is produced, which shows a profile of compost microbial community as a series of peaks of varying height. This technique has also been effectively used in the exploration of complex microbial environments and in the study of bacterial, archaeal, and eukaryal populations in natural habitats.

  13. Restriction Fragment Length Polymorphisms of Virulence Plasmids in Rhodococcus equi

    PubMed Central

    Takai, Shinji; Shoda, Masato; Sasaki, Yukako; Tsubaki, Shiro; Fortier, Guillaume; Pronost, Stephane; Rahal, Karim; Becu, Teotimo; Begg, Angela; Browning, Glenn; Nicholson, Vivian M.; Prescott, John F.

    1999-01-01

    Virulent Rhodococcus equi, which is a well-known cause of pyogranulomatous pneumonia in foals, possesses a large plasmid encoding virulence-associated 15- to 17-kDa antigens. Foal and soil isolates from five countries—Argentina, Australia, Canada, France, and Japan—were investigated for the presence of 15- to 17-kDa antigens by colony blotting, using the monoclonal antibody 10G5, and the gene coding for 15- to 17-kDa antigens by PCR. Plasmid DNAs extracted from positive isolates were digested with restriction endonucleases BamHI, EcoRI, EcoT22I, and HindIII, and the digestion patterns that resulted divided the plasmids of virulent isolates into five closely related types. Three of the five types had already been reported in Canadian and Japanese isolates, and the two new types had been found in French and Japanese isolates. Therefore, we tentatively designated these five types 85-kb type I (pREAT701), 85-kb type II (a new type), 87-kb type I (EcoRI and BamHI type 2 [V. M. Nicholson and J. F. Prescott, J. Clin. Microbiol. 35:738–740, 1997]), 87-kb type II (a new type), and 90-kb (pREL1) plasmids. The 85-kb type I plasmid was found in isolates from Argentina, Australia, Canada, and France. Plasmid 87-kb type I was isolated in specimens from Argentina, Canada, and France. The 85-kb type II plasmid appeared in isolates from France. On the other hand, plasmids 87-kb type II and 90-kb were found only in isolates from Japan. These results revealed geographic differences in the distribution of the virulence plasmids found in the five countries and suggested that the restriction fragment length polymorphism of virulence plasmids might be useful to elucidate the molecular epidemiology of virulent R. equi in the world. PMID:10488224

  14. Use of Restriction Fragment Length Polymorphisms to Investigate Strain Variation Within Neisseria Meningitidis.

    NASA Astrophysics Data System (ADS)

    Williams, Shelley Diane

    Similarity within bacterial populations is difficult to assess due to the limited number of characters available for evaluation and the heterogeneity of bacterial species. Currently, the preferred method used to evaluate the structure of bacterial populations is multilocus enzyme electrophoresis. However, this method is extremely cumbersome and only offers an indirect measure of genetic similarities. The development of a more direct and less cumbersome method for this purpose is warranted. Restriction fragment length polymorphism analysis was evaluated as a tool for use in the study of bacterial population structures and in the epidemiology and surveillance of infectious disease. A collection of Neisseria meningitidis was available for use in the investigation of this technique. Neisseria meningitidis is the causative agent of epidemic cerebrospinal meningitis and septicemia as well as a variety of other clinical manifestations. Each isolate in the collection was defined in terms of serogroup specificity, clinical history, geographic source, and date of isolation. Forty -six strains were chosen for this study. The DNA from each strain was restricted with Pst1 and EcoR1 and electrophoresed on agarose gels. The DNA was transferred to nylon filters and hybridized with P ^{32} labeled DNA probes. Two randomly generated probes and a gene-specific probe were used to estimate the genetic similarities between and among the strains in the study population. A total of 28 different restriction fragment migration types were detected by the probes used. Data obtained from the RFLP analysis was analysed by cluster analysis and multivariate statistical methods. A total of 7 clones groups were detected. Two of these appear to be major clones that comprise 35% of the population. This analysis demonstrates the lack of structure within Neisseria meningitidis due primarily to a heterogenous population and the lack of geographic segregation. The potential utility of this technique as a tool in epidemiologic surveillance is addressed. Further work is needed in the evaluation of RFLP analysis in the taxonomy bacteria.

  15. Use of restriction fragment length polymorphisms to investigate strain variation within Neisseria meningitidis

    SciTech Connect

    Williams, S.D.

    1989-01-01

    Similarity within bacterial populations is difficult to assess due to the limited number of characters available for evaluation and the heterogeneity of bacterial species. Currently, the preferred method used to evaluate the structure of bacterial populations is multilocus enzyme electrophoresis. However, this method is extremely cumbersome and only offers an indirect measure of genetic similarities. The development of a more direct and less cumbersome method for this purpose is warranted. Restriction fragment length polymorphism analysis was evaluated as a tool for use in the study of bacterial population structures and in the epidemiology and surveillance of infectious disease. A collection of Neisseria meningitidis was available for use in the investigation of this technique. Neisseria meningitidis is the causative agent of epidemic cerebrospinal meningitis and septicemia as well as a variety of other clinical manifestations. Each isolate in the collection was defined in terms of serogroup specificity, clinical history, geographic source, and date of isolation. Forty-six strains were chosen for this study. The DNA from each strain was restricted with Pst1 and EcoR1 and electrophoresed on agarose gels. The DNA was transferred to nylon filters and hybridized with P{sup 32} labeled DNA probes. Two randomly generated probes and a gene-specific probe were used to estimate the genetic similarities between and among the strains in the study population. A total of 28 different restriction fragment migration types were detected by the probes used. Data obtained from the RFLP analysis was analyzed by cluster analysis and multivariate statistical methods. A total of 7 clones groups were detected. Two of these appear to be major clones that comprise 35% of the population.

  16. The identification and differentiation of the Candida parapsilosis complex species by polymerase chain reaction-restriction fragment length polymorphism of the internal transcribed spacer region of the rDNA

    PubMed Central

    Barbedo, Leonardo Silva; Figueiredo-Carvalho, Maria Helena Galdino; Muniz, Mauro de Medeiros; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis: C. para- psilosis sensu stricto, Candida orthopsilosis, andCandida metapsilosis. In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economical identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories. PMID:27074256

  17. A method for selective PCR-amplification of genomic DNA fragments (SAGF method)

    SciTech Connect

    Zheleznaya, L.A.; Menzenyuk, O.Y.; Matvienko, N.N.; Matvienko, N.I.

    1995-09-01

    A method is suggested for dividing into individual sets of the complex mixtures of fragments obtained by DNA cleavage with type IIS and IIN restriction endonucleases producing single-stranded termini with different sequences at the DNA fragment ends. The method is based on the ligation of short double-stranded adapters with single-stranded ends complementary to termini of the selected set of fragments followed by PCR-amplification with the primer representing one of the adapter chains. Using endonucleases BcoKI and Bli736I, recognizing sequences CTCTTC and GGTCTC and producing three- and four nucleotide 5{prime}-termini, respectively, it has been shown that amplification of a set of fragments occurs only upon attachment of the adapters to the DNA fragments with DNA-ligase. Several possible applications of the SAGF method are suggested: obtaining individual bands in DNA fingerprinting; reducing the kinetic complexity of DNA in representative difference analysis (RDA method) of complex genomes; cataloging of DNA fragments; construction of physical genome maps. 13 refs., 3 figs., 2 tabs.

  18. EVALUATING THE PHYSICAL CAPTURE METHOD OF TERMINAL RESTRICTION FRAGMENT LENGTH POLYMORPHISM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Terminal restriction fragment length polymorphism (T-RFLP) is a popular method of comparative microbial community analysis which is normally accomplished by tagging terminal restriction fragments (T-RFs) with a fluorescent primer. Here we evaluate an alternative method of T-RFLP where T-RFs are phys...

  19. High Fragmentation Characterizes Tumour-Derived Circulating DNA

    PubMed Central

    Mouliere, Florent; Robert, Bruno; Arnau Peyrotte, Erika; Del Rio, Maguy; Ychou, Marc; Molina, Franck; Gongora, Celine; Thierry, Alain R.

    2011-01-01

    Background Circulating DNA (ctDNA) is acknowledged as a potential diagnostic tool for various cancers including colorectal cancer, especially when considering the detection of mutations. Certainly due to lack of normalization of the experimental conditions, previous reports present many discrepancies and contradictory data on the analysis of the concentration of total ctDNA and on the proportion of tumour-derived ctDNA fragments. Methodology In order to rigorously analyse ctDNA, we thoroughly investigated ctDNA size distribution. We used a highly specific Q-PCR assay and athymic nude mice xenografted with SW620 or HT29 human colon cancer cells, and we correlated our results by examining plasma from metastatic CRC patients. Conclusion/Significance Fragmentation and concentration of tumour-derived ctDNA is positively correlated with tumour weight. CtDNA quantification by Q-PCR depends on the amplified target length and is optimal for 60–100 bp fragments. Q-PCR analysis of plasma samples from xenografted mice and cancer patients showed that tumour-derived ctDNA exhibits a specific amount profile based on ctDNA size and significant higher ctDNA fragmentation. Metastatic colorectal patients (n = 12) showed nearly 5-fold higher mean ctDNA fragmentation than healthy individuals (n = 16). PMID:21909401

  20. Identification of novel DNA fragments and partial sequence of a genomic island specific of Brucella pinnipedialis.

    PubMed

    Maquart, Marianne; Fardini, Yann; Zygmunt, Michel S; Cloeckaert, Axel

    2008-11-25

    Since the 1990s, Brucella strains have been isolated from a wide variety of marine mammals and were recently recognized as two different species, i.e. Brucella pinnipedialis for pinniped isolates and Brucella ceti for cetacean isolates. The aim of this study was to identify specific DNA fragments of marine mammal Brucella strains using a previously described infrequent restriction site-PCR (IRS-PCR) method but with three new couples of restriction enzymes applied on a larger panel of marine mammal Brucella isolates (n=74) and one human isolate from New Zealand likely from marine mammal origin. This study revealed five DNA fragments specific of Brucella strains isolated from marine mammals. Among them two new DNA fragments were specific of B. pinnipedialis but were not detected in hooded seal isolates. DNA fragment I identified in the previous IRS-PCR study and fragment VI of this study were located on a cloned and sequenced 6kb SacI fragment. Its nucleotide sequence revealed that it is likely part of a putative genomic island. Sequence analysis showed that it carries four ORFs coding for putative metabolic functions. Although hooded seal isolates are classified within B. pinnipedialis it was shown in this study that they do not carry this genomic island and this raises the question about their evolutionary history within B. pinnipedialis. PMID:18514443

  1. Separation of random fragments of DNA according to properties of their sequences.

    PubMed

    Fischer, S G; Lerman, L S

    1980-08-01

    The separation of DNA fragments by electrophoresis at high temperature in a denaturing gradient is independent of the length of the fragments. We have suggested that the basis of fragment separation is that each DNA molecule undergoes partial melting as it encounters a concentration of denaturants sufficient to melt its least stable sequence, while other sequences remain double stranded; in the partially melted configuration, DNA can continue migration only slowly. This model is consistent with the observation that fragments of lambda phage DNA cleaved by different restriction endonucleases reach the same final depth in the gel if they contain the same least-stable sequence. A unique set of bands is produced from the electrophoresis of randomly fragmented DNA; this would be expected if there were a limited number of melting centers occupying discrete genetic loci. An intact DNA molecule penetrates about as deeply into the gel as the uppermost band after fragmentation; this would be expected only if the least-stable sequence controls the final depth of the whole molecule. PMID:6254023

  2. Development of a fluorophore-ribosomal DNA restriction typing method for monitoring structural shifts of microbial communities.

    PubMed

    Wang, Tingting; Zhang, Xiaojun; Zhang, Menghui; Wang, Linghua; Zhao, Liping

    2011-05-01

    DNA restriction fragment polymorphism technologies such as amplified ribosomal DNA restriction analysis (ARDRA) and terminal restriction fragment length polymorphism (T-RFLP) have been widely used in investigating microbial community structures. However, these methods are limited due to either the low resolution or sensitivity. In this study, a fluorophore-ribosomal DNA restriction typing (f-DRT) approach is developed for structural profiling of microbial communities. 16S rRNA genes are amplified from the community DNA and digested by a single restriction enzyme Msp I. All restriction fragments are end-labeled with a fluorescent nucleotide Cy5-dCTP via a one-step extension reaction and detected with an automated DNA sequencer. All 50 predicted restriction fragments between 100 and 600 bp were detected when twelve single 16S rRNA gene sequences were analyzed using f-DRT approach; 92% of these fragments were determined with accuracy of ±2 bp. In the defined model communities containing five components with different ratios, relative abundance of each component was correctly revealed by this method. The f-DRT analysis also showed structural shifts of intestinal microbiota in carcinogen-treated rats during the formation of precancerous lesions in the colon, as sensitive as multiple digestion-based T-RFLP analysis. This study provides a labor and cost-saving new method for monitoring structural shifts of microbial communities. PMID:21274516

  3. A mechanism of gene amplification driven by small DNA fragments.

    PubMed

    Mukherjee, Kuntal; Storici, Francesca

    2012-01-01

    DNA amplification is a molecular process that increases the copy number of a chromosomal tract and often causes elevated expression of the amplified gene(s). Although gene amplification is frequently observed in cancer and other degenerative disorders, the molecular mechanisms involved in the process of DNA copy number increase remain largely unknown. We hypothesized that small DNA fragments could be the trigger of DNA amplification events. Following our findings that small fragments of DNA in the form of DNA oligonucleotides can be highly recombinogenic, we have developed a system in the yeast Saccharomyces cerevisiae to capture events of chromosomal DNA amplification initiated by small DNA fragments. Here we demonstrate that small DNAs can amplify a chromosomal region, generating either tandem duplications or acentric extrachromosomal DNA circles. Small fragment-driven DNA amplification (SFDA) occurs with a frequency that increases with the length of homology between the small DNAs and the target chromosomal regions. SFDA events are triggered even by small single-stranded molecules with as little as 20-nt homology with the genomic target. A double-strand break (DSB) external to the chromosomal amplicon region stimulates the amplification event up to a factor of 20 and favors formation of extrachromosomal circles. SFDA is dependent on Rad52 and Rad59, partially dependent on Rad1, Rad10, and Pol32, and independent of Rad51, suggesting a single-strand annealing mechanism. Our results reveal a novel molecular model for gene amplification, in which small DNA fragments drive DNA amplification and define the boundaries of the amplicon region. As DNA fragments are frequently found both inside cells and in the extracellular environment, such as the serum of patients with cancer or other degenerative disorders, we propose that SFDA may be a common mechanism for DNA amplification in cancer cells, as well as a more general cause of DNA copy number variation in nature. PMID:23271978

  4. Combination of native and denaturing PAGE for the detection of protein binding regions in long fragments of genomic DNA

    PubMed Central

    Kaer, Kristel; Mätlik, Kert; Metsis, Madis; Speek, Mart

    2008-01-01

    Background In a traditional electrophoresis mobility shift assay (EMSA) a 32P-labeled double-stranded DNA oligonucleotide or a restriction fragment bound to a protein is separated from the unbound DNA by polyacrylamide gel electrophoresis (PAGE) in nondenaturing conditions. An extension of this method uses the large population of fragments derived from long genomic regions (approximately 600 kb) for the identification of fragments containing protein binding regions. With this method, genomic DNA is fragmented by restriction enzymes, fragments are amplified by PCR, radiolabeled, incubated with nuclear proteins and the resulting DNA-protein complexes are separated by two-dimensional PAGE. Shifted DNA fragments containing protein binding sites are identified by using additional procedures, i. e. gel elution, PCR amplification, cloning and sequencing. Although the method allows simultaneous analysis of a large population of fragments, it is relatively laborious and can be used to detect only high affinity protein binding sites. Here we propose an alternative and straightforward strategy which is based on a combination of native and denaturing PAGE. This strategy allows the identification of DNA fragments containing low as well as high affinity protein binding regions, derived from genomic DNA (<10 kb) of known sequence. Results We have combined an EMSA-based selection step with subsequent denaturing PAGE for the localization of protein binding regions in long (up to10 kb) fragments of genomic DNA. Our strategy consists of the following steps: digestion of genomic DNA with a 4-cutter restriction enzyme (AluI, BsuRI, TruI, etc), separation of low and high molecular weight fractions of resultant DNA fragments, 32P-labeling with Klenow polymerase, traditional EMSA, gel elution and identification of the shifted bands (or smear) by denaturing PAGE. The identification of DNA fragments containing protein binding sites is carried out by running the gel-eluted fragments alongside with the full "spectrum" of initial restriction fragments of known size. Here the strategy is used for the identification of protein-binding regions in the 5' region of the rat p75 neurotrophin receptor (p75NTR) gene. Conclusion The developed strategy is based on a combination of traditional EMSA and denaturing PAGE for the identification of protein binding regions in long fragments of genomic DNA. The identification is straightforward and can be applied to shifted bands corresponding to stable DNA-protein complexes as well as unstable complexes, which undergo dissociation during electrophoresis. PMID:18533036

  5. Species identification of Malayan Gaur, Kedah-Kelantan and Bali cattle using polymerase chain reaction-restricted fragment length polymorphism.

    PubMed

    Romaino, S M N; Fazly-Ann, Z A; Loo, S S; Hafiz, M M; Hafiz, M D; Iswadi, M I; Kashiani, P; Rosli, M K A; Syed-Shabthar, S M F; Md-Zain, B M; Abas-Mazni, O

    2014-01-01

    Mitochondrial DNA (mtDNA) is a useful genetic marker that can be used for species identification. The cytochrome b (Cyt b) gene is a suitable mtDNA candidate gene for use in phylogenetic analyses due to its sequence variability, which makes it appropriate for comparisons at the subspecies, species, and genus levels. This study was conducted to develop a rapid molecular method for species identification of Malayan gaur (Bos gaurus hubbacki), Kedah-Kelantan (KK) (Bos indicus), and Bali (Bos javanicus) cattle in Malaysia. DNA was extracted from blood samples of 8 Malayan gaurs, 30 KK, and 28 Bali cattle. A set of both specific and universal primers for the Cyt b gene were used in PCR amplification. DNA sequences obtained were then analyzed using BioEdit and Restriction Mapper softwares. The PCR products obtained from Cyt b gene amplification were then subjected to restriction enzyme digestion. The amplification, using both specific and universal primers, produced a 154- and a 603-bp fragment, respectively, in all three species. Two restriction enzymes, NlaIV and SspI, were used to obtain specific restriction profiles that allowed direct identification of Malayan gaur, KK, and Bali cattle. Our findings indicate that all three species can be identified separately using a combination of universal primers and the restriction enzyme SspI. PMID:24535867

  6. Investigating of yeast species in wine fermentation using terminal restriction fragment length polymorphism method.

    PubMed

    Sun, Yue; Liu, Yanlin

    2014-04-01

    The objective of this study was to examine the potential of terminal restriction fragment length polymorphism (T-RFLP) in monitoring yeast communities during wine fermentation and to reveal new information on yeast community of Chinese enology. Firstly, terminal restriction fragment (TRF) lengths database was constructed using 32 pure yeast species. Ten of these species were firstly documented. The species except for Candida vini, Issatchenkia orientalis/Candida krusei, Saccharomyces bayanus, Saccharomyces pastorianus, Saccharomyces cerevisiae, Saccharomyces kudriarzevii and Zygosaccharomyces bisporus could be distinguished by the T-RFLP targeting 5.8S-ITS rDNA. Moreover, the yeast communities in spontaneous fermentation of Chardonnay and Riesling were identified by T-RFLP and traditional methods, including colony morphology on Wallerstein Nutrient (WLN) medium and 5.8S-ITS-RFLP analysis. The result showed that T-RFLP profiles of the yeast community correlated well with that of the results identified by the traditional methods. The TRFs with the highest intensity and present in all the samples corresponded to Saccharomyces sp. Other species detected by both approaches were Hanseniaspora uvarum, Metschnikowia pulcherrima, Pichia minuta var. minuta, Saccharomycodes ludwigii/Torulaspora delbrueckii and Candida zemplinina. This study revealed that T-RFLP technique is a rapid and useful tool for monitoring the composition of yeast species during wine fermentation. PMID:24290644

  7. Autoscreening of Restriction Endonucleases for PCR-Restriction Fragment Length Polymorphism Identification of Fungal Species, with Pleurotus spp. as an Example▿ †

    PubMed Central

    Yang, Zhi-Hui; Huang, Ji-Xiang; Yao, Yi-Jian

    2007-01-01

    A molecular method based on PCR-restriction fragment length polymorphism (RFLP) analysis of internal transcribed spacer (ITS) ribosomal DNA sequences was designed to rapidly identify fungal species, with members of the genus Pleurotus as an example. Based on the results of phylogenetic analysis of ITS sequences from Pleurotus, a PCR-RFLP endonuclease autoscreening (PRE Auto) program was developed to screen restriction endonucleases for discriminating multiple sequences from different species. The PRE Auto program analyzes the endonuclease recognition sites and calculates the sizes of the fragments in the sequences that are imported into the program in groups according to species recognition. Every restriction endonuclease is scored through the calculation of the average coefficient for the sequence groups and the average coefficient for the sequences within a group, and then virtual electrophoresis maps for the selected restriction enzymes, based on the results of the scoring system, are displayed for the rapid determination of the candidate endonucleases. A total of 85 haplotypes representing 151 ITS sequences were used for the analysis, and 2,992 restriction endonucleases were screened to find the candidates for the identification of species. This method was verified by an experiment with 28 samples representing 12 species of Pleurotus. The results of the digestion by the restriction enzymes showed the same patterns of DNA fragments anticipated by the PRE Auto program, apart from those for four misidentified samples. ITS sequences from 14 samples (of which nine sequences were obtained in this study), including four originally misidentified samples, confirmed the species identities revealed by the PCR-RFLP analysis. The method developed here can be used for the identification of species of other living microorganisms. PMID:17965212

  8. Rapid identification of Campylobacter species by restriction fragment length polymorphism analysis of a PCR-amplified fragment of the gene coding for 16S rRNA.

    PubMed

    Cardarelli-Leite, P; Blom, K; Patton, C M; Nicholson, M A; Steigerwalt, A G; Hunter, S B; Brenner, D J; Barrett, T J; Swaminathan, B

    1996-01-01

    Restriction fragment length polymorphism analysis of a PCR-amplified DNA fragment of the gene coding for 16S rRNA was performed on 148 previously characterized strains of Campylobacter, Helicobacter, Arcobacter, and Wolinella succinogenes and 13 Campylobacter-like isolates. These strains included clinical, animal, and environmental isolates. PCR amplification generated a 283-bp fragment from all species. The amplicon from each strain was digested with six restriction endonucleases (AccI, AvaI, DdeI, HaeIII, HpaII, XhoI). DdeI was useful for the initial grouping of the strains. Additional discrimination within the different DdeI groups was obtained with AccI, HaeIII, HpaII, and XhoI digestions. The PCR-restriction fragment length polymorphism analysis allowed for the discrimination of members of the genus Campylobacter from members of closely related genera and discrimination between Campylobacter species. The proposed method is simple and rapid and can be useful for the routine identification of Campylobacter-like organisms in clinical or epidemiologic studies. PMID:8748274

  9. Restriction fragment length polymorphisms in rRNA operons for subtyping Shigella sonnei.

    PubMed

    Hinojosa-Ahumada, M; Swaminathan, B; Hunter, S B; Cameron, D N; Kiehlbauch, J A; Wachsmuth, I K; Strockbine, N A

    1991-11-01

    Shigella sonnei is the most frequent cause of shigellosis in the United States. Epidemiologic studies of this organism have been hampered by the lack of adequate typing procedures. Ribosomal DNA analysis (ribotyping), a method which analyzes restriction fragment length polymorphisms in the chromosomal genes that encode rRNA, has recently been shown to be useful for microbial species identification and subtyping. To determine whether ribotyping could be used to distinguish between S. sonnei isolates, we conducted Southern hybridization studies on isolates from 16 different geographic locations and from four recent outbreaks. S. sonnei genomic DNA fragments generated following digestion with SalI hybridized with Escherichia coli 16S and 23S rRNAs to produce six distinct patterns; strains with patterns 1, 2, and 3 were each further subdivided into two additional patterns by using PvuII, SmaI, and SstI, respectively. Epidemiologically related strains had identical patterns. Ribotyping appears to be a useful tool for epidemiologic studies of shigellosis caused by S. sonnei. PMID:1723069

  10. Effect of aging and dietary restriction on DNA repair

    SciTech Connect

    Weraarchakul, N.; Strong, R.; Wood, W.G.; Richardson, A.

    1989-03-01

    DNA repair was studied as a function of age in cells isolated from both the liver and the kidney of male Fischer F344 rats. DNA repair was measured by quantifying unscheduled DNA synthesis induced by UV irradiation. Unscheduled DNA synthesis decreased approximately 50% between the ages of 5 and 30 months in both hepatocytes and kidney cells. The age-related decline in unscheduled DNA synthesis in cells isolated from the liver and kidney was compared in rats fed ad libitum and rats fed a calorie-restricted diet; calorie restriction has been shown to increase the survival of rodents. The level of unscheduled DNA synthesis was significantly higher in hepatocytes and kidney cells isolated from the rats fed the restricted diet. Thus, calorie restriction appears to retard the age-related decline in DNA repair.

  11. DNA fragmentation and sperm head morphometry in cat epididymal spermatozoa.

    PubMed

    Vernocchi, Valentina; Morselli, Maria Giorgia; Lange Consiglio, Anna; Faustini, Massimo; Luvoni, Gaia Cecilia

    2014-10-15

    Sperm DNA fragmentation is an important parameter to assess sperm quality and can be a putative fertility predictor. Because the sperm head consists almost entirely of DNA, subtle differences in sperm head morphometry might be related to DNA status. Several techniques are available to analyze sperm DNA fragmentation, but they are labor-intensive and require expensive instrumentations. Recently, a kit (Sperm-Halomax) based on the sperm chromatin dispersion test and developed for spermatozoa of different species, but not for cat spermatozoa, became commercially available. The first aim of the present study was to verify the suitability of Sperm-Halomax assay, specifically developed for canine semen, for the evaluation of DNA fragmentation of epididymal cat spermatozoa. For this purpose, DNA fragmentation indexes (DFIs) obtained with Sperm-Halomax and terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) were compared. The second aim was to investigate whether a correlation between DNA status, sperm head morphology, and morphometry assessed by computer-assisted semen analysis exists in cat epididymal spermatozoa. No differences were observed in DFIs obtained with Sperm-Halomax and TUNEL. This result indicates that Sperm-Halomax assay provides a reliable evaluation of DNA fragmentation of epididymal feline spermatozoa. The DFI seems to be independent from all the measured variables of sperm head morphology and morphometry. Thus, the evaluation of the DNA status of spermatozoa could effectively contribute to the completion of the standard analysis of fresh or frozen semen used in assisted reproductive technologies. PMID:25129872

  12. Bacterial natural transformation by highly fragmented and damaged DNA

    PubMed Central

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic A. A.; Mayar, J. Victor Moreno; Rasmussen, Simon; Dahl, Tais W.; Rosing, Minik T.; Poole, Anthony M.; Sicheritz-Ponten, Thomas; Brunak, Søren; Inselmann, Sabrina; de Vries, Johann; Wackernagel, Wilfried; Pybus, Oliver G.; Nielsen, Rasmus; Johnsen, Pål Jarle; Nielsen, Kaare Magne; Willerslev, Eske

    2013-01-01

    DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often <100 bp) and may persist in the environment for more than half a million years. Fragmented DNA is recognized as nutrient source for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations generated by uptake of short DNA fragments escape mismatch repair. Moreover, double-nucleotide polymorphisms appear more common among genomes of transformable than nontransformable bacteria. Our findings reveal that short and damaged, including truly ancient, DNA molecules, which are present in large quantities in the environment, can be acquired by bacteria through natural transformation. Our findings open for the possibility that natural genetic exchange can occur with DNA up to several hundreds of thousands years old. PMID:24248361

  13. Bacterial natural transformation by highly fragmented and damaged DNA.

    PubMed

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic A A; Mayar, J Victor Moreno; Rasmussen, Simon; Dahl, Tais W; Rosing, Minik T; Poole, Anthony M; Sicheritz-Ponten, Thomas; Brunak, Søren; Inselmann, Sabrina; de Vries, Johann; Wackernagel, Wilfried; Pybus, Oliver G; Nielsen, Rasmus; Johnsen, Pål Jarle; Nielsen, Kaare Magne; Willerslev, Eske

    2013-12-01

    DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often <100 bp) and may persist in the environment for more than half a million years. Fragmented DNA is recognized as nutrient source for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥ 20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations generated by uptake of short DNA fragments escape mismatch repair. Moreover, double-nucleotide polymorphisms appear more common among genomes of transformable than nontransformable bacteria. Our findings reveal that short and damaged, including truly ancient, DNA molecules, which are present in large quantities in the environment, can be acquired by bacteria through natural transformation. Our findings open for the possibility that natural genetic exchange can occur with DNA up to several hundreds of thousands years old. PMID:24248361

  14. Epidemiologic study of Taylorella equigenitalis strains by field inversion gel electrophoresis of genomic restriction endonuclease fragments.

    PubMed

    Bleumink-Pluym, N; ter Laak, E A; van der Zeijst, B A

    1990-09-01

    Contagious equine metritis (CEM), a sexually transmitted bacterial disease, was first described in thoroughbred horses. It also occurs in nonthoroughbred horses, in which it produces isolated, apparently unrelated outbreaks. Thirty-two strains of Taylorella equigenitalis, the causative agent of CEM, from all over the world were characterized by field inversion gel electrophoresis of fragments of genomic DNA obtained by digestion with low-cleavage-frequency restriction enzymes. This resulted in a division into five clearly distinct groups. Strains from thoroughbred horses from all continents belonged to one group. Strains from nonthoroughbred horses from various countries were different from strains from thoroughbred horses; four groups could be determined. Two groups contained both streptomycin-resistant and streptomycin-susceptible strains. The data indicate that CEM in nonthoroughbreds did not originate from the thoroughbred population; also, the reverse was not demonstrated. Thus, extensive international transportation directives regarding the testing of nonthoroughbred horses for CEM may need reconsideration. PMID:2172296

  15. DNA studies using atomic force microscopy: capabilities for measurement of short DNA fragments

    PubMed Central

    Pang, Dalong; Thierry, Alain R.; Dritschilo, Anatoly

    2015-01-01

    Short DNA fragments, resulting from ionizing radiation induced DNA double strand breaks (DSBs), or released from cells as a result of physiological processes and circulating in the blood stream, may play important roles in cellular function and potentially in disease diagnosis and early intervention. The size distribution of DNA fragments contribute to knowledge of underlining biological processes. Traditional techniques used in radiation biology for DNA fragment size measurements lack the resolution to quantify short DNA fragments. For the measurement of cell-free circulating DNA (ccfDNA), real time quantitative Polymerase Chain Reaction (q-PCR) provides quantification of DNA fragment sizes, concentration and specific gene mutation. A complementary approach, the imaging-based technique using Atomic Force Microscopy (AFM) provides direct visualization and measurement of individual DNA fragments. In this review, we summarize and discuss the application of AFM-based measurements of DNA fragment sizes. Imaging of broken plasmid DNA, as a result of exposure to ionizing radiation, as well as ccfDNA in clinical specimens offer an innovative approach for studies of short DNA fragments and their biological functions. PMID:25988169

  16. Rapid diagnosis of adenoviral conjunctivitis by PCR and restriction fragment length polymorphism analysis.

    PubMed Central

    Saitoh-Inagawa, W; Oshima, A; Aoki, K; Itoh, N; Isobe, K; Uchio, E; Ohno, S; Nakajima, H; Hata, K; Ishiko, H

    1996-01-01

    To detect and identify adenovirus (Ad), we used a combination of PCR and restriction fragment length polymorphism (RFLP) analysis. Nested PCR with two primer sets that hybridize to the conserved region for hexon proteins of 14 prototypes of Ad, Ad serotype 1 (Ad1) to Ad8, -11, -14, -19, -37, -40, and -41, amplified a 956-bp DNA fragment. The amplified fragments from the 14 prototypes were completely differentiated with a combination of three restriction endonucleases, EcoT14I, HaeIII, and HintI. We applied this new method for 127 samples of conjunctival scrapings from patients with conjunctivitis and compared the results with those obtained with the combination of culture isolation and a neutralization test (NT). PCR gave a positive result in 69 of 127 cases (54.3%), while only 61 of the 127 samples (48.0%) tested positive by culture isolation. Compared with isolation, the PCR method had a sensitivity of 100% (61 of 61). Positive PCR samples were further classified as Ad37 (59.5%), -3(31.9%), -11 (4.3%), -8 (2.9%), and -4 (1.4%) by PCR-RFLP analysis. Of eight samples that were PCR positive and culture isolation negative, six were Ad37 and two were Ad8 by PCR-RFLP analysis. These differentiations of isolation-positive samples were identical to the results obtained by the NT. It took only 3 days to detect and identify Ad by PCR-RFLP analysis, whereas it took at least 3 weeks by culture isolation and NT. Our newly developed method of detecting and typing human Ad by PCR-RFLP analysis is more sensitive, accurate, and rapid than the conventional method of culture isolation and an NT. PMID:8862567

  17. Identification of fungemia agents using the polymerase chain reaction and restriction fragment length polymorphism analysis.

    PubMed

    Santos, M S; Souza, E S; S Junior, R M; Talhari, S; Souza, J V B

    2010-08-01

    Prompt and specific identification of fungemia agents is important in order to define clinical treatment. However, in most cases conventional culture identification can be considered to be time-consuming and not without errors. The aim of the present study was to identify the following fungemia agents: Candida albicans, Candida parapsilosis, Candida tropicalis, Candida glabrata, Cryptococcus neoformans, Cryptococcus gattii, and Histoplasma capsulatum using the polymerase chain reaction and restriction fragment length polymorphism analysis (PCR/RFLP). More specifically: a) to evaluate 3 different amplification regions, b) to investigate 3 different restriction enzymes, and c) to use the best PCR/RFLP procedure to indentify 60 fungemia agents from a culture collection. All 3 pairs of primers (ITS1/ITS4, NL4/ITS5 and Primer1/Primer2) were able to amplify DNA from the reference strains. However, the size of these PCR products did not permit the identification of all the species studied. Three restriction enzymes were used to digest the PCR products: HaeIII, Ddel and Bfal. Among the combinations of pairs of primers and restriction enzymes, only one (primer pair NL4/ITS5 and restriction enzyme Ddel) produced a specific RFLP pattern for each microorganism studied. Sixty cultures of fungemia agents (selected from the culture collection of Fundação de Medicina Tropical do Amazonas--FMTAM) were correctly identified by PCR/RFLP using the prime pair NL4/ITS5 and Ddel. We conclude that the method proved to be both simple and reproducible, and may offer potential advantages over phenotyping methods. PMID:20640387

  18. Microfluidic DNA fragmentation for on-chip genomic analysis.

    PubMed

    Shui, Lingling; Bomer, Johan G; Jin, Mingliang; Carlen, Edwin T; van den Berg, Albert

    2011-12-01

    We report a high-throughput clog-free microfluidic deoxyribonucleic acid (DNA) fragmentation chip that is based on hydrodynamic shearing. Salmon sperm DNA has been reproducibly fragmented down to ∼ 5k bp fragment lengths by applying low hydraulic pressures (≤1 bar) across micromachined constrictions positioned in larger microfluidic channels that create point-sink flow with large velocity gradients near the constriction entrance. Long constrictions (100 µm) produce shorter fragment lengths compared to shorter constrictions (10 µm), while increasing the hydrodynamic pressure requirement. Sample recirculation (10 ×) in short constrictions reduces the mean fragment length and fragment length variation, and improves yield compared to single-pass experiments without increasing the hydrodynamic pressure. PMID:22101733

  19. Generation of Specific Repeated Fragments of Eukaryote DNA

    PubMed Central

    Mowbray, S. L.; Landy, A.

    1974-01-01

    Calf-thymus DNA, hydrolyzed with a site-specific endonuclease from Haemophilus influenzae Rd, yields 12 discrete bands on polyacrylamide-agarose gels. These range in size from 7.5 104 to 2 106 daltons, and they represent about 5% of the total DNA with individual fragments comprising 0.1-1.5%. The various DNA segments are repeated between 1500 and 220,000 times per haploid genome. Whereas the wide range of reiteration frequencies suggests different origins for some of the fragments, the bias in fragment densities in CsCl and in Ag+-Cs2SO4 toward those of known satellite DNAs suggests similar origins for some of them. Models for the possible origin of the DNA fragments can be grouped into three distinct, experimentally distinguishable, classes. Images PMID:4525302

  20. In vivo cleavage of cytosine-containing bacteriophage T4 DNA to genetically distinct, discretely sized fragments

    SciTech Connect

    Carlson, K.; Wiberg, J.S.

    1983-10-01

    Mutants of bacteriophage T4D that are defective in genes 42 (dCMP hydroxymethylase), 46 (DNA exonuclease), and 56 (dCTPase) produce limited amounts of phage DNA in Escherichia coli B. In this DNA, glucosylated 5-hydroxymethylcytosine is completely replaced by cytosine. It is found that this DNA rapidly becomes fragmented in vivo to at least 16 discrete bands as visualized on agarose gels subjected to electrophoresis. The sizes of the fragments ranged from more than 20 to less than 2 kilobase pairs. When DNAs from two of these bands were radioactively labeled in vitro by nick translation and hybridized to XbaI restiction fragments of cytosine-containing T4 DNA, evidence was obtained that the two bands are genetically distinct, i.e., they contain DNA from different parts of the T4 genome. Mutational inactivation of T4 endonuclease II (gene denA) prevented the fragmentation. Three different mutations in T4 endonuclease IV (gene denB) caused the same minor changes in the pattern of fragments. It is concluded that T4 endonuclease II is required, and endonuclease IV is involved to a minor extent, in the in vivo production of these cytosine-containing T4 DNA fragments. These DNA fragments are viewed as ''restriction fragments'' since they represent degradation products of DNA ''foreign'' to T4, they are of discrete size, and they are genetically distinct.

  1. High-sensitivity stable-isotope probing by a quantitative terminal restriction fragment length polymorphism protocol.

    PubMed

    Andeer, Peter; Strand, Stuart E; Stahl, David A

    2012-01-01

    Stable-isotope probing (SIP) has proved a valuable cultivation-independent tool for linking specific microbial populations to selected functions in various natural and engineered systems. However, application of SIP to microbial populations with relatively minor buoyant density increases, such as populations that utilize compounds as a nitrogen source, results in reduced resolution of labeled populations. We therefore developed a tandem quantitative PCR (qPCR)-TRFLP (terminal restriction fragment length polymorphism) protocol that improves resolution of detection by quantifying specific taxonomic groups in gradient fractions. This method combines well-controlled amplification with TRFLP analysis to quantify relative taxon abundance in amplicon pools of FAM-labeled PCR products, using the intercalating dye EvaGreen to monitor amplification. Method accuracy was evaluated using mixtures of cloned 16S rRNA genes, DNA extracted from low- and high-G+C bacterial isolates (Escherichia coli, Rhodococcus, Variovorax, and Microbacterium), and DNA from soil microcosms amended with known amounts of genomic DNA from bacterial isolates. Improved resolution of minor shifts in buoyant density relative to TRFLP analysis alone was confirmed using well-controlled SIP analyses. PMID:22038597

  2. Biases for detecting arbuscular mycorrhizal fungal mixture by terminal restriction fragment length polymorphism (T-RFLP).

    PubMed

    Watanarojanaporn, N; Longtonglang, A; Boonkerd, N; Tittabutr, P; Lee, J; Teaumroong, N

    2014-01-01

    Terminal restriction fragment length polymorphism (T-RFLP) analysis of amplified ribosomal RNA genes is used for profiling microbial communities and sometimes for species richness and relative abundance estimation in environmental samples. However, the T-RFLP fingerprint may be subject to biases during the procedure, influencing the detection of real community structures in the environment. To investigate possible sources of T-RFLP bias, 18S rRNA gene clones derived from two arbuscular mycorrhizal fungal sequences were combined in simple pairwise mixes to assess the effects of polymerase chain reaction cycle number, plant genomic DNA purification method and varying template ratio on the template-to-product ratio as measured by relative T-RF peak area. Varying cycle numbers indicated that amplification was still in the exponential phase at the cycle numbers lower than 18, so these small cycle numbers were used for the comparison of template-to-product quantities. Relative abundance estimated from T-RF peak ratios varied with different purification procedures, but the best results, closest to input ratios, were obtained by using phenol-chloroform purification. The presence of an excess of unpurified non-target plant genomic DNA generated a bias towards lower or overestimation of relative abundance. We conclude that a low number of amplification cycles and stringent DNA purification are necessary for accurate mixed sample analysis by T-RFLP. PMID:23839714

  3. Cleavage map of BK virus DNA with restriction endonucleases MboI and HaeIII.

    PubMed Central

    Yang, R C; Wu, R

    1978-01-01

    Specific cleavage of BK virus (MM) DNA with restriction endonuclease MboI gives rise to 10 fragments. Two techniques were used to determine the location of these fragments on the viral genome with respect to the three known sites for HindIII cleavage. In the first method, reciprocal digestion, individual MboI fragments were digested with HindIII and individual HindIII fragments were digested with MboI. In the second method, single-end 32P-labeled HindIII subfragments were partially digested with MboI, and then the sizes of the radioactive partial products were used to deduce the nearest neighboring fragment. Information from these two methods is more than adequate to map all the MboI enzyme sites. Cleavage of BK virus (MM) DNA with restriction enzyme HaeIII produces 21 fragments. With the aid of the same two methods, these fragments have also been ordered with respect to the known map locations of the HindIII and MboI sites. Images PMID:212590

  4. Electronic transport in methylated fragments of DNA

    SciTech Connect

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L. Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; Moura, F. A. B. F. de; Lyra, M. L.

    2015-11-16

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  5. Electronic transport in methylated fragments of DNA

    NASA Astrophysics Data System (ADS)

    de Almeida, M. L.; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L.; Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; de Moura, F. A. B. F.; Lyra, M. L.

    2015-11-01

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  6. Advanced microinstrumentation for rapid DNA sequencing and large DNA fragment separation

    SciTech Connect

    Balch, J.; Davidson, J.; Brewer, L.; Gingrich, J.; Koo, J.; Mariella, R.; Carrano, A.

    1995-01-25

    Our efforts to develop novel technology for a rapid DNA sequencer and large fragment analysis system based upon gel electrophoresis are described. We are using microfabrication technology to build dense arrays of high speed micro electrophoresis lanes that will ultimately increase the sequencing rate of DNA by at least 100 times the rate of current sequencers. We have demonstrated high resolution DNA fragment separation needed for sequencing in polyacrylamide microgels formed in glass microchannels. We have built prototype arrays of microchannels having up to 48 channels. Significant progress has also been made in developing a sensitive fluorescence detection system based upon a confocal microscope design that will enable the diagnostics and detection of DNA fragments in ultrathin microchannel gels. Development of a rapid DNA sequencer and fragment analysis system will have a major impact on future DNA instrumentation used in clinical, molecular and forensic analysis of DNA fragments.

  7. Agarose Gel Electrophoresis for the Separation of DNA Fragments

    PubMed Central

    Lee, Pei Yun; Costumbrado, John; Hsu, Chih-Yuan; Kim, Yong Hoon

    2012-01-01

    Agarose gel electrophoresis is the most effective way of separating DNA fragments of varying sizes ranging from 100 bp to 25 kb1. Agarose is isolated from the seaweed genera Gelidium and Gracilaria, and consists of repeated agarobiose (L- and D-galactose) subunits2. During gelation, agarose polymers associate non-covalently and form a network of bundles whose pore sizes determine a gel's molecular sieving properties. The use of agarose gel electrophoresis revolutionized the separation of DNA. Prior to the adoption of agarose gels, DNA was primarily separated using sucrose density gradient centrifugation, which only provided an approximation of size. To separate DNA using agarose gel electrophoresis, the DNA is loaded into pre-cast wells in the gel and a current applied. The phosphate backbone of the DNA (and RNA) molecule is negatively charged, therefore when placed in an electric field, DNA fragments will migrate to the positively charged anode. Because DNA has a uniform mass/charge ratio, DNA molecules are separated by size within an agarose gel in a pattern such that the distance traveled is inversely proportional to the log of its molecular weight3. The leading model for DNA movement through an agarose gel is "biased reptation", whereby the leading edge moves forward and pulls the rest of the molecule along4. The rate of migration of a DNA molecule through a gel is determined by the following: 1) size of DNA molecule; 2) agarose concentration; 3) DNA conformation5; 4) voltage applied, 5) presence of ethidium bromide, 6) type of agarose and 7) electrophoresis buffer. After separation, the DNA molecules can be visualized under uv light after staining with an appropriate dye. By following this protocol, students should be able to: 1. Understand the mechanism by which DNA fragments are separated within a gel matrix 2. Understand how conformation of the DNA molecule will determine its mobility through a gel matrix 3. Identify an agarose solution of appropriate concentration for their needs 4. Prepare an agarose gel for electrophoresis of DNA samples 5. Set up the gel electrophoresis apparatus and power supply 6. Select an appropriate voltage for the separation of DNA fragments 7. Understand the mechanism by which ethidium bromide allows for the visualization of DNA bands 8. Determine the sizes of separated DNA fragments   PMID:22546956

  8. Analysis of the genomic termini of tupaia herpesvirus DNA by restriction mapping and nucleotide sequencing.

    PubMed Central

    Albrecht, M; Darai, G; Flügel, R M

    1985-01-01

    A recombinant plasmid harboring both genomic termini of tupaia herpesvirus (THV) DNA was characterized by restriction enzyme analysis and by determination of the nucleotide sequence. A unique NotI cleavage site was found that is located approximately 19 base pairs upstream of the THV terminal junction. THV DNA fragments from virion DNA were analyzed by using the same restriction enzymes as for the recombinant plasmid. The comparative fine mapping of virion THV DNA revealed heterogeneous molecules of variable lengths with the NotI cleavage site conserved. A number of short direct and inverted repeats and palindromes were found surrounding the THV terminal joint. The THV repetitive sequences were compared with the repeats reported for the DNA termini of herpes simplex virus, varicella-zoster virus, and Epstein-Barr virus and are discussed in respect to signals for a site-specific endonuclease required for packaging. Images PMID:2997469

  9. A germline TaqI restriction fragment length polymorphism in the progesterone receptor gene in ovarian carcinoma.

    PubMed Central

    McKenna, N. J.; Kieback, D. G.; Carney, D. N.; Fanning, M.; McLinden, J.; Headon, D. R.

    1995-01-01

    Clinical outcome in ovarian carcinoma is predicted by progesterone receptor status, indicating an endocrine aspect to this disease. Peripheral leucocyte genomic DNAs were obtained from 41 patients with primary ovarian carcinoma and 83 controls from Ireland, as well as from 26 primary ovarian carcinoma patients and 101 controls in Germany. Southern analysis using a human progesterone receptor (hPR) cDNA probe identified a germline TaqI restriction fragment length polymorphism (RFLP) defined by two alleles: T1, represented by a 2.7 kb fragment; and T2, represented by a 1.9 kb fragment and characterised by an additional TaqI restriction site with respect to T1. An over-representation of T2 in ovarian cancer patients compared with controls in the pooled Irish/German population (P < 0.025) was observed. A difference (P < 0.02) in the distribution of the RFLP genotypes between Irish and German control populations was also observed. The allele distributions could not be shown to differ significantly from Hardy-Weinberg distribution in any subgroup. Using hPR cDNA region-specific probes, the extra TaqI restriction site was mapped to intron G of the hPR gene. Images Figure 2 Figure 3 Figure 4 PMID:7880723

  10. Coccidioides species determination: does sequence analysis agree with restriction fragment length polymorphism?

    PubMed

    Johnson, Suzanne M; Carlson, Erin L; Pappagianis, Demosthenes

    2015-06-01

    Fifteen Coccidioides isolates were previously examined for genetic diversity using restriction fragment length polymorphism (RFLP); two fragment patterns were observed. Two isolates demonstrated one banding pattern (designated RFLP group I), while the remaining 13 isolates demonstrated a second pattern (designated RFLP group II). Recently, molecular studies supported the division of the genera Coccidioides into two species: Coccidioides posadasii and Coccidioides immitis. It has been assumed that the species division corresponds to the RFLP grouping. We tested this hypothesis by amplifying the ribosomal DNA internal transcribed spacer region as well as the dioxygenase, serine proteinase, and urease genes from 13 isolates previously examined by RFLP and then sequencing the PCR products. The appropriate species for each isolate was assigned using phylogenetically informative sites. The RFLP grouping agreed with the Coccidioides species assignment for all but one isolate, which may represent a hybrid. In addition, polymorphic sites among the four genes examined were in agreement for species assignment such that analysis of a single gene may be sufficient for species assignment. PMID:25577285

  11. Pulsed field electrophoresis of genomic restriction fragments for the detection of nosocomial Legionella pneumophila in hospital water supplies.

    PubMed Central

    Ott, M; Bender, L; Marre, R; Hacker, J

    1991-01-01

    Ten Legionella pneumophila strains isolated from different sources were analyzed according to their restriction fragment patterns obtained by cleavage of genomic DNA with NotI and SfiI and separation by pulsed field electrophoresis. Three L. pneumophila isolates from a nosocomial outbreak in Lübeck (Germany) and three other L. pneumophila strains independently isolated from a water tap located in the care unit where the patients were hospitalized exhibited identical restriction fragment profiles. Therefore, we concluded that these environmental specimens were the source of the Legionnaires disease. Another two isolates from patients and two strains from the environment, all unrelated to the outbreak described, showed different cleavage patterns. Images PMID:1890182

  12. Genomic representations using concatenates of Type IIB restriction endonuclease digestion fragments

    PubMed Central

    Tengs, Torstein; LaFramboise, Thomas; Den, Robert B.; Hayes, David N.; Zhang, Jianhua; DebRoy, Saikat; Gentleman, Robert C.; O'Neill, Keith; Birren, Bruce; Meyerson, Matthew

    2004-01-01

    We have developed a method for genomic representation using Type IIB restriction endonucleases. Representation by concatenation of restriction digests, or RECORD, is an approach to sample the fragments generated by cleavage with these enzymes. Here, we show that the RECORD libraries may be used for digital karyotyping and for pathogen identification by computational subtraction. PMID:15329383

  13. Restriction fragment length polymorphism analysis of the kappa-casein locus in cattle.

    PubMed

    Damiani, G; Ferretti, L; Rognoni, G; Sgaramella, V

    1990-01-01

    The two common genetic variants (A and B) of bovine kappa-casein originate from two point mutations in the codons for the aminoacids in position 136 and 148. These mutations give rise to polymorphic sites for the restriction endonucleases Hin dIII, AluI, HinfI, Mbo II and TaqI. We have examined DNAs of several Italian Friesian cows and bulls of known and unknown genotype by Southern analyses using kappa-casein cDNA probes. Restriction fragment length polymorphisms (RFLPs) specific for the A and B alleles were identified for each of the above enzymes, except for AluI, which has a non-polymorphic site 12bp away from the polymorphic one. We have also found two new polymorphic sites for MboII and TaqI in the non-coding regions. These sites differentiate the A allele into two new variants, named A1 and A2. The RFLP analysis permits the characterization of kappa-casein alleles even in the absence of their expression. This should facilitate selective breeding programmes aimed at increasing the frequency of the kappa-casein B allele whose product improves the cheesemaking properties of milk. PMID:1974749

  14. Molecularly Imprinted Polymers with DNA Aptamer Fragments as Macromonomers.

    PubMed

    Zhang, Zijie; Liu, Juewen

    2016-03-16

    Molecularly imprinted polymers (MIPs) are produced in the presence of a template molecule. After removing the template, the cavity can selectively rebind the template. MIPs are attractive functional materials with a low cost and high stability, but traditional MIPs often suffer from low binding affinity. This study employs DNA aptamer fragments as macromonomers to improve MIPs. The DNA aptamer for adenosine was first split into two halves, fluorescently labeled, and copolymerized into MIPs. With a fluorescence quenching assay, the importance of imprinting was confirmed. Further studies were carried out using isothermal titration calorimetry (ITC). Compared to the mixture of the free aptamer fragments, their MIPs doubled the binding affinity. Each free aptamer fragment alone cannot bind adenosine, whereas MIPs containing each fragment are effective binders. We further shortened one of the aptamer fragments, and the DNA length was pushed to as short as six nucleotides, yielding MIPs with a dissociation constant of 27 μM adenosine. This study provides a new method for preparing functional MIP materials by combining high-affinity biopolymer fragments with low-cost synthetic monomers, allowing higher binding affinity and providing a method for signaling binding based on DNA chemistry. PMID:26910515

  15. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA.

    PubMed Central

    Liu, W T; Marsh, T L; Cheng, H; Forney, L J

    1997-01-01

    A quantitative molecular technique was developed for rapid analysis of microbial community diversity in various environments. The technique employed PCR in which one of the two primers used was fluorescently labeled at the 5' end and was used to amplify a selected region of bacterial genes encoding 16S rRNA from total community DNA. The PCR product was digested with restriction enzymes, and the fluorescently labeled terminal restriction fragment was precisely measured by using an automated DNA sequencer. Computer-simulated analysis of terminal restriction fragment length polymorphisms (T-RFLP) for 1,002 eubacterial sequences showed that with proper selection of PCR primers and restriction enzymes, 686 sequences could be PCR amplified and classified into 233 unique terminal restriction fragment lengths or "ribotypes." Using T-RFLP, we were able to distinguish all bacterial strains in a model bacterial community, and the pattern was consistent with the predicted outcome. Analysis of complex bacterial communities with T-RFLP revealed high species diversity in activated sludge, bioreactor sludge, aquifer sand, and termite guts; as many as 72 unique ribotypes were found in these communities, with 36 ribotypes observed in the termite guts. The community T-RFLP patterns were numerically analyzed and hierarchically clustered. The pattern derived from termite guts was found to be distinctly different from the patterns derived from the other three communities. Overall, our results demonstrated that T-RFLP is a powerful tool for assessing the diversity of complex bacterial communities and for rapidly comparing the community structure and diversity of different ecosystems. PMID:9361437

  16. Heterothallic species of neurospora are distinguishable by restriction analysis of their nuclear rDNA sequences

    SciTech Connect

    Chambers, C.; Dutta, S.K.

    1983-01-01

    Restriction analysis of rDNAs was used to distinguish nuclear rDNA's of three different reference strains of heterothallic species of the genus Neurospora: N. crassa 74A (FGSC number987), N. intermedia P420 (FGSC number2316), and N. sitophila 10B (FGSC number580). Two approaches were adopted: (1) Nuclear DNA's of these three Neurospora species were treated with various restriction enzymes. Against the streaks of nuclear DNAs on the 0.7% agarose gels background bands were visible. These background bands are visible because rDNA sequences of Neurospora species exist in multiple copies within the nuclear DNA's. (2) The second approach was comparison of auto-radiographs of hybrid molecules of Southern blot transfers of restricted nuclear DNAs and /sup 32/P-labelled nick translated rDNA's (referred to as rDNA probe) isolated from N. crassa slime mutant (FGSC number1118), rDNA cloned into pBR322. A summary of restricted fragment sizes as seen in the gels and in autoradiographs of Southern blots of the respective gels is presented.

  17. Restriction map of the single-stranded DNA genome of Kilham rat virus strain 171, a nondefective parvovirus

    SciTech Connect

    Banerjee, P.T.; Rothrock, R.; Mitra, S.

    1981-10-01

    We constructed a physical map of Kilham rat virus strain 171 DNA by analyzing the sizes and locations of restriction endonuclease-generated fragments of the replicative-form viral DNA synthesized in vitro. BglI, KpnI, BamHI, SmaI, XholI, and XorII did not appear to have any cleavage sites, whereas 11 other enzymes cleaved the genome at one to eight sites, and AluI generated more than 12 distinct fragments. The 30 restriction sites that were mapped were distributed randomly in the viral genome. A comparison of the restriction fragments of in vivo- and in vitro-replicated replicative-form DNAs showed that these DNAs were identical except in the size or configuration of the terminal fragments.

  18. Restriction map of the single-stranded DNA genome of Kilham rat virus strain 171, a nondefective parvovirus

    SciTech Connect

    Banerjee, P.T.; Rathrock, R.; Mitra, S.

    1981-10-01

    A physical map of Kilham rat virus strain 171 DNA was constructed by analyzing the sizes and locations of restriction endonuclease-generated fragments of the replicative-form viral DNA synthesized in vitro. BglI, KpnI, BamHI, SmaI, XhoI, and XorII did not appear to have any cleavage sites, whereas 11 other enzymes cleaved the genome at one to eight sites, and AluI generated more than 12 distinct fragments. The 30 restriction sites that were mapped were distributed randomly in the viral genome. A comparison of the restriction fragments of in vivo- and in vitro-replicated replicative-form DNAs showed that these DNAs were identical except in the size or configuration of the terminal fragments.

  19. A restriction fragment length polymorphism results in a nonconservative amino acid substitution encoded within the first exon of the human lysyl oxidase gene

    SciTech Connect

    Csiszar, K.; Mariani, T.J.; Gosin, J.S.; Deak, S.B.; Boyd, C.D.

    1993-05-01

    A cDNA covering most of the coding sequence for human lysyl oxidase was used to screen, by Southern blot analysis, genomic DNA from circulating lymphocytes obtained from unrelated, apparently normal individuals. A heritable restriction fragment length polymorphism (RFLP) within a PstI restriction site was detected in 36% of individuals screened (a total of 72 chromosomes were analyzed). The major allele was represented as a 1.7-kb PstI restriction fragment. The minor allele was detected as 1.4 and 0.3kb restriction fragments. Lambda phage-DNA recombinants were isolated from a human lung fibroblast genomic DNA library using the human lysyl oxidase cDNA clone. DNA sequence analysis of several selected phage recombinants revealed that 83% of the coding sequence of lysyl oxidase was localized in four separate exons. Analysis of the coding sequence within exon 1, the most 5{prime} exon within the lysyl oxidase gene, revealed that the PstI RFLP was due to a G {r_arrow} A transition resulting in a nonconservative arginine to glutamine substitution proximal to a propeptide cleavage domain encoded by exon 1 of the lysyl oxidase gene. 33 refs., 5 figs., 1 tab.

  20. DNA fragment editing of genomes by CRISPR/Cas9.

    PubMed

    Jinhuan, Li; Jia, Shou; Qiang, Wu

    2015-10-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system from bacteria and archaea emerged recently as a new powerful technology of genome editing in virtually any organism. Due to its simplicity and cost effectiveness, a revolutionary change of genetics has occurred. Here, we summarize the recent development of DNA fragment editing methods by CRISPR/Cas9 and describe targeted DNA fragment deletions, inversions, duplications, insertions, and translocations. The efficient method of DNA fragment editing provides a powerful tool for studying gene function, regulatory elements, tissue development, and disease progression. Finally, we discuss the prospects of CRISPR/Cas9 system and the potential applications of other types of CRISPR system. PMID:26496751

  1. Novel separation and detection methods of DNA fragments in electrophoresis

    SciTech Connect

    Chan, King Cheung

    1993-01-27

    A charge-coupled device (CCD) based electrophoresis system was developed. The system allowed non-destructive, sensitive, and on-line detection of native DNA in slab-gel electrophoresis via ultraviolet absorption measurement. The detection limit of double-stranded DNA fragment was 5 ng per band. Since the amount of DNA used in this experiment was typical, the CCD-based system could be readily implemented in molecular biology. Gel-filled and non-gel sieving capillary electrophoresis was developed for rapid and efficient separation of double-stranded DNA fragments. For the gel-filled CE separation a new gel matrix, the HydroLink gel (HL), was used. The HL capillary gel was easier to cast than the polyacrylamide capillary gel. For the non-gel separation, a GC capillary was used as the separation chamber, and cellulose additive was included in the electrophoresis as the sieving medium. Indirect fluorometry was applied in non-gel and gel electrophoresis for the detection of DNA fragments. This method allowed non-destructive and on-line detection of DNA during electrophoresis. The amount of DNA used with this method was comparable to those obtained with absorption measurement.

  2. Novel separation and detection methods of DNA fragments in electrophoresis

    SciTech Connect

    Chan, K.C.

    1992-01-01

    A charge-coupled device (CCD) based electrophoresis system was developed. The system allowed non-destructive, sensitive, and on-line detection of native DNA in slab-gel electrophoresis via ultraviolet absorption measurement. The detection limit of double-stranded DNA fragment was 5 ng per band. Since the amount of DNA used in this experiment was typical, the CCD-based system could be readily implemented in molecular biology. Gel-filled and non-gel sieving capillary electrophoresis (CE) was developed for rapid and efficient separation of double-stranded DNA fragments. For the gel-filled CE separation a new gel matrix, the HydroLink gel (HL), was used. The HL capillary gel was easier to cast than the polyacrylamide capillary gel. For the non-gel separation, a GC capillary was used as the separation chamber, and cellulose additive was included in the electrophoresis as the sieving medium. Indirect fluorometry was applied in non-gel and gel electrophoresis for the detection of DNA fragments. This method allowed nondestructive and on-line detection of DNA during electrophoresis. The amount of DNA used with this method was comparable to those obtained with absorption measurement.

  3. Direct cloning of specific genomic DNA sequences in plasmid libraries following fragment enrichment.

    PubMed Central

    Nicholls, R D; Hill, A V; Clegg, J B; Higgs, D R

    1985-01-01

    We describe a simple method to directly clone any DNA fragment for which a flanking restriction enzyme map is known. Genomic DNA is digested with multiple enzymes cutting outside the fragment to be cloned, selected by electroelution from an agarose gel, and cloned directly into a plasmid vector. It is only necessary to screen 10-1000 colonies and recombinant DNA is ready for immediate molecular analysis without further subcloning. The use of this technique is demonstrated for the cloning of a sequence from within the human alpha-globin complex that was previously shown to be "unclonable" in bacteriophage and cosmid vectors and which is a multiallelic general genetic marker, as well as both beta-globin alleles from an individual with beta-thalassaemia. Images PMID:2999697

  4. Simulation of DNA fragment distributions after irradiation with photons.

    PubMed

    Friedland, W; Jacob, P; Paretzke, H G; Merzagora, M; Ottolenghi, A

    1999-05-01

    The Monte Carlo track structure code PARTRAC has been further improved by implementing electron scattering cross-sections for liquid water and by explicitly modelling the interaction of water radicals with DNA. The model of the genome inside a human cell nucleus in its interphase is based on the atomic coordinates of the DNA double helix with an additional volume for the water shell. The DNA helix is wound around histone complexes, and these nucleosomes are folded into chromatin fibres and further to fibre loops, which are interconnected to build chromosomes with a territorial organisation. Simulations have been performed for the irradiation of human fibroblast cells with carbon K and aluminium K ultrasoft x-rays, 220 kVp x-rays and 60Co gamma-rays. The ratio single-strand breaks to double-strand breaks (ssb/dsb) for both types of ultrasoft x-rays is lower than for gamma-rays by a factor of 2. The contributions of direct and indirect effects to strand break induction are almost independent of photon energy. Strand break patterns from indirect effects reflect differences in the susceptibility of the DNA helix to OH* attack inside the chromatin fibre. Distributions of small DNA fragments (<3 kbp) are determined by the chromatin fibre structure irrespective of whether direct or indirect effects are causing the breaks. In the calculated fragment size distributions for larger DNA fragments (>30 kbp), a substantial deviation from random breakage is found only for carbon K irradiation, and is attributed to its inhomogeneous dose distribution inside the cell nucleus. For the other radiation qualities, the results for larger fragments can be approximated by random breakage distributions calculated for a yield of dsb which is about 10% lower than the average for the whole genome. The excess of DNA fragments detected experimentally in the 8-300 kbp region after x-ray irradiation is not seen in our simulation results. PMID:10384954

  5. Separation of Three Species of Ditylenchus and Some Host Races of D. dipsaci by Restriction Fragment Length Polymorphism.

    PubMed

    Wendt, K R; Vrain, T C; Webster, J M

    1993-12-01

    This study examined the ribosomal cistron of Ditylenchus destructor, D. myceliophagus and seven host races of D. dipsaci from different geographic locations. The three species showed restriction fragment length polymorphisms (RFLPs) in the ribosomal cistron, the 18S rDNA gene, and the ribosomal internal transcribed spacer (ITS). Southern blot analysis with a 7.5-kb ribosomal cistron probe differentiated the five host races of D. dipsaci examined. Polymerase chain reaction (PCR) amplification of the ITS, followed by digestion with some restriction endonucleases (but not others), produced restriction fragments diagnostic of the giant race. Because the PCR product from D. myceliophagus and the host races of D. dipsaci was about 900 base pairs and the ITS size in D. destructor populations was 1,200 base pairs, mixtures of populations could be detected by PCR amplification. ITS fragments differentiated between D. dipsaci and Aphelenchoides rhyntium in mixed populations. This study establishes the feasibility of differentiation of the host races of D. dipsaci by probing Southern blots with the whole ribosomal cistron. PMID:19279809

  6. Separation of Three Species of Ditylenchus and Some Host Races of D. dipsaci by Restriction Fragment Length Polymorphism

    PubMed Central

    Wendt, Karen R.; Vrain, Thierry C.; Webster, John M.

    1993-01-01

    This study examined the ribosomal cistron of Ditylenchus destructor, D. myceliophagus and seven host races of D. dipsaci from different geographic locations. The three species showed restriction fragment length polymorphisms (RFLPs) in the ribosomal cistron, the 18S rDNA gene, and the ribosomal internal transcribed spacer (ITS). Southern blot analysis with a 7.5-kb ribosomal cistron probe differentiated the five host races of D. dipsaci examined. Polymerase chain reaction (PCR) amplification of the ITS, followed by digestion with some restriction endonucleases (but not others), produced restriction fragments diagnostic of the giant race. Because the PCR product from D. myceliophagus and the host races of D. dipsaci was about 900 base pairs and the ITS size in D. destructor populations was 1,200 base pairs, mixtures of populations could be detected by PCR amplification. ITS fragments differentiated between D. dipsaci and Aphelenchoides rhyntium in mixed populations. This study establishes the feasibility of differentiation of the host races of D. dipsaci by probing Southern blots with the whole ribosomal cistron. PMID:19279809

  7. Discrimination among individuals using terminal restriction fragment length polymorphism profiling of bacteria derived from forensic evidence.

    PubMed

    Nishi, Eiji; Tashiro, Yukihiro; Sakai, Kenji

    2015-05-01

    DNA typing from forensic evidence is commonly used to identify individuals. However, when the quantity of the forensic evidence is insufficient, successful identification using DNA typing is impossible. Such evidence may also contain DNA from bacteria that occur naturally on the skin. In this study, we aimed to establish a profiling method using terminal restriction fragment length polymorphisms (T-RFLPs) of the amplified bacterial 16S ribosomal RNA (rRNA) gene. First, the extraction and digestion processes were investigated, and the T-RFLP profiling method using the 16S rRNA gene amplicon was optimized. We then used this method to compare the profiles of bacterial flora from the hands of 12 different individuals. We found that the T-RFLP profiles from one person on different days displayed higher similarity than those between individuals. In a principal component analysis (PCA), T-RFLPs from each individual were closely clustered in 11 out of 12 cases. The clusters could be distinguished from each other, even when the samples were collected from different conditions. No major change of the profile was observed after six months except in two cases. When handprints on glass plates were compared, 11 of 12 individuals were assigned to a few clusters including the cluster corresponding to the correct individual. In conclusion, a method for reproducible T-RFLP profiling of bacteria from trace amounts of handprints was established. The profiles were obtained for particular individuals clustered in PCA and were experimentally separable from other individuals in most cases. This technique could provide useful information for narrowing down a suspect in a criminal investigation. PMID:25335807

  8. Identification of blood meal sources of Lutzomyia longipalpis using polymerase chain reaction-restriction fragment length polymorphism analysis of the cytochrome B gene.

    PubMed

    Soares, Vítor Yamashiro Rocha; Silva, Jailthon Carlos da; Silva, Kleverton Ribeiro da; Pires e Cruz, Maria do Socorro; Santos, Marcos Pérsio Dantas; Ribolla, Paulo Eduardo Martins; Alonso, Diego Peres; Coelho, Luiz Felipe Leomil; Costa, Dorcas Lamounier; Costa, Carlos Henrique Nery

    2014-06-01

    An analysis of the dietary content of haematophagous insects can provide important information about the transmission networks of certain zoonoses. The present study evaluated the potential of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the mitochondrial cytochrome B (cytb) gene to differentiate between vertebrate species that were identified as possible sources of sandfly meals. The complete cytb gene sequences of 11 vertebrate species available in the National Center for Biotechnology Information database were digested with Aci I, Alu I, Hae III and Rsa I restriction enzymes in silico using Restriction Mapper software. The cytb gene fragment (358 bp) was amplified from tissue samples of vertebrate species and the dietary contents of sandflies and digested with restriction enzymes. Vertebrate species presented a restriction fragment profile that differed from that of other species, with the exception of Canis familiaris and Cerdocyon thous. The 358 bp fragment was identified in 76 sandflies. Of these, 10 were evaluated using the restriction enzymes and the food sources were predicted for four: Homo sapiens (1), Bos taurus (1) and Equus caballus (2). Thus, the PCR-RFLP technique could be a potential method for identifying the food sources of arthropods. However, some points must be clarified regarding the applicability of the method, such as the extent of DNA degradation through intestinal digestion, the potential for multiple sources of blood meals and the need for greater knowledge regarding intraspecific variations in mtDNA. PMID:24821056

  9. Effects of pretreatment on the denaturation and fragmentation of genomic DNA for DNA hybridization.

    PubMed

    Wang, Xiaofang; Son, Ahjeong

    2013-12-01

    DNA hybridization is an important step for a number of bioassays such as fluorescence in situ hybridization, microarrays, as well as the NanoGene assay. Denaturation and fragmentation of genomic DNA are two critical pretreatments for DNA hybridization. However, no thorough and systematic characterization on denaturation and fragmentation has been carried out for the NanoGene assay so far. In this study, we investigated the denaturation and fragmentation of the bacterial gDNA with physical treatments (i.e., heating and sonication) and chemical treatments (i.e., dimethyl sulfoxide). First of all, a simple approach for indicating the denaturation fraction was developed based on the absorbance difference (i.e., hyperchromic effect) between the double-stranded DNA and single-stranded DNA fragments. Then the denaturation capabilities of the treatments to the gDNA were elucidated, followed by the examination of the possible renaturation over time. The fragmentation of the gDNA by each treatment was also investigated. Based on denaturation efficiency, minimum renaturation tendency, and fragmentation, the sonication method was found to be the best among the six methods. We further demonstrated that the sonication method produced the best result among the treatments examined for the DNA hybridization in the NanoGene assay. PMID:24162665

  10. Phylogenetic classification of short environmental DNA fragments

    PubMed Central

    Krause, Lutz; Diaz, Naryttza N.; Goesmann, Alexander; Kelley, Scott; Nattkemper, Tim W.; Rohwer, Forest; Edwards, Robert A.; Stoye, Jens

    2008-01-01

    Metagenomics is providing striking insights into the ecology of microbial communities. The recently developed massively parallel 454 pyrosequencing technique gives the opportunity to rapidly obtain metagenomic sequences at a low cost and without cloning bias. However, the phylogenetic analysis of the short reads produced represents a significant computational challenge. The phylogenetic algorithm CARMA for predicting the source organisms of environmental 454 reads is described. The algorithm searches for conserved Pfam domain and protein families in the unassembled reads of a sample. These gene fragments (environmental gene tags, EGTs), are classified into a higher-order taxonomy based on the reconstruction of a phylogenetic tree of each matching Pfam family. The method exhibits high accuracy for a wide range of taxonomic groups, and EGTs as short as 27 amino acids can be phylogenetically classified up to the rank of genus. The algorithm was applied in a comparative study of three aquatic microbial samples obtained by 454 pyrosequencing. Profound differences in the taxonomic composition of these samples could be clearly revealed. PMID:18285365

  11. PstI restriction fragment length polymorphism of the human intestinal alkaline phosphatase gene.

    PubMed

    Beckman, G; Beckman, L; Wennberg, C; Sikström, C; Millán, J L

    1994-01-01

    Restriction fragment length polymorphisms have previously been found in the placental alkaline phosphatase (PLAP) and germ cell alkaline phosphatase (GCAP) genes, but not in the closely related intestinal alkaline phosphatase (IAP) locus. We here report on a PstI restriction fragment length polymorphism in IAP found in Finns and Swedes but not in Saamis. A probable T-->G mutation in position 175 of intron 11 would create a new cleavage site for PstI. The borderline frequency of the mutant allele (0.01) is in agreement with previous observations suggesting that IAP is considerably less polymorphic than PLAP and GCAP. PMID:7913691

  12. Proofreading DNA: recognition of aberrant DNA termini by the Klenow fragment of DNA polymerase I.

    PubMed Central

    Carver, T E; Hochstrasser, R A; Millar, D P

    1994-01-01

    Fluorescence depolarization decays were measured for 5-dimethylaminonaphthalene-1-sulfonyl (dansyl) probes attached internally to 17-mer.27-mer oligonucleotides bound to Klenow fragment of DNA polymerase I. The time-resolved motions of the dansyl probes were sensitive indicators of DNA-protein contacts, showing that the protein binds to DNA with two footprints, corresponding to primer termini at either the polymerase or 3'-5' exonuclease sites. We examined complexes of Klenow fragment with DNAs containing various base mismatches. Single mismatches at the primer terminus caused a 3- to 4-fold increase in the equilibrium partitioning of DNA into the exonuclease site; the largest effects were observed for purine-purine mismatches. Two or more consecutive G.G mismatches caused the DNA to bind exclusively at the exonuclease site, with a partitioning constant at least 250-fold greater than that of the corresponding matched DNA sequence. Internal single mismatches produced larger effects than the same mismatch at the primer terminus, with a delta delta G relative to the matched sequence of -1.1 to -1.3 kcal/mol for mismatches located 2, 3, or 4 bases from the primer terminus. Although part of the observed effects may be attributed to the increased melting capacity of the DNA, it appears that the polymerase site also promotes movement of DNA into the exonuclease site by rejecting aberrant primer termini. These effects suggest that the polymerase and exonuclease sites act together to recognize specific errors that distort the primer terminus, such as frameshifts, in addition to proofreading misincorporated bases. Images PMID:7938011

  13. DNA Oligonucleotide Fragment Ion Rearrangements Upon Collision-Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Harper, Brett; Neumann, Elizabeth K.; Solouki, Touradj

    2015-08-01

    Collision-induced dissociation (CID) of m/z-isolated w type fragment ions and an intact 5' phosphorylated DNA oligonucleotide generated rearranged product ions. Of the 21 studied w ions of various nucleotide sequences, fragment ion sizes, and charge states, 18 (~86%) generated rearranged product ions upon CID in a Synapt G2-S HDMS (Waters Corporation, Manchester, England, UK) ion mobility-mass spectrometer. Mass spectrometry (MS), ion mobility spectrometry (IMS), and theoretical modeling data suggest that purine bases can attack the free 5' phosphate group in w type ions and 5' phosphorylated DNA to generate sequence permuted [phosphopurine]- fragment ions. We propose and discuss a potential mechanism for generation of rearranged [phosphopurine]- and complementary y-B type product ions.

  14. Error checking and graphical representation of multiple-complete-digest (MCD) restriction-fragment maps.

    PubMed

    Thayer, E C; Olson, M V; Karp, R M

    1999-01-01

    Genetic and physical maps display the relative positions of objects or markers occurring within a target DNA molecule. In constructing maps, the primary objective is to determine the ordering of these objects. A further objective is to assign a coordinate to each object, indicating its distance from a reference end of the target molecule. This paper describes a computational method and a body of software for assigning coordinates to map objects, given a solution or partial solution to the ordering problem. We describe our method in the context of multiple-complete-digest (MCD) mapping, but it should be applicable to a variety of other mapping problems. Because of errors in the data or insufficient clone coverage to uniquely identify the true ordering of the map objects, a partial ordering is typically the best one can hope for. Once a partial ordering has been established, one often seeks to overlay a metric along the map to assess the distances between the map objects. This problem often proves intractable because of data errors such as erroneous local length measurements (e.g., large clone lengths on low-resolution physical maps). We present a solution to the coordinate assignment problem for MCD restriction-fragment mapping, in which a coordinated set of single-enzyme restriction maps are simultaneously constructed. We show that the coordinate assignment problem can be expressed as the solution of a system of linear constraints. If the linear system is free of inconsistencies, it can be solved using the standard Bellman-Ford algorithm. In the more typical case where the system is inconsistent, our program perturbs it to find a new consistent system of linear constraints, close to those of the given inconsistent system, using a modified Bellman-Ford algorithm. Examples are provided of simple map inconsistencies and the methods by which our program detects candidate data errors and directs the user to potential suspect regions of the map. PMID:9927487

  15. Alternative Okazaki Fragment Ligation Pathway by DNA Ligase III.

    PubMed

    Arakawa, Hiroshi; Iliakis, George

    2015-01-01

    Higher eukaryotes have three types of DNA ligases: DNA ligase 1 (Lig1), DNA ligase 3 (Lig3) and DNA ligase 4 (Lig4). While Lig1 and Lig4 are present in all eukaryotes from yeast to human, Lig3 appears sporadically in evolution and is uniformly present only in vertebrates. In the classical, textbook view, Lig1 catalyzes Okazaki-fragment ligation at the DNA replication fork and the ligation steps of long-patch base-excision repair (BER), homologous recombination repair (HRR) and nucleotide excision repair (NER). Lig4 is responsible for DNA ligation at DNA double strand breaks (DSBs) by the classical, DNA-PKcs-dependent pathway of non-homologous end joining (C-NHEJ). Lig3 is implicated in a short-patch base excision repair (BER) pathway, in single strand break repair in the nucleus, and in all ligation requirements of the DNA metabolism in mitochondria. In this scenario, Lig1 and Lig4 feature as the major DNA ligases serving the most essential ligation needs of the cell, while Lig3 serves in the cell nucleus only minor repair roles. Notably, recent systematic studies in the chicken B cell line, DT40, involving constitutive and conditional knockouts of all three DNA ligases individually, as well as of combinations thereof, demonstrate that the current view must be revised. Results demonstrate that Lig1 deficient cells proliferate efficiently. Even Lig1/Lig4 double knockout cells show long-term viability and proliferate actively, demonstrating that, at least in DT40, Lig3 can perform all ligation reactions of the cellular DNA metabolism as sole DNA ligase. Indeed, in the absence of Lig1, Lig3 can efficiently support semi-conservative DNA replication via an alternative Okazaki-fragment ligation pathway. In addition, Lig3 can back up NHEJ in the absence of Lig4, and can support NER and HRR in the absence of Lig1. Supporting observations are available in less elaborate genetic models in mouse cells. Collectively, these observations raise Lig3 from a niche-ligase to a universal DNA ligase, which can potentially substitute or backup the repair and replication functions of all other DNA ligases in the cell nucleus. Thus, the old model of functionally dedicated DNA ligases is now replaced by one in which only Lig4 remains dedicated to C-NHEJ, with Lig1 and Lig3 showing an astounding functional flexibility and interchangeability for practically all nuclear ligation functions. The underlying mechanisms of Lig3 versus Lig1 utilization in DNA repair and replication are expected to be partly different and remain to be elucidated. PMID:26110316

  16. Restricted pollen flow of Dieffenbachia seguine populations in fragmented and continuous tropical forest.

    PubMed

    Cuartas-Hernández, S; Núñez-Farfán, J; Smouse, P E

    2010-08-01

    Habitat fragmentation can change the ecological context of populations, rupturing genetic connectivity among them, changing genetic structure, and increasing the loss of genetic diversity. We analyzed mating system and pollen structure in two population fragments and two continuous forest populations of Dieffenbachia seguine (Araceae), an insect-pollinated understory herb in the tropical rain forest of Los Tuxtlas, México, using nine allozyme loci. Mating system analysis indicated almost complete outcrossing but some inbreeding among the adults. Pollen structure analysis indicated highly restricted pollen flow, both within and among populations. We showed that the effective pollination neighborhood was small in all populations, and slightly (though not significantly) smaller in fragments, partially as a consequence of an increase in density of reproductive individuals in those fragments. Using assignment analysis, we showed that all populations were strongly structured, suggesting that pollen and seed flow across the Los Tuxtlas landscape has been spatially restricted, though sufficient to maintain connectedness. Forest fragmentation at Los Tuxtlas has (so far) had limited impact on pollen dynamics, despite the changing ecological context, with reduced pollinator abundance being partially offset by increased flowering density in fragments. Continued outcrossing and limited pollen immigration, coupled with more extensive seed migration, should maintain genetic connectedness in D. seguine, if fragmentation is not further exacerbated by additional deforestation. PMID:20029453

  17. Single Cystosorus Isolate Production and Restriction Fragment Length Polymorphism Characterization of the Obligate Biotroph Spongospora subterranea f. sp. subterranea.

    PubMed

    Qu, Xinshun; Christ, Barbara J

    2006-10-01

    ABSTRACT Spongospora subterranea f. sp. subterranea causes powdery scab in potatoes and is distributed worldwide. Genetic studies of this pathogen have been hampered due, in part, to its obligate parasitism and the lack of molecular markers for this pathogen. In this investigation, a single cystosorus inoculation technique was developed to produce large amounts of S. subterranea f. sp. subterranea plasmodia or zoosporangia in eastern black nightshade (Solanum ptycanthum) roots from which DNA was extracted. Cryopreservation of zoosporangia was used for long-term storage of the isolates. S. subterranea f. sp. subterranea-specific restriction fragment length polymorphism (RFLP) markers were developed from randomly amplified polymorphic DNA (RAPD) fragments. Cystosori of S. subterranea f. sp. subterranea were used for RAPD assays and putative pathogen-specific RAPD fragments were cloned and sequenced. The fragments were screened for specificity by Southern hybridization and subsequent DNA sequence BLAST search. Four polymorphic S. subterranea f. sp. subterranea-specific probes containing repetitive elements, and one containing single copy DNA were identified. These RFLP probes were then used to analyze 24 single cystosorus isolates derived from eight geographic locations in the United States and Canada. Genetic variation was recorded among, but not within, geographic locations. Cluster analysis separated the isolates into two major groups: group I included isolates originating from western North America, with the exception of those from Colorado, and group II included isolates originating from eastern North America and from Colorado. The techniques developed in this study, i.e., production of single cystosorus isolates of S. subterranea f. sp. subterranea and development of RFLP markers for this pathogen, provide methods to further study the genetic structure of S. subterranea f. sp. subterranea. PMID:18943505

  18. Reverse restriction fragment length polymorphism (RRFLP): A novel technique for genotyping infectious laryngotracheitis virus (ILTV) live attenuated vaccines.

    PubMed

    Callison, Scott A; Riblet, Sylva M; Rodrguez-Avila, Andres; Garca, Maricarmen

    2009-09-01

    A novel technique, the reverse restriction fragment length polymorphism (RRFLP) assay, was developed as a means of detecting specific informative polymorphic sites in the infectious laryngotracheitis virus (ILTV) genome. During the RRFLP procedure, DNA is digested with restriction enzymes targeting an informative polymorphic site and then used as template in a real-time polymerase chain reaction (PCR) with primers flanking the informative region. The analysis of the DeltaC(t) values obtained from digested and undigested template DNA provides the genotype of the DNA. In this study, the RRFLP assay was applied as a method to differentiate between the two types of infectious laryngotracheitis virus attenuated live vaccines. Sequence analysis of ILTV vaccines revealed an informative polymorphic site in the 5'-non-coding region of the infected cell protein (ICP4) gene. Unique AvaI and AlwI restriction enzyme sites were identified in the tissue culture origin and chicken embryo origin attenuated vaccines, respectively. These two informative polymorphic sites were used in a RRFLP assay to genotype rapidly and reproducibly ILTV attenuated live vaccines. PMID:19433109

  19. Development of mass spectrometry for rapid detection of DNA fragments

    SciTech Connect

    Buchanan, M.V.; Hurst, G.B.

    1997-12-31

    Identifying the presence of a specific DNA fragment is becoming increasingly critical in medicine, law enforcement, consumer safety, and other applications. Regions in DNA that are diagnostic for a targeted genetic disease, individual, or microorganism are amplified using the Polymerase Chain Reaction (PCR) or other reactions. These products, which contain a specific number of nucleotide units, are currently analyzed by electrophoresis or hybridization. Mass spectrometry has the potential of characterizing the PCR products faster and more confidently than these methods. We have been investigating matrix assisted laser desorption/ionization (MALDI) mass spectrometry for the detection of DNA fragments, with the goal of developing an analytical method that can be used to screen many samples quickly and reliably. We have demonstrated the efficacy of this approach by detecting PCR products isolated from both human and microbial samples. We are currently investigating approaches for improving sample preparation, enhancing ionization, extending mass range, and increasing mass resolution.

  20. Direct identification of slowly growing Mycobacterium species by analysis of the intergenic 16S-23S rDNA spacer region (ISR) using a GelCompar II database containing sequence based optimization for restriction fragment site polymorphisms (RFLPs) for 12 enzymes.

    PubMed

    Gürtler, Volker; Harford, Cate; Bywater, Judy; Mayall, Barrie C

    2006-02-01

    To obtain Mycobacterium species identification directly from clinical specimens and cultures, the 16S-23S rDNA spacer (ISR) was amplified using previously published primers that detect all Mycobacterium species. The restriction enzyme that could potentially produce the most restriction fragment length polymorphisms (RFLPs) was determined from all available ISR DNA sequences in GenBank to produce a novel data set of RFLPs for 31 slowly growing Mycobacterium species. Subsequently a GelCompar II database was constructed from RFLPs for 10 enzymes that have been used in the literature to differentiate slowly growing Mycobacterium species. The combination of Sau96I and HaeIII were the best choice of enzymes for differentiating clinically relevant slowly growing Mycobacterium species. A total of 392 specimens were studied by PCR with 195 negative and 197 positive specimens. The ISR-PCR product was digested with HaeIII (previously reported) and Sau96I (new to this study) to obtain a Mycobacterium species identification based on the ISR-RFLPs. The species identification obtained by ISR-RFLP was confirmed by DNA sequencing (isolate numbers are shown in parentheses) for M. avium (3), M. intracellulare (4), M. avium complex (1), M. gordonae (2) and M. tuberculosis (1). The total number of specimens (99) identified were from culture (67), Bactectrade mark 12B culture bottles (11), EDTA blood (3), directly from smear positive specimens (13), tissue (4) and urine (1). Direct species identification was obtained from all 13/13 smear positive specimens. The total number of specimens (99) were identified as M. tuberculosis (41), M. avium (7), M. avium complex (11), M. intracellulare MIN-A (20), M. flavescens (2), M. fortuitum (10), M. gordonae (4), M. shimoidei (1), M. ulcerans (1) and M. chelonae (2). This method reduces the time taken for Mycobacterium species identification from 8-10 weeks for culture and biochemical identification; to 4-6 weeks for culture and ISR-RFLP; to 2 days for smear-positive specimens by ISR-RFLP. The precise 2 day identification obtained may provide significant advantages in clinical management. PMID:15979743

  1. Restriction mapping of DNA stretched in nanofluidic devices

    NASA Astrophysics Data System (ADS)

    Riehn, Robert; Wang, Yan Mei; Austin, Robert H.; Lu, Manchun; Cox, Edward C.

    2004-03-01

    We present sequence-specific restriction mapping of single DNA molecules in nanofabricated channels. In these channels, DNA is linearized and stretched to up to 3/4 of its contour length, permitting attribution of the cutting sites to specific regions in the genetic code. In order to extract the highest amount of information from a single molecule, the restriction activity has to be localized to the nanochannel region of macroscopic devices comprising nanofluidic and microfluidic components. This regulation of digestion activity is provided by management of magnesium ions, a necessary co-factor for most restriction enzymes. The magnesium is released from a photosensitive chelator by UV photolysis. We will discuss the possibility of applying this technique to yeast DNA as a step in genome mapping.

  2. DNA Fragmentation in mammalian cells exposed to various light ions

    NASA Astrophysics Data System (ADS)

    Belli, M.; Cherubini, R.; Dalla Vecchia, M.; Dini, V.; Esposito, G.; Moschini, G.; Sapora, O.; Signoretti, C.; Simone, G.; Sorrentino, E.; Tabocchini, M. A.

    Elucidation of how effects of densely ionizing radiation at cellular level are linked to DNA damage is fundamental for a better understanding of the mechanisms leading to genomic damage (especially chromosome aberrations) and developing biophysical models to predict space radiation effects. We have investigated the DNA fragmentation patterns induced in Chinese hamster V79 cells by 31 keV/μm protons, 123 keV/μm helium-4 ions and γ-rays in the size range 0.023-5.7 Mbp, using calibrated Pulsed Field Gel Electrophoresis (PFGE). The frequency distributions of fragments induced by the charged particles were shifted towards smaller sizes with respct to that induced by comparable doses of γ-rays. The DSB yields, evaluated from the fragments induced in the size range studied, were higher for protons and helium ions than for γ-rays by a factor of about 1.9 and 1.2, respectively. However, these ratios do not adequately reflect the RBE observed on the same cells for inactivation and mutation induced by these beams. This is a further indication for the lack of correlation between the effects exerted at cellular level and the initial yield of DSB. The dependence on radiation quality of the fragmentation pattern suggests that it may have a role in damage reparability. We have analyzed these patterns with a "random breakage" model generalized in order to consider the initial non-random distribution of the DNA molecules. Our results suggest that a random breakage mechanism can describe with a reasonable approximation the DNA fragmentation induced by γ-rays, while the approximation is not so good for light ions, likely due to the interplay between ion tracks and chromatin organization at the loop level.

  3. Detection of Cryptosporidium and Identification to the Species Level by Nested PCR and Restriction Fragment Length Polymorphism

    PubMed Central

    Coupe, Stephane; Sarfati, Claudine; Hamane, Samia; Derouin, Francis

    2005-01-01

    Cryptosporidiosis is an emerging protozoan disease associated with large waterborne outbreaks. Diagnosis relies on microscopic examination of stools, but this method cannot identify the infecting species of Cryptosporidium. We have developed a test based on nested PCR and restriction fragment length polymorphism (RFLP) that offers simple identification of Cryptosporidium hominis, Cryptosporidium parvum, and most other human infective species in stool samples. Purified C. parvum oocysts were used for PCR development. Extracted DNA was amplified by nested PCR targeting a 214-bp fragment of the 18S RNA gene. Enzymatic restriction sites were identified by bioinformatic analysis of all published Cryptosporidium 18S rRNA sequences. Experiments with spiked stool samples gave an estimated PCR detection limit of one oocyst. Specificity was assessed by testing 68 stool samples from patients with microscopically proven cryptosporidiosis and 31 Cryptosporidium-negative stools. Sixty-seven (98.5%) of the 68 stool samples from patients with microscopically proven cryptosporidiosis and 2 of the other stool samples were positive by PCR and could be genotyped. RFLP analysis identified 36 C. hominis, 19 C. parvum, 8 Cryptosporidium meleagridis, and 6 Cryptosporidium felis or Cryptosporidium canis samples. Species determination in 26 PCR-positive cases was in full agreement with DNA sequencing of the 18S rRNA hypervariable region. The excellent sensitivity of PCR, coupled with the accuracy of RFLP for species identification, make this method a suitable tool for routine diagnosis and genotyping of Cryptosporidium in stools. PMID:15750054

  4. Selective Microbial Genomic DNA Isolation Using Restriction Endonucleases

    PubMed Central

    Barnes, Helen E.; Liu, Guohong; Weston, Christopher Q.; King, Paula; Pham, Long K.; Waltz, Shannon; Helzer, Kimberly T.; Day, Laura; Sphar, Dan; Yamamoto, Robert T.; Forsyth, R. Allyn

    2014-01-01

    To improve the metagenomic analysis of complex microbiomes, we have repurposed restriction endonucleases as methyl specific DNA binding proteins. As an example, we use DpnI immobilized on magnetic beads. The ten minute extraction technique allows specific binding of genomes containing the DpnI Gm6ATC motif common in the genomic DNA of many bacteria including γ-proteobacteria. Using synthetic genome mixtures, we demonstrate 80% recovery of Escherichia coli genomic DNA even when only femtogram quantities are spiked into 10 µg of human DNA background. Binding is very specific with less than 0.5% of human DNA bound. Next Generation Sequencing of input and enriched synthetic mixtures results in over 100-fold enrichment of target genomes relative to human and plant DNA. We also show comparable enrichment when sequencing complex microbiomes such as those from creek water and human saliva. The technique can be broadened to other restriction enzymes allowing for the selective enrichment of trace and unculturable organisms from complex microbiomes and the stratification of organisms according to restriction enzyme enrichment. PMID:25279840

  5. Selective microbial genomic DNA isolation using restriction endonucleases.

    PubMed

    Barnes, Helen E; Liu, Guohong; Weston, Christopher Q; King, Paula; Pham, Long K; Waltz, Shannon; Helzer, Kimberly T; Day, Laura; Sphar, Dan; Yamamoto, Robert T; Forsyth, R Allyn

    2014-01-01

    To improve the metagenomic analysis of complex microbiomes, we have repurposed restriction endonucleases as methyl specific DNA binding proteins. As an example, we use DpnI immobilized on magnetic beads. The ten minute extraction technique allows specific binding of genomes containing the DpnI Gm6ATC motif common in the genomic DNA of many bacteria including γ-proteobacteria. Using synthetic genome mixtures, we demonstrate 80% recovery of Escherichia coli genomic DNA even when only femtogram quantities are spiked into 10 µg of human DNA background. Binding is very specific with less than 0.5% of human DNA bound. Next Generation Sequencing of input and enriched synthetic mixtures results in over 100-fold enrichment of target genomes relative to human and plant DNA. We also show comparable enrichment when sequencing complex microbiomes such as those from creek water and human saliva. The technique can be broadened to other restriction enzymes allowing for the selective enrichment of trace and unculturable organisms from complex microbiomes and the stratification of organisms according to restriction enzyme enrichment. PMID:25279840

  6. A novel DNA restriction technology based on laser pulse energy conversion on sequence-specific bound metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Csaki, Andrea; Maubach, Gunter; Garwe, Frank; Steinbrueck, Andrea; Koenig, Karsten; Fritzsche, Wolfgang

    2005-03-01

    DNA restriction is a basic method in today"s molecular biology. Besides application for DNA manipulation, this method is used in DNA analytics for 'restriction analysis'. Thereby DNA is digested by sequence specific restriction enzymes, and the length distribution of the resulting fragments is detected by gel electrophoresis. Differences in the sequence lead to different restriction patterns. A disadvantage of this standard method is the limitation to a small set of fixed sequences, so that the assay can not be adapted to any sequence of interest (e.g. SNP). We designed a scheme for DNA restriction in order to provide access to any desired sequence, based on laser light conversion on sequence-specific positioned metal nanoparticles. Especially gold nanoparticles are known for their interesting optical properties caused by plasmon resonance. The resulting absorption can be used to convert laser light pulses into heat, resulting in nanoparticle destruction. We work on the combination of this principle with DNA-modification of nanoparticles and the sequence-specific binding (hybridization) of these DNA-nanoparticle complexes along DNA molecules. Different mechanisms of light-conversion were studied, and the destructive effect of laser light on the nanoparticles and DNA is demonstrated.

  7. Identification of 54 Mycobacterial Species by PCR-Restriction Fragment Length Polymorphism Analysis of the hsp65 Gene

    PubMed Central

    Brunello, Francesca; Ligozzi, Marco; Cristelli, Emanuela; Bonora, Stefano; Tortoli, Enrico; Fontana, Roberta

    2001-01-01

    A total of 121 reference and clinical strains of both slowly and rapidly growing mycobacteria belonging to 54 species were studied for restriction fragment length polymorphism of a PCR-amplified 439-bp segment of the gene encoding the 65-kDa heat shock protein. Restriction digests were separated by 10% polyacrylamide gel electrophoresis (PAGE). By including a size standard in each sample, the restriction fragment profile was calculated using a computer-aided comparison program. An algorithm describing these 54 species (including 22 species not previously described) is proposed. We found that this assay based on 10% PAGE provided a more precise estimate than that based on agarose gel electrophoresis of the real size of restriction fragments as deduced from the sequence analysis and allowed identification of mycobacteria whose PCR-restriction fragment length polymorphism analysis patterns were unequivocally identified by fragments shorter than 60 bp. PMID:11473995

  8. Detection of Irradiated Food: DNA Fragmentation in Grapefruits

    NASA Astrophysics Data System (ADS)

    Delincée, Henry

    1998-06-01

    Employing the simple microgel electrophoresis of single cells - `comet assay' - on grapefruit seeds enabled a rapid identification of irradiated fruits. Fruits were exposed to radiation doses of 0, 0.1, 0.2, 0.3, 0.4 and 0.5 kGy covering the range of potential commercial irradiation for insect disinfestation and quarantine purposes. Seeds were isolated, crushed, and the cells embedded in an agarose layer. After lysis of the cells, they were subjected to microgel electrophoresis for 2.5 minutes, and then stained. Fruits irradiated with 0.2 kGy and higher doses showed typical DNA fragmentation, the DNA fragments stretching or migrating out of the cells forming a tail towards the anode, giving the damaged cells an appearance of a comet. With increasing dose a longer extension of the DNA from the nucleus towards the anode is observed. Undamaged cells will appear as intact nuclei without tails. The DNA comet assay is thus a rapid and inexpensive screening technique to detect irradiated grapefruits. Suspected samples may subsequently be analysed by officially validated methods for detection of irradiated foods.

  9. Microfluidic chip for stacking, separation and extraction of multiple DNA fragments.

    PubMed

    Wu, Ruige; Seah, Y P; Wang, Zhiping

    2016-03-11

    A disposable integrated microfluidic device was developed for rapid sample stacking, separation and extraction of multiple DNA fragments from a relatively large amount of sample. Isotachophoresis hyphenated gel electrophoresis (ITP-GE) was used to pre-concentrate and separate DNA fragments, followed by extraction of pure DNA fragments with electroelution on-chip. DNA fragments of 200bp, 500bp and 1kbp were successfully separated and collected in the extraction chamber within 25min. The extraction efficiency obtained from the chip was 49.9%, 52.1% and 53.7% for 200bp, 500bp and 1kbp DNA fragments, respectively. The extracted DNA fragments exhibited compatibility with downstream enzymatic reactions, for example PCR. The chip was also used to extract DNA fragments with specific size range from sheared genomic DNA and demonstrated similar performance to that using traditional gel cutting method. The whole assay can finish in 32min, 6 times faster than traditional method. PMID:26879456

  10. Differentiation of Species and Populations of Aphelenchoides and of Ditylenchus angustus Using a Fragment of Ribosomal DNA.

    PubMed

    Ibrahim, S K; Perry, R N; Burrows, P R; Hooper, D J

    1994-12-01

    The polymerase chain reaction (PCR) was used to amplify a fragment of the ribosomal DNA (rDNA) from species and undescribed populations of Aphelenchoides and Ditylenchus angustus. The PCR primers used were based on conserved sequences in the 18S and 26S ribosomal RNA genes of Caenorhabditis elegans. In C. elegans, these primers amplify a 1,292 base pair (bp) fragment, which consists of the two internal transcribed spacers and the entire 5.8S gene. Amplification products from crude DNA preparations of 12 species and populations of Aphelenchoides and from D. angustus ranged in size from approximately 860-1,100bp. Southern blots probed with a cloned ribosomal repeat from C. elegans confirmed the identity of these amplified bands as ribosomal fragments. In addition to the differing sizes of the amplified rDNA fragments, the relative intensity of hybridization with the C. elegans probe indicated varying degrees of sequence divergence between species and populations. In some cases, amplified rDNA from the fungal host was evident. Storage of A. composticola at - 45 C for 2 years did not affect the ability to obtain appropriate amplified products from crude DNA preparations. Amplified rDNA fragments were cut with six restriction enzymes, and the restriction fragments produced revealed useful diagnostic differences between species and some undescribed populations. These results were consistent with previous studies based on morphology and isoenzymes. Three undescribed populations of Aphelenchoides were found to be different from all the species examined and from each other. PMID:19279910

  11. Differentiation of Paenibacillus larvae subsp. larvae, the Cause of American Foulbrood of Honeybees, by Using PCR and Restriction Fragment Analysis of Genes Encoding 16S rRNA

    PubMed Central

    Alippi, Adriana M.; López, Ana Claudia; Aguilar, O. Mario

    2002-01-01

    A rapid procedure for the identification of Paenibacillus larvae subsp. larvae, the causal agent of American foulbrood (AFB) disease of honeybees (Apis mellifera L.), based on PCR and restriction fragment analysis of the 16S rRNA genes (rDNA) is described. Eighty-six bacterial strains belonging to 39 species of the genera Paenibacillus, Bacillus, Brevibacillus, and Virgibacillus were characterized. Amplified rDNA was digested with seven restriction endonucleases. The combined data from restriction analysis enabled us to distinguish 35 profiles. Cluster analysis revealed that P. larvae subsp. larvae and Paenibacillus larvae subsp. pulvifaciens formed a group with about 90% similarity; however, the P. larvae subsp. larvae restriction fragment length polymorphism pattern produced by endonuclease HaeIII was found to be unique and distinguishable among other closely related bacteria. This pattern was associated with DNA extracted directly from honeybee brood samples showing positive AFB clinical signs that yielded the restriction profile characteristic of P. larvae subsp. larvae, while no amplification product was obtained from healthy larvae. The method described here is particularly useful because of the short time required to carry it out and because it allows the differentiation of P. larvae subsp. larvae-infected larvae from all other species found in apiarian sources. PMID:12089057

  12. Differentiation of Acanthamoeba strains from infected corneas and the environment by using restriction endonuclease digestion of whole-cell DNA.

    PubMed Central

    Kilvington, S; Beeching, J R; White, D G

    1991-01-01

    Restriction endonuclease digestion of Acanthamoeba whole-cell DNA was used to study the relationship between 33 morphologically identical strains from keratitis cases (30 strains), contact lens storage containers (2 strains), and soil (1 strain). Samples digested with BglII, EcoRI, or HindIII and separated by agarose gel electrophoresis contained detectable mitochondrial DNA restriction fragment length polymorphisms (RFLPs). By comparing RFLPs, the strains could be assigned to seven multiple-strain and three single-strain groups. The largest of these contained nine strains, eight of which were isolated in keratitis cases in various locations worldwide and may indicate a group particularly associated with keratitis. Restriction endonuclease analysis of whole-cell DNA is proposed as a valuable technique for detecting mitochondrial DNA RFLPs in the differentiation of morphologically identical Acanthamoeba strains and may therefore be useful in resolving the complex taxonomy of the genus, which has hitherto been founded on subjective morphological criteria. Images PMID:1672534

  13. Phylogeny of Muntiacus (Cervidae) based on mitochondrial DNA restriction maps.

    PubMed

    Lan, H; Wang, W; Shi, L

    1995-12-01

    Mitochondrial DNA restriction maps for 12 restriction enzymes of four species of muntjacs--Indian muntjac (M. muntjak), Gongshan muntjac (M. gongshanensis), black muntjac (M. crinifrons), and Chinese muntjac (M. reevesi)--were compared to estimate the phylogenetic relationships among them. Phylogenetic trees were constructed by both distance and parsimony methods. The two resulting trees share a similar topology, which indicates that the black muntjac and the Gongshan muntjac are closely related, followed by the Chinese muntjac; the Indian muntjac is the sister taxon to all the other muntjacs. PMID:8825938

  14. Hot Fusion: An Efficient Method to Clone Multiple DNA Fragments as Well as Inverted Repeats without Ligase

    PubMed Central

    Fu, Changlin; Donovan, William P.; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H.

    2014-01-01

    Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17–30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50°C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90–95%. PMID:25551825

  15. Taxonomic and ecological discrimination of Fagaceae species based on internal transcribed spacer polymerase chain reaction–restriction fragment length polymorphism

    PubMed Central

    Coutinho, João Paulo; Carvalho, Ana; Lima-Brito, José

    2015-01-01

    The internal transcribed spacer (ITS) of ribosomal DNA has been used to confirm taxonomic classifications and define phylogenies in several plant species following sequencing or polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) techniques. In this study, co-dominant ITS PCR–RFLP molecular markers were produced in 30 Fagaceae individuals belonging to the Castanea, Fagus and Quercus genera in order to assess the potential of this technique for taxonomic discrimination and determination of phylogenies. The complete ITS region (ITS1-5.8S rRNA-ITS2) was amplified in most of the Fagaceae individuals as a single fragment of ∼700 bp. The ITS amplified products were digested with nine restriction enzymes, but only four (HaeIII, HpaII, TaqI and Sau96I) produced polymorphic/discriminative patterns. The total expected heterozygosity (HE) was 20.31 % and the gene diversity (I), 32.97 %. The ITS polymorphism was higher within the Quercus genus (85.3 %). The ITS PCR–RFLP markers clustered the Fagaceae species according to genus or infrageneric group (in the case of Quercus sp. individuals). Five oaks did not cluster in line with the adopted infrageneric classification, but three of these were grouped according to their actual ecological distributions. The ITS PCR–RFLP markers indicated their potential for phylogenetic studies since all Fagaceae individuals were discriminated according to genus, and most of the oaks were clustered according to infrageneric group or ecological area. PMID:25429047

  16. Terminal labeling and addition of homopolymer tracts to duplex DNA fragments by terminal deoxynucleotidyl transferase.

    PubMed Central

    Roychoudhury, R; Jay, E; Wu, R

    1976-01-01

    Terminal deoxynucleotidyl transferase, which requires a single-stranded DNA primer under the usual assay conditions, can be made to accept double-stranded DNA as primer for the addition of either rNMP or dNMP, if Mg+2 ion is replaced by Co+2 ion. The priming efficiency in the presence of (C leads to) CO+2 ion with respect to initial rate tested with 2 single-stranded primer, is 5-6 fols higher than that observed with Mg+2 ion. In the presence of Co+2 ion, the primer specificity is altered so that all forms of duplex DNA molecules can be labeled at their unique 3' -ends regardless of whether such ends are staggered or even. Thus, using ribonucleotide incorporation, we have for the first time employed this reaction for sequence analysis of duplex DNA fragments generated by restriction endonuclease cleavages. Furthermore, by using Co+2 ion, it is possible to add a long homopolymer tract of deoxyribonucleotides to the 3'-terminus of double-stranded DNA. Therefore, without prior treatment with lambda exonuclease to expose the 3' terminus as single-stranded primer, this reaction now permits insertion of homopolymer tails at the 3'-ends of all types of DNA molecules for the purpose of in vitro construction of recombinant DNA. Images PMID:765970

  17. PCR-Restriction Fragment Length Polymorphism Analysis for Identification of Bacteroides spp. and Characterization of Nitroimidazole Resistance Genes

    PubMed Central

    Stubbs, Simon L. J.; Brazier, Jon S.; Talbot, Paul R.; Duerden, Brian I.

    2000-01-01

    Bacteroides spp. are opportunist pathogens that cause blood and soft tissue infections and are often resistant to antimicrobial agents. We have developed a combined PCR-restriction fragment length polymorphism (RFLP) technique to characterize the 16S rRNA gene for identification purposes and the nitroimidazole resistance (nim) gene for detection of resistance to the major antimicrobial agent used to treat Bacteroides infections: metronidazole (MTZ). PCR-RFLP analysis of 16S ribosomal (rDNA) with HpaII and TaqI produced profiles that enabled discrimination of type strains and identification of 70 test strains to the species level. The 16S rDNA PCR-RFLP identification results agreed with routine phenotypic testing for 62 of the strains. The discrepancies between phenotypic and PCR-RFLP methods for eight strains were resolved by 16S rDNA sequencing in three cases, but five strains remain unidentified. The presence of nim genes was indicated by PCR in 25 of 28 strains that exhibited reduced sensitivity to MTZ. PCR-RFLP of the nim gene products identified the four reported genes (nimA, -B, -C, and -D) and indicated the presence of a previously unreported nim gene in 5 strains. This novel nim gene exhibited 75% DNA sequence similarity with nimB. These rapid, accurate, and inexpensive methods should enable improved identification of Bacteroides spp. and the detection of MTZ resistance determinants. PMID:10970359

  18. High-sensitivity capillary electrophoresis of double-stranded DNA fragments using monomeric and dimeric fluorescent intercalating dyes

    SciTech Connect

    Zhu, H.; Clark, S.M.; Benson, S.C.; Rye, H.S.; Glazer, A.N.; Mathies, R.A. )

    1994-07-01

    Fluorescence-detected capillary electrophoresis separations of [phi]X174/HaeIII DNA restriction fragments have been performed using monomeric and dimeric intercalating dyes. Replaceable hydroxyethyl cellulose solutions were used as the separation medium. Confocal fluorescence detection was performed following 488-nm laser excitation. The limits of DNA detection for on-column staining with monomeric dyes (ethidium bromide, two propidium dye derivatives, oxazole yellow, thiazole orange, and a polycationic thiazole orange derivative) were determined. The thiazole orange dyes provide the most sensitive detection with limiting sensitivities of 2-4 amol of DNA base pairs per band, and detection of the 603-bp fragment was successful, injecting from [phi]X174/HaeIII samples containing only 1-2 fg of this fragment per microliter. Separations of preformed DNA-dimeric dye complexes were also performed. The breadth of the bands observed in separations of preformed DNA-dimeric dye complexes is due to the presence of DNA fragments with different numbers of bound dye molecules that can be resolved as closely spaced subbands in many of our separations. The quality of these DNA-dye complex separations can be dramatically improved by performing the electrophoresis with 9-aminoacridine (9AA) in the column and running buffers. 43 refs., 10 figs., 1 tab.

  19. Ion induced fragmentation cross-sections of DNA constituents

    NASA Astrophysics Data System (ADS)

    Rudek, Benedikt; Arndt, Alexander; Bennett, Daniel; Wang, Mingjie; Rabus, Hans

    2015-10-01

    Proton collision with chemical analogs for the base, the sugar and the phosphor residue of the DNA, namely pyrimidine, tetrahydrofuran and trimethyl phosphate, respectively, has been investigated. The impact energies ranged from 300 keV up to 16 MeV. For the first time, relative fragmentation cross-sections for proton impact are reported for tetrahydrofuran and trimethyl phosphate; previously reported cross sections for pyrimidine are extended for energies beyond 2500 keV. Ionization of tetrahydrofuran leads to a ring break in about 80% of all events, trimethyl phosphate predominantly fragments by bond cleavage to one of the three methyl-groups and for pyrimidine the parent ion has the highest abundance. Such comparison supports earlier findings that the sugar is the weak spot for strand breaks.

  20. Characterization of Erwinia chrysanthemi by pectinolytic isozyme polymorphism and restriction fragment length polymorphism analysis of PCR-amplified fragments of pel genes.

    PubMed Central

    Nassar, A; Darrasse, A; Lemattre, M; Kotoujansky, A; Dervin, C; Vedel, R; Bertheau, Y

    1996-01-01

    Conserved regions about 420 bp long of the pelADE cluster specific to Erwinia chrysanthemi were amplified by PCR and used to differentiate 78 strains of E. chrysanthemi that were obtained from different hosts and geographical areas. No PCR products were obtained from DNA samples extracted from other pectinolytic and nonpectinolytic species and genera. The pel fragments amplified from the E. chrysanthemi strains studied were compared by performing a restriction fragment length polymorphism (RFLP) analysis. On the basis of similarity coefficients derived from the RFLP analysis, the strains were separated into 16 PCR RFLP patterns grouped in six clusters, These clusters appeared to be correlated with other infraspecific levels of E. chrysanthemi classification, such as pathovar and biovar, and occasionally with geographical origin. Moreover, the clusters correlated well with the polymorphism of pectate lyase and pectin methylesterase isoenzymes. While the pectin methylesterase profiles correlated with host monocot-dicot classification, the pectate lyase polymorphism might reflect the cell wall microdomains of the plants belonging to these classes. PMID:8779560

  1. Characterization of human glucocorticoid receptor complexes formed with DNA fragments containing or lacking glucocorticoid response elements

    SciTech Connect

    Tully, D.B.; Cidlowski, J.A. )

    1989-03-07

    Sucrose density gradient shift assays were used to study the interactions of human glucocorticoid receptors (GR) with small DNA fragments either containing or lacking glucocorticoid response element (GRE) DNA consensus sequences. When crude cytoplasmic extracts containing ({sup 3}H)triamcinolone acetonide (({sup 3}H)TA) labeled GR were incubated with unlabeled DNA under conditions of DNA excess, a GRE-containing DNA fragment obtained from the 5' long terminal repeat of mouse mammary tumor virus (MMTV LTR) formed a stable 12-16S complex with activated, but not nonactivated, ({sup 3}H)TA receptor. By contrast, if the cytosols were treated with calf thymus DNA-cellulose to deplete non-GR-DNA-binding proteins prior to heat activation, a smaller 7-10S complex was formed with the MMTV LTR DNA fragment. Activated ({sup 3}H)TA receptor from DNA-cellulose pretreated cytosols also interacted with two similarly sized fragments from pBR322 DNA. Stability of the complexes formed between GR and these three DNA fragments was strongly affected by even moderate alterations in either the salt concentration or the pH of the gradient buffer. Under all conditions tested, the complex formed with the MMTV LTR DNA fragment was more stable than the complexes formed with either of the pBR322 DNA fragments. Together these observations indicate that the formation of stable complexes between activated GR and isolated DNA fragments requires the presence of GRE consensus sequences in the DNA.

  2. Detection of disease-specific restriction fragment length polymorphisms in pemphigus vulgaris linked to the DQw1 and DQw3 alleles of the HLA-D region.

    PubMed Central

    Szafer, F; Brautbar, C; Tzfoni, E; Frankel, G; Sherman, L; Cohen, I; Hacham-Zadeh, S; Aberer, W; Tappeiner, G; Holubar, K

    1987-01-01

    Pemphigus vulgaris in Israeli Ashkenazi and non-Ashkenazi Jews and in Austrian non-Jewish patients is strongly associated with the DR4 and DRw6 alleles of the HLA-D region class II genes. Restriction fragment length polymorphism analysis was undertaken with DQ beta, DQ alpha, and DR beta cDNA probes. Hybridization with the DQ beta probe identifies Pvu II, BamHI, and EcoRV fragments that absolutely discriminate pemphigus vulgaris patients from healthy DR-, DQ-, and ethnic-matched controls. In contrast the DQ alpha and DR beta probes failed to identify disease-specific restriction fragment length polymorphism fragments. These studies indicate that DQw1 and DQw3 polymorphisms carried by pemphigus vulgaris patients may be directly involved in predisposition to the disease or may be tightly linked to the susceptibility gene itself. To our knowledge, this is the first example of an HLA restriction fragment length polymorphism that is highly associated with susceptibility to autoimmune disease. Images PMID:2888115

  3. Cavitation Enhancing Nanodroplets Mediate Efficient DNA Fragmentation in a Bench Top Ultrasonic Water Bath.

    PubMed

    Kasoji, Sandeep K; Pattenden, Samantha G; Malc, Ewa P; Jayakody, Chatura N; Tsuruta, James K; Mieczkowski, Piotr A; Janzen, William P; Dayton, Paul A

    2015-01-01

    A perfluorocarbon nanodroplet formulation is shown to be an effective cavitation enhancement agent, enabling rapid and consistent fragmentation of genomic DNA in a standard ultrasonic water bath. This nanodroplet-enhanced method produces genomic DNA libraries and next-generation sequencing results indistinguishable from DNA samples fragmented in dedicated commercial acoustic sonication equipment, and with higher throughput. This technique thus enables widespread access to fast bench-top genomic DNA fragmentation. PMID:26186461

  4. Cavitation Enhancing Nanodroplets Mediate Efficient DNA Fragmentation in a Bench Top Ultrasonic Water Bath

    PubMed Central

    Malc, Ewa P.; Jayakody, Chatura N.; Tsuruta, James K.; Mieczkowski, Piotr A.; Janzen, William P.; Dayton, Paul A.

    2015-01-01

    A perfluorocarbon nanodroplet formulation is shown to be an effective cavitation enhancement agent, enabling rapid and consistent fragmentation of genomic DNA in a standard ultrasonic water bath. This nanodroplet-enhanced method produces genomic DNA libraries and next-generation sequencing results indistinguishable from DNA samples fragmented in dedicated commercial acoustic sonication equipment, and with higher throughput. This technique thus enables widespread access to fast bench-top genomic DNA fragmentation. PMID:26186461

  5. Phylogenomics of caspase-activated DNA fragmentation factor

    SciTech Connect

    Eckhart, Leopold . E-mail: leopold.eckhart@meduniwien.ac.at; Fischer, Heinz; Tschachler, Erwin

    2007-04-27

    The degradation of nuclear DNA by DNA fragmentation factor (DFF) is a key step in apoptosis of mammalian cells. Using comparative genomics, we have here determined the evolutionary history of the genes encoding the two DFF subunits, DFFA (also known as ICAD) and DFFB (CAD). Orthologs of DFFA and DFFB were identified in Nematostella vectensis, a representative of the primitive metazoan clade cnidarians, and in various vertebrates and insects, but not in representatives of urochordates, echinoderms, and nematodes. The domains mediating the interaction of DFFA and DFFB, a caspase cleavage site in DFFA, and the amino acid residues critical for endonuclease activity of DFFB were conserved in Nematostella. These findings suggest that DFF has been a part of the primordial apoptosis system of the eumetazoan common ancestor and that the ancient cell death machinery has degenerated in several evolutionary lineages, including the one leading to the prototypical apoptosis model, Caenorhabditis elegans.

  6. Cloning of DNA fragments: ligation reactions in agarose gel.

    PubMed

    Furtado, Agnelo

    2014-01-01

    Ligation reactions to ligate a desired DNA fragment into a vector can be challenging to beginners and especially if the amount of the insert is limiting. Although additives known as crowding agents, such as PEG 8000, added to the ligation mixes can increase the success one has with ligation reactions, in practice the amount of insert used in the ligation can determine the success or the failure of the ligation reaction. The method described here, which uses insert DNA in gel slice added directly into the ligation reaction, has two benefits: (a) using agarose as the crowding agent and (b) reducing steps of insert purification. The use of rapid ligation buffer and incubation of the ligation reaction at room temperature greatly increase the efficiency of the ligation reaction even for blunt-ended ligation. PMID:24243199

  7. Community terminal restriction fragment length polymorphisms reveal insights into the diversity and dynamics of leaf endophytic bacteria

    PubMed Central

    2013-01-01

    Background Plant endophytic bacteria play an important role benefiting plant growth or being pathogenic to plants or organisms that consume those plants. Multiple species of bacteria have been found co-inhabiting plants, both cultivated and wild, with viruses and fungi. For these reasons, a general understanding of plant endophytic microbial communities and their diversity is necessary. A key issue is how the distributions of these bacteria vary with location, with plant species, with individual plants and with plant growing season. Results Five common plant species were collected monthly for four months in the summer of 2010, with replicates from four different sampling sites in the Tallgrass Prairie Preserve in Osage County, Oklahoma, USA. Metagenomic DNA was extracted from ground, washed plant leaf samples, and fragments of the bacterial 16S rDNA genes were amplified for analysis of terminal restriction fragment length polymorphism (T-RFLP). We performed mono-digestion T-RFLP with restriction endonuclease DdeI, to reveal the structures of leaf endophytic bacterial communities, to identify the differences between plant-associated bacterial communities in different plant species or environments, and to explore factors affecting the bacterial distribution. We tested the impacts of three major factors on the leaf endophytic bacterial communities, including host plant species, sampling dates and sampling locations. Conclusions Results indicated that all of the three factors were significantly related (α = 0.05) to the distribution of leaf endophytic bacteria, with host species being the most important, followed by sampling dates and sampling locations. PMID:23286760

  8. Okazaki fragment processing-independent role for human Dna2 enzyme during DNA replication.

    PubMed

    Duxin, Julien P; Moore, Hayley R; Sidorova, Julia; Karanja, Kenneth; Honaker, Yuchi; Dao, Benjamin; Piwnica-Worms, Helen; Campbell, Judith L; Monnat, Raymond J; Stewart, Sheila A

    2012-06-22

    Dna2 is an essential helicase/nuclease that is postulated to cleave long DNA flaps that escape FEN1 activity during Okazaki fragment (OF) maturation in yeast. We previously demonstrated that the human Dna2 orthologue (hDna2) localizes to the nucleus and contributes to genomic stability. Here we investigated the role hDna2 plays in DNA replication. We show that Dna2 associates with the replisome protein And-1 in a cell cycle-dependent manner. Depletion of hDna2 resulted in S/G(2) phase-specific DNA damage as evidenced by increased γ-H2AX, replication protein A foci, and Chk1 kinase phosphorylation, a readout for activation of the ATR-mediated S phase checkpoint. In addition, we observed reduced origin firing in hDna2-depleted cells consistent with Chk1 activation. We next examined the impact of hDna2 on OF maturation and replication fork progression in human cells. As expected, FEN1 depletion led to a significant reduction in OF maturation. Strikingly, the reduction in OF maturation had no impact on replication fork progression, indicating that fork movement is not tightly coupled to lagging strand maturation. Analysis of hDna2-depleted cells failed to reveal a defect in OF maturation or replication fork progression. Prior work in yeast demonstrated that ectopic expression of FEN1 rescues Dna2 defects. In contrast, we found that FEN1 expression in hDna2-depleted cells failed to rescue genomic instability. These findings suggest that the genomic instability observed in hDna2-depleted cells does not arise from defective OF maturation and that hDna2 plays a role in DNA replication that is distinct from FEN1 and OF maturation. PMID:22570476

  9. Amplification of DNA polymerase gene fragments from viruses infecting microalgae.

    PubMed Central

    Chen, F; Suttle, C A

    1995-01-01

    Nested PCR with three highly degenerate primers was used for amplification and identification of DNA polymerase (pol) genes from viruses which infect three genera of microalgae. Group-specific primers (AVS1 and AVS2) were designed on the basis of inferred amino acid sequences unique to the DNA pol genes of viruses (PBCV-1 and NY-2A) that infect an endosymbiotic Chlorella-like alga (Chlorophyceae) and a virus (MpV-SP1) which infects the photosynthetic flagellate Micromonas pusilla (Prasinophyceae). In addition, a nested primer (POL) was designed on the basis of the highly conserved amino acid sequence YGDTDS found in most B-family (alpha-like) DNA pol genes. These primers were used to amplify DNA from the three viruses, PBCV-1, NY-2A, and MpV-SP1, for which the primers were designed, as well as eight clonal isolates of genetically distinct viruses which infect M. pusilla and others which infect Chrysochromulina spp. (Prymnesiophyceae), suggesting that these are a group of related viruses. In contrast, no product resulted from using DNA from viruses which infect the marine brown algae Ectocarpus siliculosis and Feldmannia sp. (Phaeophyceae), suggesting that these viruses may not be closely related to those that infect microalgae. These primers were also used to amplify DNA from natural virus communities. Our results indicate that nested PCR, even under low-stringency conditions, can be used as a rapid method to verify the presence in seawater of a group of related viruses which infect microalgae. Sequence analysis of these fragments should provide information on the genetic diversity and potentially the phyletic relationships among these viruses.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7747950

  10. Amplification of DNA polymerase gene fragments from viruses infecting microalgae.

    PubMed

    Chen, F; Suttle, C A

    1995-04-01

    Nested PCR with three highly degenerate primers was used for amplification and identification of DNA polymerase (pol) genes from viruses which infect three genera of microalgae. Group-specific primers (AVS1 and AVS2) were designed on the basis of inferred amino acid sequences unique to the DNA pol genes of viruses (PBCV-1 and NY-2A) that infect an endosymbiotic Chlorella-like alga (Chlorophyceae) and a virus (MpV-SP1) which infects the photosynthetic flagellate Micromonas pusilla (Prasinophyceae). In addition, a nested primer (POL) was designed on the basis of the highly conserved amino acid sequence YGDTDS found in most B-family (alpha-like) DNA pol genes. These primers were used to amplify DNA from the three viruses, PBCV-1, NY-2A, and MpV-SP1, for which the primers were designed, as well as eight clonal isolates of genetically distinct viruses which infect M. pusilla and others which infect Chrysochromulina spp. (Prymnesiophyceae), suggesting that these are a group of related viruses. In contrast, no product resulted from using DNA from viruses which infect the marine brown algae Ectocarpus siliculosis and Feldmannia sp. (Phaeophyceae), suggesting that these viruses may not be closely related to those that infect microalgae. These primers were also used to amplify DNA from natural virus communities. Our results indicate that nested PCR, even under low-stringency conditions, can be used as a rapid method to verify the presence in seawater of a group of related viruses which infect microalgae. Sequence analysis of these fragments should provide information on the genetic diversity and potentially the phyletic relationships among these viruses.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7747950

  11. Size-selective separation of DNA fragments by using lysine-functionalized silica particles

    PubMed Central

    Liu, Lingling; Guo, Zilong; Huang, Zhenzhen; Zhuang, Jiaqi; Yang, Wensheng

    2016-01-01

    In this work, a facile and efficient approach has been demonstrated for size-selective separation of DNA fragments by using lysine-functionalized silica particles. At a given pH, the environmental ionic strength can be utilized to alter the electrostatic interactions of lysine-functionalized silica particles with DNA fragments and in turn the DNA fragments on the silica particle surfaces, which exhibits a clear dependence on the DNA fragment sizes. By carefully adjusting the environmental pH and salt concentration, therefore, the use of the lysine-functionalized silica particles allows effective separation of binary and ternary DNA mixtures, for example, two different DNA fragments with sizes of 101 and 1073 bp, 101 and 745 bp, 101 and 408 bp, respectively, and three different DNA fragments with sizes of 101, 408 and 1073 bp. PMID:26911527

  12. Size-selective separation of DNA fragments by using lysine-functionalized silica particles.

    PubMed

    Liu, Lingling; Guo, Zilong; Huang, Zhenzhen; Zhuang, Jiaqi; Yang, Wensheng

    2016-01-01

    In this work, a facile and efficient approach has been demonstrated for size-selective separation of DNA fragments by using lysine-functionalized silica particles. At a given pH, the environmental ionic strength can be utilized to alter the electrostatic interactions of lysine-functionalized silica particles with DNA fragments and in turn the DNA fragments on the silica particle surfaces, which exhibits a clear dependence on the DNA fragment sizes. By carefully adjusting the environmental pH and salt concentration, therefore, the use of the lysine-functionalized silica particles allows effective separation of binary and ternary DNA mixtures, for example, two different DNA fragments with sizes of 101 and 1073?bp, 101 and 745?bp, 101 and 408?bp, respectively, and three different DNA fragments with sizes of 101, 408 and 1073?bp. PMID:26911527

  13. Size-selective separation of DNA fragments by using lysine-functionalized silica particles

    NASA Astrophysics Data System (ADS)

    Liu, Lingling; Guo, Zilong; Huang, Zhenzhen; Zhuang, Jiaqi; Yang, Wensheng

    2016-02-01

    In this work, a facile and efficient approach has been demonstrated for size-selective separation of DNA fragments by using lysine-functionalized silica particles. At a given pH, the environmental ionic strength can be utilized to alter the electrostatic interactions of lysine-functionalized silica particles with DNA fragments and in turn the DNA fragments on the silica particle surfaces, which exhibits a clear dependence on the DNA fragment sizes. By carefully adjusting the environmental pH and salt concentration, therefore, the use of the lysine-functionalized silica particles allows effective separation of binary and ternary DNA mixtures, for example, two different DNA fragments with sizes of 101 and 1073 bp, 101 and 745 bp, 101 and 408 bp, respectively, and three different DNA fragments with sizes of 101, 408 and 1073 bp.

  14. Beta 2 adrenergic receptor gene restriction fragment length polymorphism and bronchial asthma.

    PubMed Central

    Ohe, M.; Munakata, M.; Hizawa, N.; Itoh, A.; Doi, I.; Yamaguchi, E.; Homma, Y.; Kawakami, Y.

    1995-01-01

    BACKGROUND--Beta 2 adrenergic dysfunction may be one of the underlying mechanisms responsible for atopy and bronchial asthma. The gene encoding the human beta 2 adrenergic receptor (beta 2ADR) has recently been isolated and sequenced. In addition, a two allele polymorphism of this receptor gene has been identified in white people. A study was carried out to determine whether this polymorphism is functionally important and has any relation to airways responsiveness, atopy, or asthma. METHODS--The subjects studied were 58 family members of four patients with atopic asthma. Restriction fragment length polymorphism (RFLP) with Ban-I digestion of the beta 2ADR gene was detected by a specific DNA probe with Southern blot analysis. Airways responses to inhaled methacholine and the beta 2 agonist salbutamol, the skin prick test, and serum IgE levels were also examined and correlated to the beta 2ADR gene RFLP. In addition, measurements of cAMP responses to isoproterenol in peripheral mononuclear cells were performed in 22 healthy subjects whose genotype for beta 2ADR was known. RESULTS--A two allele polymorphism (2.3 kb and 2.1 kb) of the beta 2ADR gene was detected in the Japanese population. Family members without allele 2.3 kb (homozygote of allele 2.1 kb) had lower airways responses to inhaled salbutamol than those with allele 2.3 kb. The incidence of asthma was higher in those without allele 2.3 kb than in those with allele 2.3 kb. The beta 2ADR gene RFLP had no relation to airways responses to methacholine and atopic status. cAMP responses in peripheral mononuclear cells of the subjects without allele 2.3 kb tended to be lower than those of the subjects with allele 2.3 kb. CONCLUSIONS--These results suggest that Ban-I RFLP of the beta 2ADR gene may have some association with the airways responses to beta 2 agonists and the incidence of bronchial asthma. Images PMID:7785006

  15. Dependence on radiation quality of DNA fragmentation spectra

    NASA Astrophysics Data System (ADS)

    Campa, Alessandro; Ottolenghi, Andrea; Alloni, Daniele; Ballarini, Francesca; Belli, Mauro; Esposito, Giuseppe; Facoetti, Angelica; Friedland, Werner; Liotta, Marco; Paretzke, Herwig

    Energy deposition by radiation initially gives rise to cellular critical lesions such as DNA doublestrand breaks (DSB), that later lead to the formation of relevant biological endpoints. Studies on fragment size distributions induced by radiations of various qualities can be of great help in linking the characteristics of radiation to cellular endpoints, providing information for understanding the main mechanisms of cell damage. Here we are concerned with the damage induced by heavy charged particles; this issue is very important in the field of radioprotection of astronauts participating in long term space missions, besides being relevant also in other fields, like hadrontherapy. Galactic Cosmic Rays contain a large component of high-LET particles (HZE), e.g. helium and carbon ions, as well as highcharge particles such as iron ions. These particles are characterized by complex track structures with energy depositions not only along the path of the primary particle, but also at relatively large distance form the path, due to the presence of high energy secondary electrons. In this work we have simulated the irradiation of human fibroblasts with γ-rays, protons, helium, carbon and iron ions at a fixed dose with the biophysical Monte Carlo code PARTRAC,and calculated the induction of DSB. The PARTRAC code includes accurate representation of the chromatin geometry and of the physical and physico-chemical processes associated with the energy deposition by radiation. The results of a first validation of the code have been reported in A. Campa et al. (2005) and D. Alloni et al. (2007a, 2007b). DNA fragment spectra were calculated based on the DSB induction patterns and compared in particular for particles of the same specific energy and for particles of the same LET. Special emphasis has been directed to the calculation of very small fragments (< 1 kbp) that are not detectable by the most common experimental techniques and that can significantly influence the RBE (Relative Biological Effectiveness) of high LET radiation. This work was partially supported by EU ("RISC-RAD" project, Contract no. FI6R-CT 2003- 508842, and "NOTE" project, Contract no. FI6R-036465) and ASI (Italian Space Agency, "Mo-Ma/COUNT" project). References A. Campa, F. Ballarini, M. Belli, R. Cherubini, V. Dini, G. Esposito, W.Friedland, S. Gerardi, S. Molinelli, A. Ottolenghi, H. G. Paretzke, G. Simone and M. A. Tabocchini. DNA DSB induced in human cells by charged particles and gamma rays: experimental results and theoretical approaches. Int. J. Radiat.Biol. 81, 841-854 (2005). D. Alloni, F. Ballarini, M. Belli, A. Campa, G. Esposito, W. Friedland, M.Liotta, A. Ottolenghi and H. G. Paretzke. Modeling of DNA fragmentation induced in human fibroblasts by 56 Fe ions. Adv. Space Res. 40, 1401-1407 (2007a). D. Alloni, F. Antonelli, F. Ballarini, M. Belli, A. Campa, V. Dini, G.Esposito, W. Friedland, M. Liotta, A. Ottolenghi, H. G. Paretzke, G. Simone, E. Sorrentino and M. A. Tabocchini. Small DNA fragments induced in human fibroblasts by 56 Fe ions: experimental data and MC simulations. Proc. "Ion Beams in biology and medicine", Heidelberg, 26-29 September 2007, edited by J. Debus, K. Henrichs, G. Kraft, p. 164 (2207b).

  16. Association between a T cell receptor restriction fragment length polymorphism and systemic lupus erythematosus.

    PubMed Central

    Tebib, J G; Alcocer-Varela, J; Alarcon-Segovia, D; Schur, P H

    1990-01-01

    The present study was designed to test the possibility that T cell receptor genes are associated/linked to those involved in systemic lupus erythematosus (SLE). Genomic DNA was isolated from 31 unrelated Caucasian SLE patients, 34 unrelated Caucasian normals, 5 multiplex American Caucasian SLE families, 9 multiplex Mexican SLE families, and 13 unrelated Mexican normals. The DNA was digested with Pst I, electrophoresed, and transferred to membranes by the Southern blot method. The blots were probed with a cDNA probe for the alpha chain of the T cell receptor. 13 polymorphic RFLP patterns were recognized. 1.3- and 3.0-kb band pairs were observed in 15 of 31 of American Caucasian patients and 4 of 34 American Caucasian controls (chi square, 8.81; P less than 0.002; relative risk, 7); there was no association of any RFLP pattern with Mexican SLE. The cDNA probe was cut with Rsa I, EcoR I, and Ava II into fragments corresponding to the V, J, C, and 3'UT regions. Only the fragment corresponding to the constant region reacted with the 1.3/3.0-kb band pair. These observations suggest that a genetic marker of the constant region of the alpha chain of the T cell receptor is associated with genes involved in SLE. Images PMID:1979334

  17. Intrauterine calorie restriction affects placental DNA methylation and gene expression

    PubMed Central

    Chen, Pao-Yang; Ganguly, Amit; Rubbi, Liudmilla; Orozco, Luz D.; Morselli, Marco; Ashraf, Davin; Jaroszewicz, Artur; Feng, Suhua; Jacobsen, Steve E.; Nakano, Atsushi; Devaskar, Sherin U.

    2013-01-01

    Maternal nutrient restriction causes the development of adult onset chronic diseases in the intrauterine growth restricted (IUGR) fetus. Investigations in mice have shown that either protein or calorie restriction during pregnancy leads to glucose intolerance, increased fat mass, and hypercholesterolemia in adult male offspring. Some of these phenotypes are shown to persist in successive generations. The molecular mechanisms underlying IUGR remain unclear. The placenta is a critical organ for mediating changes in the environment and the development of embryos. To shed light on molecular mechanisms that might affect placental responses to differing environments we examined placentas from mice that had been exposed to different diets. We measured gene expression and whole genome DNA methylation in both male and female placentas of mice exposed to either caloric restriction or ad libitum diets. We observed several differentially expressed pathways associated with IUGR phenotypes and, most importantly, a significant decrease in the overall methylation between these groups as well as sex-specific effects that are more pronounced in males. In addition, a set of significantly differentially methylated genes that are enriched for known imprinted genes were identified, suggesting that imprinted loci may be particularly susceptible to diet effects. Lastly, we identified several differentially methylated microRNAs that target genes associated with immunological, metabolic, gastrointestinal, cardiovascular, and neurological chronic diseases, as well as genes responsible for transplacental nutrient transfer and fetal development. PMID:23695884

  18. Sac I Restriction Fragment Length Polymorphism (RFLP) related to the human CST2 gene.

    PubMed

    Minaguchi, Kiyoshi; Kiriyama, Tateshi; Saitoh, Eiichi; Isemura, Satoko; Sanada, Kazuo

    2002-02-01

    Restriction Fragment Length Polymorphism (RFLP) related to cystatin gene (CST) family was detected in the Japanese population by using restriction enzyme Sac I. A polymorphic site, located at 0.9 kb from the 3' end of the CST2 gene, revealed a two allele polymorphism with band sizes of 3.5 kb and 8.3 kb by hybridization with probe including exon 2 of the CST1 gene. The gene frequencies in the Japanese population were 0.326 for 3.5 kb allele and 0.674 for 8.3 kb allele (n = 86). The phenotypes of the polymorphism showed no association with the previously reported electrophoretic cystatin SA protein phenotypes. PMID:12013824

  19. Impacts of degraded DNA on restriction enzyme associated DNA sequencing (RADSeq).

    PubMed

    Graham, Carly F; Glenn, Travis C; McArthur, Andrew G; Boreham, Douglas R; Kieran, Troy; Lance, Stacey; Manzon, Richard G; Martino, Jessica A; Pierson, Todd; Rogers, Sean M; Wilson, Joanna Y; Somers, Christopher M

    2015-11-01

    Degraded DNA from suboptimal field sampling is common in molecular ecology. However, its impact on techniques that use restriction site associated next-generation DNA sequencing (RADSeq, GBS) is unknown. We experimentally examined the effects of in situDNA degradation on data generation for a modified double-digest RADSeq approach (3RAD). We generated libraries using genomic DNA serially extracted from the muscle tissue of 8 individual lake whitefish (Coregonus clupeaformis) following 0-, 12-, 48- and 96-h incubation at room temperature posteuthanasia. This treatment of the tissue resulted in input DNA that ranged in quality from nearly intact to highly sheared. All samples were sequenced as a multiplexed pool on an Illumina MiSeq. Libraries created from low to moderately degraded DNA (12-48 h) performed well. In contrast, the number of RADtags per individual, number of variable sites, and percentage of identical RADtags retained were all dramatically reduced when libraries were made using highly degraded DNA (96-h group). This reduction in performance was largely due to a significant and unexpected loss of raw reads as a result of poor quality scores. Our findings remained consistent after changes in restriction enzymes, modified fold coverage values (2- to 16-fold), and additional read-length trimming. We conclude that starting DNA quality is an important consideration for RADSeq; however, the approach remains robust until genomic DNA is extensively degraded. PMID:25783180

  20. Identification of Pork Contamination in Meatballs of Indonesia Local Market Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis

    PubMed Central

    Erwanto, Yuny; Abidin, Mohammad Zainal; Sugiyono, Eko Yasin Prasetyo Muslim; Rohman, Abdul

    2014-01-01

    This research applied and evaluated a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using cytochrome b gene to detect pork contamination in meatballs from local markets in Surabaya and Yogyakarta regions, Indonesia. To confirm the effectiveness and specificity of this fragment, thirty nine DNA samples from different meatball shops were isolated and amplified, and then the PCR amplicon was digested by BseDI restriction enzyme to detect the presence of pork in meatballs. BseDI restriction enzyme was able to cleave porcine cytochrome b gene into two fragments (131 bp and 228 bp). Testing the meatballs from the local market showed that nine of twenty meatball shops in Yogyakarta region were detected to have pork contamination, but there was no pork contamination in meatball shops in Surabaya region. In conclusion, specific PCR amplification of cytochrome b gen and cleaved by BseDI restriction enzymes seems to be a powerful technique for the identification of pork presence in meatball because of its simplicity, specificity and sensitivity. Furthermore, pork contamination intended for commercial products of sausage, nugget, steak and meat burger can be checked. The procedure is also much cheaper than other methods based on PCR, immunodiffusion and other techniques that need expensive equipment. PMID:25178301

  1. Identification of Pork Contamination in Meatballs of Indonesia Local Market Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis.

    PubMed

    Erwanto, Yuny; Abidin, Mohammad Zainal; Sugiyono, Eko Yasin Prasetyo Muslim; Rohman, Abdul

    2014-10-01

    This research applied and evaluated a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using cytochrome b gene to detect pork contamination in meatballs from local markets in Surabaya and Yogyakarta regions, Indonesia. To confirm the effectiveness and specificity of this fragment, thirty nine DNA samples from different meatball shops were isolated and amplified, and then the PCR amplicon was digested by BseDI restriction enzyme to detect the presence of pork in meatballs. BseDI restriction enzyme was able to cleave porcine cytochrome b gene into two fragments (131 bp and 228 bp). Testing the meatballs from the local market showed that nine of twenty meatball shops in Yogyakarta region were detected to have pork contamination, but there was no pork contamination in meatball shops in Surabaya region. In conclusion, specific PCR amplification of cytochrome b gen and cleaved by BseDI restriction enzymes seems to be a powerful technique for the identification of pork presence in meatball because of its simplicity, specificity and sensitivity. Furthermore, pork contamination intended for commercial products of sausage, nugget, steak and meat burger can be checked. The procedure is also much cheaper than other methods based on PCR, immunodiffusion and other techniques that need expensive equipment. PMID:25178301

  2. Prevalence of Trichomonas spp. in domestic pigeons in Shandong Province, China, and genotyping by restriction fragment length polymorphism.

    PubMed

    Jiang, Xiyue; Sun, Jingjing; Wang, Fangkun; Li, Hongmei; Zhao, Xiaomin

    2016-05-01

    Oropharyngeal swabs (n = 609) were collected randomly from 80,000 domestic pigeons (Columba livia domestica) on five pigeon farms and at one pigeon slaughterhouse in Shandong Province, China, from September 2012 to July 2013. Trichomonas spp. were detected in 206/609 (33.8%) samples. The prevalence was 14.9-31.1%, depending on different levels of sanitation and management, and was 4.8% in nestling pigeons, 13.6% in breeding pigeons and 35.2% in adolescent pigeons. Trichomonas gallinae genotypes A and B, and Trichomonas tenax-like isolates were identified by PCR-restriction fragment length polymorphism (RFLP) analysis and sequencing of the 5.8S rDNA-internal transcribed spacer (ITS) regions. RFLP analysis with the restriction enzyme BsiEI generated different RFLP band patterns between T. gallinae and T.tenax-like isolates. When BsiEI RFLP analysis was combined with HaeIII RFLP analysis, all infection types of T. gallinae and T.tenax-like isolates could be identified. PMID:27068150

  3. Clusters of DNA damage induced by ionizing radiation: formation of short DNA fragments. II. Experimental detection

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    The basic 30-nm chromatin fiber in the mammalian cell consists of an unknown (possibly helical) arrangement of nucleosomes, with about 1.2 kb of DNA per 10-nm length of fiber. Track-structure considerations suggest that interactions of single delta rays or high-LET particles with the chromatin fiber might result in the formation of multiple lesions spread over a few kilobases of DNA (see the accompanying paper: W.R. Holley and A. Chatterjee, Radiat. Res. 145, 188-199, 1996). In particular, multiple DNA double-strand breaks and single-strand breaks may form. To test this experimentally, primary human fibroblasts were labeled with [3H]thymidine and exposed at 0 degrees C to X rays or accelerated nitrogen or iron ions in the LET range of 97-440 keV/microns. DNA was isolated inside agarose plugs and subjected to agarose gel electrophoresis under conditions that allowed good separation of 0.1-2 kb size DNA. The bulk of DNA remained in the well or migrated only a small distance into the gel. It was found that DNA fragments in the expected size range were formed linearly with dose with an efficiency that increased with LET. A comparison of the yield of such fragments with the yield of total DNA double-strand breaks suggests that for the high-LET ions a substantial proportion (20-90%) of DNA double-strand breaks are accompanied within 0.1-2 kb by at least one additional DNA double-strand break. It is shown that these results are in good agreement with theoretical calculations based on treating the 30-nm chromatin fiber as the target for ionizing particles. Theoretical considerations also predict that the clusters will contain numerous single-strand breaks and base damages. It is proposed that such clusters be designated "regionally multiply damaged sites." Postirradiation incubation at 37 degrees C resulted in a decline in the number of short DNA fragments, suggesting a repair activity. The biological significance of regionally multiply damaged sites is presently unknown.

  4. Limits of a rapid identification of common Mediterranean sandflies using polymerase chain reaction-restriction fragment length polymorphism

    PubMed Central

    Bounamous, Azzedine; Lehrter, Véronique; Hadj-Henni, Leila; Delecolle, Jean-Claude; Depaquit, Jérôme

    2014-01-01

    A total of 131 phlebotomine Algerian sandflies have been processed in the present study. They belong to the species Phlebotomus bergeroti, Phlebotomus alexandri, Phlebotomus sergenti, Phlebotomus chabaudi, Phlebotomus riouxi, Phlebotomus perniciosus, Phlebotomus longicuspis, Phlebotomus perfiliewi, Phlebotomus ariasi, Phlebotomus chadlii, Sergentomyia fallax, Sergentomyia minuta, Sergentomyia antennata, Sergentomyia schwetzi, Sergentomyia clydei, Sergentomyia christophersi and Grassomyia dreyfussi. They have been characterised by sequencing of a part of the cytochrome b (cyt b), t RNA serine and NADH1 on the one hand and of the cytochrome C oxidase I of the mitochondrial DNA (mtDNA) on the other hand. Our study highlights two sympatric populations within P. sergenti in the area of its type-locality and new haplotypes of P. perniciosus and P. longicuspis without recording the specimens called lcx previously found in North Africa. We tried to use a polymerase chain reaction-restriction fragment length polymorphism method based on a combined double digestion of each marker. These method is not interesting to identify sandflies all over the Mediterranean Basin. PMID:24936911

  5. Comparative utility of restriction fragment length polymorphism analysis and gene sequencing to the molecular epidemiological investigation of a viral outbreak.

    PubMed

    Goldberg, T L; Weigel, R M; Hahn, E C; Scherba, G

    2001-06-01

    Restriction fragment length polymorphism (RFLP) analysis and partial-genome DNA sequencing are commonly used to infer genetic relationships among pathogens. This study compares the application of both techniques to the analysis of 16 pseudorabies virus isolates collected during a 1989 outbreak. Genetic distances derived from RFLP and DNA sequence data were not significantly correlated with geographic distances between farms from which isolates were collected. RFLP-based genetic distance was, however, strongly correlated with temporal distance between isolates (days separating time of isolation). Sequence-based genetic distance was significantly correlated with temporal distance only when synonymous changes (nucleotide changes not leading to amino acid changes) were considered separately. Conversely, non-synonymous changes were correlated with the host species of origin of the viral isolate. These results indicate that selectively-neutral genetic changes most accurately reflect historical relationships, but that non-neutral changes most accurately reflect the biological environment of the viral isolate (e.g. host immune system). PMID:11467798

  6. TeloTool: a new tool for telomere length measurement from terminal restriction fragment analysis with improved probe intensity correction

    PubMed Central

    Göhring, Janett; Fulcher, Nick; Jacak, Jaroslaw; Riha, Karel

    2014-01-01

    Telomeres comprise the protective caps of natural chromosome ends and function in the suppression of DNA damage signaling and cellular senescence. Therefore, techniques used to determine telomere length are important in a number of studies, ranging from those investigating telomeric structure to effects on human disease. Terminal restriction fragment (TRF) analysis has for a long time shown to be one of the most accurate methods for quantification of absolute telomere length and range from a number of species. As this technique centers on standard Southern blotting, telomeric DNA is observed on resulting autoradiograms as a heterogeneous smear. Methods to accurately determine telomere length from telomeric smears have proven problematic, and no reliable technique has been suggested to obtain mean telomere length values. Here, we present TeloTool, a new program allowing thorough statistical analysis of TRF data. Using this new method, a number of methodical biases are removed from previously stated techniques, including assumptions based on probe intensity corrections. This program provides a standardized mean for quick and reliable extraction of quantitative data from TRF autoradiograms; its wide application will allow accurate comparison between datasets generated in different laboratories. PMID:24366880

  7. Sperm DNA fragmentation is related to sperm morphological staining patterns.

    PubMed

    Sá, Rosália; Cunha, Mariana; Rocha, Eduardo; Barros, Alberto; Sousa, Mário

    2015-10-01

    In this prospective comparative study, sperm DNA fragmentation (sDNAfrag) was compared at each step of a sequential semen preparation, with semen parameters according to their degree of severity. At each step (fractions) of the sequential procedure, sDNAfrag was determined: fresh (Raw), after gradient centrifugation, washing, and swim-up (SU) for 70 infertile men enrolled in intracytoplasmic sperm injection cycles. sDNAfrag significantly (P = 0.04; P < 0.0001) decreased throughout the steps of semen preparation, with centrifugation and washing not increasing it. A negative correlation to sperm motility was observed in Raw and SU fractions, and a higher sDNAfrag was observed in samples with lower semen quality. Our results confirm that the steps of the sequential procedure do not compromise sperm DNA integrity and progressively decreased sDNAfrag regardless of the sperm abnormality and that semen parameters with lower quality present higher sDNAfrag. Four distinct patterns were observed, of which the entire sperm head staining was the pattern most expressed in all studied fractions. Additionally, the sperm head gene-rich region staining pattern was reduced by the procedure. This suggests that pattern quantification might be a useful adjunct when performing sDNAfrag testing for male infertility. PMID:26278809

  8. Saccharin consumption increases sperm DNA fragmentation and apoptosis in mice

    PubMed Central

    Rahimipour, Marzieh; Talebi, Ali Reza; Anvari, Morteza; Abbasi Sarcheshmeh, Abolghasem; Omidi, Marjan

    2014-01-01

    Background: Saccharin is an artificial non-caloric sweetener that used to sweeten products such as drinks, candies, medicines, and toothpaste, but our bodies cannot metabolize it. Sodium saccharin is considered as an important factor in tumor promotion in male rats but not in humans. Objective: The objective of this study was to investigate the effect of saccharin consumption on sperm parameters and apoptosis in adult mice. Materials and Methods: Totally 14 adult male mice were divided into 2 groups. Group 1 served as control fed on basal diet and group 2 or experimental animals received distilled water containing saccharin (0.2% w/v) for 35 days. After that, the left cauda epididymis of each mouse was cut and placed in Ham’s F10. Swimmed-out spermatozoa were used to analyze count, motility, morphology (Pap-staining) and viability (eosin-Y staining). Sperm DNA integrity, as an indicator of apoptosis, was assessed by SCD (sperm chromatin dispersion) and terminal deoxynucleotidyl transferase (TUNEL) assay. Results: Following saccharin consumption, we had a reduction in sperm motility with respect to control animals (p=0.000). In addition, the sperm count diminished (17.70±1.11 in controls vs. 12.80±2.79 in case group, p=0.003) and the rate of sperm normal morphology decreased from 77.00±6.40 in control animals into 63.85±6.81 in saccharin-treated mice (p=0.001). Also, we saw a statistically significant increase in rates of sperm DNA damage and apoptosis in experimental group when compared to control one (p=0.001, p=0.002 respectively). Conclusion: Saccharin consumption may have negative effects on sperm parameters, and increases the rate of sperm DNA fragmentation and apoptosis in mice. PMID:25031574

  9. Phosphorylation of Okazaki-like DNA fragments in mammalian cells and role of polyamines in the processing of this DNA.

    PubMed Central

    Pohjanpelto, P; Hölttä, E

    1996-01-01

    In mammalian cells DNA synthesis is more complicated than in prokaryotes and less well understood. Here we incubated intact mammalian cells (polyamine auxotrophic Chinese hamster ovary cells and primary human fibroblasts) with [32P]orthophosphate and found that, besides high molecular weight DNA, a species of low molecular weight DNA, approximately 450 bp in size, became efficiently labeled. The short DNA was labeled first, and in pulse-chase experiments the labeling was transient. The isolated small DNA fragments (RNase A-treated) were phosphorylated by T4 polynucleotide kinase specific for polynucleotides with 5'-OH ends. A polynucleotide kinase phosphorylating these DNA pieces was also detected in nuclear extracts of the cells. Treatment with alkaline phosphatase removed most of the 32P label incorporated into the small DNA in vivo. Labeling with deoxyribonucleosides did not reveal these fragments. We hypothesize that the low molecular weight DNA represents Okazaki fragments and that the mammalian DNA replication machinery includes a polynucleotide kinase phosphorylating the 5'-termini of Okazaki fragments. This would imply a novel step in DNA synthesis. We also show that depriving cells of polyamines reversibly blocks synthesis of high molecular weight DNA and leads to accumulation of the short DNA pieces, suggesting a role for polyamines in joining the Okazaki fragments. Images PMID:8605890

  10. Restriction Fragment Length Polymorphism Separates Species of the Xiphinema americanum Group

    PubMed Central

    Vrain, Thierry C.

    1993-01-01

    The Xiphinema americanum group of species is responsible for vectoring several important virus diseases to perennial crops. Variability of transmission of viruses by different species, and difficulties in separating species by morphometric measurements alone, make it essential to reassess the taxonomic position of several species in the group. The measurement of DNA sequence variability is a sensitive assay that can re-evaluate the separation of species and populations from each other. This study describes how an RFLP approach, in which the restriction sites in transcribed spacers of ribosomal repeats were detected, confirmed the separation of 16 populations of these species into X. americanum, X. rivesi, X. pacificum, and X. bricolensis. PMID:19279780

  11. Restriction Fragment Length Polymorphism Separates Species of the Xiphinema americanum Group.

    PubMed

    Vrain, T C

    1993-09-01

    The Xiphinema americanum group of species is responsible for vectoring several important virus diseases to perennial crops. Variability of transmission of viruses by different species, and difficulties in separating species by morphometric measurements alone, make it essential to reassess the taxonomic position of several species in the group. The measurement of DNA sequence variability is a sensitive assay that can re-evaluate the separation of species and populations from each other. This study describes how an RFLP approach, in which the restriction sites in transcribed spacers of ribosomal repeats were detected, confirmed the separation of 16 populations of these species into X. americanum, X. rivesi, X. pacificum, and X. bricolensis. PMID:19279780

  12. Genotyping of the fish rhabdovirus, viral haemorrhagic septicaemia virus, by restriction fragment length polymorphisms

    USGS Publications Warehouse

    Einer-Jensen, Katja; Winton, James R.; Lorenzen, Niels

    2005-01-01

    The aim of this study was to develop a standardized molecular assay that used limited resources and equipment for routine genotyping of isolates of the fish rhabdovirus, viral haemorrhagic septicaemia virus (VHSV). Computer generated restriction maps, based on 62 unique full-length (1524 nt) sequences of the VHSV glycoprotein (G) gene, were used to predict restriction fragment length polymorphism (RFLP) patterns that were subsequently grouped and compared with a phylogenetic analysis of the G-gene sequences of the same set of isolates. Digestion of PCR amplicons from the full-lengthG-gene by a set of three restriction enzymes was predicted to accurately enable the assignment of the VHSV isolates into the four major genotypes discovered to date. Further sub-typing of the isolates into the recently described sub-lineages of genotype I was possible by applying three additional enzymes. Experimental evaluation of the method consisted of three steps: (i) RT-PCR amplification of the G-gene of VHSV isolates using purified viral RNA as template, (ii) digestion of the PCR products with a panel of restriction endonucleases and (iii) interpretation of the resulting RFLP profiles. The RFLP analysis was shown to approximate the level of genetic discrimination obtained by other, more labour-intensive, molecular techniques such as the ribonuclease protection assay or sequence analysis. In addition, 37 previously uncharacterised isolates from diverse sources were assigned to specific genotypes. While the assay was able to distinguish between marine and continental isolates of VHSV, the differences did not correlate with the pathogenicity of the isolates.

  13. Capillary electrophoresis as a technique to analyze sequence-induced anomalously migrating DNA fragments.

    PubMed

    Wenz, H M

    1994-09-25

    Sequence-induced anomalous migration of double-stranded (ds) DNA in native gel electrophoresis is a well known phenomenon. The retardation of migration is more obvious in polyacrylamide compared with agarose gels, and is greatly affected by the concentration of the gel and the temperature. This anomalous migration results in a difference between calculated and actual sizes of the affected DNA fragments. A low viscosity polymer solution (DNA Fragment Analysis Reagent) under investigation for use in dsDNA analysis by capillary electrophoresis is shown to be useful for the visualization of anomalies in migration of dsDNA fragments. Comparable with traditional slab gel systems, the retardation effect, indicative of bent or curved DNA, is strongly dependent on polymer concentration and separation temperature. These dependencies have implications on the accurate sizing of dsDNA fragments with unknown sequences and secondary structures. PMID:7937124

  14. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    SciTech Connect

    Jackson, Christopher B.; Gallati, Sabina; Schaller, Andre

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two genomes is demonstrated and which evaluates systematically the impact of DNA degradation on quantification of mtDNA copy number.

  15. Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy.

    PubMed

    Chao, J; Zhang, P; Wang, Q; Wu, N; Zhang, F; Hu, J; Fan, C H; Li, B

    2016-03-21

    We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA. PMID:26932823

  16. High-Efficiency Ligation and Recombination of DNA Fragments by Vertebrate Cells

    NASA Astrophysics Data System (ADS)

    Miller, Cynthia K.; Temin, Howard M.

    1983-05-01

    DNA-mediated gene transfer (transfection) is used to introduce specific genes into vertebrate cells. Events soon after transfection were quantitatively analyzed by determining the infectivity of the DNA from an avian retrovirus and of mixtures of subgenomic fragments of this DNA. The limiting step of transfection with two DNA molecules is the uptake by a single cell of both DNA's in a biologically active state. Transfected cells mediate ligation and recombination of physically unlinked DNA's at nearly 100 percent efficiency.

  17. A Mini-Library of Sequenced Human DNA Fragments: Linking Bench Experiments with Informatics

    ERIC Educational Resources Information Center

    Dalgleish, Raymond; Shanks, Morag E.; Monger, Karen; Butler, Nicola J.

    2012-01-01

    We describe the development of a mini-library of human DNA fragments for use in an enquiry-based learning (EBL) undergraduate practical incorporating "wet-lab" and bioinformatics tasks. In spite of the widespread emergence of the polymerase chain reaction (PCR), the cloning and analysis of DNA fragments in "Escherichia coli" remains a fundamental…

  18. A Mini-Library of Sequenced Human DNA Fragments: Linking Bench Experiments with Informatics

    ERIC Educational Resources Information Center

    Dalgleish, Raymond; Shanks, Morag E.; Monger, Karen; Butler, Nicola J.

    2012-01-01

    We describe the development of a mini-library of human DNA fragments for use in an enquiry-based learning (EBL) undergraduate practical incorporating "wet-lab" and bioinformatics tasks. In spite of the widespread emergence of the polymerase chain reaction (PCR), the cloning and analysis of DNA fragments in "Escherichia coli" remains a fundamental

  19. The Saccharomyces cerevisiae Dna2 can function as a sole nuclease in the processing of Okazaki fragments in DNA replication.

    PubMed

    Levikova, Maryna; Cejka, Petr

    2015-09-18

    During DNA replication, synthesis of the lagging strand occurs in stretches termed Okazaki fragments. Before adjacent fragments are ligated, any flaps resulting from the displacement of the 5' DNA end of the Okazaki fragment must be cleaved. Previously, Dna2 was implicated to function upstream of flap endonuclease 1 (Fen1 or Rad27) in the processing of long flaps bound by the replication protein A (RPA). Here we show that Dna2 efficiently cleaves long DNA flaps exactly at or directly adjacent to the base. A fraction of the flaps cleaved by Dna2 can be immediately ligated. When coupled with DNA replication, the flap processing activity of Dna2 leads to a nearly complete Okazaki fragment maturation at sub-nanomolar Dna2 concentrations. Our results indicate that a subsequent nucleolytic activity of Fen1 is not required in most cases. In contrast Dna2 is completely incapable to cleave short flaps. We show that also Dna2, like Fen1, interacts with proliferating cell nuclear antigen (PCNA). We propose a model where Dna2 alone is responsible for cleaving of RPA-bound long flaps, while Fen1 or exonuclease 1 (Exo1) cleave short flaps. Our results argue that Dna2 can function in a separate, rather than in a Fen1-dependent pathway. PMID:26175049

  20. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Holley, W. R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the chromatin fibers in mammalian DNA.

  1. Establishment and characterization of hamster cell lines transformed by restriction endonuclease fragments of adenovirus 5.

    PubMed Central

    Rowe, D T; Branton, P E; Yee, S P; Bacchetti, S; Graham, F L

    1984-01-01

    We have established a library of hamster cells transformed by adenovirus 5 DNA fragments comprising all (XhoI-C, 0 to 16 map units) or only a part (HindIII-G, 0 to 7.8 map units) of early region 1 (E1: 0 to 11.2 map units). These lines have been analyzed in terms of content of viral DNA, expression of E1 antigens, and capacity to induce tumors in hamsters. All cells tested were found to express up to eight proteins encoded within E1A (0 to 4.5 map units) with apparent molecular weights between 52,000 (52K) and 25K. Both G and C fragment-transformed lines expressed a 19K antigen encoded within E1B (4.5 to 11.2 map units), whereas an E1B 58K protein was detected in C fragment-transformed, but not G-fragment-transformed, lines. No clear distinction could be drawn between cells transformed by HindIII-G and by XhoI-C in terms of morphology or tumorigenicity, suggesting that the E1B 58K antigen plays no major role in the maintenance of oncogenic transformation, although possible involvement of truncated forms of 58K cannot be ruled out. Sera were collected from tumor-bearing animals and examined for ability to immunoprecipitate proteins from infected cells. The relative avidity of sera for different proteins was characteristic of the cell line used for tumor induction, and the specificity generally reflected the array of viral proteins expressed by the corresponding transformed cells. However, one notable observation was that even though all transformed lines examined expressed antigens encoded by both the 1.1- and 0.9-kilobase mRNAs transcribed from E1A, tumor sera made against these lines only precipitated products of the 1.1-kilobase message. Thus, two families of E1A proteins, highly related in terms of primary amino acid sequence, appear to be immunologically quite distinct. Images PMID:6690708

  2. Development of a fast and efficient ultrasonic-based strategy for DNA fragmentation.

    PubMed

    Larguinho, Miguel; Santos, Hugo M; Doria, Gonçalo; Scholz, H; Baptista, Pedro V; Capelo, José L

    2010-05-15

    Several ultrasound-based platforms for DNA sample preparation were evaluated in terms of effective fragmentation of DNA (plasmid and genomic DNA)-ultrasonic probe, sonoreactor, ultrasonic bath and the newest Vialtweeter device. The sonoreactor showed the best efficiency of DNA fragmentation while simultaneously assuring no cross-contamination of samples, and was considered the best ultrasonic tool to achieve effective fragmentation of DNA at high-throughput and avoid sample overheating. Several operation variables were studied-ultrasonication time and amplitude, DNA concentration, sample volume and sample pre-treatment-that allowed optimisation of a sonoreactor-based strategy for effective DNA fragmentation. Optimal operating conditions to achieve DNA fragmentation were set to 100% ultrasonic amplitude, 100microL sample volume, 8min ultrasonic treatment (2min/sample) for a DNA concentration of 100microgmL(-1). The proposed ultrasonication strategy can be easily implemented in any laboratory setup, providing fast, simple and reliable means for effective DNA sample preparation when fragmentation is critical for downstream molecular detection and diagnostics protocols. PMID:20298868

  3. Analysis of mer Gene Subclasses within Bacterial Communities in Soils and Sediments Resolved by Fluorescent-PCR-Restriction Fragment Length Polymorphism Profiling

    PubMed Central

    Bruce, K. D.

    1997-01-01

    Bacterial mer (mercury resistance) gene subclasses in mercury-polluted and pristine natural environments have been profiled by Fluorescent-PCR-restriction fragment length polymorphism (FluRFLP). For FluRFLP, PCR products were amplified from individual mer operons in mercury-resistant bacteria and from DNA isolated directly from bacteria in soil and sediment samples. The primers used to amplify DNA were designed from consensus sequences of the major subclasses of archetypal gram-negative mer operons within Tn501, Tn21, pDU1358, and pKLH2. Two independent PCRs were used to amplify two regions of different lengths (merRT(Delta)P [ca. 1 kb] and merR [ca. 0.4 kb]) starting at the same position in merR. The oligonucleotide primer common to both reactions (FluRX) was labelled at the 5(prm1) end with green (TET) fluorescent dye. Analysis of the mer sequences within databases indicated that the major subclasses could be differentiated on the basis of the length from FluRX to the first FokI restriction endonuclease site. The amplified PCR products were digested with FokI restriction endonuclease, with the restriction digest fragments resolved on an automated DNA sequencing machine which detected only those bands labelled with the fluorescent dye. For each of the individual mer operon sources examined, this single peak (in bases) position was observed in separate digests of either amplified region. These peak positions were as predicted on the basis of DNA sequence. mer PCR products amplified from DNA extracted directly from soil and sediment bacteria were studied in order to determine the profiles of the major mer subclasses present in each natural environment. In addition to peaks of the expected sizes, extra peaks were observed which were not predicted on the basis of DNA sequence. Those appearing in the restriction endonuclease digests of both study regions were presumed to be novel mer types. Genetic heterogeneity within and between mercury-polluted and pristine sites has been studied by this technique. Profiles generated were highly similar for samples taken within the same soil type. The profiles, however, changed markedly on crossing from one soil type to another, with gradients of the different groupings of mer genes identified. PMID:16535754

  4. Differentiation of slowly growing Mycobacterium species, including Mycobacterium tuberculosis, by gene amplification and restriction fragment length polymorphism analysis.

    PubMed Central

    Plikaytis, B B; Plikaytis, B D; Yakrus, M A; Butler, W R; Woodley, C L; Silcox, V A; Shinnick, T M

    1992-01-01

    A two-step assay combining a gene amplification step and a restriction fragment length polymorphism analysis was developed to differentiate the Mycobacterium species that account for greater than 90% of potentially pathogenic isolates and greater than 86% of all isolates in clinical laboratories in the United States. These species are M. tuberculosis, M. bovis, M. avium, M. intracellulare, M. kansasii, and M. gordonae. With lysates of pure cultures as the template, two oligonucleotide primers that amplified an approximately 1,380-bp portion of the hsp65 gene from all 139 strains of 19 Mycobacterium species tested, but not from the 19 non-Mycobacterium species tested, were identified. Digestion of the amplicons from 126 strains of the six most commonly isolated Mycobacterium species with the restriction enzymes BstNI and XhoI in separate reactions generated restriction fragment patterns that were distinctive for each of these species, except for those of M. tuberculosis and M. bovis, which were not distinguishable. By including size standards in each sample, the restriction fragment profiles could be normalized to a fixed distance and the similarities of patterns could be calculated by using a computer-aided comparison program. The availability of this data base should enable the identification of an unknown Mycobacterium strain to the species level by a comparison of the restriction fragment pattern of the unknown with the data base of known patterns. Images PMID:1352786

  5. A Time-Efficient and User-Friendly Method for Plasmid DNA Restriction Analysis.

    ERIC Educational Resources Information Center

    LaBanca, Frank; Berg, Claire M.

    1998-01-01

    Describes an experiment in which plasmid DNA is digested with restriction enzymes that cleave the plasmid either once or twice. The DNA is stained, loaded on a gel, electrophoresed, and viewed under normal laboratory conditions during electrophoresis. (DDR)

  6. Incorporation of polyamidoamine sweeping and electrokinetic supercharging for in-line DNA fragment preconcentration.

    PubMed

    Tian, Jing; Qiao, Jinping; Gao, Jingjie; Qin, Weidong

    2013-03-01

    We report an approach for in-line preconcentration of DNA fragments using dendritic polyamidoamine generation 2.0 (PAMAM G 2.0) as sweeping agent. During the experiment, a plug of PAMAM G 2.0 was hydrodynamically injected first, followed by field-amplified sample injection (FASI) of DNA fragments, which were concurrently swept by PAMAMs via DNA-PAMAM complexation. Then, a segment of releasing agent, sodium dodecyl sulfate (SDS), was hydrodynamically introduced and subsequently electrophoretically driven to interact with the DNA-PAMAM complexes, forming more stable supramolecular SDS-PAMAM complexes and releasing the initially bound DNA fragments. The excess dodecyl sulfate anion also acted as terminating electrolyte in the separation, thereby the DNA fragments were enriched by the joint effects of FASI, sweeping and transient isotachophoresis. We term the approach PAMAM sweeping-electrokinetic supercharging (EKS). Because the mobility of the DNA-PAMAM complex was very low, the proposed method allowed long-time sample injection without notable loss in separation efficiency. Under the optimum conditions, the PAMAM sweeping-EKS strategy improved the detection sensitivity of DNA fragments by more than 30 folds relative to the conventional FASI. Moreover, due to the sweeping process incorporated, the approach can be applied to enrichment of DNA fragments in highly saline matrix. PMID:23374369

  7. Haplotyping the human T-cell receptor. beta. -chain gene complex by use of restriction fragment length polymorphisms

    SciTech Connect

    Charmley, P.; Chao, A.; Gatti, R.A. ); Concannon, P. ); Hood, L. )

    1990-06-01

    The authors have studied the genetic segregation of human T-cell receptor {beta}-chain (TCR{beta}) genes on chromosome 7q in 40 CEPH (Centre d'Etude du Polymorphisme Humain) families by using restriction fragment length polymorphisms (RFLPs). They constructed haplotypes from eight RFLPs by using variable- and constant-region cDNA probes, which detect polymorphisms that span more than 600 kilobases of the TCR{beta} gene complex. Analysis of allele distributions between TCR{beta} genes revealed significant linkage disequilibrium between only 6 of the 28 different pairs of RFLPs. This linkage disequilibrium strongly influences the most efficient order to proceed for typing of these RFLPs in order to achieve maximum genetic informativeness, which in this study revealed a 97.3% level of heterozygosity within the TCR{beta} gene complex. The results should provide new insight into recent reports of disease associations with the TCR{beta} gene complex and should assist in designing future experiments to detect or confirm the existence of disease-susceptibility loci in this region of the human genome.

  8. Two distinct human DNA diesterases that hydrolyze 3'-blocking deoxyribose fragments from oxidized DNA.

    PubMed Central

    Chen, D S; Herman, T; Demple, B

    1991-01-01

    Mammalian cells were investigated for enzymes that help correct oxidative damages in DNA. We focused on 3'-repair diesterases, which process DNA ends at oxidative strand breaks by removing 3'-blocking fragments of deoxyribose that prevent DNA repair synthesis. Two enzymes were found in a variety of mouse, bovine and human tissues and cultured cells. The two activities were purified to differing degrees from HeLa cells. One enzyme had the properties of the known HeLa AP endonuclease (Mr approximately 38,000, with identical substrate specificity and reaction requirements, and cross-reactivity with anti-HeLa AP endonuclease antiserum) and is presumed identical to that protein. The second activity did not interact with anti-HeLa AP endonuclease antibodies and had relatively less AP endonuclease activity. This second enzyme may have been detected in other studies but never characterized. In addition to the 3'-repair diesterase and AP endonuclease, this partially purified preparation also harbored DNA 3'-phosphatase and 3'-deoxyribose diesterase activities. It is unknown whether all activities detected in the second preparation are due to a single protein, although activity against undamaged DNA was not detected. The in vivo roles of these two widely distributed 3'-repair diesterase/AP endonucleases have not been determined, but with the characterizations presented here such questions may now be focused. Images PMID:1719484

  9. Characterization of the 5-hydroxymethylcytosine-specific DNA restriction endonucleases

    PubMed Central

    Borgaro, Janine G.; Zhu, Zhenyu

    2013-01-01

    In T4 bacteriophage, 5-hydroxymethylcytosine (5hmC) is incorporated into DNA during replication. In response, bacteria may have developed modification-dependent type IV restriction enzymes to defend the cell from T4-like infection. PvuRts1I was the first identified restriction enzyme to exhibit specificity toward hmC over 5-methylcytosine (5mC) and cytosine. By using PvuRts1I as the original member, we identified and characterized a number of homologous proteins. Most enzymes exhibited similar cutting properties to PvuRts1I, creating a double-stranded cleavage on the 3′ side of the modified cytosine. In addition, for efficient cutting, the enzymes require two cytosines 21–22-nt apart and on opposite strands where one cytosine must be modified. Interestingly, the specificity determination unveiled a new layer of complexity where the enzymes not only have specificity for 5-β-glucosylated hmC (5βghmC) but also 5-α-glucosylated hmC (5αghmC). In some cases, the enzymes are inhibited by 5βghmC, whereas in others they are inhibited by 5αghmC. These observations indicate that the position of the sugar ring relative to the base is a determining factor in the substrate specificity of the PvuRts1I homologues. Lastly, we envision that the unique properties of select PvuRts1I homologues will permit their use as an additive or alternative tool to map the hydroxymethylome. PMID:23482393

  10. Restriction fragment length polymorphism within the class I gene loci of the equine major histocompatibility complex

    SciTech Connect

    Alexander, A.J.; Bailey, E.; Woodward, J.G.

    1986-03-05

    Fourteen standard bred horses were serotyped as homozygous for 1 of 6 Equine Leukocyte Antigen (ELA) specificities. DNA was purified from peripheral leukocytes and digested with Hind III or Pvu II. Southern blot hybridization analysis was carried out using a /sup 32/P-labeled mouse cDNA probe (PH2IIa) specific for class I MHC genes. Both enzymes generated blots that contained a large number of bands (23 to 30) per horse. Significant polymorphism existed among most fragment sizes, while a dozen highly conserved band sizes suggested the presence of Qa/tla - like genes. Only 2 animals (both W6's) showed identical band patterns. Polymorphism was greatest between horses of different serotypes and was significantly decreased within serotypes. Unique bands were present on both blots for both W1's and W6's and may account for the serologic specificity seen in ELA W1 and W6 horses. This study is consistent with the findings in other higher vertebrates and implies that the MHC of the horse includes a highly polymorphic class I multigene family.

  11. Use of restriction fragment length polymorphism to identify Candida species, related to onychomycosis

    PubMed Central

    Mohammadi, Rasoul; Badiee, Parisa; Badali, Hamid; Abastabar, Mahdi; Safa, Ahmad Hosseini; Hadipour, Mahboubeh; Yazdani, Hajar; Heshmat, Farnaz

    2015-01-01

    Background: Onychomycosis is one of the most common clinical forms of fungal infections due to both filamentous fungi and yeasts. The genus of Candida is one of the most prominent causes of onychomycosis in all around the world. Although Candida albicans is still the most frequent cause of nail infections, use of broad-spectrum antifungal agents has led to a shift in the etiology of C. albicans to non-albicans species. The aim of the present study is rapid and precise identification of candida species isolated from nail infection by using of PCR-RFLP technique. Materials and Methods: A total of 360 clinical yeast strains were collected from nail infections in Iran. Genomic DNA was extracted using FTA; cards. ITS1-5.8SrDNA-ITS2 region was amplified using universal primers and subsequently products were digested with the restriction enzyme MspI. For identification of newly described species (C. parapsilosis complex), the SADH gene was amplified, followed by digestion with Nla III restriction enzyme. Results: Candida albicans was the most commonly isolated species (41.1%), followed by C. parapsilosis (21.4%), C. tropicalis (12.8%), C. kefyr (9.4%), C. krusei (5.5%), C. orthopsilosis (4.1%), C. glabrata (2.8%), C. guilliermondii (1.4%), C. rugosa (0.8%), and C. lusitaniae (0.5%). Patients in the age groups of 51-60 and 81-90 years had the highest and lowest distribution of positive specimens, respectively. Conclusion: Rapid and precise identification of Candida species from clinical specimens lead to appropriate therapeutic plans. PMID:26015921

  12. Large DNA fragment sizing using native acrylamide gels on an automated DNA sequencer and GENESCAN software.

    PubMed

    McEvoy, C R; Seshadri, R; Firgaira, F A

    1998-09-01

    We have investigated the potential of the PE Applied Biosystems Model 373 Automated DNA Sequencer and GENESCAN software to size minisatellite alleles ranging in size from 230 bp to 2.5 kbp. We report on the use of a native (non-denaturing) acrylamide gel system and fluorescent dUTP labeling of PCR products. The observed variability in size calling ranged from +/- 0.4-bp standard deviation (SD) at the lower end of the size range to +/- 37.5-bp SD for the largest allele. Both within-gel and between-gel variability in sizing increased with larger alleles, in particular when sizes exceeded 2 kbp. Size-calling differences were observed dependent on the method used to fluorescently label the PCR products and with the fluorescent dye type and concentration used in incorporation. The benefits and limitations of the current GENESCAN software in sizing large DNA fragments are also discussed. PMID:9762444

  13. Fork rotation and DNA precatenation are restricted during DNA replication to prevent chromosomal instability

    PubMed Central

    Schalbetter, Stephanie A.; Mansoubi, Sahar; Chambers, Anna L.; Downs, Jessica A.; Baxter, Jonathan

    2015-01-01

    Faithful genome duplication and inheritance require the complete resolution of all intertwines within the parental DNA duplex. This is achieved by topoisomerase action ahead of the replication fork or by fork rotation and subsequent resolution of the DNA precatenation formed. Although fork rotation predominates at replication termination, in vitro studies have suggested that it also occurs frequently during elongation. However, the factors that influence fork rotation and how rotation and precatenation may influence other replication-associated processes are unknown. Here we analyze the causes and consequences of fork rotation in budding yeast. We find that fork rotation and precatenation preferentially occur in contexts that inhibit topoisomerase action ahead of the fork, including stable protein–DNA fragile sites and termination. However, generally, fork rotation and precatenation are actively inhibited by Timeless/Tof1 and Tipin/Csm3. In the absence of Tof1/Timeless, excessive fork rotation and precatenation cause extensive DNA damage following DNA replication. With Tof1, damage related to precatenation is focused on the fragile protein–DNA sites where fork rotation is induced. We conclude that although fork rotation and precatenation facilitate unwinding in hard-to-replicate contexts, they intrinsically disrupt normal chromosome duplication and are therefore restricted by Timeless/Tipin. PMID:26240319

  14. Innate Structure of DNA Foci Restricts the Mixing of DNA from Different Chromosome Territories

    PubMed Central

    Fennessy, Dorota; Jackson, Dean A.

    2011-01-01

    The distribution of chromatin within the mammalian nucleus is constrained by its organization into chromosome territories (CTs). However, recent studies have suggested that promiscuous intra- and inter-chromosomal interactions play fundamental roles in regulating chromatin function and so might define the spatial integrity of CTs. In order to test the extent of DNA mixing between CTs, DNA foci of individual CTs were labeled in living cells following incorporation of Alexa-488 and Cy-3 conjugated replication precursor analogues during consecutive cell cycles. Uniquely labeled chromatin domains, resolved following random mitotic segregation, were visualized as discrete structures with defined borders. At the level of resolution analysed, evidence for mixing of chromatin from adjacent domains was only apparent within the surface volumes where neighboring CTs touched. However, while less than 1% of the nuclear volume represented domains of inter-chromosomal mixing, the dynamic plasticity of DNA foci within individual CTs allows continual transformation of CT structure so that different domains of chromatin mixing evolve over time. Notably, chromatin mixing at the boundaries of adjacent CTs had little impact on the innate structural properties of DNA foci. However, when TSA was used to alter the extent of histone acetylation changes in chromatin correlated with increased chromatin mixing. We propose that DNA foci maintain a structural integrity that restricts widespread mixing of DNA and discuss how the potential to dynamically remodel genome organization might alter during cell differentiation. PMID:22205925

  15. Rapid restriction enzyme free detection of DNA methyltransferase activity based on DNA-templated silver nanoclusters.

    PubMed

    Kermani, Hanie Ahmadzade; Hosseini, Morteza; Dadmehr, Mehdi; Ganjali, Mohammad Reza

    2016-06-01

    DNA methylation has significant roles in gene regulation. DNA methyltransferase (MTase) enzyme characterizes DNA methylation and also induces an aberrant methylation pattern that is related to many diseases, especially cancers. Thus, it is required to develop a method to detect the DNA MTase activity. In this study, we developed a new sensitive and reliable method for methyltransferase activity assay by employing DNA-templated silver nanoclusters (DNA/Ag NCs) without using restriction enzymes. The Ag NCs have been utilized for the determination of M.SssI MTase activity and its inhibition. We designed an oligonucleotide probe which contained an inserted six-cytosine loop as Ag NCs formation template. The changes in fluorescence intensity were monitored to quantify the M.SssI activity. The fluorescence spectra showed a linear decrease in the range of 0.4 to 20 U/ml with a detection limit of 0.1 U/ml, which was significant compared with previous reports. The proposed method was applied successfully for demonstrating the Gentamicin effect as MTase inhibitor. The proposed method showed convenient reproducibility and sensitivity indicating its potential for the determination of methyltransferase activity. PMID:27052776

  16. Restriction Fragment Length Polymorphism Analysis of Some Flagellin Genes of Salmonella enterica

    PubMed Central

    Dauga, Catherine; Zabrovskaia, Anna; Grimont, Patrick A. D.

    1998-01-01

    Salmonellae often have the ability to express two different flagellar antigen specificities (phase 1 and phase 2). At the cell level, only one flagellar phase is expressed at a time. Two genes, fliC, encoding phase-1 flagellin, and fljB, encoding phase-2 flagellin, are alternatively expressed. Flagellin genes from 264 serovars of Salmonella enterica were amplified by two phase-specific PCR systems. Amplification products were subjected to restriction fragment length polymorphism (RFLP) analysis by using endonucleases HhaI and HphI. RFLP with HhaI and HphI yielded 64 and 42 different restriction profiles, respectively, among 329 flagellin genes coding for 26 antigens. The phase-1 gene showed 46 patterns with HhaI and 30 patterns with HphI. The phase-2 gene showed 23 patterns with HhaI and 17 patterns with HphI. When the data from both enzymes were combined, 116 patterns were obtained: 74 for fliC, 47 for fljB, and 5 shared by both genes. Of these combined patterns, 80% were specifically associated with one flagellar antigen and 20% were associated with more than one antigen. Each flagellar antigen was divided into 2 to 18 different combined patterns. In the sample of strains used, determination of the phase-1 and phase-2 flagellin gene RFLP, added to the knowledge of the O antigen, allowed identification of all diphasic serovars. Overall, the diversity uncovered by flagellin gene RFLP did not precisely match that evidenced by flagellar agglutination. PMID:9738029

  17. An innovative platform for quick and flexible joining of assorted DNA fragments

    PubMed Central

    De Paoli, Henrique Cestari; Tuskan, Gerald A.; Yang, Xiaohan

    2016-01-01

    Successful synthetic biology efforts rely on conceptual and experimental designs in combination with testing of multi-gene constructs. Despite recent progresses, several limitations still hinder the ability to flexibly assemble and collectively share different types of DNA segments. Here, we describe an advanced system for joining DNA fragments from a universal library that automatically maintains open reading frames (ORFs) and does not require linkers, adaptors, sequence homology, amplification or mutation (domestication) of fragments in order to work properly. This system, which is enhanced by a unique buffer formulation, provides unforeseen capabilities for testing, and sharing, complex multi-gene circuitry assembled from different DNA fragments. PMID:26758940

  18. DNA Fragmentation Simulation Method (FSM) and Fragment Size Matching Improve aCGH Performance of FFPE Tissues

    PubMed Central

    Craig, Justin M.; Vena, Natalie; Ramkissoon, Shakti; Idbaih, Ahmed; Fouse, Shaun D.; Ozek, Memet; Sav, Aydin; Hill, D. Ashley; Margraf, Linda R.; Eberhart, Charles G.; Kieran, Mark W.; Norden, Andrew D.; Wen, Patrick Y.; Loda, Massimo; Santagata, Sandro; Ligon, Keith L.; Ligon, Azra H.

    2012-01-01

    Whole-genome copy number analysis platforms, such as array comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) arrays, are transformative research discovery tools. In cancer, the identification of genomic aberrations with these approaches has generated important diagnostic and prognostic markers, and critical therapeutic targets. While robust for basic research studies, reliable whole-genome copy number analysis has been unsuccessful in routine clinical practice due to a number of technical limitations. Most important, aCGH results have been suboptimal because of the poor integrity of DNA derived from formalin-fixed paraffin-embedded (FFPE) tissues. Using self-hybridizations of a single DNA sample we observed that aCGH performance is significantly improved by accurate DNA size determination and the matching of test and reference DNA samples so that both possess similar fragment sizes. Based on this observation, we developed a novel DNA fragmentation simulation method (FSM) that allows customized tailoring of the fragment sizes of test and reference samples, thereby lowering array failure rates. To validate our methods, we combined FSM with Universal Linkage System (ULS) labeling to study a cohort of 200 tumor samples using Agilent 1 M feature arrays. Results from FFPE samples were equivalent to results from fresh samples and those available through the glioblastoma Cancer Genome Atlas (TCGA). This study demonstrates that rigorous control of DNA fragment size improves aCGH performance. This methodological advance will permit the routine analysis of FFPE tumor samples for clinical trials and in daily clinical practice. PMID:22719973

  19. Linear mtDNA fragments and unusual mtDNA rearrangements associated with pathological deficiency of MGME1 exonuclease

    PubMed Central

    Nicholls, Thomas J.; Zsurka, Gábor; Peeva, Viktoriya; Schöler, Susanne; Szczesny, Roman J.; Cysewski, Dominik; Reyes, Aurelio; Kornblum, Cornelia; Sciacco, Monica; Moggio, Maurizio; Dziembowski, Andrzej; Kunz, Wolfram S.; Minczuk, Michal

    2014-01-01

    MGME1, also known as Ddk1 or C20orf72, is a mitochondrial exonuclease found to be involved in the processing of mitochondrial DNA (mtDNA) during replication. Here, we present detailed insights on the role of MGME1 in mtDNA maintenance. Upon loss of MGME1, elongated 7S DNA species accumulate owing to incomplete processing of 5′ ends. Moreover, an 11-kb linear mtDNA fragment spanning the entire major arc of the mitochondrial genome is generated. In contrast to control cells, where linear mtDNA molecules are detectable only after nuclease S1 treatment, the 11-kb fragment persists in MGME1-deficient cells. In parallel, we observed characteristic mtDNA duplications in the absence of MGME1. The fact that the breakpoints of these mtDNA rearrangements do not correspond to either classical deletions or the ends of the linear 11-kb fragment points to a role of MGME1 in processing mtDNA ends, possibly enabling their repair by homologous recombination. In agreement with its functional involvement in mtDNA maintenance, we show that MGME1 interacts with the mitochondrial replicase PolgA, suggesting that it is a constituent of the mitochondrial replisome, to which it provides an additional exonuclease activity. Thus, our results support the viewpoint that MGME1-mediated mtDNA processing is essential for faithful mitochondrial genome replication and might be required for intramolecular recombination of mtDNA. PMID:24986917

  20. Statistical Assessment of Variability of Terminal Restriction Fragment Length Polymorphism Analysis Applied to Complex Microbial Communities ▿ †

    PubMed Central

    Rossi, Pierre; Gillet, François; Rohrbach, Emmanuelle; Diaby, Nouhou; Holliger, Christof

    2009-01-01

    The variability of terminal restriction fragment polymorphism analysis applied to complex microbial communities was assessed statistically. Recent technological improvements were implemented in the successive steps of the procedure, resulting in a standardized procedure which provided a high level of reproducibility. PMID:19749066

  1. Identification of raw and heat-processed meats from game bird species by polymerase chain reaction-restriction fragment length polymorphism of the mitochondrial D-loop region.

    PubMed

    Rojas, M; González, I; Fajardo, V; Martín, I; Hernández, P E; García, T; Martín, R

    2009-03-01

    Polymerase chain reaction-RFLP analysis has been applied to the identification of meats from quail (Coturnix coturnix), pheasant (Phasianus colchicus), red-legged partridge (Alectoris rufa), chukar partridge (Alectoris chukar), guinea fowl (Numida meleagris), capercaillie (Tetrao urogallus), Eurasian woodcock (Scolopax rusticola), and woodpigeon (Columba palumbus). Polymerase chain reaction amplification was carried out using a set of primers flanking a conserved region of approximately 310 bp from the mitochondrial D-loop region. Restriction site analysis based on sequence data from this DNA fragment permitted the selection of HinfI, MboII, and Hpy188III endonucleases for species identification. The restriction profiles obtained when amplicons were digested with the chosen enzymes allowed the unequivocal identification of all game bird species analyzed. Consistent results were obtained with both raw and heat-processed meats. PMID:19211540

  2. [Influence of sample dilution on separation and detection of DNA fragments by capillary electrophoresis].

    PubMed

    Song, L; Chen, H; Zhang, L; Cheng, J

    1999-07-01

    Capillary electrophoresis has become an important and useful method to separate and determine DNA fragments. In molecular biochemistry, the volume of DNA sample is very small (microL level) and DNA sample is liable to be contaminated and degraded. According to theoretical inference and experiments, we propose that dilution of DNA sample solution can increase separation efficiency and resolution without evidently reducing height of peaks. By this method, the usage efficiency of DNA sample can be improved. It is also demonstrated the separation and detection of DNA fragments by capillary electrophoresis with hydroxyethyl cellulose non-gel sieving matrix and with laser-induced fluorescence charge-coupled device as detector. By using lower concentration non-gel matrix (0.4%), all 8 larger size fragments of lambda DNA/Hind III (125 bp-23 130 bp) can be completely separated. Twenty smaller size fragments of pBR322-Hae III DNA (18 bp-587 bp) can be separated by higher concentration (1.6%) non-gel matrix. As ratio of sample dilution is 10, two adjacent fragment (123 bp and 124 bp) of pBR322-Hae III DNA can be separated. PMID:12552856

  3. Genetic Interrelatedness among Clover Proliferation Mycoplasmalike Organisms (MLOs) and Other MLOs Investigated by Nucleic Acid Hybridization and Restriction Fragment Length Polymorphism Analyses.

    PubMed

    Lee, I M; Davis, R E; Hiruki, C

    1991-12-01

    DNA was isolated from clover proliferation (CP) mycoplasmalike organism (MLO)-diseased periwinkle plants (Catharanthus roseus (L.) G. Don.) and cloned into pSP6 plasmid vectors. CP MLO-specific recombinant DNA clones were biotin labeled and used as probes in dot hybridization and restriction fragment length polymorphism analyses to study the genetic interrelatedness among CP MLO and other MLOs, including potato witches'-broom (PWB) MLO. Results from dot hybridization analyses indicated that both a Maryland strain of aster yellows and a California strain of aster yellows are distantly related to CP MLO. Elm yellows, paulownia witches'-broom, peanut witches'-broom, loofah witches'-broom, and sweet potato witches'-broom may be very distantly related, if at all, to CP MLO. A new Jersey strain of aster yellows MLO, tomato big bud MLO, clover phyllody MLO, beet leafhopper-transmitted virescence MLO, and ash yellows MLO are related to CP MLO, but PWB MLO is the most closely related. Similarity coefficients derived from restriction fragment length polymorphism analyses revealed that PWB and CP MLOs are closely related strains and thus provided direct evidence of their relatedness in contrast to reliance solely on biological characterization. PMID:16348604

  4. Restriction fragment length polymorphisms in the major histocompatibility complex of the non-obese diabetic mouse.

    PubMed

    Lund, T; Simpson, E; Cooke, A

    1990-06-01

    The inbred non-obese diabetic (NOD) mouse is a spontaneous model for insulin-dependent diabetes mellitus (IDDM). As in man and BB rats, IDDM in the NOD mouse has an autoimmune aetiology. The disease is controlled by several genes, one of which, Idd-1, has been mapped to the major histocompatibility complex (MHC) on chromosome 17. However, Idd-1 has not yet been identified. To facilitate the identification of Idd-1 we have further analysed the MHC region for restriction fragment length polymorphisms and we find that the NOD mouse has a distinct haplotype: H-2K1nod Kd A beta nod A alpha d E beta nod TNF-alpha beta. In addition, the NOD mouse shows some similarities with the H-2b haplotype in the Q region, in that either the Q7 or the Q9 gene seems to be like that in the b-haplotype and that the Qa2 antigen is expressed, while other parts of this region are distinct from the b- as well as the d- haplotype. In contrast, the sister strain, the non-obese normal (NON) mouse, derived from the same cataract-prone line of mice as the NOD mouse, has an MHC Class I region indistinguishable from the b-haplotype, but the MHC Class II region is distinct from the NOD mouse as well as the b-, d- and k-haplotype. PMID:1975742

  5. Restriction fragment length polymorphism typing demonstrates substantial diversity among Pneumocystis jirovecii isolates.

    PubMed

    Ripamonti, Chiara; Orenstein, Abigail; Kutty, Geetha; Huang, Laurence; Schuhegger, Regina; Sing, Andreas; Fantoni, Giovanna; Atzori, Chiara; Vinton, Carol; Huber, Charles; Conville, Patricia S; Kovacs, Joseph A

    2009-11-15

    Better understanding of the epidemiology and transmission patterns of human Pneumocystis should lead to improved strategies for preventing Pneumocystis pneumonia (PCP). We have developed a typing method for Pneumocystis jirovecii that is based on restriction fragment length polymorphism (RFLP) analysis after polymerase chain reaction amplification of an approximately 1300 base-pair region of the msg gene family, which comprises an estimated 50-100 genes/genome. The RFLP pattern was reproducible in samples containing >1000 msg copies/reaction and was stable over time, based on analysis of serial samples from the same patient. In our initial analysis of 48 samples, we found that samples obtained from different individuals showed distinct banding patterns; only samples obtained from the same patient showed an identical RFLP pattern. Despite this substantial diversity, samples tended to cluster on the basis of country of origin. In an evaluation of samples obtained from an outbreak of PCP in kidney transplant recipients in Germany, RFLP analysis demonstrated identical patterns in samples that were from 12 patients previously linked to this outbreak, as well as from 2 additional patients. Our results highlight the presence of a remarkable diversity in human Pneumocystis strains. RFLP may be very useful for studying clusters of PCP in immunosuppressed patients, to determine whether there is a common source of infection. PMID:19795979

  6. Molecular identification of Giardia duodenalis in Ecuador by polymerase chain reaction-restriction fragment length polymorphism.

    PubMed

    Atherton, Richard; Bhavnani, Darlene; Calvopiña, Manuel; Vicuña, Yosselin; Cevallos, William; Eisenberg, Joseph

    2013-06-01

    The aim of this study was to determine the genetic diversity of Giardia duodenalis present in a human population living in a northern Ecuadorian rain forest. All Giardia positive samples (based on an ELISA assay) were analysed using a semi-nested polymerase chain reaction-restriction fragment length polymorphism assay that targets the glutamate dehydrogenase (gdh) gene; those amplified were subsequently genotyped using NlaIV and RsaI enzymes. The gdh gene was successfully amplified in 74 of 154 ELISA positive samples; 69 of the 74 samples were subsequently genotyped. Of these 69 samples, 42 (61%) were classified as assemblage B (26 as BIII and 16 as BIV), 22 (32%) as assemblage A (3 as AI and 19 as AII) and five (7%) as mixed AII and BIII types. In this study site we observe similar diversity in genotypes to other regions in Latin America, though in contrast to some previous studies, we found similar levels of diarrheal symptoms in those individuals infected with assemblage B compared with those infected with assemblage A. PMID:23827993

  7. Molecular identification of Giardia duodenalis in Ecuador by polymerase chain reaction-restriction fragment length polymorphism

    PubMed Central

    Atherton, Richard; Bhavnani, Darlene; Calvopiña, Manuel; Vicuña, Yosselin; Cevallos, William; Eisenberg, Joseph

    2013-01-01

    The aim of this study was to determine the genetic diversity of Giardia duodenalis present in a human population living in a northern Ecuadorian rain forest. All Giardia positive samples (based on an ELISA assay) were analysed using a semi-nested polymerase chain reaction-restriction fragment length polymorphism assay that targets the glutamate dehydrogenase (gdh) gene; those amplified were subsequently genotyped using NlaIV and RsaI enzymes. The gdh gene was successfully amplified in 74 of 154 ELISA positive samples; 69 of the 74 samples were subsequently genotyped. Of these 69 samples, 42 (61%) were classified as assemblage B (26 as BIII and 16 as BIV), 22 (32%) as assemblage A (3 as AI and 19 as AII) and five (7%) as mixed AII and BIII types. In this study site we observe similar diversity in genotypes to other regions in Latin America, though in contrast to some previous studies, we found similar levels of diarrheal symptoms in those individuals infected with assemblage B compared with those infected with assemblage A. PMID:23827993

  8. Effect of cryopreservation on the sperm DNA fragmentation dynamics of the bottlenose dolphin (Tursiops truncatus).

    PubMed

    Sánchez-Calabuig, M J; López-Fernández, C; Johnston, S D; Blyde, D; Cooper, J; Harrison, K; de la Fuente, J; Gosálvez, J

    2015-04-01

    Sperm DNA fragmentation is one of the major causes of infertility; the sperm chromatin dispersion test (SCDt) evaluates this parameter and offers the advantage of species-specific validated protocol and ease of use under field conditions. The main purpose of this study was to evaluate sperm DNA fragmentation dynamics in both fresh and post-thaw bottlenose dolphin sperm using the SCDt following different cryopreservation protocols to gain new information about the post-thaw differential sperm DNA longevity in this species. Fresh and cryopreserved semen samples from five bottlenose dolphins were examined for sperm DNA fragmentation dynamics using the SCDt (Halomax(®)). Sperm DNA fragmentation was assessed immediately at collection and following cryopreservation (T0) and then after 0.5, 1, 4, 8, 24, 48 and 72 h incubation at 37°C. Serially collected ejaculates from four dolphins were frozen using different cryopreservation protocols in a TES-TRIS-fructose buffer (TTF), an egg-yolk-free vegetable lipid LP1 buffer (LP1) and human sperm preservation medium (HSPM). Fresh ejaculated spermatozoa initially showed low levels of DNA fragmentation for up to 48 h. Lower Sperm DNA fragmentation (SDF) was found in the second fresh ejaculate compared to the first when more than one sample was collected on the same day (p < 0.05); this difference was not apparent in any other seminal characteristic. While there was no difference observed in SDF between fresh and frozen-thawed sperm using the different cryopreservation protocols immediately after thawing (T0), frozen-thawed spermatozoa incubated at 37°C showed an increase in the rate of SDF after 24 h. Sperm frozen in the LP1(℗) buffer had higher levels (p < 0.05) of DNA fragmentation after 24- and 48-h incubation than those frozen in TTF or HSPM. No correlation was found between any seminal characteristic and DNA fragmentation in either fresh and/or frozen-thawed samples. PMID:25604784

  9. Non-random fragmentation patterns in circulating cell-free DNA reflect epigenetic regulation

    PubMed Central

    2015-01-01

    Background The assessment of cell-free circulating DNA fragments, also known as a "liquid biopsy" of the patient's plasma, is an important source for the discovery and subsequent non-invasive monitoring of cancer and other pathological conditions. Although the nucleosome-guided fragmentation patterns of cell-free DNA (cfDNA) have not yet been studied in detail, non-random representation of cfDNA sequencies may reflect chromatin features in the tissue of origin at gene-regulation level. Results In this study, we investigated the association between epigenetic landscapes of human tissues evident in the patterns of cfDNA in plasma by deep sequencing of human cfDNA samples. We have demonstrated that baseline characteristics of cfDNA fragmentation pattern are in concordance with the ones corresponding to cell lines-derived. To identify the loci differentially represented in cfDNA fragment, we mapped the transcription start sites within the sequenced cfDNA fragments and tested for association of these genomic coordinates with the relative strength and the patterns of gene expressions. Preselected sets of house-keeping and tissue specific genes were used as models for actively expressed and silenced genes. Developed measure of gene regulation was able to differentiate these two sets based on sequencing coverage near gene transcription start site. Conclusion Experimental outcomes suggest that cfDNA retains characteristics previously noted in genome-wide analysis of chromatin structure, in particular, in MNase-seq assays. Thus far the analysis of the DNA fragmentation pattern may aid further developing of cfDNA based biomarkers for a variety of human conditions. PMID:26693644

  10. Comparison of DNA fragmentation and color thresholding for objective quantitation of apoptotic cells

    NASA Technical Reports Server (NTRS)

    Plymale, D. R.; Ng Tang, D. S.; Fermin, C. D.; Lewis, D. E.; Martin, D. S.; Garry, R. F.

    1995-01-01

    Apoptosis is a process of cell death characterized by distinctive morphological changes and fragmentation of cellular DNA. Using video imaging and color thresholding techniques, we objectively quantitated the number of cultured CD4+ T-lymphoblastoid cells (HUT78 cells, RH9 subclone) displaying morphological signs of apoptosis before and after exposure to gamma-irradiation. The numbers of apoptotic cells measured by objective video imaging techniques were compared to numbers of apoptotic cells measured in the same samples by sensitive apoptotic assays that quantitate DNA fragmentation. DNA fragmentation assays gave consistently higher values compared with the video imaging assays that measured morphological changes associated with apoptosis. These results suggest that substantial DNA fragmentation can precede or occur in the absence of the morphological changes which are associated with apoptosis in gamma-irradiated RH9 cells.

  11. Restriction-enzyme cleavage of DNA modified by platinum(II) complexes.

    PubMed

    Brabec, V; Balcarova, Z

    1993-08-15

    The effect of binding of cis-diamminedichloroplatinum(II), its trans isomer and diethylenetriaminechloroplatinum(II) chloride to DNA on the splicing effectiveness of BamHI, EcoRI and SalI restriction endonucleases has been determined by means of gel electrophoresis. All three platinum complexes inhibit the cleavage of linearized plasmid DNA. In addition, the three platinum complexes bound to DNA constitute a barrier across which the linear diffusion of EcoRI on DNA is difficult. We interpret these findings to mean that the splicing effectiveness of restriction enzymes is influenced by bifunctional and monofunctional DNA adducts of platinum via both steric interference and DNA conformational distortions. Whereas the platinum adducts in the restriction sites or in their very close proximity inhibit the cleavage, the lesions occurring a greater distance from the restriction site can slow down the process of the localization of recognition sequences. PMID:8365404

  12. Forensic identification of ungulate species using restriction digests of PCR-amplified mitochondrial DNA.

    PubMed

    Murray, B W; McClymont, R A; Strobeck, C

    1995-11-01

    A survey of mitochondrial D-loop variation in 15 species of ungulates was conducted via amplification by the polymerase chain reaction followed by restriction fragment length polymorphism analysis. This survey included moose (Alces alces), caribou (Rangifer tarandus), mule deer (Odocoileus hemionus hemionus), black-tailed deer (O. h. columbianus), white-tailed deer (O. virginianus), waipiti (Cervus elaphus), pronghorn antelope (Antilocapra americana), bighorn sheep (Ovis canadensis), Stone's sheep (O. dalli), domestic sheep (O. aries), moulflon sheep (O. musimon), mountain goat (Oreamnos americanus), domestic goat (Capra hircus), domestic cattle (Bos taurus), and bison (Bison bison). The results of this preliminary survey indicate that there may be sufficient species specific variation in the D-loop region of the mitochondrial genome of the ungulate species examined here, with the exception of deer (Odocoileus) species, to establish the species origin of the mitochondrial haplotypes of this group. The Odocoileus species are known to hybridize and sharing of mtDNA haplotypes was observed. The chelex DNA extraction technique was successfully used on small blood stains. PMID:8522926

  13. A 300 MHz and 600 MHz proton NMR study of a 12 base pair restriction fragment: investigation of structure by relaxation measurements.

    PubMed Central

    Early, T A; Kearns, D R; Hillen, W; Wells, R D

    1980-01-01

    The 1H NMR spectrum of a 12 base pair DNA restriction fragment has been measured at 300 and 600 MHz and resonances from over 70 protons are individually resolved. Relaxation rate measurements have been carried out at 300 MHz and compared with the theoretical predictions obtained using an isotropic rigid rotor model with coordinates derived from a Dreiding model of DNA. The model gives results that are in excellent agreement with experiment for most protons when a 7 nsec rotational correlation time is used, although agreement is improved for certain base protons by using a shorter correlation time for the sugar group, or by increasing the sugar-base interproton distances. A comparison of non-selective and selective spin-lattice relaxation rates for carbon bound protons indicates that there is extensive spin diffusion even in this short DNA fragment. Examination of the spin-spin relaxation rates for the same type of proton on different base pairs reveals little sequence effect on conformation. PMID:6258152

  14. Restriction endonuclease mapping of unintegrated proviral DNA of Snyder-Theilen feline sarcoma virus: localization of sarcoma-specific sequences.

    PubMed Central

    Sherr, C J; Fedele, L A; Donner, L; Turek, L P

    1979-01-01

    Extrachromosomal DNA purified from mink cells acutely infected with the Snyder-Theilen strain of feline sarcoma virus (FeSV) was digested with restriction endonucleases, and the DNA fragments were electrophoretically separated, transferred to a solid substrate, and hybridized with radiolabeled DNA transcripts complementary to different portions of the FeSV RNA genome. Major DNA species 8.4 and 5.0 kilobase pairs (kbp) long represent the linear, unintegrated proviruses of Snyder-Theilen feline leukemia virus and FeSV, respectively. Transfection experiments performed with electroeluted DNAs showed that the 8.4-kbp form led to the production of replicating nontransforming virus in mink and cat cells; in contrast, the 5.0-kbp DNA produced helper virus-independent foci of transformation in mouse NIH/3T3 cells and helper virus-dependent foci in mink cells at an efficiency comparable to that obtained with unfractionated extrachromosomal DNA. Sites of restriction endonuclease cleavage for six enzymes were oriented with respect to one another within the FeSV provirus. EcoRI recognized cleavage sites at 0.3 to 0.4 kbp from each terminus of FeSV DNA, reducing the 5.0-kbp DNA to molecules 4.3 kbp long; this enzyme excised a large internal proviral DNA fragment of corresponding size from the DNA of FeSV-transformed mink nonproducer cells. By using DNA transcripts complementary to different portions of the FeSV genome, sarcoma-specific sequences (the FeSV src gene) were positioned within 2.1 and 3.4 kbp from the 5' end of the proviral DNA with respect to the viral RNA genome. The src gene is flanked at both ends by sequences shared in common with feline leukemia virus. The localization of src sequences to this region suggests that a portion of an FeSV polyprotein which contains feline oncornavirus-associated cell membrane antigen (FOCMA-S) is the major product of this gene. Images PMID:229270

  15. The PML gene is linked to a megabase-scale insertion/deletion restriction fragment length polymorphism

    SciTech Connect

    Goy, A.; Xiao, Y.H.; Passalaris, T.

    1995-03-20

    The PML gene located on chromosome band 15q22 is involved with the RAR{alpha} locus (17q21) in a balanced reciprocal translocation uniquely observed in acute promyelocytic leukemia. Physical mapping studies by pulsed-field gel electrophoresis revealed that the PML gene is flanked by two CpG islands that are separated by a variable distance in normal individuals. Several lines of evidence demonstrate that this is the consequence of a large insertion/deletion polymorphism linked to the PML locus: (1) overlapping fragments obtained with a variety of rare-cutting restriction enzymes demonstrated the same variability in distance between the flanking CpG islands; (2) mapping with restriction enzymes insensitive to CpG methylation confirmed that the findings were not a consequence of variable methylation of CpG dinucleotides; (3) the polymorphism followed a Mendelian inheritance pattern. This polymorphism is localized 3{prime} to the PML locus. There are five common alleles, described on the basis of BssHII fragments, ranging from 220 to 350 kb with increments of approximately 30 kb between alleles. Both heterozygous (61%) and homozygous (391%) patterns were observed in normal individuals. Mega-base-scale insertion/deletion restriction fragment length polymorphisms are very rare and have been described initially in the context of multigene families. Such structures have been also reported as likely regions of genetic instability. High-resolution restriction mapping of this particular structure linked to the PML locus is underway. 47 refs., 4 figs., 1 tab.

  16. A Restriction Fragment Length Polymorphism Map and Electrophoretic Karyotype of the Fungal Maize Pathogen Cochliobolus Heterostrophus

    PubMed Central

    Tzeng, T. H.; Lyngholm, L. K.; Ford, C. F.; Bronson, C. R.

    1992-01-01

    A restriction fragment length polymorphism (RFLP) map has been constructed of the nuclear genome of the plant pathogenic ascomycete Cochliobolus heterostrophus. The segregation of 128 RFLP and 4 phenotypic markers was analyzed among 91 random progeny of a single cross; linkages were detected among 126 of the markers. The intact chromosomal DNAs of the parents and certain progeny were separated using pulsed field gel electrophoresis and hybridized with probes used to detect the RFLPs. In this way, 125 markers were assigned to specific chromosomes and linkages among 120 of the markers were confirmed. These linkages totalled 941 centimorgans (cM). Several RFLPs and a reciprocal translocation were identified tightly linked to Tox1, a locus controlling host-specific virulence. Other differences in chromosome arrangement between the parents were also detected. Fourteen gaps of at least 40 cM were identified between linkage groups on the same chromosomes; the total map length was therefore estimated to be, at a minimum, 1501 cM. Fifteen A chromosomes ranging from about 1.3 megabases (Mb) to about 3.7 Mb were identified; one of the strains also has an apparent B chromosome. This chromosome appears to be completely dispensable; in some progeny, all of 15 markers that mapped to this chromosome were absent. The total genome size was estimated to be roughly 35 Mb. Based on these estimates of map length and physical genome size, the average kb/cM ratio in this cross was calculated to be approximately 23. This low ratio of physical to map distance should make this RFLP map a useful tool for cloning genes. PMID:1346261

  17. Fragmentation

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans J.; Wittel, Falk K.; Kun, Ferenc

    2006-11-01

    Brittle materials fragment when exploded or under impact. The study of fragmentation is of practical importance in many areas, ranging from archaeology to milling. In the last 10 years much progress has been achieved in the understanding of the fragment size and velocity distributions as function of the total energy, the geometry and the material strength. Scaling laws, analogous to those of critical phenomena, have been formulated. Recent experiments of exploding egg shells and Christmas balls have given insight also into the fragmentation of containers. For the case of shells, new critical exponents are obtained. These results are confirmed by numerical simulations. These laws are important to understand space debris.

  18. Identification of genotypes of Giardia duodenalis human isolates in Isfahan, Iran, using polymerase chain reaction – Restriction Fragment Length polymorphism

    PubMed Central

    Pestehchian, Nader; Rasekh, Hamidullah; Babaei, Zahra; Yousefi, Hosein Ali; Eskandarian, Abbas Ali; Kazemi, Mohammad; Akbari, Mojtaba

    2012-01-01

    Background: Giardia duodenalis is one of the most prevalent intestinal parasites of human. It also infects a wide range of mammals. Two genotype of G.duodenalis (A and B) were commonly reported among humans with different frequency of distribution in different geographical locations. This work was conducted to discriminate genotypes of Giardia duodenalis human isolates in Isfahan city using PCR- RFLP. This is the first molecular study on human isolates of G.duodenalis in the area. Methods: Samples were collected from different health centers of Isfahan city during June 2011 and February 2012. From 175 Giardia positive stool samples 67 specimens were selected randomly. Cysts of Giardia positive samples were concentrated by flotation sucrose. Extraction of genomic DNA from trophozoite and cysts was performed using QIAamp Stool Mini kit with a modified protocol. PCR- RFLP method was used to amplify a fragment of 458bp at the glutamate dehydrogenase locus, and restriction enzymes BspLI and RsaI differentiated human genotypes A and B and their subgroups. Results: PCR – RFLP assay of 67 isolates showed 40(59.7%) isolates as Genotype A group II, 23(34.32%) samples as Genotype B Group III and two (2.98%) sample as Genotype B group IV. Mixed genotype of (AII and B) was detected only in two isolates (2.98%). Conclusions: PCR – RFLP assay targeting gdh locus is a sensitive tool and discriminates genotypes, sub genotypes and mixed type of G.duodenalis. Results of our study suggest both anthroponotic and zoonotic origins for the infections respectively. PMID:23946932

  19. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for rapid diagnosis of neonatal sepsis

    PubMed Central

    Rohit, Anusha; Maiti, Biswajit; Shenoy, Shalini; Karunasagar, Indrani

    2016-01-01

    Background & objectives: The difficulties in diagnosis of neonatal sepsis are due to varied clinical presentation, low sensitivity of blood culture which is considered the gold standard and empirical antibiotic usage affecting the outcome of results. Though polymerase chain reaction (PCR) based detection of bacterial 16S rRNA gene has been reported earlier, this does not provide identification of the causative agent. In this study, we used restriction fragment length polymorphism (RFLP) of amplified 16S rRNA gene to identify the organisms involved in neonatal sepsis and compared the findings with blood culture. Methods: Blood samples from 97 neonates were evaluated for diagnosis of neonatal sepsis using BacT/Alert (automated blood culture) and PCR-RFLP. Results: Bacterial DNA was detected by 16S rRNA gene PCR in 55 cases, while BacT/Alert culture was positive in 34 cases. Staphylococcus aureus was the most common organism detected with both methods. Klebsiella spp. was isolated from four samples by culture but was detected by PCR-RFLP in five cases while Acinetobacter spp. was isolated from one case but detected in eight cases by PCR-RFLP. The sensitivity of PCR was found to be 82.3 per cent with a negative predictive value of 85.7 per cent. Eighty of the 97 neonates had prior exposure to antibiotics. Interpretation & conclusions: The results of our study demonstrate that PCR-RFLP having a rapid turnaround time may be useful for the early diagnosis of culture negative neonatal sepsis. PMID:26997017

  20. Molecular characterization of Mycobacterium tuberculosis isolates from Tehran, Iran by restriction fragment length polymorphism analysis and spoligotyping.

    PubMed

    Feyisa, Seifu Gizaw; Haeili, Mehri; Zahednamazi, Fatemeh; Mosavari, Nader; Taheri, Mohammad Mohammad; Hamzehloo, Gholamreza; Zamani, Samin; Feizabadi, Mohammad Mehdi

    2016-04-01

    INTRODUCTION Characterization of Mycobacterium tuberculosis (MTB) isolates by DNA fingerprinting has contributed to tuberculosis (TB) control. The aim of this study was to determine the genetic diversity of MTB isolates from Tehran province in Iran. METHODS MTB isolates from 60 Iranian and 10 Afghan TB patients were fingerprinted by standard IS6110-restriction fragment length polymorphism (RFLP) analysis and spoligotyping. RESULTS The copy number of IS6110 ranged from 10-24 per isolate. The isolates were classified into 22 clusters showing ≥ 80% similarity by RFLP analysis. Fourteen multidrug-resistant (MDR) isolates were grouped into 4 IS6110-RFLP clusters, with 10 isolates [71% (95% CI: 45-89%)] in 1 cluster, suggesting a possible epidemiological linkage. Eighteen Iranian isolates showed ≥ 80% similarity with Afghan isolates. There were no strains with identical fingerprints. Spoligotyping of 70 isolates produced 23 distinct patterns. Sixty (85.7%) isolates were grouped into 13 clusters, while the remaining 10 isolates (14.2%) were not clustered. Ural (formerly Haarlem4) (n = 22, 31.4%) was the most common family followed by Central Asian strain (CAS) (n = 18, 25.7%) and T (n = 9, 12.8%) families. Only 1strain was characterized as having the Beijing genotype. Among 60 Iranian and 10 Afghan MTB isolates, 25% (95% CI: 16-37) and 70% (95% CI: 39-89) were categorized as Ural lineage, respectively. CONCLUSIONS A higher prevalence of Ural family MTB isolates among Afghan patients than among Iranian patients suggests the possible transmission of this lineage following the immigration of Afghans to Iran. PMID:27192590

  1. CONSTRUCTION OF CONTIGS OF AEGILOPS TAUSCHII GENOMIC DNA FRAGMENTS CLONED IN BAC AND BIBAC VECTORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high-throughput, fully automated, multi-color fluorescent fingerprinting technique for large-insert genomic DNA clones was developed. The technique was used to fingerprint 200,000 genomic DNA fragments of Aegilops tauschii line genetically closely related to the D genome of Chinese Spring wheat. T...

  2. Interaction of fragmented double-stranded DNA with carbon nanotubes in aqueous solution

    NASA Astrophysics Data System (ADS)

    Gladchenko, G. O.; Karachevtsev, M. V.; Leontiev, V. S.; Valeev, V. A.; Glamazda, A. Yu.; Plokhotnichenko, A. M.; Stepanian, S. G.

    Aqueous suspensions of ultrasonically fragmented double-stranded (fds-) DNA and single-walled carbon nanotubes (SWNTs) have been investigated by UV- and IR-absorption, NIR-emission and Raman spectroscopy. According to gel-electrophoresis, the lengths of the polymer fragments were 100-500 base pairs. Analysis of IR and UV data indicates the presence of both double-stranded (ds) and single-stranded (ss)-regions in the fragments. SWNT complex with DNA was revealed by NIR-emission and Raman spectroscopy. It turned out that fds-DNA is less efficient in holding nanotubes in the aqueous solution than ss-DNA. From the UV-data, the character of the helix-coil transition is seen to be like that for fds-DNA off and on nanotube, however, DNA thermostability increased in this latter case. The effective charge density on the DNA sugar-phosphate backbone of the fds-DNA:SWNT hybrid was less than that of DNA alone. Spectroscopic data can be explained by a model in which the formation of hybrids starts due to the interaction between untwisted ss-regions of DNA and the nanotube: the strands wrap on the tube and thus create an 'anchor' for the whole polymer. The ds-part of the polymer is located close to the nanotube.

  3. Isolation and restriction endonuclease cleavage of Anaplasma marginale DNA in situ in agarose.

    PubMed Central

    Krueger, C M; Buening, G M

    1988-01-01

    Bacterial restriction endonucleases were used to produce DNA cleavage patterns that could be useful as tools to study the relatedness among Anaplasma marginale isolates. Bovine erythrocytes infected with A. marginale were lysed, washed, and embedded in agarose. The embedded erythrocytes and bacterial pathogens were partially digested by sequential infiltration of the agarose with acetone, lysozyme, sodium dodecyl sulfate, and proteinase K. The unfragmented genomic DNA was left supported and protected in a porous matrix. The DNA was digested in situ in agarose under the following conditions: (i) brief treatment with phenol, (ii) brief washing with distilled water, and (iii) adjustment of restriction enzyme digestion mixture to compensate for the volume of the agarose. The cleaved DNA was electrophoresed horizontally to produce a DNA cleavage pattern. Of 19 restriction enzymes screened, 12 produced distinct DNA bands from the genomes of each of the five A. marginale isolates examined. The DNA cleavage pattern produced from each isolate with a given restriction enzyme was reproducible. However, the DNA cleavage patterns produced from different isolates with a given restriction enzyme were not necessarily identical. This procedure could be modified for general bacterial DNA isolation, in situ agarose digestion, and manipulations. Images PMID:2838504

  4. Differences in Electrostatic Potential Around DNA Fragments Containing Guanine and 8-oxo-Guanine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S.

    2007-02-01

    hanges of electrostatic potential (EP) around the DNA molecule resulting from chemical modifications of nucleotides may play a role in enzymatic recognition of damaged sites. Effects of chemical modifications of nucleotides on the structure of DNA have been characterized through large scale density functional theory computations. Quantum mechanical structural optimizations of DNA fragments with three pairs of nucleotoides and accompanying counteractions were performed with a B3LYP exchange-correlation functional and 6-31G** basis sets. The “intact” DNA fragment contained guanine in the middle layer, while the “damaged” fragment had the guanine replaced with 8-oxo-guanine. The electrostatic potential around these DNA fragments was projected on a surface around the double helix. The 2D maps of EP of intact and damaged DNA fragments were analyzed to identify these modifications of EP that result from the occurrence of 8-oxo-guanine. It was found that distortions of the phosphate groups and displacements of the accompanying countercations are clearly reflected in the EP maps.

  5. Interactions between carbon nanotubes and DNA polymerase and restriction endonucleases

    NASA Astrophysics Data System (ADS)

    Yi, Changqing; Fong, Chi-Chun; Chen, Weiwei; Qi, Suijian; Tzang, Chi-Hung; Lee, Shuit-Tong; Yang, Mengsu

    2007-01-01

    Effects of multi-walled carbon nanotubes (MWCNT) and single-walled carbon nanotubes (SWCNT) functionalized with and without carboxylic groups on polymerase chain reaction (PCR) and restriction digestion reaction were investigated. The results showed that CNT can reduce and even inhibit PCR and restriction digestion reaction, possibly due to the decrease of respective enzyme activity. The inhibition effect on double restriction digestion reaction and PCR was increased in the order of CNT-COOH > pristine CNT and SWCNT> MWCNT. This study demonstrated that CNT may significantly affect the efficiency of biochemical reactions through different action mechanisms, which is critical for understanding how nanomaterials impact biological systems.

  6. Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Chao, J.; Zhang, P.; Wang, Q.; Wu, N.; Zhang, F.; Hu, J.; Fan, C. H.; Li, B.

    2016-03-01

    We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06544e

  7. Development of species-specific PCR and PCR-restriction fragment length polymorphism assays for L.infantum/L.donovani discrimination.

    PubMed

    Oshaghi, Mohammad A; Ravasan, Naseh Maleki; Hide, Mallorie; Javadian, Ezat-Aldin; Rassi, Yavar; Sedaghat, Mohammad M; Mohebali, Mehdi; Hajjaran, Homa

    2009-05-01

    Discrimination of Leishmania infantum and L. donovani, the members of the L. (L.) donovani complex, is important for diagnosis and epidemiological studies of visceral leishmaniasis (VL). We have developed two molecular tools including a restriction fragment length polymorphisms of amplified DNA (PCR-RFLP) and a PCR that are capable to discriminate L. donovani from L. infantum. Typing of the complex was performed by a simple PCR of cysteine protease B (cpb) gene followed by digestion with DraIII. The enzyme cuts the 741-bp amplicon of L. donovani into 400 and 341 bp fragments whereas the 702 bp of L. infantum remains intact. The designed PCR species-specific primer pair is specific for L. donovani and is capable of amplifying a 317 bp of 3' end of cpb gene of L. donovani whereas it does not generate an amplicon for L. infantum. The species-specific primers and the restriction enzyme were designed based on a 39 bp insertion/deletion (indel) in the middle of the cpb gene. Both assays could differentiate correctly the two species and are reliable and high-throughput alternatives for molecular diagnosis and epidemiological studies of VL in various foci. PMID:19545519

  8. The trans-autostimulatory activity of Rad27 suppresses dna2 defects in Okazaki fragment processing.

    PubMed

    Munashingha, Palinda Ruvan; Lee, Chul-Hwan; Kang, Young-Hoon; Shin, Yong-Keol; Nguyen, Tuan Anh; Seo, Yeon-Soo

    2012-03-16

    Dna2 and Rad27 (yeast Fen1) are the two endonucleases critical for Okazaki fragment processing during lagging strand DNA synthesis that have been shown to interact genetically and physically. In this study, we addressed the functional consequences of these interactions by examining whether purified Rad27 of Saccharomyces cerevisiae affects the enzymatic activity of Dna2 and vice versa. For this purpose, we constructed Rad27DA (catalytically defective enzyme with an Asp to Ala substitution at amino acid 179) and found that it significantly stimulated the endonuclease activity of wild type Dna2, but failed to do so with Dna2Δ405N that lacks the N-terminal 405 amino acids. This was an unexpected finding because dna2Δ405N cells were still partially suppressed by overexpression of rad27DA in vivo. Further analyses revealed that Rad27 is a trans-autostimulatory enzyme, providing an explanation why overexpression of Rad27, regardless of its catalytic activity, suppressed dna2 mutants as long as an endogenous wild type Rad27 is available. We found that the C-terminal 16-amino acid fragment of Rad27, a highly polybasic region due to the presence of multiple positively charged lysine and arginine residues, was sufficient and necessary for the stimulation of both Rad27 and Dna2. Our findings provide further insight into how Dna2 and Rad27 jointly affect the processing of Okazaki fragments in eukaryotes. PMID:22235122

  9. Menadione-induced DNA fragmentation without 8-oxo-2'-deoxyguanosine formation in isolated rat hepatocytes.

    PubMed

    Fischer-Nielsen, A; Corcoran, G B; Poulsen, H E; Kamendulis, L M; Loft, S

    1995-05-17

    Menadione (2-methyl-1,4-naphthoquinone) induces oxidative stress in cells causing perturbations in the cytoplasm as well as nicking of DNA. The mechanisms by which DNA damage occurs are still unclear, but a widely discussed issue is whether menadione-generated reactive oxygen species (ROS) directly damage DNA. In the present study, we measured the effect of menadione on formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG), an index of oxidative DNA base modifications, and on DNA fragmentation. Isolated hepatocytes from phenobarbital-pretreated rats were exposed to menadione, 25-400 microM, for 15, 90 or 180 min with or without prior depletion of reduced glutathione (GSH) by diethyl maleate. Menadione caused profound GSH depletion and internucleosomal DNA fragmentation, which was demonstrated by a prominent fragmentation ladder on agarose gel electrophoresis. We found no oxidative modification of DNA in terms of increased 8-oxodG formation. In contrast, the positive control of sunlamp light increased 8-oxodG 5-fold in rat hepatocytes. We conclude that oxidative modification of DNA bases is unlikely to be important in menadione-induced DNA damage. PMID:7763290

  10. [THE OPTIMAL CONDITIONS OF STORAGE OF SPERMATOZOA FOR ANALYSIS OF DNA FRAGMENTATION].

    PubMed

    Tataru, D A; Markova, E V; Osadchuk, L V; Sheina, E V; Svetlakov, A V

    2015-04-01

    The analysis of fragmentation of DNA of spermatozoons using technique of flow cytometry to evaluate male fertility more and more often begins to be applied in clinical diagnostic. However, development of optimal protocol of storage and preparation of spermatozoons for analysis still is at the stage of experimental elaboration. The studv was carried out to analyse effect of different conditions of preparation of ejaculate for adequate evaluation of index of fragmentation of DNA of spermatozoons using sperm chromatin structure assay technique. The sampling consisted of 20 patients of the Krasnoyarsk center of reproductive medicine. The sperm chromatin structure assay technique was applied to evaluate index of fragmentation of DNA of spermatozoons in fresh native ejaculate and after storage of spermatozoons under different temperature (37, 25 and 4 degrees C) and duration (1-2 and 1-3 days) and conditions of storage (-20 or -70 degrees C) of frozen spermatozoons (as native ejaculate or in TNE-buffer). It is demonstrated that index of fragmentation of DNA of spermatozoons has no significant alterations in ejaculate stored under 4 degrees C during 48 hours. In case of storage of ejaculate under 25 or 37 degrees C index of fragmentation of DNA of spermatozoons significantly increases already after first day of storage. The incubation of ejaculate under 37 degrees C results in increasing of index of fragmentation of DNA of spermatozoons already after first hour. The individual differences are established related to degree of increasing of index of fragmentation of DNA of spermatozoons because of impact of studied temperatures of ejaculate incubation. The storage of spermatozoons under temperature of - 20 and -70 degrees C in native ejaculate or in TNE-buffer has no effect of index of fragmentation of DNA of spermatozoons with measurement during 1-2 hours. Therefore, storage and transportation of native ejaculate under 4 degrees C during 1-2 days or in frozen condition under temperature of -20 degrees C or -70 degrees C can be recommended for adequate evaluation of level of fragmentation of DNA of spermatozoons. PMID:26189292

  11. Detection and Identification of Decay Fungi in Spruce Wood by Restriction Fragment Length Polymorphism Analysis of Amplified Genes Encoding rRNA†

    PubMed Central

    Jasalavich, Claudia A.; Ostrofsky, Andrea; Jellison, Jody

    2000-01-01

    We have developed a DNA-based assay to reliably detect brown rot and white rot fungi in wood at different stages of decay. DNA, isolated by a series of CTAB (cetyltrimethylammonium bromide) and organic extractions, was amplified by the PCR using published universal primers and basidiomycete-specific primers derived from ribosomal DNA sequences. We surveyed 14 species of wood-decaying basidiomycetes (brown-rot and white-rot fungi), as well as 25 species of wood-inhabiting ascomycetes (pathogens, endophytes, and saprophytes). DNA was isolated from pure cultures of these fungi and also from spruce wood blocks colonized by individual isolates of wood decay basidiomycetes or wood-inhabiting ascomycetes. The primer pair ITS1-F (specific for higher fungi) and ITS4 (universal primer) amplified the internal transcribed spacer region from both ascomycetes and basidiomycetes from both pure culture and wood, as expected. The primer pair ITS1-F (specific for higher fungi) and ITS4-B (specific for basidiomycetes) was shown to reliably detect the presence of wood decay basidiomycetes in both pure culture and wood; ascomycetes were not detected by this primer pair. We detected the presence of decay fungi in wood by PCR before measurable weight loss had occurred to the wood. Basidiomycetes were identified to the species level by restriction fragment length polymorphisms of the internal transcribed spacer region. PMID:11055916

  12. Restriction fragment length polymorphism of the pMJ101-like plasmid and ribotyping in the fish pathogen Vibrio ordalii.

    PubMed Central

    Pedersen, K.; Koblavi, S.; Tiainen, T.; Grimont, P. A.

    1996-01-01

    A total of 32 Vibrio ordalii strains were studied for their plasmid content and shown to carry a plasmid of approximately 32 kb. This plasmid was subsequently subjected to restriction fragment length polymorphism (RFLP) studies. Using Hind III, three different restriction patterns were identified while BamH I cleaved the plasmid into a single linear fragment. The results suggest that the 32 kb plasmid is highly conserved but that some variation in restriction pattern occurs. The same set of strains was subjected to ribotyping. Using Mlu I, six different restriction patterns were demonstrated. Strains from the USA and Canada shared profiles with strains from Australia and Japan. Strains from Australia generated a single pattern whereas strains from North America were subdivided into three patterns, and the Japanese strains fell into five patterns. The results suggest that ribotyping in combination with RFLP studies of the pMJ101-like plasmid may be useful in epidemiological studies of V. ordalii. Images Fig. 1 Fig. 2 PMID:8870637

  13. Effect of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves.

    PubMed

    Pedroso, M C; Durzan, D J

    2000-11-01

    Different gravity environments have been shown to significantly affect leaf-plantlet formation and asexual reproduction in Kalanchoë daigremontiana Ham. and Perr. In the present work, we investigated the effect of gravity at tissue and cell levels. Leaves and leaf-plantlets were cultured for different periods of time (min to 15 d) in different levels of gravity stimulation: simulated hypogravity (1 rpm clinostats; 2 x 10(-4) g), 1 g (control) and hypergravity (centrifugation; 20 and 150 g). Both simulated hypogravity and hypergravity affected cell death (apoptosis) in this species, and variations in the number of cells showing DNA fragmentation directly correlated with nitric oxide (NO) formation. Apoptosis in leaves was more common as gravity increased. Apoptotic cells were localized in the epidermis, mainly guard cells, in leaf parenchyma, and in tracheary elements undergoing terminal differentiation. Exposures to acute hypergravity (up to 60 min) showed that chloroplast DNA fragmentation occurred prior to nuclear DNA fragmentation, marginalization of chromatin, nuclear condensation, and nuclear blebbing. Addition of sodium nitroprusside (NO donor) mimicked centrifugation. NO and DNA fragmentation decreased with N(G)-monomethyl-L-arginine (NO-synthase inhibitor). The variations in NO levels, nucleoid DNA fragmentation, and cell death show how chloroplasts, cells and leaves may respond (and adapt) to gravity changes. PMID:11762440

  14. Relationship of spermatozoal DNA fragmentation with semen quality in varicocele-positive men.

    PubMed

    Moazzam, A; Sharma, R; Agarwal, A

    2015-10-01

    The aim of the study was to assess the semen quality and levels of spermatozoal nuclear DNA fragmentation in subfertile subjects clinically diagnosed with varicocele, subfertile subjects without varicocele and healthy fertile controls. Semen samples were obtained from 302 subjects. Of them, 115 were healthy fertile controls having normal semen characteristics, 121 subfertile men diagnosed with varicocele, both, clinically and on ultrasonography, while 66 subjects were subfertile with no varicocele. Spermatozoal concentration, percentage motility, morphology and DNA fragmentation were measured. In the study population, deterioration in semen quality-decreased spermatozoal concentration, percentage motility and normal morphology was seen in subfertile subjects, especially with varicocele. Highest spermatozoal DNA fragmentation was observed in varicocele-positive subjects as compared with varicocele-negative subjects and healthy fertile controls. Significant negative correlation was seen between spermatozoal DNA fragmentation and concentration (r = -0.310), motility (r = -0.328) normal morphology, WHO method (r = -0.221) and Tygerberg strict criteria (r = -0.180) in the varicocele-positive subfertile subjects. In conclusion, this study suggests existence of a negative relationship between spermatozoal DNA fragmentation and semen quality in varicocele-positive subfertile subjects. PMID:25346327

  15. Molecular analysis of Brazilian infectious bronchitis field isolates by reverse transcription-polymerase chain reaction, restriction fragment length polymorphism, and partial sequencing of the N gene.

    PubMed

    Abreu, Josiane T; Resende, José S; Flatschart, Roberto B; Folgueras-Flatschart, Aurea V; Mendes, Ana Cristina R; Martins, Nelson R S; Silva, Candice B A; Ferreira, B Michele C; Resende, Maurício

    2006-12-01

    Molecular analysis of 15 Brazilian infectious bronchitis virus (IBV) isolates, obtained from clinical outbreaks of the disease in chickens (broilers or layers) in the state of Minas Gerais (Brazil) between 1972 and 1989, is reported. Using the N protein gene as target, IBVs were analyzed by reverse transcription-polymerase chain reaction/restriction fragment length polymorphism (RT-PCR/RFLP) with the restriction enzymes AvaII, HphI, Sau96I, and Tsp509I and cDNA sequencing. Results obtained from those isolates were compared to 19 sequences available in GenBank. N gene RFLP profiles, cDNA sequences, and predicted amino acid composition were used for the construction of dendrograms. Brazilian isolates were grouped into one distinct group. Identity of predicted N protein amino acid composition varied from 45% (between isolates G and 208) up to 99% (PM 1 and PM2), and, when compared to the other IBVs, the amino acid identity was from 42% (Q3/88 and G) up to 97% (D41 and PM1). The great genetic diversity was shown to occur before the official use of vaccination in Brazil and has remained thereafter. PMID:17274284

  16. A Semester-Long Project for Teaching Basic Techniques in Molecular Biology Such as Restriction Fragment Length Polymorphism Analysis to Undergraduate and Graduate Students

    PubMed Central

    DiBartolomeis, Susan M.

    2011-01-01

    Several reports on science education suggest that students at all levels learn better if they are immersed in a project that is long term, yielding results that require analysis and interpretation. I describe a 12-wk laboratory project suitable for upper-level undergraduates and first-year graduate students, in which the students molecularly locate and map a gene from Drosophila melanogaster called dusky and one of dusky's mutant alleles. The mapping strategy uses restriction fragment length polymorphism analysis; hence, students perform most of the basic techniques of molecular biology (DNA isolation, restriction enzyme digestion and mapping, plasmid vector subcloning, agarose and polyacrylamide gel electrophoresis, DNA labeling, and Southern hybridization) toward the single goal of characterizing dusky and the mutant allele dusky73. Students work as individuals, pairs, or in groups of up to four students. Some exercises require multitasking and collaboration between groups. Finally, results from everyone in the class are required for the final analysis. Results of pre- and postquizzes and surveys indicate that student knowledge of appropriate topics and skills increased significantly, students felt more confident in the laboratory, and students found the laboratory project interesting and challenging. Former students report that the lab was useful in their careers. PMID:21364104

  17. A semester-long project for teaching basic techniques in molecular biology such as restriction fragment length polymorphism analysis to undergraduate and graduate students.

    PubMed

    DiBartolomeis, Susan M

    2011-01-01

    Several reports on science education suggest that students at all levels learn better if they are immersed in a project that is long term, yielding results that require analysis and interpretation. I describe a 12-wk laboratory project suitable for upper-level undergraduates and first-year graduate students, in which the students molecularly locate and map a gene from Drosophila melanogaster called dusky and one of dusky's mutant alleles. The mapping strategy uses restriction fragment length polymorphism analysis; hence, students perform most of the basic techniques of molecular biology (DNA isolation, restriction enzyme digestion and mapping, plasmid vector subcloning, agarose and polyacrylamide gel electrophoresis, DNA labeling, and Southern hybridization) toward the single goal of characterizing dusky and the mutant allele dusky(73). Students work as individuals, pairs, or in groups of up to four students. Some exercises require multitasking and collaboration between groups. Finally, results from everyone in the class are required for the final analysis. Results of pre- and postquizzes and surveys indicate that student knowledge of appropriate topics and skills increased significantly, students felt more confident in the laboratory, and students found the laboratory project interesting and challenging. Former students report that the lab was useful in their careers. PMID:21364104

  18. TNF-α is involved in activating DNA fragmentation in skeletal muscle

    PubMed Central

    Carbó, N; Busquets, S; van Royen, M; Alvarez, B; López-Soriano, F J; Argilés, J M

    2002-01-01

    Intraperitoneal administration of 100 μg kg−1 (body weight) of tumour necrosis factor-α to rats for 8 consecutive days resulted in a significant decrease in protein content, which was concomitant with a reduction in DNA content. Interestingly, the protein/DNA ratio was unchanged in the skeletal muscle of the tumour necrosis factor-α-treated animals as compared with the non-treated controls. Analysis of muscle DNA fragmentation clearly showed enhanced laddering in the skeletal muscle of tumour necrosis factor-α-treated animals, suggesting an apoptotic phenomenon. In a different set of experiments, mice bearing a cachexia-inducing tumour (the Lewis lung carcinoma) showed an increase in muscle DNA fragmentation (9.8-fold) as compared with their non-tumour-bearing control counterparts as previously described. When gene-deficient mice for tumour necrosis factor-α receptor protein I were inoculated with Lewis lung carcinoma, they were also affected by DNA fragmentation; however the increase was only 2.1-fold. These results suggest that tumour necrosis factor-α partly mediates DNA fragmentation during experimental cancer-associated cachexia. British Journal of Cancer (2002) 86, 1012–1016. DOI: 10.1038/sj/bjc/6600167 www.bjcancer.com © 2002 Cancer Research UK PMID:11953838

  19. DNA fragmentation is not associated with apoptosis in zerumbone-induced HepG2 cells.

    PubMed

    Kamalidehghan, Behnam; Ahmadipour, Fatemeh; Noordin, Mohamed Ibrahim

    2012-01-01

    Zerumbone is a cytotoxic compound isolated from the herbal plant, Zingiber zerumbet Smith, which exhibits antitumor activity [1-2], anti-inflammatory effects and possesses anti-proliferative potentials in a variety of cell lines [3-4]. DNA fragmentation indicates an early event of apoptosis leading to cell death due to the absence of new cellular proteins synthesizing for cell survival. Previous studies indicated that the cleavage of double-stranded DNA in apoptotic DNA degradation occurs via the activation of endogenous Ca2+/Mg2+-dependent endonuclease that specifically cleaves between nucleosomes to produce DNA fragments that are multiples of ~180 base pairs [5]. In order to investigate DNA fragmentation, we treated HepG2 cells with zerumbone (IC50: 3.45 ± 0.026 µg/mL) in both dose-dependent (2, 4, 6 and 8 µg/mL) and time-dependent manner (4, 8, 12, 16, 24, 48 and 72 h). The assay was performed using the Suicide Track™ DNA Ladder Isolation Kit (Calbio-chem, CA, USA), according to the manufacturer's instructions. DNA was analyzed using 1.5% agarose gel electrophoresis, observed under UV illumination and visualized using a gel documentation system (UVP Biospectrum HR410, USA). To furthur confirm the induction of apoptosis, the protein of zerumbone-induced HepG2 cells using Western-blotting indicated a low and high expression of Bcl2 and Bax proteins, respectively. In conclusion, these results indicate that no DNA fragmentation in the human hepatocellular liver carcinoma (HepG2) cells was observed even in the presence of caspase-3 during apoptosis. Therefore, we hypothesize that not all compounds necessairly indicate fragmentation of condensed chromatin into several discrete mass in cell lines as in vitro condition. PMID:23183623

  20. Fragmentation of DNA in a sub-microliter microfluidic sonication device.

    PubMed

    Tseng, Qingzong; Lomonosov, Alexey M; Furlong, Eileen E M; Merten, Christoph A

    2012-11-21

    Fragmentation of DNA is an essential step for many biological applications including the preparation of next-generation sequencing (NGS) libraries. As sequencing technologies push the limits towards single cell and single molecule resolution, it is of great interest to reduce the scale of this upstream fragmentation step. Here we describe a miniaturized DNA shearing device capable of processing sub-microliter samples based on acoustic shearing within a microfluidic chip. A strong acoustic field was generated by a Langevin-type piezo transducer and coupled into the microfluidic channel via the flexural lamb wave mode. Purified genomic DNA, as well as covalently cross-linked chromatin were sheared into various fragment sizes ranging from ∼180 bp to 4 kb. With the use of standard PDMS soft lithography, our approach should facilitate the integration of additional microfluidic modules and ultimately allow miniaturized NGS workflows. PMID:23014736

  1. Performance of heuristic methods driven by chaotic dynamics for ATSP and applications to DNA fragment assembly

    NASA Astrophysics Data System (ADS)

    Kato, Tomohiro; Hasegawa, Mikio

    Chaotic dynamics has been shown to be effective in improving the performance of combinatorial optimization algorithms. In this paper, the performance of chaotic dynamics in the asymmetric traveling salesman problem (ATSP) is investigated by introducing three types of heuristic solution update methods. Numerical simulation has been carried out to compare its performance with simulated annealing and tabu search; thus, the effectiveness of the approach using chaotic dynamics for driving heuristic methods has been shown. The chaotic method is also evaluated in the case of a combinatorial optimization problem in the real world, which can be solved by the same heuristic operation as that for the ATSP. We apply the chaotic method to the DNA fragment assembly problem, which involves building a DNA sequence from several hundred fragments obtained by the genome sequencer. Our simulation results show that the proposed algorithm using chaotic dynamics in a block shift operation exhibits the best performance for the DNA fragment assembly problem.

  2. Accurate phylogenetic classification of DNA fragments based onsequence composition

    SciTech Connect

    McHardy, Alice C.; Garcia Martin, Hector; Tsirigos, Aristotelis; Hugenholtz, Philip; Rigoutsos, Isidore

    2006-05-01

    Metagenome studies have retrieved vast amounts of sequenceout of a variety of environments, leading to novel discoveries and greatinsights into the uncultured microbial world. Except for very simplecommunities, diversity makes sequence assembly and analysis a verychallenging problem. To understand the structure a 5 nd function ofmicrobial communities, a taxonomic characterization of the obtainedsequence fragments is highly desirable, yet currently limited mostly tothose sequences that contain phylogenetic marker genes. We show that forclades at the rank of domain down to genus, sequence composition allowsthe very accurate phylogenetic 10 characterization of genomic sequence.We developed a composition-based classifier, PhyloPythia, for de novophylogenetic sequence characterization and have trained it on adata setof 340 genomes. By extensive evaluation experiments we show that themethodis accurate across all taxonomic ranks considered, even forsequences that originate fromnovel organisms and are as short as 1kb.Application to two metagenome datasets 15 obtained from samples ofphosphorus-removing sludge showed that the method allows the accurateclassification at genus level of most sequence fragments from thedominant populations, while at the same time correctly characterizingeven larger parts of the samples at higher taxonomic levels.

  3. Detection and identification of bacterial pathogens of fish in kidney tissue using terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes.

    PubMed

    Nilsson, William B; Strom, Mark S

    2002-04-01

    We report the application of a nucleic acid-based assay that enables direct detection and identification of bacterial pathogens in fish kidney tissue without the need for bacterial culture. The technique, known as terminal restriction fragment length polymorphism (T-RFLP), employs the polymerase chain reaction (PCR) using a primer pair that targets 2 highly conserved regions of the gene that encodes for the 16S small subunit of the bacterial ribosome. Each primer is 5' labeled with a different fluorescent dye, which results in each terminus of the resulting amplicon having a distinguishable fluorescent tag. The amplicon is then digested with a series of 6 restriction endonucleases, followed by size determination of the 2 labeled terminal fragments by capillary electrophoresis with laser-induced fluorescence detection. Comparison of the lengths of the full set of 12 terminal fragments with those predicted based on analyses of GenBank submissions of 16S sequences leads to presumptive identification of the pathogen to at least the genus, but more typically the species level. Results of T-RFLP analyses of genomic DNA from multiple strains of a number of fish bacterial pathogens are presented. The assay is further demonstrated on fish kidney tissue spiked with a known number of cells of Flavobacterium psychrophilum where a detection limit of ca. 30 CFU mg(-1) of tissue was estimated. A similar detection limit was observed for several other gram-negative pathogens. This procedure was also used to detect Aeromonas salmonicida and Renibacterium salmoninarum in the kidney tissue of 2 naturally infected salmonids. PMID:12033704

  4. Method of preparing an equimolar DNA mixture for one-step DNA assembly of over 50 fragments.

    PubMed

    Tsuge, Kenji; Sato, Yukari; Kobayashi, Yuka; Gondo, Maiko; Hasebe, Masako; Togashi, Takashi; Tomita, Masaru; Itaya, Mitsuhiro

    2015-01-01

    In the era of synthetic biology, techniques for rapidly constructing a designer long DNA from short DNA fragments are desired. To realize this, we attempted to establish a method for one-step DNA assembly of unprecedentedly large numbers of fragments. The basic technology is the Ordered Gene Assembly in Bacillus subtilis (OGAB) method, which uses the plasmid transformation system of B. subtilis. Since this method doesn't require circular ligation products but needs tandem repeat ligation products, the degree of deviation in the molar concentration of the material DNAs is the only determinant that affects the efficiency of DNA assembly. The strict standardization of the size of plasmids that clone the DNA block and the measurement of the block in the state of intact plasmid improve the reliability of this step, with the coefficient of variation of the molar concentrations becoming 7%. By coupling this method with the OGAB method, one-step assembly of more than 50 DNA fragments becomes feasible. PMID:25990947

  5. A strategy to sequence repetitive DNA based on partial restriction enzyme cleavage

    SciTech Connect

    Abath, F.G.C.; Holder, A.A.

    1995-06-01

    The strategy to sequence repetitive DNA described in this article is based on partial restriction enzyme cleavage. It is an alternative to using nested deletion with exonuclease III or similiar enzymes in which progressively more remote regions of the target DNA are brought into range for sequencing by universal primers. 4 refs., 1 tab.

  6. [Amplification of mitochondrial DNA fragments from ancient human teeth and bones].

    PubMed

    Hänni, C; Laudet, V; Sakka, M; Bègue, A; Stéhelin, D

    1990-01-01

    We extracted and visualized DNA from ancient human teeth and bones of 150 to 5,500 years B.P. from three deposits from the south of France. The DNA extracted was used as template for PCR with specific primers corresponding to a portion of the human mitochondrial genome. In our samples, we have amplified a specific DNA fragment of 121 bp which, in the case of one bone of 150 years B.P. has been cloned and sequenced. We show that this sequence is identical to the homologous region of human mitochondrial DNA. The striking implications of this new method for archaeological and paleontological studies are exposed. PMID:2113826

  7. A simple DNA extraction method for marijuana samples used in amplified fragment length polymorphism (AFLP) analysis.

    PubMed

    Miller Coyle, Heather; Shutler, Gary; Abrams, Sharon; Hanniman, Janet; Neylon, Suzanne; Ladd, Carll; Palmbach, Timothy; Lee, Henry C

    2003-03-01

    As a first step in developing a molecular method for the individualization of marijuana samples, we evaluated a plant DNA extraction kit. The QIAGEN plant DNeasy method uses a spin column format for recovery of DNA and is effective for obtaining high molecular weight DNA from leaf, flower (bud), and seed samples of marijuana. The average DNA yield was 125-500 ng per 100 milligrams of fresh plant tissue. The recovered DNA was of polymerase chain reaction (PCR) quality as measured by the ability to generate reproducible amplified fragment length polymorphism (AFLP) profiles. AFLP is a technique used to create a DNA profile for plant varieties and is being applied to marijuana samples by the authors to link growers and distributors of clonal material. The QIAGEN plant DNeasy method was simple, efficient, and reproducible for processing small quantities of marijuana into DNA. PMID:12664992

  8. Differentiation of mixed biological traces in sexual assaults using DNA fragment analysis

    PubMed Central

    Apostolov, ?leksandar

    2014-01-01

    During the investigation of sexual abuse, it is not rare that mixed genetic material from two or more persons is detected. In such cases, successful profiling can be achieved using DNA fragment analysis, resulting in individual genetic profiles of offenders and their victims. This has led to an increase in the percentage of identified perpetrators of sexual offenses. The classic and modified genetic models used, allowed us to refine and implement appropriate extraction, polymerase chain reaction and electrophoretic procedures with individual assessment and approach to conducting research. Testing mixed biological traces using DNA fragment analysis appears to be the only opportunity for identifying perpetrators in gang rapes. PMID:26019514

  9. Development of procedures for the identification of human papilloma virus DNA fragments in laser plume

    NASA Astrophysics Data System (ADS)

    Woellmer, Wolfgang; Meder, Tom; Jappe, Uta; Gross, Gerd; Riethdorf, Sabine; Riethdorf, Lutz; Kuhler-Obbarius, Christina; Loening, Thomas

    1996-01-01

    For the investigation of laser plume for the existence of HPV DNA fragments, which possibly occur during laser treatment of virus infected tissue, human papillomas and condylomas were treated in vitro with the CO2-laser. For the sampling of the laser plume a new method for the trapping of the material was developed by use of water-soluble gelatine filters. These samples were analyzed with the polymerase chain reaction (PCR) technique, which was optimized in regard of the gelatine filters and the specific primers. Positive PCR results for HPV DNA fragments up to the size of a complete oncogene were obtained and are discussed regarding infectiousity.

  10. Sequence preferences of DNA interstrand crosslinking agents: quantitation of interstrand crosslink locations in DNA duplex fragments containing multiple crosslinkable sites.

    PubMed Central

    Millard, J T; Weidner, M F; Kirchner, J J; Ribeiro, S; Hopkins, P B

    1991-01-01

    A general approach to the quantitative study of the sequence specificity of DNA interstrand crosslinking agents in synthetic duplex DNA fragments is described. In the first step, a DNA fragment previously treated with an interstrand crosslinking agent is subjected to denaturing PAGE. Not only does this distinguish crosslinked from native or monoadducted DNA, it is shown herein that isomeric crosslinked DNAs differing in position of the crosslink can in some cases be separated. In the second stage, the now fractionated crosslinked DNAs isolated from denaturing PAGE are subjected to fragmentation using iron(II)/EDTA. For those fractions which are structurally homogeneous, analysis of the resulting fragment distribution has previously been shown to reveal the crosslink position at nucleotide resolution. It is shown herein that in fractions which are structurally heterogeneous due to differences in position of crosslink, this analysis quantifies the relative extent of crosslinking at distinct sites. Using this method it is shown that reductively activated mitomycin C crosslinks the duplex sequences 5'-GCGC and 5'-TCGA with 3 +/- 1:1 relative efficiency. Images PMID:1903204

  11. RESTRICTION FRAGMENT LENGTH POLYMORPHISM ANALYSIS OF PCR-AMPLIFIED NIFH SEQUENCES FROM WETLAND PLANT RHIZOSPHERE COMMUNITIES

    EPA Science Inventory

    We describe a method to assess the community structure of N2-fixing bacteria in the rhizosphere. Total DNA was extracted from Spartina alterniflora and Sesbania macrocarpa root zones by bead-beating and purified by CsCl-EtBr gradient centrifugation. The average DNA yield was 5.5 ...

  12. Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii.

    PubMed Central

    Moyer, C L; Dobbs, F C; Karl, D M

    1994-01-01

    PCR was used to amplify (eu)bacterial small-subunit (16S) rRNA genes from total-community genomic DNA. The source of total-community genomic DNA used for this culture-independent analysis was the microbial mats from a deep-sea, hydrothermal vent system, Pele's Vents, located at Loihi Seamount, Hawaii. Oligonucleotides complementary to conserved regions in the 16S rRNA-encoding DNA (rDNA) of bacteria were used to direct the synthesis of PCR products, which were then subcloned by blunt-end ligation into phagemid vector pBluescript II. Restriction fragment length polymorphism patterns, created by using tandem tetrameric restriction endonucleases, revealed the presence of 12 groups of 16S rRNA genes representing discrete operational taxonomic units (OTUs). The rank order abundance of these putative OTUs was measured, and the two most abundant OTUs accounted for 72.9% of all of the 16S rDNA clones. Among the remaining 27.1% of the 16S rDNA clones, none of the 10 OTUs was represented by more than three individual clones. The cumulative OTU distribution for 48 bacterial 16S rDNA clones demonstrated that the majority of taxa represented in the clone library were detected, a result which we assume to be an estimate of the diversity of bacteria in the native hydrothermal vent habitat. 16S rDNA fingerprinting of individual clones belonging to particular OTUs by using an oligonucleotide probe that binds to a universally conserved region of the 16S rDNA fragments was conducted to confirm OTU specificity and 16S rDNA identity. Images PMID:7512808

  13. Identification of two groups of Mycobacterium paratuberculosis strains by restriction endonuclease analysis and DNA hybridization.

    PubMed Central

    Collins, D M; Gabric, D M; de Lisle, G W

    1990-01-01

    Genomic DNA was prepared from four reference strains of Mycobacterium paratuberculosis and 46 isolates of this organism from New Zealand, Australia, Canada, and Norway and also from two mycobactin-dependent "wood pigeon" strains. The DNA was characterized by restriction endonuclease analysis, both with and without DNA hybridization, with a probe specific to a repetitive DNA sequence in M. paratuberculosis. Both techniques differentiated M. paratuberculosis strains into two groups, but DNA hybridization revealed more differences between strains within the larger group. All the strains from cattle and many strains from other animals belonged to this group. The second group of nine strains included the Faroe Islands strain, all New Zealand sheep strains, and one New Zealand goat strain. Primary isolation of strains belonging to this group was difficult to achieve. DNA from acid-fast organisms harvested directly from intestinal tissues of sheep with Johne's disease was shown to have restriction and hybridization patterns identical to those of DNA obtained from M. paratuberculosis isolates cultured from the same tissues. Two Norwegian goat strains and the wood pigeon strains did not hybridize to the M. paratuberculosis probe and had restriction patterns very different from those of other M. paratuberculosis strains. The wood pigeon strains had restriction patterns very similar to those of strains of Mycobacterium avium, indicating that they should be classified as that species. The presence of two distinct groups of M. paratuberculosis strains and their predominant distribution in different host animals may be significant in management of mixed-animal farming operations. Images PMID:2166089

  14. [Sperm DNA fragmentation index and the success rate of IVF/ICSI].

    PubMed

    Xi, Di; Chen, Yun; Dai, Yu-tian

    2016-01-01

    Sperm DNA fragmentation index (DFI) refers to the percentage of DNA strand breaks in the total sperm. Many studies suggest that elevated DFI can lead to male infertility and early spontaneous abortion. High-DFI patients are more likely to fail in assisted reproduction and preliminary treatment or prevention methods have been developed for this population. This review focuses on the impact of DFI on clinical pregnancy outcomes and progress in the studies of its treatment. PMID:26931032

  15. Early stage intercalation of doxorubicin to DNA fragments observed in molecular dynamics binding simulations.

    PubMed

    Lei, Hongxing; Wang, Xiaofeng; Wu, Chun

    2012-09-01

    The intercalation mode between doxorubicin (an anticancer drug) and two 6-base-pair DNA model fragments (d(CGATCG)₂ and d(CGTACG)₂) has been well studied by X-ray crystallography and NMR experimental methods. Yet, the detailed intercalation pathway at molecular level remains elusive. In this study, we conducted molecular dynamics binding simulations of these two systems using AMBER DNA (parmbsc0) and drug (GAFF) force fields starting from the unbound state. We observed outside binding (minor groove binding or end-binding) in all six independent binding simulations (three for each DNA fragment), followed by the complete intercalation of a drug molecule in two simulations (one for each DNA fragment). First, our data directly supported that the minor groove binding is the dominant pre-intercalation step. Second, we observed that the opening and flipping of a local base pair (A3-T10 for d(CGATCG)₂ and C1-G12 for d(CGTACG)₂) in the two intercalation trajectories. This locally cooperative flipping-intercalation mechanism was different from the previously proposed rise-insertion mechanism by which the distance between two neighboring intact base pairs increases to create a space for the drug insertion. Third, our simulations provided the first set of data to support the applicability of the AMBER DNA and drug force fields in drug-DNA atomistic binding simulations. Implications on the kinetics pathway and drug action are also discussed. PMID:23079648

  16. Statistical methods for detecting periodic fragments in DNA sequence data

    PubMed Central

    2011-01-01

    Background Period 10 dinucleotides are structurally and functionally validated factors that influence the ability of DNA to form nucleosomes, histone core octamers. Robust identification of periodic signals in DNA sequences is therefore required to understand nucleosome organisation in genomes. While various techniques for identifying periodic components in genomic sequences have been proposed or adopted, the requirements for such techniques have not been considered in detail and confirmatory testing for a priori specified periods has not been developed. Results We compared the estimation accuracy and suitability for confirmatory testing of autocorrelation, discrete Fourier transform (DFT), integer period discrete Fourier transform (IPDFT) and a previously proposed Hybrid measure. A number of different statistical significance procedures were evaluated but a blockwise bootstrap proved superior. When applied to synthetic data whose period-10 signal had been eroded, or for which the signal was approximately period-10, the Hybrid technique exhibited superior properties during exploratory period estimation. In contrast, confirmatory testing using the blockwise bootstrap procedure identified IPDFT as having the greatest statistical power. These properties were validated on yeast sequences defined from a ChIP-chip study where the Hybrid metric confirmed the expected dominance of period-10 in nucleosome associated DNA but IPDFT identified more significant occurrences of period-10. Application to the whole genomes of yeast and mouse identified ~ 21% and ~ 19% respectively of these genomes as spanned by period-10 nucleosome positioning sequences (NPS). Conclusions For estimating the dominant period, we find the Hybrid period estimation method empirically to be the most effective for both eroded and approximate periodicity. The blockwise bootstrap was found to be effective as a significance measure, performing particularly well in the problem of period detection in the presence of eroded periodicity. The autocorrelation method was identified as poorly suited for use with the blockwise bootstrap. Application of our methods to the genomes of two model organisms revealed a striking proportion of the yeast and mouse genomes are spanned by NPS. Despite their markedly different sizes, roughly equivalent proportions (19-21%) of the genomes lie within period-10 spans of the NPS dinucleotides {AA, TT, TA}. The biological significance of these regions remains to be demonstrated. To facilitate this, the genomic coordinates are available as Additional files 1, 2, and 3 in a format suitable for visualisation as tracks on popular genome browsers. Reviewers This article was reviewed by Prof Tomas Radivoyevitch, Dr Vsevolod Makeev (nominated by Dr Mikhail Gelfand), and Dr Rob D Knight. PMID:21527008

  17. DNA fragment analysis by an affordable multiple-channel capillary electrophoresis system.

    PubMed

    Liu, Ming S; Amirkhanian, Varouj D

    2003-01-01

    We are demonstrating a cost-effective multichannel capillary electrophoresis system for a high-efficiency double-stranded DNA (dsDNA) fragments analysis. This bench-type high-performance DNA analysis (HDA) system uses fluorescence-type detection with inexpensive solid-state light sources and nonmoving integrated emission collection micro-optics. DNA samples are analyzed simultaneously by using a multiple usage and disposable multicapillary cartridge, which contains integrated capillary channels, optical fibers and an integrated sieving gel reservoir. Using commercially available dsDNA size markers as indicators, the HDA system provides high resolving power in 7 min separations. The system can hold a total of 192 samples in two 96-well polymerase chain reaction (PCR) plates, which can be automatically analyzed within 2.5 h. This affordable system can be used in laboratories to replace slab gel electrophoresis for routine and high-throughput dsDNA analysis. PMID:12652577

  18. Analysis of different DNA fragments of Corynebacterium glutamicum complementing dapE of Escherichia coli.

    PubMed

    Wehrmann, A; Eggeling, L; Sahm, H

    1994-12-01

    In Corynebacterium glutamicum L-lysine is synthesized simultaneously via the succinylase and dehydrogenase variant of the diaminopimelate pathway. Starting from a strain with a disrupted dehydrogenase gene, three different-sized DNA fragments were isolated which complemented defective Escherichia coli mutants in the succinylase pathway. Enzyme studies revealed that in one case the dehydrogenase gene had apparently been reconstituted in the heterologous host. The two other fragments resulted in desuccinylase activity; one of them additionally in succinylase activity. However, the physical analysis showed that structural changes had taken place in all fragments. Using a probe derived from one of the fragments we isolated a 3.4 kb BamHI DNA fragment without selective pressure (by colony hybridization). This was structurally intact and proved functionally to result in tenfold desuccinylase overexpression. The nucleotide sequence of a 1966 bp fragment revealed the presence of one truncated open reading frame of unknown function and that of dapE encoding N-succinyl diaminopimelate desuccinylase (EC 3.5.1.18). The deduced amino acid sequence of the dapE gene product shares 23% identical residues with that from E. coli. The C. glutamicum gene now available is the first gene from the succinylase branch of lysine synthesis of this biotechnologically important organism. PMID:7881553

  19. Real-time restriction mapping of DNA stretched in nanofluidic devices

    NASA Astrophysics Data System (ADS)

    Riehn, Robert; Lu, Manchun

    2005-03-01

    We present real-time sequence-specific restriction mapping of single DNA molecules stretched in nanofabricated channels. In these channels, DNA is linearized and extended to up to 3/4 of its contour length, permitting attribution of the cutting sites to specific regions in the genetic code. We will present real-time restriction of genomic viral DNA with the enzymes Sma I, Sac I, Kpn I. We are able to determine cutting sites and can quantify the cutting rates at different genomic locations. Complete digestion can be achieved within less than 10 seconds. Our device operates in a quasi-continous mode, which we achieved by controlling the concetration of the necessary co-factor Mg^2+ throughout the mixed micro- and nanofluidic device. DNA was observed using fluorescence micrcoscopy and intercalating DNA stains.

  20. A WHEAT DNA FRAGMENT EXHIBITS REDUCED POLLEN TRANSMISSION IN TRANSGENIC MAIZE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An 8.2 kb fragment of wheat genomic DNA containing the Glu1-Dx5 gene has been transferred to maize using biolistic transformation. The Glu1-Dx5 gene encodes the 1Dx5 high molecular weight glutenin subunit, a seed storage protein associated with good bread making properties. The transgenic maize plan...

  1. Mitochondrial DNA Fragmentation to Monitor Processing Parameters in High Acid, Plant-Derived Foods.

    PubMed

    Caldwell, Jane M; Pérez-Díaz, Ilenys M; Harris, Keith; Hassan, Hosni M; Simunovic, Josip; Sandeep, K P

    2015-12-01

    Mitochondrial DNA (mtDNA) fragmentation was assessed in acidified foods. Using quantitative polymerase chain reaction, Ct values measured from fresh, fermented, pasteurized, and stored cucumber mtDNA were determined to be significantly different (P > 0.05) based on processing and shelf-life. This indicated that the combination of lower temperature thermal processes (hot-fill at 75 °C for 15 min) and acidified conditions (pH = 3.8) was sufficient to cause mtDNA fragmentation. In studies modeling high acid juices, pasteurization (96 °C, 0 to 24 min) of tomato serum produced Ct values which had high correlation to time-temperature treatment. Primers producing longer amplicons (approximately 1 kb) targeting the same mitochondrial gene gave greater sensitivity in correlating time-temperature treatments to Ct values. Lab-scale pasteurization studies using Ct values derived from the longer amplicon differentiated between heat treatments of tomato serum (95 °C for <2 min). MtDNA fragmentation was shown to be a potential new tool to characterize low temperature (<100 °C) high acid processes (pH < 4.6), nonthermal processes such as vegetable fermentation and holding times of acidified, plant-derived products. PMID:26556214

  2. Highlights of the DNA cutters: a short history of the restriction enzymes

    PubMed Central

    Loenen, Wil A. M.; Dryden, David T. F.; Raleigh, Elisabeth A.; Wilson, Geoffrey G.; Murray, Noreen E.

    2014-01-01

    In the early 1950’s, ‘host-controlled variation in bacterial viruses’ was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine. PMID:24141096

  3. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments

    PubMed Central

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-01-01

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp. PMID:24019490

  4. Replication of origin containing adenovirus DNA fragments that do not carry the terminal protein.

    PubMed Central

    van Bergen, B G; van der Ley, P A; van Driel, W; van Mansfeld, A D; van der Vliet, P C

    1983-01-01

    Nuclear extracts from adenovirus type 5 (Ad5) infected HeLa cells were used to study the template requirements for adenovirus DNA replication in vitro. When XbaI digested Ad5 DNA, containing the parental terminal protein (TP), was used as a template preferential synthesis of the terminal fragments was observed. The newly synthesized DNA was covalently bound to the 82 kD preterminal protein (pTP). Plasmid DNAs containing the Ad2 origin sequence or the Ad12 origin sequence with small deletions were analyzed for their capacity to support pTP-primed DNA replication. Circular plasmid DNAs were inactive. When plasmids were linearized to expose the adenovirus origin, both Ad2 and Ad12 TP-free fragments could support initiation and elongation similarly as Ad5 DNA-TP, although with lower efficiency. These observations indicate that the parental terminal protein is dispensable for initiation in vitro. The presence of 29 nucleotides ahead of the molecular end or a deletion of 14 base pairs extending into the conserved sequence (9-22) destroyed the template activity. DNA with a large deletion within the first 8 base pairs could still support replication while a small deletion could not. The results suggest that only G residues at a distance of 4-8 nucleotides from the start of the conserved sequence can be used as template during initiation of DNA replication. Images PMID:6300787

  5. Types, Causes, Detection and Repair of DNA Fragmentation in Animal and Human Sperm Cells

    PubMed Central

    González-Marín, Clara; Gosálvez, Jaime; Roy, Rosa

    2012-01-01

    Concentration, motility and morphology are parameters commonly used to determine the fertilization potential of an ejaculate. These parameters give a general view on the quality of sperm but do not provide information about one of the most important components of the reproductive outcome: DNA. Either single or double DNA strand breaks can set the difference between fertile and infertile males. Sperm DNA fragmentation can be caused by intrinsic factors like abortive apoptosis, deficiencies in recombination, protamine imbalances or oxidative stress. Damage can also occur due to extrinsic factors such as storage temperatures, extenders, handling conditions, time after ejaculation, infections and reaction to medicines or post-testicular oxidative stress, among others. Two singular characteristics differentiate sperm from somatic cells: Protamination and absence of DNA repair. DNA repair in sperm is terminated as transcription and translation stops post-spermiogenesis, so these cells have no mechanism to repair the damage occurred during their transit through the epididymis and post-ejaculation. Oocytes and early embryos have been shown to repair sperm DNA damage, so the effect of sperm DNA fragmentation depends on the combined effects of sperm chromatin damage and the capacity of the oocyte to repair it. In this contribution we review some of these issues. PMID:23203048

  6. Cloning a selected fragment from a human DNA 'fingerprint': isolation of an extremely polymorphic minisatellite.

    PubMed Central

    Wong, Z; Wilson, V; Jeffreys, A J; Thein, S L

    1986-01-01

    A large hypervariable DNA fragment from a human DNA fingerprint was purified by preparative gel electrophoresis and molecular cloning. The cloned fragment contained a 6.3 kb long minisatellite consisting of multiple copies of a 37 bp repeat unit. Each repeat contained an 11 bp copy of the "core" sequences, a putative recombination signal in human DNA. The cloned minisatellite hybridized to a single locus in the human genome. This locus is extremely polymorphic, with at least 77 different alleles containing 14 to 525 repeat units per allele being resolved in a sample of 79 individuals. All alleles except the shortest are rare and the resulting heterozygosity is very high (approximately 97%). Cloned minisatellites should therefore provide a panel of extremely informative locus-specific probes ideal for linkage analysis in man. Images PMID:2423969

  7. Correlation between induction of DNA fragmentation in lung cells from rats and humans and carcinogenic activity.

    PubMed

    Robbiano, Luigi; Baroni, Debora; Novello, Luca; Brambilla, Giovanni

    2006-06-16

    Six chemicals, known to induce lung tumors in rats, were examined for their ability to induce DNA fragmentation in primary cultures of rat and human lung cells, and in the lung of intact rats. Significant dose-dependent increases in the frequency of DNA single-strand breaks and alkali-labile sites, as measured by the single-cell gel electrophoresis (Comet) assay, were obtained in primary lung cells from male rats with the following, minimally toxic, concentrations of the six test compounds: N-nitrosodimethylamine (NDMA; 2.5-10 mM), hydrazine (HZ; 0.5-4 mM), cadmium sulfate (CD; 31.2 and 62.5 μM), 4,4'-methylene bis (2-chloroaniline) (MOCA; 31.2-125 μM), isobutyl nitrite (IBN; 7.8-31.2 μM) and tetranitromethane (TNM; 1.9-15.6 μM). Similar degrees of DNA fragmentation were obtained in primary human lung cells; however, due to inter-donor differences, the minimum effective concentrations were in some donors lower and in others higher than in rats, and IBN induced DNA damage only in one of three donors. The DNA-damaging potency of HZ was higher in rats than in humans, and the opposite was true for MOCA. In agreement with these findings, statistically significant increases in the average frequency of DNA breaks were obtained in the lung of rats given a single oral dose (1/2 LD50) of the six test compounds. These findings give evidence that genotoxic lung carcinogens may be identified by use of the DNA fragmentation/Comet assay on rat lung cells as targets cells, and show that the six compounds tested produce in primary cultures of lung cells from human donors DNA-damaging effects substantially similar to those observed in rats. PMID:16690349

  8. Linear induction of DNA double-strand breakage with X-ray dose, as determined from DNA fragment size distribution

    SciTech Connect

    Erixon, K.; Cedervall, B.

    1995-05-01

    Pulsed-field gel electrophoresis has been applied to separate DNA from mouse L1210 cells exposed to X-ray doses of 1 to 50 Gy. Simultaneous separation of marker chromosomes in the range 0.1 to 12.6 Mbp allowed calculation of the size distribution of the radiation-induced fragments. The distribution was consistent with a random induction of double-strand breaks (DSBs). A theoretical relationship between the size distribution of such fragments and the average number of induced breaks was used to calculate the yield and dose response. The DNA distribution was determined by both radiolabeling and fluorescence staining. Two independent methods were use to evaluate the radiation-induced yield of DSBs, both assuming that all DNA is broken at random. In the first method we compared the theoretical and experimental fraction of DNA that is below a given size limit. By this method we estimated the yield to be 0.006-0.007 DSB/GY per million base pairs using the radiolabel and 0.004-0.008 DSB/Gy per million base pairs by fluorescence staining. The dose response was linear in both cases. In the second method we looked only at the size distribution in the resolving part of the gel and compared it to the theoretical distribution. By this method a value of approximately 0.012 DSB/Gy/Mb was found, using fluorescence as a measure of DNA distribution. In a normal diploid mammalian genome of size 60000 Mbp, this is equivalent to a yield of 25-50 DSBs/Gy or 70 DSBs/GY, respectively. The second approach, which looks only at the smaller fragments, may overestimate the yield, while the first approach suffers from uncertainties about the fraction of DNA irreversibly trapped in the well. The assay has the capacity to detect a dose of less than 1 Gy. 58 refs., 10 figs.

  9. Synthesis, integration, and restriction and modification of mycoplasma virus L2 DNA

    SciTech Connect

    Dybvig, K.

    1981-01-01

    Mycoplasma virus L2 is an enveloped, nonlytic virus containing double-stranded, superhelical DNA. The L2 virion contains about 7 to 8 major proteins identified by SDS-polyacrylamide gel electrophoresis, but the virion has no discernible capsid structure. It has been suggested that the L2 virion is a DNA-protein condensation surrounded by a lipid-protein membrane. The host for mycoplasma virus L2 is Acholeplasma laidlawii. A. laidlawii has no cell wall and contains a small genome, 1 x 10/sup 9/ daltons, which is two to three times smaller than that of most bacteria. Infection of A. laidlawii by L2 is nonlytic. The studies in this thesis show that L2 DNA synthesis begins at about 1 hour of infection and lasts throughout the infection. Viral DNA synthesis is inhibited by chloramphenicol, streptomycin, and novobiocin. Packaging of L2 DNA into progeny virus is also inhibited by chloramphenicol and novobiocin. It is concluded that protein synthesis and probably DNA gyrase activity are required for L2 DNA synthesis, and for packaging of L2 DNA into progeny virus. DNA-DNA hybridization studies demonstrate that L2 DNA integrates into the host cell during infection, and subsequent to infection the cells are mycoplasma virus L2 lysogens. The viral site of integration has been roughly mapped. L2 virus is restricted and modified by A. laidlawii strains JA1 and K2. The nature of the modification in strain K2 has been elucidated. Two L2 variants containing insertions in the viral DNA were identified in these studies. Restriction endonuclease cleavage maps of these variants have been determined. DNA from L2 and another isolate of L2, MV-Lg-L 172, are compared in these studies. 74 references, 33 figures, 6 tables. (ACR)

  10. A sequence-specific DNA glycosylase mediates restriction-modification in Pyrococcus abyssi.

    PubMed

    Miyazono, Ken-ichi; Furuta, Yoshikazu; Watanabe-Matsui, Miki; Miyakawa, Takuya; Ito, Tomoko; Kobayashi, Ichizo; Tanokura, Masaru

    2014-01-01

    Restriction-modification systems consist of genes that encode a restriction enzyme and a cognate methyltransferase. Thus far, it was believed that restriction enzymes are sequence-specific endonucleases that introduce double-strand breaks at specific sites by catalysing the cleavages of phosphodiester bonds. Here we report that based on the crystal structure and enzymatic activity, one of the restriction enzymes, R.PabI, is not an endonuclease but a sequence-specific adenine DNA glycosylase. The structure of the R.PabI-DNA complex shows that R.PabI unwinds DNA at a 5'-GTAC-3' site and flips the guanine and adenine bases out of the DNA helix to recognize the sequence. R.PabI catalyses the hydrolysis of the N-glycosidic bond between the adenine base and the sugar in the DNA and produces two opposing apurinic/apyrimidinic (AP) sites. The opposing AP sites are cleaved by heat-promoted ? elimination and/or by endogenous AP endonucleases of host cells to introduce a double-strand break. PMID:24458096

  11. Rescue of infectious virus from permissive monkey cells containing simian virus 40 DNA fragments.

    PubMed Central

    Moyer, R C; Moyer, M P; Gerodetti, M H

    1978-01-01

    Permissive TC7 cells were separately transfected with simian virus 40 (SV40) EcoRI/Hap II A (74% genome) DNA fragments and EcoRI/Hap II B (26% genome) DNA fragments in the presence of DEAE-dextran. Fusion of the progeny of recipient cells receiving the A fragment, TC7 (SV40/74) cells, with TC7 (SV40/26) cells, which had received the B fragment, resulted in SV40 rescue. TC7 (SV40/74 + 26) cells, which had simultaneously received both complementary subgenomes, either spontaneously produced SV40 upon subculture or yielded virus upon treatment with iododeoxyuridine. In addition, fusion of rat cells containing the EcoRI/Hap II A fragment with TC7 (SV40/26) cells resulted in SV40 rescue. Cytopathology, V-antigen production, neutralization, and electron microscopy were parameters used to verify that the rescued virus was SV40. No infectious virus was produced when the combinations of cells fused did not total a complete SV40 genome equivalent. PMID:207888

  12. Modelization of DNA fragmentation induced in human fibroblasts by Fe-56 ions

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Belli, M.; Campa, A.; Esposito, G.; Friedland, W.; Ottolenghi, A.; Paretzke, H.

    DNA double-strand breaks DSB are widely recognized as cellular critical lesions in the pathways leading from initial energy deposition by radiation to the formation of relevant biological endpoints such as gene mutations chromosome aberrations and cell death Chromatin conformation and radiation track structure are expected to have a strong influence on the spatial modulation of DSB induction at the scale of the nucleosome i e 100 base pairs bp and of the low-level chromatin fiber organization i e 1 kbp At larger scales the DNA fragmentation pattern induced by sparsely ionizing radiation approaches a scenario resulting from a random distribution of DSB However the pattern induced by high-LET irradiation can lead to deviation from randomness also at these scales This feature can have important biological consequences since spatial correlation of DSB is thought to affect their reparability Therefore studies on fragment size distributions induced by radiations of various qualities can help to link the physical characteristics of radiation with the cellular endpoints This is an important issue for understanding the main mechanisms of cell damage induced by HZE particles In this work we have compared the pattern of DNA fragmentation in the range 1-5700 kbp induced in human fibroblasts by gamma -rays with that induced by high-energy Fe-ions which have biological significance for radiation protection issues during long term astronauts travels The study has taken into account the comparison of the experimental fragmentation spectra

  13. Screening for JH1 genetic defect carriers in Jersey cattle by a polymerase chain reaction and restriction fragment length polymorphism assay.

    PubMed

    Zhang, Yi; Guo, Gang; Huang, Hetian; Lu, Lu; Wang, Lijie; Fang, Lingzhao; Liu, Lin; Wang, Yachun; Zhang, Shengli

    2015-09-01

    An autosomal recessive genetic defect termed JH1 has been associated with early embryonic loss in the Jersey cattle breed. The genetic basis has been identified as a cytosine to thymine mutation in the CWC15 gene that changes an amino acid from arginine to a stop code. To screen for JH1 carriers in an imported Jersey population in China, a method based on a polymerase chain reaction amplification followed by a restriction fragment length polymorphism assay (PCR-RFLP) was developed for the accurate diagnosis of the JH1 allele. A total of 449 randomly chosen cows were examined with the PCR-RFLP assay, and 31 were identified as JH1 carriers, corresponding to a carrier frequency of 6.9%. The PCR-RFLP method was validated by DNA sequencing of 8 positive and 13 negative samples, with all 21 samples giving the expected DNA sequence. In addition, 3 negative and 3 positive samples were confirmed by a commercial microarray-based single nucleotide polymorphism assay. Finally, samples from 9 bulls in the United States of known status were correctly identified as carriers (5 bulls) or noncarriers (4 bulls). As the JH1 defect has most likely spread worldwide, implementing routine screening is necessary to avoid the risk of carrier-to-carrier matings and to gradually eradicate the deleterious gene. PMID:26179100

  14. Giardia duodenalis in Damascus, Syria: Identification of Giardia genotypes in a sample of human fecal isolates using polymerase chain reaction and restriction fragment length polymorphism analyzing method.

    PubMed

    Skhal, Dania; Aboualchamat, Ghalia; Al Nahhas, Samar

    2016-02-01

    Giardia duodenalis is a common gastrointestinal parasite that infects humans and many other mammals. It is most prevalent in many developing and industrialized countries. G. duodenalis is considered to be a complex species. While no morphological distinction among different assemblages exist, it can be genetically differentiated into eight major assemblages: A to H. The aim of this study was to determine the genetic heterogeneity of G. duodenalis in human isolates (a study conducted for the first time in Syria). 40 fecal samples were collected from three different hospitals during the hot summer season of 2014. Extraction of genomic DNA from all Giardia positive samples (based on a microscopic examination) was performed using QIAamp DNA Stool Mini Kit. β-giardin gene was used to differentiate between different Giardia assemblages. The 514 bp fragment was amplified using the Polymerase Chain Reaction method, followed by digestion in HaeIII restriction enzyme. Our result showed that genotype A was more frequent than genotype B, 27/40 (67.5%); 4/40 (10%) respectively. A mixed genotype of A+B was only detected in 9 isolates (22.5%). This is the first molecular study performed on G. duodenalis isolates in Syria in order to discriminate among the different genotypes. Further expanded studies using more genes are needed to detect and identify the Giardia parasite at the level of assemblage and sub-assemblage. PMID:26524628

  15. Analysis of the bacterial diversity existing on animal hide and wool: development of a preliminary PCR-restriction fragment length polymorphism fingerprint database for identifying isolates.

    PubMed

    Chen, Yu; Gao, Hongwei; Zhang, Yanming; Deng, Mingjun; Wu, Zhenxing; Zhu, Laihua; Duan, Qing; Xu, Biao; Liang, Chengzhu; Yue, Zhiqin; Xiao, Xizhi

    2012-01-01

    Twenty-one bacterial strains were isolated from imported cattle hide and rabbit wool using two types of media, nutrient broth, and nutrient broth with serum. The bacteria identified were Brevibacillus laterosporus, Leclercia adecarboxylata, Peptococcus niger, Bacillus circulans, Raoultella ornithinolytica, Bacillus subtilis, Bacillus cereus, Bacillus thermobacillus, Bacillus choshinensis, Bacillus sphaericus, Acinetobacter haemolyticus, Sphingomonas paucimobilis, Bacillus thuringiensis, Staphylococcus intermedius, Mycobacteria, Moraxella, Klebsiella pneumoniae, Ralstonia pickettii, Staphylococcus chromogenes, Comamonas testosteroni, and Cupriavidus pauculus. The 16s rDNA gene of each bacterium was amplified using the universal primers 27f and 1492r. The amplicons were digested with AvaI, BamHI, BgII, DraI, EcoRI, EcoRV, HindIII, HinfI, HpaI, PstI, SmaI, TaqII, XbaI, XmaI, AluI, XhoI, and PvuI individually. A specific fingerprint from the PCR-restriction fragment length polymorphism method based on 16s rDNA was obtained for each bacterium. The results showed that the method developed was useful not only for bacterial identification but also for the etiological investigation of pathogens in imported animal hair and wool. PMID:23451394

  16. Restricted infectivity of ecotropic type C retroviruses in mouse teratocarcinoma cells: studies on viral DNA intermediates

    SciTech Connect

    Yang, W.K.; d'Auriol, L.; Yang, D.M.; Kiggans, J.O. Jr.; Ou, C.; Peries, J.; Emanoil-Ravicovitch, R.

    1980-01-01

    Replication of Gross strain N-tropic type C retrovirus was markedly restricted in a pluripotential undifferentiated embryonal cell line (PCC/sub 4/) of murine teratocarcinoma, whereas the same virus could cause productive infection in a myoblast-derived differentiated line (PCD/sub 1/) of the same tumor origin. To investigate the restriction mechanism, we compared the initial viral DNA formation in these two cell lines. Analyses by means of a modified Hirt extraction procedure and a modified Southern gel transfer method indicated that PCC/sub 4/ and PCD/sub 1/ cells supported the synthesis of viral DNA intermediates after inoculation of the Gross virus. In both cells a linear DNA duplex (form III viral DNA) appeared at 4 h, reached a maximal level at 8 to 9 h, and declined rapidly thereafter, while two closed-circular supercoiled DNA duplexes (form I viral DNA) showed their appearance, increase and decline in the 8 to 24 h period. During the period from 34 to 78 h after virus inoculation, another burst of viral DNA synthesis occurred in PCD/sub 1/ cells, presumably due to secondary virus infection, while at this period both form III and form I viral DNAs became undetectable in PCC/sub 4/ cells. The Hirt supernatant DNAs prepared from PCD/sub 1/ and PCC/sub 4/ cells 10 h after virus inoculation were equally infectious for NIH3T3 cells in a DNA transfection assay. Both PCD/sub 1/ and PCC/sub 4/ cells were very poor recipients for DNA transfection, although one positive result with PCD/sub 1/ cells might suggest a difference between the two cell types in this aspect. These results indicate that restriction of type C retrovirus in undifferentiated embryonal carcinoma cells occurs at a step subsequent to formation and maturation of viral DNA intermediates.

  17. Practical identification of human originated Lactobacillus species by amplified ribosomal DNA restriction analysis (ARDRA) for probiotic use.

    PubMed

    Öztürk, Mehmet; Meterelliyöz, Merve

    2015-08-01

    Probiotics are gaining popularity and increasing the importance of their accurate speciation. Lactobacillus species are commonly used as probiotic strains mostly of clinical importance. Present knowledge indicates that at least 14 Lactobacillus species are associated with the human intestinal tract. Currently, researchers are interested in developing efficient techniques for screening and selecting probiotics bacteria, but unfortunately most of these methods are time-consuming, labor-intensive and costly. The aim of this study is to develop reliable, rapid and accurate method to identify 14 references Lactobacillus species that could have been found in the human alimentary tract by 16S ribosomal DNA restriction analysis. In this study, to develop an effective method for the genotype-based identification of the reference Lactobacillus species, 1.5 kb of 16S rRNA nucleotide sequences of 14 Lactobacillus were collected from the Gene Bank aligned, in silico restricted and analyzed in respect to their 16S-rRNA restriction fragment polymorphism. In silico restriction profiles of 16S-rRNA indicated that FspBI, HinfI and DraI restriction enzymes (RE) are convenient for differentiation of 14 Lactobacillus species in human intestinal tract except Lb. casei and Lb. paracasei. The patterns of our experimental findings obtained from 16S PCR-ARDRA completely confirmed our in silico patterns. The present work demonstrated that 16S PCR-ARDRA method with FspBI, HinfI and DraI RE is a rapid, accurate and reliable method for the identification of Lactobacillus species from human alimentary tract, especially during the identification of large numbers of isolates and any laboratory equipped with a thermo cycler for probiotic use. PMID:25860079

  18. A restriction enzyme-powered autonomous DNA walking machine: its application for a highly sensitive electrochemiluminescence assay of DNA

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2014-12-01

    The construction of a restriction enzyme (Nt.AlwI)-powered DNA walking machine and its application for highly sensitive detection of DNA are described. DNA nanostructure tracks containing four overhang sequences with electrochemiluminescence (ECL) labels and complementary to the walker (target DNA) are self-assembled on the sensing electrode. The walker hybridizes with the complementary sequences on the tracks and forms specific recognition sites for Nt.AlwI, which cleaves the overhang sequences, releases the ECL labels and enables directional movement of the walker along the tracks. The formation of the nanostructure tracks and the Nt.AlwI-assisted cleavage of the overhang sequences in the presence of the walker are verified by using polyacrylamide gel electrophoresis analysis and cyclic voltammetry. The successive movement of the walker on the nanostructure tracks leads to continuous removal of massive ECL labels from the sensing electrode, which results in a significantly amplified suppression of the ECL emission for highly sensitive detection of sequence-specific DNA down to 0.19 pM. Results show that this DNA walking machine can also offer single-base mismatch discrimination capability. The successful application of the DNA walking machine for sequence-specific DNA detection can thus offer new opportunities for molecular machines in biosensing applications.The construction of a restriction enzyme (Nt.AlwI)-powered DNA walking machine and its application for highly sensitive detection of DNA are described. DNA nanostructure tracks containing four overhang sequences with electrochemiluminescence (ECL) labels and complementary to the walker (target DNA) are self-assembled on the sensing electrode. The walker hybridizes with the complementary sequences on the tracks and forms specific recognition sites for Nt.AlwI, which cleaves the overhang sequences, releases the ECL labels and enables directional movement of the walker along the tracks. The formation of the nanostructure tracks and the Nt.AlwI-assisted cleavage of the overhang sequences in the presence of the walker are verified by using polyacrylamide gel electrophoresis analysis and cyclic voltammetry. The successive movement of the walker on the nanostructure tracks leads to continuous removal of massive ECL labels from the sensing electrode, which results in a significantly amplified suppression of the ECL emission for highly sensitive detection of sequence-specific DNA down to 0.19 pM. Results show that this DNA walking machine can also offer single-base mismatch discrimination capability. The successful application of the DNA walking machine for sequence-specific DNA detection can thus offer new opportunities for molecular machines in biosensing applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05387g

  19. A cost for high levels of sperm competition in rodents: increased sperm DNA fragmentation.

    PubMed

    delBarco-Trillo, Javier; García-Álvarez, Olga; Soler, Ana Josefa; Tourmente, Maximiliano; Garde, José Julián; Roldan, Eduardo R S

    2016-03-16

    Sperm competition, a prevalent evolutionary process in which the spermatozoa of two or more males compete for the fertilization of the same ovum, leads to morphological and physiological adaptations, including increases in energetic metabolism that may serve to propel sperm faster but that may have negative effects on DNA integrity. Sperm DNA damage is associated with reduced rates of fertilization, embryo and fetal loss, offspring mortality, and mutations leading to genetic disease. We tested whether high levels of sperm competition affect sperm DNA integrity. We evaluated sperm DNA integrity in 18 species of rodents that differ in their levels of sperm competition using the sperm chromatin structure assay. DNA integrity was assessed upon sperm collection, in response to incubation under capacitating or non-capacitating conditions, and after exposure to physical and chemical stressors. Sperm DNA was very resistant to physical and chemical stressors, whereas incubation in non-capacitating and capacitating conditions resulted in only a small increase in sperm DNA damage. Importantly, levels of sperm competition were positively associated with sperm DNA fragmentation across rodent species. This is the first evidence showing that high levels of sperm competition lead to an important cost in the form of increased sperm DNA damage. PMID:26936246

  20. Relationship between phospholipase C zeta immunoreactivity and DNA fragmentation and oxidation in human sperm

    PubMed Central

    Park, Ju Hee; Kim, Seul Ki; Kim, Jayeon; Kim, Ji Hee; Chang, Jae Hoon; Kim, Seok Hyun

    2015-01-01

    Objective The study aimed to evaluate the feasibility and reproducibility of measuring phospholipase C zeta (PLCζ) using immunostaining in human sperm and to investigate the relationship between PLCζ immunoreactivity and DNA fragmentation and oxidation in human sperm. Methods Semen samples were obtained from participants (n=44) and processed by the conventional swim-up method. Sperm concentration, motility, normal form by strict morphology, DNA fragmentation index assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling method and immunofluorescent expression for 8-hydroxy-2'-deoxyguanosine (8-OHdG) and PLCζ were assessed. Results When duplicate PLCζ tests were performed on two sperm samples from each of the 44 participants, similar results were obtained (74.1±9.4% vs. 75.4±9.7%). Two measurements of PLCζ were found to be highly correlated with each other (r=0.759, P<0.001). Immunoreactivity of PLCζ was not associated with donor's age, sperm concentration, motility, and the percentage of normal form as well as DNA fragmentation index. However, immunoreactivity of PLCζ showed a significant negative relationship with 8-OHdG immunoreactivity (r=-0.404, P=0.009). Conclusion Measurement of PLCζ by immunostaining is feasible and reproducible. Lower expression of PLCζ in human sperm may be associated with higher sperm DNA oxidation status. PMID:26023673

  1. Cloning and characterization of an apoptosis-related DNA fragmentation factor (DFF) from oyster, Crassostrea hongkongensis.

    PubMed

    Xiang, Zhiming; Qu, Fufa; Qi, Lin; Ying, Tong; Li, Jun; Shu, Xiao; Yu, Ziniu

    2014-05-01

    Apoptosis plays an important pathophysiological role in the homeostasis of immune systems. DNA fragmentation factors (DFFs) have been shown to be essential for DNA fragmentation, and the resultant DNA fragments follow a laddering pattern during apoptosis in vertebrates. In invertebrates, the functions of the DFF orthologs are not well characterized; therefore, we cloned and characterized a bivalve DFFA ortholog from the Hong Kong oyster Crassostrea hongkongensis (designated ChDFFA). The full-length cDNA of ChDFFA is 1186 bp in length and encodes a putative protein of 200 amino acids that contains an N-terminal CAD domain and a DFF-C domain at its C-terminus. Real-time RT-PCR results showed that ChDFFA is ubiquitously expressed in several tissues, and its highest expression is in gill. Following a 3- to 48-h challenge by microbial infection, the expression of ChDFFA increased in hemocytes. Using fluorescence microscopy, ChDFFA was localized in nuclei when exogenously expressed in HeLa cells. In addition, over-expression of ChDFFA inhibited the transcriptional activities of p53/p21-Luc reporter genes in HEK293T cells. These results suggest that ChDFFA may be involved in immune response reactions in the Hong Kong oyster C. hongkongensis. PMID:24642253

  2. Human Sperm DNA Fragmentation and its Correlation with Conventional Semen Parameters

    PubMed Central

    Evgeni, Evangelini; Charalabopoulos, Konstantinos; Asimakopoulos, Byron

    2014-01-01

    Background The initial step in the diagnostic investigation of male infertility has been traditionally based on the conventional seminal profile. However, there are significant limitations regarding its ability to determine the underlying mechanisms that cause the disorder. Sperm DNA fragmentation has emerged as a potential causative factor of reproductive failure and its assessment has been suggested as a useful adjunct to the laboratory methodology of male infertility evaluation, especially before the application of assisted reproduction technology (ART). Methods A review of recent bibliography was carried out in PubMed by the use of relevant keywords, in order to evaluate the possible correlation between the conventional seminal parameters and sperm DNA fragmentation assessment as diagnostic tools in male infertility evaluation. Results A comprehensive diagnostic approach of male infertility should be based on a combination of diagnostic attributes, derived from the conventional semen analysis, as well as the investigation of genomic integrity testing. Conclusion Due to its strong correlation with several aspects of ART procedures and further consequences for the offspring, sperm DNA fragmentation is a parameter worth integrating in routine clinical practice. However, additional large scale studies focusing on specific subgroups of infertile men who may benefit from an efficient therapeutic management based on the optimization of sperm DNA integrity are needed. PMID:24696791

  3. Analyzing the forces binding a restriction endonuclease to DNA using a synthetic nanopore

    PubMed Central

    Dorvel, B.; Sigalov, G.; Zhao, Q.; Comer, J.; Dimitrov, V.; Mirsaidov, U.; Aksimentiev, A.; Timp, G.

    2009-01-01

    Restriction endonucleases are used prevalently in recombinant DNA technology because they bind so stably to a specific target sequence and, in the presence of cofactors, cleave double-helical DNA specifically at a target sequence at a high rate. Using synthetic nanopores along with molecular dynamics (MD), we have analyzed with atomic resolution how a prototypical restriction endonuclease, EcoRI, binds to the DNA target sequence—GAATTC—in the absence of a Mg2+ ion cofactor. We have previously shown that there is a voltage threshold for permeation of DNA bound to restriction enzymes through a nanopore that is associated with a nanonewton force required to rupture the complex. By introducing mutations in the DNA, we now show that this threshold depends on the recognition sequence and scales linearly with the dissociation energy, independent of the pore geometry. To predict the effect of mutation in a base pair on the free energy of dissociation, MD is used to qualitatively rank the stability of bonds in the EcoRI–DNA complex. We find that the second base in the target sequence exhibits the strongest binding to the protein, followed by the third and first bases, with even the flanking sequence affecting the binding, corroborating our experiments. PMID:19433506

  4. HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism

    PubMed Central

    Conrad, E; Polonio-Vallon, T; Meister, M; Matt, S; Bitomsky, N; Herbel, C; Liebl, M; Greiner, V; Kriznik, B; Schumacher, S; Krieghoff-Henning, E; Hofmann, T G

    2016-01-01

    Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response. PMID:26113041

  5. Recombination by resolvase to analyse DNA communications by the SfiI restriction endonuclease.

    PubMed Central

    Szczelkun, M D; Halford, S E

    1996-01-01

    The SfiI endonuclease differs from other type II restriction enzymes by cleaving DNA concertedly at two copies of its recognition site, its optimal activity being with two sites on the same DNA molecule. The nature of this communication event between distant DNA sites was analysed on plasmids with recognition sites for SfiI interspersed with recombination sites for resolvase. These were converted by resolvase to catenanes carrying one SfiI site on each ring. The catenanes were cleaved by SfiI almost as readily as a single ring with two sites, in contrast to the slow reactions on DNA rings with one SfiI site. Interactions between SfiI sites on the same DNA therefore cannot follow the DNA contour and, instead, must stem from their physical proximity. In buffer lacking Mg2+, where SfiI is inactive while resolvase is active, the addition of SfiI to a plasmid with target sites for both proteins blocked recombination by resolvase, due to the restriction enzyme bridging its sites and thus isolating the sites for resolvase into separate loops. The extent of DNA looping by SfiI matched its extent of DNA cleavage in the presence of Mg2+. PMID:8635479

  6. HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism.

    PubMed

    Conrad, E; Polonio-Vallon, T; Meister, M; Matt, S; Bitomsky, N; Herbel, C; Liebl, M; Greiner, V; Kriznik, B; Schumacher, S; Krieghoff-Henning, E; Hofmann, T G

    2016-01-01

    Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response. PMID:26113041

  7. Restriction and sequence alterations affect DNA uptake sequence-dependent transformation in Neisseria meningitidis.

    PubMed

    Ambur, Ole Herman; Frye, Stephan A; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

    2012-01-01

    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID:22768309

  8. Restriction and Sequence Alterations Affect DNA Uptake Sequence-Dependent Transformation in Neisseria meningitidis

    PubMed Central

    Ambur, Ole Herman; Frye, Stephan A.; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

    2012-01-01

    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID:22768309

  9. Genomic-Based Restriction Enzyme Selection for Specific Detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP

    PubMed Central

    Mandakovic, Dinka; Glasner, Benjamín; Maldonado, Jonathan; Aravena, Pamela; González, Mauricio; Cambiazo, Verónica; Pulgar, Rodrigo

    2016-01-01

    The gram negative facultative bacterium P. salmonis is the etiological agent of Salmonid Rickettsial Septicaemia (SRS), a severe disease that causes important economic losses in the global salmon farmer industry. Despite efforts to control this disease, the high frequency of new epizootic events indicate that the vaccine and antibiotics treatments have limited effectiveness, therefore the preventive and diagnostic approaches must be improved. A comparison of several methodologies for SRS diagnostic indicate differences in their specificity and its capacity to detect other bacteria coexisting with P. salmonis in culture media (contamination) and fish samples (coinfection), aspects relevant for research, vaccine development and clinical diagnostic. By computer-simulation analyses, we identified a group of restriction enzymes that generate unique P. salmonis 16S rDNA band patterns, distinguishable from all other bacteria. From this information, we designed and developed a PCR-RFLP (Polymerase Chain Reaction—Restriction Fragment Length Polymorphism) assay, which was validated using 16S rDNA universal primers and restriction enzyme PmaCI for the amplification and digestion, respectively. Experimental validation was performed by comparing the restriction pattern of P. salmonis with the restriction patterns generated by bacteria that cohabit with P. salmonis (fish bacterial isolates and culture media contaminants). Our results indicate that the restriction enzyme selection pipeline was suitable to design a more specific, sensible, faster and cheaper assay than the currently used P. salmonis detection methodologies.

  10. Pregnancy prediction by free sperm DNA and sperm DNA fragmentation in semen specimens of IVF/ICSI-ET patients.

    PubMed

    Bounartzi, Theofania; Dafopoulos, Konstantinos; Anifandis, George; Messini, Christina I; Koutsonikou, Chrysoula; Kouris, Spyros; Satra, Maria; Sotiriou, Sotirios; Vamvakopoulos, Nicholas; Messinis, Ioannis E

    2016-04-01

    The purpose of this study was to evaluate the predictive value of free sperm plasma DNA (f-spDNA) and sperm DNA fragmentation (SDF), in semen specimens from men undergoing in vitro fertilization/intracytoplasmic sperm injection-embryo transfer (IVF/ICSI-ET) treatments. Fifty-five semen samples were evaluated during 55 consecutive IVF/ICSI-ET cycles. F-spDNA was determined by conventional quantitative real-time PCR-Sybr green detection approach, while evaluation of sperm DNA damage was performed using the sperm chromatin dispersion (SCD) assay. While f-spDNA only correlated with total sperm count, SDF correlated with many semen parameters (including sperm concentration, total sperm count and the per cent of non-progressive sperm). Neither SDF nor the proportion of sperm with small or no halos correlated with f-spDNA. Interestingly, smoking status correlated with f-spDNA but not with SDF. Although these two factors seem to interact for the prediction of pregnancy, receiver-operating characteristics (ROC) analysis revealed that SDF had a stronger predictive value (AUC = 0.7, p < 0.05) than f-spDNA (AUC = 0.6, p > 0.05). SDF and f-spDNA may not be associated together but they interact at a significant level in order to exert their actions on pregnancy outcome. Among the two markers, SDF appears to have stronger and significantly predictive value for pregnancy success. PMID:27006263

  11. Detection of Low-Abundance KRAS Mutations in Colorectal Cancer Using Microfluidic Capillary Electrophoresis-Based Restriction Fragment Length Polymorphism Method with Optimized Assay Conditions

    PubMed Central

    Ren, Hui; Xu, Zhangrun; Wang, Xiaonan; Shan, Lianfeng; Fang, Jin

    2013-01-01

    Constitutively active KRAS mutations have been found to be involved in various processes of cancer development, and render tumor cells resistant to EGFR-targeted therapies. Mutation detection methods with higher sensitivity will increase the possibility of choosing the correct individual therapy. Here, we established a highly sensitive and efficient microfluidic capillary electrophoresis-based restriction fragment length polymorphism (µCE-based RFLP) platform for low-abundance KRAS genotyping with the combination of µCE and RFLP techniques. By using our self-built sensitive laser induced fluorescence (LIF) detector and a new DNA intercalating dye YOYO-1, the separation conditions of µCE for ΦX174 HaeIII DNA marker were first optimized. Then, a Mav I digested 107-bp KRAS gene fragment was directly introduced into the microfluidic device and analyzed by µCE, in which field amplified sample stacking (FASS) technique was employed to obtain the enrichment of the RFLP digestion products and extremely improved the sensitivity. The accurate analysis of KRAS statuses in HT29, LS174T, CCL187, SW480, Clone A, and CX-1 colorectal cancer (CRC) cell lines by µCE-based RFLP were achieved in 5 min with picoliter-scale sample consumption, and as low as 0.01% of mutant KRAS could be identified from a large excess of wild-type genomic DNA (gDNA). In 98 paraffin-embedded CRC tissues, KRAS codon 12 mutations were discovered in 28 (28.6%), significantly higher than that obtained by direct sequencing (13, 13.3%). Clone sequencing confirmed these results and showed this system could detect at least 0.4% of the mutant KRAS in CRC tissue slides. Compared with direct sequencing, the new finding of the µCE-based RFLP platform was that KRAS mutations in codon 12 were correlated with the patient’s age. In conclusion, we established a sensitive, fast, and cost-effective screening method for KRAS mutations, and successfully detected low-abundance KRAS mutations in clinical samples, which will allow provision of more precise individualized cancer therapy. PMID:23355875

  12. DNA looping and translocation provide an optimal cleavage mechanism for the type III restriction enzymes

    PubMed Central

    Crampton, Neal; Roes, Stefanie; Dryden, David T F; Rao, Desirazu N; Edwardson, J Michael; Henderson, Robert M

    2007-01-01

    EcoP15I is a type III restriction enzyme that requires two recognition sites in a defined orientation separated by up to 3.5 kbp to efficiently cleave DNA. The mechanism through which site-bound EcoP15I enzymes communicate between the two sites is unclear. Here, we use atomic force microscopy to study EcoP15I–DNA pre-cleavage complexes. From the number and size distribution of loops formed, we conclude that the loops observed do not result from translocation, but are instead formed by a contact between site-bound EcoP15I and a nonspecific region of DNA. This conclusion is confirmed by a theoretical polymer model. It is further shown that translocation must play some role, because when translocation is blocked by a Lac repressor protein, DNA cleavage is similarly blocked. On the basis of these results, we present a model for restriction by type III restriction enzymes and highlight the similarities between this and other classes of restriction enzymes. PMID:17660745

  13. DNA fragmentation induced by Fe ions in human cells: shielding influence on spatially correlated damage

    NASA Technical Reports Server (NTRS)

    Antonelli, F.; Belli, M.; Campa, A.; Chatterjee, A.; Dini, V.; Esposito, G.; Rydberg, B.; Simone, G.; Tabocchini, M. A.

    2004-01-01

    Outside the magnetic field of the Earth, high energy heavy ions constitute a relevant part of the biologically significant dose to astronauts during the very long travels through space. The typical pattern of energy deposition in the matter by heavy ions on the microscopic scale is believed to produce spatially correlated damage in the DNA which is critical for radiobiological effects. We have investigated the influence of a lucite shielding on the initial production of very small DNA fragments in human fibroblasts irradiated with 1 GeV/u iron (Fe) ions. We also used gamma rays as reference radiation. Our results show: (1) a lower effect per incident ion when the shielding is used; (2) an higher DNA Double Strand Breaks (DSB) induction by Fe ions than by gamma rays in the size range 1-23 kbp; (3) a non-random DNA DSB induction by Fe ions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  14. Three dimensional imaging of DNA fragments during electrophoresis using a confocal detector

    SciTech Connect

    Brewer, L.R.; Davidson, C.; Balch, J.; Carrano, A.

    1995-01-30

    We have measured the three dimensional distribution of DNA fragments within an electrophoretic band. The measurements were made using a confocal microscope and a photon counting photomultiplier detector. A DNA sequencing standard was loaded into glass microchannel plates containing polyacrylamide gel. The measurements were made by scanning the plates in three dimensions using a mechanical stage under computer control, while electrophoresis was taking place. We found that the distribution of DNA was the same for all the bands measured in the sequencing ladder with an approximate Gaussian distribution along all three axes. These measurements are important to understand what physical forces shape electrophoretic bands confined by a channel and also to aid in the design of high throughput DNA sequencers.

  15. DNA fragmentation induced by Fe ions in human cells: shielding influence on spatially correlated damage

    NASA Astrophysics Data System (ADS)

    Antonelli, F.; Belli, M.; Campa, A.; Chatterjee, A.; Dini, V.; Esposito, G.; Rydberg, B.; Simone, G.; Tabocchini, M. A.

    2004-01-01

    Outside the magnetic field of the Earth, high energy heavy ions constitute a relevant part of the biologically significant dose to astronauts during the very long travels through space. The typical pattern of energy deposition in the matter by heavy ions on the microscopic scale is believed to produce spatially correlated damage in the DNA which is critical for radiobiological effects. We have investigated the influence of a lucite shielding on the initial production of very small DNA fragments in human fibroblasts irradiated with 1 GeV/u iron (Fe) ions. We also used γ-rays as reference radiation. Our results show: (1) a lower effect per incident ion when the shielding is used; (2) an higher DNA Double Strand Breaks (DSB) induction by Fe ions than by γ-rays in the size range 1-23 kbp; (3) a non-random DNA DSB induction by Fe ions.

  16. DNA fragmentation induced by Fe ions in human cells: shielding influence on spatially correlated damage.

    PubMed

    Antonelli, F; Belli, M; Campa, A; Chatterjee, A; Dini, V; Esposito, G; Rydberg, B; Simone, G; Tabocchini, M A

    2004-01-01

    Outside the magnetic field of the Earth, high energy heavy ions constitute a relevant part of the biologically significant dose to astronauts during the very long travels through space. The typical pattern of energy deposition in the matter by heavy ions on the microscopic scale is believed to produce spatially correlated damage in the DNA which is critical for radiobiological effects. We have investigated the influence of a lucite shielding on the initial production of very small DNA fragments in human fibroblasts irradiated with 1 GeV/u iron (Fe) ions. We also used gamma rays as reference radiation. Our results show: (1) a lower effect per incident ion when the shielding is used; (2) an higher DNA Double Strand Breaks (DSB) induction by Fe ions than by gamma rays in the size range 1-23 kbp; (3) a non-random DNA DSB induction by Fe ions. PMID:15880923

  17. An efficient algorithm for DNA fragment assembly in MapReduce.

    PubMed

    Xu, Baomin; Gao, Jin; Li, Chunyan

    2012-09-28

    Fragment assembly is one of the most important problems of sequence assembly. Algorithms for DNA fragment assembly using de Bruijn graph have been widely used. These algorithms require a large amount of memory and running time to build the de Bruijn graph. Another drawback of the conventional de Bruijn approach is the loss of information. To overcome these shortcomings, this paper proposes a parallel strategy to construct de Bruijin graph. Its main characteristic is to avoid the division of de Bruijin graph. A novel fragment assembly algorithm based on our parallel strategy is implemented in the MapReduce framework. The experimental results show that the parallel strategy can effectively improve the computational efficiency and remove the memory limitations of the assembly algorithm based on Euler superpath. This paper provides a useful attempt to the assembly of large-scale genome sequence using Cloud Computing. PMID:22960169

  18. Computer-assisted restriction endonuclease analysis of plasmid DNA in field strains of Salmonella enteritidis.

    PubMed

    Rychlik, I; Karpiskova, R; Faldynova, M; Sisak, F

    1998-12-01

    Computer-assisted restriction endonuclease analysis of plasmid DNA in field strains of Salmonella enterica serovar Enteritidis (S. enteritidis) is described. The procedure consists of plasmid DNA purification, its digestion with restriction endonuclease TaqI, electrophoresis, charge-coupled device camera scanning of the gels, and an analysis of the restriction patterns with the software Gel Manager. The system allowed us to analyse, in detail, results of plasmid profiling in more than 600 field strains of S. enteritidis. In addition to plasmid-free and virulence plasmid only containing strains, 15 additional plasmid types were detected. All the images and detailed protocols are available at the Web site http://www.clark.cz/vri/salmon.htm. PMID:10347865

  19. Magnetic bead purification of labeled DNA fragments forhigh-throughput capillary electrophoresis sequencing

    SciTech Connect

    Elkin, Christopher; Kapur, Hitesh; Smith, Troy; Humphries, David; Pollard, Martin; Hammon, Nancy; Hawkins, Trevor

    2001-09-15

    We have developed an automated purification method for terminator sequencing products based on a magnetic bead technology. This 384-well protocol generates labeled DNA fragments that are essentially free of contaminates for less than $0.005 per reaction. In comparison to laborious ethanol precipitation protocols, this method increases the phred20 read length by forty bases with various DNA templates such as PCR fragments, Plasmids, Cosmids and RCA products. Our method eliminates centrifugation and is compatible with both the MegaBACE 1000 and ABIPrism 3700 capillary instruments. As of September 2001, this method has produced over 1.6 million samples with 93 percent averaging 620 phred20 bases as part of Joint Genome Institutes Production Process.

  20. Evidence that the DNA mismatch repair system removes 1-nucleotide Okazaki fragment flaps.

    PubMed

    Kadyrova, Lyudmila Y; Dahal, Basanta K; Kadyrov, Farid A

    2015-10-01

    The DNA mismatch repair (MMR) system plays a major role in promoting genome stability and suppressing carcinogenesis. In this work, we investigated whether the MMR system is involved in Okazaki fragment maturation. We found that in the yeast Saccharomyces cerevisiae, the MMR system and the flap endonuclease Rad27 act in overlapping pathways that protect the nuclear genome from 1-bp insertions. In addition, we determined that purified yeast and human MutSα proteins recognize 1-nucleotide DNA and RNA flaps. In reconstituted human systems, MutSα, proliferating cell nuclear antigen, and replication factor C activate MutLα endonuclease to remove the flaps. ATPase and endonuclease mutants of MutLα are defective in the flap removal. These results suggest that the MMR system contributes to the removal of 1-nucleotide Okazaki fragment flaps. PMID:26224637

  1. Ultrasensitive electrochemical biosensing for DNA using quantum dots combined with restriction endonuclease.

    PubMed

    Zhang, Can; Lou, Jing; Tu, Wenwen; Bao, Jianchun; Dai, Zhihui

    2015-01-21

    A universal and sensitive electrochemical biosensing platform for the detection and identification of DNA using CdSe quantum dots (CdSe QDs) as signal markers was designed. The detection mechanism was based on the specific recognition of MspI endonuclease combined with the signal amplification of gold nanoparticles (AuNPs). MspI endonuclease could recognize its specific sequence in the double-strand DNA (dsDNA) and cleave the dsDNA fragments linked with CdSe QDs from the electrode. The remaining attached CdSe QDs can be easily read out by square-wave voltammetry using an electrodeposited bismuth (Bi) film-modified glass carbon electrode. The concentrations of target DNA could be simultaneously detected by the signal of metal markers. Using mycobacterium tuberculosis (Mtb) DNA as a model, under the optimal conditions, the proposed biosensor could detect Mtb DNA down to 8.7 × 10(-15) M with a linear range of 5 orders of magnitude (from 1.0 × 10(-14) to 1.0 × 10(-9) M) and discriminate mismatched DNA with high selectivity. This strategy presented a universal and convenient biosensing platform for DNA assay, and its satisfactory performances make it a potential candidate for the early diagnosis of gene-related diseases. PMID:25408952

  2. Chromosomal assignment of human genomic NotI restriction fragments in a two-dimensional electrophoresis profile

    SciTech Connect

    Yoshikawa, Hirohide; Nagai, Hisaki; Matsubara, Kenichi

    1996-01-01

    Using DNA from sorted human chromosomes and two-dimensional gel electrophoresis, we assigned 2295 NotI sites, 43% of the total, to specific chromosomes and designated the procedure CA-RLGS (chromosome-assigned restriction landmark genomic scanning). Although the NotI enzyme is sensitive to DNA methylation, our results suggested that the majority of the spots did not seem to be affected by this modification. The NotI sites were distributed at higher levels in chromosomes 17, 19, and 22, suggesting higher gene content in these chromosomes. Most spots were assigned to unique chromosomes, but some spots were found on two or more chromosomes. Quantitative analysis revealed the intensity of the DNA spots on the sex chromosomes to be haploid and that of the chromosome 21 spots in DNA from a male with Down syndrome to be trisomic, although there were exceptions. We report here the first-generation CA-RLGS map of the human genome. 23 refs., 4 figs.

  3. Ejaculate Oxidative Stress Is Related with Sperm DNA Fragmentation and Round Cells

    PubMed Central

    Iommiello, Valeria Maria; Albani, Elena; Di Rosa, Alessandra; Marras, Alessandra; Menduni, Francesca; Morreale, Giovanna; Levi, Shanti Lia; Pisano, Benedetta; Levi-Setti, Paolo Emanuele

    2015-01-01

    Oxidative stress (OS) plays an essential role in male infertility aetiology by affecting sperm quality, function, and also the integrity of sperm DNA. The assessment of oxidative stress in semen may be an important tool to improve the evaluation of sperm reproductive capacity. The purpose of this study was the evaluation of any possible relation between the unbalance of oxidative stress caused by superoxide anion in the ejaculate with the presence of sperm DNA fragmentation and high concentration of round cells. 56 semen samples from males from couples suffering from infertility were evaluated according to World Health Organisation (WHO) 2010 guidelines. Oxidative stress levels from N1 (low) to N4 (high) were assessed in ejaculates using oxiSperm; DFI (sperm DNA fragmentation index) as assessed by the SCSA (Sperm Chromatin Structure Assay) was used for evaluation of sperm chromatin integrity. Our data show that high oxidative stress (N3-N4 levels) correlated positively with a DFI ≥ 30% (P = 0.0379) and round cells ≥1.500.000/mL (P = 0.0084). In conclusion, OS increases sperm DNA damage. Thus evaluation of semen OS extent of sperm DNA damage in infertile man could be useful to develop new therapeutic strategies and improve success of assisted reproduction techniques (ART). PMID:25802519

  4. Point mutations change the thermal denaturation profile of a short DNA fragment containing the lactose control elements. Comparison between experiment and theory.

    PubMed Central

    Schaeffer, F; Kolb, A; Buc, H

    1982-01-01

    To understand the denaturation process of short DNA segments we have chosen a 203-base pair (bp) restriction fragment containing the lactose control region. A steady decrease in GC content exists between its i proximal and z proximal ends. We confirm that this fragment melts at low salt in two subtransitions. A GC to AT mutation in the AT-rich region (mutation UV5) increases the number of denatured base pairs in the first subtransition and decreases the cooperativity of the melting process. A GC to AT mutation in the GC-rich region (mutation L8) decreases the number of denatured base pairs in the first subtransition and increases the cooperativity. These mutations induce the same shift in the temperature of half denaturation. The effects of both mutations are additive. A short deletion at the z end of the fragment affects only the first subtransition. When four GC pairs are added to both end, the fragment melts in one transition. Comparison with the results obtained with a larger 789-bp lac fragment reveals strong end effects on base pair stability and suggests that denaturation of the 203-bp fragment proceeds unidirectionally from the z end. Good agreement is shown with the predictions made with the "z ipper model" of Crothers et al. (1965). PMID:7188180

  5. Modification-dependent restriction endonuclease, MspJI, flips 5-methylcytosine out of the DNA helix.

    PubMed

    Horton, John R; Wang, Hua; Mabuchi, Megumu Yamada; Zhang, Xing; Roberts, Richard J; Zheng, Yu; Wilson, Geoffrey G; Cheng, Xiaodong

    2014-10-29

    MspJI belongs to a family of restriction enzymes that cleave DNA containing 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC). MspJI is specific for the sequence 5(h)mC-N-N-G or A and cleaves with some variability 9/13 nucleotides downstream. Earlier, we reported the crystal structure of MspJI without DNA and proposed how it might recognize this sequence and catalyze cleavage. Here we report its co-crystal structure with a 27-base pair oligonucleotide containing 5mC. This structure confirms that MspJI acts as a homotetramer and that the modified cytosine is flipped from the DNA helix into an SRA-like-binding pocket. We expected the structure to reveal two DNA molecules bound specifically to the tetramer and engaged with the enzyme's two DNA-cleavage sites. A coincidence of crystal packing precluded this organization, however. We found that each DNA molecule interacted with two adjacent tetramers, binding one specifically and the other non-specifically. The latter interaction, which prevented cleavage-site engagement, also involved base flipping and might represent the sequence-interrogation phase that precedes specific recognition. MspJI is unusual in that DNA molecules are recognized and cleaved by different subunits. Such interchange of function might explain how other complex multimeric restriction enzymes act. PMID:25262349

  6. Modification-dependent restriction endonuclease, MspJI, flips 5-methylcytosine out of the DNA helix

    SciTech Connect

    Horton, J. R.; Wang, H.; Mabuchi, M. Y.; Zhang, X.; Roberts, R. J.; Zheng, Y.; Wilson, G. G.; Cheng, X.

    2014-09-27

    MspJI belongs to a family of restriction enzymes that cleave DNA containing 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC). MspJI is specific for the sequence 5(h)mC-N-N-G or A and cleaves with some variability 9/13 nucleotides downstream. Earlier, we reported the crystal structure of MspJI without DNA and proposed how it might recognize this sequence and catalyze cleavage. Here we report its co-crystal structure with a 27-base pair oligonucleotide containing 5mC. This structure confirms that MspJI acts as a homotetramer and that the modified cytosine is flipped from the DNA helix into an SRA-like-binding pocket. We expected the structure to reveal two DNA molecules bound specifically to the tetramer and engaged with the enzyme's two DNA-cleavage sites. A coincidence of crystal packing precluded this organization, however. We found that each DNA molecule interacted with two adjacent tetramers, binding one specifically and the other non-specifically. The latter interaction, which prevented cleavage-site engagement, also involved base flipping and might represent the sequence-interrogation phase that precedes specific recognition. MspJI is unusual in that DNA molecules are recognized and cleaved by different subunits. Such interchange of function might explain how other complex multimeric restriction enzymes act.

  7. Identification of Borrelia burgdorferi ospC genotypes in host tissue and feeding ticks by terminal restriction fragment length polymorphisms.

    PubMed

    Tsao, Kimberly; Bent, Stephen J; Fish, Durland

    2013-02-01

    We developed a high-throughput method based on terminal restriction fragment length polymorphisms (T-RFLP) to identify ospC genotypes from field-collected samples of Borrelia burgdorferi. We first validated the method by analyzing B. burgdorferi ospC previously identified by sequencing. We then analyzed and compared ospC genotypes detected from ear biopsy tissue from natural populations of the white-footed mouse, a major B. burgdorferi reservoir host species in the eastern United States, and larval ticks feeding on those individual mice. The T-RFLP method enabled us to distinguish all 17 ospC genotypes tested, as well as mixed samples containing more than one genotype. Analysis costs compare favorably to those of alternative ospC identification methods. The T-RFLP method will facilitate large-scale field studies to advance our understanding of genotype-specific transmission patterns. PMID:23183976

  8. Use of bifidobacterial specific terminal restriction fragment length polymorphisms to complement next generation sequence profiling of infant gut communities

    PubMed Central

    Lewis, Zachery T.; Bokulich, Nicholas A.; Kalanetra, Karen M.; Ruiz-Moyano, Santiago; Underwood, Mark A.; Mills, David A.

    2016-01-01

    Bifidobacteria are intestinal anaerobes often associated with gut health. Specific bifidobacterial species are particularly common in the gastrointestinal tract of breast-fed infants. Current short read next-generation sequencing approaches to profile fecal microbial ecologies do not discriminate bifidobacteria to the species level. Here we describe a low-cost terminal restriction fragment length polymorphism (TRFLP) procedure to distinguish between the common infant-associated bifidobacterial species. An empirical database of TRF sizes was created from both common reference strains and well-identified isolates from infant feces. Species-specific quantitative PCR validated bifidobacterial-specific TRFLP profiles from infant feces. These results indicate that bifidobacterial-specific TRFLP is a useful method to monitor intestinal bifidobacterial populations from infant fecal samples. When used alongside next generation sequencing methods that detect broader population levels at lower resolution, this high-throughput, low-cost tool can help clarify the role of bifidobacteria in health and disease. PMID:23261904

  9. Efficient Tracing of Global Isolates of Yersinia pestis by Restriction Fragment Length Polymorphism Analysis Using Three Insertion Sequences as Probes†

    PubMed Central

    Torrea, Gabriela; Chenal-Francisque, Viviane; Leclercq, Alexandre; Carniel, Elisabeth

    2006-01-01

    Yersinia pestis is the etiologic agent of plague, a disease that is transmitted from rodent to rodent and from rodent to humans by fleabites. Multiple copies of three insertion sequences (IS100, IS285, and IS1541) are scattered over the Y. pestis genome. The genomic instability generated by these insertion sequences (IS) creates a polymorphism of the hybridizing restriction fragments (restriction fragment length polymorphism [RFLP]) which can be used to subtype this relatively clonal species. The aim of this work was to evaluate and compare the potential of the three IS-RFLP techniques, individually or in combination, to define clusters of strains according to their focus of origin. The analysis of 61 Y. pestis isolates of worldwide origin indicated that no satisfactory strain clustering was observed with each IS-RFLP used individually. In contrast, the combination of the three IS-RFLP data (3IS-RFLP) resulted in both an efficient strain discrimination (D = 0.999) and a robust clustering of the isolates according to their biovar and geographical origin. This geographical clustering was observed even within the Orientalis group, although these strains had only a short period of time (one century) to diverge from the original clone that spread globally. Therefore, 3IS-RFLP is a technique that may be useful for addressing epidemiological problems and forensic issues. When plague reemerges after several decades of silence in a quiescent focus, it may help in determining whether the disease was reimported or reactivated. It may also be of value to identify the origin of a strain when plague cases appear in a previously plague-free region. Finally, this technique could be useful for the tracing of a Y. pestis isolate that has been used as a biological terrorism threat. PMID:16757602

  10. Identification of a 118-kb DNA fragment containing the locus of blast resistance gene Pi-2(t) in rice.

    PubMed

    Jiang, J; Wang, S

    2002-10-01

    Rice blast disease, caused by the fungal pathogen Pyricularia grisea Sacc., is one of the most devastating crop diseases worldwide. Previous studies have shown that the dominant blast resistance gene Pi-2(t) confers resistance to a broad spectrum of pathogenic strains. Using a population of 292 recombinant inbred lines combined with bioinformatic analysis, we mapped Pi-2(t) between the SSR (simple-sequence repeat) marker SSR140 and the RFLP (restriction fragment length polymorphism) marker JSH12, 0.9 cM from both SSR140 and JSH12. A physical map consisting of six overlapping BAC (bacterial artificial chromosome) clones was anchored to the region containing the Pi-2(t) locus. By analyzing recombination events in this region, the Pi-2(t) locus was localized to a DNA fragment of 118 kb in length. The detailed genetic and physical maps of the Pi-2(t) locus will facilitate both molecular isolation of the gene and marker-assisted transfer of the gene in breeding programs. PMID:12395199

  11. Differentiation of Burkholderia Species by PCR-Restriction Fragment Length Polymorphism Analysis of the 16S rRNA Gene and Application to Cystic Fibrosis Isolates

    PubMed Central

    Segonds, Christine; Heulin, Thierry; Marty, Nicole; Chabanon, Gerard

    1999-01-01

    Burkholderia cepacia, which is an important pathogen in cystic fibrosis (CF) owing to the potential severity of the infections and the high transmissibility of some clones, has been recently shown to be a complex of five genomic groups, i.e., genomovars I, II (B. multivorans), III, and IV and B. vietnamiensis. B. gladioli is also involved, though rarely, in CF. Since standard laboratory procedures fail to provide an accurate identification of these organisms, we assessed the ability of restriction fragment length polymorphism (RFLP) analysis of amplified 16S ribosomal DNA (rDNA), with the combination of the patterns obtained with six endonucleases, to differentiate Burkholderia species. This method was applied to 16 type and reference strains of the genus Burkholderia and to 51 presumed B. cepacia clinical isolates, each representative of one clone previously determined by PCR ribotyping. The 12 Burkholderia type strains tested were differentiated, including B. cepacia, B. multivorans, B. vietnamiensis, and B. gladioli, but neither the genomovar I and III reference strains nor the genomovar IV reference strain and B. pyrrociniaT were distinguishable. CF clinical isolates were mainly distributed in RFLP group 2 (which includes B. multivoransT) and RFLP group 1 (which includes B. cepacia genomovar I and III reference strains, as well as nosocomial clinical isolates). Two of the five highly transmissible clones in French CF centers belonged to RFLP group 2, and three belonged to RFLP group 1. The remaining isolates either clustered with other Burkholderia species (B. cepacia genomovar IV or B. pyrrocinia, B. vietnamiensis, and B. gladioli) or harbored unique combinations of patterns. Thus, if further validated by hybridization studies, PCR-RFLP of 16S rDNA could be an interesting identification tool and contribute to a better evaluation of the respective clinical risks associated with each Burkholderia species or genomovar in patients with CF. PMID:10364586

  12. GOGOT: a method for the identification of differentially expressed fragments from cDNA-AFLP data

    PubMed Central

    2007-01-01

    Background One-dimensional (1-D) electrophoretic data obtained using the cDNA-AFLP method have attracted great interest for the identification of differentially expressed transcript-derived fragments (TDFs). However, high-throughput analysis of the cDNA-AFLP data is currently limited by the need for labor-intensive visual evaluation of multiple electropherograms. We would like to have high-throughput ways of identifying such TDFs. Results We describe a method, GOGOT, which automatically detects the differentially expressed TDFs in a set of time-course electropherograms. Analysis by GOGOT is conducted as follows: correction of fragment lengths of TDFs, alignment of identical TDFs across different electropherograms, normalization of peak heights, and identification of differentially expressed TDFs using a special statistic. The output of the analysis is a highly reduced list of differentially expressed TDFs. Visual evaluation confirmed that the peak alignment was performed perfectly for the TDFs by virtue of the correction of peak fragment lengths before alignment in step 1. The validity of the automated ranking of TDFs by the special statistic was confirmed by the visual evaluation of a third party. Conclusion GOGOT is useful for the automated detection of differentially expressed TDFs from cDNA-AFLP temporal electrophoretic data. The current algorithm may be applied to other electrophoretic data and temporal microarray data. PMID:17535446

  13. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    SciTech Connect

    Tee, Thiam-Tsui; Cheah, Yew-Hoong; Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur ; Meenakshii, Nallappan; Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  14. Single nucleotide polymorphisms in chum salmon (Oncorhynchus keta) mitochondrial DNA derived from restriction site haplotype information.

    PubMed

    Garvin, M R; Saitoh, K; Churikov, D Y; Brykov, V A; Gharrett, A J

    2010-07-01

    Single nucleotide polymorphisms (SNPs) are useful genetic markers for the management and conservation of commercially important species such as salmon. Informative markers can be derived from data obtained for other purposes. We used restriction endonuclease data from earlier work to identify potentially useful restriction sites in chum salmon (Oncorhynchus keta). With the aid of a newly generated complete mitochondrial DNA sequence (accession number AP010773), we identified the SNP responsible for each restriction site variant, designed rapid genotyping assays, and surveyed the SNPs in more than 400 individuals. The restriction site analysis and the SNP genotyping assays were almost perfectly concordant. Some reasons for the non-concordance were identified and discussed. PMID:20616872

  15. Restricted tissue distribution of extralesional Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS patients with Kaposi's sarcoma.

    PubMed

    Corbellino, M; Poirel, L; Bestetti, G; Pizzuto, M; Aubin, J T; Capra, M; Bifulco, C; Berti, E; Agut, H; Rizzardini, G; Galli, M; Parravicini, C

    1996-05-20

    Specific herpesvirus-like DNA sequences have been found in Kaposi's sarcoma (KS) lesions of AIDS patients, suggesting that a novel gamma herpesvirus, homologous to Epstein-Barr virus and herpesvirus saimiri, could be implicated in the pathogenesis of KS. To better understand the role of this putative etiological agent, named Kaposi's sarcoma-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV-8), we investigated by the polymerase chain reaction (PCR) the presence of viral DNA sequences in various organs obtained at autopsy from seven AIDS patients with KS and six without KS. For each sample, to exclude positive results due to visceral KS dissemination, the presence of microscopic foci of KS cells was rules out by histology and CD34 immunohistochemistry on serial frozen sections immediately adjacent to those employed for DNA extraction. PCR and nested PCR were performed with primers specific for the HIV-8 330 Bam fragment originally described by Chang et al. (Science 1994;266:1865-1869). As quality control, the extracted DNA was amplified with primers for human beta-globin. All KS legions were HHV-8 positive. In addition, extralesional KSHV DNA sequences were detected in seven of seven lymphoid organs and in five of five prostate glands of KS patients. Normal skin was positive in three of five cases and bone marrow in two of three tested cases, all other tissues being negative by PCR and nested PCR. By contrast, no virus was detected in tissue samples of AIDS cases without KS. The restricted organ distribution here documented argues for a selective tissue tropism of HHV-8 in vivo in AIDS patients and suggests that in the infected host lymphoid organs and the prostate gland may represent privileged sites of viral latency and persistence. PMID:8744575

  16. DNA-tension dependence of restriction enzyme activity reveals mechanochemical properties of the reaction pathway

    PubMed Central

    van den Broek, Bram; Noom, Maarten C.; Wuite, Gijs J. L.

    2005-01-01

    Type II restriction endonucleases protect bacteria against phage infections by cleaving recognition sites on foreign double-stranded DNA (dsDNA) with extraordinary specificity. This capability arises primarily from large conformational changes in enzyme and/or DNA upon target sequence recognition. In order to elucidate the connection between the mechanics and the chemistry of DNA recognition and cleavage, we used a single-molecule approach to measure rate changes in the reaction pathway of EcoRV and BamHI as a function of DNA tension. We show that the induced-fit rate of EcoRV is strongly reduced by such tension. In contrast, BamHI is found to be insensitive, providing evidence that both substrate binding and hydrolysis are not influenced by this force. Based on these results, we propose a mechanochemical model of induced-fit reactions on DNA, allowing determination of induced-fit rates and DNA bend angles. Finally, for both enzymes a strongly decreased association rate is obtained on stretched DNA, presumably due to the absence of intradomain dissociation/re-association between non-specific sites (jumping). The obtained results should apply to many other DNA-associated proteins. PMID:15886396

  17. Preliminary characterization of microbial communities in high altitude wetlands of northwestern Argentina by determining terminal restriction fragment length polymorphisms.

    PubMed

    Ferrero, Marcela; Farías, María E; Siñeriz, Faustino

    2004-01-01

    Laguna de Pozuelos is an extensive wetland in Morthwestern Argentina at 3,600 m above sea level in the Argentinean Andes. The principal lake, placed in the central depression of endorheic basin, is rich in minerals like Cu, As, Fe, etc. It collects water from underground courses and from two main tributaries, namely Santa Catalina River to the north and Cincel River to the south. Following the dry and rainy seasons, the surface of the lake is subject to an annual contraction-expansion cycle, with increasing of salinity during evaporation period. Prokaryotes inhabitants these particular environments have been not described and a few of such places have been surveyed for microbial diversity studies. To systematically explore the underlying communities of Bacteria from the water lake of Laguna de Pozuelos wetland and Cincel River, bacterial 16S rRNA genes (rDNAs) were PCR amplified and analyzed by terminal restriction fragment length polymorphism (T-RFLP) analysis. Analysis of the microbial community with T-RFLP identified a minimum of 19 operational taxonomic units (OTU). T-RF patterns derived from multiple-enzyme digestion with RsaI, HaeIII and HhaI were analyzed in order to provide a preliminary picture of the relative diversity of this complex microbial community. By the combined use of the three restriction endonucleases bacterial populations of this particular place were identified. PMID:17061526

  18. Characterization of field strains of infectious laryngotracheitis virus in China by restriction fragment length polymorphism and sequence analysis.

    PubMed

    Yan, Zhuanqiang; Li, Shengpeng; Xie, Qingmei; Chen, Feng; Bi, Yingzuo

    2016-01-01

    Nineteen strains of infectious laryngotracheitis virus (ILTV; Gallid herpesvirus 1) were isolated from dead or diseased birds in chicken flocks from different areas of China between 2010 and 2014 and used to investigate ILTV epidemiology. These strains were characterized using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) patterns and sequence analysis of the thymidine kinase (TK) gene. PCR-RFLP analysis showed that the TK gene generated 2 patterns when digested with restriction endonuclease enzymes. Pattern A corresponded to 2 virulent field strains, while pattern B was characteristic of 2 virulent field strains, 15 low pathogenicity field strains, and all vaccine strains. Sequence analysis of the TK gene indicated that the messenger RNA polyadenylation signals could be identified in some isolates where amino acid 252 was threonine, and in those with methionine at that position. The present study has demonstrated that most of the outbreaks of ILT in China were caused either by low virulence strains or by vaccine-related strains, and also emphasizes the importance of reinforcing ILTV surveillance in both vaccinated and nonvaccinated flocks. PMID:26699520

  19. Molecular identification of Capnocytophaga spp. via 16S rRNA PCR-restriction fragment length polymorphism analysis.

    PubMed

    Ciantar, Marilou; Newman, Hubert N; Wilson, Michael; Spratt, David A

    2005-04-01

    Capnocytophaga spp. have been implicated as putative periodontal pathogens associated with various periodontal diseases. Although the genus is known to contain five human oral isolates, accurate identification to species level of these organisms recovered from subgingival plaque has been hampered by the lack of a reliable method. Hence, most studies to date have reported these isolates as Capnocytophaga spp. Previous attempts at identification were based on biochemical tests; however, the results were inconclusive. Considering the differing virulence features of the respective isolates, it is crucial to identify these isolates to species level. The universal and conservative nature of the 16S rRNA gene has provided an accurate method for bacterial identification. The aim of this study was to identify Capnocytophaga spp. via restriction enzyme analysis of this gene (16S rRNA PCR-restriction fragment length polymorphism). The results (backed up by 16S rRNA gene sequencing) showed that this method reliably identifies all named Capnocytophaga spp. to species level. PMID:15815015

  20. Rapid differentiation of closely related isolates of two plant viruses by polymerase chain reaction and restriction fragment length polymorphism analysis.

    PubMed

    Barbara, D J; Morton, A; Spence, N J; Miller, A

    1995-09-01

    Immunocapture reverse transcriptase-polymerase chain reaction (RT-PCR) followed by restriction fragment length polymorphism (RFLP) analysis of the product has been shown to be an effective procedure for discriminating serologically indistinguishable isolates of two plant viruses, raspberry bushy dwarf (RBDV) and zucchini yellow mosaic (ZYMV). For both viruses, only limited sequence information was available at the time of primer design, but most of the isolates which were tested could be amplified (the one exception being a serologically quite distinct isolate of ZYMV). Restriction endonucleases revealing diagnostic RFLPs were readily identified. Each of two isolates of ZYMV could be detected in the presence of the other and the relative proportions approximately quantified by visual estimation of the relative intensity of the appropriate bands. A range of isolates of different RBDV pathotypes were compared; isolates were grouped in ways that accorded with their known history. Computer analysis of the published sequence from which the primers had been derived showed the sequenced isolate to be identical with an isolate imported from the USSR. The PCR/RFLP procedure is rapid (it can be completed in less than 2 days), effective and will probably be generally applicable to distinguishing closely related virus isolates, even where little sequence information is available. PMID:8576302

  1. DNA fragmentation induced by Fe ions in human cell: shielding influence on spatially correlated damage

    NASA Astrophysics Data System (ADS)

    Antonelli, F.; Belli, M.; Chatterjee, A.; Esposito, G.; Rydberg, B.; Simone, G.

    Outside the magnetic field of the Earth, high energy heavy ions (HZE particles) constitute a relevant part of the biologically significant dose to astronauts during the very long travels through the space. For heavy ions the primary ionization sites occur in a correlated manner along the track of the particles and their typical pattern of energy deposition on the microscopic scale is expected to have an important role in their effects on living cells. It has been pointed out that multiple Double Strand Breaks (DSB) can be produced in local proximity by the same particle track, creating a small region of clustered damage. We have investigated the influence of the shielding on the biological effects of heavy ions, studying the initial production of very small DNA fragments in human fibroblasts irradiated with iron ions. Theoretical studies have shown that materials rich in hydrogen, such as polymethylmethacrylate (PMMA), could be more suitable in reducing the radiation risk. This is due mainly to a lower production of secondary neutrons and target fragments in hydrogen-rich materials compared to aluminium, which is the current shield used to protect astronauts. We have measured the size distribution of DNA fragments induced by high-energy Fe ions over a range from 1 kbp to 23 kpb that are produced by DSB occured over distances comparable with the chromatin fiber dimensions. 1 GeV/u Fe ion beams were obtained from the Alternating Gradient Synchrotron at the Brookhaven National Laboratory and irradiations were performed without and with a 190 mm thick PMMA shielding. Plateau phase AG1522 cells were irradiated in agarose plugs with doses up to 600 Gy and DSB induction was determined by DNA fragmentation analysis after Pulsed/Constant Field Gel Electrophoresis. The results until now obtained show that the number of DSB increases linearly either when plotted versus fluence either versus dose. The fragment distribution indicates the occurrence of a spatially correlated damage. When a PMMA shield is used, the dose-rate of the Fe ions beam decreases by a factor around 0.5 and a concomitant marked decrease in the DNA fragments production per unit dose is found.

  2. Statistical analyses of counts and distributions of restriction sites in DNA sequences.

    PubMed Central

    Karlin, S; Burge, C; Campbell, A M

    1992-01-01

    Counts and spacings of all 4- and 6-bp palindromes in DNA sequences from a broad range of organisms were investigated. Both 4- and 6-bp average palindrome counts were significantly low in all bacteriophages except one, probably as a means of avoiding restriction enzyme cleavage. The exception, T4 of normal 4- and 6-palindrome counts, putatively derives protection from modification of cytosine to hydroxymethylcytosine plus glycosylation. The counts and distributions of 4-bp and of 6-bp restriction sites in bacterial species are variable. Bacterial cells with multiple restriction systems for 4-bp or 6-bp target specificities are low in aggregate 4- or 6-bp palindrome counts/kb, respectively, but bacterial cells lacking exact 4-cutter enzymes generally show normal or high counts of 4-bp palindromes when compared with random control sequences of comparable nucleotide frequencies. For example, E. coli, apparently without an exact 4-bp target restriction endonuclease (see text), contains normal aggregate 4-palindrome counts/kb, while B. subtilis, which abounds with 4-bp restriction systems, shows a significant under-representation of 4-palindrome counts. Both E. coli and B. subtilis have many 6-bp restriction enzymes and concomitantly diminished aggregate 6-palindrome counts/kb. Eukaryote, viral, and organelle sequences generally have aggregate 4- and 6-palindromic counts/kb in the normal range. Interpretations of these results are given in terms of restriction/methylation regimes, recombination and transcription processes, and possible structural and regulatory roles of 4- and 6-bp palindromes. PMID:1313968

  3. Species identification of the Northern shrimp (Pandalus borealis) by polymerase chain reaction-restriction fragment length polymorphism and proteomic analysis.

    PubMed

    Pascoal, Ananias; Ortea, Ignacio; Gallardo, José M; Cañas, Benito; Barros-Velázquez, Jorge; Calo-Mata, Pilar

    2012-02-01

    Genomic and proteomic techniques for species identification of meat and seafood products are being widely used. In this study, a genomic approach was used to differentiate Pandalus borealis (the Northern shrimp), which belongs to the superfamily Pandaloidea, from 30 crustaceans consisting of 19 commercially relevant prawns/shrimps species that belong to the superfamily Penaeoidea, which include the families Penaeidae and Solenoceridae, and 11 other crustacean species, including prawns, shrimps, lobsters, and crabs. For this purpose, a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was designed based on the amplification of the 16S rRNA/tRNA(Val)/12S rRNA mitochondrial regions using the primers 16S-CruF and 16S-CruR. The 966-bp PCR products were produced and cleaved with the restriction enzymes AluI, TaqI, and HinfI, which provided species-specific restriction patterns. In addition, a proteomic approach, based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and electrospray ionization-ion trap (ESI-IT) mass spectrometry, was used to identify and characterize new P. borealis-specific peptides that could be useful as potential markers of this species in protein-based detection methods. To our knowledge, this is the first time a molecular method has been successfully applied to identify a wide range of prawn and shrimp species, including P. borealis, for either whole individuals or processed products. However, validation of the methods proposed here is required by applying them to a larger sample of individuals from different populations and geographic origins in order to avoid mainly false-negative results. PMID:22080038

  4. Modification-dependent restriction endonuclease, MspJI, flips 5-methylcytosine out of the DNA helix

    DOE PAGESBeta

    Horton, J. R.; Wang, H.; Mabuchi, M. Y.; Zhang, X.; Roberts, R. J.; Zheng, Y.; Wilson, G. G.; Cheng, X.

    2014-09-27

    MspJI belongs to a family of restriction enzymes that cleave DNA containing 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC). MspJI is specific for the sequence 5(h)mC-N-N-G or A and cleaves with some variability 9/13 nucleotides downstream. Earlier, we reported the crystal structure of MspJI without DNA and proposed how it might recognize this sequence and catalyze cleavage. Here we report its co-crystal structure with a 27-base pair oligonucleotide containing 5mC. This structure confirms that MspJI acts as a homotetramer and that the modified cytosine is flipped from the DNA helix into an SRA-like-binding pocket. We expected the structure to reveal two DNAmore » molecules bound specifically to the tetramer and engaged with the enzyme's two DNA-cleavage sites. A coincidence of crystal packing precluded this organization, however. We found that each DNA molecule interacted with two adjacent tetramers, binding one specifically and the other non-specifically. The latter interaction, which prevented cleavage-site engagement, also involved base flipping and might represent the sequence-interrogation phase that precedes specific recognition. MspJI is unusual in that DNA molecules are recognized and cleaved by different subunits. Such interchange of function might explain how other complex multimeric restriction enzymes act.« less

  5. In vivo assembly of DNA-fragments in the moss, Physcomitrella patens

    PubMed Central

    King, Brian Christopher; Vavitsas, Konstantinos; Ikram, Nur Kusaira Binti Khairul; Schrøder, Josephine; Scharff, Lars B.; Hamberger, Björn; Jensen, Poul Erik; Simonsen, Henrik Toft

    2016-01-01

    Direct assembly of multiple linear DNA fragments via homologous recombination, a phenomenon known as in vivo assembly or transformation associated recombination, is used in biotechnology to assemble DNA constructs ranging in size from a few kilobases to full synthetic microbial genomes. It has also enabled the complete replacement of eukaryotic chromosomes with heterologous DNA. The moss Physcomitrella patens, a non-vascular and spore producing land plant (Bryophyte), has a well-established capacity for homologous recombination. Here, we demonstrate the in vivo assembly of multiple DNA fragments in P. patens with three examples of effective genome editing: we (i) efficiently deleted a genomic locus for diterpenoid metabolism yielding a biosynthetic knockout, (ii) introduced a salt inducible promoter, and (iii) re-routed endogenous metabolism into the formation of amorphadiene, a precursor of high-value therapeutics. These proof-of-principle experiments pave the way for more complex and increasingly flexible approaches for large-scale metabolic engineering in plant biotechnology. PMID:27126800

  6. In vivo assembly of DNA-fragments in the moss, Physcomitrella patens.

    PubMed

    King, Brian Christopher; Vavitsas, Konstantinos; Ikram, Nur Kusaira Binti Khairul; Schrøder, Josephine; Scharff, Lars B; Hamberger, Björn; Jensen, Poul Erik; Simonsen, Henrik Toft

    2016-01-01

    Direct assembly of multiple linear DNA fragments via homologous recombination, a phenomenon known as in vivo assembly or transformation associated recombination, is used in biotechnology to assemble DNA constructs ranging in size from a few kilobases to full synthetic microbial genomes. It has also enabled the complete replacement of eukaryotic chromosomes with heterologous DNA. The moss Physcomitrella patens, a non-vascular and spore producing land plant (Bryophyte), has a well-established capacity for homologous recombination. Here, we demonstrate the in vivo assembly of multiple DNA fragments in P. patens with three examples of effective genome editing: we (i) efficiently deleted a genomic locus for diterpenoid metabolism yielding a biosynthetic knockout, (ii) introduced a salt inducible promoter, and (iii) re-routed endogenous metabolism into the formation of amorphadiene, a precursor of high-value therapeutics. These proof-of-principle experiments pave the way for more complex and increasingly flexible approaches for large-scale metabolic engineering in plant biotechnology. PMID:27126800

  7. [Identification of SHV-type extended spectrum beta-lactamase genes in Pseudomonas aeruginosa by PCR-restriction fragment length polymorphism and insertion site restriction-PCR].

    PubMed

    Kalai Blagui, S; Achour, W; Abdeladhim, A; Ben Hassen, A

    2009-07-01

    We propose a simple and rapid method to discriminate SHV-type extended spectrum beta-lactamase (ESBL) genes in P. aeruginosa based on PCR techniques (PCR-RFLP and RSI-PCR). We studied 22 producing ESBL P. aeruginosa strains isolated from seven immunocompromised patients (19 isolates) and from environmental swabs (three isolates) at the Bone Marrow Transplantation Center of Tunis. Screening PCR with primer pairs designed to detect gene encoding TEM, SHV, OXA group I, OXA group II, OXA-18 and PER-1 ESBL was positive for bla(OXA18) and bla(SHV) genes in all isolates. Pulsed field gel electrophoresis using SpeI endonuclease defined five genotypic groups. For at least one isolate corresponding to each genotype observed, restriction of PCR products by DdeI and BsrI revealed the same restriction pattern that the bla(SHV-1) negative control; in the same way, RSI-PCR products digestion by NruI, thus excluding 35, 238 and 240 mutations characterizing reported ESBL in P. aeruginosa (SHV-2a, SHV5 et SHV12), and suggesting that studied bla(SHV) genes were not ESBL ones. Genomic DNA hybridization by southern blot with probe consisting in bla(SHV-1) gene was positive in these isolates. Sequencing the full-length open reading frame revealed nucleotide sequence of the bla(SHV-1). PCR-RFLP and RSI-PCR results were then confirmed. This approach is effective for screening P. aeruginosa for ESBL genes carriage in epidemiological studies and for detecting new variants. PMID:18838231

  8. Induced lipid peroxidation in ram sperm: semen profile, DNA fragmentation and antioxidant status.

    PubMed

    Hamilton, Thais Rose Dos Santos; Castro, Letícia Signori de; Delgado, Juliana de Carvalho; de Assis, Patrícia Monken; Siqueira, Adriano Felipe Perez; Mendes, Camilla Mota; Goissis, Marcelo Demarchi; Muiño-Blanco, Teresa; Cebrián-Pérez, José Álvaro; Nichi, Marcílio; Visintin, José Antonio; D'Ávila Assumpção, Mayra Elena Ortiz

    2016-04-01

    Action of reactive oxygen species, protamination failures and apoptosis are considered the most important etiologies of sperm DNA fragmentation. This study evaluated the effects of induced lipid peroxidation susceptibility on native semen profile and identified the mechanisms involved in sperm DNA fragmentation and testicular antioxidant defense on Santa Ines ram sperm samples. Semen was collected from 12 adult rams (Ovis aries) performed weekly over a 9-week period. Sperm analysis (motility, mass motility, abnormalities, membrane and acrosome status, mitochondrial potential, DNA fragmentation, lipid peroxidation and intracellular free radicals production); protamine deficiency; PRM1, TNP1 and TNP2 gene expression; and determination of glutathione peroxidase (GPx), glutathione reductase, catalase (CAT) and superoxide dismutase activity and immunodetection in seminal plasma were performed. Samples were distributed into four groups according to the sperm susceptibility to lipid peroxidation after induction with ascorbate and ferrous sulfate (low, medium, high and very high). The results were analyzed by GLM test and post hoc least significant difference. We observed an increase in native GPx activity and CAT immunodetection in groups with high susceptibility to induced lipid peroxidation. We also found an increase in total sperm defects, acrosome and membrane damages in the group with the highest susceptibility to induced lipid peroxidation. Additionally, the low mitochondrial membrane potential, susceptible to chromatin fragmentation and the PRM1 mRNA were increased in the group showing higher susceptibility to lipid peroxidation. Ram sperm susceptibility to lipid peroxidation may compromise sperm quality and interfere with the oxidative homeostasis by oxidative stress, which may be the main cause of chromatin damage in ram sperm. PMID:26811546

  9. DNA vaccination using the fragment C of botulinum neurotoxin type A provided protective immunity in mice.

    PubMed

    Shyu, R H; Shaio, M F; Tang, S S; Shyu, H F; Lee, C F; Tsai, M H; Smith, J E; Huang, H H; Wey, J J; Huang, J L; Chang, H H

    2000-01-01

    Botulinum neurotoxin (BoNT) is one of the most toxic substances known to produce severe neuromuscular paralysis. The currently used vaccine is prepared mainly from biohazardous toxins. Thus, we studied an alternative method and demonstrated that DNA immunization provided sufficient protection against botulism in a murine model. A plasmid of pBoNT/A-Hc, which encodes the fragment C gene of type A botulinum neurotoxin, was constructed and fused with an Igkappa leader sequence under the control of a human cytomegalovirus promoter. After 10 cycles of DNA inoculation with this plasmid, mice survived lethal doses of type A botulinum neurotoxin challenges. Immunized mice also elicited cross-protection to the challenges of type E botulinum neurotoxin. This is the first study demonstrating the potential use of DNA vaccination for botulinum neurotoxins. PMID:10644889

  10. Structures of Minimal Catalytic Fragments of Topoisomerase V Reveals Conformational Changes Relevant for DNA Binding

    SciTech Connect

    Rajan, Rakhi; Taneja, Bhupesh; Mondragón, Alfonso

    2010-12-03

    Topoisomerase V is an archaeal type I topoisomerase that is unique among topoisomerases due to presence of both topoisomerase and DNA repair activities in the same protein. It is organized as an N-terminal topoisomerase domain followed by 24 tandem helix-hairpin-helix (HhH) motifs. Structural studies have shown that the active site is buried by the (HhH) motifs. Here we show that the N-terminal domain can relax DNA in the absence of any HhH motifs and that the HhH motifs are required for stable protein-DNA complex formation. Crystal structures of various topoisomerase V fragments show changes in the relative orientation of the domains mediated by a long bent linker helix, and these movements are essential for the DNA to enter the active site. Phosphate ions bound to the protein near the active site helped model DNA in the topoisomerase domain and show how topoisomerase V may interact with DNA.

  11. Fragmentation of DNA components by hyperthermal heavy ion (Ar+ and Xe+) impact in the condensed phase

    NASA Astrophysics Data System (ADS)

    Sarabipour, Sarvenaz; Sarvenaz Sarabipour, Ms; Michaud, Marc; Deng, Zongwu; Huels, Michael A.

    The overriding environmental factor that presently limits human endeavors in space is exposure to heavy ion radiation. While knowledge of its damage to living tissue is essential for radiation protection and risk estimates for astronauts, very little data exists at the molecular level regarding the nascent DNA damage by the primary particle track, or by secondary species during subsequent reaction cascades. This persistent lack of a basic understanding of nascent damage induced by such low dose, high LET radiation, introduces unacceptable errors in radiation risk estimates (based mainly on extrapolation from high dose, low LET radiation), particularly for long term exposure. Mutagenic effects induced by heavy ion radiation to cells are largely due to DNA damage by secondary transient species, i.e. secondary ballistic ions, electrons and radicals generated along the ion tracks; the secondary ions have hyperthermal energies up to several 100 eV, which they will deposit within a few nm in the surrounding medium; thus their LET is very high, and yields lethal clustered DNA lesions. We present measurements of molecular damage induced in films of DNA components by ions with precisely such low energies (1-100 eV) and compare results to conventional electron impact measurements. Experiments are conducted in UHV using a mass selected low energy ion source, and a high-resolution quadrupole MS to monitor ion yields desorbing from molecular films. Among the major fragments, NH4 + is identified in the desorption mass spectra of irradiated films of Adenine, Guanine, Cytosine, indicating efficient deamination; in cells this results in pre-mutagenic lesions. Experiments with 5-amino-Uracil, and comparison to previous results on uracil and thymine show that deamination is a key step in the NH4 + fragment formation. For Adenine, we also observe formation of amine aducts in the films, viz. amination of Adenine, and global fragmentation in all ion impact mass spectra, attributed mainly to kinetic & potential ion scattering.[Funded by NSERC and the Canadian Space Agency].

  12. FRAGMENT SIZE ANALYSIS OF FREE FETAL DNA IN MATERNAL PLASMA USING Y-STR LOCI AND SRY GENE AMPLIFICATION

    PubMed Central

    KIMURA, MACHIKO; HARA, MASAAKI; ITAKURA, ATSUO; SATO, CHIAKI; IKEBUCHI, KENJI; ISHIHARA, OSAMU

    2011-01-01

    ABSTRACT Free fetal DNA (ffDNA) in maternal plasma has now become a valuable source for noninvasive prenatal diagnosis. Being able to accurately identify the size of ffDNA in maternal plasma is essential for a noninvasive prenatal diagnosis. Furthermore, it is important to investigate the molecular characteristics related to apoptosis which gives rise to ffDNA. We investigated the fragment size of ffDNA in each sample more precisely, using both Y-STR and SRY primers, in 20 maternal plasma samples from the 17th to 39th weeks of gestation. PCR was conducted with Y-STR and SRY primers which can be used to amplify 100–524 bp fragments. In samples from 10 pregnant women carrying male fetuses, the maximum fragment size detected by Y-STR and SRY primers ranged from 219 to 313 bp. As a result, the mean average maximum fragment size of free fetal DNA detected by Y-STR and SRY primers was 286±28 bp. The Y-STR alleles detected in each maternal plasma DNA sample were all in agreement with the results of their cord blood samples. We concluded that the fragment size of ffDNA comprises 2 nucleosomal complexes or less, but not exceeding 3. PMID:21928694

  13. PCR-restriction fragment length polymorphism analysis (PRA) of Mycobacterium leprae from human lepromas and from a natural case of an armadillo of Corrientes, Argentina.

    PubMed

    Zumarraga, M J; Resoagli, E H; Cicuta, M E; Martinez, A R; Oritiz de Rott, M I; de Millan, S G; Caimi, K; Gioffre, A; Alito, A; Bigi, F; Cataldi, A A; Romano, M I

    2001-03-01

    Polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis (PRA) which relies on the amplification of a 439-bp portion of the hsp65 gene present in all mycobacteria, followed by two distinct digestions (with BstEII and HaeIII) of the PCR product, offers a rapid and easy alternative that allows identification of the species without the need for specialized equipment. Wild leprosy in the nine-banded armadillo (Dasypus novemcinctus) is characterized by the presence of multiple bacilli in internal organs such as lymph nodes, spleen and liver, as well as in nerves and skin. We could observe this in 9 out of 132 animals captured in Corrientes, Argentina, an area endemic for leprosy in humans. Mycobacterium leprae were recognized in those naturally infected animals through different techniques. Three samples of extracted DNA of the mycobacteria present in the spleen, liver and popliteal lymph node of a naturally infected animal during the Experimental Program in Armadillo (PEA) and three samples of human lepromas were processed by PRA. The patterns of the six samples analyzed were identical and were characteristic of M. leprae. These studies, made for the first time in Argentina, corroborate the initial discoveries in South America made by our investigative group on the detection of armadillos naturally infected with the Hansen bacillus. PMID:11480312

  14. Molecular conservation of the P6 outer membrane protein among strains of Haemophilus influenzae: analysis of antigenic determinants, gene sequences, and restriction fragment length polymorphisms.

    PubMed Central

    Nelson, M B; Munson, R S; Apicella, M A; Sikkema, D J; Molleston, J P; Murphy, T F

    1991-01-01

    Infections caused by Haemophilus influenzae are a major worldwide health problem. In particular, nontypeable strains of H. influenzae are a common cause of otitis media in infants and children. A vaccine to prevent these infections would result in the prevention of substantial morbidity and cost savings. A problem in identifying an appropriate vaccine antigen has been the enormous antigenic heterogeneity among nontypeable strains of H. influenzae. The present study was undertaken to characterize the conservation of the P6 outer membrane protein (approximately 16,000 daltons) among strains of H. influenzae. A total of 20 type b strains and 20 nontypeable strains of diverse geographic and clinical origins was studied. Three approaches were taken. (i) Antigenic determinants recognized by monoclonal and polyclonal antibodies were present on P6 in all 40 strains tested. The molecular weight of P6 was identical in all strains. (ii) Comparison of the DNA sequences of the P6 genes from three epidemiologically and serologically unrelated strains demonstrated 100% homology at the amino acid level and 97 to 99% homology at the nucleotide level. (iii) Restriction fragment length polymorphism analysis demonstrated that the P6 gene and flanking sequences were highly conserved among all strains. These three independent series of experiments indicated that the P6 protein is highly conserved among strains of H. influenzae. P6 should receive serious consideration for inclusion in a vaccine to prevent infections caused by nontypeable H. influenzae. Images PMID:1713197

  15. Environmental toxicants cause sperm DNA fragmentation as detected by the Sperm Chromatin Structure Assay (SCSA[reg])

    SciTech Connect

    Evenson, Donald P. . E-mail: scsa@brookings.net; Wixon, Regina

    2005-09-01

    Studies over the past two decades have clearly shown that reproductive toxicants cause sperm DNA fragmentation. This DNA fragmentation can usually be detected prior to observing alterations of metaphase chromosomes in embryos. Thus, Sperm Chromatin Structure Assay (SCSA)-detected DNA damage is viewed as the molecular precursor to later gross chromosome damage observed under the light microscope. SCSA measurements of animal or human sperm consist of first obtaining a fresh or flash frozen neat semen sample in LN2 or dry ice. Samples are then sent to a SCSA diagnostic laboratory where the samples are thawed, diluted to {approx}1-2 x 106 sperm/ml, treated for 30 s with a pH 1.2 detergent buffer and then stained with acridine orange (AO). The low pH partially denatures DNA at the sites of DNA strand breaks and the AO-ssDNA fluoresces red while the AO-dsDNA fluoresces green. Flow cytometry measurements of 5000 sperm/sample provide statistically robust data on the ratio of red to green sperm, the extent of the DNA fragmentation and the standard deviations of measures. Numerous experiments on rodents treated with reproductive toxicants clearly showed that SCSA measures are highly dose responsive and have a very low CV. Different agents that act on germ cells at various stages of development usually showed sperm DNA fragmentation when that germ cell fraction arrived in the epididymis or ejaculate. Some of these treated samples were capable of successful in vitro fertilization but with frequent embryo failure. A 2-year longitudinal study of men living a valley town with a reported abnormal level of infertility and spontaneous miscarriages and also a seasonal atmospheric smog pollution, showed, for the first time, that SCSA measurements of human sperm DNA fragmentation were detectable and correlated with dosage of air pollution while the classical semen measures were not correlated. Also, young men spraying pesticides without protective gear are at an increased risk for elevated sperm DNA fragmentation. Extensive DNA fragmentation probably cannot be repaired by the egg and the spontaneous abortion rate is {approx}2x higher if a man has more than 30% of sperm showing DNA fragmentation. DNA fragmentation is an excellent marker for exposure to potential reproductive toxicants and a diagnostic/prognostic tool for potential male infertility.

  16. The analysis of groEL gene in Salmonella enterica subspecies enterica serovar Typhimurium isolated from avians by PCR-Restriction Fragment Length Polymorphism method.

    PubMed

    Dilmaghani, Mahdi; Ahmadi, Malahat; Zahraei Salehi, Taghi; Talebi, Alireza

    2011-03-01

    Salmonella enterica subspecies enterica serovar Typhimurium causes food-borne outbreaks and systemic diseases in humans and animals. groEL gene (also known as mopA gene in S. Typhimurium), possessing conserved sequence, plays an important role in invasion of bacteria. The purpose of present study was to identify the polymorphism of groEL gene among different avians in different regions by PCR-RFLP method. Fifty two S. Typhimurium isolates (Broiler (n = 13), Layer (n = 12), Duck (n = 5), Goose (n = 5), Sparrow (n = 8), Canary (n = 3), Pigeon (n = 5) and Casco parrot (n = 1). were identified using serotyping as well as multiplex-PCR. Then, amplification of groEL gene performed and amplified products subjected to restriction digestion with BsuRI enzyme. Three RFLP profiles, A, B and C, generated DNA fragments between approximately 100-1,000 bp in size, were observed. The RFLP profile A was observed in 35 (67.3%), profile B in 14 (26.9%) and profile C in 3 (5.77%) of isolates. S. Typhimurium isolates recovered from 13 broilers (two of which profile A, 9 profile B and 2 profile C) and from 8 sparrows (two of which profile A, 5 profile B and 1 profile C) showed all three profiles, but 12 layers and other avians (including Canary (n = 3), Goose (n = 5), Duck (n = 5), Pigeon (n = 5) and Casco parrot (n = 1)) showed profile A. None of these profiles was allotted for a special region. The result of present study showed that S. Typhimurium undergoes genetic mutations in groEL gene under unpleasant milieu in different regions and in different avians. Thus, genetic diversity, despite conserved nature of groEL gene in S. Typhimurium, may exist but it depends on the condition where bacteria have settled. To our knowledge, three RFLP profiles of groEL gene generated by BsuRI restriction enzyme were not reported previously. PMID:21312060

  17. Direct calculation of the sizes of DNA fragments separated by gel electrophoresis using programmes written for a pocket calculator.

    PubMed Central

    Gough, E J; Gough, N M

    1984-01-01

    In order to facilitate the direct computation of the sizes of DNA fragments separated by gel electrophoresis, we have written and evaluated programmes for the Hewlett-Packard 41C programmable calculator. The sizes estimated for DNA fragments of known length using some of these programmes were found to be more accurate than the estimates obtained by conventional graphical procedures. These programmes should be adaptable to other programmable calculators. Images PMID:6320110

  18. Nucleotide sequence analysis of a cloned DNA fragment from human cells reveals homology to retrotransposons.

    PubMed Central

    Flügel, R M; Maurer, B; Bannert, H; Rethwilm, A; Schnitzler, P; Darai, G

    1987-01-01

    During molecular cloning of proviral DNA of human spumaretrovirus, various recombinant clones were established and analyzed. Blot hybridization revealed that one of the recombinant plasmids had the characteristic features of a member of the long interspersed repetitive sequences family. The DNA element was analyzed by restriction mapping and nucleotide sequencing. It showed a high degree of amino acid sequence homology of 54.3% when compared with the 5'-terminal part of the pol gene product of the murine retrotransposon LIMd. The 3' region of the cloned DNA element encodes proteins with an even higher degree of homology of 67.4% in comparison to the corresponding parts of a member of the primate KpnI sequence family. Images PMID:3031462

  19. Quantitative real-time polymerase chain reaction (qRT-PCR) restriction fragment length polymorphism (RFLP) method for monitoring highly conserved transgene expression during gene therapy.

    PubMed

    Bruzzone, Carol M; Belcher, John D; Schuld, Nathan J; Newman, Kristal A; Vineyard, Julie; Nguyen, Julia; Chen, Chunsheng; Beckman, Joan D; Steer, Clifford J; Vercellotti, Gregory M

    2008-12-01

    Evaluation of the transfer efficiency of a rat heme oxygenase-1 (HO-1) transgene into mice requires differentiation of rat and mouse HO-1. However, rat and mouse HO-1 have 94% homology; antibodies and enzyme activity cannot adequately distinguish HO-1. We designed a quantitative real-time polymerase chain reaction (qRT-PCR) method to monitor HO-1 transcription relative to a housekeeping gene, GAPDH. The ratio of rat and mouse HO-1 mRNA could be estimated through restriction fragment length polymorphism (RFLP) analysis of the PCR products. In vitro, murine AML12 hepatocytes were transfected with rat HO-1. After 40 h, the total HO-1 mRNA was enriched 2-fold relative to control cells, and rat HO-1 comprised 84% of HO-1 cDNA. In vivo, the rat HO-1 transgene was cloned into a Sleeping Beauty transposase (SB-Tn) construct and was injected hydrodynamically into a mouse model of sickle cell disease (SCD). After 21 days, there was a 32% enrichment of HO-1 mRNA relative to control mice and the rat transgene comprised 88% of HO-1 cDNA. After 21 days, HO-1 protein expression in liver was increased 2.5-fold. In summary, qRT-PCR RFLP is a useful and reliable method to differentiate the transgene from host gene transcription, especially when the host and transgene protein are identical or highly homologous. This method has translational applications to the design, delivery, and monitoring of gene-therapy vectors. PMID:19059164

  20. Mitochondrial restriction fragment length polymorphism (RFLP) and sequence variation among closely related avian species and the genetic characterization of hybrid Dendroica warblers.

    PubMed

    Lovette, I J; Bermingham, E; Rohwer, S; Wood, C

    1999-09-01

    To address several interconnected goals, we used mitochondrial DNA (mtDNA) sequences to explore evolutionary relationships among four potentially hybridizing taxa in a North American avian superspecies (Dendroica occidentalis, D. townsendi, D. virens, and D. nigrescens). We first compared the results of a previous restriction fragment length polymorphism (RFLP)-based study with 1453 nucleotides from the mitochondrial cytochrome oxidase subunit I (COI), ATP-synthase 6 (ATPase 6), and ATP-synthase 8 (ATPase 8) genes. Separate phylogenetic analyses of the RFLP and sequence data provided identical and well-supported hierarchical species-level reconstructions that grouped occidentalis and townsendi as sister taxa. We then explored several general features of mitochondrial evolution via a comparison of the RFLP and sequence data sets. Qualitative rate differences that seemed evident in highly autocorrelated comparisons of RFLP vs. sequence pairwise distances were not supported when autocorrelation was removed. We also noted a high variance in corresponding RFLP and sequence distances after the removal of autocorrelation effects. This variance suggests that caution should be used when combining RFLP and sequence-based data in studies that require the large-scale synthesis of divergence estimates drawn from sources employing different molecular techniques. Finally, we used our parallel RFLP and sequence data to design and validate a rapid and inexpensive polymerase chain reaction-RFLP (PCR-RFLP) protocol for determining species-specific mitochondrial haplotypes. This PCR-RFLP technique will be applied in ongoing studies of the occidentalis/townsendi hybrid zone, where the historic and geographical complexity of the interbreeding populations necessitates the genotyping of thousands of individual warblers. PMID:10564448

  1. Multiple Determinations of Sperm DNA Fragmentation Show That Varicocelectomy Is Not Indicated for Infertile Patients with Subclinical Varicocele

    PubMed Central

    García-Peiró, Agustín; Ribas-Maynou, Jordi; Oliver-Bonet, María; Navarro, Joaquima; Checa, Miguel A.; Nikolaou, Alexandros; Amengual, María J.; Abad, Carlos; Benet, Jordi

    2014-01-01

    Varicocele is one of the most common causes of low semen quality, which is reflected in high percentages of sperm cells with fragmented DNA. While varicocelectomy is usually performed to ameliorate a patient's fertility, its impact on sperm DNA integrity in the case of subclinical varicocele is poorly documented. In this study, multiple DNA fragmentation analyses (TUNEL, SCD, and SCSA) were performed on semen samples from sixty infertile patients with varicocele (15 clinical varicoceles, 19 clinical varicoceles after surgical treatment, 16 subclinical varicoceles, and 10 subclinical varicoceles after surgical treatment). TUNEL, SCD, and SCSA assays all showed substantial sperm DNA fragmentation levels that were comparable between subclinical and clinical varicocele patients. Importantly, varicocelectomy did improve sperm quality in patients with clinical varicocele; however, this was not the case in patients with subclinical varicocele. In summary, although infertile patients with clinical and subclinical varicocele have similar sperm DNA quality, varicocelectomy should only be advised for patients with clinical varicocele. PMID:24967335

  2. Characterization of the heterochromatin of the darkling beetle Misolampus goudoti: cloning of two satellite DNA families and digestion of chromosomes with restriction enzymes.

    PubMed

    Pons, J; Petitpierre, E; Juan, C

    1993-01-01

    The darkling beetle Misolampus goudoti Er. has 58% of C-banded chromosome material. In this paper we deal with the study of the heterochromatin of this insect both by molecular and cytogenetical methods. Two different satellite DNA families have been characterized in Misolampus goudoti by agarose gel electrophoresis of EcoRI and PstI restriction fragments, respectively. The EcoRI family is composed of a monomeric unit of 196 bp (64.3% A-T rich) DNA sequence, representing about 120,000 copies per haploid genome. The presence of frequent intermediate-size satellite variants and an internal direct repetition of 61 bp in the EcoRI repetitive main monomer suggest that the evolution of this satellite proceeded by unequal crossing-over, occurring both within and between the 196 bp unit. Another highly repetitive sequence, defined by digestion of genomic DNA with PstI, has a more complex unit of 1.2 kb with about 70,000 copies per haploid genome. In situ digestion of M. goudoti chromosomes with restriction enzymes shows a non-specific chromosome DNA extraction from pericentromeric positions with EcoRI and chromosome specific extraction of DNA with PstI and HinfI. This is discussed in relation to the chromosomal location of both satellites. PMID:8106263

  3. A baculovirus alkaline nuclease knockout construct produces fragmented DNA and aberrant capsids

    SciTech Connect

    Okano, Kazuhiro; Vanarsdall, Adam L.; Rohrmann, George F. . E-mail: rohrmanng@orst.edu

    2007-03-01

    DNA replication of bacmid-derived constructs of the Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV) was analyzed by field inversion gel electrophoresis (FIGE) in combination with digestion at a unique Eco81I restriction enzyme site. Three constructs were characterized: a parental bacmid, a bacmid deleted for the alkaline nuclease gene, and a bacmid from which the gp64 gene had been deleted. The latter was employed as a control for comparison with the alkaline nuclease knockout because neither yields infectious virus and their replication is limited to the initially transfected cells. The major difference between DNA replicated by the different constructs was the presence in the alkaline nuclease knockout of high concentrations of relatively small, subgenome length DNA in preparations not treated with Eco81I. Furthermore, upon Eco81I digestion, the alkaline nuclease knockout bacmid also yielded substantially more subgenome size DNA than the other constructs. Electron microscopic examination of cells transfected with the alkaline nuclease knockout indicated that, in addition to a limited number of normal-appearing electron-dense nucleocapsids, numerous aberrant capsid-like structures were observed indicating a defect in nucleocapsid maturation or in a DNA processing step that is necessary for encapsidation. Because of the documented role of the baculovirus alkaline nuclease and its homologs from other viruses in homologous recombination, these data suggest that DNA recombination may play a major role in the production of baculovirus genomes.

  4. Do Pilea Microphylla Improve Sperm DNA Fragmentation and Sperm Parameters in Varicocelized Rats?

    PubMed

    Heidari, Reza; Alizadeh, Rafieh; Abbasi, Niloufar; Pasbakhsh, Parichehr; Hedayatpour, Azim; Farajpour, Mostafa; Khaleghi, Mohammad Reza; Abbasi, Mehdi; Dehpour, Ahmad Reza

    2015-01-01

    Varicocele is one of the most common causes of primary male infertility. Pilea microphylla (PM) is being used as folk medicine. This study was aimed to investigate the effects of PM in a rat model of varicocele. A total of 30 male Wistar rats were divided into control, sham, varicocele, accessory varicocele and PM-treated groups. After 10 weeks of varicocele induction, sperm parameters and chromatin (Aniline blue, acridine orange and toluidine blue) were evaluated, except for the treated and accessory groups that received 50 mg/kg PM orally daily for 10 weeks and then were sacrificed. Sperm parameters significantly decreased in varicocele groups (P < 0.01). Moreover, there was a negative correlation between the DNA fragmentation and sperm parameters in varicocelized rats. Administration of PM led to significantly increased sperm parameters and AO staining (P < 0.05). These findings suggest that PM improves sperm parameters and DNA fragmentation in varicocelized rats. PM can reduce the damage to sperm DNA but not chromatin condensation. PMID:26553082

  5. Identification of column edges of DNA fragments by using K-means clustering and mean algorithm on lane histograms of DNA agarose gel electrophoresis images

    NASA Astrophysics Data System (ADS)

    Turan, Muhammed K.; Sehirli, Eftal; Elen, Abdullah; Karas, Ismail R.

    2015-07-01

    Gel electrophoresis (GE) is one of the most used method to separate DNA, RNA, protein molecules according to size, weight and quantity parameters in many areas such as genetics, molecular biology, biochemistry, microbiology. The main way to separate each molecule is to find borders of each molecule fragment. This paper presents a software application that show columns edges of DNA fragments in 3 steps. In the first step the application obtains lane histograms of agarose gel electrophoresis images by doing projection based on x-axis. In the second step, it utilizes k-means clustering algorithm to classify point values of lane histogram such as left side values, right side values and undesired values. In the third step, column edges of DNA fragments is shown by using mean algorithm and mathematical processes to separate DNA fragments from the background in a fully automated way. In addition to this, the application presents locations of DNA fragments and how many DNA fragments exist on images captured by a scientific camera.

  6. Nitric oxide-mediated proteasome-dependent oligonucleosomal DNA fragmentation in Leishmania amazonensis amastigotes.

    PubMed

    Holzmuller, Philippe; Sereno, Denis; Cavaleyra, Mireille; Mangot, Isabelle; Daulouede, Sylvie; Vincendeau, Philippe; Lemesre, Jean-Loup

    2002-07-01

    Resistance to leishmanial infections depends on intracellular parasite killing by activated host macrophages through the L-arginine-nitric oxide (NO) metabolic pathway. Here we investigate the cell death process induced by NO for the intracellular protozoan Leishmania amazonensis. Exposure of amastigotes to moderate concentrations of NO-donating compounds (acidified sodium nitrite NaNO(2) or nitrosylated albumin) or to endogenous NO produced by lipopolysaccharide or gamma interferon treatment of infected macrophages resulted in a dramatic time-dependent cell death. The combined use of several standard DNA status analysis techniques (including electrophoresis ladder banding patterns, YOPRO-1 staining in flow cytofluorometry, and in situ recognition of DNA strand breaks by TUNEL [terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling] assay) revealed a rapid and extensive fragmentation of nuclear DNA in both axenic and intracellular NO-treated amastigotes of L. amazonensis. Despite some similarities to apoptosis, the nuclease activation responsible for characteristic DNA degradation was not under the control of caspase activity as indicated by the lack of involvement of cell-permeable inhibitors of caspases and cysteine proteases. In contrast, exposure of NO-treated amastigotes with specific proteasome inhibitors, such as lactacystin or calpain inhibitor I, markedly reduced the induction of the NO-mediated apoptosis-like process. These data strongly suggest that NO-induced oligonucleosomal DNA fragmentation in Leishmania amastigotes is, at least in part, regulated by noncaspase proteases of the proteasome. The determination of biochemical pathways leading up to cell death might ultimately allow the identification of new therapeutic targets. PMID:12065515

  7. Nitric Oxide-Mediated Proteasome-Dependent Oligonucleosomal DNA Fragmentation in Leishmania amazonensis Amastigotes

    PubMed Central

    Holzmuller, Philippe; Sereno, Denis; Cavaleyra, Mireille; Mangot, Isabelle; Daulouede, Sylvie; Vincendeau, Philippe; Lemesre, Jean-Loup

    2002-01-01

    Resistance to leishmanial infections depends on intracellular parasite killing by activated host macrophages through the l-arginine-nitric oxide (NO) metabolic pathway. Here we investigate the cell death process induced by NO for the intracellular protozoan Leishmania amazonensis. Exposure of amastigotes to moderate concentrations of NO-donating compounds (acidified sodium nitrite NaNO2 or nitrosylated albumin) or to endogenous NO produced by lipopolysaccharide or gamma interferon treatment of infected macrophages resulted in a dramatic time-dependent cell death. The combined use of several standard DNA status analysis techniques (including electrophoresis ladder banding patterns, YOPRO-1 staining in flow cytofluorometry, and in situ recognition of DNA strand breaks by TUNEL [terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling] assay) revealed a rapid and extensive fragmentation of nuclear DNA in both axenic and intracellular NO-treated amastigotes of L. amazonensis. Despite some similarities to apoptosis, the nuclease activation responsible for characteristic DNA degradation was not under the control of caspase activity as indicated by the lack of involvement of cell-permeable inhibitors of caspases and cysteine proteases. In contrast, exposure of NO-treated amastigotes with specific proteasome inhibitors, such as lactacystin or calpain inhibitor I, markedly reduced the induction of the NO-mediated apoptosis-like process. These data strongly suggest that NO-induced oligonucleosomal DNA fragmentation in Leishmania amastigotes is, at least in part, regulated by noncaspase proteases of the proteasome. The determination of biochemical pathways leading up to cell death might ultimately allow the identification of new therapeutic targets. PMID:12065515

  8. DNA fragmentation and nuclear phenotype in tendons exposed to low-intensity infrared laser

    NASA Astrophysics Data System (ADS)

    de Paoli, Flavia; Ramos Cerqueira, Larissa; Martins Ramos, Mayara; Campos, Vera M.; Ferreira-Machado, Samara C.; Geller, Mauro; de Souza da Fonseca, Adenilson

    2015-03-01

    Clinical protocols are recommended in device guidelines outlined for treating many diseases on empirical basis. However, effects of low-intensity infrared lasers at fluences used in clinical protocols on DNA are controversial. Excitation of endogenous chromophores in tissues and free radicals generation could be described as a consequence of laser used. DNA lesions induced by free radicals cause changes in DNA structure, chromatin organization, ploidy degrees and cell death. In this work, we investigated whether low-intensity infrared laser therapy could alter the fibroblasts nuclei characteristics and induce DNA fragmentation. Tendons of Wistar rats were exposed to low-intensity infrared laser (830 nm), at different fluences (1, 5 and 10 J/cm2), in continuous wave (power output of 10mW, power density of 79.6 mW/cm2). Different frequencies were analyzed for the higher fluence (10 J/cm2), at pulsed emission mode (2.5, 250 and 2500 Hz), with the laser source at surface of skin. Geometric, densitometric and textural parameters obtained for Feulgen-stained nuclei by image analysis were used to define nuclear phenotypes. Significant differences were observed on the nuclear phenotype of tendons after exposure to laser, as well as, high cell death percentages was observed for all fluences and frequencies analyzed here, exception 1 J/cm2 fluence. Our results indicate that low-intensity infrared laser can alter geometric, densitometric and textural parameters in tendon fibroblasts nuclei. Laser can also induce DNA fragmentation, chromatin lost and consequently cell death, using fluences, frequencies and emission modes took out from clinical protocols.

  9. Low energy electron induced fragmentation and reactions of DNA and its molecular components

    NASA Astrophysics Data System (ADS)

    Bass, Andrew

    2005-05-01

    Much research has been stimulated by the recognition that ionizing radiation can, in condensed matter, generate large numbers of secondary electrons with energies less than 20 eV [1] and by the experimental demonstration that such electrons may induce both single and double strand breaks in plasmid DNA [2]. Identifying the underlying mechanisms involves several research methodologies, from further experiments with DNA to studies of the electron interaction with the component `sub-units' of DNA in both the gas and condensed phases [3]. In particular, understanding electron-induced strand break damage, the type of damage most difficult for organisms to repair, necessitates study of the sub-units of DNA back-bone, and here Tetrahyrofuran (THF) and its derivatives, provide a useful model for the furyl ring at the centre of the deoxyribose sugar. In this contribution, we review with particular reference to DNA and related molecules, the use of electron spectroscopy and mass spectrometry to study electron-induced fragmentation and reactions in thin molecular solids. We describe a newly completed instrument that combines laser post-ionization with a time-of-flight mass analyzer for highly sensitive ion and neutral detection. Use of the instrument is illustrated with results for THF and derivatives. Anion desorption measurements reveal the role of transient negative ions (TNI) and Dissociative Electron Attachment in significant molecular fragmentation and permit effective cross sections for this electron-induced damage to be obtained. The neutral yield functions also illustrate the importance of TNI, mirroring features seen in recently measured cross sections for electron induced aldehyde production in THF [4]. 1. J. A. Laverne and S. M. Pimblott, Radiat. Res. 141, 208 (1995) 2. B. Boudaiffa, et al, Science 287, 1658 (2000) 3. L. Sanche. Physica Scripta. 68, C108, (2003) 4. S.-P. Breton, et al.,J. Chem. Phys. 121, 11240 (2004)

  10. Terminal Restriction Fragment Length Polymorphism Analysis of Soil Bacterial Communities under Different Vegetation Types in Subtropical Area.

    PubMed

    Wu, Zeyan; Lin, Wenxiong; Li, Bailian; Wu, Linkun; Fang, Changxun; Zhang, Zhixing

    2015-01-01

    Soil microbes are active players in energy flow and material exchange of the forest ecosystems, but the research on the relationship between the microbial diversity and the vegetation types is less conducted, especially in the subtropical area of China. In this present study, the rhizosphere soils of evergreen broad-leaf forest (EBF), coniferous forest (CF), subalpine dwarf forest (SDF) and alpine meadow (AM) were chosen as test sites. Terminal-restriction fragment length polymorphisms (T-RFLP) analysis was used to detect the composition and diversity of soil bacterial communities under different vegetation types in the National Natural Reserve of Wuyi Mountains. Our results revealed distinct differences in soil microbial composition under different vegetation types. Total 73 microbes were identified in soil samples of the four vegetation types, and 56, 49, 46 and 36 clones were obtained from the soils of EBF, CF, SDF and AM, respectively, and subsequently sequenced. The Actinobacteria, Fusobacterium, Bacteroidetes and Proteobacteria were the most predominant in all soil samples. The order of Shannon-Wiener index (H) of all soil samples was in the order of EBF>CF>SDF>AM, whereas bacterial species richness as estimated by four restriction enzymes indicated no significant difference. Principal component analysis (PCA) revealed that the soil bacterial communities' structures of EBF, CF, SDF and AM were clearly separated along the first and second principal components, which explained 62.17% and 31.58% of the total variance, respectively. The soil physical-chemical properties such as total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP) and total potassium (TK) were positively correlated with the diversity of bacterial communities. PMID:26098851

  11. Terminal Restriction Fragment Length Polymorphism Analysis of Soil Bacterial Communities under Different Vegetation Types in Subtropical Area

    PubMed Central

    Wu, Zeyan; Lin, Wenxiong; Li, Bailian; Wu, Linkun; Fang, Changxun; Zhang, Zhixing

    2015-01-01

    Soil microbes are active players in energy flow and material exchange of the forest ecosystems, but the research on the relationship between the microbial diversity and the vegetation types is less conducted, especially in the subtropical area of China. In this present study, the rhizosphere soils of evergreen broad-leaf forest (EBF), coniferous forest (CF), subalpine dwarf forest (SDF) and alpine meadow (AM) were chosen as test sites. Terminal-restriction fragment length polymorphisms (T-RFLP) analysis was used to detect the composition and diversity of soil bacterial communities under different vegetation types in the National Natural Reserve of Wuyi Mountains. Our results revealed distinct differences in soil microbial composition under different vegetation types. Total 73 microbes were identified in soil samples of the four vegetation types, and 56, 49, 46 and 36 clones were obtained from the soils of EBF, CF, SDF and AM, respectively, and subsequently sequenced. The Actinobacteria, Fusobacterium, Bacteroidetes and Proteobacteria were the most predominant in all soil samples. The order of Shannon-Wiener index (H) of all soil samples was in the order of EBF>CF>SDF>AM, whereas bacterial species richness as estimated by four restriction enzymes indicated no significant difference. Principal component analysis (PCA) revealed that the soil bacterial communities’ structures of EBF, CF, SDF and AM were clearly separated along the first and second principal components, which explained 62.17% and 31.58% of the total variance, respectively. The soil physical-chemical properties such as total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP) and total potassium (TK) were positively correlated with the diversity of bacterial communities. PMID:26098851

  12. Melting profiles may affect detection of residual HPV L1 gene DNA fragments in Gardasil®.

    PubMed

    Lee, Sin Hang

    2014-03-01

    Gardasil® is a quadrivalent human papillomavirus (HPV) protein-based vaccine containing genotype-specific L1 capsid proteins of HPV-16, HPV-18, HPV-6 and HPV-11 in the form of virus-like-particles (VLPs) as the active ingredient. The VLPs are produced by a DNA recombinant technology. It is uncertain if the residual HPV L1 gene DNA fragments in the vaccine products are considered contaminants or excipients of the Gardasil® vaccine. Because naked viral DNA fragments, if present in the vaccine, may bind to the insoluble amorphous aluminum hydroxyphosphate sulfate (AAHS) adjuvant which may help deliver the foreign DNA into macrophages, causing unintended pathophysiologic effects, experiments were undertaken to develop tests for HPV L1 gene DNA fragments in the final products of Gardasil® by polymerase chain reaction (PCR) and direct DNA sequencing. The results showed that while the HPV-11 and HPV-18 L1 gene DNA fragments in Gardasil® were readily amplified by the common GP6/MY11 degenerate consensus primers, the HPV-16 L1 gene DNA may need specially designed non-degenerate PCR primers for amplification at different regions of the L1 gene and different stringency conditions for detection. These variable melting profiles of HPV DNA in the insoluble fraction of the Gardasil® vaccine suggest that the HPV DNA fragments are firmly bound to the aluminum AAHS adjuvant. All methods developed for detecting residual HPV DNA in the vaccine Gardasil® for quality assurance must take into consideration the variable melting profiles of the DNA to avoid false negative results. PMID:24083601

  13. Ty1 integrase overexpression leads to integration of non-Ty1 DNA fragments into the genome of Saccharomyces cerevisiae

    PubMed Central

    Friedl, Anna A.; Kiechle, Markus; Maxeiner, Horst G.; Eckardt-Schupp, Friederike

    2010-01-01

    The integrase of the Saccharomyces cerevisiae retrotransposon Ty1 integrates Ty1 cDNA into genomic DNA likely via a transesterification reaction. Little is known about the mechanisms ensuring that integrase does not integrate non-Ty DNA fragments. In an effort to elucidate the conditions under which Ty1 integrase accepts non-Ty DNA as substrate, PCR fragments encompassing a selectable marker gene were transformed into yeast strains overexpressing Ty1 integrase. These fragments do not exhibit similarity to Ty1 cDNA except for the presence of the conserved terminal dinucleotide 5′-TG-CA-3′. The frequency of fragment insertion events increased upon integrase overexpression. Characterization of insertion events by genomic sequencing revealed that most insertion events exhibited clear hallmarks of integrase-mediated reactions, such as 5 bp target site duplication and target site preferences. Alteration of the terminal dinucleotide abolished the suitability of the PCR fragments to serve as substrates. We hypothesize that substrate specificity under normal conditions is mainly due to compartmentalization of integrase and Ty cDNA, which meet in virus-like particles. In contrast, recombinant integrase, which is not confined to virus-like particles, is able to accept non-Ty DNA, provided that it terminates in the proper dinucleotide sequence. PMID:20677012

  14. The use of biphasic linear ramped pulsed field gel electrophoresis to quantify DNA damage based on fragment size distribution

    SciTech Connect

    Lawrence, T.S.; Normolle, D.P.; Davis, M.A.; Maybaum, J.

    1993-10-20

    The development of biphasic linear pulse ramping gel electrophoresis has permitted resolution of DNA fragments from 200 Kbp to 6 Mbp in a single gel. We used this technique to measure radiation-induced DNA damage based on fragment size. Human colon cancer cells (HT29 and LS174T) and Chinese hamster ovary cells were embedded in agarose, deproteinized, irradiated with 5-80 Gy, and assessed for DNA double strand breakage using pulsed field gel electrophoresis. The frequency of DNA double strand breakage determined using a previously published method was compared to the breakage frequency calculated using the fragment size distribution. Both methods produced similar estimates for breakage frequency of approximately 5 {times} 10{sup {minus}9} breaks Gy{sup {minus}1} bp{sup {minus}1}. These findings suggest that biphasic linear pulse ramping gel electrophoresis can yield a quantitative estimate of DNA fragment distribution resulting from irradiation. The ability to quantify the distribution of DNA fragment sizes produced by irradiation should yield information concerning the mechanisms of both DNA double strand break induction and repair. 16 refs., 5 figs.

  15. Nuclear transformation of the diatom Phaeodactylum tricornutum using PCR-amplified DNA fragments by microparticle bombardment.

    PubMed

    Kira, Nozomu; Ohnishi, Kohei; Miyagawa-Yamaguchi, Arisa; Kadono, Takashi; Adachi, Masao

    2016-02-01

    We have developed a method for marine diatom transformation by microparticle bombardment using polymerase chain reaction (PCR)-amplified DNA fragments. We constructed a circular vector (approximately 5000bp) containing an fcpA promoter from Phaeodactylum tricornutum, antibiotic-resistance genes and terminator from Cylindrotheca fusiformis (a "gene cassette"). Then the various lengths of linear vectors (+0-+1000 linear vectors) were then PCR-amplified from the circular plasmid. The transformants of P. tricornutum transfected with the linear vectors were obtained in the triplicate experiments. Transformation efficiencies using PCR-amplified short linear vectors containing the gene cassette and additional DNA regions of 0, 50, and 500bp at both ends of the gene cassette (+0-+500 linear vectors) did not significantly differ from one another or from the efficiency of the +1000 linear vector. Transformation efficiencies using the linear vectors were lower than that using the circular vector, but were not significantly different. The ratios of the number of transformants containing the whole region of the gene cassette to those of transformants transfected using linear vectors of various lengths were determined. An extension (≧50bp) of DNA fragments was effective for introducing the whole region of the gene cassette into the genomic DNA. In using various amounts of the +50 linear vector (37.5-300fmol/shot), we observed that transformation efficiencies using 37.5fmol (52.2ng)/shot of the linear vector were not significantly different from those obtained using 300fmol of the linear vector. The 300fmol quantity was set considering the quantity of the circular plasmid (1μg=approx. 300fmol) and the 37.5fmol quantity was set for quick and easy preparation of approximately 500ng of the linear short vector needed for triplicate transformation experiments in one PCR tube containing 50μl of PCR cocktail. Integrating the gene cassette of the short linear vectors as well as that of the full length of the linear vector (+1000 linear vector) into the chromosomal DNA was determined using Southern blot analysis. The short linear vectors tended to result in smaller numbers of insertions than those of the supercoiled plasmid. This simple and time-saving transformation method using microparticle bombardment with PCR-amplified DNA fragments permitted both functional analysis of diatom-specific genes and development of diatom strains useful for further biotechnological applications. PMID:26711090

  16. A new way of measuring apoptosis by absolute quantitation of inter-nucleosomally fragmented genomic DNA.

    PubMed

    Hooker, David J; Mobarok, Masqura; Anderson, Jenny L; Rajasuriar, Reena; Gray, Lachlan R; Ellett, Anne M; Lewin, Sharon R; Gorry, Paul R; Cherry, Catherine L

    2012-08-01

    Several critical events of apoptosis occur in the cell nucleus, including inter-nucleosomal DNA fragmentation (apoptotic DNA) and eventual chromatin condensation. The generation of apoptotic DNA has become a biochemical hallmark of apoptosis because it is a late 'point of no return' step in both the extrinsic (cell-death receptor) and intrinsic (mitochondrial) apoptotic pathways. Despite investigators observing apoptotic DNA and understanding its decisive role as a marker of apoptosis for over 20 years, measuring it has proved elusive. We have integrated ligation-mediated PCR and qPCR to design a new way of measuring apoptosis, termed ApoqPCR, which generates an absolute value for the amount (picogram) of apoptotic DNA per cell population. ApoqPCR's advances over current methods include a 1000-fold linear dynamic range yet sensitivity to distinguish subtle low-level changes, measurement with a 3- to 4-log improvement in sample economy, and capacity for archival or longitudinal studies combined with high-throughput capability. We demonstrate ApoqPCR's utility in both in vitro and in vivo contexts. Considering the fundamental role apoptosis has in vertebrate and invertebrate health, growth and disease, the reliable measurement of apoptotic nucleic acid by ApoqPCR will be of value in cell biology studies in basic and applied science. PMID:22544708

  17. A new way of measuring apoptosis by absolute quantitation of inter-nucleosomally fragmented genomic DNA

    PubMed Central

    Hooker, David J.; Mobarok, Masqura; Anderson, Jenny L.; Rajasuriar, Reena; Gray, Lachlan R.; Ellett, Anne M.; Lewin, Sharon R.; Gorry, Paul R.; Cherry, Catherine L.

    2012-01-01

    Several critical events of apoptosis occur in the cell nucleus, including inter-nucleosomal DNA fragmentation (apoptotic DNA) and eventual chromatin condensation. The generation of apoptotic DNA has become a biochemical hallmark of apoptosis because it is a late ‘point of no return’ step in both the extrinsic (cell-death receptor) and intrinsic (mitochondrial) apoptotic pathways. Despite investigators observing apoptotic DNA and understanding its decisive role as a marker of apoptosis for over 20 years, measuring it has proved elusive. We have integrated ligation-mediated PCR and qPCR to design a new way of measuring apoptosis, termed ApoqPCR, which generates an absolute value for the amount (picogram) of apoptotic DNA per cell population. ApoqPCR’s advances over current methods include a 1000-fold linear dynamic range yet sensitivity to distinguish subtle low-level changes, measurement with a 3- to 4-log improvement in sample economy, and capacity for archival or longitudinal studies combined with high-throughput capability. We demonstrate ApoqPCR’s utility in both in vitro and in vivo contexts. Considering the fundamental role apoptosis has in vertebrate and invertebrate health, growth and disease, the reliable measurement of apoptotic nucleic acid by ApoqPCR will be of value in cell biology studies in basic and applied science. PMID:22544708

  18. Sequence context effects on 8-methoxypsoralen photobinding to defined DNA fragments

    SciTech Connect

    Sage, E.; Moustacchi, E.

    1987-06-16

    The photoreaction of 8-methoxypsoralen (8-MOP) with DNA fragments of defined sequence was studied. The authors took advantage of the blockage by bulky adducts of the 3'-5'-exonuclease activity associated with the T4 DNA polymerase. The action of the exonuclease is stopped by biadducts as well as by monoadducts. The termination products were analyzed on sequencing gels. A strong sequence specificity was observed in the DNA photobinding of 8-MOP. The exonuclease terminates its digestion near thymine residues, mainly at potentially cross-linkable sites. There is an increasing reactivity of thymine residues in the order T < TT << TTT in a GC environment. For thymine residues in cross-linkable sites, the reactivity follows the order AT << TA approx. TAT << ATA < ATAT < ATATAA. Repeated A-T sequences are hot spots for the photochemical reaction of 8-MOP with DNA. Both monoadducts and interstrand cross-links are formed preferentially in 5'-TpA sites. The results highlight the role of the sequence and consequently of the conformation around a potential site in the photobinding of 8-MOP to DNA.

  19. A Mimicking-of-DNA-Methylation-Patterns Pipeline for Overcoming the Restriction Barrier of Bacteria

    PubMed Central

    Zhang, Guoqiang; Wang, Wenzhao; Deng, Aihua; Sun, Zhaopeng; Zhang, Yun; Liang, Yong; Che, Yongsheng; Wen, Tingyi

    2012-01-01

    Genetic transformation of bacteria harboring multiple Restriction-Modification (R-M) systems is often difficult using conventional methods. Here, we describe a mimicking-of-DNA-methylation-patterns (MoDMP) pipeline to address this problem in three difficult-to-transform bacterial strains. Twenty-four putative DNA methyltransferases (MTases) from these difficult-to-transform strains were cloned and expressed in an Escherichia coli strain lacking all of the known R-M systems and orphan MTases. Thirteen of these MTases exhibited DNA modification activity in Southwestern dot blot or Liquid Chromatography–Mass Spectrometry (LC–MS) assays. The active MTase genes were assembled into three operons using the Saccharomyces cerevisiae DNA assembler and were co-expressed in the E. coli strain lacking known R-M systems and orphan MTases. Thereafter, results from the dot blot and restriction enzyme digestion assays indicated that the DNA methylation patterns of the difficult-to-transform strains are mimicked in these E. coli hosts. The transformation of the Gram-positive Bacillus amyloliquefaciens TA208 and B. cereus ATCC 10987 strains with the shuttle plasmids prepared from MoDMP hosts showed increased efficiencies (up to four orders of magnitude) compared to those using the plasmids prepared from the E. coli strain lacking known R-M systems and orphan MTases or its parental strain. Additionally, the gene coding for uracil phosphoribosyltransferase (upp) was directly inactivated using non-replicative plasmids prepared from the MoDMP host in B. amyloliquefaciens TA208. Moreover, the Gram-negative chemoautotrophic Nitrobacter hamburgensis strain X14 was transformed and expressed Green Fluorescent Protein (GFP). Finally, the sequence specificities of active MTases were identified by restriction enzyme digestion, making the MoDMP system potentially useful for other strains. The effectiveness of the MoDMP pipeline in different bacterial groups suggests a universal potential. This pipeline could facilitate the functional genomics of the strains that are difficult to transform. PMID:23028379

  20. A mimicking-of-DNA-methylation-patterns pipeline for overcoming the restriction barrier of bacteria.

    PubMed

    Zhang, Guoqiang; Wang, Wenzhao; Deng, Aihua; Sun, Zhaopeng; Zhang, Yun; Liang, Yong; Che, Yongsheng; Wen, Tingyi

    2012-09-01

    Genetic transformation of bacteria harboring multiple Restriction-Modification (R-M) systems is often difficult using conventional methods. Here, we describe a mimicking-of-DNA-methylation-patterns (MoDMP) pipeline to address this problem in three difficult-to-transform bacterial strains. Twenty-four putative DNA methyltransferases (MTases) from these difficult-to-transform strains were cloned and expressed in an Escherichia coli strain lacking all of the known R-M systems and orphan MTases. Thirteen of these MTases exhibited DNA modification activity in Southwestern dot blot or Liquid Chromatography-Mass Spectrometry (LC-MS) assays. The active MTase genes were assembled into three operons using the Saccharomyces cerevisiae DNA assembler and were co-expressed in the E. coli strain lacking known R-M systems and orphan MTases. Thereafter, results from the dot blot and restriction enzyme digestion assays indicated that the DNA methylation patterns of the difficult-to-transform strains are mimicked in these E. coli hosts. The transformation of the Gram-positive Bacillus amyloliquefaciens TA208 and B. cereus ATCC 10987 strains with the shuttle plasmids prepared from MoDMP hosts showed increased efficiencies (up to four orders of magnitude) compared to those using the plasmids prepared from the E. coli strain lacking known R-M systems and orphan MTases or its parental strain. Additionally, the gene coding for uracil phosphoribosyltransferase (upp) was directly inactivated using non-replicative plasmids prepared from the MoDMP host in B. amyloliquefaciens TA208. Moreover, the Gram-negative chemoautotrophic Nitrobacter hamburgensis strain X14 was transformed and expressed Green Fluorescent Protein (GFP). Finally, the sequence specificities of active MTases were identified by restriction enzyme digestion, making the MoDMP system potentially useful for other strains. The effectiveness of the MoDMP pipeline in different bacterial groups suggests a universal potential. This pipeline could facilitate the functional genomics of the strains that are difficult to transform. PMID:23028379

  1. Determination of locust bean gum and guar gum by polymerase chain reaction and restriction fragment length polymorphism analysis.

    PubMed

    Meyer, K; Rosa, C; Hischenhuber, C; Meyer, R

    2001-01-01

    A polymerase chain reaction (PCR) was developed to differentiate the thickening agents locust bean gum (LBG) and the cheaper guar gum in finished food products. Universal primers for amplification of the intergenic spacer region between trnL 3' (UAA) exon and trnF (GAA) gene in the chloroplast (cp) genome and subsequent restriction analysis were applied to differentiate guar gum and LBG. The presence of <5% (w/w) guar gum powder added to LBG powder was detectable. Based on data obtained from sequencing this intergenic spacer region, a second PCR method for the specific detection of guar gum DNA was also developed. This assay detected guar gum powder in LBG in amounts as low as 1% (w/w). Both methods successfully detected guar gum and/or LBG in ice cream stabilizers and in foodstuffs, such as dairy products, ice cream, dry seasoning mixes, a finished roasting sauce, and a fruit jelly product, but not in products with highly degraded DNA, such as tomato ketchup and sterilized chocolate cream. Both methods detected guar gum and LBG in ice cream and fresh cheese at levels <0.1%. PMID:11234856

  2. Dynamics of enzymatic interactions during short flap human Okazaki fragment processing by two forms of human DNA polymerase δ.

    PubMed

    Lin, Szu Hua Sharon; Wang, Xiaoxiao; Zhang, Sufang; Zhang, Zhongtao; Lee, Ernest Y C; Lee, Marietta Y W T

    2013-11-01

    Lagging strand DNA replication requires the concerted actions of DNA polymerase δ, Fen1 and DNA ligase I for the removal of the RNA/DNA primers before ligation of Okazaki fragments. To better understand this process in human cells, we have reconstituted Okazaki fragment processing by the short flap pathway in vitro with purified human proteins and oligonucleotide substrates. We systematically characterized the key events in Okazaki fragment processing: the strand displacement, Pol δ/Fen1 combined reactions for removal of the RNA/DNA primer, and the complete reaction with DNA ligase I. Two forms of human DNA polymerase δ were studied: Pol δ4 and Pol δ3, which represent the heterotetramer and the heterotrimer lacking the p12 subunit, respectively. Pol δ3 exhibits very limited strand displacement activity in contrast to Pol δ4, and stalls on encounter with a 5'-blocking oligonucleotide. Pol δ4 and Pol δ3 exhibit different characteristics in the Pol δ/Fen1 reactions. While Pol δ3 produces predominantly 1 and 2 nt cleavage products irrespective of Fen1 concentrations, Pol δ4 produces cleavage fragments of 1-10 nts at low Fen1 concentrations. Pol δ3 and Pol δ4 exhibit comparable formation of ligated products in the complete system. While both are capable of Okazaki fragment processing in vitro, Pol δ3 exhibits ideal characteristics for a role in Okazaki fragment processing. Pol δ3 readily idles and in combination with Fen1 produces primarily 1 nt cleavage products, so that nick translation predominates in the removal of the blocking strand, avoiding the production of longer flaps that require additional processing. These studies represent the first analysis of the two forms of human Pol δ in Okazaki fragment processing. The findings provide evidence for the novel concept that Pol δ3 has a role in lagging strand synthesis, and that both forms of Pol δ may participate in DNA replication in higher eukaryotic cells. PMID:24035200

  3. Assessment of microbial dynamics in the Pearl River Estuary by 16S rRNA terminal restriction fragment analysis

    NASA Astrophysics Data System (ADS)

    Wu, Madeline; Song, Liansheng; Ren, Jianping; Kan, Jianjun; Qian, Pei-Yuan

    2004-10-01

    We have evaluated the feasibility of using the terminal restriction fragment length polymorphism (T-RFLP) pattern of polymerase chain reaction (PCR) amplified 16S rRNA sequences to track the changes of the free-living bacterial community for the Pearl River Estuary surface waters. The suitability of specific PCR primers, PCR bias induced by thermal cycles, and field-sampling volumes were critically evaluated in laboratory tests. We established a workable protocol and obtained TRF patterns that reflected the changes in the bacterial population. The temporal dynamics over a 24 h period were examined at one anchored station, as well as the spatial distribution pattern of the bacterial community at several stations, covering the transects along the river discharge direction and across the river plume. The TRF pattern revealed 9 dominant bacterial groups. Changes in their relative abundance reflecting the changes in the bacterial community composition were documented. Many culturable species were isolated from each field sample and a portion of the 16S rRNA gene for each species was sequenced. The species was identified based on sequence data comparison. In this region, the dominant species belong to the γ-subdivision of proteobacteria and the Bacillus/Clostridium group of Firmicutes. We also detected the wide spread distribution of Acinetobacter spp.; many of these species are known nosocomial pathogen for humans.

  4. Molecular Epidemiology of Leptospirosis in Northern Iran by Nested Polymerase Chain Reaction/Restriction Fragment Length Polymorphism and Sequencing Methods

    PubMed Central

    Zakeri, Sedigheh; Sepahian, Neda; Afsharpad, Mandana; Esfandiari, Behzad; Ziapour, Peyman; Djadid, Navid D.

    2010-01-01

    This study was conducted to investigate the prevalence of Leptospira species in Mazandaran Province of Iran by using nested polymerase chain reaction (PCR)/restriction fragment length polymorphism (RFLP) methods and sequencing analysis. Blood samples (n = 119) were collected from humans suspected of having leptospirosis from different parts of the province in 2007. By using an indirect immunofluorescent antibody test (IFAT), we determined that 35 (29.4%) of 119 suspected cases had leptospiral antibody titers ≥ 1:80, which confirmed the diagnosis of leptospirosis. Nested PCR assay also determined that 60 (50.4%) of 119 samples showed Leptospira infection. Furthermore, 44 (73.3%) of 60 confirmed leptospirosis amplified products were subjected to sequencing analysis. Sequence alignment identified L. interrogans, L. kirschneri, and L. wolffii species. All positive cases diagnosed by IFAT or PCR were in patients who reported contact with animals, high-risk occupational activities, and exposure to contaminated water. Therefore, it is important to increase attention about this disease among physicians and to strengthen laboratory capacity for its diagnosis in infected patients in Iran. PMID:20439973

  5. Restriction fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the mosquito Aedes aegypti

    SciTech Connect

    Severson, D.W.; Thathy, V.; Mori, A.

    1995-04-01

    Susceptibility of the mosquito Aedes aegypti to the malarial parasite Plasmodium gallinaceum was investigated as a quantitative trait using restriction fragment length polymorphisms (RFLP). Two F{sub 2} populations of mosquitoes were independently prepared from pairwise matings between a highly susceptible and a refractory strain of A. aegypti. RFLP were tested for association with oocyst development on the mosquito midgut. Two putative quantitative trait loci (QTL) were identified that significantly affect susceptibility. One QTL, pgs [2,LF98], is located on chromosome 2 and accounted for 65 and 49% of the observed phenotypic variance in the two populations, respectively. A second QTL, pgs[3,MalI], is located on chromosome 3 and accounted for 14 and 10% of the observed phenotypic variance in the two populations, respectively. Both QTL exhibit a partial dominance effect on susceptibility, wherein the dominance effect is derived from the refractory parent. No indication of epistasis between these QTL was detected. Evidence suggests that either a tightly linked cluster of independent genes or a single locus affecting susceptibility to various mosquito-borne parasites and pathogens has evolved near the LF98 locus; in addition to P. gallinaceum susceptibility, this general genome region has previously been implicated in susceptibility to the filaria nematode Brugia malayi and the yellow fever virus. 35 refs., 2 figs., 3 tabs.

  6. Functional Coupling of Duplex Translocation to DNA Cleavage in a Type I Restriction Enzyme

    PubMed Central

    Csefalvay, Eva; Lapkouski, Mikalai; Guzanova, Alena; Csefalvay, Ladislav; Baikova, Tatsiana; Bialevich, Vitali; Shamayeva, Katsiaryna; Janscak, Pavel; Kuta Smatanova, Ivana; Panjikar, Santosh; Carey, Jannette; Weiserova, Marie; Ettrich, Rüdiger

    2015-01-01

    Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA cleavage and ATP-dependent DNA translocation activities located on motor subunit HsdR. Functional coupling of DNA cleavage and translocation is a hallmark of the Type I restriction systems that is consistent with their proposed role in horizontal gene transfer. DNA cleavage occurs at nonspecific sites distant from the cognate recognition sequence, apparently triggered by stalled translocation. The X-ray crystal structure of the complete HsdR subunit from E. coli plasmid R124 suggested that the triggering mechanism involves interdomain contacts mediated by ATP. In the present work, in vivo and in vitro activity assays and crystal structures of three mutants of EcoR124I HsdR designed to probe this mechanism are reported. The results indicate that interdomain engagement via ATP is indeed responsible for signal transmission between the endonuclease and helicase domains of the motor subunit. A previously identified sequence motif that is shared by the RecB nucleases and some Type I endonucleases is implicated in signaling. PMID:26039067

  7. The effects of chromium(III) on DNA replication across O{sup 6}. Methylguanine by DNA polymerase {beta} and E. coli DNA polymerase I-Klenow fragment

    SciTech Connect

    Singh, J.; Su, L.; Snow, E.T.

    1995-11-01

    We are investigating the molecular mechanisms of how metal ions affect the fidelity of DNA replication. In our DNA replication system primed templates site-specifically modified with a model mutagenic lesion. O{sup 6}-methyldeoxyguanosine (O{sup 6}mG), are replicated in vitro by various purified DNA polymerases. O{sup 6}mG blocks DNA replication by human DNA polymerase {beta} but is less inhibitory to E. coli DNA Polymerase I-Klenow Fragment (KF) and its 3`-5` exonuclease deficient counterpart [KF (exo{sup {minus}})]. All three DNA polymerases exhibit a strong prelesion block and decreased rates of nucleotide extension. Polymerase {beta} exhibits discrimination against the incorporation of the right (dC) versus the wrong (dT) base. dT is incorporated in preference to dC opposite O{sup 6}mG-dT. KF (exo{sup {minus}}), on the other hand, extends the O{sup 6}mG-dT base pair more efficiently than O{sup 6}mG-dC. Thus individual polymerases may have opposing preferences for incorporation versus extension. Our previous studies have shown that chromium (III) [Cr(III)] increases DNA polymerase processivity and lowers the fidelity of DNA replication. At low final concentrations (about 0.1 {mu}M) Cr(III) stimulates the rate of nucleotide incorporation opposite O{sup 6}mG by KF(exo{sup {minus}}) and, to a lesser extent, by polymerase {beta}. Cr(III) does not affect incorporation of dT opposite dA, but decreases by 10-fold the K{sub M} for incorporation of dT opposite O{sup 6}mG. This constitutes an important mutagenic effect. Further experiments are underway to determine how Cr(III) affects the DNA binding and kinetic parameters of these exonuclease deficient DNA repair polymerases.

  8. The roles of family B and D DNA polymerases in Thermococcus species 9°N Okazaki fragment maturation.

    PubMed

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F

    2015-05-15

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. PMID:25814667

  9. DNA fragmentation pattern in human fibroblasts after irradiation with iron ions

    NASA Astrophysics Data System (ADS)

    Campa, Alessandro

    In this work we studied the fragmentation pattern produced by the double stand breaks (DSB) induced in AG1522 primary human fibroblasts by two different iron beams, one of energy 414 MeV/u, and the other of energy 115 MeV/u (with dose-average LET in water equal to 202 keV/µm and 442 keV/µm, respectively). Irradiation with several doses up to 200 Gy was performed at the HIMAC facility of the National Institute of Radiological Sciences, Chiba, Japan. Experimental data, first obtained for fragments belonging to the size ranges 23-1000 kbp and 1000-5700 kbp (Belli et al., 2006), have successively been obtained also for fragments belonging to the size ranges 1-9 kbp and 9-23 kbp; the experimental analysis was performed with pulsed and constant field electrophoresis. The RBE for DSB production was evaluated in two different fragment size ranges (i.e., 23-5700 kbp and 1-5700 kbp), and it was found larger for the wider size range, especially for the beam with the higher LET. The experimental results have been compared to those computed on the basis of the Monte Carlo PARTRAC simulation code, following the line of research started in Campa et al. (2005), and exploiting the recent update of the PARTRAC code to ions heavier than helium (Friedland et al., 2006). Because the agreement has been found satisfactory for both radiation qualities, the spectra outside the experimentally observable fragment size range were also computed in order to evaluate the overall fragmentation pattern. The marked increases of the RBEs for DSB production, obtained when also the very small fragments (< 1 kbp) are included, makes them closer to the RBE values observed for the late cellular effects. This finding is a further indication for the biological significance of the spatial correlation of DSB at short distances. This work was partially supported by ASI (Italian Space Agency, "Mo-Ma/COUNT" project). References M. Belli, A. Campa, V. Dini, G. Esposito, Y. Furusawa, G. Simone, E. Sorrentino and M. A. Tabocchini. DNA fragmentation induced in human fibroblasts by accelerated 56 Fe ions of differing energies. Radiat. Res. 165, 713-720 (2006). A. Campa, F. Ballarini, M. Belli, R. Cherubini, V. Dini, G. Esposito, W. Friedland, S. Gerardi, S. Molinelli, A. Ottolenghi, H. G. Paretzke, G. Simone and M. A. Tabocchini. DNA DSB induced in human cells by charged particles and gamma rays: experimental results and theoretical approaches. Int. J. Radiat. Biol. 81, 841-854 (2005). W. Friedland, P. Jacob, H. G. Paretzke, A. Ottolenghi, F. Ballarini and M. Liotta. Simulation of light ion induced DNA damge patterns. Radiat. Prot. Dosim. 122, 116-120 (2006).

  10. [Inhibitory Properties of Nitrogen-Containing Adamantane Derivatives with Monoterpenoid Fragments Against Tyrosyl-DNA Phosphodiesterase I].

    PubMed

    Zakharenko, A L; Ponomarev, K U; Suslov, E V; Korchagina, D V; Volcho, K P; Vasil'eva, I A; Salakhutdinov, N F; Lavrik, O I

    2015-01-01

    It was found that compounds combining diazaadamantane and monoterpenoid fragments are potent inhibitors of new structural type of human recombinant DNA repair enzyme Tyrosyl-DNA phosphodiesterase I (Tdp1). It was demonstrated that the inhibition efficiency depended on the length and flexibility of the aliphatic chain of the substituent. PMID:27125028

  11. Simultaneous monitoring of DNA fragments separated by electrophoresis in a multiplexed array of 100 capillaries

    SciTech Connect

    Ueno, Kyoji; Yeung, E.S. )

    1994-05-01

    Various excitation schemes for distributing a laser beam to a large number of capillaries in an array are evaluated. This led to the construction of a multiplexed system for monitoring the electrophoresis of DNA fragments in 100 capillaries. The laser-excited fluorescence signals from each capillary are simultaneously recorded at the rate of 0.6 frame/s by a CCD camera. The reconstructed electropherograms show excellent reproducibility and minimal cross-talk. The system provides for two simultaneous excitation wavelengths so that it can be adapted for two-color, two-intensity DNA sequencing based on the commercial four-dye chemistry. Only 20 mW per laser line was employed. Further development of this system to accommodate up to 4096 independent sequencing channels at a time is discussed. 26 refs., 6 figs., 2 tabs.

  12. Assessment of genetic diversity among strains of Pseudomonas syringae by PCR-restriction fragment length polymorphism analysis of rRNA operons with special emphasis on P. syringae pv. tomato.

    PubMed Central

    Manceau, C; Horvais, A

    1997-01-01

    Phylogenetic relationships among 77 bacterial strains belonging to Pseudomonas syringae and Pseudomonas viridiflava species were assessed by analysis of the PCR-restriction fragment length polymorphism (RFLP) patterns of three DNA fragments corresponding to rrs and rrl genes and the internal transcribed spacer, ITS1. No difference among all strains in rrs and rrl genes was observed with 14 restriction enzymes, which confirms the close relationships existing between these two species. The nucleotidic sequence of the internal transcripted spacer (ITS1) between rrs and rrl for the P. syringae pv. syringae strain CFBP1392 was determined. Restriction maps of the PCR-amplified ITS1 region were prepared and compared for all 77 strains. Seventeen RFLP patterns, forming three main clusters, were distinguished. One contained all strains of P. syringae pv. tomato and of other pathovars which had been previously described as closely related by either pathogenicity studies or biochemical analyses. This cluster was equally far from P. viridiflava and from other P. syringae pathovars. These other pathovars of P. syringae formed a less coherent taxon. PMID:9023928

  13. Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes.

    PubMed

    Chand, Mahesh K; Nirwan, Neha; Diffin, Fiona M; van Aelst, Kara; Kulkarni, Manasi; Pernstich, Christian; Szczelkun, Mark D; Saikrishnan, Kayarat

    2015-11-01

    Production of endonucleolytic double-strand DNA breaks requires separate strand cleavage events. Although catalytic mechanisms for simple, dimeric endonucleases are known, there are many complex nuclease machines that are poorly understood. Here we studied the single polypeptide Type ISP restriction-modification (RM) enzymes, which cleave random DNA between distant target sites when two enzymes collide after convergent ATP-driven translocation. We report the 2.7-Å resolution X-ray crystal structure of a Type ISP enzyme-DNA complex, revealing that both the helicase-like ATPase and nuclease are located upstream of the direction of translocation, an observation inconsistent with simple nuclease-domain dimerization. Using single-molecule and biochemical techniques, we demonstrate that each ATPase remodels its DNA-protein complex and translocates along DNA without looping it, leading to a collision complex in which the nuclease domains are distal. Sequencing of the products of single cleavage events suggests a previously undescribed endonuclease model, where multiple, stochastic strand-nicking events combine to produce DNA scission. PMID:26389736

  14. PyroTRF-ID: a novel bioinformatics methodology for the affiliation of terminal-restriction fragments using 16S rRNA gene pyrosequencing data

    PubMed Central

    2012-01-01

    Background In molecular microbial ecology, massive sequencing is gradually replacing classical fingerprinting techniques such as terminal-restriction fragment length polymorphism (T-RFLP) combined with cloning-sequencing for the characterization of microbiomes. Here, a bioinformatics methodology for pyrosequencing-based T-RF identification (PyroTRF-ID) was developed to combine pyrosequencing and T-RFLP approaches for the description of microbial communities. The strength of this methodology relies on the identification of T-RFs by comparison of experimental and digital T-RFLP profiles obtained from the same samples. DNA extracts were subjected to amplification of the 16S rRNA gene pool, T-RFLP with the HaeIII restriction enzyme, 454 tag encoded FLX amplicon pyrosequencing, and PyroTRF-ID analysis. Digital T-RFLP profiles were generated from the denoised full pyrosequencing datasets, and the sequences contributing to each digital T-RF were classified to taxonomic bins using the Greengenes reference database. The method was tested both on bacterial communities found in chloroethene-contaminated groundwater samples and in aerobic granular sludge biofilms originating from wastewater treatment systems. Results PyroTRF-ID was efficient for high-throughput mapping and digital T-RFLP profiling of pyrosequencing datasets. After denoising, a dataset comprising ca. 10′000 reads of 300 to 500 bp was typically processed within ca. 20 minutes on a high-performance computing cluster, running on a Linux-related CentOS 5.5 operating system, enabling parallel processing of multiple samples. Both digital and experimental T-RFLP profiles were aligned with maximum cross-correlation coefficients of 0.71 and 0.92 for high- and low-complexity environments, respectively. On average, 63±18% of all experimental T-RFs (30 to 93 peaks per sample) were affiliated to phylotypes. Conclusions PyroTRF-ID profits from complementary advantages of pyrosequencing and T-RFLP and is particularly adapted for optimizing laboratory and computational efforts to describe microbial communities and their dynamics in any biological system. The high resolution of the microbial community composition is provided by pyrosequencing, which can be performed on a restricted set of selected samples, whereas T-RFLP enables simultaneous fingerprinting of numerous samples at relatively low cost and is especially adapted for routine analysis and follow-up of microbial communities on the long run. PMID:23270314

  15. AFLP: a new technique for DNA fingerprinting.

    PubMed Central

    Vos, P; Hogers, R; Bleeker, M; Reijans, M; van de Lee, T; Hornes, M; Frijters, A; Pot, J; Peleman, J; Kuiper, M

    1995-01-01

    A novel DNA fingerprinting technique called AFLP is described. The AFLP technique is based on the selective PCR amplification of restriction fragments from a total digest of genomic DNA. The technique involves three steps: (i) restriction of the DNA and ligation of oligonucleotide adapters, (ii) selective amplification of sets of restriction fragments, and (iii) gel analysis of the amplified fragments. PCR amplification of restriction fragments is achieved by using the adapter and restriction site sequence as target sites for primer annealing. The selective amplification is achieved by the use of primers that extend into the restriction fragments, amplifying only those fragments in which the primer extensions match the nucleotides flanking the restriction sites. Using this method, sets of restriction fragments may be visualized by PCR without knowledge of nucleotide sequence. The method allows the specific co-amplification of high numbers of restriction fragments. The number of fragments that can be analyzed simultaneously, however, is dependent on the resolution of the detection system. Typically 50-100 restriction fragments are amplified and detected on denaturing polyacrylamide gels. The AFLP technique provides a novel and very powerful DNA fingerprinting technique for DNAs of any origin or complexity. Images PMID:7501463

  16. Investigation on the Origin of Sperm DNA Fragmentation: Role of Apoptosis, Immaturity and Oxidative Stress

    PubMed Central

    Muratori, Monica; Tamburrino, Lara; Marchiani, Sara; Cambi, Marta; Olivito, Biagio; Azzari, Chiara; Forti, Gianni; Baldi, Elisabetta

    2015-01-01

    Sperm DNA fragmentation (sDF) represents a threat to male fertility, human reproduction and the health of the offspring. The causes of sDF are still unclear, even if apoptosis, oxidative assault and defects in chromatin maturation are hypothesized. Using multicolor flow cytometry and sperm sorting, we challenged the three hypothesized mechanisms by simultaneously evaluating sDF and signs of oxidative damage (8-hydroxy, 2′-deoxyguanosine [8-OHdG] and malondialdehyde [MDA]), apoptosis (caspase activity and cleaved poly[ADP-ribose] polymerase [cPARP]) and sperm immaturity (creatine phosphokinase [CK] and excess of residual histones). Active caspases and c-PARP were concomitant with sDF in a high percentage of spermatozoa (82.6% ± 9.1% and 53.5% ± 16.4%, respectively). Excess of residual histones was significantly higher in DNA-fragmented sperm versus sperm without DNA fragmentation (74.8% ± 17.5% and 37.3% ± 16.6%, respectively, p < 0.005), and largely concomitant with active caspases. Conversely, oxidative damage was scarcely concomitant with sDF in the total sperm population, at variance with live sperm, where 8-OHdG and MDA were clearly associated to sDF. In addition, most live cells with active caspase also showed 8-OHdG, suggesting activation of apoptotic pathways in oxidative-injured live cells. This is the first investigation on the origin of sDF directly evaluating the simultaneous presence of the signs of the hypothesized mechanisms with DNA breaks at the single cell level. The results indicate that the main pathway leading to sperm DNA breaks is a process of apoptosis, likely triggered by an impairment of chromatin maturation in the testis and by oxidative stress during the transit in the male genital tract. These findings are highly relevant for clinical studies on the effects of drugs on sDF and oxidative stress in infertile men and for the development of new therapeutic strategies. PMID:25786204

  17. Investigation on the Origin of Sperm DNA Fragmentation: Role of Apoptosis, Immaturity and Oxidative Stress.

    PubMed

    Muratori, Monica; Tamburrino, Lara; Marchiani, Sara; Cambi, Marta; Olivito, Biagio; Azzari, Chiara; Forti, Gianni; Baldi, Elisabetta

    2015-01-01

    Sperm DNA fragmentation (sDF) represents a threat to male fertility, human reproduction and the health of the offspring. The causes of sDF are still unclear, even if apoptosis, oxidative assault and defects in chromatin maturation are hypothesized. Using multicolor flow cytometry and sperm sorting, we challenged the three hypothesized mechanisms by simultaneously evaluating sDF and signs of oxidative damage (8-hydroxy, 2'-deoxyguanosine [8-OHdG] and malondialdehyde [MDA]), apoptosis (caspase activity and cleaved poly[ADP-ribose] polymerase [cPARP]) and sperm immaturity (creatine phosphokinase [CK] and excess of residual histones). Active caspases and c-PARP were concomitant with sDF in a high percentage of spermatozoa (82.6% ± 9.1% and 53.5% ± 16.4%, respectively). Excess of residual histones was significantly higher in DNA-fragmented sperm versus sperm without DNA fragmentation (74.8% ± 17.5% and 37.3% ± 16.6%, respectively, p < 0.005), and largely concomitant with active caspases. Conversely, oxidative damage was scarcely concomitant with sDF in the total sperm population, at variance with live sperm, where 8-OHdG and MDA were clearly associated to sDF. In addition, most live cells with active caspase also showed 8-OHdG, suggesting activation of apoptotic pathways in oxidative-injured live cells. This is the first investigation on the origin of sDF directly evaluating the simultaneous presence of the signs of the hypothesized mechanisms with DNA breaks at the single cell level. The results indicate that the main pathway leading to sperm DNA breaks is a process of apoptosis, likely triggered by an impairment of chromatin maturation in the testis and by oxidative stress during the transit in the male genital tract. These findings are highly relevant for clinical studies on the effects of drugs on sDF and oxidative stress in infertile men and for the development of new therapeutic strategies. PMID:25786204

  18. ERp57/PDIA3 binds specific DNA fragments in a melanoma cell line.

    PubMed

    Aureli, Cristina; Gaucci, Elisa; Arcangeli, Valentina; Grillo, Caterina; Eufemi, Margherita; Chichiarelli, Silvia

    2013-07-25

    ERp57/PDIA3 is a ubiquitously expressed disulfide isomerase protein, which acts in concert with calreticulin and calnexin in the folding of glycoproteins destined to the plasma membrane or to be secreted. Its canonical compartment is the endoplasmic reticulum, where it acts as a chaperone and redox catalyst, but non canonical locations have been described as well, and ERp57 has been found associated with DNA and nuclear proteins. In previous work performed in HeLa cells, ERp57 has been demonstrated to bind specific DNA sequences involved in the stress response. The direct interaction with the DNA sequences identified as ERp57-targeted regions in HeLa cells has now been confirmed in a melanoma cell line. Furthermore, the ERp57 silencing, achieved by RNA interference, has produced a significant down-regulation of the expression of target genes. The possible involvement of other proteins in complex with ERp57 has been studied by an in vitro biotin-streptavidin based binding assay and the interacting protein APE/Ref-1 has been also assessed for its direct association with the ERp57 target regions. In conclusion, nuclear ERp57 interacts in vivo with DNA fragments in melanoma cells and is potentially involved in the transcriptional regulation of its target genes. PMID:23587917

  19. Sex Determination in Highly Fragmented Human DNA by High-Resolution Melting (HRM) Analysis

    PubMed Central

    Álvarez-Sandoval, Brenda A.; Manzanilla, Linda R.; Montiel, Rafael

    2014-01-01

    Sex identification in ancient human remains is a common problem especially if the skeletons are sub-adult, incomplete or damaged. In this paper we propose a new method to identify sex, based on real-time PCR amplification of small fragments (61 and 64 bp) of the third exon within the amelogenin gene covering a 3-bp deletion on the AMELX-allele, followed by a High Resolution Melting analysis (HRM). HRM is based on the melting curves of amplified fragments. The amelogenin gene is located on both chromosomes X and Y, showing dimorphism in length. This molecular tool is rapid, sensitive and reduces the risk of contamination from exogenous genetic material when used for ancient DNA studies. The accuracy of the new method described here has been corroborated by using control samples of known sex and by contrasting our results with those obtained with other methods. Our method has proven to be useful even in heavily degraded samples, where other previously published methods failed. Stochastic problems such as the random allele drop-out phenomenon are expected to occur in a less severe form, due to the smaller fragment size to be amplified. Thus, their negative effect could be easier to overcome by a proper experimental design. PMID:25098828

  20. The AT-Hook motif as a versatile minor groove anchor for promoting DNA binding of transcription factor fragments

    PubMed Central

    Rodríguez, Jéssica; Mosquera, Jesús; Couceiro, Jose R.; Vázquez, M. Eugenio; Mascareñas, José L.

    2015-01-01

    We report the development of chimeric DNA binding peptides comprising a DNA binding fragment of natural transcription factors (the basic region of a bZIP protein or a monomeric zinc finger module) and an AT-Hook peptide motif. The resulting peptide conjugates display high DNA affinity and excellent sequence selectivity. Furthermore, the AT-Hook motif also favors the cell internalization of the conjugates. PMID:26290687

  1. Klenow Fragment Discriminates against the Incorporation of the Hyperoxidized dGTP Lesion Spiroiminodihydantoin into DNA.

    PubMed

    Huang, Ji; Yennie, Craig J; Delaney, Sarah

    2015-12-21

    Defining the biological consequences of oxidative DNA damage remains an important and ongoing area of investigation. At the foundation of understanding the repercussions of such damage is a molecular-level description of the action of DNA-processing enzymes, such as polymerases. In this work, we focus on a secondary, or hyperoxidized, oxidative lesion of dG that is formed by oxidation of the primary oxidative lesion, 2'-deoxy-8-oxo-7,8-dihydroguanosine (8-oxodG). In particular, we examine incorporation into DNA of the diastereomers of the hyperoxidized guanosine triphosphate lesion spiroiminodihydantoin-2'-deoxynucleoside-5'-triphosphate (dSpTP). Using kinetic parameters, we describe the ability of the Klenow fragment of Escherichia coli DNA polymerase I lacking 3' → 5' exonuclease activity (KF(-)) to utilize (S)-dSpTP and (R)-dSpTP as building blocks during replication. We find that both diastereomers act as covert lesions, similar to a Trojan horse: KF(-) incorporates the lesion dNTP opposite dC, which is a nonmutagenic event; however, during the subsequent replication, it is known that dSp is nearly 100% mutagenic. Nevertheless, using kpol/Kd to define the nucleotide incorporation specificity, we find that the extent of oxidation of the dGTP-derived lesion correlates with its ability to be incorporated into DNA. KF(-) has the highest specificity for incorporation of dGTP opposite dC. The selection factors for incorporating 8-oxodGTP, (S)-dSpTP, and (R)-dSpTP are 1700-, 64000-, and 850000-fold lower, respectively. Thus, KF(-) is rigorous in its discrimination against incorporation of the hyperoxidized lesion, and these results suggest that the specificity of cellular polymerases provides an effective mechanism to avoid incorporating dSpTP lesions into DNA from the nucleotide pool. PMID:26572218

  2. Monte Carlo predictions of DNA fragment-size distributions for large sizes after HZE particle irradiation

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Cucinotta, F. A.; Sachs, R. K.; Brenner, D. J.

    2001-01-01

    DSBs (double-strand breaks) produced by densely ionizing space radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. DSB clustering at large scales, from >100 Mbp down to approximately 2 kbp, is modeled using a Monte-Carlo algorithm. A random-walk model of chromatin is combined with a track model, that predicts the radial distribution of energy from an ion, and the RLC (randomly-located-clusters) formalism, in software called DNAbreak. This model generalizes the random-breakage model, whose broken-stick fragment-size distribution is applicable to low-LET radiation. DSB induction due to track interaction with the DNA volume depends on the radiation quality parameter Q. This dose-independent parameter depends only weakly on LET. Multi-track, high-dose effects depend on the cluster intensity parameter lambda, proportional to fluence as defined by the RLC formalism. After lambda is determined by a numerical experiment, the model reduces to one adjustable parameter Q. The best numerical fits to the experimental data, determining Q, are obtained. The knowledge of lambda and Q allows us to give biophysically based extrapolations of high-dose DNA fragment-size data to low doses or to high LETs.

  3. Restricted infectivity of ecotropic type C retroviruses in mouse teratocarcinoma cells: studies on viral DNA intermediates

    SciTech Connect

    Yang, W.K.; d'Auriol, L.; Yang, D.M.; Kiggans, J.O. Jr.; Ou, C.Y.; Peries, J.; Emanoil-Ravicovitch, R.

    1980-01-01

    Infectivity of retroviruses in cultured murine teratocarcinoma cells was found to be affected by the state of cellular differentiation. Present studies utilize two kinds of cell cultures from teratocarcinomas of mouse strain 129, an undifferentiated pluriopotential cell line (PCC/sub 4/) and a myoblast-derived cell line (PCD/sub 1/) which are respectively resistant and susceptible to the infection of Gross strain N-tropic type C retrovirus. Analyses of the appearance of free viral DNA intermediates in these cells from 4 to 78 h after virus inoculation were made. In both PCD/sub 1/ and PCC/sub 4/ cells, virus inoculation induced the formation of one linear form (III) and two covalently-closed supercoiled circular forms (I) of viral DNA duplexes; the linear form showing its appearance, increase, and decline in the 4 to 18 h period, and the circular forms in the 8 to 24 h period. In the period of 56 to 78 h after virus inoculation, a secondary burst of viral DNA synthesis occurred in PCD/sub 1/ cells, whereas both linear and supercoiled viral DNA duplexes became undetectable in PCC/sub 4/ cells. Free and unintegrated viral DNA preparations from PCD/sub 1/ and PCC/sub 4/ cells 10 h after virus inoculation were both infectious for N3T3 cells in a DNA transfection assay. Both PCD/sub 1/ and PCC/sub 4/ cells were very poor recipients for DNA transfection. These results indicate that restriction of retrovirus in undifferentiated teratocarcinoma cells occurs at a step beyond formation and maturation of viral DNA intermediates. (ERB)

  4. Validation of a field based chromatin dispersion assay to assess sperm DNA fragmentation in the bottlenose dolphin (Tursiops truncatus).

    PubMed

    Sánchez-Calabuig, M-J; López-Fernández, C; Martínez-Nevado, E; Pérez-Gutiérrez, J F; de la Fuente, J; Johnston, S D; Blyde, D; Harrison, K; Gosálvez, J

    2014-10-01

    Over the last two decades, there have been significant advances in the use of assisted reproductive technology for genetic and reproductive management of captive dolphin populations, including evaluation of sperm DNA quality. This study validated a customized sperm chromatin dispersion test (SCDt) for the bottlenose dolphin (Tursiops truncatus) as a means of assessing sperm DNA damage both in the field and in the laboratory. After performing the SCDt, two different sperm morphotypes were identified: (i) sperm with fragmented DNA showed large haloes of dispersed DNA fragments emerging from a compact sperm nucleoid core and (ii) sperm containing non-fragmented DNA displayed small compact haloes surrounded by a dense core of non-dispersed DNA and protein complex. Estimates of sperm DNA fragmentation by means of SCDt were directly comparable to results obtained following a two-tailed comet assay and showed a significant degree of correlation (r = 0.961; p < 0.001). This investigation also revealed that the SCDt, with minor modifications to the standard protocol, can be successfully conducted in the field using a LED florescence microscopy obtaining a high correlation (r = 0.993; p = 0.01) between the data obtained in the laboratory and in the field. PMID:25130370

  5. Comparative assessment of next-generation sequencing, denaturing gradient gel electrophoresis, clonal restriction fragment length polymorphism and cloning-sequencing as methods for characterizing commercial microbial consortia.

    PubMed

    Samarajeewa, A D; Hammad, A; Masson, L; Khan, I U H; Scroggins, R; Beaudette, L A

    2015-01-01

    Characterization of commercial microbial consortia products for human and environmental health risk assessment is a major challenge for regulatory agencies. As a means to develop an approach to assess the potential environmental risk of these products, research was conducted to compare four genomics methods for characterizing bacterial communities; (i) Denaturing Gradient Gel Electrophoresis (DGGE), (ii) Clonal-Restriction Fragment Length Polymorphism (C/RFLP), (iii) partial 16S rDNA amplification, cloning followed by Sanger sequencing (PRACS) and (iv) Next-Generation Sequencing (NGS) based on Ion Torrent technology. A commercially available microbial consortium, marketed as a remediation agent for degrading petroleum hydrocarbon contamination in soil and water, was assessed. The bacterial composition of the commercial microbial product was characterized using the above four methods. PCR amplification of 16S rDNA was performed targeting the variable region V6 for DGGE, C/RFLP and PRACS and V5 for Ion Torrent sequencing. Ion Torrent technology was shown to be a promising tool for initial screening by detecting the majority of bacteria in the consortium that were also detected by DGGE, C/RFLP and PRACS. Additionally, Ion Torrent sequencing detected some of the bacteria that were claimed to be in the product, while three other methods failed to detect these specific bacteria. However, the relative proportions of the microbial composition detected by Ion Torrent were found to be different from DGGE, C/RFLP and PRACS, which gave comparable results across these three methods. The discrepancy of the Ion Torrent results may be due to the short read length generated by this technique and the targeting of different variable regions on the 16S rRNA gene used in this study. Arcobacter spp. a potential pathogenic bacteria was detected in the product by all methods, which was further confirmed using genus and species-specific PCR, RFLP and DNA-based sequence analyses. However, the viability of Arcobacter spp. was not confirmed. This study suggests that a combination of two or more methods may be required to ascertain the microbial constituents of a commercial microbial consortium reliably and for the presence of potentially human pathogenic contaminants. PMID:25479430

  6. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    PubMed

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. PMID:26682627

  7. Single molecular investigation of DNA looping and aggregation by restriction endonuclease BspMI

    PubMed Central

    Wang, Yanwei; Ran, Shiyong; Yang, Guangcan

    2014-01-01

    DNA looping and aggregation induced by restriction endonuclease BspMI are studied by atomic force microscopy (AFM) and magnetic tweezers (MT). With Ca2+ substituted for the normal enzyme cofactor Mg2+ and enzyme concentration below the critical concentration of 6?units/mL, AFM images of DNA-BspMI complex show that the number of binding and looping events increases with enzyme concentration. At the critical concentration 6 of units/mL, all the BspMI binding sites are saturated. It is worth noting that nonspecific BspMI binding to DNA at saturation concentration represents more than 8% of the total BspMI-DNA complexes directly observed in AFM images. Furthermore, we used MT to prove that additional loops can form when enzyme concentration is higher than its saturation valueand the complex is incubated for a long time (>2?hrs). We ascribe this phenomenon to the aggregation of enzymes. The force spectroscopy of the BspMI-DNA complex shows that the pulling force required to open the loop of the complex at less than saturation concentration has a peak at about 3?pN, which is lower than the force required to open additional loops due to enzyme aggregation at higher than saturation concentration (>6?pN). PMID:25077775

  8. The Role of DNA Restriction-Modification Systems in the Biology of Bacillus anthracis.

    PubMed

    Sitaraman, Ramakrishnan

    2016-01-01

    Restriction-modification (R-M) systems are widespread among prokaryotes and, depending on their type, may be viewed as selfish genetic elements that persist as toxin-antitoxin modules, or as cellular defense systems against phage infection that confer a selective advantage to the host bacterium. Studies in the last decade have made it amply clear that these two options do not exhaust the list of possible biological roles for R-M systems. Their presence in a cell may also have a bearing on other processes such as horizontal gene transfer and gene regulation. From genome sequencing and experimental data, we know that Bacillus anthracis encodes at least three methylation-dependent (typeIV) restriction endonucleases (RE), and an orphan DNA methyltransferase. In this article, we first present an outline of our current knowledge of R-M systems in B. anthracis. Based on available DNA sequence data, and on our current understanding of the functions of similar genes in other systems, we conclude with hypotheses on the possible roles of the three REs and the orphan DNA methyltransferase. PMID:26834729

  9. DNA Methylation Pattern in Overweight Women under an Energy-Restricted Diet Supplemented with Fish Oil

    PubMed Central

    do Amaral, Cátia Lira; Milagro, Fermín I.; Curi, Rui; Martínez, J. Alfredo

    2014-01-01

    Dietary factors modulate gene expression and are able to alter epigenetic signatures in peripheral blood mononuclear cells (PBMC). However, there are limited studies about the effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) on the epigenetic mechanisms that regulate gene expression. This research investigates the effects of n-3-rich fish oil supplementation on DNA methylation profile of several genes whose expression has been reported to be downregulated by n-3 PUFA in PBMC: CD36, FFAR3, CD14, PDK4, and FADS1. Young overweight women were supplemented with fish oil or control in a randomized 8-week intervention trial following a balanced diet with 30% energy restriction. Fatty acid receptor CD36 decreased DNA methylation at CpG +477 due to energy restriction. Hypocaloric diet-induced weight loss also reduced the methylation percentages of CpG sites located in CD14, PDK4, and FADS1. The methylation patterns of these genes were only slightly affected by the fish oil supplementation, being the most relevant to the attenuation of the weight loss-induced decrease in CD36 methylation after adjusting by baseline body weight. These results suggest that the n-3 PUFA-induced changes in the expression of these genes in PBMC are not mediated by DNA methylation, although other epigenetic mechanisms cannot be discarded. PMID:24579084

  10. Electrochemical biosensor modified with dsDNA monolayer for restriction enzyme activity determination.

    PubMed

    Zajda, Joanna; Górski, Łukasz; Malinowska, Elżbieta

    2016-06-01

    A simple and cost effective method for the determination of restriction endonuclease activity is presented. dsDNA immobilized at a gold electrode surface is used as the enzymatic substrate, and an external cationic redox probe is employed in voltammetric measurements for analytical signal generation. The assessment of enzyme activity is based on a decrease of a current signal derived from reduction of methylene blue which is present in the sample solution. For this reason, the covalent attachment of the label molecule is not required which significantly reduces costs of the analysis and simplifies the entire determination procedure. The influence of buffer components on utilized dsDNA/MCH monolayer stability and integrity is also verified. Electrochemical impedance spectroscopy measurements reveal that due to pinhole formation during enzyme activity measurement the presence of any surfactants should be avoided. Additionally, it is shown that the sensitivity of the electrochemical biosensor can be tuned by changing the restriction site location along the DNA length. Under optimal conditions the proposed biosensor exhibits a linear response toward PvuII activity within a range from 0.25 to 1.50U/μL. PMID:26859430

  11. DNA Sequence Effects on Single Base Deletions Arising during DNA Polymerization in Vitro by Escherichia Coli Klenow Fragment Polymerase

    PubMed Central

    Wang, F. J.; Ripley, L. S.

    1994-01-01

    Most single base deletions detected after DNA polymerization in vitro directed by either Escherichia coli DNA polymerase I or its Klenow fragment are opposite Pu in the template. The most frequent study, were previously found to be associated with the consensus template context 5'-PyTPu-3'. In this study, the predictive power of the consensus sequence on single base deletion frequencies was directly tested by parallel comparison of mutations arising in four related DNAs differing by a single base. G, a deletion hotspot within the template context 5'-TTGA-3', was substituted by each of the 3 other bases. Previous studies had shown that deletions opposite the G were frequent but that deletions opposite its neighboring A were never detected. Based on the predictions of the consensus, the substitution of T for G should produce frequent deletions opposite the neighboring A due to its new 5'-TTTA-3' template context. This prediction was fulfilled; no deletions of this A were detected in the other templates. The consensus further predicted that deletions opposite template C would be lower than those opposite either A or G at the same site and this prediction was also fulfilled. The C substitution also produced a new hotspot for 1 bp deletions 14 bp away. The new hotspot depends on quasi-palindromic misalignment of the newly synthesized DNA strand during polymerization; accurate, but ectopically templated synthesis is responsible for this mutagenesis. Mutations templated by quasi-palindromic misalignments have previously been recognized when they produced complex sequence changes; here we show that this mechanism can produce frequent single base deletions. The unique stimulation of misalignment mutagenesis by the C substitution in the template is consistent with the singular ability of C at that site to contribute to extended complementary pairing during the DNA misalignment that precedes mutagenesis. PMID:8005428

  12. Recognition of a Nocardia transvalensis complex by resistance to aminoglycosides, including amikacin, and PCR-restriction fragment length polymorphism analysis.

    PubMed

    Wilson, R W; Steingrube, V A; Brown, B A; Blacklock, Z; Jost, K C; McNabb, A; Colby, W D; Biehle, J R; Gibson, J L; Wallace, R J

    1997-09-01

    Amikacin resistance, rare among nocardiae, was observed in 58 clinical isolates of nocardiae. All of these isolates hydrolyzed hypoxanthine, and 75 to 100% utilized citrate, D-galactose, and D-trehalose as sole carbon sources. Based on utilization of I-erythritol, D-glucitol, i-myo-inositol, D-mannitol, and ribitol and susceptibility to amoxicillin-clavulanic acid, the 58 isolates were separable into four groups. One group was negative for I-erythritol and ribitol and included all the isolates belonging to Nocardia asteroides complex antibiogram type IV. The remaining three groups were positive for I-erythritol and ribitol and were grouped within Nocardia transvalensis. The group that included the type strain was designated N. transvalensis sensu stricto, and the other two groups were designated new taxons 1 and 2. PCR-restriction fragment length polymorphism (RFLP) analysis of a 439-bp segment of the 65-kDa heat shock protein gene with XhoI and HinfI produced identical patterns for 53 (91%) and 58 (100%) isolates, respectively, and differentiated them from all other Nocardia taxa. NarI- and HaeIII-derived RFLP patterns clearly differentiated each of the four biochemically defined taxa. These four groups were also distinguishable by using the chromogenic substrates in Dade MicroScan test panels. By high-performance liquid chromatography, these isolates exhibited the same unique mycolic acid-ester elution patterns that differed from those of all other clinically significant nocardiae. Gas-liquid chromatographic analysis of fatty acids also produced similar patterns for all isolates that distinguished them from all other Nocardia taxa, but did not differentiate the four taxa within the complex. We propose the designation N. transvalensis complex for these four groups of nocardiae, pending further genetic evaluation. PMID:9276394

  13. Rumen bacterial community evaluated by 454 pyrosequencing and terminal restriction fragment length polymorphism analyses in dairy sheep fed marine algae.

    PubMed

    Castro-Carrera, T; Toral, P G; Frutos, P; McEwan, N R; Hervás, G; Abecia, L; Pinloche, E; Girdwood, S E; Belenguer, A

    2014-03-01

    Developing novel strategies to increase the content of bioactive unsaturated fatty acids (FA) in ruminant-derived products requires a deeper understanding of rumen biohydrogenation and bacteria involved in this process. Although high-throughput pyrosequencing may allow for a great coverage of bacterial diversity, it has hardly been used to investigate the microbiology of ruminal FA metabolism. In this experiment, 454 pyrosequencing and a molecular fingerprinting technique (terminal restriction fragment length polymorphism; T-RFLP) were used concurrently to assess the effect of diet supplementation with marine algae (MA) on the rumen bacterial community of dairy sheep. Eleven lactating ewes were divided in 2 lots and offered a total mixed ration based on alfalfa hay and concentrate (40:60), supplemented with 0 (control) or 8 (MA) g of MA/kg of dry matter. After 54 d on treatments, animals were slaughtered and samples of rumen content and fluid were collected separately for microbial analysis. Pyrosequencing yielded a greater coverage of bacterial diversity than T-RFLP and allowed the identification of low abundant populations. Conversely, both molecular approaches pointed to similar conclusions and showed that relevant changes due to MA addition were observed within the major ruminal phyla, namely Bacteroidetes, Firmicutes, and Proteobacteria. Decreases in the abundance of unclassified Bacteroidales, Porphyromonadaceae, and Ruminococcaceae and increases in as-yet uncultured species of the family Succinivibrionaceae, might be related to a potential role of these groups in different pathways of rumen FA metabolism. Diet supplementation with MA, however, had no effect on the relative abundance of Butyrivibrio and Pseudobutyrivibrio genera. In addition, results from both 454 pyrosequencing and T-RFLP indicate that the effect of MA was rather consistent in rumen content or fluid samples, despite inherent differences between these fractions in their bacterial composition. PMID:24440247

  14. Mechanism of DNA Recognition by the Restriction Enzyme EcoRV

    SciTech Connect

    Zahran, Mai; Daidone, Isabella; Smith, Jeremy C; Imhof, Petra

    2010-08-01

    EcoRV, a restriction enzyme in Escherichia coli, destroys invading foreign DNA by cleaving it at the center step of a GATATC sequence. In the EcoRV-cognate DNA crystallographic complex, a sharp kink of 50 degrees has been found at the center base-pair step (TA). Here, we examine the interplay between the intrinsic propensity of the cognate sequence to kink and the induction by the enzyme by performing all-atom molecular dynamics simulations of EcoRV unbound and interacting with three DNA sequences: the cognate sequence, GATATC (TA); the non-cognate sequence, GAATTC (AT); and with the cognate sequence methylated on the first adenine GA(CH(3))TATC (TA-CH(3)). In the unbound EcoRV, the cleft between the two C-terminal subdomains is found to be open. Binding to AT narrows the cleft and forms a partially bound state. However, the intrinsic bending propensity of AT is insufficient to allow tight binding. In contrast, the cognate TA sequence is easier to bend, allowing specific, high-occupancy hydrogen bonds to form in the complex. The absence of cleavage for this methylated sequence is found to arise from the loss of specific hydrogen bonds between the first adenine of the recognition sequence and Asn185. On the basis of the results, we suggest a three-step recognition mechanism. In the first step, EcoRV, in an open conformation, binds to the DNA at a random sequence and slides along it. In the second step, when the two outer base pairs, GAxxTC, are recognized, the R loops of the protein become more ordered, forming strong hydrogen-bonding interactions, resulting in a partially bound EcoRV-DNA complex. In the third step, the flexibility of the center base pair is probed, and in the case of the full cognate sequence the DNA bends, the complex strengthens and the protein and DNA interact more closely, allowing cleavage.

  15. Variation of Clonal, Mesquite-Associated Rhizobial and Bradyrhizobial Populations from Surface and Deep Soils by Symbiotic Gene Region Restriction Fragment Length Polymorphism and Plasmid Profile Analysis

    PubMed Central

    Thomas, P. M.; Golly, K. F.; Zyskind, J. W.; Virginia, R. A.

    1994-01-01

    Genetic characteristics of 14 Rhizobium and 9 Bradyrhizobium mesquite (Prosopis glandulosa)-nodulating strains isolated from surface (0- to 0.5-m) and deep (4- to 6-m) rooting zones were determined in order to examine the hypothesis that surface- and deep-soil symbiont populations were related but had become genetically distinct during adaptation to contrasting soil conditions. To examine genetic diversity, Southern blots of PstI-digested genomic DNA were sequentially hybridized with the nodDABC region of Rhizobium meliloti, the Klebsiella pneumoniae nifHDK region encoding nitrogenase structural genes, and the chromosome-localized ndvB region of R. meliloti. Plasmid profile and host plant nodulation assays were also made. Isolates from mesquite nodulated beans and cowpeas but not alfalfa, clover, or soybeans. Mesquite was nodulated by diverse species of symbionts (R. meliloti, Rhizobium leguminosarum bv. phaseoli, and Parasponia bradyrhizobia). There were no differences within the groups of mesquite-associated rhizobia or bradyrhizobia in cross-inoculation response. The ndvB hybridization results showed the greatest genetic diversity among rhizobial strains. The pattern of ndvB-hybridizing fragments suggested that surface and deep strains were clonally related, but groups of related strains from each soil depth could be distinguished. Less variation was found with nifHDK and nodDABC probes. Large plasmids (>1,500 kb) were observed in all rhizobia and some bradyrhizobia. Profiles of plasmids of less than 1,000 kb were related to the soil depth and the genus of the symbiont. We suggest that interacting selection pressures for symbiotic competence and free-living survival, coupled with soil conditions that restrict genetic exchange between surface and deep-soil populations, led to the observed patterns of genetic diversity. Images PMID:16349226

  16. Comparison of human gut microbiota in control subjects and patients with colorectal carcinoma in adenoma: Terminal restriction fragment length polymorphism and next-generation sequencing analyses.

    PubMed

    Kasai, Chika; Sugimoto, Kazushi; Moritani, Isao; Tanaka, Junichiro; Oya, Yumi; Inoue, Hidekazu; Tameda, Masahiko; Shiraki, Katsuya; Ito, Masaaki; Takei, Yoshiyuki; Takase, Kojiro

    2016-01-01

    Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in Japan. The etiology of CRC has been linked to numerous factors including genetic mutation, diet, life style, inflammation, and recently, the gut microbiota. However, CRC-associated gut microbiota is still largely unexamined. This study used terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing (NGS) to analyze and compare gut microbiota of Japanese control subjects and Japanese patients with carcinoma in adenoma. Stool samples were collected from 49 control subjects, 50 patients with colon adenoma, and 9 patients with colorectal cancer (3/9 with invasive cancer and 6/9 with carcinoma in adenoma) immediately before colonoscopy; DNA was extracted from each stool sample. Based on T-RFLP analysis, 12 subjects (six control and six carcinoma in adenoma subjects) were selected; their samples were used for NGS and species-level analysis. T-RFLP analysis showed no significant differences in bacterial population between control, adenoma and cancer groups. However, NGS revealed that i), control and carcinoma in adenoma subjects had different gut microbiota compositions, ii), one bacterial genus (Slackia) was significantly associated with the control group and four bacterial genera (Actinomyces, Atopobium, Fusobacterium, and Haemophilus) were significantly associated with the carcinoma-in-adenoma group, and iii), several bacterial species were significantly associated with each type (control: Eubacterium coprostanoligens; carcinoma in adenoma: Actinomyces odontolyticus, Bacteroides fragiles, Clostridium nexile, Fusobacterium varium, Haemophilus parainfluenzae, Prevotella stercorea, Streptococcus gordonii, and Veillonella dispar). Gut microbial properties differ between control subjects and carcinoma-in-adenoma patients in this Japanese population, suggesting that gut microbiota is related to CRC prevention and development. PMID:26549775

  17. Crystal structures of the Klenow fragment of Thermus aquaticus DNA polymerase I complexed with deoxyribonucleoside triphosphates.

    PubMed Central

    Li, Y.; Kong, Y.; Korolev, S.; Waksman, G.

    1998-01-01

    The crystal structures of the Klenow fragment of the Thermus aquaticus DNA polymerase I (Klentaq1) complexed with four deoxyribonucleoside triphosphates (dNTP) have been determined to 2.5 A resolution. The dNTPs bind adjacent to the O helix of Klentaq1. The triphosphate moieties are at nearly identical positions in all four complexes and are anchored by three positively charged residues, Arg659, Lys663, and Arg587, and by two polar residues, His639 and Gln613. The configuration of the base moieties in the Klentaq1/dNTP complexes demonstrates variability suggesting that dNTP binding is primarily determined by recognition and binding of the phosphate moiety. However, when superimposed on the Taq polymerase/blunt end DNA complex structure (Eom et al., 1996), two of the dNTP/Klentaq1 structures demonstrate appropriate stacking of the nucleotide base with the 3' end of the DNA primer strand, suggesting that at least in these two binary complexes, the observed dNTP conformations are functionally relevant. PMID:9605316

  18. Structure of monoubiquitinated PCNA: implications for DNA polymerase switching and Okazaki fragment maturation.

    PubMed

    Zhang, Zhongtao; Zhang, Sufang; Lin, Szu Hua Sharon; Wang, Xiaoxiao; Wu, Licheng; Lee, Ernest Y C; Lee, Marietta Y W T

    2012-06-01

    Ubiquitination of proliferating cell nuclear antigen (PCNA) to ub-PCNA is essential for DNA replication across bulky template lesions caused by UV radiation and alkylating agents, as ub-PCNA orchestrates the recruitment and switching of translesion synthesis (TLS) polymerases with replication polymerases. This allows replication to proceed, leaving the DNA to be repaired subsequently. Defects in a TLS polymerase, Pol η, lead to a form of Xeroderma pigmentosum, a disease characterized by severe skin sensitivity to sunlight damage and an increased incidence of skin cancer. Structurally, however, information on how ub-PCNA orchestrates the switching of these two classes of polymerases is lacking. We have solved the structure of ub-PCNA and demonstrate that the ubiquitin molecules in ub-PCNA are radially extended away from the PCNA without structural contact aside from the isopeptide bond linkage. This unique orientation provides an open platform for the recruitment of TLS polymerases through ubiquitin-interacting domains. However, the ubiquitin moieties, to the side of the equatorial PCNA plane, can place spatial constraints on the conformational flexibility of proteins bound to ub-PCNA. We show that ub-PCNA is impaired in its ability to support the coordinated actions of Fen1 and Pol δ in assays mimicking Okazaki fragment processing. This provides evidence for the novel concept that ub-PCNA may modulate additional DNA transactions other than TLS polymerase recruitment and switching. PMID:22592530

  19. The measurement of molecular fragments from DNA components using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Fujii, K.; Akamatsu, K.; Yokoya, A.

    2003-03-01

    Photon-stimulated desorption of positive ions from thin film DNA components, 2-deoxy- D-ribose, thymine and guanine, were investigated in the oxygen K-edge excitation region. H +, CH 2+, C 2H 2+, CHO +, C 3H 3+ and C 2HO + were desorbed mainly from the 2-deoxy- D-ribose thin film following oxygen K-edge excitation. The ion yields were obtained as a function of the photon energy. Each spectrum showed a prominent peak structure coinciding with the O 1 s? ??(C-O) excitation energy. These results indicate that the observed ions are produced not only by direct photodecomposition but also by the impact of secondary electrons that the core excitation generates. On the other hand, H + has been observed by irradiation of thymine and guanine thin films, while only insignificant amounts of the other ions were observed. It is shown that the core excitation more drastically degraded the 2-deoxy- D-ribose molecule into small fragments than is the case with the nucleobases. The sugar moiety in DNA is likely to be one of the nor fragile molecular sites, conducive to a single-strand DNA break.

  20. DNA Sequence Fragment Containing C to A Mutation as a Convenient Mutation Standard for DHPLC Analysis

    PubMed Central

    Dastsooz, Hassan; Vahedi, Nazanin; Fardaei, Majid

    2013-01-01

    Objective(s): Denaturing high performance liquid chromatography (DHPLC) is a high throughput approach for screening DNA sequence variations. To assess oven calibration, cartridge performance, buffer composition and stability, the WAVE Low and High Range Mutation Standards are employed to ensure reproducibility and accuracy of the chromatographic analysis. The purpose of this study was to provide a cost-effective homemade mutation standard for DHPLC analysis. Materials and Methods: DHPLC was performed to evaluate different elution temperatures of a 374 bp DNA fragment with C>A mutation at position of 59 to achieve a peak profile similar to the Low Mutation Standard. In order to verify the reproducibility of the homemade mutation standard using DHPLC, 15 different experiments were performed to compare the homemade mutation standard, the WAVE Low Range Mutation Standard with a positive DNA control sample. Results: We identified a comparable elution temperature and a peak profile with the WAVE Low Range Mutation Standard. Conclusion: This study confirmed the reproducibility of the peak profile of our homemade mutation standard compared to the Low Mutation Standard using DHPLC analysis. PMID:24106601

  1. Novel apparatus to measure hyperthermal heavy ion damage to DNA: Strand breaks, base loss, and fragmentation

    SciTech Connect

    Sellami, L.; Lacombe, S.; Hunting, D.; Wagner, R. J.; Huels, M. A.

    2007-08-15

    We have developed a novel apparatus that allows us to irradiate nonvolatile organic films of high mass (1-100 {mu}g range) spread out over a large surface area (42 cm{sup 2}) with low energy (kT-100 eV) heavy ions and to quantitatively analyze the film substance via standard biochemical techniques afterwards. Here we discuss the details of the apparatus and method and show that it allows us to measure substantial damage to double stranded DNA molecules (plasmids) and its fundamental subunits induced by heavy ions with unprecedented low energies, i.e., 2.5 eV/amu; these energies correspond to track end energies of stopping ions or secondary ions created along primary ion tracks. We find that hyperthermal Ar{sup +} ions interacting with plasmid DNA will lead to the formation of single and double strand breaks, as well as fragmentation of nucleosides, which also involve chemical modifications and site specific rupture along the N1-C1 glycosidic bond, resulting in base release. In cells, such localized clustered damage will enhance the severity of DNA strand lesions, thus making them harder to repair.

  2. Risk to fragmented DNA in dry, wet, and frozen states from computed tomography: a comparative theoretical study.

    PubMed

    Wanek, Johann; Rühli, Frank Jakobus

    2016-05-01

    Computed tomography represents the gold standard in forensic and palaeopathological diagnosis. However, the X-rays used may affect the DNA quality through fragmentation and loss of genetic information. Previous work showed that the effects of ionizing radiation on dry DNA are non-significant with P < 10(-8), which cannot be detected by means of polymerase chain reaction methods. In the present paper, complete analytical model that characterizes radiation effects on fragmented DNA in dry, wet, and frozen states is described. Simulation of radiation tracks in water phantom cells was performed using the Geant4-DNA toolkit. Cell hits by electrons with energies between 5 and 20 keV were simulated, and the formation of radiolytic products was assessed at a temperature of 298 K. The diffusion coefficient and the mean square displacement of reactive species were calculated by Stokes-Einstein-Smoluchowski relations at 273 K. Finally, DNA fragment damage was estimated using the density distribution of fragments calculated from atomic force microscopy images. The lowest probability of radiation-induced DNA damage was observed for dry state, with a range from 2.5 × 10(-9) to 7.8 × 10(-12) at 298 K, followed by that for frozen state, with a range from 0.9 to 4 × 10(-7) at 273 K. The highest probability of radiation-induced DNA damage was demonstrated for fragmented DNA in wet state with a range from 2 to 9 × 10(-7) at 298 K. These results significantly improve the interpretation of CT imaging in future studies in forensic and palaeopathological science. PMID:26883247

  3. De Novo DNA Methylation Is Required to Restrict T Helper Lineage Plasticity*

    PubMed Central

    Thomas, Rajan M.; Gamper, Christopher J.; Ladle, Brian H.; Powell, Jonathan D.; Wells, Andrew D.

    2012-01-01

    Naïve CD4+ T cells are highly plastic and can differentiate into discrete lineages with unique functions during an immune response. Once differentiated, helper T cells maintain a stable transcriptional memory of their initial lineage choice and resist redifferentiation. During embryogenesis, de novo DNA methylation operates on the hypomethylated genome of the blastocyst to achieve tissue-specific patterns of gene expression. Similarly, the ifnγ promoter is hypomethylated in naïve T cells, but Th2, Th17, and iTreg differentiation is accompanied by substantial de novo DNA methylation at this locus. To determine whether de novo DNA methylation is required to restrict T helper lineage plasticity, we used mice with T cell-specific deletion of the methyltransferase DNMT3a. Induction of lineage-specific cytokines occurred normally in the absence of DNMT3a, however, DNMT3a-deficient Th2, Th17, and iTreg completely failed to methylate the ifnγ promoter. This was accompanied by an increase in the transcriptionally permissive trimethyl H3K4 mark, and a reduction in inhibitory H3K27 methylation at the ifnγ locus. Failed de novo methylation resulted in failed silencing of the ifnγ gene, as DNMT3a-deficient Th2, Th17, and iTreg cells produced significant levels of IFNγ following restimulation in the presence of IL-12. Therefore, DNMT3a-mediated DNA methylation restricts T helper plasticity by establishing an epigenetically silent chromatin structure at regulatory regions of the ifnγ gene. PMID:22584578

  4. Isolation and characterization of a species-specific DNA fragment for detection of Candida albicans by polymerase chain reaction.

    PubMed Central

    Miyakawa, Y; Mabuchi, T; Kagaya, K; Fukazawa, Y

    1992-01-01

    A 2-kbp DNA fragment, EO3, that was present in multiple copies in the Candida albicans genome was isolated for use in developing a detection method for C. albicans by polymerase chain reaction (PCR). Dot blot hybridization revealed that EO3 was specific for the 40 isolates of C. albicans serotypes A and B used. Using a set of primers (20-mer each) derived from the nucleotide sequence of EO3, we performed specific amplification of a 1.8-kbp DNA fragment within EO3 by PCR. All 40 isolates belonging to C. albicans serotypes A and B contained amplifiable 1.8-bkp fragments, although the DNA of the amplified products exhibited small variations in size, yielding three different fragment groups. Southern blot hybridization probed with EO3 showed that these 1.8-kbp fragments were derived from the EO3 region. Conversely, the 1.8-kbp fragment was not amplified from 38 isolates belonging to seven other medically important Candida species or from isolates of Cryptococcus neoformans, Saccharomyces cerevisiae, various bacteria, and a human cell line. The detection limit of the PCR assay for C. albicans with the EO3 fragment was shown to be approximately 2 to 10 cells and 100 cells in saline and human urine, respectively, by ethidium bromide staining and 2 and 10 cells, respectively, by Southern blot analysis. In addition, EO3 was assumed to originate from mitochondrial DNA on the basis of the results of its characterizations. These results indicate that the PCR system using the 1.8-kbp fragment as a target is a reliable method for identifying C. albicans isolates, thereby suggesting its potentials for specific and sensitive detection of C. albicans in samples from patients with candidiasis. Images PMID:1572976

  5. DNA double-strand breaks induced by high-energy neon and iron ions in human fibroblasts. II. Probing individual NotI fragments by hybridization

    SciTech Connect

    Loebrich, M.; Rydberg, B.; Cooper, P.K.

    1994-08-01

    The initial yields of DNA double-strand breaks induced by energetic heavy ions (425 MeV/u neon and 250, 400 and 600 MeV/u iron) in comparison to X rays were measured in normal human diploid fibroblast cells within three small areas of the genome, defined by NotI fragments of 3.2, 2.0 and 1.2 Mbp. The methodology involves NotI restriction endonuclease digestion of DNA from irradiated cells, followed by pulsed-field gel electrophoresis, Southern blotting and hybridization with probes recognizing single-copy sequences within the three NotI fragments. The gradual disappearance of a smear of broken DNA molecules are quantified. Assuming Poisson statistics for the number of double-strand breaks induced per NotI fragment of known size, absolute yields of DNA double-strand breaks were calculated and determined to be linear with dose in all cases, with the neon ion (LET 32 keV/{mu}m) producing 4.4 x 10{sup {minus}3} breaks/Mbp/Gy and all three iron-ion beams (LETs from 190 to 350 keV/{mu}m) producing 2.8 x 10{sup {minus}3} breaks/Mbp/Gy, giving RBE values for production of double-strand breaks of 0.76 for neon and 0.48 for iron in comparison to our previously determined X-ray induction rate of 5.8 x 10{sup {minus}3} breaks/Mbp/Gy. These RBE values are in good agreement with results of measurements over the whole genome as reported in the accompanying paper. The distribution of broken DNA molecules was similar for the various radiations, supporting a random distribution of double-strand breaks induced by the heavy ions over Mbp distances; however, correlated breaks (clusters) over much smaller distances are not ruled out. Reconstitution of the 3.2 Mbp NotI fragment was studied during postirradiation incubation of the cells as a measure of rejoining of correct DNA ends. The proportion of breaks repaired decreased with increasing LET. 41 refs., 6 figs., 1 tab.

  6. Identification of mutans streptococci by restriction fragment length polymorphism analysis of polymerase chain reaction-amplified 16S ribosomal RNA genes.

    PubMed

    Sato, T; Hu, J P; Ohki, K; Yamaura, M; Washio, J; Matsuyama, J; Takahashi, N

    2003-10-01

    Mutans streptococci are frequently isolated from dental plaque and carious lesions. These bacteria have been identified by conventional methods such as biochemical and serologic tests followed by the isolation of colonies on the mitis-salivarius agar, which are sometimes inconsistent. Recently, species-specific polymerase chain reaction (PCR) has been reported to rapidly identify Streptococcus mutans and Streptococcus sobrinus. However, in the case of identification and classification into several species, e.g. within the group of mutans streptococci consisting of seven species, the identification using species-specific PCR seems somewhat inefficient because of need for the development and preparation of specific primers for each species. Therefore, in this study we developed a simple method using restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal RNA genes (16S rRNA genes PCR-RFLP) for the identification of seven different species included in the group of mutans streptococci. We amplified 16S rRNA gene sequences from genomic DNA samples by PCR using universal primers and digested the PCR products with the restriction endonucleases, HpaII and HaeIII. HpaII produced six RFLP patterns for eight reference strains, since the patterns for S. sobrinus, Streptococcus downei and Streptococcus ferus were similar. RFLP patterns produced with HaeIII could separate these three species. Furthermore, the RFLP patterns predicted from the 16S rRNA gene sequences in the GenBank database agreed with the actual RFLP patterns produced in the present study. The 16S rRNA sequence comparisons can be used to identify oral mutans streptococci; however, the identification by sequencing is sometimes difficult in large-scale studies and for small laboratories. Therefore, 16S rRNA genes PCR-RFLP, using HpaII and HaeIII, could be an alternative method for the identification of mutans streptococci, and may be applicable for large-scale studies on the cariogenicity of mutans streptococci. PMID:12930526

  7. Characterization of eukaryotic DNA N6-methyladenine by a highly sensitive restriction enzyme-assisted sequencing

    PubMed Central

    Luo, Guan-Zheng; Wang, Fang; Weng, Xiaocheng; Chen, Kai; Hao, Ziyang; Yu, Miao; Deng, Xin; Liu, Jianzhao; He, Chuan

    2016-01-01

    Although extensively studied in prokaryotes, the prevalence and significance of DNA N6-methyladenine (6mA or m6dA) in eukaryotes had been underappreciated until recent studies, which have demonstrated that 6mA regulates gene expression as a potential heritable mark. To interrogate 6mA sites at single-base resolution, we report DA-6mA-seq (DpnI-Assisted N6-methylAdenine sequencing), an approach that uses DpnI to cleave methylated adenine sites in duplex DNA. We find that DpnI cuts other sequence motifs besides the canonical GATC restriction sites, thereby expanding the utility of this method. DA-6mA-seq achieves higher sensitivity with nanograms of input DNA and lower sequencing depth than conventional approaches. We study 6mA at base resolution in the Chlamydomonas genome and apply the new method to two other eukaryotic organisms, Plasmodium and Penicillium. Combined with conventional approaches, our method further shows that most 6mA sites are fully methylated on both strands of DNA at various sequence contexts. PMID:27079427

  8. Characterization of eukaryotic DNA N(6)-methyladenine by a highly sensitive restriction enzyme-assisted sequencing.

    PubMed

    Luo, Guan-Zheng; Wang, Fang; Weng, Xiaocheng; Chen, Kai; Hao, Ziyang; Yu, Miao; Deng, Xin; Liu, Jianzhao; He, Chuan

    2016-01-01

    Although extensively studied in prokaryotes, the prevalence and significance of DNA N(6)-methyladenine (6mA or m(6)dA) in eukaryotes had been underappreciated until recent studies, which have demonstrated that 6mA regulates gene expression as a potential heritable mark. To interrogate 6mA sites at single-base resolution, we report DA-6mA-seq (DpnI-Assisted N(6)-methylAdenine sequencing), an approach that uses DpnI to cleave methylated adenine sites in duplex DNA. We find that DpnI cuts other sequence motifs besides the canonical GATC restriction sites, thereby expanding the utility of this method. DA-6mA-seq achieves higher sensitivity with nanograms of input DNA and lower sequencing depth than conventional approaches. We study 6mA at base resolution in the Chlamydomonas genome and apply the new method to two other eukaryotic organisms, Plasmodium and Penicillium. Combined with conventional approaches, our method further shows that most 6mA sites are fully methylated on both strands of DNA at various sequence contexts. PMID:27079427

  9. Cryopreservation method affects DNA fragmentation in trophectoderm and the speed of re-expansion in bovine blastocysts.

    PubMed

    Inaba, Yasushi; Miyashita, Satoshi; Somfai, Tamás; Geshi, Masaya; Matoba, Satoko; Dochi, Osamu; Nagai, Takashi

    2016-04-01

    This study investigated re-expansion dynamics during culture of bovine blastocysts cryopreserved either by slow-freezing or vitrification. Also, the extent and localization of membrane damage and DNA fragmentation in re-expanded embryos were studied. Frozen-thawed embryos showed a significantly lower re-expansion rate during 24 h of post-thawing culture compared to vitrified embryos. Vitrified embryos reached the maximum level of re-expansion rate by 12 h of culture whereas frozen embryos showed a gradual increase in re-expansion rate by 24 h of culture. When assayed by Hoechst/propidium iodide staining there was no difference in the numbers and ratio of membrane damaged cells between re-expanded frozen and vitrified embryos; however, the extent of membrane damage in blastomeres was significantly higher in both groups compared with non-cryopreserved embryos (control). TUNEL assay combined with differential ICM and TE staining revealed a significantly higher number and ratio of TE cells showing DNA-fragmentation in frozen-thawed re-expanded blastocysts compared to vitrified ones; however, vitrification also resulted in an increased extent of DNA fragmentation in TE cells compared with control blastocysts. In frozen-thawed blastocysts increased extent of DNA fragmentation was associated with reduced numbers and proportion of TE cells compared with vitrified and control embryos. The number and ratio of ICM cells and the extent of DNA fragmentation in ICM did not differ among control, frozen and vitrified groups. In conclusion, compared with vitrified embryos, blastocysts preserved by slow-freezing showed a delayed timing of re-expansion which was associated with an increased frequency of DNA fragmentation in TE cells. PMID:26996887

  10. Structure of 5-hydroxymethylcytosine-specific restriction enzyme, AbaSI, in complex with DNA

    SciTech Connect

    Horton, John R.; Borgaro, Janine G.; Griggs, Rose M.; Quimby, Aine; Guan, Shengxi; Zhang, Xing; Wilson, Geoffrey G.; Zheng, Yu; Zhu, Zhenyu; Cheng, Xiaodong

    2014-07-03

    AbaSI, a member of the PvuRts1I-family of modification-dependent restriction endonucleases, cleaves DNA containing 5-hydroxymethylctosine (5hmC) and glucosylated 5hmC (g5hmC), but not DNA containing unmodified cytosine. AbaSI has been used as a tool for mapping the genomic locations of 5hmC, an important epigenetic modification in the DNA of higher organisms. Here we report the crystal structures of AbaSI in the presence and absence of DNA. These structures provide considerable, although incomplete, insight into how this enzyme acts. AbaSI appears to be mainly a homodimer in solution, but interacts with DNA in our structures as a homotetramer. Each AbaSI subunit comprises an N-terminal, Vsr-like, cleavage domain containing a single catalytic site, and a C-terminal, SRA-like, 5hmC-binding domain. Two N-terminal helices mediate most of the homodimer interface. Dimerization brings together the two catalytic sites required for double-strand cleavage, and separates the 5hmC binding-domains by ~ 70 Å, consistent with the known activity of AbaSI which cleaves DNA optimally between symmetrically modified cytosines ~ 22 bp apart. The eukaryotic SET and RING-associated (SRA) domains bind to DNA containing 5-methylcytosine (5mC) in the hemi-methylated CpG sequence. They make contacts in both the major and minor DNA grooves, and flip the modified cytosine out of the helix into a conserved binding pocket. In contrast, the SRA-like domain of AbaSI, which has no sequence specificity, contacts only the minor DNA groove, and in our current structures the 5hmC remains intra-helical. A conserved, binding pocket is nevertheless present in this domain, suitable for accommodating 5hmC and g5hmC. We consider it likely, therefore, that base-flipping is part of the recognition and cleavage mechanism of AbaSI, but that our structures represent an earlier, pre-flipped stage, prior to actual recognition.

  11. Structure of 5-hydroxymethylcytosine-specific restriction enzyme, AbaSI, in complex with DNA

    PubMed Central

    Horton, John R.; Borgaro, Janine G.; Griggs, Rose M.; Quimby, Aine; Guan, Shengxi; Zhang, Xing; Wilson, Geoffrey G.; Zheng, Yu; Zhu, Zhenyu; Cheng, Xiaodong

    2014-01-01

    AbaSI, a member of the PvuRts1I-family of modification-dependent restriction endonucleases, cleaves deoxyribonucleic acid (DNA) containing 5-hydroxymethylctosine (5hmC) and glucosylated 5hmC (g5hmC), but not DNA containing unmodified cytosine. AbaSI has been used as a tool for mapping the genomic locations of 5hmC, an important epigenetic modification in the DNA of higher organisms. Here we report the crystal structures of AbaSI in the presence and absence of DNA. These structures provide considerable, although incomplete, insight into how this enzyme acts. AbaSI appears to be mainly a homodimer in solution, but interacts with DNA in our structures as a homotetramer. Each AbaSI subunit comprises an N-terminal, Vsr-like, cleavage domain containing a single catalytic site, and a C-terminal, SRA-like, 5hmC-binding domain. Two N-terminal helices mediate most of the homodimer interface. Dimerization brings together the two catalytic sites required for double-strand cleavage, and separates the 5hmC binding-domains by ?70 , consistent with the known activity of AbaSI which cleaves DNA optimally between symmetrically modified cytosines ?22 bp apart. The eukaryotic SET and RING-associated (SRA) domains bind to DNA containing 5-methylcytosine (5mC) in the hemi-methylated CpG sequence. They make contacts in both the major and minor DNA grooves, and flip the modified cytosine out of the helix into a conserved binding pocket. In contrast, the SRA-like domain of AbaSI, which has no sequence specificity, contacts only the minor DNA groove, and in our current structures the 5hmC remains intra-helical. A conserved, binding pocket is nevertheless present in this domain, suitable for accommodating 5hmC and g5hmC. We consider it likely, therefore, that base-flipping is part of the recognition and cleavage mechanism of AbaSI, but that our structures represent an earlier, pre-flipped stage, prior to actual recognition. PMID:24895434

  12. Genetic diversity of Azotobacter strains isolated from soils by amplified ribosomal DNA restriction analysis.

    PubMed

    Mazinani, Z; Asgharzadeh, A

    2014-01-01

    Strains of Azotobacter mediate in the nitrogen fixation process by reducing of N2 to ammonia. In this study, 50 strains were isolated from different rhizospheric soil in central Iran, by using soil paste-plate method. These strains were biochemically identified and characterized on differential LG medium based on morphological and physiological properties. Results obtained showed that identified strains were belonging to three species, namely A. chroococcum, A. vinelandii and A. beijernckii. In order to molecular analysis, the 16S rRNA gene was amplified using 27f and 1495r primers and PCR products were subsequently digested with RsaI, HpaII and HhaI. Cluster analysis based on amplified ribosomal DNA restriction analysis were revealed intraspecific polymorphism and differentiated strains into two mains clusters, clusters A and B. Cluster A strains were related to the A. vinelandii, whereas cluster B strains were related to the A. chroococcum and A. beijerinckii. The results show that amplified ribosomal DNA restriction analysis is a powerful and discriminatory tool for the identification of members of the genus Azotobacter. PMID:25318174

  13. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    NASA Astrophysics Data System (ADS)

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.

  14. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities.

    PubMed

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1. PMID:26738439

  15. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    PubMed Central

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1. PMID:26738439

  16. Centromeric DNA cloned from functional kinetochore fragments in mitotic cells with unreplicated genomes.

    PubMed

    Ouspenski, I I; Brinkley, B R

    1993-06-01

    Treatment of cells arrested in the cell cycle at the G1/S-phase boundary with 5 mM caffeine induces premature mitosis, resulting in chromosomal fragmentation and detachment of centromere-kinetochore fragments, which are subsequently attached to the mitotic spindle and segregated in anaphase. Taking advantage of this in vivo separation of the centromere, we have developed a procedure for isolation of a centromere-enriched fraction of mitotic chromatin. Using this method, we have isolated and cloned DNA from the centromere-enriched material of Chinese hamster cells. One of the clones thus obtained was characterized in detail. It contains 6 kb of centromere-associated sequence that exhibits no recognizable homology with other mammalian centromeric sequences and is devoid of any extensive repetitive structure. This sequence is present in a single copy on chromosome 1 and is species-specific. Distinctive features of the clone include the presence of several A+T-rich regions and clusters of multiple topoisomerase II consensus cleavage sites and other sequence motifs characteristic of nuclear matrix-associated regions. We hypothesize that these features might be related to the more compact packaging of centromeric chromatin in interphase nuclei and mitotic chromosomes. PMID:8408270

  17. A DNA metabarcoding study of a primate dietary diversity and plasticity across its entire fragmented range.

    PubMed

    Quéméré, Erwan; Hibert, Fabrice; Miquel, Christian; Lhuillier, Emeline; Rasolondraibe, Emmanuel; Champeau, Julie; Rabarivola, Clément; Nusbaumer, Louis; Chatelain, Cyrille; Gautier, Laurent; Ranirison, Patrick; Crouau-Roy, Brigitte; Taberlet, Pierre; Chikhi, Lounès

    2013-01-01

    In tropical regions, most primary ecosystems have been replaced by mosaic landscapes in which species must cope with a large shift in the distribution of their habitat and associated food resources. Primates are particularly vulnerable to habitat modifications. Most species persist in small fragments surrounded by complex human-mediated matrices whose structure and connectivity may strongly influence their dispersal and feeding behavior. Behavioral plasticity appears to be a crucial parameter governing the ability of organisms to exploit the resources offered by new matrix habitats and thus to persist in fragmented habitats. In this study, we were interested in the dietary plasticity of the golden-crowned sifaka (Propithecus tattersalli), an endangered species of lemur, found only in the Daraina region in north-eastern Madagascar. We used a DNA-based approach combining the barcoding concept and Illumina next-generation sequencing to (i) describe the species diet across its entire range and (ii) evaluate the influence of landscape heterogeneity on diet diversity and composition. Faeces from 96 individuals were sampled across the entire species range and their contents were analyzed using the trnL metabarcoding approach. In parallel, we built a large DNA reference database based on a checklist of the plant species of the Daraina region. Our results suggest that golden-crowned sifakas exhibit remarkable dietary diversity with at least 130 plant species belonging to 80 genera and 49 different families. We highlighted an influence of both habitat type and openness on diet composition suggesting a high flexibility of foraging strategies. Moreover, we observed the presence of numerous cultivated and naturalized plants in the faeces of groups living in forest edge areas. Overall, our findings support our initial expectation that P. tattersalli is able to cope with the current level of alteration of the landscape and confirm our previous results on the distribution and the dispersal ability of this species. PMID:23527060

  18. A DNA Metabarcoding Study of a Primate Dietary Diversity and Plasticity across Its Entire Fragmented Range

    PubMed Central

    Quéméré, Erwan; Hibert, Fabrice; Miquel, Christian; Lhuillier, Emeline; Rasolondraibe, Emmanuel; Champeau, Julie; Rabarivola, Clément; Nusbaumer, Louis; Chatelain, Cyrille; Gautier, Laurent; Ranirison, Patrick; Crouau-Roy, Brigitte; Taberlet, Pierre; Chikhi, Lounès

    2013-01-01

    In tropical regions, most primary ecosystems have been replaced by mosaic landscapes in which species must cope with a large shift in the distribution of their habitat and associated food resources. Primates are particularly vulnerable to habitat modifications. Most species persist in small fragments surrounded by complex human-mediated matrices whose structure and connectivity may strongly influence their dispersal and feeding behavior. Behavioral plasticity appears to be a crucial parameter governing the ability of organisms to exploit the resources offered by new matrix habitats and thus to persist in fragmented habitats. In this study, we were interested in the dietary plasticity of the golden-crowned sifaka (Propithecus tattersalli), an endangered species of lemur, found only in the Daraina region in north-eastern Madagascar. We used a DNA-based approach combining the barcoding concept and Illumina next-generation sequencing to (i) describe the species diet across its entire range and (ii) evaluate the influence of landscape heterogeneity on diet diversity and composition. Faeces from 96 individuals were sampled across the entire species range and their contents were analyzed using the trnL metabarcoding approach. In parallel, we built a large DNA reference database based on a checklist of the plant species of the Daraina region. Our results suggest that golden-crowned sifakas exhibit remarkable dietary diversity with at least 130 plant species belonging to 80 genera and 49 different families. We highlighted an influence of both habitat type and openness on diet composition suggesting a high flexibility of foraging strategies. Moreover, we observed the presence of numerous cultivated and naturalized plants in the faeces of groups living in forest edge areas. Overall, our findings support our initial expectation that P. tattersalli is able to cope with the current level of alteration of the landscape and confirm our previous results on the distribution and the dispersal ability of this species. PMID:23527060

  19. Characterization of HIFU ablation using DNA fragmentation labeling as apoptosis stain

    NASA Astrophysics Data System (ADS)

    Anquez, Jeremie; Corréas, Jean-Michel; Pau, Bernard; Lacoste, François; Yon, Sylvain

    2012-11-01

    The goal of this work was to compare modalities to precisely quantify the extent of thermally induced lesions: gross pathology vs. histopathology vs. devascularization. Liver areas of 14 rabbits were targeted with HIFU and RF ablations in an acute study. Contrast enhanced computorized tomography (CE-CT) scan images were acquired two hours after HIFU and RF treatment to obtain the devascularized volumes of the livers. The animals were then euthanized and deep frozen. The livers were sliced and each slice was photographed and stacked yielding a volume of gross pathology. The volume VGP of the HIFU lesions were derived. The area AGP of the lesions were computed on a particular slice. The lesions were segmented as hypo intense (devascularized) regions on CE-CT images and their volumes VC were computed. The ratios VC/VGP were computed for all the HIFU lesions on all the 14 subjects with a mean value of 1.2. Histology was performed on the livers using Hematoxyline Eosine Staining (HES) and DNA Fragmentation labeling (TUNEL® technology) which characterizes apoptosis. Apoptotic regions of area AT were segmented on the images stained by TUNEL®. No necrosis was identified on the HES data. While TUNEL® did not mark the cores of the RF lesions as apoptotic, the periphery of HIFU and RF lesions was always recognized with TUNEL® as apoptotic. The ratio AGP/AT was computed. The mean value was 0.95 and 0.25 for HIFU and RF lesions respectively. These findings show that the devascularized territory seen on CE-CT scan coincide with the coagulated territories seen with gross pathology. Those actually correspond to cells in apoptosis. It is confirmed that HES stain does not show necrosis 2 hours after thermal ablation. TUNEL® technology for DNA fragmentation labeling appears as a useful marker for thermally induced acute lesions in the liver.

  20. DNA restriction endonuclease analysis of Mycobacterium bovis and other members of the tuberculosis complex.

    PubMed Central

    Collins, D M; De Lisle, G W

    1985-01-01

    DNA preparations from 24 New Zealand isolates, two reference strains of Mycobacterium bovis, and one reference strain each of Mycobacterium microti, Mycobacterium africanum, and Mycobacterium tuberculosis were characterized by restriction endonuclease analysis. Twenty-five restriction enzymes were investigated. The clearest differences in M. bovis patterns were obtained with the enzymes BstEII and BclI. These produced four and five different patterns, respectively, for the 24 local isolates. When the results from both enzymes were considered, seven different combinations were obtained. The patterns produced for the two reference strains of M. bovis could be distinguished from each other and also from the patterns produced for the local isolates. All patterns were reproducible and are now being used for typing M. bovis isolates. With either enzyme, the patterns produced for the M. tuberculosis, M. bovis, and M. africanum strains had many features in common, but all the M. bovis patterns were clearly more similar to each other than to the M. tuberculosis patterns. The patterns produced for the M. microti strain were markedly different from those produced for the other species. Restriction endonuclease analysis is clearly a useful method for inter- and intraspecific classifications of the tuberculosis complex. Images PMID:2985647

  1. MmeI: a minimal Type II restriction-modification system that only modifies one DNA strand for host protection

    PubMed Central

    Morgan, Richard D.; Bhatia, Tanya K.; Lovasco, Lindsay; Davis, Theodore B.

    2008-01-01

    MmeI is an unusual Type II restriction enzyme that is useful for generating long sequence tags. We have cloned the MmeI restriction-modification (R-M) system and found it to consist of a single protein having both endonuclease and DNA methyltransferase activities. The protein comprises an amino-terminal endonuclease domain, a central DNA methyltransferase domain and C-terminal DNA recognition domain. The endonuclease cuts the two DNA strands at one site simultaneously, with enzyme bound at two sites interacting to accomplish scission. Cleavage occurs more rapidly than methyl transfer on unmodified DNA. MmeI modifies only the adenine in the top strand, 5′-TCCRAC-3′. MmeI endonuclease activity is blocked by this top strand adenine methylation and is unaffected by methylation of the adenine in the complementary strand, 5′-GTYGGA-3′. There is no additional DNA modification associated with the MmeI R-M system, as is required for previously characterized Type IIG R-M systems. The MmeI R-M system thus uses modification on only one of the two DNA strands for host protection. The MmeI architecture represents a minimal approach to assembling a restriction-modification system wherein a single DNA recognition domain targets both the endonuclease and DNA methyltransferase activities. PMID:18931376

  2. A unique restriction site in the flaA gene allows rapid differentiation of group I and group II Clostridium botulinum strains by PCR-restriction fragment length polymorphism analysis.

    PubMed

    Paul, Catherine J; Tran, Shulin; Tam, Kevin J; Austin, John W

    2007-09-01

    Clostridium botulinum produces the potent botulinum neurotoxin, the causative agent of botulism. Based on distinctive physiological traits, strains of C. botulinum can be divided into four groups: however, only groups I and II are associated with human illness. Alignment of the flaA gene sequences from 40 group I and 40 group II strains identified a single BsrG1 restriction cut site that was present at base pair 283 in all group II flaA sequences and was not found in any group I sequence. The flaA gene was amplified by rapid colony PCR from 22 group I strains and 18 group II strains and digested with BsrGI restriction enzyme. Standard agarose gel electrophoresis with ethidium bromide staining showed two fragments, following restriction digestion of group II flaA gene amplicons with BsrGI, but only a single band of uncut flaA from group I strains. Combining rapid colony PCR with BsrGI restriction digest of the flaA gene at 60 degrees C is a significant improvement over current methods, such as meat digestion or amplified fragment length polymorphism, as a strain can be identified as either group I or group II in under 5 h when starting with a visible plated C. botulinum colony. PMID:17900093

  3. Calorimetric and Low-Frequency Dielectric Studies of Mesoscopic Ordering in Solutions of Engineered DNA Hairpin Fragments

    NASA Astrophysics Data System (ADS)

    Kashuri, K.; Kashuri, H.; Iannacchione, G. S.

    2012-02-01

    Calorimetry (both AC and MDSC) from 20 to 100 ^oC, as well as low-frequency (0.1 to 100 kHz) isothermal dielectric measurements have been performed on solutions of DNA fragments as a function of concentration. Custom hairpin DNA fragments were obtained with 13-base unit length and samples made in solution at various concentration. Results show a reproducible heat capacity Cp signature on heating and cooling scans. This thermal behavior of a diluted oligonucleotide chain is very different from that seen for mesoscopic ordering of liquid crystals. The AC Cp peak vanishes and new features are revealed as the temperature scan rate is lowered to 0.017 K min-1. The observed real, ɛ', and imaginary, ɛ'', permittivity of the suspended DNA show features indicating low-frequency dynamics that in turn suggests large-scale ordering or agglomeration of the DNA hairpin loops.

  4. Assessment of four DNA fragments (COI, 16S rDNA, ITS2, 12S rDNA) for species identification of the Ixodida (Acari: Ixodida)

    PubMed Central

    2014-01-01

    Background The 5’ region of cytochrome oxidase I (COI) is the standard marker for DNA barcoding. However, COI has proved to be of limited use in identifying some species, and for some taxa, the coding sequence is not efficiently amplified by PCR. These deficiencies lead to uncertainty as to whether COI is the most suitable barcoding fragment for species identification of ticks. Methods In this study, we directly compared the relative effectiveness of COI, 16S ribosomal DNA (rDNA), nuclear ribosomal internal transcribed spacer 2 (ITS2) and 12S rDNA for tick species identification. A total of 307 sequences from 84 specimens representing eight tick species were acquired by PCR. Besides the 1,834 published sequences of 189 tick species from GenBank and the Barcode of Life Database, 430 unpublished sequences representing 59 tick species were also successfully screened by Bayesian analyses. Thereafter, the performance of the four DNA markers to identify tick species was evaluated by identification success rates given by these markers using nearest neighbour (NN), BLASTn, liberal tree-based or liberal tree-based (+threshold) methods. Results Genetic divergence analyses showed that the intra-specific divergence of each marker was much lower than the inter-specific divergence. Our results indicated that the rates of correct sequence identification for all four markers (COI, 16S rDNA, ITS2, 12S rDNA) were very high (> 96%) when using the NN methodology. We also found that COI was not significantly better than the other markers in terms of its rate of correct sequence identification. Overall, BLASTn and NN methods produced higher rates of correct species identification than that produced by the liberal tree-based methods (+threshold or otherwise). Conclusions As the standard DNA barcode, COI should be the first choice for tick species identification, while 16S rDNA, ITS2, and 12S rDNA could be used when COI does not produce reliable results. Besides, NN and BLASTn are efficient methods for species identification of ticks. PMID:24589289

  5. DamID-seq: Genome-wide Mapping of Protein-DNA Interactions by High Throughput Sequencing of Adenine-methylated DNA Fragments.

    PubMed

    Wu, Feinan; Olson, Brennan G; Yao, Jie

    2016-01-01

    The DNA adenine methyltransferase identification (DamID) assay is a powerful method to detect protein-DNA interactions both locally and genome-wide. It is an alternative approach to chromatin immunoprecipitation (ChIP). An expressed fusion protein consisting of the protein of interest and the E. coli DNA adenine methyltransferase can methylate the adenine base in GATC motifs near the sites of protein-DNA interactions. Adenine-methylated DNA fragments can then be specifically amplified and detected. The original DamID assay detects the genomic locations of methylated DNA fragments by hybridization to DNA microarrays, which is limited by the availability of microarrays and the density of predetermined probes. In this paper, we report the detailed protocol of integrating high throughput DNA sequencing into DamID (DamID-seq). The large number of short reads generated from DamID-seq enables detecting and localizing protein-DNA interactions genome-wide with high precision and sensitivity. We have used the DamID-seq assay to study genome-nuclear lamina (NL) interactions in mammalian cells, and have noticed that DamID-seq provides a high resolution and a wide dynamic range in detecting genome-NL interactions. The DamID-seq approach enables probing NL associations within gene structures and allows comparing genome-NL interaction maps with other functional genomic data, such as ChIP-seq and RNA-seq. PMID:26862720

  6. Effect of in vitro exposure to lead chloride on semen quality and sperm DNA fragmentation.

    PubMed

    Gomes, M; Gonçalves, A; Rocha, E; Sá, R; Alves, A; Silva, J; Barros, A; Pereira, M L; Sousa, M

    2015-06-01

    Exposure to lead may cause changes in the male reproductive system. We evaluated the effect of lead chloride (PbCl2) in vitro on semen quality from 31 individuals. Samples were incubated at room temperature for two exposure times (4 h and 8 h) and with two concentrations of PbCl2 (15 μg/ml or 30 μg/ml). Results showed that PbCl2 significantly inhibited rapid progressive motility and caused an increase in the percentage of tail anomalies in both times and concentrations assessed, as well as a decrease in vitality in the group exposed to 30 μg/ml PbCl2. A significant increase in immotile sperm was also observed between the group control and the groups submitted to lead. Total motility and DNA fragmentation also showed a significant decrease and increase, respectively, after 4 h of incubation in the group exposed to 30 μg/ml and in both groups after 8 h of incubation. In conclusion, PbCl2 affected sperm parameters and DNA integrity, which are essential for male fertility. PMID:24521979

  7. Development and Evaluation of a PCR-Based Assay for Detection of Haemobartonella felis in Cats and Differentiation of H. felis from Related Bacteria by Restriction Fragment Length Polymorphism Analysis

    PubMed Central

    Messick, Joanne B.; Berent, Linda M.; Cooper, Sandra K.

    1998-01-01

    The 16S rRNA gene of Haemobartonella felis was amplified by using universal eubacterial primers and was subsequently cloned and sequenced. Based on this sequence data, we designed a set of H. felis-specific primers. These primers selectively amplified a 1,316-bp DNA fragment of the 16S rRNA gene of H. felis from each of four experimentally infected cats at peak parasitemia. No PCR product was amplified from purified DNA of Eperythrozoon suis, Mycoplasma genitalium, and Bartonella bacilliformis. Blood from the experimental cats prior to infection was negative for PCR products and was greatly diminished or absent 1 month after doxycycline treatment. The overall sequence identity of this fragment varied by less than 1.0% among experimentally infected cats. By taking into consideration the secondary structure of the 16S rRNA molecule, we were able to further verify the alignment of nucleotides and quality of our sequence data. In this PCR assay, the minimum detectable number of H. felis organisms was determined to be between 50 and 704. The potential usefulness of restriction enzymes DdeI and MnlI for distinguishing H. felis from closely related bacteria was examined. This is the first report of the utility of PCR-facilitated diagnosis and discrimination of H. felis infection in cats. PMID:9466759

  8. A set of inter-Alu PCR markers for chromosome 21 generated from pulsed-field gel-fractionated NotI restriction fragments

    SciTech Connect

    Wang, D.; Zhu, Y.; Smith, C.L.

    1995-03-20

    Genomic probes can be efficiently obtained for specific chromosomal regions by PCR amplification of gel slices containing fractionated restriction enzyme-cleaved DNA. Here, single-copy, human-specific DNA sequences were amplified using inter-Alu PCR on gel slices containing a NotI digest of DNA from hybrid cell line WAV17. Rodent cell line WAV17 contains human chromosome 21. About 75% of the 0.15- to 3-kb inter-Alu PCR products could be regionally assigned, en masse, by hybridization experiments using inter-Alu PCR probes generated from cell lines containing portions of chromosome 21. This work produced 10 new chromosome 21 markers that came from regions of 21q containing few useful markers. These markers were needed to finish a NotI restriction map for 21q. This approach provides markers needed to close map gaps and for top-down mapping approaches. 52 refs., 5 figs., 2 tabs.

  9. The Role of DNA Restriction-Modification Systems in the Biology of Bacillus anthracis

    PubMed Central

    Sitaraman, Ramakrishnan

    2016-01-01

    Restriction–modification (R–M) systems are widespread among prokaryotes and, depending on their type, may be viewed as selfish genetic elements that persist as toxin–antitoxin modules, or as cellular defense systems against phage infection that confer a selective advantage to the host bacterium. Studies in the last decade have made it amply clear that these two options do not exhaust the list of possible biological roles for R–M systems. Their presence in a cell may also have a bearing on other processes such as horizontal gene transfer and gene regulation. From genome sequencing and experimental data, we know that Bacillus anthracis encodes at least three methylation-dependent (typeIV) restriction endonucleases (RE), and an orphan DNA methyltransferase. In this article, we first present an outline of our current knowledge of R–M systems in B. anthracis. Based on available DNA sequence data, and on our current understanding of the functions of similar genes in other systems, we conclude with hypotheses on the possible roles of the three REs and the orphan DNA methyltransferase. PMID:26834729

  10. A new mtDNA mutation showing accumulation with time and restriction to skeletal muscle

    SciTech Connect

    Weber, K.; Wilson, J.N.; Taylor, L.

    1997-02-01

    We have identified a new mutation in mtDNA, involving tRNA{sup Leu(CUN)} in a patient manifesting an isolated skeletal myopathy. This heteroplasmic A{r_arrow}G transition at position 12320 affects the T{Psi}C loop at a conserved site and was not found in 120 controls. Analysis of cultured fibroblasts, white blood cells/platelets, and skeletal muscle showed that only skeletal muscle contained the mutation and that only this tissue demonstrated a biochemical defect of respiratory-chain activity. In a series of four muscle-biopsy specimens taken over a 12-year period, there was a gradual increase, from 70% to 90%, in the overall level of mutation, as well as a marked clinical deterioration. Single-fiber PCR confirmed that the proportion of mutant mtDNA was highest in cytochrome c oxidase-negative fibers. This study, which reports a mutation involving tRNA{sup Leu(CUN)}, demonstrates clearly that mtDNA point mutations can accumulate over time and may be restricted in their tissue distribution. Furthermore, clinical deterioration seemed to follow the increase in the level of mutation, although, interestingly, the appearance of fibers deficient in respiratory-chain activity showed a lag period. 32 refs., 4 figs., 1 tab.

  11. A microfluidic-based electrochemical biochip for label-free diffusion-restricted DNA hybridization analysis.

    PubMed

    Ben-Yoav, Hadar; Dykstra, Peter H; Bentley, William E; Ghodssi, Reza

    2012-01-01

    DNA hybridization detection in microfluidic devices can reduce sample volumes, processing times, and can be integrated with other measurements. However, as device footprints decrease and their complexity increase, the signal-to-noise ratio in these systems also decreases and the sensitivity is thereby compromised. Device miniaturization produces distinct properties and phenomena with greater influence at the micro-scale than at the macro-scale. Here, a diffusion-restriction model was applied to a miniaturized biochip nanovolume reactor to accurately characterize DNA hybridization events that contribute to shifts in both charge transfer resistance and diffusional resistance. These effects are shown to play a significant role in electrochemical impedance spectroscopy (EIS) analyses at these length scales. Our highly functional microfluidic biosensor enables the detection of ssDNA targets selectively, with a calculated detection limit of 3.8 nM, and cross-reactivity of 13% following 20 min incubation with the target. This new biosensing approach can be further modeled and tested elucidating diffusion behavior in miniaturized devices and improving the performance of biosensors. PMID:22651970

  12. Cloning of the spoT Gene of “Candidatus Phlomobacter fragariae” and Development of a PCR-Restriction Fragment Length Polymorphism Assay for Detection of the Bacterium in Insects

    PubMed Central

    Foissac, Xavier; Danet, Jean-Luc; Zreik, Leyla; Gandar, Jeanne; Nourrisseau, Jean-Georges; Bové, Joseph-Marie; Garnier, Monique

    2000-01-01

    Marginal chlorosis is a new disease of strawberry in which the uncultured phloem-restricted proteobacterium “Candidatus Phlomobacter fragariae” is involved. In order to identify the insect(s) vector(s) of this bacterium, homopteran insects have been captured. Because a PCR test based on the 16S rRNA gene (rDNA) applied to these insects was unable to discriminate between “P. fragariae” and other insect-associated proteobacteria, isolation of “P. fragariae” genes other than 16S rDNA was undertaken. Using comparative randomly amplified polymorphic DNAs, an amplicon was specifically amplified from “P. fragariae”-infected strawberry plants. It encodes part of a “P. fragariae” open reading frame sharing appreciable homology with the spoT gene from other proteobacteria. A spoT-based PCR test combined with restriction fragment length polymorphisms was developed and was able to distinguish “P. fragariae” from other insect bacteria. None of the many leafhoppers and psyllids captured during several years in and around infected strawberry fields was found to carry “P. fragariae.” Interestingly however, the “P. fragariae” spoT sequence could be easily detected in whiteflies proliferating on “P. fragariae”-infected strawberry plants under confined greenhouse conditions but not on control whiteflies, indicating that these insects can become infected with the bacterium. PMID:10919809

  13. Capillary electrophoresis investigations of pET3aPAI-1 DNA involving optimized restriction digestion, laser-induced fluorescence detection, and micropreparative separation

    NASA Astrophysics Data System (ADS)

    Sepaniak, Michael J.; Stebbins, Michael; Todd, April; Gibson, Timothy; Peterson, Cynthia; Diack, Moustopha

    1998-05-01

    This work centers around developing methodologies to isolate the PAI-1 coding sequence of the DNA plasmid pET3a-PAI-1. Size Selective Capillary Electrophoresis (SSCE), using entangled polymer filled small i.d. capillaries, is used to develop digestion conditions (time and enzyme concentration) that provide single cuts (at variable positions) of the plasmid using BstYI restriction enzyme. After obtaining optimum partial digest conditions for this enzyme, digestion with Ndel will produce a mixture of fragments that includes the fragment (1354 bp) which contains the intact region of interest. Sensitive detection is achieved via laser induced fluorescence using running buffers containing intercalating dye. Using small i.d. capillary conditions as a starting point, the SSCE system is increased to the micro-preparative scale using various larger i.d. capillaries. The effects of capillary diameter, applied voltage, injection amount, and sample buffer concentration on separation performance are studied. Subsequently, single or limited numbers of injections of the single cut sample using a relatively large i.d. capillary should prove adequate material for digestion with Ndel prior to PCR amplification of the 1354 bp fragment.

  14. 1,10-Phenanthroline stimulates internucleosomal DNA fragmentation in isolated rat-liver nuclei by promoting the redox activity of endogenous copper ions.

    PubMed Central

    Burkitt, M J; Milne, L; Nicotera, P; Orrenius, S

    1996-01-01

    Isolated rat-liver nuclei were incubated with a series of membrane-permeable metal-ion-complexing agents and examined for DNA damage. Of the reagents tested, only 1,10-phenanthroline (OP) and neocuproine (NC) were found to induce DNA fragmentation. Agarose-gel electrophoresis of the DNA fragments generated in the presence of OP revealed internucleosomal cleavage, which is widely considered to be a hallmark for the enzymic DNA digestion that occurs during apoptosis. Ascorbate, particularly in the presence of hydrogen peroxide, increased the levels of fragmentation induced by OP. As well as undergoing fragmentation, the DNA from nuclei was also found to contain 8-hydroxydeoxyguanosine, which indicates attack (oxidation) by the hydroxyl radical. Complementary experiments in vitro involving ESR determinations of hydroxyl radical formation and measurements of DNA oxidation under biomimetic conditions demonstrated that Cu2+, but not Fe3+, forms a complex with either OP or NC (but not the other complexing agents tested) that stimulates hydroxyl radical formation and DNA damage in the presence of hydrogen peroxide and ascorbate. It is therefore proposed that OP in the nuclei incubations binds to Cu2+, which exists naturally in chromosomes, forming a complex that promotes hydroxyl-radical-dependent DNA fragmentation. These findings demonstrate the promotion of hydroxyl-radical-mediated DNA damage by endogenous Cu2+ and, perhaps more significantly, demonstrate that the internucleosomal DNA 'laddering' that is often used as an indicator of apoptosis may also result from DNA fragmentation by non-enzymic processes. PMID:8546678

  15. Analysis of the Campylobacter jejuni Genome by SMRT DNA Sequencing Identifies Restriction-Modification Motifs

    PubMed Central

    O’Loughlin, Jason L.; Eucker, Tyson P.; Chavez, Juan D.; Samuelson, Derrick R.; Neal-McKinney, Jason; Gourley, Christopher R.; Bruce, James E.; Konkel, Michael E.

    2015-01-01

    Campylobacter jejuni is a leading bacterial cause of human gastroenteritis. The goal of this study was to analyze the C. jejuni F38011 strain, recovered from an individual with severe enteritis, at a genomic and proteomic level to gain insight into microbial processes. The C. jejuni F38011 genome is comprised of 1,691,939 bp, with a mol.% (G+C) content of 30.5%. PacBio sequencing coupled with REBASE analysis was used to predict C. jejuni F38011 genomic sites and enzymes that may be involved in DNA restriction-modification. A total of five putative methylation motifs were identified as well as the C. jejuni enzymes that could be responsible for the modifications. Peptides corresponding to the deduced amino acid sequence of the C. jejuni enzymes were identified using proteomics. This work sets the stage for studies to dissect the precise functions of the C. jejuni putative restriction-modification enzymes. Taken together, the data generated in this study contributes to our knowledge of the genomic content, methylation profile, and encoding capacity of C. jejuni. PMID:25695747

  16. Phylogenomics of phrynosomatid lizards: conflicting signals from sequence capture versus restriction site associated DNA sequencing.

    PubMed

    Leaché, Adam D; Chavez, Andreas S; Jones, Leonard N; Grummer, Jared A; Gottscho, Andrew D; Linkem, Charles W

    2015-03-01

    Sequence capture and restriction site associated DNA sequencing (RADseq) are popular methods for obtaining large numbers of loci for phylogenetic analysis. These methods are typically used to collect data at different evolutionary timescales; sequence capture is primarily used for obtaining conserved loci, whereas RADseq is designed for discovering single nucleotide polymorphisms (SNPs) suitable for population genetic or phylogeographic analyses. Phylogenetic questions that span both "recent" and "deep" timescales could benefit from either type of data, but studies that directly compare the two approaches are lacking. We compared phylogenies estimated from sequence capture and double digest RADseq (ddRADseq) data for North American phrynosomatid lizards, a species-rich and diverse group containing nine genera that began diversifying approximately 55 Ma. Sequence capture resulted in 584 loci that provided a consistent and strong phylogeny using concatenation and species tree inference. However, the phylogeny estimated from the ddRADseq data was sensitive to the bioinformatics steps used for determining homology, detecting paralogs, and filtering missing data. The topological conflicts among the SNP trees were not restricted to any particular timescale, but instead were associated with short internal branches. Species tree analysis of the largest SNP assembly, which also included the most missing data, supported a topology that matched the sequence capture tree. This preferred phylogeny provides strong support for the paraphyly of the earless lizard genera Holbrookia and Cophosaurus, suggesting that the earless morphology either evolved twice or evolved once and was subsequently lost in Callisaurus. PMID:25663487

  17. Cloning Should Be Simple: Escherichia coli DH5α-Mediated Assembly of Multiple DNA Fragments with Short End Homologies

    PubMed Central

    Richardson, Ruth E.; Suzuki, Yo

    2015-01-01

    Numerous DNA assembly technologies exist for generating plasmids for biological studies. Many procedures require complex in vitro or in vivo assembly reactions followed by plasmid propagation in recombination-impaired Escherichia coli strains such as DH5α, which are optimal for stable amplification of the DNA materials. Here we show that despite its utility as a cloning strain, DH5α retains sufficient recombinase activity to assemble up to six double-stranded DNA fragments ranging in size from 150 bp to at least 7 kb into plasmids in vivo. This process also requires surprisingly small amounts of DNA, potentially obviating the need for upstream assembly processes associated with most common applications of DNA assembly. We demonstrate the application of this process in cloning of various DNA fragments including synthetic genes, preparation of knockout constructs, and incorporation of guide RNA sequences in constructs for clustered regularly interspaced short palindromic repeats (CRISPR) genome editing. This consolidated process for assembly and amplification in a widely available strain of E. coli may enable productivity gain across disciplines involving recombinant DNA work. PMID:26348330

  18. Cloning Should Be Simple: Escherichia coli DH5?-Mediated Assembly of Multiple DNA Fragments with Short End Homologies.

    PubMed

    Kostylev, Maxim; Otwell, Anne E; Richardson, Ruth E; Suzuki, Yo

    2015-01-01

    Numerous DNA assembly technologies exist for generating plasmids for biological studies. Many procedures require complex in vitro or in vivo assembly reactions followed by plasmid propagation in recombination-impaired Escherichia coli strains such as DH5?, which are optimal for stable amplification of the DNA materials. Here we show that despite its utility as a cloning strain, DH5? retains sufficient recombinase activity to assemble up to six double-stranded DNA fragments ranging in size from 150 bp to at least 7 kb into plasmids in vivo. This process also requires surprisingly small amounts of DNA, potentially obviating the need for upstream assembly processes associated with most common applications of DNA assembly. We demonstrate the application of this process in cloning of various DNA fragments including synthetic genes, preparation of knockout constructs, and incorporation of guide RNA sequences in constructs for clustered regularly interspaced short palindromic repeats (CRISPR) genome editing. This consolidated process for assembly and amplification in a widely available strain of E. coli may enable productivity gain across disciplines involving recombinant DNA work. PMID:26348330

  19. Effect of bromodeoxyuridine on radiation-induced DNA damage and repair based on DNA fragment size using pulsed-field gel electrophoresis

    SciTech Connect

    Lawrence, T.S.; Davis, M.A.; Normolle, D.P.

    1995-12-01

    We have used biphasic linear ramping pulsed-field gel electrophoresis (PFGE) to understand the effect of incorporation of bromodeoxyuridine (BrdUrd) on radiation-induced DNA damage and repair. This technique permits a determination of the fragment size distribution produced immediately after irradiation as well as during the repair period. We found that incorporation of BrdUrd increased the induction and decreased the repair of radiation damage. The fragment size distribution was consistent with a random breakage model. When we found that significantly more damage was detected after irradiation of deproteinized DNA compared to intact cells, we studied the effects of BrdUrd incorporation on the radiation response of cells or DNA at various phases of preparation for electrophoresis: cells adherent to the culture dish (A), trypsinized cells (B), agarose-embedded cells (C) and deproteinized DNA (D). Although there was a general tendency to detect more damage when irradiation was performed later in the preparation process, steps B and C were the only successive steps which were significantly different. These findings demonstrate that incorporation of BrdUrd randomly increases the induction of radiation damage and decreases its repair at the level of 200 kbp to 5 Mbp fragments. Furthermore, they confirm that the amount of damage detected depends upon the conditions of the cells or DNA at the time of irradiation. 34 refs., 5 figs., 2 tabs.

  20. Separation of fragments up to 570 bases in length by use of 6% T non-cross-linked polyacrylamide for DNA sequencing in capillary electrophoresis

    SciTech Connect

    Best, N.; Arriaga, E.; Chen, D.Y.; Dovichi, N.J. )

    1994-11-15

    Non-cross-linked polyacrylamide is a very convenient medium for the separation of DNA sequencing fragments in capillary electrophoresis. We demonstrate DNA sequencing with this matrix at an electric field of 200 V/cm and at room temperature. Resolution is observed to decrease exponentially with fragment length. Fragments 570 bases in length generate a resolution of 0.5, which is adequate for sequence identification. 49 refs., 5 figs.