Science.gov

Sample records for dna restriction fragment

  1. Separation of DNA restriction fragments using capillary electrophoresis

    SciTech Connect

    Chan, K.C.; Whang, Chenwen; Yeung, E.S. )

    1993-01-01

    Gel-filled and non-gel' capillary electrophoresis (CE) have been applied to the separation of various DNA restriction fragments. 30% HydroLink gel, polymerized inside a 75[mu]m i.d. fused-silica capillary, was used in the gel-filled CE. Primary results show that the HL capillary gel was simple to cast, and its stability was reasonably good under the running conditions. In the non-gel CE experiment, a buffer containing the sieving additive hydroxypropylmethyl cellulose was used to affect the size-dependent separation. The use of GC capillaries eliminates the inconvenience of separately coating the capillary walls for efficient non-gel separation. Finally, the authors demonstrate that it is feasible to detect native DNA fragments using indirect fluorometry in non-gel capillary electrophoresis.

  2. Methods for producing partially digested restriction DNA fragments and for producing a partially modified PCR product

    DOEpatents

    Wong, Kwong-Kwok

    2000-01-01

    The present invention is an improved method of making a partially modified PCR product from a DNA fragment with a polymerase chain reaction (PCR). In a standard PCR process, the DNA fragment is combined with starting deoxynucleoside triphosphates, a primer, a buffer and a DNA polymerase in a PCR mixture. The PCR mixture is then reacted in the PCR producing copies of the DNA fragment. The improvement of the present invention is adding an amount of a modifier at any step prior to completion of the PCR process thereby randomly and partially modifying the copies of the DNA fragment as a partially modified PCR product. The partially modified PCR product may then be digested with an enzyme that cuts the partially modified PCR product at unmodified sites thereby producing an array of DNA restriction fragments.

  3. Nondetectability of restriction fragments and independence of DNA fragment sizes within and between loci in RFLP typing of DNA

    SciTech Connect

    Chakraborty, R.; Zhong, Y.; Jin, L. ); Budowle, B. )

    1994-08-01

    The authors provide experimental evidence showing that, during the restriction-enzyme digestion of DNA samples, some of the HaeIII-digested DNA fragments are small enough to prevent their reliable sizing on a Southern gel. As a result of such nondetectability of DNA fragments, individuals who show a single-band DNA profile at a VNTR locus may not necessarily be true homozygotes. In a population database, when the presence of such nondetectable alleles is ignored, they show that a pseudodependence of alleles within as well as across loci may occur. Using a known statistical method, under the hypothesis of independence of alleles within loci, they derive an efficient estimate of null allele frequency, which may be subsequently used for testing allelic independence within and across loci. The estimates of null allele frequencies, thus derived, are shown to agree with direct experimental data on the frequencies of HaeIII-null alleles. Incorporation of null alleles into the analysis of the forensic VNTR database suggests that the assumptions of allelic independence within and between loci are appropriate. In contrast, a failure to incorporate the occurrence of null alleles would provide a wrong inference regarding the independence of alleles within and between loci. 47 refs., 2 figs., 4 tabs.

  4. Nondetectability of restriction fragments and independence of DNA fragment sizes within and between loci in RFLP typing of DNA.

    PubMed Central

    Chakraborty, R.; Zhong, Y.; Jin, L.; Budowle, B.

    1994-01-01

    We provide experimental evidence showing that, during the restriction-enzyme digestion of DNA samples, some of the HaeIII-digested DNA fragments are small enough to prevent their reliable sizing on a Southern gel. As a result of such nondetectability of DNA fragments, individuals who show a single-band DNA profile at a VNTR locus may not necessarily be true homozygotes. In a population database, when the presence of such nondetectable alleles is ignored, we show that a pseudodependence of alleles within as well as across loci may occur. Using a known statistical method, under the hypothesis of independence of alleles within loci, we derive an efficient estimate of null allele frequency, which may be subsequently used for testing allelic independence within and across loci. The estimates of null allele frequencies, thus derived, are shown to agree with direct experimental data on the frequencies of HaeIII-null alleles. Incorporation of null alleles into the analysis of the forensic VNTR database suggests that the assumptions of allelic independence within and between loci are appropriate. In contrast, a failure to incorporate the occurrence of null alleles would provide a wrong inference regarding the independence of alleles within and between loci. Images Figure 1 Figure 2 PMID:7913584

  5. Polycyclic aromatic hydrocarbon-DNA adducts and the CYP1A1 restriction fragment length polymorphism

    SciTech Connect

    Shields, P.G.; Bowman, E.D.; Weston, A.; Harris, C.C.; Sugimura, H.; Caporaso, N.E.; Petruzzelli, S.F. ); Trump, B.F. )

    1992-11-01

    Human cancer risk assessment at a genetic level involves the investigation of carcinogen metabolism and DNA adduct formation. Wide interindividual differences in metabolism result in different DNA adduct levels. For this and other reasons, many laboratories have considered DNA adducts to be a measure of the biologically effective dose of a carcinogen. Techniques for studying DNA adducts using chemically specific assays are becoming available. A modification of the [sup 32]P-postlabeling assay for polycyclic aromatic hydrocarbon DNA adducts described here provides potential improvements in quantification. DNA adducts, however, reflect only recent exposure to carcinogens; in contrast, genetic testing for metabolic capacity indicates the extent to which carcinogens can be activated and exert genotoxic effects. Such studies may reflect both separate and integrated risk factors together with DNA adduct levels. A recently described restriction fragment length polymorphism for the CYP1A1, which codes for the cytochrome P450 enzyme primarily responsible for the metabolic activation of carcinogenic polycyclic aromatic hydrocarbons, has been found to be associated with lung cancer risk in a Japanese population. In a subset of individuals enrolled in a US lung cancer case-control study, no association with lung cancer was found. 17 refs., 3 figs.

  6. Gel electrophoretic restriction fragment length polymorphism analysis of DNA derived from individual nematodes, using the PhastSystem.

    PubMed

    Triga, D; Pamjav, H; Vellai, T; Fodor, A; Buzás, Z

    1999-06-01

    The DNA sequences constituting the internal transcribed spacer region, located between 18S and 26S rDNA genes within the rRNA operon, derived from single nematodes of two genera (Steinernema and Heterorhabditis) were amplified by polymerase chain reaction (PCR) and subjected to digestion by four restriction enzymes. The digests were analyzed by restriction fragment length polymorphism (RFLP) gel electrophoresis on the PhastSystem, using 7.5%T, 5%C(Bis) polyacrylamide. The downscaling from conventional agarose to PhastSystem gels permitted the analysis to be done on individual nematodes, rather than on mixed samples with average properties. The analysis time was reduced so as to allow for the electrophoretic separation on 200 samples/workday. The resulting patterns of DNA fragments differed from those obtained by agarose gel electrophoresis under conventional conditions by an increased number of detected fragments. The PhastSystem gel analysis provides the basis for taxonomical revisions. PMID:10380768

  7. Capillary electrophoretic separation of DNA restriction fragments using dilute polymer solutions

    SciTech Connect

    Braun, B.; Blanch, W.; Prausnitz, J.M.

    1997-02-01

    Because the mechanism of DNA separation in capillary electrophoresis is not well understood, selection of polymers is a {open_quotes}trial-and-error{close_quotes} procedure. We investigated dilute-solution DNA separations by capillary electrophoresis using solutions of four polymers that differ in size, shape and stiffness. Hydroxyethylcellulose of high molecular weight provides excellent separation of large DNA fragments (2027 bp - 23130 bp). Polyvinylpyrrolidone separates DNA from 72 bp to 23 kbp and star-(polyethylene oxide), like linear poly (ethylene oxide), provides separation of fragments up to 1353 bp.

  8. Enhanced resolution of DNA restriction fragments: a procedure by two-dimensional electrophoresis and double-labeling.

    PubMed Central

    Yi, M; Au, L C; Ichikawa, N; Ts'o, P O

    1990-01-01

    A probe-free method was developed to detect DNA rearrangement in bacteria based on the electrophoretic separation of twice-digested restriction fragments of genomic DNA into a two-dimensional (2-D) pattern. The first restriction enzyme digestion was done in solution, followed by electrophoresis of the restriction fragments in one dimension. A second restriction enzyme digestion was carried out in situ in the gel, followed by electrophoresis in a second dimension perpendicular to the first electrophoresis. The 2-D pattern provides for the resolution of 300-400 spots, which are defined and indexed by an "x,y" coordinate system with size markers. This approach has greatly increased the resolution power over conventional one-dimensional (1-D) electrophoresis. To study DNA rearrangement, a 2-D pattern from a test strain was compared with the 2-D pattern from a reference strain. After the first digestion, genomic DNA fragments from the test strain were labeled with 35S, while those from the reference strain were labeled with 35P. This was done to utilize the difference in the energy emission of 35S and 32P isotopes for autoradiography when two x-ray films were exposed simultaneously on top of the gel after the 2-D electrophoresis. The irradiation from the decay of 35S exposed only the lower film, whereas the irradiation from the decay of 32P exposed both the lower and upper films. Different DNA fragments existed in the test DNA compared with the reference DNA can be identified unambiguously by the differential two 2-D patterns produced on two films upon exposure to the 35S and 32P fragments in the same gel. An appropriate photographic procedure further simplified the process, allowing only the difference in DNA fragments between these two patterns to be shown in the map. We have utilized the difference map obtained from Escherichia coli strains HB101 and HB101 (lambda) genomic DNA to show the incorporation of one copy of phage lambda DNA without the use of a lambda DNA

  9. Telomere Restriction Fragment (TRF) Analysis

    PubMed Central

    Mender, Ilgen; Shay, Jerry W.

    2016-01-01

    While telomerase is expressed in ~90% of primary human tumors, most somatic tissue cells except transiently proliferating stem-like cells do not have detectable telomerase activity (Shay and Wright, 1996; Shay and Wright, 2001). Telomeres progressively shorten with each cell division in normal cells, including proliferating stem-like cells, due to the end replication (lagging strand synthesis) problem and other causes such as oxidative damage, therefore all somatic cells have limited cell proliferation capacity (Hayflick limit) (Hayflick and Moorhead, 1961; Olovnikov, 1973). The progressive telomere shortening eventually leads to growth arrest in normal cells, which is known as replicative senescence (Shay et al., 1991). Once telomerase is activated in cancer cells, telomere length is stabilized by the addition of TTAGGG repeats to the end of chromosomes, thus enabling the limitless continuation of cell division (Shay and Wright, 1996; Shay and Wright, 2001). Therefore, the link between aging and cancer can be partially explained by telomere biology. There are many rapid and convenient methods to study telomere biology such as Telomere Restriction Fragment (TRF), Telomere Repeat Amplification Protocol (TRAP) (Mender and Shay, 2015b) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this protocol paper we describe Telomere Restriction Fragment (TRF) analysis to determine average telomeric length of cells. Telomeric length can be indirectly measured by a technique called Telomere Restriction Fragment analysis (TRF). This technique is a modified Southern blot, which measures the heterogeneous range of telomere lengths in a cell population using the length distribution of the terminal restriction fragments (Harley et al., 1990; Ouellette et al., 2000). This method can be used in eukaryotic cells. The description below focuses on the measurement of human cancer cells telomere length. The principle of this method relies on the lack of

  10. A phylogenetic analysis of the genus Carica L. (Caricaceae) based on restriction fragment length variation in a cpDNA intergenic spacer region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phylogenetic relationships among twelve wild and cultivated species of Carica (Caricaceae) were analyzed using restriction fragment length variation in a 3.2-kb PCR amplified intergenic spacer region of the chloroplast DNA. A total of 138 fragments representing 137 restriction sites accounting f...

  11. Physical map of polyoma viral DNA fragments produced by cleavage with a restriction enzyme from Haemophilus aegyptius, endonuclease R-HaeIII.

    PubMed Central

    Summers, J

    1975-01-01

    Digestion of polyoma viral DNA with a restriction enzyme from Haemophilus aegyptius generates at least 22 unique fragments. The fragments have been characterized with respect to size and physical order on the polyoma genome, and the 5' to 3' orientation of the (+) and (-) strands has been determined. A method for specific radiolabeling of adjacent fragments was employed to establish the fragment order. This technique may be useful for ordering the fragments produced by digestion of complex DNAs. Images PMID:163927

  12. Identification of Staphylococcus spp. by PCR-Restriction Fragment Length Polymorphism Analysis of dnaJ Gene▿

    PubMed Central

    Hauschild, Tomasz; Stepanović, Srdjan

    2008-01-01

    A PCR-restriction fragment length polymorphism (RFLP) analysis method that analyzes a part of the dnaJ gene was designed for the rapid and accurate identification of Staphylococcus spp. XapI or Bsp143I digestion of the PCR-generated products rendered distinctive RFLP patterns that allowed 41 reference species and subspecies to be identified with a high degree of specificity. The novel method was validated by the identification of 23 clinical staphylococcal strains, and the results were compared with those obtained by other genotypic identification methods. A 100% concordance of the results was shown. Therefore, PCR-RFLP analysis of the dnaJ gene is proposed as a reliable and reproducible method for the identification of Staphylococcus spp. PMID:18832127

  13. Identification of Thiobacillus ferrooxidans strains based on restriction fragment length polymorphism analysis of 16S rDNA.

    PubMed

    Kamimura, K; Wakai, S; Sugio, T

    2001-01-01

    The 16S rDNA sequences from ten strains of Thiobacillus ferrooxidans were amplified by PCR. The products were compared by performing restriction fragment length polymorphism (RFLP) analysis with restriction endonucleases Alu I, Hap II, Hha I, and Hae III. The RFLP patterns revealed that T. ferrooxidans could be distinguished from other iron- or sulphur-oxidizing bacteria such as T. thiooxidans NB1-3, T. caldus GO-1, Leptospirillum ferrooxidans and the marine iron-oxidizing bacterium strain KU2-11. The RFLP patterns obtained with Alu I, Hap II, and Hae III were the same for nine strains of T. ferrooxidans except for strain ATCC 13661. The RFLP patterns for strains NASF-1 and ATCC 13661 with Hha I were distinct from those for other T. ferrooxidans strains. The 16S rDNA sequence of T. ferrooxidans NASF-1 possessed an additional restriction site for Hha I. These results show that iron-oxidizing bacteria isolated from natural environments were rapidly identified as T. ferrooxidans by the method combining RFLP analysis with physiological analysis. PMID:11414499

  14. Flying squirrel-associated Rickettsia prowazekii (epidemic typhus rickettsiae) characterized by a specific DNA fragment produced by restriction endonuclease digestion.

    PubMed

    Regnery, R L; Fu, Z Y; Spruill, C L

    1986-01-01

    The DNA from flying squirrel-associated Rickettsia prowazekii was characterized by using a specific DNA fragment produced by digestion with the enzyme BamHI. The DNA fragment was cloned into a plasmid vector and used to readily distinguish between available human- and flying squirrel-associated R. prowazekii DNAs derived from crude cytoplasmic extracts. PMID:3009528

  15. Propagation of restriction fragments from the mitochondrial DNA of Saccharomyces cerevisiae in E. coli by means of plasmid vectors.

    PubMed Central

    Berg, P E; Lewin, A; Christianson, T; Rabinowitz, M

    1979-01-01

    Some of the EcoRI fragments of yeast (Saccharomyces cerevisiae) mitochondrial DNA were cloned into E. coli using plasmid pMB9. The five smallest fragments in molecular weight appeared to be preferentially retained by E coli; partial fragments derived from larger mitochondrial DNA fragments were also found. One of the fragments, R7 (2.4 kb), may contain the OII gene. Cloned R7 DNA was stable under a variety of growth conditions, but showed some changes in molecular weight after transfer to different E. coli strains. Fragment R7 is transcribed in minicells, producing RNA that hybridizes specifically to mitochondrial DNA. Both DNA strands are transcribed, in contrast to the asymmetric transcription found in mitochondria. No new polypeptides were observed in minicells containing cloned fragment 7. Images PMID:379817

  16. An IS6110-targeting fluorescent amplified fragment length polymorphism alternative to IS6110 restriction fragment length polymorphism analysis for Mycobacterium tuberculosis DNA fingerprinting.

    PubMed

    Thorne, N; Evans, J T; Smith, E G; Hawkey, P M; Gharbia, S; Arnold, C

    2007-10-01

    A rapid, simple and highly discriminatory DNA fingerprinting methodology which produces data that can be easily interpreted, compared and transported is the ultimate goal for studying the epidemiology of Mycobacterium tuberculosis. A novel TaqI fluorescent amplified fragment length polymorphism (fAFLP) approach to M. tuberculosis DNA fingerprinting that targeted the variable IS6110 marker was developed in this study. The new method was tested for specificity and reproducibility, and compared with the standard reference IS6110 restriction fragment length polymorphism (RFLP) method for a panel of 78 isolates. Clustering conflicts between the two methods were resolved using mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) data. Comparison with an in-silico digestion of strain H37Rv showed that fAFLP-detected fragments were highly specific in vitro. The reproducibility of repeated digestions of strain H37Rv was 100%. Clustering results obtained by fAFLP and RFLP were highly congruent, with fAFLP allocating 97% of RFLP-clustered isolates to the same eight clusters as RFLP. Two single-copy isolates that had been clustered by RFLP were not clustered by fAFLP, but the MIRU-VNTR patterns of these isolates were different, indicating that the RFLP data had falsely clustered these isolates. Analysis by fAFLP will allow rapid screening of isolates to confirm or refute epidemiological links, and thereby provide insights into the frequency, conservation and consequences of specific transposition events. PMID:17803750

  17. Electroeluting DNA fragments.

    PubMed

    Zarzosa-Alvarez, Ana L; Sandoval-Cabrera, Antonio; Torres-Huerta, Ana L; Bermudez-Cruz, Rosa M

    2010-01-01

    Purified DNA fragments are used for different purposes in Molecular Biology and they can be prepared by several procedures. Most of them require a previous electrophoresis of the DNA fragments in order to separate the band of interest. Then, this band is excised out from an agarose or acrylamide gel and purified by using either: binding and elution from glass or silica particles, DEAE-cellulose membranes, "crush and soak method", electroelution or very often expensive commercial purification kits. Thus, selecting a method will depend mostly of what is available in the laboratory. The electroelution procedure allows one to purify very clean DNA to be used in a large number of applications (sequencing, radiolabeling, enzymatic restriction, enzymatic modification, cloning etc). This procedure consists in placing DNA band-containing agarose or acrylamide slices into sample wells of the electroeluter, then applying current will make the DNA fragment to leave the agarose and thus be trapped in a cushion salt to be recovered later by ethanol precipitation. PMID:20834225

  18. Repair of x-ray-induced DNA double-strand breaks in specific Not I restriction fragments in human fibroblasts: joining of correct and incorrect ends

    NASA Technical Reports Server (NTRS)

    Lobrich, M.; Rydberg, B.; Cooper, P. K.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    An assay that allows measurement of absolute induction frequencies for DNA double-strand breaks (dsbs) in defined regions of the genome and that quantitates rejoining of correct DNA ends has been used to study repair of dsbs in normal human fibroblasts after x-irradiation. The approach involves hybridization of single-copy DNA probes to Not I restriction fragments separated according to size by pulsed-field gel electrophoresis. Induction of dsbs is quantitated from the decrease in the intensity of the hybridizing restriction fragment and an accumulation of a smear below the band. Rejoining of dsbs results in reconstitution of the intact restriction fragment only if correct DNA ends are joined. By comparing results from this technique with results from a conventional electrophoresis assay that detects all rejoining events, it is possible to quantitate the misrejoining frequency. Three Not I fragments on the long arm of chromosome 21 were investigated with regard to dsb induction, yielding an identical induction rate of 5.8 X 10(-3) break per megabase pair per Gy. Correct dsb rejoining was measured for two of these Not I fragments after initial doses of 80 and 160 Gy. The misrejoining frequency was about 25% for both fragments and was independent of dose. This result appears to be representative for the whole genome as shown by analysis of the entire Not I fragment distribution. The correct rejoining events primarily occurred within the first 2 h, while the misrejoining kinetics included a much slower component, with about half of the events occurring between 2 and 24 h. These misrejoining kinetics are similar to those previously reported for production of exchange aberrations in interphase chromosomes.

  19. DNA restriction fragment length polymorphism of HLA-DR2 haplotypes in normal individuals and in patients with rheumatoid arthritis.

    PubMed Central

    Singal, D P; Reid, B; Green, D; Bensen, W G; D'Souza, M

    1990-01-01

    A strong association between HLA-DR4 and rheumatoid arthritis (RA) has been found in a number of populations. In contrast, the incidence of DR2 is decreased in patients with RA, suggesting that this specificity may confer some protection against the disease. A number of subtypes of DR2 have been defined by serology, by responses in mixed lymphocyte culture reaction, and, more recently, by restriction fragment length polymorphism. These subtypes of DR2 are in linkage disequilibrium with different subspecificities of DQw1. It is thus likely that the distribution of these subtypic DR,DQ haplotypes in DR2 positive patients with RA may be important in understanding the genetic basis of susceptibility/resistance to RA. In this paper a study of the subtypes of DR2,DQw1 haplotypes in 18 patients with RA, who required sodium aurothiomalate as a disease remitting drug, and unrelated healthy individuals is reported. Three subtypes of DR2 haplotypes, DRw15 (Dw2),DQw1.2(DQw6), DRw15(Dw12),DQw1.12(DQw6), and DRw16(Dw21),DQw1, AZH (DQw5), were analysed with a cDNA probe for the DQ beta gene. The data show that DR2 positive patients with RA carried either the DRw15(Dw2),DQw6 or DRw15(Dw12),DQw6 haplotype. No patient with RA was positive for the DRw16(Dw21),DQw5 subspecificity. In contrast, six of 29 (21%) normal healthy DR2,DQw1 positive individuals carried the DRw16(Dw21),DQw5 haplotype. These data together with earlier results on the distribution of the DR4,DQw7 haplotype in patients with RA support the hypothesis that DQB1 chain polymorphism may be important in determining susceptibility to severe RA. Images PMID:1969727

  20. Molecular variation analysis of Aspergillus flavus using polymerase chain reaction-restriction fragment length polymorphism of the internal transcribed spacer rDNA region

    PubMed Central

    Zarrin, Majid; Erfaninejad, Maryam

    2016-01-01

    Aspergillus flavus is the second most common disease-causing species of Aspergillus in humans. The fungus is frequently associated with life-threatening infections in immunocompromised hosts. The primary aim of the present study was to analyze the genetic variability among different isolates of A. flavus using polymerase chain reaction (PCR)-based restriction fragment length polymorphism (RFLP). A total of 62 A. flavus isolates were tested in the study. Molecular variability was searched for by analysis of the PCR amplification of the internal transcribed spacer (ITS) regions of ribosomal DNA using restriction enzymes. PCR using primers for ITS1 and ITS4 resulted in a product of ~600 bp. Amplicons were subjected to digestion with restriction endonucleases EcoRI, HaeIII and TaqI. Digestion of the PCR products using these restriction enzymes produced different patterns of fragments among the isolates, with different sizes and numbers of fragments, revealing genetic variability. In conclusion, ITS-RFLP is a useful molecular tool in screening for nucleotide polymorphisms among A. flavus isolates. PMID:27588085

  1. Stock Structure and Homing Fidelity in Gulf of Mexico Sturgeon (Acipenser Oxyrinchus Desotoi) Based on Restriction Fragment Length Polymorphism and Sequence Analyses of Mitochondrial DNA

    PubMed Central

    Stabile, J.; Waldman, J. R.; Parauka, F.; Wirgin, I.

    1996-01-01

    Efforts have been proposed worldwide to restore sturgeon populations through the use of hatcheries to supplement natural reproduction and to reintroduce sturgeon where they have become extinct. We examined the population structure and inferred the extent of homing in the anadromous Gulf of Mexico (Gulf) sturgeon (Acipenser oxyrinchus desotoi). Restriction fragment length polymorphism and control region sequence analyses of mitochondrial DNA (mtDNA) were used to identify haplotypes of Gulf sturgeon specimens obtained from eight drainages spanning the subspecies' entire distribution from Louisiana to Florida. Significant differences in haplotype frequencies indicated substantial geographic structuring of populations. A minimum of four regional or river-specific populations were identified (from west to east): (1) Pearl River, LA and Pascagoula River, MS, (2) Escambia and Yellow rivers, FL, (3) Choctawhatchee River, FL, and (4) Apalachicola, Ochlockonee, and Suwannee rivers, FL. Estimates of maternally mediated gene flow between any pair of the four regional or river-specific stocks ranged between 0.15 to 1.2. Tandem repeats in the mtDNA control region of Gulf sturgeon were not perfectly conserved. This result, together with an absence of heteroplasmy and length variation in Gulf sturgeon mtDNA, indicates that the molecular mechanisms of mtDNA control region sequence evolution differ among acipenserids. PMID:8889537

  2. Stock structure and homing fidelity in Gulf of Mexico sturgeon (Acipenser oxyrinchus desotoi) based on restriction fragment length polymorphism and sequence analyses of mitochondrial DNA.

    PubMed

    Stabile, J; Waldman, J R; Parauka, F; Wirgin, I

    1996-10-01

    Efforts have been proposed worldwide to restore sturgeon populations through the use of hatcheries to supplement natural reproduction and to reintroduce sturgeon where they have become extinct. We examined the population structure and inferred the extent of homing in the anadromous Gulf of Mexico (Gulf) sturgeon (Acipenser oxyrinchus desotoi). Restriction fragment length polymorphism and control region sequence analyses of mitochondrial DNA (mtDNA) were used to identify haplotypes of Gulf sturgeon specimens obtained from eight drainages spanning the subspecies' entire distribution from Louisiana to Florida. Significant differences in haplotype frequencies indicated substantial geographic structuring of populations. A minimum of four regional or river-specific populations were identified (from west to east): (1) Pearl River, LA and Pascagoula River, MS, (2) Escambia and Yellow rivers, FI, (3) Choctawbatchee River, FL and (4) Apalachicola Ochlockonee, and Suwannee rivers, FL. Estimates of maternally mediated gene flow between any pair of the four regional or river-specific stocks ranged between 0.15 to 1.2. Tandem repeats in the mtDNA control region of Gulf sturgeon were not perfectly conserved. This result, together with an absence of heteroplasmy and length variation in Gulf sturgeon mtDNA, indicates that the molecular mechanisms of mtDNA control region sequence evolution differ among acipenserids. PMID:8889537

  3. Analysis of the rDNA internal transcribed spacer region of the Fusarium species by polymerase chain reaction-restriction fragment length polymorphism

    PubMed Central

    ZARRIN, MAJID; GANJ, FARZANEH; FARAMARZI, SAMA

    2016-01-01

    The Fusarium species are a widely spread phytopathogen identified in an extensive variety of hosts. The Fusarium genus is one of the most heterogeneous fungi and is difficult to classify. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis is a useful method in detection of DNA polymorphism in objective sequences. The aim of the present study was to identify the phylogenetic associations and usefulness of the internal transcribed spacer (ITS) region as a genetic marker within the most clinically important strain of the Fusarium species. A total of 50 strains of Fusarium spp. were used in the study, including environmental, clinical and reference isolates. The primers ITS1 and ITS4 were used in the study. Two restriction enzymes, HaeIII and SmaI, were assessed for the digestion of PCR products. A PCR product of ~550-base pairs was generated for each Fusarium species. The digested products with HaeIII and SmaI demonstrated that the bands generated for the medically significant Fusarium species, including F. solani, F. oxysporum, F. verticillidea, F. proliferatum and F. fujikuri, have different restriction enzyme patterns. In conclusion, it appears that the PCR-RFLP method used in the present study produces a sufficient restriction profile for differentiation of the most medically significant Fusarium species. PMID:27073635

  4. Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes

    NASA Astrophysics Data System (ADS)

    Després, V. R.; Nowoisky, J. F.; Klose, M.; Conrad, R.; Andreae, M. O.; Pöschl, U.

    2007-12-01

    This study explores the applicability of DNA analyses for the characterization of primary biogenic aerosol (PBA) particles in the atmosphere. Samples of fine particulate matter (PM2.5) and total suspended particulates (TSP) have been collected on different types of filter materials at urban, rural, and high-alpine locations along an altitude transect in the south of Germany (Munich, Hohenpeissenberg, Mt. Zugspitze). From filter segments loaded with about one milligram of air particulate matter, DNA could be extracted and DNA sequences could be determined for bacteria, fungi, plants and animals. Sequence analyses were used to determine the identity of biological organisms, and terminal restriction fragment length polymorphism analyses (T-RFLP) were applied to estimate diversities and relative abundances of bacteria. Investigations of blank and background samples showed that filter materials have to be decontaminated prior to use, and that the sampling and handling procedures have to be carefully controlled to avoid artifacts in the analyses. Mass fractions of DNA in PM2.5 were found to be around 0.05% in urban, rural, and high-alpine aerosols. The average concentration of DNA determined for urban air was on the order of ~7 ng m-3, indicating that human adults may inhale about one microgram of DNA per day (corresponding to ~108 haploid bacterial genomes or ~105 haploid human genomes, respectively). Most of the bacterial sequences found in PM2.5 were from Proteobacteria (42) and some from Actinobacteria (10) and Firmicutes (1). The fungal sequences were characteristic for Ascomycota (3) and Basidiomycota (1), which are known to actively discharge spores into the atmosphere. The plant sequences could be attributed to green plants (2) and moss spores (2), while animal DNA was found only for one unicellular eukaryote (protist). Over 80% of the 53 bacterial sequences could be matched to one of the 19 T-RF peaks found in the PM2.5 samples, but only 40% of the T-RF peaks

  5. Genetic Diversity of Mycobacterium africanum Clinical Isolates Based on IS6110-Restriction Fragment Length Polymorphism Analysis, Spoligotyping, and Variable Number of Tandem DNA Repeats

    PubMed Central

    Viana-Niero, Cristina; Gutierrez, Cristina; Sola, Christophe; Filliol, Ingrid; Boulahbal, Fadila; Vincent, Véronique; Rastogi, Nalin

    2001-01-01

    A collection of 105 clinical isolates originally identified as Mycobacterium africanum were characterized using both phenotypic and genotyping methods. The phenotypic methods included routine determination of cultural properties and biochemical tests used to discriminate among the members of the M. tuberculosis complex, whereas genotypic characterization was based on IS6110-restriction fragment length polymorphism (IS6110-RFLP) analysis, IS1081-RFLP analysis, direct repeat-based spacer oligonucleotide typing (spoligotyping), variable number of tandem DNA repeats (VNTR), and the polymorphism of the oxyR, pncA, and mtp40 loci. The results obtained showed that a majority of M. africanum isolates were characterized by a specific spoligotyping pattern that was intermediate between those of M. tuberculosis and M. bovis, which do not hybridize with spacers 33 to 36 and spacers 39 to 43, respectively. A tentative M. africanum-specific spoligotyping signature appeared to be absence of spacers 8, 9, and 39. Based on spoligotyping, as well as the polymorphism of oxyR and pncA, a total of 24 isolates were excluded from the final study (19 were identified as M. tuberculosis, 2 were identified as M. canetti, and 3 were identified as M. bovis). The remaining 81 M. africanum isolates were efficiently subtyped in three distinct subtypes (A1 to A3) by IS6110-RFLP analysis and spoligotyping. The A1 and A2 subgroups were relatively more homogeneous upon spoligotyping than A3. Further analysis of the three subtypes by VNTR corroborated the highly homogeneous nature of the A2 subtype but showed significant variations for subtypes A1 and A3. A phylogenetic tree based on a selection of isolates representing the three subtypes using VNTR and spoligotyping alone or in combination confirmed the subtypes described as well as the heterogeneity of subtype A3. PMID:11136749

  6. Distinction of deep versus superficial clinical and nonclinical isolates of Trichosporon beigelii by isoenzymes and restriction fragment length polymorphisms of rDNA generated by polymerase chain reaction.

    PubMed Central

    Kemker, B J; Lehmann, P F; Lee, J W; Walsh, T J

    1991-01-01

    Fifteen clinical and environmental strains of Trichosporon beigelii were analyzed for similarities by using morphological features, biochemical profiles based on carbon compound assimilation and uric acid utilization, isoenzyme electrophoresis, and restriction fragment length polymorphisms of a segment of genes coding for rRNA expanded with the polymerase chain reaction. The findings suggest that strains that cause invasive disease are distinct from the superficial and the nonclinical isolates and that isolates from the skin and mucosae represent a number of different organisms, including some environmental forms. The study shows that T. beigelii is a complex of genetically distinct organisms and that more than one type is found in clinical samples. Images PMID:1684798

  7. Sizing of single fluorescently stained DNA fragments by scanning microscopy

    PubMed Central

    Laib, Stephan; Rankl, Michael; Ruckstuhl, Thomas; Seeger, Stefan

    2003-01-01

    We describe an approach to determine DNA fragment sizes based on the fluorescence detection of single adsorbed fragments on specifically coated glass cover slips. The brightness of single fragments stained with the DNA bisintercalation dye TOTO-1 is determined by scanning the surface with a confocal microscope. The brightness of adsorbed fragments is found to be proportional to the fragment length. The method needs only minute amount of DNA, beyond inexpensive and easily available surface coatings, like poly-l-lysine, 3-aminoproyltriethoxysilane and polyornithine, are utilizable. We performed DNA-sizing of fragment lengths between 2 and 14 kb. Further, we resolved the size distribution before and after an enzymatic restriction digest. At this a separation of buffers or enzymes was unnecessary. DNA sizes were determined within an uncertainty of 7–14%. The proposed method is straightforward and can be applied to standardized microtiter plates. PMID:14602931

  8. Identification of specific restriction fragments associated with a membrane subparticle from Bacillus subtilis.

    PubMed Central

    Sargent, M G; Bennett, M F; Burdett, I D

    1983-01-01

    When lysates of Bacillus subtilis were treated with restriction endonucleases EcoRI or HindIII, almost all of the DNA was released from the major plasma membrane fraction that was sedimentable at low speed. However, a very small part of the released DNA, when centrifuged at high speed, appeared to be bound to small membrane fragments. On agarose gels, this material, prepared with either enzyme, contained only a small number of restriction fragments, and the DNA in the sample hybridized with 11 to 12 EcoRI or HindIII fragments of chromosomal DNA. This DNA was used after nick-translation to screen Charon 4A clone banks for phages containing membrane-bound fragments. One of these was studied in detail. Only a part (about 5 kilobases) of the region present in this clone is important in binding the DNA to the membrane subparticle. Images PMID:6304013

  9. Detection of single lambda DNA fragments by flow cytometry

    SciTech Connect

    Johnson, M.E.; Goodwin, P.M.; Ambrose, W.P.; Martin, J.C.; Marrone, B.L.; Keller, R.A. )

    1993-01-01

    The authors have demonstrated flow cytometric detection and sizing of single pieces of fluorescently stained lambda DNA (48.5 kb) and individual Kpn I restriction fragments of lambda DNA at 17.05 kb and 29.95 kb. DNA fragments were stained stoichiometrically with an intercalating dye such that the fluorescence from each fragment was directly proportional to fragment length. Laser powers range from 10 to 100 mW and transit times through the focused laser beam were several milliseconds. Measurements were made using time-resolved single photon counting of the detected fluorescence emission from individual stained DNA fragments. Samples were analyzed at rates of about 50 fragments per second. The measured fluorescence intensities are linearly correlated with DNA fragment length over the range measured. Detection sensitivity and resolution needed for analysis of small pieces of DNA are discussed and a comparison of single photon counting measurements of DNA fragments to measurements using more conventional flow cytometers is made. Applications of this methodology to DNA sizing and DNA fingerprinting are discussed.

  10. Bacterial community profiles on feathers during composting as determined by terminal restriction fragment length polymorphism analysis of 16S rDNA genes.

    PubMed

    Tiquia, S M; Ichida, J M; Keener, H M; Elwell, D L; Burtt, E H; Michel, F C

    2005-05-01

    Composting is one of the more economical and environmentally safe methods of recycling feather waste generated by the poultry industry, since 90% of the feather weight consists of crude keratin protein, and feathers contain 15% N. However, the keratin in waste feathers is resistant to biodegradation and may require the addition of bacterial inocula to enhance the degradation process during composting. Two keratin-degrading bacteria isolated from plumage of wild songbirds and identified as Bacillus licheneformis (OWU 1411T) and Streptomyces sp. (OWU 1441) were inoculated into poultry feather composts (1.13 x 10(8) cfu g(-1) feathers) and co-composted with poultry litter and straw in 200-l compost vessels. Composting temperatures, as well as CO(2) and NH(3) evolution, were measured in these vessels to determine the effects of inoculation on the rate and extent of poultry feather decomposition during composting. Terminal restriction fragment length polymorphisms of 16S rRNA genes were used to follow changes in microbial community structure during composting. The results indicated that extensive carbon conversion occurred in both treatments (55.5 and 56.1%). The addition of the bacterial inocula did not enhance the rate of waste feather composting. The microbial community structure over time was very similar in inoculated and uninoculated waste feather composts. PMID:15614566

  11. Non-random DNA fragmentation in next-generation sequencing

    PubMed Central

    Poptsova, Maria S.; Il'icheva, Irina A.; Nechipurenko, Dmitry Yu.; Panchenko, Larisa A.; Khodikov, Mingian V.; Oparina, Nina Y.; Polozov, Robert V.; Nechipurenko, Yury D.; Grokhovsky, Sergei L.

    2014-01-01

    Next Generation Sequencing (NGS) technology is based on cutting DNA into small fragments, and their massive parallel sequencing. The multiple overlapping segments termed “reads” are assembled into a contiguous sequence. To reduce sequencing errors, every genome region should be sequenced several dozen times. This sequencing approach is based on the assumption that genomic DNA breaks are random and sequence-independent. However, previously we showed that for the sonicated restriction DNA fragments the rates of double-stranded breaks depend on the nucleotide sequence. In this work we analyzed genomic reads from NGS data and discovered that fragmentation methods based on the action of the hydrodynamic forces on DNA, produce similar bias. Consideration of this non-random DNA fragmentation may allow one to unravel what factors and to what extent influence the non-uniform coverage of various genomic regions. PMID:24681819

  12. Non-random DNA fragmentation in next-generation sequencing

    NASA Astrophysics Data System (ADS)

    Poptsova, Maria S.; Il'Icheva, Irina A.; Nechipurenko, Dmitry Yu.; Panchenko, Larisa A.; Khodikov, Mingian V.; Oparina, Nina Y.; Polozov, Robert V.; Nechipurenko, Yury D.; Grokhovsky, Sergei L.

    2014-03-01

    Next Generation Sequencing (NGS) technology is based on cutting DNA into small fragments, and their massive parallel sequencing. The multiple overlapping segments termed ``reads'' are assembled into a contiguous sequence. To reduce sequencing errors, every genome region should be sequenced several dozen times. This sequencing approach is based on the assumption that genomic DNA breaks are random and sequence-independent. However, previously we showed that for the sonicated restriction DNA fragments the rates of double-stranded breaks depend on the nucleotide sequence. In this work we analyzed genomic reads from NGS data and discovered that fragmentation methods based on the action of the hydrodynamic forces on DNA, produce similar bias. Consideration of this non-random DNA fragmentation may allow one to unravel what factors and to what extent influence the non-uniform coverage of various genomic regions.

  13. Restriction fragment length polymorphisms associated with substance P gene

    SciTech Connect

    de Miguel, C.; Bonner, T.; Detera-Wadleigh, S.

    1987-05-01

    Substance P (SP) is an important neuropepetide detected in a variety of locations in the central nervous system. Variations in SP content or SP receptors in psychiatric disorders have been described. Using SP clones as probes the authors have found three restriction fragment length polymorphisms (RFLPs) in the SP gene. The RFLPs are generated by digestion of genomic DNA with the MspI, and RsaI and NcoI restriction endonucleases. The MspI RFLP is detected by two genomic clones mapping to the 5' end of the gene while the RsaI and NcoI rFLPs are both detected by two genomic clones on the 3' end and also by a full-length cDNA clone of the gene. All three RFLPs are characterized by two alleles. For the MspI RFLP the frequency of both alleles is similar, for the Rsa I and NcoI RFLP one of the alleles is significantly more abundant than the other. These RFLPs are now being used to determine whether any of the alleles correlate with either schizophrenia or affective disorder.

  14. A Stochastic Model of DNA Fragments Rejoining

    PubMed Central

    Li, Yongfeng; Qian, Hong; Wang, Ya; Cucinotta, Francis A.

    2012-01-01

    When cells are exposed to ionizing radiation, DNA damages in the form of single strand breaks (SSBs), double strand breaks (DSBs), base damage or their combinations are frequent events. It is known that the complexity and severity of DNA damage depends on the quality of radiation, and the microscopic dose deposited in small segments of DNA, which is often related to the linear transfer energy (LET) of the radiation. Experimental studies have suggested that under the same dose, high LET radiation induces more small DNA fragments than low-LET radiation, which affects Ku efficiently binding with DNA end and might be a main reason for high-LET radiation induced RBE [1] since DNA DSB is a major cause for radiation-induced cell death. In this work, we proposed a mathematical model of DNA fragments rejoining according to non-homologous end joining (NHEJ) mechanism. By conducting Gillespie's stochastic simulation, we found several factors that impact the efficiency of DNA fragments rejoining. Our results demonstrated that aberrant DNA damage repair can result predominantly from the occurrence of a spatial distribution of DSBs leading to short DNA fragments. Because of the low efficiency that short DNA fragments recruit repair protein and release the protein residue after fragments rejoining, Ku-dependent NHEJ is significantly interfered with short fragments. Overall, our work suggests that inhibiting the Ku-dependent NHEJ may significantly contribute to the increased efficiency for cell death and mutation observed for high LET radiation. PMID:23028515

  15. Sizing of DNA fragments by flow cytometry

    NASA Astrophysics Data System (ADS)

    Johnson, Mitchell E.; Goodwin, Peter M.; Ambrose, W. Patrick; Martin, John C.; Marrone, Babetta L.; Jett, James H.; Keller, Richard A.

    1993-06-01

    Individual, stained DNA fragments were sized using a modified flow cytometer with high sensitivity fluorescence detection. The fluorescent intercalating dye ethidium homodimer was used to stain stoichiometrically lambda phage DNA and a Kpn I digest of lambda DNA. Stained, individual fragments of DNA were passed through a low average power, focused, mode-locked laser beam, and the fluorescence from each fragment was collected and quantified. Time-gated detection was used to discriminate against Raman scattering from the water solvent. The fluorescence burst from each fragment was related directly to its length, thus providing a means to size small quantities of kilobase lengths of DNA quickly. Improvements of several orders of magnitude in analysis time and sample size over current gel electrophoresis techniques were realized. Fragments of 17.1, 29.9, and 48.5 thousand base pairs were well resolved, and were sized in 164 seconds. Less than one pg of DNA was required for analysis.

  16. Sizing of DNA fragments by flow cytometry

    SciTech Connect

    Johnson, M.E.; Goodwin, P.M.; Ambrose, W.P.; Martin, J.C.; Marrone, B.L.; Jett, J.H.; Keller, R.A.

    1993-02-01

    Individual, stained DNA fragments were sized using a modified flow cytometer with high sensitivity fluorescence detection. The fluorescent intercalating dye ethidium homodimer was used to stain stoichiometrically lambda phage DNA and a Kpn I digest of lambda DNA. Stained, individual fragments of DNA were passed through a low average power, focused, mode-locked laser beam, and the fluorescence from each fragment was collected and quantified. Time-gated detection was used to discriminate against Raman scattering from the water solvent. The fluorescence burst from each fragment was related directly to its length, thus providing a means to size small quantities of kilobase lengths of DNA quickly. Improvements of several orders of magnitude in analysis time and sample size over current gel electrophoresis techniques were realized. Fragments of 17.1,29.9, and 48.5 thousand base pairs were well resolved, and were sized in 164 seconds. Less than one pg of DNA was required for analysis. We have demonstrated sizing of individual, stained DNA fragments with resolution approaching that of gel electrophoresis for moderately large fragments, but with significant reductions in the analysis time and the amount of sample required. Furthermore, system response is linear with DNA fragment length, in contrast to the logarithmic response in gel electrophoresis. There exists the potential to perform this sizing using relatively simple instrumentation, i.e. a continuous wave laser of low power and current mode detection.

  17. Sizing of DNA fragments by flow cytometry

    SciTech Connect

    Johnson, M.E.; Goodwin, P.M.; Ambrose, W.P.; Martin, J.C.; Marrone, B.L.; Jett, J.H.; Keller, R.A.

    1993-01-01

    Individual, stained DNA fragments were sized using a modified flow cytometer with high sensitivity fluorescence detection. The fluorescent intercalating dye ethidium homodimer was used to stain stoichiometrically lambda phage DNA and a Kpn I digest of lambda DNA. Stained, individual fragments of DNA were passed through a low average power, focused, mode-locked laser beam, and the fluorescence from each fragment was collected and quantified. Time-gated detection was used to discriminate against Raman scattering from the water solvent. The fluorescence burst from each fragment was related directly to its length, thus providing a means to size small quantities of kilobase lengths of DNA quickly. Improvements of several orders of magnitude in analysis time and sample size over current gel electrophoresis techniques were realized. Fragments of 17.1,29.9, and 48.5 thousand base pairs were well resolved, and were sized in 164 seconds. Less than one pg of DNA was required for analysis. We have demonstrated sizing of individual, stained DNA fragments with resolution approaching that of gel electrophoresis for moderately large fragments, but with significant reductions in the analysis time and the amount of sample required. Furthermore, system response is linear with DNA fragment length, in contrast to the logarithmic response in gel electrophoresis. There exists the potential to perform this sizing using relatively simple instrumentation, i.e. a continuous wave laser of low power and current mode detection.

  18. Mutant DNA quantification by digital PCR can be confounded by heating during DNA fragmentation.

    PubMed

    Kang, Qing; Parkin, Brian; Giraldez, Maria D; Tewari, Muneesh

    2016-04-01

    Digital PCR (dPCR) is gaining popularity as a DNA mutation quantification method for clinical specimens. Fragmentation prior to dPCR is required for non-fragmented genomic DNA samples; however, the effect of fragmentation on DNA analysis has not been well-studied. Here we evaluated three fragmentation methods for their effects on dPCR point mutation assay performance. Wild-type (WT) human genomic DNA was fragmented by heating, restriction digestion, or acoustic shearing using a Covaris focused-ultrasonicator. dPCR was then used to determine the limit of blank (LoB) by quantifying observed WT and mutant allele counts of the proto-oncogenes KRAS and BRAF in the WT DNA sample. DNA fragmentation by heating to 95°C, while the simplest and least expensive method, produced a high background mutation frequency for certain KRAS mutations relative to the other methods. This was due to heat-induced mutations, specifically affecting dPCR assays designed to interrogate guanine to adenine (G>A) mutations. Moreover, heat-induced fragmentation overestimated gene copy number, potentially due to denaturation and partition of single-stranded DNA into different droplets. Covaris acoustic shearing and restriction enzyme digestion showed similar LoBs and gene copy number estimates to one another. It should be noted that moderate heating, commonly used in genomic DNA extraction protocols, did not significantly increase observed KRAS mutation counts. PMID:27071606

  19. RESTRICTION FRAGMENT LENGTH POLYMORPHISMS DISTINGUISH ECTOMYCORRHIZAL FUNGI

    EPA Science Inventory

    Basidiomycetous fungi, two saprophytes and three mycorrhizal, were used to assess the specificity of DNA hybridization for distinguishing genera from one another. nterspecific comparisons were done with several isolates of mycorrhizal fungi, Laccaria bicolor and L. laccata, colle...

  20. Fragment Length of Circulating Tumor DNA

    PubMed Central

    Underhill, Hunter R.; Kitzman, Jacob O.; Hellwig, Sabine; Welker, Noah C.; Daza, Riza; Gligorich, Keith M.; Rostomily, Robert C.; Shendure, Jay

    2016-01-01

    Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134–144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132–145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA. PMID:27428049

  1. Genotypic Characterization of Bradyrhizobium Strains Nodulating Endemic Woody Legumes of the Canary Islands by PCR-Restriction Fragment Length Polymorphism Analysis of Genes Encoding 16S rRNA (16S rDNA) and 16S-23S rDNA Intergenic Spacers, Repetitive Extragenic Palindromic PCR Genomic Fingerprinting, and Partial 16S rDNA Sequencing

    PubMed Central

    Vinuesa, Pablo; Rademaker, Jan L. W.; de Bruijn, Frans J.; Werner, Dietrich

    1998-01-01

    We present a phylogenetic analysis of nine strains of symbiotic nitrogen-fixing bacteria isolated from nodules of tagasaste (Chamaecytisus proliferus) and other endemic woody legumes of the Canary Islands, Spain. These and several reference strains were characterized genotypically at different levels of taxonomic resolution by computer-assisted analysis of 16S ribosomal DNA (rDNA) PCR-restriction fragment length polymorphisms (PCR-RFLPs), 16S-23S rDNA intergenic spacer (IGS) RFLPs, and repetitive extragenic palindromic PCR (rep-PCR) genomic fingerprints with BOX, ERIC, and REP primers. Cluster analysis of 16S rDNA restriction patterns with four tetrameric endonucleases grouped the Canarian isolates with the two reference strains, Bradyrhizobium japonicum USDA 110spc4 and Bradyrhizobium sp. strain (Centrosema) CIAT 3101, resolving three genotypes within these bradyrhizobia. In the analysis of IGS RFLPs with three enzymes, six groups were found, whereas rep-PCR fingerprinting revealed an even greater genotypic diversity, with only two of the Canarian strains having similar fingerprints. Furthermore, we show that IGS RFLPs and even very dissimilar rep-PCR fingerprints can be clustered into phylogenetically sound groupings by combining them with 16S rDNA RFLPs in computer-assisted cluster analysis of electrophoretic patterns. The DNA sequence analysis of a highly variable 264-bp segment of the 16S rRNA genes of these strains was found to be consistent with the fingerprint-based classification. Three different DNA sequences were obtained, one of which was not previously described, and all belonged to the B. japonicum/Rhodopseudomonas rDNA cluster. Nodulation assays revealed that none of the Canarian isolates nodulated Glycine max or Leucaena leucocephala, but all nodulated Acacia pendula, C. proliferus, Macroptilium atropurpureum, and Vigna unguiculata. PMID:9603820

  2. The Molecular Basis of Genetic Diversity among Cytoplasms of TRITICUM and AEGILOPS Species. II. on the Origin of Polyploid Wheat Cytoplasms as Suggested by Chloroplast DNA Restriction Fragment Patterns.

    PubMed

    Tsunewaki, K; Ogihara, Y

    1983-05-01

    In attempts to identify the phylogenetic donors of cytoplasm to Emmer-Dinkel and Timopheevi groups of wheat (Triticum), and the Aegilops kotschyi-Ae. variabilis complex, the restriction fragment patterns of chloroplast DNAs of representative species were compared with those of their putative diploid ancestors. The following seven restriction enzymes were used; BamHI, EcoRI, HindIII, KpnI, PstI, SmaI and XhoI. The restriction fragment patterns of an Emmer and a Dinkel (common) wheat were identical with those of Ae. longissima , and different from those of Ae. aucheri, Ae. bicornis, Ae. searsii, Ae. sharonensis, Ae. speltoides, and T. urartu by 4 to 12 fragments. The restriction fragment patterns of a Timopheevi wheat were identical with those of Ae. aucheri, and different from those of all other diploids by four to nine fragments. The restriction fragment patterns of Ae. variabilis were identical to those of Ae. bicornis and Ae. searsii , and different from those of all other species. Thus, we have concluded that Ae. longissima, Ae. aucheri and Ae. bicornis (or Ae. searsii) were the cytoplasm donors to the Emmer-Dinkel and the Timopheevi groups, and the Ae. kotschyi-Ae. variabilis complex, respectively. A diphyletic origin of Emmer and Timopheevi groups is supported by the present results. PMID:17246126

  3. Effects of DNA Extraction Procedures on Bacteroides Profiles in Fecal Samples From Various Animals Determined by Terminal Restriction Fragment Length Polymorphism Analysis

    EPA Science Inventory

    A major assumption in microbial source tracking is that some fecal bacteria are specific to a host animal, and thus provide unique microbial fingerprints that can be used to differentiate hosts. However, the DNA information obtained from a particular sample may be biased dependi...

  4. Molecular cloning of Renibacterium salmoninarum DNA fragments.

    PubMed

    Etchegaray, J P; Martínez, M A; Krauskopf, M; León, G

    1991-03-15

    A Renibacterium salmoninarum enriched recombinant DNA library was constructed to isolate DNA fragments which could be used as probes to detect gene sequences specific for the causative agent of bacterial kidney disease in salmonid fish. One fragment of 149 base pairs was isolated and its specificity and sequence determined. This probe may prove useful in the design of diagnostic tests for the disease in asymptomatic fish and ova. PMID:2044941

  5. DNA fragment sizing and sorting by laser-induced fluorescence

    DOEpatents

    Hammond, Mark L.; Jett, James H.; Keller, Richard A.; Marrone, Babetta L.; Martin, John C.

    1996-01-01

    A method is provided for sizing DNA fragments using high speed detection systems, such as flow cytometry to determine unique characteristics of DNA pieces from a sample. In one characterization the DNA piece is fragmented at preselected sites to produce a plurality of DNA fragments. The DNA piece or the resulting DNA fragments are treated with a dye effective to stain stoichiometrically the DNA piece or the DNA fragments. The fluorescence from the dye in the stained fragments is then examined to generate an output functionally related to the number of nucleotides in each one of the DNA fragments. In one embodiment, the intensity of the fluorescence emissions from each fragment is linearly related to the fragment length. The distribution of DNA fragment sizes forms a characterization of the DNA piece for use in forensic and research applications.

  6. DNA fragmentation by charged particle tracks

    NASA Astrophysics Data System (ADS)

    Stenerlöw, B.; Höglund, E.; Carlsson, J.

    High-LET (linear energy transfer) charged particles induce DNA double-strand breaks (DSB) in a non-random fashion in mammalian cells. The clustering of DSB, probably determined by track structure as well as chromatin conformation, results in an excess of small- and intermediate-sized DNA fragments. DNA fragmentation in normal human fibroblasts (GM5758) was analyzed by pulsed-field gel electrophoresis after irradiation with photons ( 60Co) or 125 keV/μm nitrogen ions. Compared to conventional DSB analysis, i.e. assays only measuring the fraction of DNA smaller than a single threshold, the relative biological effectiveness (RBE) for DSB induction increased with 100%. Further, the size distribution of DNA fragments showed a significant dependence on radiation quality, with an excess of fragments up to 1 Mbp. Irradiation of naked genomic DNA without histone proteins increased the DSB yields 25 and 13 times for photons and nitrogen ions, respectively. The results suggest possible roles of both track structure and chromatin organization in the distribution of DNA double-strand breaks along the chromosome.

  7. Localization in the Tomato Genome of DNA Restriction Fragments Containing Sequences Homologous to the rRNA (45s), the Major Chlorophyll a/b Binding Polypeptide and the Ribulose Bisphosphate Carboxylase Genes

    PubMed Central

    Vallejos, C. E.; Tanksley, S. D.; Bernatzky, R.

    1986-01-01

    DNA restriction fragments containing sequences homologous to the ribosomal RNA (45s), the major chlorophyll a/b binding polypeptide (CAB) and the small subunit of ribulose bisphosphate carboxylase (RBCS) genes have been localized and mapped in the tomato nuclear genome by linkage analysis. Ribosomal RNA genes map to a single locus, R45s, which resides in a terminal position on the short arm of chromosome 2 and corresponds to the Nucleolar Organizer Region. The size of the 45s repeating unit is estimated to be approximately 9 kb in Lycopersicon esculentum and 11 kb in Lycopersicon pennellii. Five loci were found to contain CAB sequences. Two of the loci, Cab-1 (chromosome 2) and Cab-3 (chromosome 8), together accounted for more than 80% of the hybridization signal. These loci contain more than one CAB structural gene. The other three loci, Cab-2 (chromosome 8), Cab-4 (chromosome 7) and Cab-5 (chromosome 12), each account for <10% of the total signal and may contain only a single copy of the CAB structural sequence. Three loci were found to contain RBCS sequences. Rbcs-2 (chromosome 3) and Rbcs-3 (chromosome 2) were responsible for >80% of the signal, with the remainder being associated with Rbcs-1 (chromosome 2). Rbcs-2 and Rbcs-3 may contain more than one copy of the gene. PMID:17246311

  8. Restriction fragment length polymorphism species-specific patterns in the identification of white truffles.

    PubMed

    Bertini, L; Potenza, L; Zambonelli, A; Amicucci, A; Stocchi, V

    1998-07-15

    A molecular method for the identification of ectomycorrhizae belonging to five species of white truffle is described. The polymerase chain reaction (PCR) and universal primers were used to amplify internal transcribed spacers and 5.8S rDNA, target sequences present in a high number of copies. The amplified products were digested with restriction enzymes in order to detect interspecific polymorphisms. Species-specific restriction fragment length polymorphism patterns were determined for all five species. The use of PCR in conjunction with restriction enzymes provides a sensitive and efficient tool for use in distinguishing ectomycorrhizal species and monitoring inoculated seedlings or field mycorrhizal populations. PMID:9682488

  9. Rapid sizing of individual fluorescently stained DNA fragments by flow cytometry.

    PubMed Central

    Goodwin, P M; Johnson, M E; Martin, J C; Ambrose, W P; Marrone, B L; Jett, J H; Keller, R A

    1993-01-01

    Large, fluorescently stained restriction fragments of lambda phage DNA are sized by passing individual fragments through a focused continuous wave laser beam in an ultrasensitive flow cytometer at a rate of 60 fragments per second. The size of the fluorescence burst emitted by each stained DNA fragment, as it passes through the laser beam, is measured in one millisecond. One hundred sixty four seconds of fluorescence burst data allow linear sizing of DNA with an accuracy of better than two percent over a range of 10 to 50 kbp. This corresponds to analyzing less than 1 pg of DNA. Sizing of DNA fragments by this approach is much faster, requires much less DNA, and can potentially analyze large fragments with better resolution and accuracy than with gel-based electrophoresis. Images PMID:8451182

  10. DNA fragmentation in mouse organs during endotoxic shock.

    PubMed Central

    Bohlinger, I.; Leist, M.; Gantner, F.; Angermüller, S.; Tiegs, G.; Wendel, A.

    1996-01-01

    The systemic inflammatory response syndrome has still an unpredictable outcome, and patients often die of multiple organ failure despite circulatory stabilization therapy. The still incompletely understood pathophysiological mechanisms include organ damage due to direct toxic actions of cytokines elicited by overactivation of the host response. To study this process of organ failure in experimental septic shock, we injected mice with a lethal dose of endotoxin and examined apoptotic and necrotic tissue damage biochemically, histologically, and ultrastructurally. Endotoxin administration caused oligonucleosomal as well as random DNA fragmentation in liver, lung, kidney, and intestine. In the liver, DNA fragmentation was not restricted to hepatocytes but also occurred in nonparenchymal cells. The DNA fragmentation was mediated by tumor necrosis factor and attenuated by endogenous nitric oxide release. Unlike the situation in D-galactosamine-sensitized mice, in which injection or release of tumor necrosis factor causes massive hepatocyte apoptosis, liver failure due to high doses of endotoxin was characterized by single-cell necrosis, a low incidence of apoptosis, and simultaneous damage to nonparenchymal cells. We conclude that, even though endotoxin causes cytokine-mediated DNA fragmentation in several organs including the liver, hepatocyte apoptosis itself seems to be a minor phenomenon in high-dose endotoxic shock in mice. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:8863685

  11. Susceptibility to multiple sclerosis associated with an immunoglobulin gamma 3 restriction fragment length polymorphism.

    PubMed Central

    Gaiser, C N; Johnson, M J; de Lange, G; Rassenti, L; Cavalli-Sforza, L L; Steinman, L

    1987-01-01

    Susceptibility to multiple sclerosis (MS) has been linked to the immunoglobulin G (Gm) markers as well as HLA-DR genes. We have used a genomic Ig gamma 1 probe which detects polymorphisms in the gamma 1, gamma 2, gamma 3 and pseudogamma genes to identify restriction fragment length polymorphisms associated with MS. A negative association was found between a 5.9-kilobase (kb) Bst EII gamma 3 fragment and MS. Southern blot analysis of genomic DNA revealed the presence of this fragment in 84 of 140 (60.0%) controls, but in only 17 of 59 (28.8%) MS patients. The frequency of the fragment in 47 myasthenia gravis and 16 Graves' disease patients was similar to that in controls, 60.0 and 62.5%, respectively. Images PMID:2878940

  12. A method to capture large DNA fragments from genomic DNA.

    PubMed

    Ball, Geneviève; Filloux, Alain; Voulhoux, Romé

    2014-01-01

    The gene capture technique is a powerful tool that allows the cloning of large DNA regions (up to 80 kb), such as entire genomic islands, without using restriction enzymes or DNA amplification. This technique takes advantage of the high recombinant capacity of the yeast. A "capture" vector containing both ends of the target DNA region must first be constructed. The target region is then captured by co-transformation and recombination in yeast between the "capture" vector and appropriate genomic DNA. The selected recombinant plasmid can be verified by sequencing and transferred in the bacteria for multiple applications. This chapter describes a protocol specifically adapted for Pseudomonas aeruginosa genomic DNA capture. PMID:24818928

  13. Polymerase chain reaction-restriction fragment length polymorphism authentication of raw meats from game birds.

    PubMed

    Rojas, María; González, Isabel; Fajardo, Violeta; Martín, Irene; Hernández, Pablo E; García, Teresa; Martín, Rosario

    2008-01-01

    Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis has been applied to the identification of meats from quail (Coturnix coturnix), pheasant (Phasianus colchicus), red-legged partridge (Alectoris rufa), guinea fowl (Numida meleagris), capercaillie (Tetrao urogallus), Eurasian woodcock (Scolopax rusticola), woodpigeon (Columba palumbus), and song thrush (Turdus philomelos). PCR amplification was performed using a set of primers flanking a conserved region of approximately 720 base pairs (bp) from the mitochondrial 12S rRNA gene. Restriction site analysis based on sequence data from this DNA fragment permitted the selection of AluI and BfaI endonucleases for species identification. The restriction profiles obtained when amplicons were digested with the chosen enzymes allowed the unequivocal identification of all game bird species analyzed. However, the use of the PCR-RFLP technique described is limited to raw meat authentication. It is not suitable for cooked products because thermal treatment strongly accelerates DNA degradation leading to difficulties in amplifying the 720 bp fragment. PMID:19202803

  14. Epidemiological fingerprinting of Enterobacter cloacae by small-fragment restriction endonuclease analysis and pulsed-field gel electrophoresis of genomic restriction fragments.

    PubMed Central

    Haertl, R; Bandlow, G

    1993-01-01

    A cluster of infections caused by Enterobacter cloacae was observed among preterm neonates in a neonatal intensive care unit (NICU) of a pediatric hospital in Osnabrück, Germany. The presence of similar antimicrobial susceptibility patterns among the bacterial isolates prompted an investigation to determine whether a limited spread of a single strain existed. All 12 E. cloacae isolates from the NICU and 50 nonrelated strains were fingerprinted by small-fragment restriction endonuclease analysis (SF-REA) of EcoRI DNA digests. Selected isolates were further characterized by pulsed-field gel electrophoresis (PFGE) of NotI- or XbaI-generated genomic restriction fragments. Epidemiologically unrelated strains were clearly discriminated by both methods. Results achieved by SF-REA and PFGE revealed that of the 12 isolates from the NICU, 11 belonged to the same genotypic cluster. Since all reagents and equipment for both techniques are commercially available, DNA fingerprinting by SF-REA or PFGE is proposed as a useful tool in the microbiology laboratory for investigating the epidemiological relatedness of E. cloacae strains of clinical and environmental origin. Images PMID:8093251

  15. Formation of pseudo-terminal restriction fragments, a PCR-related bias affecting terminal restriction fragment length polymorphism analysis of microbial community structure.

    PubMed

    Egert, Markus; Friedrich, Michael W

    2003-05-01

    Terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR-amplified genes is a widely used fingerprinting technique in molecular microbial ecology. In this study, we show that besides expected terminal restriction fragments (T-RFs), additional secondary T-RFs occur in T-RFLP analysis of amplicons from cloned 16S rRNA genes at high frequency. A total of 50% of 109 bacterial and 78% of 68 archaeal clones from the guts of cetoniid beetle larvae, using MspI and AluI as restriction enzymes, respectively, were affected by the presence of these additional T-RFs. These peaks were called "pseudo-T-RFs" since they can be detected as terminal fluorescently labeled fragments in T-RFLP analysis but do not represent the primary terminal restriction site as indicated by sequence data analysis. Pseudo-T-RFs were also identified in T-RFLP profiles of pure culture and environmental DNA extracts. Digestion of amplicons with the single-strand-specific mung bean nuclease prior to T-RFLP analysis completely eliminated pseudo-T-RFs. This clearly indicates that single-stranded amplicons are the reason for the formation of pseudo-T-RFs, most probably because single-stranded restriction sites cannot be cleaved by restriction enzymes. The strong dependence of pseudo-T-RF formation on the number of cycles used in PCR indicates that (partly) single-stranded amplicons can be formed during amplification of 16S rRNA genes. In a model, we explain how transiently formed secondary structures of single-stranded amplicons may render single-stranded amplicons accessible to restriction enzymes. The occurrence of pseudo-T-RFs has consequences for the interpretation of T-RFLP profiles from environmental samples, since pseudo-T-RFs may lead to an overestimation of microbial diversity. Therefore, it is advisable to establish 16S rRNA gene sequence clone libraries in parallel with T-RFLP analysis from the same sample and to check clones for their in vitro digestion T-RF pattern to facilitate

  16. Structural insight into the specificity of the B3 DNA-binding domains provided by the co-crystal structure of the C-terminal fragment of BfiI restriction enzyme

    PubMed Central

    Golovenko, Dmitrij; Manakova, Elena; Zakrys, Linas; Zaremba, Mindaugas; Sasnauskas, Giedrius; Gražulis, Saulius; Siksnys, Virginijus

    2014-01-01

    The B3 DNA-binding domains (DBDs) of plant transcription factors (TF) and DBDs of EcoRII and BfiI restriction endonucleases (EcoRII-N and BfiI-C) share a common structural fold, classified as the DNA-binding pseudobarrel. The B3 DBDs in the plant TFs recognize a diverse set of target sequences. The only available co-crystal structure of the B3-like DBD is that of EcoRII-N (recognition sequence 5′-CCTGG-3′). In order to understand the structural and molecular mechanisms of specificity of B3 DBDs, we have solved the crystal structure of BfiI-C (recognition sequence 5′-ACTGGG-3′) complexed with 12-bp cognate oligoduplex. Structural comparison of BfiI-C–DNA and EcoRII-N–DNA complexes reveals a conserved DNA-binding mode and a conserved pattern of interactions with the phosphodiester backbone. The determinants of the target specificity are located in the loops that emanate from the conserved structural core. The BfiI-C–DNA structure presented here expands a range of templates for modeling of the DNA-bound complexes of the B3 family of plant TFs. PMID:24423868

  17. DNA fragment sizing and sorting by laser-induced fluorescence

    SciTech Connect

    Jett, J.H.; Hammond, M.L.; Keller, R.A.; Marrone, B.L.; Martin, J.C.

    1992-12-31

    A method is provided for obtaining DNA fingerprints using high speed detection systems, such as flow cytometry to determine unique characteristics of DNA pieces from a selected sample. In one characterization the DNA piece is fragmented at preselected sites to produce a plurality of DNA fragments. The DNA piece or the resulting DNA fragments are treated with a dye effective to stain stoichiometrically the DNA fragments. The fluorescence from the dye in the stained fragments is then examined to generate an output functionally related to the number of nucleotides in each one of the DNA fragments. In one embodiment, the intensity of the fluorescence emissions from each fragment is directly proportional to the fragment length. Additional dyes can be bound to the DNA piece and DNA fragments to provide information additional to length information. Oligonucleotide specific dyes and/or hybridization probes can be bound to the DNA fragments to provide information on oligonucleotide distribution or probe hybridization to DNA fragments of different sizes.

  18. Optical selection and collection of DNA fragments

    DOEpatents

    Roslaniec, Mary C.; Martin, John C.; Jett, James H.; Cram, L. Scott

    1998-01-01

    Optical selection and collection of DNA fragments. The present invention includes the optical selection and collection of large (>.mu.g) quantities of clonable, chromosome-specific DNA from a sample of chromosomes. Chromosome selection is based on selective, irreversible photoinactivation of unwanted chromosomal DNA. Although more general procedures may be envisioned, the invention is demonstrated by processing chromosomes in a conventional flow cytometry apparatus, but where no droplets are generated. All chromosomes in the sample are first stained with at least one fluorescent analytic dye and bonded to a photochemically active species which can render chromosomal DNA unclonable if activated. After passing through analyzing light beam(s), unwanted chromosomes are irradiated using light which is absorbed by the photochemically active species, thereby causing photoinactivation. As desired chromosomes pass this photoinactivation point, the inactivating light source is deflected by an optical modulator; hence, desired chromosomes are not photoinactivated and remain clonable. The selection and photoinactivation processes take place on a microsecond timescale. By eliminating droplet formation, chromosome selection rates 50 times greater than those possible with conventional chromosome sorters may be obtained. Thus, usable quantities of clonable DNA from any source thereof may be collected.

  19. Identification of Infectious Agents in Onychomycoses by PCR-Terminal Restriction Fragment Length Polymorphism

    PubMed Central

    Verrier, Julie; Pronina, Marina; Peter, Corinne; Bontems, Olympia; Fratti, Marina; Salamin, Karine; Schürch, Stéphanie; Gindro, Katia; Wolfender, Jean-Luc; Harshman, Keith

    2012-01-01

    A fast and reliable assay for the identification of dermatophyte fungi and nondermatophyte fungi (NDF) in onychomycosis is essential, since NDF are especially difficult to cure using standard treatment. Diagnosis is usually based on both direct microscopic examination of nail scrapings and macroscopic and microscopic identification of the infectious fungus in culture assays. In the last decade, PCR assays have been developed for the direct detection of fungi in nail samples. In this study, we describe a PCR-terminal restriction fragment length polymorphism (TRFLP) assay to directly and routinely identify the infecting fungi in nails. Fungal DNA was easily extracted using a commercial kit after dissolving nail fragments in an Na2S solution. Trichophyton spp., as well as 12 NDF, could be unambiguously identified by the specific restriction fragment size of 5′-end-labeled amplified 28S DNA. This assay enables the distinction of different fungal infectious agents and their identification in mixed infections. Infectious agents could be identified in 74% (162/219) of cases in which the culture results were negative. The PCR-TRFLP assay described here is simple and reliable. Furthermore, it has the possibility to be automated and thus routinely applied to the rapid diagnosis of a large number of clinical specimens in dermatology laboratories. PMID:22170903

  20. MULTIPLE ENZYME RESTRICTION FRAGMENT LENGTH POLYMORPHISM ANALYSIS FOR HIGH RESOLUTION DISTINCTION OF PSEUDOMONAS (SENSU STRICTO) 16S RRNA GENES

    EPA Science Inventory

    Pseudomonas specific 16S rDNA PCR amplification and multiple enzyme restriction fragment length polymorphism (MERFLP) analysis using a single digestion mixture of Alu I, Hinf I, Rsa I, and Tru 9I distinguished 150 published sequences and reference strains of authentic Pseudomonas...

  1. Optimizing restriction fragment fingerprinting methods for ordering large genomic libraries

    SciTech Connect

    Branscomb, E.; Slezak, T.; Pae, R.; Carrano, A.V. ); Galas, D.; Waterman, M. )

    1990-01-01

    The authors present a statistical analysis of the problem of ordering large genomic cloned libraries through overlap detection based on restriction fingerprinting. Such ordering projects involve a large investment of effort involving many repetitious experiments. Their primary purpose here is to provide methods of maximizing the efficiency of such efforts. To this end, they adopt a statistical approach that uses the likelihood ratio as a statistic to detect overlap. The main advantages of this approach are that (1) it allows the relatively straightforward incorporation of the observed statistical properties of the data; (2) it permits the efficiency of a particular experimental method for detecting overlap to be quantitatively defined so that alternative experimental designs may be compared and optimized; and (3) it yields a direct estimate of the probability that any two library members overlap. This estimate is a critical tool for the accurate, automatic assembly of overlapping sets of fragments into islands called contigs.' These contigs must subsequently be connected by other methods to provide an ordered set of overlapping fragments covering the entire genome.

  2. Large-scale production of palindrome DNA fragments

    SciTech Connect

    Palmer, E.L.; Gewiess, A.; Harp, J.M.

    1995-10-10

    Our structural studies of nucleosomes necessitated the production of over 100 mg of a 146-bp perfect palindrome DNA for use in the reconstitution of perfectly symmetrical nucleosome core particles for detailed X-ray crystallographic analysis. The propagation of palindromic DNA sequences by bacterial culture is hindered by the instability of these sequences during bacterial replication and recombination. While the loss of some palindrome sequences can be elminated by the use of sbcB or sbcC mutants of Escherichia coli, not all palindrome-containing plasmids are faithfully maintained by these strains. The production of large quantities of palindrome DNA can therefore be extremely difficult. After trying several approaches, we were able to develop a reliable procedure for production of large quantities of palindrome DNA that involves production of plasmid containing multiple copies of the repeating unit of the palindrome which are isolated by restriction digestion and ligated in vitro to form the palindrome DNA. The procedure has resulted in the production of over 20 mg of a 146-bp DNA fragment in 2 weeks.

  3. Cleavage patterns of Drosophila melanogaster satellite DNA by restriction enzymes.

    PubMed Central

    Shen, C J; Wiesehahn, G; Hearst, J E

    1976-01-01

    The five satellite DNAs of Drosophila melanogaster have been isolated by the combined use of different equilibrium density gradients and hydrolyzed by seven different restriction enzymes; Hae III, Hind II + Hind III, Hinf, Hpa II, EcoR I and EcoR II. The 1.705 satellite is not hydrolyzed by any of the enzymes tested. Hae III is the only restriction enzyme that cuts the 1.672 and 1.686 satellites. The cleavage products from either of these reactions has a heterogeneous size distribution. Part of the 1.688 satellite is cut by Hae III and by Hinf into three discrete fragments with M.W. that are multiples of 2.3 X 10(5) daltons (approximately 350 base pairs). In addition, two minor bands are detected in the 1.688-Hinf products. The mole ratios of the trimer, dimer and monomer are: 1:6.30 : 63.6 for 1.688-Hae III and 1 : 22.0 : 403 for 1.688-Hinf. Circular mitochondrial DNA (rho = 1.680) is cut into discrete fragments by all of the enzymes tested and molecular weights of these fragments have been determined. Images PMID:818625

  4. Cleavage of supercoiled plasmid DNA by autoantibody Fab fragment: application of the flow linear dichroism technique.

    PubMed Central

    Gololobov, G V; Chernova, E A; Schourov, D V; Smirnov, I V; Kudelina, I A; Gabibov, A G

    1995-01-01

    A highly effective method consisting of two affinity chromatography steps and ion-exchange and gel-filtration chromatography steps was developed for purification of autoantibodies from human sera with DNA-hydrolyzing activity. Antibody Fab fragment, which had been purified 130-fold, was shown to catalyze plasmid DNA cleavage. The flow linear dichroism technique was used for quantitative and qualitative studying of supercoiled plasmid DNA cleavage by these autoantibodies in comparison with DNase I and EcoRI restriction endonuclease. The DNA autoantibody Fab fragment was shown to hydrolyze plasmid DNA by Mg(2+)-dependent single-strand multiple nicking of the substrate. Kinetic properties of the DNA autoantibody Fab fragment were evaluated from the flow linear dichroism and agarose gel electrophoresis data and revealed a high affinity (Kobsm = 43 nM) and considerable catalytic efficiency (kappcat/Kobsm = 0.32 min-1.nM-1) of the reaction. Images Fig. 2 PMID:7816827

  5. Using Terminal Restriction Fragment Length Polymorphism (T-RFLP) Analysis to Assess Microbial Community Structure in Compost Systems

    NASA Astrophysics Data System (ADS)

    Tiquia, Sonia M.

    Terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR-amplified genes is a widely used fingerprinting technique in composting systems. This analysis is based on the restriction endonuclease digestion of fluorescently end-labeled PCR products. The digested product is mixed with a DNA size standard, itself labeled with a distinct fluorescent dye, and the fragments are then separated by capillary or gel electrophoresis using an automated sequencer. Upon analysis, only the terminal end-labeled restriction fragments are detected. An electropherogram is produced, which shows a profile of compost microbial community as a series of peaks of varying height. This technique has also been effectively used in the exploration of complex microbial environments and in the study of bacterial, archaeal, and eukaryal populations in natural habitats.

  6. Restriction endonuclease analysis of leukocyte mitochondrial DNA in Leber's optic atrophy.

    PubMed Central

    Holt, I J; Miller, D H; Harding, A E

    1988-01-01

    In order to test the hypothesis that Leber's optic atrophy may be caused by mutation of the mitochondrial (mt) genome, restriction fragment length polymorphism in leukocyte mt DNA was studied in 16 patients with Leber's optic atrophy, 28 of their unaffected matrilineal relatives, and 35 normal control subjects. No differences in restriction fragment patterns were observed between affected and unaffected individuals in the same maternal line, and there was no evidence of major deletion of mt DNA in patients. This study provides no positive evidence of mitochondrial inheritance in Leber's optic atrophy but does not exclude it. PMID:2905730

  7. Plasmid profiles, restriction fragment length polymorphisms and O-serotypes among Vibrio anguillarum isolates.

    PubMed Central

    Pedersen, K.; Tiainen, T.; Larsen, J. L.

    1996-01-01

    A total of 279 Vibrio anguillarum strains were serotyped and examined for plasmid content. Plasmids were subjected to digestion with restriction enzymes. Most strains belonged to serogroup O1 (39%) and O2 (16%). In total 164 strains (53%) carried plasmids. Of the O1 and O2 isolates, 92% and 30%, respectively, carried one or more plasmids. Restriction fragment length polymorphism (RFLP) analysis of plasmid DNA indicated that plasmids belonged to several groups. Each group seemed to be restricted to a single O-serovar. The largest group was the pJM1-like plasmids among most serovar O1 strains. Most of these plasmids were about 67 kb like the pJM1 plasmid, but various derivatives ranged from 26-77 kb. RFLP studies of the 67 kb plasmids revealed 17 different restriction patterns. Some patterns were dominant among European strains whereas others were dominant among North American strains. The results confirmed the applicability of O-serotyping together with plasmid profile and restriction analysis of plasmids for typing of V. anguillarum. They also indicated that plasmids among strains which belonged to the traditional fish pathogenic serogroups, O1 and O2, showed more homology than did strains from most other serogroups, that were usually non-pathogenic, environmental bacteria. Images Fig. 1 Fig. 2 Fig. 3 PMID:8972671

  8. Recombination within a Subclass of Restriction Fragment Length Polymorphisms May Help Link Classical and Molecular Genetics

    PubMed Central

    Meagher, R. B.; McLean, M. D.; Arnold, J.

    1988-01-01

    Restriction fragment length polymorphisms (RFLPs) are being used to construct complete linkage maps for many eukaryotic genomes. These RFLP maps can be used to predict the inheritance of important phenotypic loci and will assist in the molecular cloning of linked gene(s) which affect phenotypes of scientific, medical and agronomic importance. However, genetic linkage implies very little about the actual physical distances between loci. An assay is described which uses genetic recombinants to measure physical distance from a DNA probe to linked phenotypic loci. We have defined the subset of all RFLPs which have polymorphic restriction sites at both ends as class II RFLPs. The frequency of class II RFLPs is computed as a function of sequence divergence and total RFLP frequency for highly divergent genomes. Useful frequencies exist between organisms which differ by more than 7% in DNA sequence. Recombination within class II RFLPs will produce fragments of novel sizes which can be assayed by pulsed field electrophoresis to estimate physical distance in kilobase pairs between linked RFLP and phenotypic loci. This proposed assay should have particular applications to crop plants where highly divergent and polymorphic species are often genetically compatible and thus, where class II RFLPs will be most frequent. PMID:2906304

  9. Use of Restriction Fragment Length Polymorphisms to Investigate Strain Variation Within Neisseria Meningitidis.

    NASA Astrophysics Data System (ADS)

    Williams, Shelley Diane

    Similarity within bacterial populations is difficult to assess due to the limited number of characters available for evaluation and the heterogeneity of bacterial species. Currently, the preferred method used to evaluate the structure of bacterial populations is multilocus enzyme electrophoresis. However, this method is extremely cumbersome and only offers an indirect measure of genetic similarities. The development of a more direct and less cumbersome method for this purpose is warranted. Restriction fragment length polymorphism analysis was evaluated as a tool for use in the study of bacterial population structures and in the epidemiology and surveillance of infectious disease. A collection of Neisseria meningitidis was available for use in the investigation of this technique. Neisseria meningitidis is the causative agent of epidemic cerebrospinal meningitis and septicemia as well as a variety of other clinical manifestations. Each isolate in the collection was defined in terms of serogroup specificity, clinical history, geographic source, and date of isolation. Forty -six strains were chosen for this study. The DNA from each strain was restricted with Pst1 and EcoR1 and electrophoresed on agarose gels. The DNA was transferred to nylon filters and hybridized with P ^{32} labeled DNA probes. Two randomly generated probes and a gene-specific probe were used to estimate the genetic similarities between and among the strains in the study population. A total of 28 different restriction fragment migration types were detected by the probes used. Data obtained from the RFLP analysis was analysed by cluster analysis and multivariate statistical methods. A total of 7 clones groups were detected. Two of these appear to be major clones that comprise 35% of the population. This analysis demonstrates the lack of structure within Neisseria meningitidis due primarily to a heterogenous population and the lack of geographic segregation. The potential utility of this technique as a

  10. The identification and differentiation of the Candida parapsilosis complex species by polymerase chain reaction-restriction fragment length polymorphism of the internal transcribed spacer region of the rDNA

    PubMed Central

    Barbedo, Leonardo Silva; Figueiredo-Carvalho, Maria Helena Galdino; Muniz, Mauro de Medeiros; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis: C. para- psilosis sensu stricto, Candida orthopsilosis, andCandida metapsilosis. In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economical identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories. PMID:27074256

  11. Babesia canis: evidence for genetic diversity among isolates revealed by restriction fragment length polymorphism analysis.

    PubMed

    Citard, T; Mähl, P; Boulouis, H J; Chavigny, C; Druilhe, P

    1995-09-01

    The genetic diversity of B. canis was investigated by restriction fragment length polymorphism analysis. For this purpose, we identified a Babesia canis specific DNA probe named pS8. This 1.2 kbp probe can detect as low as 20 pg of B. canis DNA. Results suggest that the pS8 probe is distributed in multiple copies throughout the genome though is probably not itself internally repetitious, i.e. not structured into blocks of tandem units. This probe reveals discrete hybridizing fragments in B. canis enzyme-digested genomic DNA. RFLP patterns obtained with the pS8 probe revealed a large genetic diversity between various isolates and led us to distinguish several clones derived from a single isolate. Results suggest that for a single isolate, the fingerprints obtained reflect those of a few quantitatively dominant clones. This technique can now be routinely applied and provides a convenient tool for the characterization and the identification of B. canis isolates, strains and clones. PMID:8533020

  12. A method for selective PCR-amplification of genomic DNA fragments (SAGF method)

    SciTech Connect

    Zheleznaya, L.A.; Menzenyuk, O.Y.; Matvienko, N.N.; Matvienko, N.I.

    1995-09-01

    A method is suggested for dividing into individual sets of the complex mixtures of fragments obtained by DNA cleavage with type IIS and IIN restriction endonucleases producing single-stranded termini with different sequences at the DNA fragment ends. The method is based on the ligation of short double-stranded adapters with single-stranded ends complementary to termini of the selected set of fragments followed by PCR-amplification with the primer representing one of the adapter chains. Using endonucleases BcoKI and Bli736I, recognizing sequences CTCTTC and GGTCTC and producing three- and four nucleotide 5{prime}-termini, respectively, it has been shown that amplification of a set of fragments occurs only upon attachment of the adapters to the DNA fragments with DNA-ligase. Several possible applications of the SAGF method are suggested: obtaining individual bands in DNA fingerprinting; reducing the kinetic complexity of DNA in representative difference analysis (RDA method) of complex genomes; cataloging of DNA fragments; construction of physical genome maps. 13 refs., 3 figs., 2 tabs.

  13. Phylogenetic analysis of Gossypium L. using restriction fragment length polymorphism of repeated sequences.

    PubMed

    Zhang, Meiping; Rong, Ying; Lee, Mi-Kyung; Zhang, Yang; Stelly, David M; Zhang, Hong-Bin

    2015-10-01

    Cotton is the world's leading textile fiber crop and is also grown as a bioenergy and food crop. Knowledge of the phylogeny of closely related species and the genome origin and evolution of polyploid species is significant for advanced genomics research and breeding. We have reconstructed the phylogeny of the cotton genus, Gossypium L., and deciphered the genome origin and evolution of its five polyploid species by restriction fragment analysis of repeated sequences. Nuclear DNA of 84 accessions representing 35 species and all eight genomes of the genus were analyzed. The phylogenetic tree of the genus was reconstructed using the parsimony method on 1033 polymorphic repeated sequence restriction fragments. The genome origin of its polyploids was determined by calculating the diploid-polyploid restriction fragment correspondence (RFC). The tree is consistent with the morphological classification, genome designation and geographic distribution of the species at subgenus, section and subsection levels. Gossypium lobatum (D7) was unambiguously shown to have the highest RFC with the D-subgenomes of all five polyploids of the genus, while the common ancestor of Gossypium herbaceum (A1) and Gossypium arboreum (A2) likely contributed to the A-subgenomes of the polyploids. These results provide a comprehensive phylogenetic tree of the cotton genus and new insights into the genome origin and evolution of its polyploid species. The results also further demonstrate a simple, rapid and inexpensive method suitable for phylogenetic analysis of closely related species, especially congeneric species, and the inference of genome origin of polyploids that constitute over 70 % of flowering plants. PMID:25877517

  14. Study of restriction fragment length polymorphism in the cystatin C gene of elderly patients with dementia and aged Down's syndrome patients.

    PubMed

    Palsdottir, A; Thorsteinsson, L; Jonsdottir, S; Arnason, A; Snaedal, J; Magnusson, T; Snorrason, E; Ingibergsdottir, R; Abrahamson, M; Olafsson, I

    1989-01-01

    Using a full length cystatin C cDNA probe and the Alu I restriction enzyme a total of 33 patients with senile dementia, Alzheimer type and 31 Down's syndrome patients have been investigated for the presence of the 630 bp Alu I restriction fragment length polymorphism in the cystatin C gene detected in Icelandic patients with hereditary cystatin C amyloid angiopathy. Results showed that all the patients had normal cystatin C fragment length of 600 bp. PMID:2574869

  15. A strategy for seamless cloning of large DNA fragments from Streptomyces.

    PubMed

    Huang, Jun; Yu, Zhen; Li, Mei-Hong; Li, Na; Zhou, Jun; Zheng, Yu-Guo

    2015-10-01

    We report a novel method for the seamless cloning of large DNA fragments (SCLF) of up to 44 kb or larger from Streptomyces chromosomal DNA. SCLF is based on homologous recombination in Streptomyces and is easy to perform. The strategy of SCLF is to flank the target sequence in the chromosomal DNA with two identical restriction sites by the insertion of plasmids containing that site at either end of the fragment, which is then isolated by plasmid rescue through the self-ligation of restriction digested genomic DNA. The method involves three steps: (i) placing a certain restriction site (CRS) at the 3'-end of the target sequence by insertion through homologous recombination of a plasmid containing the CRS; (ii) inserting through homologous recombination at the 5'-end of the target sequence a linearized self-suicide vector with the identical CRS; (iii) digesting the genomic DNA with the certain restriction enzyme followed by self-ligation in order to plasmid rescue the target fragment. SCLF can be applied to other Actinomycetales, and further optimizations may reduce the amount of time required to perform this technique. PMID:26458547

  16. A mechanism of gene amplification driven by small DNA fragments.

    PubMed

    Mukherjee, Kuntal; Storici, Francesca

    2012-01-01

    DNA amplification is a molecular process that increases the copy number of a chromosomal tract and often causes elevated expression of the amplified gene(s). Although gene amplification is frequently observed in cancer and other degenerative disorders, the molecular mechanisms involved in the process of DNA copy number increase remain largely unknown. We hypothesized that small DNA fragments could be the trigger of DNA amplification events. Following our findings that small fragments of DNA in the form of DNA oligonucleotides can be highly recombinogenic, we have developed a system in the yeast Saccharomyces cerevisiae to capture events of chromosomal DNA amplification initiated by small DNA fragments. Here we demonstrate that small DNAs can amplify a chromosomal region, generating either tandem duplications or acentric extrachromosomal DNA circles. Small fragment-driven DNA amplification (SFDA) occurs with a frequency that increases with the length of homology between the small DNAs and the target chromosomal regions. SFDA events are triggered even by small single-stranded molecules with as little as 20-nt homology with the genomic target. A double-strand break (DSB) external to the chromosomal amplicon region stimulates the amplification event up to a factor of 20 and favors formation of extrachromosomal circles. SFDA is dependent on Rad52 and Rad59, partially dependent on Rad1, Rad10, and Pol32, and independent of Rad51, suggesting a single-strand annealing mechanism. Our results reveal a novel molecular model for gene amplification, in which small DNA fragments drive DNA amplification and define the boundaries of the amplicon region. As DNA fragments are frequently found both inside cells and in the extracellular environment, such as the serum of patients with cancer or other degenerative disorders, we propose that SFDA may be a common mechanism for DNA amplification in cancer cells, as well as a more general cause of DNA copy number variation in nature. PMID

  17. Species identification of oral viridans streptococci by restriction fragment polymorphism analysis of rRNA genes.

    PubMed Central

    Rudney, J D; Larson, C J

    1993-01-01

    Oral streptococci formerly classified as Streptococcus sanguis have been divided into six genetic groups. Methods to identify those species by genotype are needed. This study compared restriction fragment polymorphisms of rRNA genes (ribotypes) for seven S. gordonii, three S. sanguis, four S. oralis, three S. mitis, one S. crista, and seven S. parasanguis strains classified in previous DNA hybridization studies, as well as one clinical isolate. DNA was digested with HindIII, PvuII, HindIII and PvuII combined, EcoRI, BamHI, AatII, AlwNI, and DraII. DNA fragments were hybridized with a digoxigenin-labeled cDNA probe obtained by reverse transcription of Escherichia coli 16S and 23S rRNA. S. oralis, S. mitis, and S. parasanguis all showed an isolated 2,290-bp band in AatII ribotypes that was absent from S. gordonii, S. sanguis, and S. crista. The last three groups showed species-specific bands with AatII and also with PvuII. S. oralis could be distinguished from S. mitis and S. parasanguis in AlwNI and DraII ribotypes. S. mitis and S. parasanguis could not be distinguished, since they shared multiple bands in PvuII, AlwNI, and EcoRI patterns. The clinical isolate in the panel was very similar to S. sanguis by all enzymes used. Our findings suggest that ribotyping may be useful for genotypic identification of oral viridans streptococci. Initial digests of clinical isolates might be made with AatII, followed by PvuII or AlwNI. Isolates then could be identified by comparing ribotype patterns with those of reference strains. This approach could facilitate clinical studies of these newly defined species. Images PMID:7691875

  18. Epidemiologic study of Taylorella equigenitalis strains by field inversion gel electrophoresis of genomic restriction endonuclease fragments.

    PubMed

    Bleumink-Pluym, N; ter Laak, E A; van der Zeijst, B A

    1990-09-01

    Contagious equine metritis (CEM), a sexually transmitted bacterial disease, was first described in thoroughbred horses. It also occurs in nonthoroughbred horses, in which it produces isolated, apparently unrelated outbreaks. Thirty-two strains of Taylorella equigenitalis, the causative agent of CEM, from all over the world were characterized by field inversion gel electrophoresis of fragments of genomic DNA obtained by digestion with low-cleavage-frequency restriction enzymes. This resulted in a division into five clearly distinct groups. Strains from thoroughbred horses from all continents belonged to one group. Strains from nonthoroughbred horses from various countries were different from strains from thoroughbred horses; four groups could be determined. Two groups contained both streptomycin-resistant and streptomycin-susceptible strains. The data indicate that CEM in nonthoroughbreds did not originate from the thoroughbred population; also, the reverse was not demonstrated. Thus, extensive international transportation directives regarding the testing of nonthoroughbred horses for CEM may need reconsideration. PMID:2172296

  19. Effect of aging and dietary restriction on DNA repair

    SciTech Connect

    Weraarchakul, N.; Strong, R.; Wood, W.G.; Richardson, A.

    1989-03-01

    DNA repair was studied as a function of age in cells isolated from both the liver and the kidney of male Fischer F344 rats. DNA repair was measured by quantifying unscheduled DNA synthesis induced by UV irradiation. Unscheduled DNA synthesis decreased approximately 50% between the ages of 5 and 30 months in both hepatocytes and kidney cells. The age-related decline in unscheduled DNA synthesis in cells isolated from the liver and kidney was compared in rats fed ad libitum and rats fed a calorie-restricted diet; calorie restriction has been shown to increase the survival of rodents. The level of unscheduled DNA synthesis was significantly higher in hepatocytes and kidney cells isolated from the rats fed the restricted diet. Thus, calorie restriction appears to retard the age-related decline in DNA repair.

  20. DNA studies using atomic force microscopy: capabilities for measurement of short DNA fragments

    PubMed Central

    Pang, Dalong; Thierry, Alain R.; Dritschilo, Anatoly

    2015-01-01

    Short DNA fragments, resulting from ionizing radiation induced DNA double strand breaks (DSBs), or released from cells as a result of physiological processes and circulating in the blood stream, may play important roles in cellular function and potentially in disease diagnosis and early intervention. The size distribution of DNA fragments contribute to knowledge of underlining biological processes. Traditional techniques used in radiation biology for DNA fragment size measurements lack the resolution to quantify short DNA fragments. For the measurement of cell-free circulating DNA (ccfDNA), real time quantitative Polymerase Chain Reaction (q-PCR) provides quantification of DNA fragment sizes, concentration and specific gene mutation. A complementary approach, the imaging-based technique using Atomic Force Microscopy (AFM) provides direct visualization and measurement of individual DNA fragments. In this review, we summarize and discuss the application of AFM-based measurements of DNA fragment sizes. Imaging of broken plasmid DNA, as a result of exposure to ionizing radiation, as well as ccfDNA in clinical specimens offer an innovative approach for studies of short DNA fragments and their biological functions. PMID:25988169

  1. Enzymatic assembly of overlapping DNA fragments.

    PubMed

    Gibson, Daniel G

    2011-01-01

    Three methods for assembling multiple, overlapping DNA molecules are described. Each method shares the same basic approach: (i) an exonuclease removes nucleotides from the ends of double-stranded (ds) DNA molecules, exposing complementary single-stranded (ss) DNA overhangs that are specifically annealed; (ii) the ssDNA gaps of the joined molecules are filled in by DNA polymerase, and the nicks are covalently sealed by DNA ligase. The first method employs the 3'-exonuclease activity of T4 DNA polymerase (T4 pol), Taq DNA polymerase (Taq pol), and Taq DNA ligase (Taq lig) in a two-step thermocycled reaction. The second method uses 3'-exonuclease III (ExoIII), antibody-bound Taq pol, and Taq lig in a one-step thermocycled reaction. The third method employs 5'-T5 exonuclease, Phusion® DNA polymerase, and Taq lig in a one-step isothermal reaction and can be used to assemble both ssDNA and dsDNA. These assembly methods can be used to seamlessly construct synthetic and natural genes, genetic pathways, and entire genomes and could be very useful for molecular engineering tools. PMID:21601685

  2. Short read DNA fragment anchoring algorithm

    PubMed Central

    Wang, Wendi; Zhang, Peiheng; Liu, Xinchun

    2009-01-01

    Background The emerging next-generation sequencing method based on PCR technology boosts genome sequencing speed considerably, the expense is also get decreased. It has been utilized to address a broad range of bioinformatics problems. Limited by reliable output sequence length of next-generation sequencing technologies, we are confined to study gene fragments with 30~50 bps in general and it is relatively shorter than traditional gene fragment length. Anchoring gene fragments in long reference sequence is an essential and prerequisite step for further assembly and analysis works. Due to the sheer number of fragments produced by next-generation sequencing technologies and the huge size of reference sequences, anchoring would rapidly becoming a computational bottleneck. Results and discussion We compared algorithm efficiency on BLAT, SOAP and EMBF. The efficiency is defined as the count of total output results divided by time consumed to retrieve them. The data show that our algorithm EMBF have 3~4 times efficiency advantage over SOAP, and at least 150 times over BLAT. Moreover, when the reference sequence size is increased, the efficiency of SOAP will get degraded as far as 30%, while EMBF have preferable increasing tendency. Conclusion In conclusion, we deem that EMBF is more suitable for short fragment anchoring problem where result completeness and accuracy is predominant and the reference sequences are relatively large. PMID:19208116

  3. Electronic transport in methylated fragments of DNA

    NASA Astrophysics Data System (ADS)

    de Almeida, M. L.; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L.; Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; de Moura, F. A. B. F.; Lyra, M. L.

    2015-11-01

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  4. Electronic transport in methylated fragments of DNA

    SciTech Connect

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L. Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; Moura, F. A. B. F. de; Lyra, M. L.

    2015-11-16

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  5. Advanced microinstrumentation for rapid DNA sequencing and large DNA fragment separation

    SciTech Connect

    Balch, J.; Davidson, J.; Brewer, L.; Gingrich, J.; Koo, J.; Mariella, R.; Carrano, A.

    1995-01-25

    Our efforts to develop novel technology for a rapid DNA sequencer and large fragment analysis system based upon gel electrophoresis are described. We are using microfabrication technology to build dense arrays of high speed micro electrophoresis lanes that will ultimately increase the sequencing rate of DNA by at least 100 times the rate of current sequencers. We have demonstrated high resolution DNA fragment separation needed for sequencing in polyacrylamide microgels formed in glass microchannels. We have built prototype arrays of microchannels having up to 48 channels. Significant progress has also been made in developing a sensitive fluorescence detection system based upon a confocal microscope design that will enable the diagnostics and detection of DNA fragments in ultrathin microchannel gels. Development of a rapid DNA sequencer and fragment analysis system will have a major impact on future DNA instrumentation used in clinical, molecular and forensic analysis of DNA fragments.

  6. Selection of Enzymes for Terminal Restriction Fragment Length Polymorphism Analysis of Fungal Internally Transcribed Spacer Sequences▿ †

    PubMed Central

    Alvarado, Pablo; Manjón, Jose L.

    2009-01-01

    Terminal restriction fragment length polymorphism (TRFLP) profiling of the internally transcribed spacer (ITS) ribosomal DNA of unknown fungal communities is currently unsupported by a broad-range enzyme-choosing rationale. An in silico study of terminal fragment size distribution was therefore performed following virtual digestion (by use of a set of commercially available 135 type IIP restriction endonucleases) of all published fungal ITS sequences putatively annealing to primers ITS1 and ITS4. Different diversity measurements were used to rank primer-enzyme pairs according to the richness and evenness that they showed. Top-performing pairs were hierarchically clustered to test for data dependency. The enzyme set composed of MaeII, BfaI, and BstNI returned much better results than randomly chosen enzyme sets in computer simulations and is therefore recommended for in vitro TRFLP profiling of fungal ITSs. PMID:19465521

  7. A Sex Chromosomal Restriction-Fragment-Length Marker Linked to Melanoma-Determining Tu Loci in Xiphophorus

    PubMed Central

    Schartl, M.

    1988-01-01

    In Xiphophorus, the causative genetic information for melanoma formation has been assigned by classical genetics to chromosomal loci, which are located on the sex chromosomes. In our attempts to molecularly clone these melanoma-determining loci, named Tu, we have looked for restriction-fragment-length markers (RFLMs) linked to the Tu loci. These RFLMs should be useful in obtaining a physical map of a Tu locus, which will aid in the cloning of the corresponding sequences. DNA samples from various Xiphophorus strains and hybrids including those bearing different Tu wild-type, deletion and translocation chromosomes, were screened for the presence of random RFLMs using homologous or heterologous sequences as hybridization probes. We find an EcoRI restriction fragment which shows limited crosshybridization to the v-erb B gene--but not representing the authentic c-erb B gene of Xiphophorus--to be polymorphic with respect to different sex chromosomes. Linkage analysis revealed that a 5-kb fragment is linked to the Tu-Sd locus on the X chromosome, a 7-kb fragment is linked to the Tu-Sr locus on the Y chromosome, both of Xiphophorus maculatus, and that a 12-kb fragment is linked to the Tu-Li locus on the X chromosome of Xiphophorus variatus. Using different chromosomal mutants this RFLM has been mapped to a frequent deletion/translocation breakpoint of the X chromosome, less than 0.3 cM apart from the Tu locus. PMID:2841190

  8. A sex chromosomal restriction-fragment-length marker linked to melanoma-determining Tu loci in Xiphophorus.

    PubMed

    Schartl, M

    1988-07-01

    In Xiphophorus, the causative genetic information for melanoma formation has been assigned by classical genetics to chromosomal loci, which are located on the sex chromosomes. In our attempts to molecularly clone these melanoma-determining loci, named Tu, we have looked for restriction-fragment-length markers (RFLMs) linked to the Tu loci. These RFLMs should be useful in obtaining a physical map of a Tu locus, which will aid in the cloning of the corresponding sequences. DNA samples from various Xiphophorus strains and hybrids including those bearing different Tu wild-type, deletion and translocation chromosomes, were screened for the presence of random RFLMs using homologous or heterologous sequences as hybridization probes. We find an EcoRI restriction fragment which shows limited crosshybridization to the v-erb B gene--but not representing the authentic c-erb B gene of Xiphophorus--to be polymorphic with respect to different sex chromosomes. Linkage analysis revealed that a 5-kb fragment is linked to the Tu-Sd locus on the X chromosome, a 7-kb fragment is linked to the Tu-Sr locus on the Y chromosome, both of Xiphophorus maculatus, and that a 12-kb fragment is linked to the Tu-Li locus on the X chromosome of Xiphophorus variatus. Using different chromosomal mutants this RFLM has been mapped to a frequent deletion/translocation breakpoint of the X chromosome, less than 0.3 cM apart from the Tu locus. PMID:2841190

  9. Increased DNA fragmentation and ultrastructural changes in fibromyalgic muscle fibres

    PubMed Central

    Sprott, H; Salemi, S; Gay, R; Bradley, L; Alarcon, G; Oh, S; Michel, B; Gay, S

    2004-01-01

    Objective: To determine whether there is evidence of increased DNA fragmentation and ultrastructural changes in muscle tissue of patients with fibromyalgia (FM) compared with healthy controls. Methods: Muscle tissues from 10 community residents with FM and 10 age and sex matched healthy controls were examined "blindly" for the presence of DNA fragmentation by two different methods: terminal deoxynucleotidyl transferase (TdT) staining (TUNEL) and the FragEL-Klenow DNA fragmentation detection kit. Ultrastructural analysis of tissue was performed by electron microscopy. Results: DNA fragmentation was detected by both methods in 55.4 (SEM 2.5)% of the nuclei in muscle tissue of patients with FM compared with 16.1 (4.1)% (p<0.001) of the nuclei in healthy controls. Contrary to expectation, no typical features of apoptosis could be detected by electron microscopy. The myofibres and actin filaments were disorganised and lipofuscin bodies were seen; glycogen and lipid accumulation were also found. The number of mitochondria was significantly lower in patients with FM than in controls and seemed to be morphologically altered. Conclusion: The ultrastructural changes described suggest that patients with FM are characterised by abnormalities in muscle tissue that include increased DNA fragmentation and changes in the number and size of mitochondria. These cellular changes are not signs of apoptosis. Persistent focal contractions in muscle may contribute to ultrastructural tissue abnormalities as well as to the induction and/or chronicity of nociceptive transmission from muscle to the central nervous system. PMID:14962957

  10. DNA fragment editing of genomes by CRISPR/Cas9.

    PubMed

    Jinhuan, Li; Jia, Shou; Qiang, Wu

    2015-10-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system from bacteria and archaea emerged recently as a new powerful technology of genome editing in virtually any organism. Due to its simplicity and cost effectiveness, a revolutionary change of genetics has occurred. Here, we summarize the recent development of DNA fragment editing methods by CRISPR/Cas9 and describe targeted DNA fragment deletions, inversions, duplications, insertions, and translocations. The efficient method of DNA fragment editing provides a powerful tool for studying gene function, regulatory elements, tissue development, and disease progression. Finally, we discuss the prospects of CRISPR/Cas9 system and the potential applications of other types of CRISPR system. PMID:26496751

  11. Web-Based Phylogenetic Assignment Tool for Analysis of Terminal Restriction Fragment Length Polymorphism Profiles of Microbial Communities

    PubMed Central

    Kent, Angela D.; Smith, Dan J.; Benson, Barbara J.; Triplett, Eric W.

    2003-01-01

    Culture-independent DNA fingerprints are commonly used to assess the diversity of a microbial community. However, relating species composition to community profiles produced by community fingerprint methods is not straightforward. Terminal restriction fragment length polymorphism (T-RFLP) is a community fingerprint method in which phylogenetic assignments may be inferred from the terminal restriction fragment (T-RF) sizes through the use of web-based resources that predict T-RF sizes for known bacteria. The process quickly becomes computationally intensive due to the need to analyze profiles produced by multiple restriction digests and the complexity of profiles generated by natural microbial communities. A web-based tool is described here that rapidly generates phylogenetic assignments from submitted community T-RFLP profiles based on a database of fragments produced by known 16S rRNA gene sequences. Users have the option of submitting a customized database generated from unpublished sequences or from a gene other than the 16S rRNA gene. This phylogenetic assignment tool allows users to employ T-RFLP to simultaneously analyze microbial community diversity and species composition. An analysis of the variability of bacterial species composition throughout the water column in a humic lake was carried out to demonstrate the functionality of the phylogenetic assignment tool. This method was validated by comparing the results generated by this program with results from a 16S rRNA gene clone library. PMID:14602639

  12. Separation of Three Species of Ditylenchus and Some Host Races of D. dipsaci by Restriction Fragment Length Polymorphism.

    PubMed

    Wendt, K R; Vrain, T C; Webster, J M

    1993-12-01

    This study examined the ribosomal cistron of Ditylenchus destructor, D. myceliophagus and seven host races of D. dipsaci from different geographic locations. The three species showed restriction fragment length polymorphisms (RFLPs) in the ribosomal cistron, the 18S rDNA gene, and the ribosomal internal transcribed spacer (ITS). Southern blot analysis with a 7.5-kb ribosomal cistron probe differentiated the five host races of D. dipsaci examined. Polymerase chain reaction (PCR) amplification of the ITS, followed by digestion with some restriction endonucleases (but not others), produced restriction fragments diagnostic of the giant race. Because the PCR product from D. myceliophagus and the host races of D. dipsaci was about 900 base pairs and the ITS size in D. destructor populations was 1,200 base pairs, mixtures of populations could be detected by PCR amplification. ITS fragments differentiated between D. dipsaci and Aphelenchoides rhyntium in mixed populations. This study establishes the feasibility of differentiation of the host races of D. dipsaci by probing Southern blots with the whole ribosomal cistron. PMID:19279809

  13. Separation of Three Species of Ditylenchus and Some Host Races of D. dipsaci by Restriction Fragment Length Polymorphism

    PubMed Central

    Wendt, Karen R.; Vrain, Thierry C.; Webster, John M.

    1993-01-01

    This study examined the ribosomal cistron of Ditylenchus destructor, D. myceliophagus and seven host races of D. dipsaci from different geographic locations. The three species showed restriction fragment length polymorphisms (RFLPs) in the ribosomal cistron, the 18S rDNA gene, and the ribosomal internal transcribed spacer (ITS). Southern blot analysis with a 7.5-kb ribosomal cistron probe differentiated the five host races of D. dipsaci examined. Polymerase chain reaction (PCR) amplification of the ITS, followed by digestion with some restriction endonucleases (but not others), produced restriction fragments diagnostic of the giant race. Because the PCR product from D. myceliophagus and the host races of D. dipsaci was about 900 base pairs and the ITS size in D. destructor populations was 1,200 base pairs, mixtures of populations could be detected by PCR amplification. ITS fragments differentiated between D. dipsaci and Aphelenchoides rhyntium in mixed populations. This study establishes the feasibility of differentiation of the host races of D. dipsaci by probing Southern blots with the whole ribosomal cistron. PMID:19279809

  14. Discrimination among individuals using terminal restriction fragment length polymorphism profiling of bacteria derived from forensic evidence.

    PubMed

    Nishi, Eiji; Tashiro, Yukihiro; Sakai, Kenji

    2015-05-01

    DNA typing from forensic evidence is commonly used to identify individuals. However, when the quantity of the forensic evidence is insufficient, successful identification using DNA typing is impossible. Such evidence may also contain DNA from bacteria that occur naturally on the skin. In this study, we aimed to establish a profiling method using terminal restriction fragment length polymorphisms (T-RFLPs) of the amplified bacterial 16S ribosomal RNA (rRNA) gene. First, the extraction and digestion processes were investigated, and the T-RFLP profiling method using the 16S rRNA gene amplicon was optimized. We then used this method to compare the profiles of bacterial flora from the hands of 12 different individuals. We found that the T-RFLP profiles from one person on different days displayed higher similarity than those between individuals. In a principal component analysis (PCA), T-RFLPs from each individual were closely clustered in 11 out of 12 cases. The clusters could be distinguished from each other, even when the samples were collected from different conditions. No major change of the profile was observed after six months except in two cases. When handprints on glass plates were compared, 11 of 12 individuals were assigned to a few clusters including the cluster corresponding to the correct individual. In conclusion, a method for reproducible T-RFLP profiling of bacteria from trace amounts of handprints was established. The profiles were obtained for particular individuals clustered in PCA and were experimentally separable from other individuals in most cases. This technique could provide useful information for narrowing down a suspect in a criminal investigation. PMID:25335807

  15. Identification of blood meal sources of Lutzomyia longipalpis using polymerase chain reaction-restriction fragment length polymorphism analysis of the cytochrome B gene

    PubMed Central

    Soares, Vítor Yamashiro Rocha; da Silva, Jailthon Carlos; da Silva, Kleverton Ribeiro; Cruz, Maria do Socorro Pires e; Santos, Marcos Pérsio Dantas; Ribolla, Paulo Eduardo Martins; Alonso, Diego Peres; Coelho, Luiz Felipe Leomil; Costa, Dorcas Lamounier; Costa, Carlos Henrique Nery

    2014-01-01

    An analysis of the dietary content of haematophagous insects can provide important information about the transmission networks of certain zoonoses. The present study evaluated the potential of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the mitochondrial cytochrome B (cytb) gene to differentiate between vertebrate species that were identified as possible sources of sandfly meals. The complete cytb gene sequences of 11 vertebrate species available in the National Center for Biotechnology Information database were digested with Aci I, Alu I, Hae III and Rsa I restriction enzymes in silico using Restriction Mapper software. The cytb gene fragment (358 bp) was amplified from tissue samples of vertebrate species and the dietary contents of sandflies and digested with restriction enzymes. Vertebrate species presented a restriction fragment profile that differed from that of other species, with the exception of Canis familiaris and Cerdocyon thous. The 358 bp fragment was identified in 76 sandflies. Of these, 10 were evaluated using the restriction enzymes and the food sources were predicted for four: Homo sapiens (1), Bos taurus (1) and Equus caballus (2). Thus, the PCR-RFLP technique could be a potential method for identifying the food sources of arthropods. However, some points must be clarified regarding the applicability of the method, such as the extent of DNA degradation through intestinal digestion, the potential for multiple sources of blood meals and the need for greater knowledge regarding intraspecific variations in mtDNA. PMID:24821056

  16. Two-step polymerase chain reactions and restriction endonuclease analyses detect and differentiate ompA DNA of Chlamydia spp.

    PubMed Central

    Kaltenboeck, B; Kousoulas, K G; Storz, J

    1992-01-01

    Specific and sensitive amplification of major outer membrane protein (MOMP) gene (ompA) DNA sequences of Chlamydia species with various MOMP genotypes was achieved by a two-step polymerase chain reaction (PCR). Degenerate, inosine-containing oligonucleotide primers homologous to the 5' and 3' ends of the translated regions of all chlamydial MOMP genes were used in a PCR to amplify a DNA fragment of approximately 1,120 bp. A portion of this DNA fragment was amplified in a second genus-specific reaction that yielded a DNA fragment of approximately 930 bp. A pair of degenerate oligonucleotide primers homologous to internal sequences of the primary DNA fragment was used in this PCR. This method detected three cognate chlamydial genomes in a background of 1 microgram of unrelated DNA. MOMP genes of 13 representative chlamydial MOMP genotypes of the species C. trachomatis, C. pneumoniae, and C. psittaci were amplified. In a secondary PCR, group-specific detection was achieved by the simultaneous use of one genus-specific primer and three primers derived from different fingerprint regions of three major groups of chlamydiae. This multiplex PCR differentiated the groups by the length of the amplified DNA fragments and detected the simultaneous presence of DNA sequences of the Chlamydia spp. with different MOMP genotypes. Further differentiation as ompA restriction fragment length polymorphism types among all chlamydial strains with the various MOMP genotypes analyzed here was achieved by restriction endonuclease analysis of the secondary PCR products. DNA sequences corresponding to the ompA restriction fragment length polymorphism type B577 of C. psittaci were detected in two of seven milk samples from cases of bovine mastitis. Images PMID:1349899

  17. Novel separation and detection methods of DNA fragments in electrophoresis

    SciTech Connect

    Chan, King Cheung

    1993-01-27

    A charge-coupled device (CCD) based electrophoresis system was developed. The system allowed non-destructive, sensitive, and on-line detection of native DNA in slab-gel electrophoresis via ultraviolet absorption measurement. The detection limit of double-stranded DNA fragment was 5 ng per band. Since the amount of DNA used in this experiment was typical, the CCD-based system could be readily implemented in molecular biology. Gel-filled and non-gel sieving capillary electrophoresis was developed for rapid and efficient separation of double-stranded DNA fragments. For the gel-filled CE separation a new gel matrix, the HydroLink gel (HL), was used. The HL capillary gel was easier to cast than the polyacrylamide capillary gel. For the non-gel separation, a GC capillary was used as the separation chamber, and cellulose additive was included in the electrophoresis as the sieving medium. Indirect fluorometry was applied in non-gel and gel electrophoresis for the detection of DNA fragments. This method allowed non-destructive and on-line detection of DNA during electrophoresis. The amount of DNA used with this method was comparable to those obtained with absorption measurement.

  18. Novel separation and detection methods of DNA fragments in electrophoresis

    SciTech Connect

    Chan, K.C.

    1992-01-01

    A charge-coupled device (CCD) based electrophoresis system was developed. The system allowed non-destructive, sensitive, and on-line detection of native DNA in slab-gel electrophoresis via ultraviolet absorption measurement. The detection limit of double-stranded DNA fragment was 5 ng per band. Since the amount of DNA used in this experiment was typical, the CCD-based system could be readily implemented in molecular biology. Gel-filled and non-gel sieving capillary electrophoresis (CE) was developed for rapid and efficient separation of double-stranded DNA fragments. For the gel-filled CE separation a new gel matrix, the HydroLink gel (HL), was used. The HL capillary gel was easier to cast than the polyacrylamide capillary gel. For the non-gel separation, a GC capillary was used as the separation chamber, and cellulose additive was included in the electrophoresis as the sieving medium. Indirect fluorometry was applied in non-gel and gel electrophoresis for the detection of DNA fragments. This method allowed nondestructive and on-line detection of DNA during electrophoresis. The amount of DNA used with this method was comparable to those obtained with absorption measurement.

  19. Fenton fragmentation for faster electrophoretic on chip purification of amplifiable genomic DNA.

    PubMed

    Hakenberg, S; Hügle, M; Meyer, P; Behrmann, O; Dame, G; Urban, G A

    2015-05-15

    With a rapid and simple actuation protocol electrophoretic nucleic acid extraction is easy automatable, requires no moving parts, is easy to miniaturize and furthermore possesses a size dependent cut-off filter adjustable by the pore size of the hydrogel. However electrophoretic nucleic acid extraction from bacteria has so far been applied mainly for short RNA targets. One of the reasons is that electrophoretic processing of unfragmented genomic DNA strands is time-consuming, because of the length. Here DNA fragmentation would accelerate extraction and isolation. We introduce on-chip lysis and non-enzymatic DNA cleavage directly followed by a purifying step for receiving amplifiable DNA fragments from bacteria in less than 25 min. In contrast to restriction enzymes the Fenton reaction is known to cleave DNA without nucleotide specificity. The reaction mix contains iron(II) EDTA, sodium ascorbate, hydrogen peroxide and lysozyme. The degree of fragmentation can be adjusted by the concentration of reagents. The results enable electrophoretic extraction methods to unspecifically process long genomic DNA in a short time frame, e.g. for pathogen detection in a lab-on-a-chip format. PMID:24970713

  20. Generation of a Restriction Fragment Length Polymorphism Linkage Map for Toxoplasma Gondii

    PubMed Central

    Sibley, L. D.; LeBlanc, A. J.; Pfefferkorn, E. R.; Boothroyd, J. C.

    1992-01-01

    We have constructed a genetic linkage map for the parasitic protozoan, Toxoplasma gondii, using randomly selected low copy number DNA markers that define restriction fragment length polymorphisms (RFLPs). The inheritance patterns of 64 RFLP markers and two phenotypic markers were analyzed among 19 recombinant haploid progeny selected from two parallel genetic crosses between PLK and CEP strains. In these first successful interstrain crosses, these RFLP markers segregated into 11 distinct genetic linkage groups that showed close correlation with physical linkage groups previously defined by molecular karyotype. Separate linkage maps, constructed for each of the 11 chromosomes, indicated recombination frequencies range from approximately 100 to 300 kb per centimorgan. Preliminary linkage assignments were made for the loci regulating sinefungin resistance (snf-1) on chromosome IX and adenine arabinoside (ara-1) on chromosome V by linkage to RFLP markers. Despite random segregation of separate chromosomes, the majority of chromosomes failed to demonstrate internal recombination events and in 3/19 recombinant progeny no intramolecular recombination events were detected. The relatively low rate of intrachromosomal recombination predicts that tight linkage for unknown genes can be established with a relatively small set of markers. This genetic linkage map should prove useful in mapping genes that regulate drug resistance and other biological phenotypes in this important opportunistic pathogen. PMID:1360931

  1. DNA Oligonucleotide Fragment Ion Rearrangements Upon Collision-Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Harper, Brett; Neumann, Elizabeth K.; Solouki, Touradj

    2015-08-01

    Collision-induced dissociation (CID) of m/z-isolated w type fragment ions and an intact 5' phosphorylated DNA oligonucleotide generated rearranged product ions. Of the 21 studied w ions of various nucleotide sequences, fragment ion sizes, and charge states, 18 (~86%) generated rearranged product ions upon CID in a Synapt G2-S HDMS (Waters Corporation, Manchester, England, UK) ion mobility-mass spectrometer. Mass spectrometry (MS), ion mobility spectrometry (IMS), and theoretical modeling data suggest that purine bases can attack the free 5' phosphate group in w type ions and 5' phosphorylated DNA to generate sequence permuted [phosphopurine]- fragment ions. We propose and discuss a potential mechanism for generation of rearranged [phosphopurine]- and complementary y-B type product ions.

  2. Reverse restriction fragment length polymorphism (RRFLP): A novel technique for genotyping infectious laryngotracheitis virus (ILTV) live attenuated vaccines.

    PubMed

    Callison, Scott A; Riblet, Sylva M; Rodríguez-Avila, Andres; García, Maricarmen

    2009-09-01

    A novel technique, the reverse restriction fragment length polymorphism (RRFLP) assay, was developed as a means of detecting specific informative polymorphic sites in the infectious laryngotracheitis virus (ILTV) genome. During the RRFLP procedure, DNA is digested with restriction enzymes targeting an informative polymorphic site and then used as template in a real-time polymerase chain reaction (PCR) with primers flanking the informative region. The analysis of the DeltaC(t) values obtained from digested and undigested template DNA provides the genotype of the DNA. In this study, the RRFLP assay was applied as a method to differentiate between the two types of infectious laryngotracheitis virus attenuated live vaccines. Sequence analysis of ILTV vaccines revealed an informative polymorphic site in the 5'-non-coding region of the infected cell protein (ICP4) gene. Unique AvaI and AlwI restriction enzyme sites were identified in the tissue culture origin and chicken embryo origin attenuated vaccines, respectively. These two informative polymorphic sites were used in a RRFLP assay to genotype rapidly and reproducibly ILTV attenuated live vaccines. PMID:19433109

  3. Natural human gene correction by small extracellular genomic DNA fragments.

    PubMed

    Yakubov, Leonid A; Rogachev, Vladimir A; Likhacheva, Anastasia C; Bogachev, Sergei S; Sebeleva, Tamara E; Shilov, Alexander G; Baiborodin, Sergei I; Petrova, Natalia A; Mechetina, Ludmila V; Shurdov, Mikhail A; Wickstrom, Eric

    2007-09-15

    Classical gene targeting employs natural homologous recombination for a gene correction using a specially designed and artificially delivered DNA construct but the method is very inefficient. On the other hand, small DNA fragments in the form of tiny chromatin-like particles naturally present in blood plasma can spontaneously penetrate into human cells and cell nuclei. We hypothesized that these natural DNA nanoparticles with recombinagenic free ends might be effective agents for gene replacement therapy. We demonstrate that a mixture of small fragments of total human chromatin from non-mutant cells added to a culture medium without transfection agents efficiently repaired a 47 base pair deletion in the CASP3 gene in 30% of treated human MCF7 breast cancer cells, as shown by restoration of caspase-3 apoptotic function and CASP3 DNA and mRNA structure. Such an innate gene replacement mechanism might function naturally in an organism using its own apoptotic DNA fragments. This mechanism might enable human cancer cell phenotype normalization in the presence of excess normal cells. PMID:17703110

  4. Identification of Staphylococcus spp. by PCR-Restriction Fragment Length Polymorphism of gap Gene

    PubMed Central

    Yugueros, Javier; Temprano, Alejandro; Sánchez, María; Luengo, José María; Naharro, Germán

    2001-01-01

    Oligonucleotide primers specific for the Staphylococcus aureus gap gene were previously designed to identify 12 Staphylococcus spp. by PCR. In the present study, AluI digestion of PCR-generated products rendered distinctive restriction fragment length polymorphism patterns that allowed 24 Staphylococcus spp. to be identified with high specificity. PMID:11574593

  5. Restriction landmark cDNA scanning (RLCS): a novel cDNA display system using two-dimensional gel electrophoresis.

    PubMed Central

    Suzuki, H; Yaoi, T; Kawai, J; Hara, A; Kuwajima, G; Wantanabe, S

    1996-01-01

    We have developed a new method, designated restriction landmark cDNA scanning (RLCS), which displays many cDNA species quantitatively and simultaneously as two-dimensional gel spots. In this method cDNA species of uniform length were prepared for each mRNA species using restriction enzymes. After the restriction enzyme sites were radiolabeled as landmarks, the labeled fragments were subjected to high resolution two-dimensional gel electrophoresis. In analyses of cDNA samples from adult mouse liver and brain (cerebral cortex, cerebellum and brain stem) we detected approximately 500 and >1000 discrete gel spots respectively of various intensities at a time. The spot patterns of the three brain regions were very similar, although not identical, but were quite different from the pattern for the liver. RNA blot hybridization analysis using several cloned spot DNAs as probes showed that differences in intensity of the spots among RLCS profiles correlated well with expression levels of the corresponding mRNA species in the brain regions. Because the spots and their intensities reflect distinct mRNA species and their expression level respectively, the RLCS is a novel cDNA display system which provides a great deal of information and should be useful for systematic documentation of differentially expressed genes. PMID:8628652

  6. Advantages of using the QIAshredder instead of restriction digestion to prepare DNA for droplet digital PCR

    PubMed Central

    Yukl, Steven A.; Kaiser, Philipp; Kim, Peggy; Li, Peilin; Wong, Joseph K.

    2016-01-01

    The viscosity of genomic DNA can interfere with digital PCR systems that partition samples into oil droplets or microfluidic wells. Restriction digestion may reduce the viscosity, but the process is labor-intensive, and the buffer can alter the conditions for PCR. DNA fragmentation using the QIAshredder (a biopolymer spin column) is faster, may result in more predictable and uniformly-sized fragments, and avoids the need for restriction buffers that can inhibit downstream PCR. In 10 separate head-to-head experiments comparing aliquots of DNA processed using the QIAshredder to those digested with RsaI or BsaJI prior to droplet digital PCR, we found that the copy numbers measured from the QIAshredded DNA tended to be greater than those measured from the digested DNA (average of 1.35-fold compared with BsaJI; P < 0.0001), even for inputs as high as 1.8 µg or dilution down to the single copy level. PMID:24724845

  7. Rapid construction of a Bacterial Artificial Chromosomal (BAC) expression vector using designer DNA fragments.

    PubMed

    Chen, Chao; Zhao, Xinqing; Jin, Yingyu; Zhao, Zongbao Kent; Suh, Joo-Won

    2014-11-01

    Bacterial artificial chromosomal (BAC) vectors are increasingly being used in cloning large DNA fragments containing complex biosynthetic pathways to facilitate heterologous production of microbial metabolites for drug development. To express inserted genes using Streptomyces species as the production hosts, an integration expression cassette is required to be inserted into the BAC vector, which includes genetic elements encoding a phage-specific attachment site, an integrase, an origin of transfer, a selection marker and a promoter. Due to the large sizes of DNA inserted into the BAC vectors, it is normally inefficient and time-consuming to assemble these fragments by routine PCR amplifications and restriction-ligations. Here we present a rapid method to insert fragments to construct BAC-based expression vectors. A DNA fragment of about 130 bp was designed, which contains upstream and downstream homologous sequences of both BAC vector and pIB139 plasmid carrying the whole integration expression cassette. In-Fusion cloning was performed using the designer DNA fragment to modify pIB139, followed by λ-RED-mediated recombination to obtain the BAC-based expression vector. We demonstrated the effectiveness of this method by rapid construction of a BAC-based expression vector with an insert of about 120 kb that contains the entire gene cluster for biosynthesis of immunosuppressant FK506. The empty BAC-based expression vector constructed in this study can be conveniently used for construction of BAC libraries using either microbial pure culture or environmental DNA, and the selected BAC clones can be directly used for heterologous expression. Alternatively, if a BAC library has already been constructed using a commercial BAC vector, the selected BAC vectors can be manipulated using the method described here to get the BAC-based expression vectors with desired gene clusters for heterologous expression. The rapid construction of a BAC-based expression vector facilitates

  8. Anisotropic Brownian motion in ordered phases of DNA fragments.

    PubMed

    Dobrindt, J; Rodrigo Teixeira da Silva, E; Alves, C; Oliveira, C L P; Nallet, F; Andreoli de Oliveira, E; Navailles, L

    2012-01-01

    Using Fluorescence Recovery After Photobleaching, we investigate the Brownian motion of DNA rod-like fragments in two distinct anisotropic phases with a local nematic symmetry. The height of the measurement volume ensures the averaging of the anisotropy of the in-plane diffusive motion parallel or perpendicular to the local nematic director in aligned domains. Still, as shown in using a model specifically designed to handle such a situation and predicting a non-Gaussian shape for the bleached spot as fluorescence recovery proceeds, the two distinct diffusion coefficients of the DNA particles can be retrieved from data analysis. In the first system investigated (a ternary DNA-lipid lamellar complex), the magnitude and anisotropy of the diffusion coefficient of the DNA fragments confined by the lipid bilayers are obtained for the first time. In the second, binary DNA-solvent system, the magnitude of the diffusion coefficient is found to decrease markedly as DNA concentration is increased from isotropic to cholesteric phase. In addition, the diffusion coefficient anisotropy measured within cholesteric domains in the phase coexistence region increases with concentration, and eventually reaches a high value in the cholesteric phase. PMID:22270455

  9. Rapid identification of myxoma virus variants by long-range PCR and restriction fragment length polymorphism analysis.

    PubMed

    Dalton, Kevin P; Ringleb, Franziska; Martín Alonso, Jose Manuel; Parra, Francisco

    2009-11-01

    A long-range PCR method directed at the Myxoma virus (MV) left hand and right hand terminal inverted repeats (TIRs) for rapid amplification of genomic DNA and MV isolate differentiation by restriction fragment length polymorphism (RFLP) analysis is described. The efficacy of this method was tested by comparing the results from full genome RFLPs with those from TIRs amplified separately using reference strain Lausanne (Lu) and a field MV strain characterised previously for its virulence in rabbits. The usefulness of this method was also demonstrated by amplifying MV DNA directly from the eyelid tissue of an infected rabbit and comparative RFLP analysis with respect to Lu. The results proved the long-range PCR technique to be a simple highly efficient method for identifying mutations between MV genomes by RFLP analyses of the amplified TIRs and may be used in future studies to identify variable regions for phylogenetic studies. PMID:19591871

  10. Selective microbial genomic DNA isolation using restriction endonucleases.

    PubMed

    Barnes, Helen E; Liu, Guohong; Weston, Christopher Q; King, Paula; Pham, Long K; Waltz, Shannon; Helzer, Kimberly T; Day, Laura; Sphar, Dan; Yamamoto, Robert T; Forsyth, R Allyn

    2014-01-01

    To improve the metagenomic analysis of complex microbiomes, we have repurposed restriction endonucleases as methyl specific DNA binding proteins. As an example, we use DpnI immobilized on magnetic beads. The ten minute extraction technique allows specific binding of genomes containing the DpnI Gm6ATC motif common in the genomic DNA of many bacteria including γ-proteobacteria. Using synthetic genome mixtures, we demonstrate 80% recovery of Escherichia coli genomic DNA even when only femtogram quantities are spiked into 10 µg of human DNA background. Binding is very specific with less than 0.5% of human DNA bound. Next Generation Sequencing of input and enriched synthetic mixtures results in over 100-fold enrichment of target genomes relative to human and plant DNA. We also show comparable enrichment when sequencing complex microbiomes such as those from creek water and human saliva. The technique can be broadened to other restriction enzymes allowing for the selective enrichment of trace and unculturable organisms from complex microbiomes and the stratification of organisms according to restriction enzyme enrichment. PMID:25279840

  11. Identification of acetic acid bacteria by restriction fragment length polymorphism analysis of a PCR-amplified fragment of the gene coding for 16S rRNA.

    PubMed

    Poblet, M; Rozès, N; Guillamón, J M; Mas, A

    2000-07-01

    Acetic acid bacteria (AAB) irreversibly spoil wines and represent a serious problem. Limited studies on the ecology of AAB during winemaking have been done due to the lack of rapid and precise techniques for their identification. RFLP analysis of PCR-amplified fragment of 16S rDNA was performed on AAB reference strains. The amplified rDNAs were approximately 870-bp long for all AAB species while no amplicons were detected for lactic acid bacteria and yeasts. Out of the four restriction enzymes tested, TaqI was the most efficient one and divided the studied AAB into six groups. However, complete differentiation among collection strains of Acetobacter pasteurianus and Gluconoacetobacter hansenii was not possible. PMID:10886617

  12. Mutagenicity Assessment of Organophosphates using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Assay

    PubMed Central

    Bhinder, Preety; Chaudhry, Asha

    2013-01-01

    Objectives: In this study we have evaluated the mutagenicity of organophosphate pesticides acephate, chlorpyrifos, and profenofos using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay with the mosquito Culex quinquefasciatus taken as an experimental model. Materials and Methods: Second instar larvae were treated with LC20 of each pesticide for 24 h and mutations induced in the sequence of mitochondrial COII gene (690bp) were studied from restriction patterns generated with AluI, PacI, and PsiI restriction endonucleases. Results: Variations in the number and size of digested fragments were recorded from treated individuals compared with controls showing that the restriction enzymes created a cut at different locations. In addition, sequences of COII gene from control and treated individuals were also used to confirm the RFLP patterns. From the sequence alignment data, it was found that mutations caused the destruction and generation of restriction sites in the gene sequence of treated individuals. Conclusion: This study indicates that all the three pesticides had potential to induce mutations in the normal sequence of COII gene and also advocates the use of PCR-RFLP assay as an efficient, rapid, and sensitive technique to detect mutagenicity of pesticides. PMID:24403735

  13. Representative and efficient cloning of satellite DNAs based on PFGE pre-fractionation of restriction digests of genomic DNA.

    PubMed

    Burgtorf, C; Bünemann, H

    1994-06-01

    Using DNA from Drosophila hydei KUN-DH-33 cells we describe an efficient method for selective and representative cloning of complex mixtures of satellite DNAs from eukaryotic genomes. Effective separation of satellite DNA from the bulk of all other sequences it obtained by fractionation of high molecular weight DNA by PFGE after treating it with '6 bp' restriction enzymes. Since extended clusters of tandemly arranged, so called simple sequence, repeats are inert to cleavage by most '6 bp' restriction enzymes the DNA fraction recovered from the gel region > 50 kb is mainly a mixture of satellites. Efficient and representative cloning of this DNA is performed by sonication to an average size of 50-500 bp and ligation of the blunt ended DNA fragments into the Bluescript vector pBS. PMID:7963251

  14. Detection of Irradiated Food: DNA Fragmentation in Grapefruits

    NASA Astrophysics Data System (ADS)

    Delincée, Henry

    1998-06-01

    Employing the simple microgel electrophoresis of single cells - `comet assay' - on grapefruit seeds enabled a rapid identification of irradiated fruits. Fruits were exposed to radiation doses of 0, 0.1, 0.2, 0.3, 0.4 and 0.5 kGy covering the range of potential commercial irradiation for insect disinfestation and quarantine purposes. Seeds were isolated, crushed, and the cells embedded in an agarose layer. After lysis of the cells, they were subjected to microgel electrophoresis for 2.5 minutes, and then stained. Fruits irradiated with 0.2 kGy and higher doses showed typical DNA fragmentation, the DNA fragments stretching or migrating out of the cells forming a tail towards the anode, giving the damaged cells an appearance of a comet. With increasing dose a longer extension of the DNA from the nucleus towards the anode is observed. Undamaged cells will appear as intact nuclei without tails. The DNA comet assay is thus a rapid and inexpensive screening technique to detect irradiated grapefruits. Suspected samples may subsequently be analysed by officially validated methods for detection of irradiated foods.

  15. Differentiation of Paenibacillus larvae subsp. larvae, the Cause of American Foulbrood of Honeybees, by Using PCR and Restriction Fragment Analysis of Genes Encoding 16S rRNA

    PubMed Central

    Alippi, Adriana M.; López, Ana Claudia; Aguilar, O. Mario

    2002-01-01

    A rapid procedure for the identification of Paenibacillus larvae subsp. larvae, the causal agent of American foulbrood (AFB) disease of honeybees (Apis mellifera L.), based on PCR and restriction fragment analysis of the 16S rRNA genes (rDNA) is described. Eighty-six bacterial strains belonging to 39 species of the genera Paenibacillus, Bacillus, Brevibacillus, and Virgibacillus were characterized. Amplified rDNA was digested with seven restriction endonucleases. The combined data from restriction analysis enabled us to distinguish 35 profiles. Cluster analysis revealed that P. larvae subsp. larvae and Paenibacillus larvae subsp. pulvifaciens formed a group with about 90% similarity; however, the P. larvae subsp. larvae restriction fragment length polymorphism pattern produced by endonuclease HaeIII was found to be unique and distinguishable among other closely related bacteria. This pattern was associated with DNA extracted directly from honeybee brood samples showing positive AFB clinical signs that yielded the restriction profile characteristic of P. larvae subsp. larvae, while no amplification product was obtained from healthy larvae. The method described here is particularly useful because of the short time required to carry it out and because it allows the differentiation of P. larvae subsp. larvae-infected larvae from all other species found in apiarian sources. PMID:12089057

  16. Determination of genotypes of hepatitis C virus in Venezuela by restriction fragment length polymorphism.

    PubMed Central

    Pujol, F H; Loureiro, C L; Devesa, M; Blitz, L; Parra, K; Beker, S; Liprandi, F

    1997-01-01

    Hepatitis C virus genotypes in Venezuela were analyzed by restriction fragment length polymorphism in the 5' noncoding region. The absence of BstUI digestion was found to be a useful marker for genotype 2 specimens. From 122 serum samples, 66, 20, and 2.5% were classified as genotypes 1, 2, and 3, respectively; 0.8% were classified as genotype 4; and 10% appeared to be mixed infections. PMID:9196212

  17. Characterization of Erwinia chrysanthemi by pectinolytic isozyme polymorphism and restriction fragment length polymorphism analysis of PCR-amplified fragments of pel genes.

    PubMed Central

    Nassar, A; Darrasse, A; Lemattre, M; Kotoujansky, A; Dervin, C; Vedel, R; Bertheau, Y

    1996-01-01

    Conserved regions about 420 bp long of the pelADE cluster specific to Erwinia chrysanthemi were amplified by PCR and used to differentiate 78 strains of E. chrysanthemi that were obtained from different hosts and geographical areas. No PCR products were obtained from DNA samples extracted from other pectinolytic and nonpectinolytic species and genera. The pel fragments amplified from the E. chrysanthemi strains studied were compared by performing a restriction fragment length polymorphism (RFLP) analysis. On the basis of similarity coefficients derived from the RFLP analysis, the strains were separated into 16 PCR RFLP patterns grouped in six clusters, These clusters appeared to be correlated with other infraspecific levels of E. chrysanthemi classification, such as pathovar and biovar, and occasionally with geographical origin. Moreover, the clusters correlated well with the polymorphism of pectate lyase and pectin methylesterase isoenzymes. While the pectin methylesterase profiles correlated with host monocot-dicot classification, the pectate lyase polymorphism might reflect the cell wall microdomains of the plants belonging to these classes. PMID:8779560

  18. Universal function for the diffusion coefficient of DNA fragment

    NASA Astrophysics Data System (ADS)

    Mercier, Jean-Francois

    2005-03-01

    The separation of DNA fragments by (gel or capillary) electrophoresis has been studied extensively. To characterize the separation achieved by such systems, one needs to understand the impact (and their dependency upon the experimental quantities) of two physical parameters: the electrophoresis mobility μ and the diffusion coefficient D. Three different regimes have been shown to exist for both μ and D: the Ogston regime, the reptation regime and the reptation-with orientation regime (note that separation is only possible for the first two regimes). Both μ and D are well described by theory for all three regimes. Unfortunatly this results in disjointed scaling regimes and no theory-based general equations can apply to all regimes. Recently, an empirical formula has been proposed that adequately fit the mobility μ of dsDNA fragments across all three regimes and is compatible with accepted theories. In this work we propose a similar formula for the diffusion coefficent D. With those two formulas, one could optimize any separation system quite easily for a wide range of DNA molecular sizes.

  19. Does varicocelectomy affect DNA fragmentation in infertile patients?

    PubMed Central

    Telli, Onur; Sarici, Hasmet; Kabar, Mucahit; Ozgur, Berat Cem; Resorlu, Berkan; Bozkurt, Selen

    2015-01-01

    Introduction: The aims of this study were to investigate the effect of varicocelectomy on DNA fragmentation index and semen parameters in infertile patients before and after surgical repair of varicocele. Materials and Methods: In this prospective study, 72 men with at least 1-year history of infertility, varicocele and oligospermia were examined. Varicocele sperm samples were classified as normal or pathological according to the 2010 World Health Organization guidelines. The acridine orange test was used to assess the DNA fragmentation index (DFI) preoperatively and postoperatively. Results: DFI decreased significantly after varicocelectomy from 34.5% to 28.2% (P = 0.024). In addition all sperm parameters such as mean sperm count, sperm concentration, progressive motility and sperm morphology significantly increased from 19.5 × 106 to 30.7 × 106, 5.4 × 106/ml to 14.3 × 106/ml, and 19.9% to 31.2% (P < 0.001) and 2.6% to 3.1% (P = 0.017). The study was limited by the loss to follow-up of some patients and unrecorded pregnancy outcome due to short follow-up. Conclusion: Varicocele causes DNA-damage in spermatozoa. We suggest that varicocelectomy improves sperm parameters and decreases DFI. PMID:25878412

  20. Detection of disease-specific restriction fragment length polymorphisms in pemphigus vulgaris linked to the DQwl and DQw3 alleles of the HLA-D region

    SciTech Connect

    Szafer, F.; Brautbar, C.; Tzfoni, E.; Frankel, G.; Sherman, L.; Cohen, I.; Hacham-Zadeh, S.; Aberer, W.; Tappeiner, G.; Holubar, K.; Steinman, L.

    1987-09-01

    Pemphigus vulgaris in Israeli Ashkenazi and non-Ashkenazi Jews and in Austrian non-Jewish patients is strongly associated with the DR4 and DRw6 alleles of the HLA-D region class II genes. Restriction fragment length polymorphism analysis was undertaken with DQ..beta.., DQ..cap alpha.., and DR..beta.. cDNA probes. Hybridization with the DQ..beta.. probe identifies Pvu II, BamHI, and EcoRV fragments that absolutely discriminate pemphigus vulgaris patients from healthy DR-, DQ-, and ethnic-matched controls. In contrast the DQ..cap alpha.. and DR..beta.. probes failed to identify disease-specific restriction fragment length polymorphism fragments. These studies indicate that DQw1 and DQw3 polymorphisms carried by pemphigus vulgaris patients may be directly involved in predisposition to the disease or may be tightly linked to the susceptibility gene itself. To our knowledge, this is the first example of an HLA restriction fragment length polymorphism that is highly associated with susceptibility to autoimmune disease.

  1. Epidemic of infectious laryngotracheitis in Italy: characterization of virus isolates by PCR-restriction fragment length polymorphism and sequence analysis.

    PubMed

    Moreno, Ana; Piccirillo, Alessandra; Mondin, Alessandra; Morandini, Emilio; Gavazzi, Luigi; Cordioli, Paolo

    2010-12-01

    Between May 2007 and October 2008, 34 outbreaks of mild to moderate forms of infectious laryngotracheitis (ILT) occurred in commercial broiler flocks in Italy. Affected birds showed watery eyes, conjunctivitis, nasal discharge, reduction of feed and water consumption, and gasping with expectoration of blood-stained mucus. The mortality rate was < 10%. Gross lesions consisted of conjunctivitis, excess of mucus, blood, or presence of diphtheritic membranes in trachea. A real-time PCR assay was performed to confirm the presence of ILT virus (ILTV) DNA in tracheal tissue homogenates. Twenty-three ILTV isolates were propagated on the chorion-allantoic membrane of embryonated chicken eggs showing typical plaques. PCR combined with restriction fragment length polymorphism and gene sequencing of isolates showed a high genetic correlation between field strains and chicken embryo origin vaccines. PMID:21313836

  2. The suitability of restriction fragment length polymorphism markers for evaluating genetic diversity among and synteny between mosquito species.

    PubMed

    Severson, D W; Mori, A; Zhang, Y; Christensen, B M

    1994-04-01

    Restriction fragment length polymorphism (RFLP) markers derived from the yellow fever mosquito, Aedes aegypti, were used in hybridizations to genomic DNA of the following mosquito species: Ae. albopictus, Ae. togoi, Armigeres subalbatus, Culex pipiens, and Anopheles gambiae. Interspecific hybridization with Ae. aegypti probes varied from 50% (An. gambiae) to 100% (Ae. albopictus) under high stringency conditions. We demonstrated the usefulness of using RFLP profiles to examine genetic diversity between mosquito populations; Ae. aegypti RFLP markers were used to examine genetic relatedness between 10 laboratory strains of Ae. aegypti as well as between nine populations representing four Cx. pipiens subspecies. These results indicate that many Ae. aegypti RFLP markers should have direct applicability in gaining a better understanding of genome structure in other mosquito species, including RFLP linkage mapping and determinations of genetic relatedness among field populations. PMID:7909414

  3. Characterization of human glucocorticoid receptor complexes formed with DNA fragments containing or lacking glucocorticoid response elements

    SciTech Connect

    Tully, D.B.; Cidlowski, J.A. )

    1989-03-07

    Sucrose density gradient shift assays were used to study the interactions of human glucocorticoid receptors (GR) with small DNA fragments either containing or lacking glucocorticoid response element (GRE) DNA consensus sequences. When crude cytoplasmic extracts containing ({sup 3}H)triamcinolone acetonide (({sup 3}H)TA) labeled GR were incubated with unlabeled DNA under conditions of DNA excess, a GRE-containing DNA fragment obtained from the 5' long terminal repeat of mouse mammary tumor virus (MMTV LTR) formed a stable 12-16S complex with activated, but not nonactivated, ({sup 3}H)TA receptor. By contrast, if the cytosols were treated with calf thymus DNA-cellulose to deplete non-GR-DNA-binding proteins prior to heat activation, a smaller 7-10S complex was formed with the MMTV LTR DNA fragment. Activated ({sup 3}H)TA receptor from DNA-cellulose pretreated cytosols also interacted with two similarly sized fragments from pBR322 DNA. Stability of the complexes formed between GR and these three DNA fragments was strongly affected by even moderate alterations in either the salt concentration or the pH of the gradient buffer. Under all conditions tested, the complex formed with the MMTV LTR DNA fragment was more stable than the complexes formed with either of the pBR322 DNA fragments. Together these observations indicate that the formation of stable complexes between activated GR and isolated DNA fragments requires the presence of GRE consensus sequences in the DNA.

  4. Cavitation Enhancing Nanodroplets Mediate Efficient DNA Fragmentation in a Bench Top Ultrasonic Water Bath

    PubMed Central

    Malc, Ewa P.; Jayakody, Chatura N.; Tsuruta, James K.; Mieczkowski, Piotr A.; Janzen, William P.; Dayton, Paul A.

    2015-01-01

    A perfluorocarbon nanodroplet formulation is shown to be an effective cavitation enhancement agent, enabling rapid and consistent fragmentation of genomic DNA in a standard ultrasonic water bath. This nanodroplet-enhanced method produces genomic DNA libraries and next-generation sequencing results indistinguishable from DNA samples fragmented in dedicated commercial acoustic sonication equipment, and with higher throughput. This technique thus enables widespread access to fast bench-top genomic DNA fragmentation. PMID:26186461

  5. Phylogenomics of caspase-activated DNA fragmentation factor

    SciTech Connect

    Eckhart, Leopold . E-mail: leopold.eckhart@meduniwien.ac.at; Fischer, Heinz; Tschachler, Erwin

    2007-04-27

    The degradation of nuclear DNA by DNA fragmentation factor (DFF) is a key step in apoptosis of mammalian cells. Using comparative genomics, we have here determined the evolutionary history of the genes encoding the two DFF subunits, DFFA (also known as ICAD) and DFFB (CAD). Orthologs of DFFA and DFFB were identified in Nematostella vectensis, a representative of the primitive metazoan clade cnidarians, and in various vertebrates and insects, but not in representatives of urochordates, echinoderms, and nematodes. The domains mediating the interaction of DFFA and DFFB, a caspase cleavage site in DFFA, and the amino acid residues critical for endonuclease activity of DFFB were conserved in Nematostella. These findings suggest that DFF has been a part of the primordial apoptosis system of the eumetazoan common ancestor and that the ancient cell death machinery has degenerated in several evolutionary lineages, including the one leading to the prototypical apoptosis model, Caenorhabditis elegans.

  6. Cloning of DNA fragments: ligation reactions in agarose gel.

    PubMed

    Furtado, Agnelo

    2014-01-01

    Ligation reactions to ligate a desired DNA fragment into a vector can be challenging to beginners and especially if the amount of the insert is limiting. Although additives known as crowding agents, such as PEG 8000, added to the ligation mixes can increase the success one has with ligation reactions, in practice the amount of insert used in the ligation can determine the success or the failure of the ligation reaction. The method described here, which uses insert DNA in gel slice added directly into the ligation reaction, has two benefits: (a) using agarose as the crowding agent and (b) reducing steps of insert purification. The use of rapid ligation buffer and incubation of the ligation reaction at room temperature greatly increase the efficiency of the ligation reaction even for blunt-ended ligation. PMID:24243199

  7. Adaptive DNA Computing Algorithm by Using PCR and Restriction Enzyme

    NASA Astrophysics Data System (ADS)

    Kon, Yuji; Yabe, Kaoru; Rajaee, Nordiana; Ono, Osamu

    In this paper, we introduce an adaptive DNA computing algorithm by using polymerase chain reaction (PCR) and restriction enzyme. The adaptive algorithm is designed based on Adleman-Lipton paradigm[3] of DNA computing. In this work, however, unlike the Adleman- Lipton architecture a cutting operation has been introduced to the algorithm and the mechanism in which the molecules used by computation were feedback to the next cycle devised. Moreover, the amplification by PCR is performed in the molecule used by feedback and the difference concentration arisen in the base sequence can be used again. By this operation the molecules which serve as a solution candidate can be reduced down and the optimal solution is carried out in the shortest path problem. The validity of the proposed adaptive algorithm is considered with the logical simulation and finally we go on to propose applying adaptive algorithm to the chemical experiment which used the actual DNA molecules for solving an optimal network problem.

  8. The effects of 4-MEI on cell proliferation, DNA breaking and DNA fragmentation.

    PubMed

    Tazehkand, M Norizadeh; Moridikia, A; Hajipour, O; Valipour, E; Timocin, T; Topaktas, M; Yilmaz, M B

    2016-01-01

    4-Methylimidazole (4-MEI) is a color widely found in cola drinks, roasted foods, grilled meats, coffee and other foods. This study was aimed to investigate the 4-MEI effects on the cell proliferation, purified circular DNA and DNA from cells of rats treated with the 4-MEI.In this study, mouse 3T3-L1 cell line was treated with 4-MEI at concentrations of 300, 450, 600 and 750 µg/mL for 24 hours and 48 hours periods, after that cytotoxic effect of the 4-MEI was studied by MTT test. Also, the effect of 4-MEI on purified circular DNA (pET22b) was investigated by treating of the DNA with 4-MEI concentrations of 300, 450, 600 and 750 µg/ml. DNA was extracted from liver cells of rats that have been treated with 4-MEI doses of 25 and 50 mg/kg for 10 week and it was subjected to agarose gel electrophoreses analyses.4-MEI significantly inhibited cell proliferation of 3T3-L1 cell line at highest concentration for 24 h and at all concentration for 48 h treatment time. DNA fragmentation assay showed that 4-MEI at 50 mg/kg concentration clearly produced characteristic DNA smear and no DNA laddering (200bp) was observed when mouse was exposed to 4-MEI. The results obtained from plasmid DNA damaging assay showed that 4-MEI has noeffect on the DNA, because the electrophoretic pattern of DNA treated with 4-MEI showed three bands on agarose gel electrophoresis as it was for untreated control. 4-MEI showed cytotoxic effect on 3T3-L1 cells but no effect on plasmid DNA breaking. According to DNA fragmentation assay 4-MEI has necrosis effects on mouse liver cells (Tab. 1, Fig. 4, Ref. 27). PMID:27546537

  9. Size-selective separation of DNA fragments by using lysine-functionalized silica particles

    PubMed Central

    Liu, Lingling; Guo, Zilong; Huang, Zhenzhen; Zhuang, Jiaqi; Yang, Wensheng

    2016-01-01

    In this work, a facile and efficient approach has been demonstrated for size-selective separation of DNA fragments by using lysine-functionalized silica particles. At a given pH, the environmental ionic strength can be utilized to alter the electrostatic interactions of lysine-functionalized silica particles with DNA fragments and in turn the DNA fragments on the silica particle surfaces, which exhibits a clear dependence on the DNA fragment sizes. By carefully adjusting the environmental pH and salt concentration, therefore, the use of the lysine-functionalized silica particles allows effective separation of binary and ternary DNA mixtures, for example, two different DNA fragments with sizes of 101 and 1073 bp, 101 and 745 bp, 101 and 408 bp, respectively, and three different DNA fragments with sizes of 101, 408 and 1073 bp. PMID:26911527

  10. Size-selective separation of DNA fragments by using lysine-functionalized silica particles

    NASA Astrophysics Data System (ADS)

    Liu, Lingling; Guo, Zilong; Huang, Zhenzhen; Zhuang, Jiaqi; Yang, Wensheng

    2016-02-01

    In this work, a facile and efficient approach has been demonstrated for size-selective separation of DNA fragments by using lysine-functionalized silica particles. At a given pH, the environmental ionic strength can be utilized to alter the electrostatic interactions of lysine-functionalized silica particles with DNA fragments and in turn the DNA fragments on the silica particle surfaces, which exhibits a clear dependence on the DNA fragment sizes. By carefully adjusting the environmental pH and salt concentration, therefore, the use of the lysine-functionalized silica particles allows effective separation of binary and ternary DNA mixtures, for example, two different DNA fragments with sizes of 101 and 1073 bp, 101 and 745 bp, 101 and 408 bp, respectively, and three different DNA fragments with sizes of 101, 408 and 1073 bp.

  11. Calmodulin Polymerase Chain Reaction-Restriction Fragment Length Polymorphism for Leishmania Identification and Typing.

    PubMed

    Miranda, Aracelis; Samudio, Franklyn; González, Kadir; Saldaña, Azael; Brandão, Adeilton; Calzada, Jose E

    2016-08-01

    A precise identification of Leishmania species involved in human infections has epidemiological and clinical importance. Herein, we describe a preliminary validation of a restriction fragment length polymorphism assay, based on the calmodulin intergenic spacer region, as a tool for detecting and typing Leishmania species. After calmodulin amplification, the enzyme HaeIII yielded a clear distinction between reference strains of Leishmania mexicana, Leishmania amazonensis, Leishmania infantum, Leishmania lainsoni, and the rest of the Viannia reference species analyzed. The closely related Viannia species: Leishmania braziliensis, Leishmania panamensis, and Leishmania guyanensis, are separated in a subsequent digestion step with different restriction enzymes. We have developed a more accessible molecular protocol for Leishmania identification/typing based on the exploitation of part of the calmodulin gene. This methodology has the potential to become an additional tool for Leishmania species characterization and taxonomy. PMID:27352873

  12. Viability and DNA fragmentation in differently sorted boar spermatozoa.

    PubMed

    De Ambrogi, M; Spinaci, M; Galeati, G; Tamanini, C

    2006-11-01

    Sperm cell defense against DNA damage relies on two factors: the tight packaging of chromatin, based on condensation and substitution of histones with protamines, and the antioxidant agents present in seminal plasma. These defenses are extremely important as mature sperm is unable to repair DNA damage and even if a successful fertilization occurs, embryo undergoes apoptosis at the time of genomic activation. Sex-sorting exposes spermatozoa to stress sources such as high pressure, laser beam and electrical charge. The aim of this work was to determine how sorting procedures affect viability and DNA integrity in boar spermatozoa, by using the newly developed Sperm-Sus-Halomax. Four sperm populations were considered: CONTROL (no treatment), REAL (sex-sorted semen), BULK (semen sorted without sex separation) and NO LASER (semen only exposed to the high pressure, but including also cells normally discarded from sex-sorting). A significantly (P=0.019) lower viability in NO LASER (64.71%) than in CONTROL (78.6%) and REAL (80.5%) groups was found; this was accompanied by a significantly (P=0.001) higher DNA fragmentation index (DFI) in NO LASER group (6.86%) respect to CONTROL (3.30%) and REAL (3.42%) groups. BULK group did not show any difference in viability or DFI as compared to the other groups. In conclusion, we may believe that sex-sorting procedure as a whole does not affect either viability or DFI and that shear mechanical forces are a relevant source of DNA damage for sorted semen. PMID:16814375

  13. Temporal Patterns of Nucleotide Misincorporations and DNA Fragmentation in Ancient DNA

    PubMed Central

    Sawyer, Susanna; Krause, Johannes; Guschanski, Katerina; Savolainen, Vincent; Pääbo, Svante

    2012-01-01

    DNA that survives in museum specimens, bones and other tissues recovered by archaeologists is invariably fragmented and chemically modified. The extent to which such modifications accumulate over time is largely unknown but could potentially be used to differentiate between endogenous old DNA and present-day DNA contaminating specimens and experiments. Here we examine mitochondrial DNA sequences from tissue remains that vary in age between 18 and 60,000 years with respect to three molecular features: fragment length, base composition at strand breaks, and apparent C to T substitutions. We find that fragment length does not decrease consistently over time and that strand breaks occur preferentially before purine residues by what may be at least two different molecular mechanisms that are not yet understood. In contrast, the frequency of apparent C to T substitutions towards the 5′-ends of molecules tends to increase over time. These nucleotide misincorporations are thus a useful tool to distinguish recent from ancient DNA sources in specimens that have not been subjected to unusual or harsh treatments. PMID:22479540

  14. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA.

    PubMed

    Sawyer, Susanna; Krause, Johannes; Guschanski, Katerina; Savolainen, Vincent; Pääbo, Svante

    2012-01-01

    DNA that survives in museum specimens, bones and other tissues recovered by archaeologists is invariably fragmented and chemically modified. The extent to which such modifications accumulate over time is largely unknown but could potentially be used to differentiate between endogenous old DNA and present-day DNA contaminating specimens and experiments. Here we examine mitochondrial DNA sequences from tissue remains that vary in age between 18 and 60,000 years with respect to three molecular features: fragment length, base composition at strand breaks, and apparent C to T substitutions. We find that fragment length does not decrease consistently over time and that strand breaks occur preferentially before purine residues by what may be at least two different molecular mechanisms that are not yet understood. In contrast, the frequency of apparent C to T substitutions towards the 5'-ends of molecules tends to increase over time. These nucleotide misincorporations are thus a useful tool to distinguish recent from ancient DNA sources in specimens that have not been subjected to unusual or harsh treatments. PMID:22479540

  15. Insertion element IS1081-associated restriction fragment length polymorphisms in Mycobacterium tuberculosis complex species: a reliable tool for recognizing Mycobacterium bovis BCG.

    PubMed Central

    van Soolingen, D; Hermans, P W; de Haas, P E; van Embden, J D

    1992-01-01

    Recently, the insertion element IS1081 from Mycobacterium bovis was identified. In this study, the usefulness of IS1081 in the epidemiology of tuberculosis was investigated. The host range of this insertion sequence was found to be restricted exclusively to the group of Mycobacterium tuberculosis complex bacteria, whereas none of the 10 mycobacterial species which do not belong to the M. tuberculosis complex contained IS1081-homologous DNA. All 99 M. tuberculosis complex strains investigated carried five or six copies of IS1081, and very limited IS1081-associated restriction fragment length polymorphisms were observed among the strains. Seven different IS1081-containing bands were distinguished in each strain, and the patterns differed only in one or two insertion sequence-containing bands. The banding pattern of M. bovis BCG differed in the presence of a 8.0-kb IS1081-containing PvuII fragment which was absent from all other M. tuberculosis complex strains. Images PMID:1352785

  16. Band broadening of DNA fragments isolated by polyacrylamide gel electrophoresis in capillary electrophoresis.

    PubMed

    Kaneta, Takashi; Ogura, Takehito; Yamato, Shuhei; Imasaka, Totaro

    2012-02-01

    Polyacrylamide gel electrophoresis (PAGE) is used frequently for isolation and purification of DNA fragments. In the present study, DNA fragments extracted from polyacrylamide gels showed significant band broadening in capillary electrophoresis (CE). A pHY300PLK (a shuttle vector functioning in Escherichia coli and Bacillus subtilis) marker, which contained nine fragments ranging from 80 to 4870 bp, was separated by PAGE, and each fragment was isolated by phenol/chloroform extraction and ethanol precipitation. After extraction from the polyacrylamide gel, the peaks of the isolated DNA fragments exhibited band broadening in CE, where a linear poly(ethylene oxide) was used as a sieving matrix. The theoretical plate numbers of the DNA fragments contained in the pHY300PLK marker were >10(6) for all the fragments before extraction. However, the DNA fragments extracted from the polyacrylamide gel showed decreased theoretical plate numbers (5-20 times smaller). The degradation of the theoretical plate number was significant for middle sizes of the DNA fragments ranging from 489 to 1360 bp, whereas the largest and smallest fragments (80 and 4870 bp) had no obvious influence. The band broadening was attributed to contamination of the DNA fragments by polyacrylamide fibers during the separation and extraction process. PMID:22258810

  17. Impacts of degraded DNA on restriction enzyme associated DNA sequencing (RADSeq).

    PubMed

    Graham, Carly F; Glenn, Travis C; McArthur, Andrew G; Boreham, Douglas R; Kieran, Troy; Lance, Stacey; Manzon, Richard G; Martino, Jessica A; Pierson, Todd; Rogers, Sean M; Wilson, Joanna Y; Somers, Christopher M

    2015-11-01

    Degraded DNA from suboptimal field sampling is common in molecular ecology. However, its impact on techniques that use restriction site associated next-generation DNA sequencing (RADSeq, GBS) is unknown. We experimentally examined the effects of in situDNA degradation on data generation for a modified double-digest RADSeq approach (3RAD). We generated libraries using genomic DNA serially extracted from the muscle tissue of 8 individual lake whitefish (Coregonus clupeaformis) following 0-, 12-, 48- and 96-h incubation at room temperature posteuthanasia. This treatment of the tissue resulted in input DNA that ranged in quality from nearly intact to highly sheared. All samples were sequenced as a multiplexed pool on an Illumina MiSeq. Libraries created from low to moderately degraded DNA (12-48 h) performed well. In contrast, the number of RADtags per individual, number of variable sites, and percentage of identical RADtags retained were all dramatically reduced when libraries were made using highly degraded DNA (96-h group). This reduction in performance was largely due to a significant and unexpected loss of raw reads as a result of poor quality scores. Our findings remained consistent after changes in restriction enzymes, modified fold coverage values (2- to 16-fold), and additional read-length trimming. We conclude that starting DNA quality is an important consideration for RADSeq; however, the approach remains robust until genomic DNA is extensively degraded. PMID:25783180

  18. An improved polymerase chain reaction-restriction fragment length polymorphism assay for the detection of a PON2 gene polymorphism

    PubMed Central

    DUAN, XIAORAN; YANG, YONGLI; WANG, TUANWEI; FENG, XIAOLEI; YAO, WU; YAN, ZHEN; WANG, WEI

    2016-01-01

    In recent research, it has been shown that there have been variants of rs12026 within the paraoxonase 2 (PON2) gene, which have been associated with cardiovascular disease, cerebrovascular disease, diabetes and other diseases. The isochizomers, such as the BsoFI enzyme, required for the detection of this polymorphism are expensive. Therefore, an improved and less expensive polymerase chain reaction (PCR)-restriction fragment length polymorphism method was established for the detection of the single-nucleotide polymorphism rs12026 in the exon 5 of chromosome 7 of the human PON2 gene using the method of amplification-created restriction site. Subsequent to assessing 302 individuals, the genotype frequencies were 68.9% for CC, 29.8% for CG and 1.3% for GG, and the allelic frequencies were 83.8% for C and 16.2% for G. The PCR results were confirmed by DNA sequencing. The χ2 test showed that the genotype and allele frequencies of PON2-148 do not deviate from Hardy-Weinberg equilibrium, and the sequences of amplified products were consistent with the sequence published in GenBank with the exception of a mismatched base. PMID:27330753

  19. Prevalence of Trichomonas spp. in domestic pigeons in Shandong Province, China, and genotyping by restriction fragment length polymorphism.

    PubMed

    Jiang, Xiyue; Sun, Jingjing; Wang, Fangkun; Li, Hongmei; Zhao, Xiaomin

    2016-05-01

    Oropharyngeal swabs (n = 609) were collected randomly from 80,000 domestic pigeons (Columba livia domestica) on five pigeon farms and at one pigeon slaughterhouse in Shandong Province, China, from September 2012 to July 2013. Trichomonas spp. were detected in 206/609 (33.8%) samples. The prevalence was 14.9-31.1%, depending on different levels of sanitation and management, and was 4.8% in nestling pigeons, 13.6% in breeding pigeons and 35.2% in adolescent pigeons. Trichomonas gallinae genotypes A and B, and Trichomonas tenax-like isolates were identified by PCR-restriction fragment length polymorphism (RFLP) analysis and sequencing of the 5.8S rDNA-internal transcribed spacer (ITS) regions. RFLP analysis with the restriction enzyme BsiEI generated different RFLP band patterns between T. gallinae and T.tenax-like isolates. When BsiEI RFLP analysis was combined with HaeIII RFLP analysis, all infection types of T. gallinae and T.tenax-like isolates could be identified. PMID:27068150

  20. Limits of a rapid identification of common Mediterranean sandflies using polymerase chain reaction-restriction fragment length polymorphism.

    PubMed

    Bounamous, Azzedine; Lehrter, Véronique; Hadj-Henni, Leila; Delecolle, Jean-Claude; Depaquit, Jérôme

    2014-07-01

    A total of 131 phlebotomine Algerian sandflies have been processed in the present study. They belong to the species Phlebotomus bergeroti, Phlebotomus alexandri, Phlebotomus sergenti, Phlebotomus chabaudi, Phlebotomus riouxi, Phlebotomus perniciosus, Phlebotomus longicuspis, Phlebotomus perfiliewi, Phlebotomus ariasi, Phlebotomus chadlii, Sergentomyia fallax, Sergentomyia minuta, Sergentomyia antennata, Sergentomyia schwetzi, Sergentomyia clydei, Sergentomyia christophersi and Grassomyia dreyfussi. They have been characterised by sequencing of a part of the cytochrome b (cyt b), t RNA serine and NADH1 on the one hand and of the cytochrome C oxidase I of the mitochondrial DNA (mtDNA) on the other hand. Our study highlights two sympatric populations within P. sergenti in the area of its type-locality and new haplotypes of P. perniciosus and P. longicuspis without recording the specimens called lcx previously found in North Africa. We tried to use a polymerase chain reaction-restriction fragment length polymorphism method based on a combined double digestion of each marker. These method is not interesting to identify sandflies all over the Mediterranean Basin. PMID:24936911

  1. Limits of a rapid identification of common Mediterranean sandflies using polymerase chain reaction-restriction fragment length polymorphism

    PubMed Central

    Bounamous, Azzedine; Lehrter, Véronique; Hadj-Henni, Leila; Delecolle, Jean-Claude; Depaquit, Jérôme

    2014-01-01

    A total of 131 phlebotomine Algerian sandflies have been processed in the present study. They belong to the species Phlebotomus bergeroti, Phlebotomus alexandri, Phlebotomus sergenti, Phlebotomus chabaudi, Phlebotomus riouxi, Phlebotomus perniciosus, Phlebotomus longicuspis, Phlebotomus perfiliewi, Phlebotomus ariasi, Phlebotomus chadlii, Sergentomyia fallax, Sergentomyia minuta, Sergentomyia antennata, Sergentomyia schwetzi, Sergentomyia clydei, Sergentomyia christophersi and Grassomyia dreyfussi. They have been characterised by sequencing of a part of the cytochrome b (cyt b), t RNA serine and NADH1 on the one hand and of the cytochrome C oxidase I of the mitochondrial DNA (mtDNA) on the other hand. Our study highlights two sympatric populations within P. sergenti in the area of its type-locality and new haplotypes of P. perniciosus and P. longicuspis without recording the specimens called lcx previously found in North Africa. We tried to use a polymerase chain reaction-restriction fragment length polymorphism method based on a combined double digestion of each marker. These method is not interesting to identify sandflies all over the Mediterranean Basin. PMID:24936911

  2. Comparative utility of restriction fragment length polymorphism analysis and gene sequencing to the molecular epidemiological investigation of a viral outbreak.

    PubMed

    Goldberg, T L; Weigel, R M; Hahn, E C; Scherba, G

    2001-06-01

    Restriction fragment length polymorphism (RFLP) analysis and partial-genome DNA sequencing are commonly used to infer genetic relationships among pathogens. This study compares the application of both techniques to the analysis of 16 pseudorabies virus isolates collected during a 1989 outbreak. Genetic distances derived from RFLP and DNA sequence data were not significantly correlated with geographic distances between farms from which isolates were collected. RFLP-based genetic distance was, however, strongly correlated with temporal distance between isolates (days separating time of isolation). Sequence-based genetic distance was significantly correlated with temporal distance only when synonymous changes (nucleotide changes not leading to amino acid changes) were considered separately. Conversely, non-synonymous changes were correlated with the host species of origin of the viral isolate. These results indicate that selectively-neutral genetic changes most accurately reflect historical relationships, but that non-neutral changes most accurately reflect the biological environment of the viral isolate (e.g. host immune system). PMID:11467798

  3. Diversity analysis of magnetotactic bacteria in Lake Miyun, northern China, by restriction fragment length polymorphism.

    PubMed

    Lin, Wei; Li, Jinhua; Schüler, Dirk; Jogler, Christian; Pan, Yongxin

    2009-08-01

    Magnetotactic bacteria (MTB) synthesize intracellular nano-scale crystals of magnetite or greigite within magnetosomes. MTB are ubiquitous in limnic and marine environments. In order to understand the diversity of MTB better, sediment samples were examined from Lake Miyun near Beijing by restriction fragment length polymorphism (RFLP). First, in silico analysis was used to evaluate the effectiveness of 12 sets of restriction endonucleases for distinguishing MTB sequences retrieved from the GenBank database. It was found that the tested restriction endonucleases had different power in the ability to differentiate the operational taxonomic units (OTUs) of MTB. Specifically, of the 12 sets of enzymes, MspI plus RsaI was found to be the most effective for correctly differentiating the OTUs of selected MTB sequences and it could detect 16 OTUs with appropriate OTUmin and OTUmax values (96.7% and 97.7%, respectively). The MspI plus RsaI RFLP analysis was then utilized to investigate the diversity of MTB in Lake Miyun sediment and it identified 8 OTUs (74.5% of the whole library) as MTB. Among these, 5 were affiliated to Alphaproteobacteria, while the rest belonged to the Nitrospira phylum. Interestingly, OTUs C, D and I displayed 91.8-98.4% similarity to "Magnetobacterium bavaricum". Together, these results demonstrated that the MspI plus RsaI RFLP analysis was useful for studying the diversity and change in community composition of uncultivated MTB from environmental samples. PMID:19168303

  4. Clusters of DNA damage induced by ionizing radiation: formation of short DNA fragments. II. Experimental detection

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    The basic 30-nm chromatin fiber in the mammalian cell consists of an unknown (possibly helical) arrangement of nucleosomes, with about 1.2 kb of DNA per 10-nm length of fiber. Track-structure considerations suggest that interactions of single delta rays or high-LET particles with the chromatin fiber might result in the formation of multiple lesions spread over a few kilobases of DNA (see the accompanying paper: W.R. Holley and A. Chatterjee, Radiat. Res. 145, 188-199, 1996). In particular, multiple DNA double-strand breaks and single-strand breaks may form. To test this experimentally, primary human fibroblasts were labeled with [3H]thymidine and exposed at 0 degrees C to X rays or accelerated nitrogen or iron ions in the LET range of 97-440 keV/microns. DNA was isolated inside agarose plugs and subjected to agarose gel electrophoresis under conditions that allowed good separation of 0.1-2 kb size DNA. The bulk of DNA remained in the well or migrated only a small distance into the gel. It was found that DNA fragments in the expected size range were formed linearly with dose with an efficiency that increased with LET. A comparison of the yield of such fragments with the yield of total DNA double-strand breaks suggests that for the high-LET ions a substantial proportion (20-90%) of DNA double-strand breaks are accompanied within 0.1-2 kb by at least one additional DNA double-strand break. It is shown that these results are in good agreement with theoretical calculations based on treating the 30-nm chromatin fiber as the target for ionizing particles. Theoretical considerations also predict that the clusters will contain numerous single-strand breaks and base damages. It is proposed that such clusters be designated "regionally multiply damaged sites." Postirradiation incubation at 37 degrees C resulted in a decline in the number of short DNA fragments, suggesting a repair activity. The biological significance of regionally multiply damaged sites is presently unknown.

  5. Saccharin consumption increases sperm DNA fragmentation and apoptosis in mice

    PubMed Central

    Rahimipour, Marzieh; Talebi, Ali Reza; Anvari, Morteza; Abbasi Sarcheshmeh, Abolghasem; Omidi, Marjan

    2014-01-01

    Background: Saccharin is an artificial non-caloric sweetener that used to sweeten products such as drinks, candies, medicines, and toothpaste, but our bodies cannot metabolize it. Sodium saccharin is considered as an important factor in tumor promotion in male rats but not in humans. Objective: The objective of this study was to investigate the effect of saccharin consumption on sperm parameters and apoptosis in adult mice. Materials and Methods: Totally 14 adult male mice were divided into 2 groups. Group 1 served as control fed on basal diet and group 2 or experimental animals received distilled water containing saccharin (0.2% w/v) for 35 days. After that, the left cauda epididymis of each mouse was cut and placed in Ham’s F10. Swimmed-out spermatozoa were used to analyze count, motility, morphology (Pap-staining) and viability (eosin-Y staining). Sperm DNA integrity, as an indicator of apoptosis, was assessed by SCD (sperm chromatin dispersion) and terminal deoxynucleotidyl transferase (TUNEL) assay. Results: Following saccharin consumption, we had a reduction in sperm motility with respect to control animals (p=0.000). In addition, the sperm count diminished (17.70±1.11 in controls vs. 12.80±2.79 in case group, p=0.003) and the rate of sperm normal morphology decreased from 77.00±6.40 in control animals into 63.85±6.81 in saccharin-treated mice (p=0.001). Also, we saw a statistically significant increase in rates of sperm DNA damage and apoptosis in experimental group when compared to control one (p=0.001, p=0.002 respectively). Conclusion: Saccharin consumption may have negative effects on sperm parameters, and increases the rate of sperm DNA fragmentation and apoptosis in mice. PMID:25031574

  6. Restriction Fragment Length Polymorphism Separates Species of the Xiphinema americanum Group

    PubMed Central

    Vrain, Thierry C.

    1993-01-01

    The Xiphinema americanum group of species is responsible for vectoring several important virus diseases to perennial crops. Variability of transmission of viruses by different species, and difficulties in separating species by morphometric measurements alone, make it essential to reassess the taxonomic position of several species in the group. The measurement of DNA sequence variability is a sensitive assay that can re-evaluate the separation of species and populations from each other. This study describes how an RFLP approach, in which the restriction sites in transcribed spacers of ribosomal repeats were detected, confirmed the separation of 16 populations of these species into X. americanum, X. rivesi, X. pacificum, and X. bricolensis. PMID:19279780

  7. Restriction Fragment Length Polymorphism Separates Species of the Xiphinema americanum Group.

    PubMed

    Vrain, T C

    1993-09-01

    The Xiphinema americanum group of species is responsible for vectoring several important virus diseases to perennial crops. Variability of transmission of viruses by different species, and difficulties in separating species by morphometric measurements alone, make it essential to reassess the taxonomic position of several species in the group. The measurement of DNA sequence variability is a sensitive assay that can re-evaluate the separation of species and populations from each other. This study describes how an RFLP approach, in which the restriction sites in transcribed spacers of ribosomal repeats were detected, confirmed the separation of 16 populations of these species into X. americanum, X. rivesi, X. pacificum, and X. bricolensis. PMID:19279780

  8. Genotyping of the fish rhabdovirus, viral haemorrhagic septicaemia virus, by restriction fragment length polymorphisms

    USGS Publications Warehouse

    Einer-Jensen, Katja; Winton, James R.; Lorenzen, Niels

    2005-01-01

    The aim of this study was to develop a standardized molecular assay that used limited resources and equipment for routine genotyping of isolates of the fish rhabdovirus, viral haemorrhagic septicaemia virus (VHSV). Computer generated restriction maps, based on 62 unique full-length (1524 nt) sequences of the VHSV glycoprotein (G) gene, were used to predict restriction fragment length polymorphism (RFLP) patterns that were subsequently grouped and compared with a phylogenetic analysis of the G-gene sequences of the same set of isolates. Digestion of PCR amplicons from the full-lengthG-gene by a set of three restriction enzymes was predicted to accurately enable the assignment of the VHSV isolates into the four major genotypes discovered to date. Further sub-typing of the isolates into the recently described sub-lineages of genotype I was possible by applying three additional enzymes. Experimental evaluation of the method consisted of three steps: (i) RT-PCR amplification of the G-gene of VHSV isolates using purified viral RNA as template, (ii) digestion of the PCR products with a panel of restriction endonucleases and (iii) interpretation of the resulting RFLP profiles. The RFLP analysis was shown to approximate the level of genetic discrimination obtained by other, more labour-intensive, molecular techniques such as the ribonuclease protection assay or sequence analysis. In addition, 37 previously uncharacterised isolates from diverse sources were assigned to specific genotypes. While the assay was able to distinguish between marine and continental isolates of VHSV, the differences did not correlate with the pathogenicity of the isolates.

  9. Restriction site detection in repetitive nuclear DNA sequences of Trypanosoma evansi for strain differentiation among different isolates.

    PubMed

    Shyma, K P; Gupta, S K; Gupta, J P; Singh, Ajit; Chaudhari, S S; Singh, Veer

    2016-09-01

    The differences or similarities among different isolates of Trypanosoma evansi through endonuclease profile was identified in the present study. The repetitive nuclear DNA of T. evansi isolated from infected cattle, buffalo and equine blood was initially amplified by PCR using specific primers. A panel of restriction enzymes, EcoRI, Eco91l, HindIII and PstI were for complete digestion of PCR products. Agarose gel electrophoresis of digested product did not show cleavage fragments and only single DNA band of the original size was visible in the ethidium bromide stained agarose gel. This indicated that the 227 bp PCR product from repetitive sequence had no site-specific cleavage sites for the REs used in this study. No heterogeneity in the repetitive nuclear DNA restriction endonuclease profile among the different isolates was recorded. PMID:27605842

  10. Capillary electrophoresis as a technique to analyze sequence-induced anomalously migrating DNA fragments.

    PubMed Central

    Wenz, H M

    1994-01-01

    Sequence-induced anomalous migration of double-stranded (ds) DNA in native gel electrophoresis is a well known phenomenon. The retardation of migration is more obvious in polyacrylamide compared with agarose gels, and is greatly affected by the concentration of the gel and the temperature. This anomalous migration results in a difference between calculated and actual sizes of the affected DNA fragments. A low viscosity polymer solution (DNA Fragment Analysis Reagent) under investigation for use in dsDNA analysis by capillary electrophoresis is shown to be useful for the visualization of anomalies in migration of dsDNA fragments. Comparable with traditional slab gel systems, the retardation effect, indicative of bent or curved DNA, is strongly dependent on polymer concentration and separation temperature. These dependencies have implications on the accurate sizing of dsDNA fragments with unknown sequences and secondary structures. PMID:7937124

  11. A Mini-Library of Sequenced Human DNA Fragments: Linking Bench Experiments with Informatics

    ERIC Educational Resources Information Center

    Dalgleish, Raymond; Shanks, Morag E.; Monger, Karen; Butler, Nicola J.

    2012-01-01

    We describe the development of a mini-library of human DNA fragments for use in an enquiry-based learning (EBL) undergraduate practical incorporating "wet-lab" and bioinformatics tasks. In spite of the widespread emergence of the polymerase chain reaction (PCR), the cloning and analysis of DNA fragments in "Escherichia coli" remains a fundamental…

  12. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    SciTech Connect

    Jackson, Christopher B.; Gallati, Sabina; Schaller, Andre

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct measurements in

  13. High-Efficiency Ligation and Recombination of DNA Fragments by Vertebrate Cells

    NASA Astrophysics Data System (ADS)

    Miller, Cynthia K.; Temin, Howard M.

    1983-05-01

    DNA-mediated gene transfer (transfection) is used to introduce specific genes into vertebrate cells. Events soon after transfection were quantitatively analyzed by determining the infectivity of the DNA from an avian retrovirus and of mixtures of subgenomic fragments of this DNA. The limiting step of transfection with two DNA molecules is the uptake by a single cell of both DNA's in a biologically active state. Transfected cells mediate ligation and recombination of physically unlinked DNA's at nearly 100 percent efficiency.

  14. Establishment and characterization of hamster cell lines transformed by restriction endonuclease fragments of adenovirus 5.

    PubMed Central

    Rowe, D T; Branton, P E; Yee, S P; Bacchetti, S; Graham, F L

    1984-01-01

    We have established a library of hamster cells transformed by adenovirus 5 DNA fragments comprising all (XhoI-C, 0 to 16 map units) or only a part (HindIII-G, 0 to 7.8 map units) of early region 1 (E1: 0 to 11.2 map units). These lines have been analyzed in terms of content of viral DNA, expression of E1 antigens, and capacity to induce tumors in hamsters. All cells tested were found to express up to eight proteins encoded within E1A (0 to 4.5 map units) with apparent molecular weights between 52,000 (52K) and 25K. Both G and C fragment-transformed lines expressed a 19K antigen encoded within E1B (4.5 to 11.2 map units), whereas an E1B 58K protein was detected in C fragment-transformed, but not G-fragment-transformed, lines. No clear distinction could be drawn between cells transformed by HindIII-G and by XhoI-C in terms of morphology or tumorigenicity, suggesting that the E1B 58K antigen plays no major role in the maintenance of oncogenic transformation, although possible involvement of truncated forms of 58K cannot be ruled out. Sera were collected from tumor-bearing animals and examined for ability to immunoprecipitate proteins from infected cells. The relative avidity of sera for different proteins was characteristic of the cell line used for tumor induction, and the specificity generally reflected the array of viral proteins expressed by the corresponding transformed cells. However, one notable observation was that even though all transformed lines examined expressed antigens encoded by both the 1.1- and 0.9-kilobase mRNAs transcribed from E1A, tumor sera made against these lines only precipitated products of the 1.1-kilobase message. Thus, two families of E1A proteins, highly related in terms of primary amino acid sequence, appear to be immunologically quite distinct. Images PMID:6690708

  15. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Holley, W. R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the

  16. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling.

    PubMed

    Holley, W R; Chatterjee, A

    1996-02-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the

  17. Preparation of covalently linked DNA-RNA hybrids and arabinocytidine containing DNA fragments.

    PubMed Central

    de Vroom, E; Roelen, H C; Saris, C P; Budding, T N; van der Marel, G A; van Boom, J H

    1988-01-01

    It will be demonstrated that 5'-O-DMT-N-acyl-deoxyribonucleosides, 5'-O-Lev-2'-O-MTHP-N-acyl-ribonucleosides and, also, 2'-O-MTHP-N-acyl-ara-cytidine can be coupled, via the hydroxybenzotriazole phosphotriester approach, to afford two types of DNA-RNA hybrids as well as ara-C containing DNA-fragments. The final removal of acid-labile DMT and MTHP groups could be effected by 1 h treatment with 80% acetic acid of the otherwise unprotected DNA-RNA hybrids. The same acidic hydrolysis did not result in complete removal of the 2'-O-MTHP group from the ara-C unit. Complete deblocking was accomplished after an additional 2 h aqueous HC1 (0.01 M; pH 2.00) treatment. PMID:2453027

  18. [Molecular dynamics of immune complex of photoadduct-containing DNA with Fab-Anti-DNA antibody fragment].

    PubMed

    Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I

    2016-01-01

    Antibodies to DNA play an important role in the pathogenesis of autoimmune diseases. The elucidation of structural mechanisms of both the antigen recognition and the interaction of anti-DNA antibodies with DNA will help to understand the role of DNA-containing immune complexes in various pathologies and can provide a basis for new treatment modalities. Moreover, the DNA-antibody complex is an analog of specific intracellular DNA-protein interactions. In this work, we used in silico molecular dynamic simulations of bimolecular complexes of the dsDNA segment containing the Fab fragment of an anti-DNA antibody to obtain the detailed thermodynamic and structural characteristics of dynamic intermolecular interactions. Using computationally modified crystal structure of the Fab-DNA complex (PDB ID: 3VW3), we studied the equilibrium molecular dynamics of the 64M-5 antibody Fab fragment associated with the dsDNA fragment containing the thymine dimer, the product of DNA photodamage. Amino acid residues that constitute paratopes and the complementary nucleotide epitopes for the Fab-DNA construct were identified. Stacking and electrostatic interactions were found to play the main role in mediating the most specific antibody-dsDNA contacts, while hydrogen bonds were less significant. These findings may shed light on the formation and properties of pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus associated with skin photosensitivity and DNA photodamage. PMID:27414790

  19. Differentiation of slowly growing Mycobacterium species, including Mycobacterium tuberculosis, by gene amplification and restriction fragment length polymorphism analysis.

    PubMed Central

    Plikaytis, B B; Plikaytis, B D; Yakrus, M A; Butler, W R; Woodley, C L; Silcox, V A; Shinnick, T M

    1992-01-01

    A two-step assay combining a gene amplification step and a restriction fragment length polymorphism analysis was developed to differentiate the Mycobacterium species that account for greater than 90% of potentially pathogenic isolates and greater than 86% of all isolates in clinical laboratories in the United States. These species are M. tuberculosis, M. bovis, M. avium, M. intracellulare, M. kansasii, and M. gordonae. With lysates of pure cultures as the template, two oligonucleotide primers that amplified an approximately 1,380-bp portion of the hsp65 gene from all 139 strains of 19 Mycobacterium species tested, but not from the 19 non-Mycobacterium species tested, were identified. Digestion of the amplicons from 126 strains of the six most commonly isolated Mycobacterium species with the restriction enzymes BstNI and XhoI in separate reactions generated restriction fragment patterns that were distinctive for each of these species, except for those of M. tuberculosis and M. bovis, which were not distinguishable. By including size standards in each sample, the restriction fragment profiles could be normalized to a fixed distance and the similarities of patterns could be calculated by using a computer-aided comparison program. The availability of this data base should enable the identification of an unknown Mycobacterium strain to the species level by a comparison of the restriction fragment pattern of the unknown with the data base of known patterns. Images PMID:1352786

  20. Restriction Analysis of PCR-Amplified Internal Transcribed Spacers of Ribosomal DNA as a Tool for Species Identification in Different Genera of the Order Glomales

    PubMed Central

    Redecker, D.; Thierfelder, H.; Walker, C.; Werner, D.

    1997-01-01

    A technique combining PCR and restriction fragment length polymorphism analysis was used to generate specific DNA fragment patterns from spore extracts of arbuscular mycorrhizal fungi. With the universal primers ITS1 and ITS4, DNA fragments were amplified from species of Scutellospora and Gigaspora that were approximately 500 bp long. The apparent lengths of the corresponding fragments from Glomus spp. varied between 580 and 600 bp. Within the genus Glomus, the restriction enzymes MboI, HinfI, and TaqI were useful for distinguishing species. Depending on the restriction enzyme used, groups of species with common fragment patterns could be found. Five tropical and subtropical isolates identified as Glomus manihotis and G. clarum could not be distinguished by their restriction patterns, corresponding to the morphological similarity of the spores. The variation of internal transcribed spacer sequences among the Gigaspora species under study was low. Fragment patterns of Scutellospora spp. showed their phylogenetic relationship with Gigaspora and revealed only a slightly higher degree of variation. PMID:16535592

  1. A Time-Efficient and User-Friendly Method for Plasmid DNA Restriction Analysis.

    ERIC Educational Resources Information Center

    LaBanca, Frank; Berg, Claire M.

    1998-01-01

    Describes an experiment in which plasmid DNA is digested with restriction enzymes that cleave the plasmid either once or twice. The DNA is stained, loaded on a gel, electrophoresed, and viewed under normal laboratory conditions during electrophoresis. (DDR)

  2. Restriction fragment length polymorphism within the class I gene loci of the equine major histocompatibility complex

    SciTech Connect

    Alexander, A.J.; Bailey, E.; Woodward, J.G.

    1986-03-05

    Fourteen standard bred horses were serotyped as homozygous for 1 of 6 Equine Leukocyte Antigen (ELA) specificities. DNA was purified from peripheral leukocytes and digested with Hind III or Pvu II. Southern blot hybridization analysis was carried out using a /sup 32/P-labeled mouse cDNA probe (PH2IIa) specific for class I MHC genes. Both enzymes generated blots that contained a large number of bands (23 to 30) per horse. Significant polymorphism existed among most fragment sizes, while a dozen highly conserved band sizes suggested the presence of Qa/tla - like genes. Only 2 animals (both W6's) showed identical band patterns. Polymorphism was greatest between horses of different serotypes and was significantly decreased within serotypes. Unique bands were present on both blots for both W1's and W6's and may account for the serologic specificity seen in ELA W1 and W6 horses. This study is consistent with the findings in other higher vertebrates and implies that the MHC of the horse includes a highly polymorphic class I multigene family.

  3. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases.

    PubMed Central

    McClelland, M; Nelson, M; Raschke, E

    1994-01-01

    Restriction endonucleases have site-specific interactions with DNA that can often be inhibited by site-specific DNA methylation and other site-specific DNA modifications. However, such inhibition cannot generally be predicted. The empirically acquired data on these effects are tabulated for over 320 restriction endonucleases. In addition, a table of known site-specific DNA modification methyltransferases and their specificities is presented along with EMBL database accession numbers for cloned genes. PMID:7937074

  4. Use of restriction fragment length polymorphism to identify Candida species, related to onychomycosis

    PubMed Central

    Mohammadi, Rasoul; Badiee, Parisa; Badali, Hamid; Abastabar, Mahdi; Safa, Ahmad Hosseini; Hadipour, Mahboubeh; Yazdani, Hajar; Heshmat, Farnaz

    2015-01-01

    Background: Onychomycosis is one of the most common clinical forms of fungal infections due to both filamentous fungi and yeasts. The genus of Candida is one of the most prominent causes of onychomycosis in all around the world. Although Candida albicans is still the most frequent cause of nail infections, use of broad-spectrum antifungal agents has led to a shift in the etiology of C. albicans to non-albicans species. The aim of the present study is rapid and precise identification of candida species isolated from nail infection by using of PCR-RFLP technique. Materials and Methods: A total of 360 clinical yeast strains were collected from nail infections in Iran. Genomic DNA was extracted using FTA; cards. ITS1-5.8SrDNA-ITS2 region was amplified using universal primers and subsequently products were digested with the restriction enzyme MspI. For identification of newly described species (C. parapsilosis complex), the SADH gene was amplified, followed by digestion with Nla III restriction enzyme. Results: Candida albicans was the most commonly isolated species (41.1%), followed by C. parapsilosis (21.4%), C. tropicalis (12.8%), C. kefyr (9.4%), C. krusei (5.5%), C. orthopsilosis (4.1%), C. glabrata (2.8%), C. guilliermondii (1.4%), C. rugosa (0.8%), and C. lusitaniae (0.5%). Patients in the age groups of 51-60 and 81-90 years had the highest and lowest distribution of positive specimens, respectively. Conclusion: Rapid and precise identification of Candida species from clinical specimens lead to appropriate therapeutic plans. PMID:26015921

  5. Rapid Discrimination among Dermatophytes, Scytalidium spp., and Other Fungi with a PCR-Restriction Fragment Length Polymorphism Ribotyping Method

    PubMed Central

    Machouart-Dubach, Marie; Lacroix, Claire; de Chauvin, Martine Feuilhade; Le Gall, Isabelle; Giudicelli, Catherine; Lorenzo, Frédéric; Derouin, Francis

    2001-01-01

    Dermatomycoses are very common infections caused mainly by dermatophytes. Scytalidiosis is a differential mycological diagnosis, especially in tropical and subtropical areas. Since a culture-based diagnosis takes 2 to 3 weeks, we set up a PCR-restriction fragment length polymorphism (RFLP) method for rapid discrimination of these fungi in clinical samples. The hypervariable V4 domain of the small ribosomal subunit 18S gene was chosen as the target for PCR. The corresponding sequences from 19 fungal species (9 dermatophytes, 2 Scytalidium species, 6 other filamentous fungi, and 2 yeasts) were obtained from databases or were determined in the laboratory. Sequences were aligned to design primers for dermatophyte-specific PCR and to identify digestion sites for RFLP analysis. The reliability of PCR-RFLP for the diagnosis of dermatomycosis was assessed on fungal cultures and on specimens from patients with suspected dermatomycosis. Two sets of primers preferentially amplified fungal DNA from dermatophytes (DH1L and DH1R) or from Scytalidium spp. (DH2L and DH1R) relative to DNA from bacteria, yeasts, some other filamentous fungi, and humans. Digestion of PCR products with EaeI or BamHI discriminated between dermatophytes and Scytalidium species, as shown with cultures of 31 different fungal species. When clinical samples were tested by PCR-RFLP, blindly to mycological findings, the results of the two methods agreed for 74 of 75 samples. Dermatophytes and Scytalidium spp. can thus be readily discriminated by PCR-RFLP within 24 h. This method can be applied to clinical samples and is suited to rapid etiologic diagnosis and treatment selection for patients with dermatomycosis. PMID:11158128

  6. In situ end labeling of fragmented DNA in induced ovarian atresia.

    PubMed

    D'Herde, K; De Pestel, G; Roels, F

    1994-01-01

    Apoptosis is studied in a model of induced follicular atresia in the ovary of Japanese quail (Coturnix coturnix japonica) by in situ end labeling of DNA fragments in granulosa cells using two different techniques (incorporation of labeled nucleotides by DNA polymerase I or terminal deoxynucleotidyl transferase). The most remarkable observation related to apoptosis in this model is the predominant cytoplasmic localization of labeled DNA fragments, while DNA fragmentation appears to be absent from compacted chromatin masses of apoptotic nuclei and apoptotic nuclear fragments. Unstained apoptotic bodies are present adjacent to stained ones, so that their detection rate on hematoxylin + eosin stained sections is better than on the in situ end-labeled sections. This suggests that DNA fragmentation is a late even or not obligatory in apoptotic granulosa cell death. In contrast to similar studies on atretic granulosa in mammalian models, the process of apoptosis is asynchronous in the granulosal epithelium, with a majority of nuclei with normal chromatin configuration remaining negative for DNA fragmentation. Finally it is shown that the techniques used are not specific for apoptosis, as DNA fragmentation in necrotic granulosa cells is detected as well. PMID:7654330

  7. [Influence of Storage Temperature and Cryopreservation Conditions on the Extent of Human Sperm DNA Fragmentation].

    PubMed

    Simonenko, E Yu; Garmaeva, S B; Yakovenko, S A; Grigorieva, A A; Tverdislov, V A; Mironova, A G; Aprishko, V P

    2016-01-01

    With the direct labeling procedure for detecting DNA fragmentation we explored the influence of the different storage temperature conditions as well as different methods of cryopreservation on the structure of DNA organization in the human sperm. 19 sperm samples obtained from healthy men with normozoospermia (according to the criteria of the World Health Organization) were used for investigation. A significant increase of human sperm DNA-fragmentation was observed after 8 hours of incubation at +39 degrees C (by 76.7%) and at +37 degrees C (by 68.9%). It was found that sperm cooling with the use of a cryoprotectant immediately after thawing did not produce significant differences in the extent of DNA fragmentation, although samples, containing cryoprotectants, showed a sharp increase of DNA fragmentation after 24 hours of incubation, that could suggest cryoprotectant cytotoxicity. PMID:27192834

  8. Identification of raw and heat-processed meats from game bird species by polymerase chain reaction-restriction fragment length polymorphism of the mitochondrial D-loop region.

    PubMed

    Rojas, M; González, I; Fajardo, V; Martín, I; Hernández, P E; García, T; Martín, R

    2009-03-01

    Polymerase chain reaction-RFLP analysis has been applied to the identification of meats from quail (Coturnix coturnix), pheasant (Phasianus colchicus), red-legged partridge (Alectoris rufa), chukar partridge (Alectoris chukar), guinea fowl (Numida meleagris), capercaillie (Tetrao urogallus), Eurasian woodcock (Scolopax rusticola), and woodpigeon (Columba palumbus). Polymerase chain reaction amplification was carried out using a set of primers flanking a conserved region of approximately 310 bp from the mitochondrial D-loop region. Restriction site analysis based on sequence data from this DNA fragment permitted the selection of HinfI, MboII, and Hpy188III endonucleases for species identification. The restriction profiles obtained when amplicons were digested with the chosen enzymes allowed the unequivocal identification of all game bird species analyzed. Consistent results were obtained with both raw and heat-processed meats. PMID:19211540

  9. An innovative platform for quick and flexible joining of assorted DNA fragments

    PubMed Central

    De Paoli, Henrique Cestari; Tuskan, Gerald A.; Yang, Xiaohan

    2016-01-01

    Successful synthetic biology efforts rely on conceptual and experimental designs in combination with testing of multi-gene constructs. Despite recent progresses, several limitations still hinder the ability to flexibly assemble and collectively share different types of DNA segments. Here, we describe an advanced system for joining DNA fragments from a universal library that automatically maintains open reading frames (ORFs) and does not require linkers, adaptors, sequence homology, amplification or mutation (domestication) of fragments in order to work properly. This system, which is enhanced by a unique buffer formulation, provides unforeseen capabilities for testing, and sharing, complex multi-gene circuitry assembled from different DNA fragments. PMID:26758940

  10. Novel application of PhastSystem polyacrylamide gel electrophoresis using restriction fragment length polymorphism--internal transcribed spacer patterns of individuals for molecular identification of entomopathogenic nematodes.

    PubMed

    Pamjav, H; Triga, D; Buzás, Z; Vellai, T; Lucskai, A; Adams, B; Reid, A P; Burnell, A; Griffin, C; Glazer, I; Klein, M G; Fodor, A

    1999-06-01

    différences! [editorial] [editorial]onomic way of identifying and assigning nematodes to taxons, which had already been determined either by comparative sequence analysis of nuclear rDNA internal transcribed spacer (ITS) region or by other methods of molecular or conventional taxonomy, is provided. Molecular identification of entomopathogenic nematodes (EPN) can be upgraded by basing it on PhastSystem polyacrylamide gel electrophoresis (PAGE) analysis of restriction fragment length polymorphism (RFLP) patterns of polymerase chain reaction (PCR)-amplified DNA derived from single nematodes of Steinernema or Heterorhabditis spp. Although analysis from single worms has previously been made on agarose gel, the resolution on PhastSystem PAGE gel is much higher. The DNA sequences selected for analysis were those constituting the internal transcribed spacer region between the 18S and 26S rDNA genes within the rRNA operon. RFLP analysis was carried out by gel electrophoresis on the PhastSystem (Pharmacia) as detailed elsewhere (Triga et al., Electrophoresis 1999, 20, 1272-1277. The downscaling from conventional agarose to PhastSystem gels resulted in pattern of DNA fragments differing from those obtained with agarose gel electrophoresis under conventional conditions by increasing the number of detected fragments. The approach supported previous species identifications and was able to identify several unclassified isolates, such as those from Hungary and Ireland, and provides a method for identification of previously unclassified strains. We confirmed that Heterorhabditis "Irish Type", represented by two strains of different geographical origin, comprise a species different from H. megidis. We also confirmed that strain IS5 belongs to the species H. indicus rather than to H. bacteriophora, as had been suggested previously. PMID:10380767

  11. Rapid restriction enzyme free detection of DNA methyltransferase activity based on DNA-templated silver nanoclusters.

    PubMed

    Kermani, Hanie Ahmadzade; Hosseini, Morteza; Dadmehr, Mehdi; Ganjali, Mohammad Reza

    2016-06-01

    DNA methylation has significant roles in gene regulation. DNA methyltransferase (MTase) enzyme characterizes DNA methylation and also induces an aberrant methylation pattern that is related to many diseases, especially cancers. Thus, it is required to develop a method to detect the DNA MTase activity. In this study, we developed a new sensitive and reliable method for methyltransferase activity assay by employing DNA-templated silver nanoclusters (DNA/Ag NCs) without using restriction enzymes. The Ag NCs have been utilized for the determination of M.SssI MTase activity and its inhibition. We designed an oligonucleotide probe which contained an inserted six-cytosine loop as Ag NCs formation template. The changes in fluorescence intensity were monitored to quantify the M.SssI activity. The fluorescence spectra showed a linear decrease in the range of 0.4 to 20 U/ml with a detection limit of 0.1 U/ml, which was significant compared with previous reports. The proposed method was applied successfully for demonstrating the Gentamicin effect as MTase inhibitor. The proposed method showed convenient reproducibility and sensitivity indicating its potential for the determination of methyltransferase activity. PMID:27052776

  12. Fork rotation and DNA precatenation are restricted during DNA replication to prevent chromosomal instability

    PubMed Central

    Schalbetter, Stephanie A.; Mansoubi, Sahar; Chambers, Anna L.; Downs, Jessica A.; Baxter, Jonathan

    2015-01-01

    Faithful genome duplication and inheritance require the complete resolution of all intertwines within the parental DNA duplex. This is achieved by topoisomerase action ahead of the replication fork or by fork rotation and subsequent resolution of the DNA precatenation formed. Although fork rotation predominates at replication termination, in vitro studies have suggested that it also occurs frequently during elongation. However, the factors that influence fork rotation and how rotation and precatenation may influence other replication-associated processes are unknown. Here we analyze the causes and consequences of fork rotation in budding yeast. We find that fork rotation and precatenation preferentially occur in contexts that inhibit topoisomerase action ahead of the fork, including stable protein–DNA fragile sites and termination. However, generally, fork rotation and precatenation are actively inhibited by Timeless/Tof1 and Tipin/Csm3. In the absence of Tof1/Timeless, excessive fork rotation and precatenation cause extensive DNA damage following DNA replication. With Tof1, damage related to precatenation is focused on the fragile protein–DNA sites where fork rotation is induced. We conclude that although fork rotation and precatenation facilitate unwinding in hard-to-replicate contexts, they intrinsically disrupt normal chromosome duplication and are therefore restricted by Timeless/Tipin. PMID:26240319

  13. Use of PCR-restriction fragment length polymorphism analysis for identification of yeast species isolated from bovine intramammary infection.

    PubMed

    Fadda, M E; Pisano, M B; Scaccabarozzi, L; Mossa, V; Deplano, M; Moroni, P; Liciardi, M; Cosentino, S

    2013-01-01

    This study reports a rapid PCR-based technique using a one-enzyme RFLP for discrimination of yeasts isolated from bovine clinical and subclinical mastitis milk samples. We analyzed a total of 1,486 milk samples collected over 1 yr in south Sardinia and northern Italy, and 142 yeast strains were preliminarily grouped based on their cultural morphology and physiological characteristics. Assimilation tests were conducted using the identification kit API ID 32C and APILAB Plus software (bioMérieux, Marcy l'Etoile, France). For PCR-RFLP analysis, the 18S-ITS1-5.8S ribosomal(r)DNA region was amplified and then digested with HaeIII, and dendrogram analysis of RFLP fragments was carried out. Furthermore, within each of the groups identified by the API or PCR-RFLP methods, the identification of isolates was confirmed by sequencing of the D1/D2 region using an ABI Prism 310 automatic sequencer (Applied Biosystems, Foster City, CA). The combined phenotypic and molecular approach enabled the identification of 17 yeast species belonging to the genera Candida (47.9%), Cryptococcus (21.1%), Trichosporon (19.7%), Geotrichum (7.1%), and Rhodotorula (4.2%). All Candida species were correctly identified by the API test and their identification confirmed by sequencing. All strains identified with the API system as Geotrichum candidum, Cryptococcus uniguttulatus, and Rhodotorula glutinis also produced characteristic restriction patterns and were confirmed as Galactomyces geotrichum (a teleomorph of G. candidum), Filobasidium uniguttulatum (teleomorph of Crypt. uniguttulatus), and R. glutinis, respectively, by D1/D2 rDNA sequencing. With regard to the genus Trichosporon, preliminary identification by API was problematic, whereas the RFLP technique used in this study gave characteristic restriction profiles for each species. Moreover, sequencing of the D1/D2 region allowed not only successful identification of Trichosporon gracile where API could not, but also correct identification of

  14. Linear mtDNA fragments and unusual mtDNA rearrangements associated with pathological deficiency of MGME1 exonuclease

    PubMed Central

    Nicholls, Thomas J.; Zsurka, Gábor; Peeva, Viktoriya; Schöler, Susanne; Szczesny, Roman J.; Cysewski, Dominik; Reyes, Aurelio; Kornblum, Cornelia; Sciacco, Monica; Moggio, Maurizio; Dziembowski, Andrzej; Kunz, Wolfram S.; Minczuk, Michal

    2014-01-01

    MGME1, also known as Ddk1 or C20orf72, is a mitochondrial exonuclease found to be involved in the processing of mitochondrial DNA (mtDNA) during replication. Here, we present detailed insights on the role of MGME1 in mtDNA maintenance. Upon loss of MGME1, elongated 7S DNA species accumulate owing to incomplete processing of 5′ ends. Moreover, an 11-kb linear mtDNA fragment spanning the entire major arc of the mitochondrial genome is generated. In contrast to control cells, where linear mtDNA molecules are detectable only after nuclease S1 treatment, the 11-kb fragment persists in MGME1-deficient cells. In parallel, we observed characteristic mtDNA duplications in the absence of MGME1. The fact that the breakpoints of these mtDNA rearrangements do not correspond to either classical deletions or the ends of the linear 11-kb fragment points to a role of MGME1 in processing mtDNA ends, possibly enabling their repair by homologous recombination. In agreement with its functional involvement in mtDNA maintenance, we show that MGME1 interacts with the mitochondrial replicase PolgA, suggesting that it is a constituent of the mitochondrial replisome, to which it provides an additional exonuclease activity. Thus, our results support the viewpoint that MGME1-mediated mtDNA processing is essential for faithful mitochondrial genome replication and might be required for intramolecular recombination of mtDNA. PMID:24986917

  15. Effect of cryopreservation on the sperm DNA fragmentation dynamics of the bottlenose dolphin (Tursiops truncatus).

    PubMed

    Sánchez-Calabuig, M J; López-Fernández, C; Johnston, S D; Blyde, D; Cooper, J; Harrison, K; de la Fuente, J; Gosálvez, J

    2015-04-01

    Sperm DNA fragmentation is one of the major causes of infertility; the sperm chromatin dispersion test (SCDt) evaluates this parameter and offers the advantage of species-specific validated protocol and ease of use under field conditions. The main purpose of this study was to evaluate sperm DNA fragmentation dynamics in both fresh and post-thaw bottlenose dolphin sperm using the SCDt following different cryopreservation protocols to gain new information about the post-thaw differential sperm DNA longevity in this species. Fresh and cryopreserved semen samples from five bottlenose dolphins were examined for sperm DNA fragmentation dynamics using the SCDt (Halomax(®)). Sperm DNA fragmentation was assessed immediately at collection and following cryopreservation (T0) and then after 0.5, 1, 4, 8, 24, 48 and 72 h incubation at 37°C. Serially collected ejaculates from four dolphins were frozen using different cryopreservation protocols in a TES-TRIS-fructose buffer (TTF), an egg-yolk-free vegetable lipid LP1 buffer (LP1) and human sperm preservation medium (HSPM). Fresh ejaculated spermatozoa initially showed low levels of DNA fragmentation for up to 48 h. Lower Sperm DNA fragmentation (SDF) was found in the second fresh ejaculate compared to the first when more than one sample was collected on the same day (p < 0.05); this difference was not apparent in any other seminal characteristic. While there was no difference observed in SDF between fresh and frozen-thawed sperm using the different cryopreservation protocols immediately after thawing (T0), frozen-thawed spermatozoa incubated at 37°C showed an increase in the rate of SDF after 24 h. Sperm frozen in the LP1(℗) buffer had higher levels (p < 0.05) of DNA fragmentation after 24- and 48-h incubation than those frozen in TTF or HSPM. No correlation was found between any seminal characteristic and DNA fragmentation in either fresh and/or frozen-thawed samples. PMID:25604784

  16. Non-random fragmentation patterns in circulating cell-free DNA reflect epigenetic regulation

    PubMed Central

    2015-01-01

    Background The assessment of cell-free circulating DNA fragments, also known as a "liquid biopsy" of the patient's plasma, is an important source for the discovery and subsequent non-invasive monitoring of cancer and other pathological conditions. Although the nucleosome-guided fragmentation patterns of cell-free DNA (cfDNA) have not yet been studied in detail, non-random representation of cfDNA sequencies may reflect chromatin features in the tissue of origin at gene-regulation level. Results In this study, we investigated the association between epigenetic landscapes of human tissues evident in the patterns of cfDNA in plasma by deep sequencing of human cfDNA samples. We have demonstrated that baseline characteristics of cfDNA fragmentation pattern are in concordance with the ones corresponding to cell lines-derived. To identify the loci differentially represented in cfDNA fragment, we mapped the transcription start sites within the sequenced cfDNA fragments and tested for association of these genomic coordinates with the relative strength and the patterns of gene expressions. Preselected sets of house-keeping and tissue specific genes were used as models for actively expressed and silenced genes. Developed measure of gene regulation was able to differentiate these two sets based on sequencing coverage near gene transcription start site. Conclusion Experimental outcomes suggest that cfDNA retains characteristics previously noted in genome-wide analysis of chromatin structure, in particular, in MNase-seq assays. Thus far the analysis of the DNA fragmentation pattern may aid further developing of cfDNA based biomarkers for a variety of human conditions. PMID:26693644

  17. Comparison of DNA fragmentation and color thresholding for objective quantitation of apoptotic cells

    NASA Technical Reports Server (NTRS)

    Plymale, D. R.; Ng Tang, D. S.; Fermin, C. D.; Lewis, D. E.; Martin, D. S.; Garry, R. F.

    1995-01-01

    Apoptosis is a process of cell death characterized by distinctive morphological changes and fragmentation of cellular DNA. Using video imaging and color thresholding techniques, we objectively quantitated the number of cultured CD4+ T-lymphoblastoid cells (HUT78 cells, RH9 subclone) displaying morphological signs of apoptosis before and after exposure to gamma-irradiation. The numbers of apoptotic cells measured by objective video imaging techniques were compared to numbers of apoptotic cells measured in the same samples by sensitive apoptotic assays that quantitate DNA fragmentation. DNA fragmentation assays gave consistently higher values compared with the video imaging assays that measured morphological changes associated with apoptosis. These results suggest that substantial DNA fragmentation can precede or occur in the absence of the morphological changes which are associated with apoptosis in gamma-irradiated RH9 cells.

  18. Use of Restriction Fragment Length Polymorphism to Rapidly Identify Dermatophyte Species Related to Dermatophytosis

    PubMed Central

    Mohammadi, Rasoul; Abastabar, Mahdi; Mirhendi, Hossein; Badali, Hamid; Shadzi, Shahla; Chadeganipour, Mustafa; Pourfathi, Parinaz; Jalalizand, Niloufar; Haghani, Iman

    2015-01-01

    Background: Dermatophytes are a group of keratinophilic fungi worldwide, which can infect the skin, hair and nails of humans and animals. This genus includes several species that present different features of dermatophytosis. Although, laboratory diagnosis of dermatophytes is based on direct microscopy, biochemical tests and culture, these manners are expensive, time consuming and need skilled staff. Therefore, molecular methods like PCR-RFLP are the beneficial tools for identification, which are rapid and sensitive. Thus, dermatophyte species are able to generate characteristic band patterns on agarose gel electrophoresis using PCR-RFLP technique, which leads to successful identification at the species level within a 5-hour period. Objectives: The purpose of this study was to study inter- and intraspecific genomic variations for identification of clinically important dermatophyte species obtained from clinical specimens in Isfahan, Iran using PCR-RFLP. Materials and Methods: From March 2011 to August 2012, 135 clinical isolates were collected from infected patients at Isfahan, Iran. ITS1-5.8S-ITS2 region of rDNA was amplified using universal fungal primers. Subsequently, amplified products were digested by the MvaI restriction enzyme. Using discriminating band profiles on agarose gel, dermatophyte species were identified. However, DNA sequencing was used for unidentifiable strains. Results: The specimens were obtained from skin scrapings (70.3%), nail (24.4%) and hair (5.1%) clippings. Most patients were between 21 - 30 years and the ratio of male to female was 93/42. Trichophyton interdigitale was the commonest isolate (52.5%) in our findings, followed by Epidermophyton floccosum (24.4%), T. rubrum (16.2%), Microsporum canis (2.2%), T. erinacei (1.4%), T. violaceum (1.4%), T. tonsurans (0.7%) and M. gypseum (0.7%) based on PCR-RFLP. Conclusions: Combination of traditional methods and molecular techniques considerably improves identification of dermatophytes in

  19. Evidence that DNA fragmentation in apoptosis is initiated and propagated by single-strand breaks.

    PubMed

    Walker, P R; LeBlanc, J; Sikorska, M

    1997-08-01

    Apoptosis is characterised by the degradation of DNA into a specific pattern of high and low molecular weight fragments seen on agarose gels as a distribution of sizes between 50-300 kb and sometimes, but not always, a ladder of smaller oligonucleosomal fragments. Using a 2D pulsed field-conventional agarose gel electrophoresis technique, where the second dimension is run under either normal or denaturing conditions, we show that single-strand breaks are introduced into DNA at the initial stages of fragmentation. Using single-strand specific nuclease probes we further show that the complete fragmentation pattern, including release of small oligonucleosomal fragments can also be generated by a single-strand endonuclease. Three classes of sites where single-strand breaks accumulate were identified. The initial breaks produce a distribution of fragment sizes (50 kb to >1 Mb) similar to those generated by Topoisomerase II inhibitors suggesting that cleavage may commence at sites of attachment of DNA to the nuclear matrix. A second class of rare sites is also cut further reducing the size distribution of the fragments to 50-300 kb. Thirdly, single-strand breaks accumulate at the linker region between nucleosomes eventually causing double-strand scissions which release oligonucleosomes. These observations further define the properties of the endonuclease responsible for DNA fragmentation in apoptosis. PMID:16465272

  20. Fragment-based discovery of 6-azaindazoles as inhibitors of bacterial DNA ligase.

    PubMed

    Howard, Steven; Amin, Nader; Benowitz, Andrew B; Chiarparin, Elisabetta; Cui, Haifeng; Deng, Xiaodong; Heightman, Tom D; Holmes, David J; Hopkins, Anna; Huang, Jianzhong; Jin, Qi; Kreatsoulas, Constantine; Martin, Agnes C L; Massey, Frances; McCloskey, Lynn; Mortenson, Paul N; Pathuri, Puja; Tisi, Dominic; Williams, Pamela A

    2013-12-12

    Herein we describe the application of fragment-based drug design to bacterial DNA ligase. X-ray crystallography was used to guide structure-based optimization of a fragment-screening hit to give novel, nanomolar, AMP-competitive inhibitors. The lead compound 13 showed antibacterial activity across a range of pathogens. Data to demonstrate mode of action was provided using a strain of S. aureus, engineered to overexpress DNA ligase. PMID:24900632

  1. Fragment-Based Discovery of 6-Azaindazoles As Inhibitors of Bacterial DNA Ligase

    PubMed Central

    2013-01-01

    Herein we describe the application of fragment-based drug design to bacterial DNA ligase. X-ray crystallography was used to guide structure-based optimization of a fragment-screening hit to give novel, nanomolar, AMP-competitive inhibitors. The lead compound 13 showed antibacterial activity across a range of pathogens. Data to demonstrate mode of action was provided using a strain of S. aureus, engineered to overexpress DNA ligase. PMID:24900632

  2. A 300 MHz and 600 MHz proton NMR study of a 12 base pair restriction fragment: investigation of structure by relaxation measurements.

    PubMed Central

    Early, T A; Kearns, D R; Hillen, W; Wells, R D

    1980-01-01

    The 1H NMR spectrum of a 12 base pair DNA restriction fragment has been measured at 300 and 600 MHz and resonances from over 70 protons are individually resolved. Relaxation rate measurements have been carried out at 300 MHz and compared with the theoretical predictions obtained using an isotropic rigid rotor model with coordinates derived from a Dreiding model of DNA. The model gives results that are in excellent agreement with experiment for most protons when a 7 nsec rotational correlation time is used, although agreement is improved for certain base protons by using a shorter correlation time for the sugar group, or by increasing the sugar-base interproton distances. A comparison of non-selective and selective spin-lattice relaxation rates for carbon bound protons indicates that there is extensive spin diffusion even in this short DNA fragment. Examination of the spin-spin relaxation rates for the same type of proton on different base pairs reveals little sequence effect on conformation. PMID:6258152

  3. The PML gene is linked to a megabase-scale insertion/deletion restriction fragment length polymorphism

    SciTech Connect

    Goy, A.; Xiao, Y.H.; Passalaris, T.

    1995-03-20

    The PML gene located on chromosome band 15q22 is involved with the RAR{alpha} locus (17q21) in a balanced reciprocal translocation uniquely observed in acute promyelocytic leukemia. Physical mapping studies by pulsed-field gel electrophoresis revealed that the PML gene is flanked by two CpG islands that are separated by a variable distance in normal individuals. Several lines of evidence demonstrate that this is the consequence of a large insertion/deletion polymorphism linked to the PML locus: (1) overlapping fragments obtained with a variety of rare-cutting restriction enzymes demonstrated the same variability in distance between the flanking CpG islands; (2) mapping with restriction enzymes insensitive to CpG methylation confirmed that the findings were not a consequence of variable methylation of CpG dinucleotides; (3) the polymorphism followed a Mendelian inheritance pattern. This polymorphism is localized 3{prime} to the PML locus. There are five common alleles, described on the basis of BssHII fragments, ranging from 220 to 350 kb with increments of approximately 30 kb between alleles. Both heterozygous (61%) and homozygous (391%) patterns were observed in normal individuals. Mega-base-scale insertion/deletion restriction fragment length polymorphisms are very rare and have been described initially in the context of multigene families. Such structures have been also reported as likely regions of genetic instability. High-resolution restriction mapping of this particular structure linked to the PML locus is underway. 47 refs., 4 figs., 1 tab.

  4. Typing and Clustering of Yersinia pseudotuberculosis Isolates by Restriction Fragment Length Polymorphism Analysis Using Insertion Sequences

    PubMed Central

    Voskresenskaya, E.; Savin, C.; Leclercq, A.; Tseneva, G.

    2014-01-01

    Yersinia pseudotuberculosis is an enteropathogen that has an animal reservoir and causes human infections, mostly in temperate and cold countries. Most of the methods previously used to subdivide Y. pseudotuberculosis were performed on small numbers of isolates from a specific geographical area. One aim of this study was to evaluate the typing efficiency of restriction fragment length polymorphism of insertion sequence hybridization patterns (IS-RFLP) compared to other typing methods, such as serotyping, ribotyping, and multilocus sequence typing (MLST), on the same set of 80 strains of Y. pseudotuberculosis of global origin. We found that IS100 was not adequate for IS-RFLP but that both IS285 and IS1541 efficiently subtyped Y. pseudotuberculosis. The discriminatory index (DI) of IS1541-RFLP (0.980) was superior to those of IS285-RFLP (0.939), ribotyping (0.944), MLST (0.861), and serotyping (0.857). The combination of the two IS (2IS-RFLP) further increased the DI to 0.998. Thus, IS-RFLP is a powerful tool for the molecular typing of Y. pseudotuberculosis and has the advantage of exhibiting well-resolved banding patterns that allow for a reliable comparison of strains of worldwide origin. The other aim of this study was to assess the clustering power of IS-RFLP. We found that 2IS-RFLP had a remarkable capacity to group strains with similar genotypic and phenotypic markers, thus identifying robust populations within Y. pseudotuberculosis. Our study thus demonstrates that 2IS- and even IS1541-RFLP alone might be valuable tools for the molecular typing of global isolates of Y. pseudotuberculosis and for the analysis of the population structure of this species. PMID:24671793

  5. A Restriction Fragment Length Polymorphism Map and Electrophoretic Karyotype of the Fungal Maize Pathogen Cochliobolus Heterostrophus

    PubMed Central

    Tzeng, T. H.; Lyngholm, L. K.; Ford, C. F.; Bronson, C. R.

    1992-01-01

    A restriction fragment length polymorphism (RFLP) map has been constructed of the nuclear genome of the plant pathogenic ascomycete Cochliobolus heterostrophus. The segregation of 128 RFLP and 4 phenotypic markers was analyzed among 91 random progeny of a single cross; linkages were detected among 126 of the markers. The intact chromosomal DNAs of the parents and certain progeny were separated using pulsed field gel electrophoresis and hybridized with probes used to detect the RFLPs. In this way, 125 markers were assigned to specific chromosomes and linkages among 120 of the markers were confirmed. These linkages totalled 941 centimorgans (cM). Several RFLPs and a reciprocal translocation were identified tightly linked to Tox1, a locus controlling host-specific virulence. Other differences in chromosome arrangement between the parents were also detected. Fourteen gaps of at least 40 cM were identified between linkage groups on the same chromosomes; the total map length was therefore estimated to be, at a minimum, 1501 cM. Fifteen A chromosomes ranging from about 1.3 megabases (Mb) to about 3.7 Mb were identified; one of the strains also has an apparent B chromosome. This chromosome appears to be completely dispensable; in some progeny, all of 15 markers that mapped to this chromosome were absent. The total genome size was estimated to be roughly 35 Mb. Based on these estimates of map length and physical genome size, the average kb/cM ratio in this cross was calculated to be approximately 23. This low ratio of physical to map distance should make this RFLP map a useful tool for cloning genes. PMID:1346261

  6. Isolation of genomic DNA fragments corresponding to genes modulated in vivo by a transcription factor.

    PubMed Central

    Caubín, J; Iglesias, T; Bernal, J; Muñoz, A; Márquez, G; Barbero, J L; Zaballos, A

    1994-01-01

    A new methodology for the identification of genes modulated by transcription factors in vivo is described. Mouse genomic DNA fragments bound by the thyroid hormone receptor (T3R) were selected and amplified in vitro. Subsequent hybridisation with biotinylated cDNA allowed the selection of those DNA fragments containing binding sites for T3R that corresponded to transcribed DNA. Expression analysis of the corresponding genes showed that more than 80% are indeed modulated by thyroid hormones in vivo in the liver. Together with the presence of consensus binding sites for T3R this result suggests that the selected DNA fragments may contain T3R transcriptional regulatory elements. This method, extensive to other ligand-modulated transcription factors, might be useful to all transcription factors with slight modifications. Images PMID:7937138

  7. Molecular characterization of Mycobacterium tuberculosis isolates from Tehran, Iran by restriction fragment length polymorphism analysis and spoligotyping.

    PubMed

    Feyisa, Seifu Gizaw; Haeili, Mehri; Zahednamazi, Fatemeh; Mosavari, Nader; Taheri, Mohammad Mohammad; Hamzehloo, Gholamreza; Zamani, Samin; Feizabadi, Mohammad Mehdi

    2016-04-01

    INTRODUCTION Characterization of Mycobacterium tuberculosis (MTB) isolates by DNA fingerprinting has contributed to tuberculosis (TB) control. The aim of this study was to determine the genetic diversity of MTB isolates from Tehran province in Iran. METHODS MTB isolates from 60 Iranian and 10 Afghan TB patients were fingerprinted by standard IS6110-restriction fragment length polymorphism (RFLP) analysis and spoligotyping. RESULTS The copy number of IS6110 ranged from 10-24 per isolate. The isolates were classified into 22 clusters showing ≥ 80% similarity by RFLP analysis. Fourteen multidrug-resistant (MDR) isolates were grouped into 4 IS6110-RFLP clusters, with 10 isolates [71% (95% CI: 45-89%)] in 1 cluster, suggesting a possible epidemiological linkage. Eighteen Iranian isolates showed ≥ 80% similarity with Afghan isolates. There were no strains with identical fingerprints. Spoligotyping of 70 isolates produced 23 distinct patterns. Sixty (85.7%) isolates were grouped into 13 clusters, while the remaining 10 isolates (14.2%) were not clustered. Ural (formerly Haarlem4) (n = 22, 31.4%) was the most common family followed by Central Asian strain (CAS) (n = 18, 25.7%) and T (n = 9, 12.8%) families. Only 1strain was characterized as having the Beijing genotype. Among 60 Iranian and 10 Afghan MTB isolates, 25% (95% CI: 16-37) and 70% (95% CI: 39-89) were categorized as Ural lineage, respectively. CONCLUSIONS A higher prevalence of Ural family MTB isolates among Afghan patients than among Iranian patients suggests the possible transmission of this lineage following the immigration of Afghans to Iran. PMID:27192590

  8. Repeated blast exposures cause brain DNA fragmentation in mice.

    PubMed

    Wang, Ying; Arun, Peethambaran; Wei, Yanling; Oguntayo, Samuel; Gharavi, Robert; Valiyaveettil, Manojkumar; Nambiar, Madhusoodana P; Long, Joseph B

    2014-03-01

    The pathophysiology of blast-induced traumatic brain injury (TBI) and subsequent behavioral deficits are not well understood. Unraveling the mechanisms of injury is critical to derive effective countermeasures against this form of neurotrauma. Preservation of the integrity of cellular DNA is crucial for the function and survival of cells. We evaluated the effect of repeated blast exposures on the integrity of brain DNA and tested the utility of cell-free DNA (CFD) in plasma as a biomarker for the diagnosis and prognosis of blast-induced polytrauma. The results revealed time-dependent breakdown in cellular DNA in different brain regions, with the maximum damage at 24 h post-blast exposures. CFD levels in plasma showed a significant transient increase, which was largely independent of the timing and severity of brain DNA damage; maximum levels were recorded at 2 h after repeated blast exposure and returned to baseline at 24 h. A positive correlation was observed between the righting reflex time and CFD level in plasma at 2 h after blast exposure. Brain DNA damage subsequent to repeated blast was associated with decreased mitochondrial membrane potential, increased release of cytochrome C, and up-regulation of caspase-3, all of which are indicative of cellular apoptosis. Shock-wave-induced DNA damage and initiation of mitochondrial-driven cellular apoptosis in the brain after repeated blast exposures indicate that therapeutic strategies directed toward inhibition of DNA damage or instigation of DNA repair may be effective countermeasures. PMID:24074345

  9. Towards the molecular characterisation of parasitic nematode assemblages: an evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis.

    PubMed

    Lott, M J; Hose, G C; Power, M L

    2014-09-01

    Identifying factors which regulate temporal and regional structuring within parasite assemblages requires the development of non-invasive techniques which facilitate both the rapid discrimination of individual parasites and the capacity to monitor entire parasite communities across time and space. To this end, we have developed and evaluated a rapid fluorescence-based method, terminal restriction fragment length polymorphism (T-RFLP) analysis, for the characterisation of parasitic nematode assemblages in macropodid marsupials. The accuracy with which T-RFLP was capable of distinguishing between the constituent taxa of a parasite community was assessed by comparing sequence data from two loci (the ITS+ region of nuclear ribosomal DNA and the mitochondrial CO1) across ∼20 species of nematodes (suborder Strongylida). Our results demonstrate that with fluorescent labelling of the forward and reverse terminal restriction fragments (T-RFs) of the ITS+ region, the restriction enzyme Hinf1 was capable of generating species specific T-RFLP profiles. A notable exception was within the genus Cloacina, in which closely related species often shared identical T-RFs. This may be a consequence of the group's comparatively recent evolutionary radiation. While the CO1 displayed higher sequence diversity than the ITS+, the subsequent T-RFLP profiles were taxonomically inconsistent and could not be used to further differentiate species within Cloacina. Additionally, several of the ITS+ derived T-RFLP profiles exhibited unexpected secondary peaks, possibly as a consequence of the restriction enzymes inability to cleave partially single stranded amplicons. These data suggest that the question of T-RFLPs utility in monitoring parasite communities cannot be addressed without considering the ecology and unique evolutionary history of the constituent taxa. PMID:24971699

  10. Typing of Human Mycobacterium avium Isolates in Italy by IS1245-Based Restriction Fragment Length Polymorphism Analysis

    PubMed Central

    Lari, Nicoletta; Cavallini, Michela; Rindi, Laura; Iona, Elisabetta; Fattorini, Lanfranco; Garzelli, Carlo

    1998-01-01

    All but 2 of 63 Mycobacterium avium isolates from distinct geographic areas of Italy exhibited markedly polymorphic, multibanded IS1245 restriction fragment length polymorphism (RFLP) patterns; 2 isolates showed the low-number banding pattern typical of bird isolates. By computer analysis, 41 distinct IS1245 patterns and 10 clusters of essentially identical strains were detected; 40% of the 63 isolates showed genetic relatedness, suggesting the existence of a predominant AIDS-associated IS1245 RFLP pattern. PMID:9817900

  11. Interaction of fragmented double-stranded DNA with carbon nanotubes in aqueous solution

    NASA Astrophysics Data System (ADS)

    Gladchenko, G. O.; Karachevtsev, M. V.; Leontiev, V. S.; Valeev, V. A.; Glamazda, A. Yu.; Plokhotnichenko, A. M.; Stepanian, S. G.

    Aqueous suspensions of ultrasonically fragmented double-stranded (fds-) DNA and single-walled carbon nanotubes (SWNTs) have been investigated by UV- and IR-absorption, NIR-emission and Raman spectroscopy. According to gel-electrophoresis, the lengths of the polymer fragments were 100-500 base pairs. Analysis of IR and UV data indicates the presence of both double-stranded (ds) and single-stranded (ss)-regions in the fragments. SWNT complex with DNA was revealed by NIR-emission and Raman spectroscopy. It turned out that fds-DNA is less efficient in holding nanotubes in the aqueous solution than ss-DNA. From the UV-data, the character of the helix-coil transition is seen to be like that for fds-DNA off and on nanotube, however, DNA thermostability increased in this latter case. The effective charge density on the DNA sugar-phosphate backbone of the fds-DNA:SWNT hybrid was less than that of DNA alone. Spectroscopic data can be explained by a model in which the formation of hybrids starts due to the interaction between untwisted ss-regions of DNA and the nanotube: the strands wrap on the tube and thus create an 'anchor' for the whole polymer. The ds-part of the polymer is located close to the nanotube.

  12. Prompt repair of hydrogen peroxide-induced DNA lesions prevents catastrophic chromosomal fragmentation.

    PubMed

    Mahaseth, Tulip; Kuzminov, Andrei

    2016-05-01

    Iron-dependent oxidative DNA damage in vivo by hydrogen peroxide (H2O2, HP) induces copious single-strand(ss)-breaks and base modifications. HP also causes infrequent double-strand DNA breaks, whose relationship to the cell killing is unclear. Since hydrogen peroxide only fragments chromosomes in growing cells, these double-strand breaks were thought to represent replication forks collapsed at direct or excision ss-breaks and to be fully reparable. We have recently reported that hydrogen peroxide kills Escherichia coli by inducing catastrophic chromosome fragmentation, while cyanide (CN) potentiates both the killing and fragmentation. Remarkably, the extreme density of CN+HP-induced chromosomal double-strand breaks makes involvement of replication forks unlikely. Here we show that this massive fragmentation is further amplified by inactivation of ss-break repair or base-excision repair, suggesting that unrepaired primary DNA lesions are directly converted into double-strand breaks. Indeed, blocking DNA replication lowers CN+HP-induced fragmentation only ∼2-fold, without affecting the survival. Once cyanide is removed, recombinational repair in E. coli can mend several double-strand breaks, but cannot mend ∼100 breaks spread over the entire chromosome. Therefore, double-strand breaks induced by oxidative damage happen at the sites of unrepaired primary one-strand DNA lesions, are independent of replication and are highly lethal, supporting the model of clustered ss-breaks at the sites of stable DNA-iron complexes. PMID:27078578

  13. Systematic comparison of gene expression through analysis of cDNA fragments within or near to the protein-coding region.

    PubMed

    Ke, Y; Jing, C; Rudland, P S; Smith, P H; Foster, C S

    1999-02-01

    Life is controlled by the timely and ordered expression of genes. Identification of important genes involved in specific physiological and pathological conditions requires efficient methods to analyse differential gene expression. We describe a novel strategy, namely complete comparison of gene expression (CCGE), for a systematic assessment of differentially expressed genes. Using the CCGE method, double-stranded cDNA is digested with two restriction enzymes that cut with different frequencies, the representative cDNA fragments are generated within or near to the protein-coding region. After being flanked by two different types of adapters, and amplified by a nested suppression PCR, the selected cDNA fragments, representing entire cDNA population, can be divided into 256 subsets; amplified and compared in a systematic manner. PMID:9889292

  14. Characterization of western European field isolates and vaccine strains of avian infectious laryngotracheitis virus by restriction fragment length polymorphism and sequence analysis.

    PubMed

    Neff, C; Sudler, C; Hoop, R K

    2008-06-01

    Infectious laryngotracheitis is a dramatic disease of the upper respiratory tract in poultry caused by a herpesvirus. In this study we investigated the characteristics of western European field isolates of infectious laryngotracheitis virus (ILTV) to gain more information on their diversity. The examined 104 isolates, collected from acute outbreaks during the last 35 years, originated from eight different countries: Switzerland (48), Germany (21), Sweden (14), the United Kingdom (9), Italy (5), Belgium (4), Austria (2), and Norway (1). Two vaccines, a chicken embryo origin product and a tissue culture origin product, were included in the survey. Polymerase chain reaction (PCR) was performed to amplify a 2.1-kb DNA fragment of ILTV using primers generated for the thymidine kinase (TK) gene. After digestion of the resulting PCR products by restriction endonuclease HaeIII, restriction fragment length polymorphism analysis was carried out. PCR amplicons of three field isolates and both vaccine strains were selected for sequencing. Here 98 field isolates showed the same cleavage pattern and were identical to both vaccine strains (clone 1). They differed from five Swiss isolates with identical cleavage pattern (clone 2) and one Swedish isolate (clone 3). The present study demonstrated that at least three clones of ILTV have been circulating in western Europe during the last 35 years. The 104 isolates analyzed showed a high genetic similarity regarding the TK gene, and a large majority of the field isolates (98/104) were genetically related to the vaccine strains. PMID:18646457

  15. Cloning of a DNA fragment encoding a heme-repressible hemoglobin-binding outer membrane protein from Haemophilus influenzae.

    PubMed Central

    Jin, H; Ren, Z; Pozsgay, J M; Elkins, C; Whitby, P W; Morton, D J; Stull, T L

    1996-01-01

    Haemophilus influenzae is able to use hemoglobin as a sole source of heme, and heme-repressible hemoglobin binding to the cell surface has been demonstrated. Using an affinity purification methodology, a hemoglobin-binding protein of approximately 120 kDa was isolated from H. influenzae type b strain HI689 grown in heme-restricted but not in heme-replete conditions. The isolated protein was subjected to N-terminal amino acid sequencing, and the derived amino acid sequence was used to design corresponding oligonucleotides. The oligonucleotides were used to probe a Southern blot of EcoRI-digested HI689 genomic DNA. A hybridizing band of approximately 4.2 kb was successfully cloned into pUC19. Using a 1.9-kb internal BglII fragment of the 4.2-kb clone as a probe, hybridization was seen in both typeable and nontypeable H. influenzae but not in other bacterial species tested. Following partial nucleotide sequencing of the 4.2-kb insert, a putative open reading frame was subcloned into an expression vector. The host Escherichia coli strain in which the cloned fragment was expressed bound biotinylated human hemoglobin, whereas binding of hemoglobin was not detected in E. coli with the vector alone. In conclusion, we hypothesize that the DNA fragment encoding an approximately 120-kDa heme-repressible hemoglobin-binding protein mediates one step in the acquisition of hemoglobin by H. influenzae in vivo. PMID:8757844

  16. Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Chao, J.; Zhang, P.; Wang, Q.; Wu, N.; Zhang, F.; Hu, J.; Fan, C. H.; Li, B.

    2016-03-01

    We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06544e

  17. Restriction fragment length polymorphism of the pMJ101-like plasmid and ribotyping in the fish pathogen Vibrio ordalii.

    PubMed Central

    Pedersen, K.; Koblavi, S.; Tiainen, T.; Grimont, P. A.

    1996-01-01

    A total of 32 Vibrio ordalii strains were studied for their plasmid content and shown to carry a plasmid of approximately 32 kb. This plasmid was subsequently subjected to restriction fragment length polymorphism (RFLP) studies. Using Hind III, three different restriction patterns were identified while BamH I cleaved the plasmid into a single linear fragment. The results suggest that the 32 kb plasmid is highly conserved but that some variation in restriction pattern occurs. The same set of strains was subjected to ribotyping. Using Mlu I, six different restriction patterns were demonstrated. Strains from the USA and Canada shared profiles with strains from Australia and Japan. Strains from Australia generated a single pattern whereas strains from North America were subdivided into three patterns, and the Japanese strains fell into five patterns. The results suggest that ribotyping in combination with RFLP studies of the pMJ101-like plasmid may be useful in epidemiological studies of V. ordalii. Images Fig. 1 Fig. 2 PMID:8870637

  18. Multimerization-cyclization of DNA fragments as a method of conformational analysis.

    PubMed

    Podtelezhnikov, A A; Mao, C; Seeman, N C; Vologodskii, A

    2000-11-01

    Ligation of short DNA fragments results in the formation of linear and circular multimers of various lengths. The distribution of products in such a reaction is often used to evaluate fragment bending caused by specific chemical modification, by bound ligands or by the presence of irregular structural elements. We have developed a more rigorous quantitative approach to the analysis of such experimental data based on determination of j-factors for different multimers from the distribution of the reaction products. j-Factors define the effective concentration of one end of a linear chain in the vicinity of the other end. To extract j-factors we assumed that kinetics of the reaction is described by a system of differential equations where j-factors appear as coefficients. The assumption was confirmed by comparison with experimental data obtained here for DNA fragments containing A-tracts. At the second step of the analysis j-factors are used to determine conformational parameters of DNA fragments: the equilibrium bend angle, the bending rigidity of the fragment axis, and the total twist of the fragments. This procedure is based on empirical equations that connect the conformational parameters with the set of j-factors. To obtain the equations, we computed j-factors for a large array of conformational parameters that describe model fragments. The approach was tested on both simulated and actual experimental data for DNA fragments containing A-tracts. A-tract DNA bend angle determined here is in good agreement with previously published data. We have established a set of experimental conditions necessary for the data analysis to be successful. PMID:11053141

  19. [THE OPTIMAL CONDITIONS OF STORAGE OF SPERMATOZOA FOR ANALYSIS OF DNA FRAGMENTATION].

    PubMed

    Tataru, D A; Markova, E V; Osadchuk, L V; Sheina, E V; Svetlakov, A V

    2015-04-01

    The analysis of fragmentation of DNA of spermatozoons using technique of flow cytometry to evaluate male fertility more and more often begins to be applied in clinical diagnostic. However, development of optimal protocol of storage and preparation of spermatozoons for analysis still is at the stage of experimental elaboration. The studv was carried out to analyse effect of different conditions of preparation of ejaculate for adequate evaluation of index of fragmentation of DNA of spermatozoons using sperm chromatin structure assay technique. The sampling consisted of 20 patients of the Krasnoyarsk center of reproductive medicine. The sperm chromatin structure assay technique was applied to evaluate index of fragmentation of DNA of spermatozoons in fresh native ejaculate and after storage of spermatozoons under different temperature (37, 25 and 4 degrees C) and duration (1-2 and 1-3 days) and conditions of storage (-20 or -70 degrees C) of frozen spermatozoons (as native ejaculate or in TNE-buffer). It is demonstrated that index of fragmentation of DNA of spermatozoons has no significant alterations in ejaculate stored under 4 degrees C during 48 hours. In case of storage of ejaculate under 25 or 37 degrees C index of fragmentation of DNA of spermatozoons significantly increases already after first day of storage. The incubation of ejaculate under 37 degrees C results in increasing of index of fragmentation of DNA of spermatozoons already after first hour. The individual differences are established related to degree of increasing of index of fragmentation of DNA of spermatozoons because of impact of studied temperatures of ejaculate incubation. The storage of spermatozoons under temperature of - 20 and -70 degrees C in native ejaculate or in TNE-buffer has no effect of index of fragmentation of DNA of spermatozoons with measurement during 1-2 hours. Therefore, storage and transportation of native ejaculate under 4 degrees C during 1-2 days or in frozen condition

  20. Purification of a 24-kD protease from apoptotic tumor cells that activates DNA fragmentation.

    PubMed

    Wright, S C; Wei, Q S; Zhong, J; Zheng, H; Kinder, D H; Larrick, J W

    1994-12-01

    We report the purification of a protease from tumor cells undergoing apoptosis that is involved in activating DNA fragmentation. Initial studies revealed that two inhibitors of serine proteases, N-1-tosylamide-2-phenylethylchloromethyl ketone and carbobenzoxy-Ala-Ala-borophe (DK120), suppressed tumor necrosis factor or ultraviolet (UV) light-induced DNA fragmentation in the U937 histiocytic lymphoma as well as UV light-induced DNA fragmentation in the BT-20 breast carcinoma, HL-60 myelocytic leukemia, and 3T3 fibroblasts. The protease was purified by affinity chromatography with DK120 as ligand and showed high activity on a synthetic substrate preferred by elastase-like enzymes (Ala-Ala-Pro-Val p-nitroanilide), but was inactive on the trypsin substrate, N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester, or the chymotrypsin substrate, Ala-Ala-Pro-Phe p-nitroanilide. The activity of the DK120-binding protease purified from U937 cells undergoing apoptosis was increased approximately 10-fold over that recovered from normal cells. Further purification to homogeneity by heparin-Sepharose affinity chromatography followed by reverse phase high-performance liquid chromatography revealed a single band of 24 kD on a silver-stained sodium dodecyl sulfate gel. In addition to protease activity, the purified enzyme induced DNA fragmentation into multiples of 180 basepairs in isolated U937 nuclei. These findings suggest the 24-kD protease is a novel enzyme that activates DNA fragmentation in U937 cells undergoing apoptosis. PMID:7964487

  1. Effect of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves.

    PubMed

    Pedroso, M C; Durzan, D J

    2000-11-01

    Different gravity environments have been shown to significantly affect leaf-plantlet formation and asexual reproduction in Kalanchoë daigremontiana Ham. and Perr. In the present work, we investigated the effect of gravity at tissue and cell levels. Leaves and leaf-plantlets were cultured for different periods of time (min to 15 d) in different levels of gravity stimulation: simulated hypogravity (1 rpm clinostats; 2 x 10(-4) g), 1 g (control) and hypergravity (centrifugation; 20 and 150 g). Both simulated hypogravity and hypergravity affected cell death (apoptosis) in this species, and variations in the number of cells showing DNA fragmentation directly correlated with nitric oxide (NO) formation. Apoptosis in leaves was more common as gravity increased. Apoptotic cells were localized in the epidermis, mainly guard cells, in leaf parenchyma, and in tracheary elements undergoing terminal differentiation. Exposures to acute hypergravity (up to 60 min) showed that chloroplast DNA fragmentation occurred prior to nuclear DNA fragmentation, marginalization of chromatin, nuclear condensation, and nuclear blebbing. Addition of sodium nitroprusside (NO donor) mimicked centrifugation. NO and DNA fragmentation decreased with N(G)-monomethyl-L-arginine (NO-synthase inhibitor). The variations in NO levels, nucleoid DNA fragmentation, and cell death show how chloroplasts, cells and leaves may respond (and adapt) to gravity changes. PMID:11762440

  2. A Semester-Long Project for Teaching Basic Techniques in Molecular Biology Such as Restriction Fragment Length Polymorphism Analysis to Undergraduate and Graduate Students

    PubMed Central

    DiBartolomeis, Susan M.

    2011-01-01

    Several reports on science education suggest that students at all levels learn better if they are immersed in a project that is long term, yielding results that require analysis and interpretation. I describe a 12-wk laboratory project suitable for upper-level undergraduates and first-year graduate students, in which the students molecularly locate and map a gene from Drosophila melanogaster called dusky and one of dusky's mutant alleles. The mapping strategy uses restriction fragment length polymorphism analysis; hence, students perform most of the basic techniques of molecular biology (DNA isolation, restriction enzyme digestion and mapping, plasmid vector subcloning, agarose and polyacrylamide gel electrophoresis, DNA labeling, and Southern hybridization) toward the single goal of characterizing dusky and the mutant allele dusky73. Students work as individuals, pairs, or in groups of up to four students. Some exercises require multitasking and collaboration between groups. Finally, results from everyone in the class are required for the final analysis. Results of pre- and postquizzes and surveys indicate that student knowledge of appropriate topics and skills increased significantly, students felt more confident in the laboratory, and students found the laboratory project interesting and challenging. Former students report that the lab was useful in their careers. PMID:21364104

  3. A semester-long project for teaching basic techniques in molecular biology such as restriction fragment length polymorphism analysis to undergraduate and graduate students.

    PubMed

    DiBartolomeis, Susan M

    2011-01-01

    Several reports on science education suggest that students at all levels learn better if they are immersed in a project that is long term, yielding results that require analysis and interpretation. I describe a 12-wk laboratory project suitable for upper-level undergraduates and first-year graduate students, in which the students molecularly locate and map a gene from Drosophila melanogaster called dusky and one of dusky's mutant alleles. The mapping strategy uses restriction fragment length polymorphism analysis; hence, students perform most of the basic techniques of molecular biology (DNA isolation, restriction enzyme digestion and mapping, plasmid vector subcloning, agarose and polyacrylamide gel electrophoresis, DNA labeling, and Southern hybridization) toward the single goal of characterizing dusky and the mutant allele dusky(73). Students work as individuals, pairs, or in groups of up to four students. Some exercises require multitasking and collaboration between groups. Finally, results from everyone in the class are required for the final analysis. Results of pre- and postquizzes and surveys indicate that student knowledge of appropriate topics and skills increased significantly, students felt more confident in the laboratory, and students found the laboratory project interesting and challenging. Former students report that the lab was useful in their careers. PMID:21364104

  4. A new large-DNA-fragment delivery system based on integrase activity from an integrative and conjugative element.

    PubMed

    Miyazaki, Ryo; van der Meer, Jan Roelof

    2013-07-01

    During the past few decades, numerous plasmid vectors have been developed for cloning, gene expression analysis, and genetic engineering. Cloning procedures typically rely on PCR amplification, DNA fragment restriction digestion, recovery, and ligation, but increasingly, procedures are being developed to assemble large synthetic DNAs. In this study, we developed a new gene delivery system using the integrase activity of an integrative and conjugative element (ICE). The advantage of the integrase-based delivery is that it can stably introduce a large DNA fragment (at least 75 kb) into one or more specific sites (the gene for glycine-accepting tRNA) on a target chromosome. Integrase recombination activity in Escherichia coli is kept low by using a synthetic hybrid promoter, which, however, is unleashed in the final target host, forcing the integration of the construct. Upon integration, the system is again silenced. Two variants with different genetic features were produced, one in the form of a cloning vector in E. coli and the other as a mini-transposable element by which large DNA constructs assembled in E. coli can be tagged with the integrase gene. We confirmed that the system could successfully introduce cosmid and bacterial artificial chromosome (BAC) DNAs from E. coli into the chromosome of Pseudomonas putida in a site-specific manner. The integrase delivery system works in concert with existing vector systems and could thus be a powerful tool for synthetic constructions of new metabolic pathways in a variety of host bacteria. PMID:23686268

  5. Restriction fragment length polymorphism of the 5S-rRNA-NTS region: a rapid and precise method for plant identification.

    PubMed

    Bertea, Cinzia Margherita; Gnavi, Giorgio

    2012-01-01

    Molecular genetic methods have several advantages over classical morphological and chemical analyses. The genetic method requires genotype instead than phenotype, therefore PCR-based techniques have been widely used for a rapid identification of plant species, varieties and chemotypes. Recently, the molecular discrimination of some higher plant species has been evaluated using sequences of a 5S-rRNA gene spacer region. The variation in the nontranscribed sequence (NTS) region has been used in a number of plant species for studying intraspecific variation, genome evolution, and phylogenetic reconstruction. Here, we describe a rapid method based on the use of the 5S-rRNA-NTS region as a tool for plant DNA fingerprinting, which combines PCR, sequencing and restriction fragment length polymorphism analyses. PMID:22419491

  6. Genetic diversity of Trichomonas vaginalis clinical isolates determined by EcoRI restriction fragment length polymorphism of heat-shock protein 70 genes.

    PubMed

    Meade, John C; de Mestral, Jacqueline; Stiles, Jonathan K; Secor, W Evan; Finley, Richard W; Cleary, John D; Lushbaugh, William B

    2009-02-01

    Restriction fragment length polymorphism (RFLP) analysis using a multilocus heat-inducible cytoplasmic heat-shock protein 70 (Hsp70) hybridization probe with EcoRI-digested genomic DNA was used in molecular typing of 129 Trichomonas vaginalis isolates. Results indicate that Trichomonas organisms exhibit considerable polymorphism in their Hsp70 RFLP patterns. Analysis of seven American Type Culture Collection reference strains and 122 clinical isolates, including 84 isolates from Jackson, Mississippi, 18 isolates from Atlanta, Georgia, and 20 isolates from throughout the United States, showed 105 distinct Hsp70 RFLP pattern subtypes for Trichomonas. Phylogenetic analysis of the Hsp70 RFLP data showed that the T. vaginalis isolates were organized into two clonal lineages. These results illustrate the substantial genomic diversity present in T. vaginalis and indicate that a large number of genetically distinct Trichomonas isolates may be responsible for human trichomoniasis in the United States. PMID:19190222

  7. A DNA Fragment of Herpes Simplex 2 and Its Transcription in Human Cervical Cancer Tissue

    PubMed Central

    Frenkel, Niza; Roizman, Bernard; Cassai, Enzo; Nahmias, Andre

    1972-01-01

    A human cervical tumor, free of detectable infectious herpes simplex 2 virus, contained a fragment comprising 39% of herpes viral DNA. Renaturation kinetics indicate that an average of 1 to 3.5 DNA fragments of herpes simplex virus are present per cell, depending on the ploidy of the cells in this particular tumor. Virus-specific sequences were found linked to highly repetitive sequences of host DNA, which reassociated under conditions designed to preclude reassociation of viral sequences. The tumor also contained RNA transcripts complementary to 5% of the viral DNA. The fraction of viral DNA template transcribed in the cervical tumor is considerably less than that transcribed in productively infected cells (50%). PMID:4345508

  8. Comparison of the solution and crystal conformations of (G + C)-rich fragments of DNA.

    PubMed Central

    Vorlícková, M; Subirana, J A; Chládková, J; Tejralová, I; Huynh-Dinh, T; Arnold, L; Kypr, J

    1996-01-01

    DNA fragments crystallize in an unpredictable manner, and relationships between their crystal and solution conformations still are not known. We have studied, using circular dichroism spectroscopy, solution conformations of (G + C)-rich DNA fragments, the crystal structures of which were solved in the laboratory of one of the present authors. In aqueous trifluorethanol (TFE) solutions, all of the examined oligonucleotides adopted the same type of double helix as in the crystal. Specifically, the dodecamer d(CCCCCGCGGGGG) crystalized as A-DNA and isomerized into A-DNA at high TFE concentrations. On the other hand, the hexamer d(CCGCGG) crystallized in Z-form containing tilted base pairs, and high TFE concentrations cooperatively transformed it into the same Z-form as adopted by the RNA hexamer r(CGCGCG), although d(CCGCGG) could isomerize into Z-DNA in the NaCl + NiCl2) aqueous solution. The fragments crystallizing as B-DNA remained B-DNA, regardless of the solution conditions, unless they denatured or aggregated. Effects on the oligonucleotide conformation of 2-methyl-2,4-pentanediol and other crystallization agents were also studied. 2-Methyl-2,4-pentanediol induced the same conformational transitions as TFE but, in addition, caused an oligonucleotide condensation that was also promoted by the other crystallization agents. The present results indicate that the crystal double helices of DNA are stable in aqueous TFE rather than aqueous solution. PMID:8874026

  9. TNF-α is involved in activating DNA fragmentation in skeletal muscle

    PubMed Central

    Carbó, N; Busquets, S; van Royen, M; Alvarez, B; López-Soriano, F J; Argilés, J M

    2002-01-01

    Intraperitoneal administration of 100 μg kg−1 (body weight) of tumour necrosis factor-α to rats for 8 consecutive days resulted in a significant decrease in protein content, which was concomitant with a reduction in DNA content. Interestingly, the protein/DNA ratio was unchanged in the skeletal muscle of the tumour necrosis factor-α-treated animals as compared with the non-treated controls. Analysis of muscle DNA fragmentation clearly showed enhanced laddering in the skeletal muscle of tumour necrosis factor-α-treated animals, suggesting an apoptotic phenomenon. In a different set of experiments, mice bearing a cachexia-inducing tumour (the Lewis lung carcinoma) showed an increase in muscle DNA fragmentation (9.8-fold) as compared with their non-tumour-bearing control counterparts as previously described. When gene-deficient mice for tumour necrosis factor-α receptor protein I were inoculated with Lewis lung carcinoma, they were also affected by DNA fragmentation; however the increase was only 2.1-fold. These results suggest that tumour necrosis factor-α partly mediates DNA fragmentation during experimental cancer-associated cachexia. British Journal of Cancer (2002) 86, 1012–1016. DOI: 10.1038/sj/bjc/6600167 www.bjcancer.com © 2002 Cancer Research UK PMID:11953838

  10. Detection and identification of bacterial pathogens of fish in kidney tissue using terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes.

    PubMed

    Nilsson, William B; Strom, Mark S

    2002-04-01

    We report the application of a nucleic acid-based assay that enables direct detection and identification of bacterial pathogens in fish kidney tissue without the need for bacterial culture. The technique, known as terminal restriction fragment length polymorphism (T-RFLP), employs the polymerase chain reaction (PCR) using a primer pair that targets 2 highly conserved regions of the gene that encodes for the 16S small subunit of the bacterial ribosome. Each primer is 5' labeled with a different fluorescent dye, which results in each terminus of the resulting amplicon having a distinguishable fluorescent tag. The amplicon is then digested with a series of 6 restriction endonucleases, followed by size determination of the 2 labeled terminal fragments by capillary electrophoresis with laser-induced fluorescence detection. Comparison of the lengths of the full set of 12 terminal fragments with those predicted based on analyses of GenBank submissions of 16S sequences leads to presumptive identification of the pathogen to at least the genus, but more typically the species level. Results of T-RFLP analyses of genomic DNA from multiple strains of a number of fish bacterial pathogens are presented. The assay is further demonstrated on fish kidney tissue spiked with a known number of cells of Flavobacterium psychrophilum where a detection limit of ca. 30 CFU mg(-1) of tissue was estimated. A similar detection limit was observed for several other gram-negative pathogens. This procedure was also used to detect Aeromonas salmonicida and Renibacterium salmoninarum in the kidney tissue of 2 naturally infected salmonids. PMID:12033704

  11. An innovative platform for quick and flexible joining of assorted DNA fragments

    DOE PAGESBeta

    De Paoli, Henrique Cestari; Tuskan, Gerald A.; Yang, Xiaohan

    2016-01-13

    Successful synthetic biology efforts rely on conceptual and experimental designs in combination with testing of multi-gene constructs. Despite recent progresses, several limitations still hinder the ability to flexibly assemble and collectively share different types of DNA segments. We describe an advanced system for joining DNA fragments from a universal library that automatically maintains open reading frames (ORFs) and does not require linkers, adaptors, sequence homology, amplification or mutation (domestication) of fragments in order to work properly. Moreover, we find that this system, which is enhanced by a unique buffer formulation, provides unforeseen capabilities for testing, and sharing, complex multi-gene circuitrymore » assembled from different DNA fragments.« less

  12. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    SciTech Connect

    Jones, R.A.

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  13. Performance of heuristic methods driven by chaotic dynamics for ATSP and applications to DNA fragment assembly

    NASA Astrophysics Data System (ADS)

    Kato, Tomohiro; Hasegawa, Mikio

    Chaotic dynamics has been shown to be effective in improving the performance of combinatorial optimization algorithms. In this paper, the performance of chaotic dynamics in the asymmetric traveling salesman problem (ATSP) is investigated by introducing three types of heuristic solution update methods. Numerical simulation has been carried out to compare its performance with simulated annealing and tabu search; thus, the effectiveness of the approach using chaotic dynamics for driving heuristic methods has been shown. The chaotic method is also evaluated in the case of a combinatorial optimization problem in the real world, which can be solved by the same heuristic operation as that for the ATSP. We apply the chaotic method to the DNA fragment assembly problem, which involves building a DNA sequence from several hundred fragments obtained by the genome sequencer. Our simulation results show that the proposed algorithm using chaotic dynamics in a block shift operation exhibits the best performance for the DNA fragment assembly problem.

  14. Accurate phylogenetic classification of DNA fragments based onsequence composition

    SciTech Connect

    McHardy, Alice C.; Garcia Martin, Hector; Tsirigos, Aristotelis; Hugenholtz, Philip; Rigoutsos, Isidore

    2006-05-01

    Metagenome studies have retrieved vast amounts of sequenceout of a variety of environments, leading to novel discoveries and greatinsights into the uncultured microbial world. Except for very simplecommunities, diversity makes sequence assembly and analysis a verychallenging problem. To understand the structure a 5 nd function ofmicrobial communities, a taxonomic characterization of the obtainedsequence fragments is highly desirable, yet currently limited mostly tothose sequences that contain phylogenetic marker genes. We show that forclades at the rank of domain down to genus, sequence composition allowsthe very accurate phylogenetic 10 characterization of genomic sequence.We developed a composition-based classifier, PhyloPythia, for de novophylogenetic sequence characterization and have trained it on adata setof 340 genomes. By extensive evaluation experiments we show that themethodis accurate across all taxonomic ranks considered, even forsequences that originate fromnovel organisms and are as short as 1kb.Application to two metagenome datasets 15 obtained from samples ofphosphorus-removing sludge showed that the method allows the accurateclassification at genus level of most sequence fragments from thedominant populations, while at the same time correctly characterizingeven larger parts of the samples at higher taxonomic levels.

  15. APPLICATION OF POLYMERASE CHAIN REACTION (PCR) AND PCR BASED RESTRICTION FRAGMENT LENGTH POLYMORPHISM FOR DETECTION AND IDENTIFICATION OF DERMATOPHYTES FROM DERMATOLOGICAL SPECIMENS

    PubMed Central

    Bagyalakshmi, R; Senthilvelan, B; Therese, K L; Murugusundram, S; Madhavan, H N

    2008-01-01

    Objective: To develop and optimize polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) targeting 18S rDNA and internal transcribed spacer (ITS) region of fungi for rapid detection and identification of dermatophytes. Materials and Methods: Two PCR-RFLP methods targeting 18S rDNA and ITS regions of fungi were optimized using standard and laboratory isolates of dermatophytes and other fungi. Sixty-eight dermatological clinical specimens (nail clippings (56), material obtained from blisters (8), hair root (2), scraping from scaly plaque of foot (1) and skin scraping (1) collected by the dermatologist were subjected to both the optimized PCR-RFLP and conventional mycological (smear and culture) methods. Results: PCRs targeting 18S rDNA and the ITS region were sensitive to detect 10 picograms and 1 femtogram of T. rubrum DNA, respectively. PCR targeting 18S rDNA was specific for dermatophytes and subsequent RFLP identified them to species level. PCR-RFLP targeting the ITS region differentiated dermatophytes from other fungi with identification to species level. Among the 68 clinical specimens tested, both PCR-RFLP methods revealed the presence of dermatophytes in 27 cases (39.7%), whereas culture revealed the same only in 2 cases (7.40%), increasing the clinical sensitivity by 32.3%. Among 20 smear positive specimens, both PCR-RFLP methods detected dermatophytes in 12 (17.6%). Both the methods detected the presence of dermatophytes in 13 (19.11%) smear and culture negative specimens, increasing the clinical sensitivity by 36.1%. Conclusion: PCR-RFLP methods targeting 18S rDNA and the ITS regions of fungi were specific and highly sensitive for detection and speciation of dermatophytes. PMID:19967012

  16. Method of preparing an equimolar DNA mixture for one-step DNA assembly of over 50 fragments.

    PubMed

    Tsuge, Kenji; Sato, Yukari; Kobayashi, Yuka; Gondo, Maiko; Hasebe, Masako; Togashi, Takashi; Tomita, Masaru; Itaya, Mitsuhiro

    2015-01-01

    In the era of synthetic biology, techniques for rapidly constructing a designer long DNA from short DNA fragments are desired. To realize this, we attempted to establish a method for one-step DNA assembly of unprecedentedly large numbers of fragments. The basic technology is the Ordered Gene Assembly in Bacillus subtilis (OGAB) method, which uses the plasmid transformation system of B. subtilis. Since this method doesn't require circular ligation products but needs tandem repeat ligation products, the degree of deviation in the molar concentration of the material DNAs is the only determinant that affects the efficiency of DNA assembly. The strict standardization of the size of plasmids that clone the DNA block and the measurement of the block in the state of intact plasmid improve the reliability of this step, with the coefficient of variation of the molar concentrations becoming 7%. By coupling this method with the OGAB method, one-step assembly of more than 50 DNA fragments becomes feasible. PMID:25990947

  17. Method of preparing an equimolar DNA mixture for one-step DNA assembly of over 50 fragments

    PubMed Central

    Tsuge, Kenji; Sato, Yukari; Kobayashi, Yuka; Gondo, Maiko; Hasebe, Masako; Togashi, Takashi; Tomita, Masaru; Itaya, Mitsuhiro

    2015-01-01

    In the era of synthetic biology, techniques for rapidly constructing a designer long DNA from short DNA fragments are desired. To realize this, we attempted to establish a method for one-step DNA assembly of unprecedentedly large numbers of fragments. The basic technology is the Ordered Gene Assembly in Bacillus subtilis (OGAB) method, which uses the plasmid transformation system of B. subtilis. Since this method doesn’t require circular ligation products but needs tandem repeat ligation products, the degree of deviation in the molar concentration of the material DNAs is the only determinant that affects the efficiency of DNA assembly. The strict standardization of the size of plasmids that clone the DNA block and the measurement of the block in the state of intact plasmid improve the reliability of this step, with the coefficient of variation of the molar concentrations becoming 7%. By coupling this method with the OGAB method, one-step assembly of more than 50 DNA fragments becomes feasible. PMID:25990947

  18. [Affinity capture of specific DNA fragments with the use of short synthetic sequences].

    PubMed

    Mikhaĭlov, V S; Potapov, V K; Amirkhanov, R N; Amirkhanov, N V; Bulanenkova, S S; Akopov, S B; Zarytova, V F; Nikolaev, L G; Sverdlov, E D

    2013-01-01

    The ability of short peptide nucleic acid (PNA) oligomers and oligonucleotides containing modified residues of 5-methylcitidine, 2-aminoadenosine and 5-propynyl-2'-deoxyuridine (strong binding oligonucleotides, SBO) to affinity capture the target double-stranded DNA fragment from mixture by means of the end invasion was compared. Both types of probes were highly effective at the conditions used. The SBO-based probes may represent a handy and easily prepared alternative to PNA for selection of target DNA fragments from mixtures. PMID:23844509

  19. Development of procedures for the identification of human papilloma virus DNA fragments in laser plume

    NASA Astrophysics Data System (ADS)

    Woellmer, Wolfgang; Meder, Tom; Jappe, Uta; Gross, Gerd; Riethdorf, Sabine; Riethdorf, Lutz; Kuhler-Obbarius, Christina; Loening, Thomas

    1996-01-01

    For the investigation of laser plume for the existence of HPV DNA fragments, which possibly occur during laser treatment of virus infected tissue, human papillomas and condylomas were treated in vitro with the CO2-laser. For the sampling of the laser plume a new method for the trapping of the material was developed by use of water-soluble gelatine filters. These samples were analyzed with the polymerase chain reaction (PCR) technique, which was optimized in regard of the gelatine filters and the specific primers. Positive PCR results for HPV DNA fragments up to the size of a complete oncogene were obtained and are discussed regarding infectiousity.

  20. Differentiation of mixed biological traces in sexual assaults using DNA fragment analysis

    PubMed Central

    Apostolov, Аleksandar

    2014-01-01

    During the investigation of sexual abuse, it is not rare that mixed genetic material from two or more persons is detected. In such cases, successful profiling can be achieved using DNA fragment analysis, resulting in individual genetic profiles of offenders and their victims. This has led to an increase in the percentage of identified perpetrators of sexual offenses. The classic and modified genetic models used, allowed us to refine and implement appropriate extraction, polymerase chain reaction and electrophoretic procedures with individual assessment and approach to conducting research. Testing mixed biological traces using DNA fragment analysis appears to be the only opportunity for identifying perpetrators in gang rapes. PMID:26019514

  1. Exceptionally High Levels of Restriction Site Polymorphism in DNA near the Maize Adh1 Gene

    PubMed Central

    Johns, Mitrick A.; Strommer, Judith N.; Freeling, Michael

    1983-01-01

    Restriction maps have been prepared for the chromosomal region near seven biochemically and genetically distinct maize alcohol dehydrogenase-1 (Adh1) alleles using a small cDNA probe for Adh1. Five restriction sites spanning about 4 kb in and near the Adh1 transcription unit appear identical in all seven alleles. Outside this conserved region, variation in restriction site position is the rule. Six of the seven alleles are distinguishable, and the alleles appear to fall into four groups. The DNA flanking the 1S-type alleles seems to share no restriction site homology with the DNA near the 1F-type alleles. Several hypotheses are put forward to explain how such high levels of polymorphism could have arisen in a species that has been domesticated for only about 10,000 years. PMID:17246173

  2. In vitro incubation of human spermatozoa promotes reactive oxygen species generation and DNA fragmentation.

    PubMed

    Cicaré, J; Caille, A; Zumoffen, C; Ghersevich, S; Bahamondes, L; Munuce, M J

    2015-10-01

    The aim of this study was to investigate the oxidative process associated with sperm capacitation and its impact on DNA fragmentation and sperm function. Redox activity and lipid peroxidation were analysed in human spermatozoa after 3, 6 and 22 h of incubation in Ham's F10 medium plus bovine albumin at 37° and 5% CO2 for capacitation. DNA status, tyrosine phosphorylation pattern and induced acrosome reaction were evaluated after capacitating conditions. At 22 h of incubation, there was a significant (P < 0.05) increase in oxygen-free radicals and lipid peroxidation, with no effect on sperm viability. There also was a significant (P < 0.001) increase in fragmented DNA in capacitated spermatozoa compared to semen values with higher rates being found after the occurrence of the induced acrosome reaction. Protein tyrosine phosphorylation pattern confirms that capacitation took place in parallel with the occurrence of DNA fragmentation. These results indicate that when spermatozoa are incubated for several hours (22 h), a common practice in assisted reproductive techniques, an increase in oxidative sperm metabolism and in the proportion of fragmented DNA should be expected. However, there was no effect on any of the other functional parameters associated with sperm fertilising capacity. PMID:25233794

  3. RESTRICTION FRAGMENT LENGTH POLYMORPHISM ANALYSIS OF PCR-AMPLIFIED NIFH SEQUENCES FROM WETLAND PLANT RHIZOSPHERE COMMUNITIES

    EPA Science Inventory

    We describe a method to assess the community structure of N2-fixing bacteria in the rhizosphere. Total DNA was extracted from Spartina alterniflora and Sesbania macrocarpa root zones by bead-beating and purified by CsCl-EtBr gradient centrifugation. The average DNA yield was 5.5 ...

  4. Sorting Short Fragments of Single-Stranded DNA with an Evolving Electric Double Layer

    PubMed Central

    Wu, Jiamin; Zhao, Shuang-Liang; Gao, Lizeng; Wu, Jianzhong; Gao, Di

    2013-01-01

    We demonstrate a new procedure for separation of single-stranded DNA (ssDNA) fragments that are anchored to the surface of a gold electrode by end hybridization. The new separation procedure takes the advantage of the strong yet evolving non-uniform electric field near the gold surface in contact with a buffer solution gradually being diluted with deionized water. Separation of short ssDNA fragments is demonstrated by monitoring the DNA at the gold surface with in situ fluorescence measurement. The experimental results can be rationalized with a simple theoretical model of electric double layer that relates the strength of the surface pulling force to the ionic concentration of the changing buffer solution. PMID:23356906

  5. Pulsed-field gel electrophoresis of the genomic restriction fragments of coagulase-negative staphylococci.

    PubMed

    Snopková, S; Götz, F; Doskar, J; Rosypal, S

    1994-12-01

    The genomes of 47 coagulase-negative staphylococcal strains assigned to different species were analysed by pulsed-field electrophoresis. The strains were clustered on the basis of their similarity in the SmaI restriction patterns into various groups, each group consisting of the type strain and the strains whose SmaI restriction patterns were similar to that of the type of strain. The SmaI restriction groups seem to correspond to the following species: Staphylococcus warneri, S. hominis, S. xylosus, S. lugdunensis, S. kloosii, S. haemolyticus, S. lentus, S. cohnii, S. equorum, S. chromogenes, S. saprophyticus, S. simulans, S. carnosus, S. capitis and S. auricularis. The species S. sciuri, S. caseolyticus, S. gallinarum, S. epidermidis and S. schleiferi were represented only by their type strains and showed no similarity in their SmaI restriction patterns neither to each other nor to all the other species investigated here. Thus, the classification of coagulase-negative staphylococcal strains into the above species seems to be confirmed also by genome restriction analysis carried out by pulsed-field gel electrophoresis. PMID:7813882

  6. The cleavage of nuclear DNA into high molecular weight DNA fragments occurs not only during apoptosis but also accompanies changes in functional activity of the nonapoptotic cells.

    PubMed

    Solov'yan, V T; Andreev, I O; Kolotova, T Y; Pogribniy, P V; Tarnavsky, D T; Kunakh, V A

    1997-08-25

    In this paper we demonstrate that apoptosis in primary culture of murine thymocytes and in continuously growing human cells is associated with the progressive disintegration of nuclear DNA into high molecular weight (HMW)-DNA fragments of about 50-150 kb. We also show that the formation of similarly sized HMW-DNA fragments takes place in the same cells in the absence of apoptotic inducers. Unlike an apoptotic fragmentation of nuclear DNA, the formation of HMW-DNA fragments in nonapoptotic cells is rapidly induced, has no correlation with the cell death, and is not associated with the development of oligonucleosomal "ladder" or apoptotic changes in nuclear morphology. The disintegration of DNA into HMW-fragments is also observed in nuclei isolated from healthy, nonapoptosizing tissues of various eukaryotes. We show that the formation of HMW-DNA fragments in the absence of apoptotic inducers is strongly dependent on the ionic detergents, is responsive to the topoisomerase II-specific poison, teniposide, and is completely reversible under conditions that favor topoisomerase II-dependent rejoining reaction. Also, we demonstrate that the formation of HMW-DNA fragments in continuously growing cell lines caused either by serum deprivation or monolayer establishment is of a transient nature and rapidly reverses to the control level following serum addition or dilution of monolayer. The results suggest that the cleavage of nuclear DNA into HMW-DNA fragments is associated not only with apoptosis but also accompanies changes in functional activity of nonapoptotic cells. PMID:9281361

  7. A rapid and reliable PCR-restriction fragment length polymorphism (RFLP) marker for the identification of Amaranthus cruentus species

    PubMed Central

    Park, Young-Jun; Nishikawa, Tomotaro; Matsushima, Kenichi; Minami, Mineo; Nemoto, Kazuhiro

    2014-01-01

    A rapid and reliable PCR-restriction fragment length polymorphism (RFLP) marker was developed to identify the Amaranthus cruentus species by comparing sequences of the starch branching enzyme (SBE) locus among the three cultivated grain amaranths. We determined the partial SBE genomic sequence in 72 accessions collected from diverse locations around the world by direct sequence analysis. Then, we aligned the gene sequences and searched for restriction enzyme cleavage sites specific to each species for use in the PCR-RFLP analysis. The result indicated that MseI would recognize the sequence 5′-T/TAA-3′ in intron 11 from A. cruentus SBE. A restriction analysis of the amplified 278-bp portion of the SBE gene using the MseI restriction enzyme resulted in species-specific RFLP patterns among A. cruentus, Amaranthus caudatus and Amaranthus hypochondriacus. Two different bands, 174-bp and 104-bp, were generated in A. cruentus, while A. caudatus and A. hypochondriacus remained undigested (278-bp). Thus, we propose that the PCR-RFLP analysis of the amaranth SBE gene provides a sensitive, rapid, simple and useful technique for identifying the A. cruentus species among the cultivated grain amaranths. PMID:25914599

  8. Early stage intercalation of doxorubicin to DNA fragments observed in molecular dynamics binding simulations.

    PubMed

    Lei, Hongxing; Wang, Xiaofeng; Wu, Chun

    2012-09-01

    The intercalation mode between doxorubicin (an anticancer drug) and two 6-base-pair DNA model fragments (d(CGATCG)₂ and d(CGTACG)₂) has been well studied by X-ray crystallography and NMR experimental methods. Yet, the detailed intercalation pathway at molecular level remains elusive. In this study, we conducted molecular dynamics binding simulations of these two systems using AMBER DNA (parmbsc0) and drug (GAFF) force fields starting from the unbound state. We observed outside binding (minor groove binding or end-binding) in all six independent binding simulations (three for each DNA fragment), followed by the complete intercalation of a drug molecule in two simulations (one for each DNA fragment). First, our data directly supported that the minor groove binding is the dominant pre-intercalation step. Second, we observed that the opening and flipping of a local base pair (A3-T10 for d(CGATCG)₂ and C1-G12 for d(CGTACG)₂) in the two intercalation trajectories. This locally cooperative flipping-intercalation mechanism was different from the previously proposed rise-insertion mechanism by which the distance between two neighboring intact base pairs increases to create a space for the drug insertion. Third, our simulations provided the first set of data to support the applicability of the AMBER DNA and drug force fields in drug-DNA atomistic binding simulations. Implications on the kinetics pathway and drug action are also discussed. PMID:23079648

  9. Statistical methods for detecting periodic fragments in DNA sequence data

    PubMed Central

    2011-01-01

    Background Period 10 dinucleotides are structurally and functionally validated factors that influence the ability of DNA to form nucleosomes, histone core octamers. Robust identification of periodic signals in DNA sequences is therefore required to understand nucleosome organisation in genomes. While various techniques for identifying periodic components in genomic sequences have been proposed or adopted, the requirements for such techniques have not been considered in detail and confirmatory testing for a priori specified periods has not been developed. Results We compared the estimation accuracy and suitability for confirmatory testing of autocorrelation, discrete Fourier transform (DFT), integer period discrete Fourier transform (IPDFT) and a previously proposed Hybrid measure. A number of different statistical significance procedures were evaluated but a blockwise bootstrap proved superior. When applied to synthetic data whose period-10 signal had been eroded, or for which the signal was approximately period-10, the Hybrid technique exhibited superior properties during exploratory period estimation. In contrast, confirmatory testing using the blockwise bootstrap procedure identified IPDFT as having the greatest statistical power. These properties were validated on yeast sequences defined from a ChIP-chip study where the Hybrid metric confirmed the expected dominance of period-10 in nucleosome associated DNA but IPDFT identified more significant occurrences of period-10. Application to the whole genomes of yeast and mouse identified ~ 21% and ~ 19% respectively of these genomes as spanned by period-10 nucleosome positioning sequences (NPS). Conclusions For estimating the dominant period, we find the Hybrid period estimation method empirically to be the most effective for both eroded and approximate periodicity. The blockwise bootstrap was found to be effective as a significance measure, performing particularly well in the problem of period detection in the

  10. Direct and precise length measurement of single, stretched DNA fragments by dynamic molecular combing and STED nanoscopy.

    PubMed

    Kim, Namdoo; Kim, Hyung Jun; Kim, Younggyu; Min, Kyung Suk; Kim, Seong Keun

    2016-09-01

    A combination of DNA stretching method and super-resolution nanoscopy allows an accurate and precise measurement of the length of DNA fragments ranging widely in size from 117 to 23,130 bp. BstEII- and HindIII-treated λDNA fragments were stained with an intercalating dye and then linearly stretched on a coverslip by dynamic molecular combing. The image of individual DNA fragments was obtained by stimulated emission depletion nanoscopy. For DNA fragments longer than ∼1000 bp, the measured lengths of DNA fragments were consistently within ∼0.5 to 1.0 % of the reference values, raising the possibility of this method in a wide range of applications including facile detection for copy number variations and trinucleotide repeat disorder. PMID:27457103

  11. A WHEAT DNA FRAGMENT EXHIBITS REDUCED POLLEN TRANSMISSION IN TRANSGENIC MAIZE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An 8.2 kb fragment of wheat genomic DNA containing the Glu1-Dx5 gene has been transferred to maize using biolistic transformation. The Glu1-Dx5 gene encodes the 1Dx5 high molecular weight glutenin subunit, a seed storage protein associated with good bread making properties. The transgenic maize plan...

  12. Polymerase chain reaction-restriction fragment length polymorphism assays to distinguish Liriomyza huidobrensis (Diptera: Agromyzidae) from associated species on lettuce cropping systems in Italy.

    PubMed

    Masetti, Antonio; Luchetti, Andrea; Mantovani, Barbara; Burgio, Giovanni

    2006-08-01

    The pea leafminer, Liriomyza huidobrensis (Blanchard) (Diptera: Agromyzidae), is a serious insect pest infesting open field lettuce plantings in northern Italy. In these cropping systems, it coexists with several other agromyzid species that have negligible economic importance on open field vegetables. The rapid detection of L. huidobrensis is crucial for effective management strategies, but the identification of agromyzids to species can be very difficult at adult as well at immature stages. In this study, a polymerase chain reaction (PCR)-restriction fragment length polymorphism assay is proposed to separate L. huidobrensis from Liriomyza bryoniae (Kaltenbach), Liriomyza trifolii (Burgess), and Chromatomyia horticola (Goureau), which usually occur in the same lettuce plantings. An approximately 1,031-bp region of the mitochondrial genome encompassing the 3' region of cytochrome oxidase I, the whole leucine tRNA, and all of the cytochrome oxidase II was amplified by PCR and digested using the enzymes PvuII and SnaBI separately. Both endonucleases cut the amplicons of L. huidobrensis in two fragments, whereas the original band was not cleaved in the other analyzed species. The presence of Dacnusa spp. DNA does not bias the assay, because the PCR conditions and the primer set here described do not amplify any tract of this endoparasitic wasp genome. PMID:16937681

  13. CGE-laser induced fluorescence of double-stranded DNA fragments using GelGreen dye.

    PubMed

    Valdés, Alberto; García-Cañas, Virginia; Cifuentes, Alejandro

    2013-06-01

    Nowadays, new solutions focused on the replacement of reagents hazardous to human health are highly demanded in laboratories and Green Chemistry. In the present work, GelGreen, a new nonhazardous DNA staining reagent, has been assayed for the first time to analyze double-stranded DNA by CGE with LIF detection. The effect of GelGreen concentration on S/N ratio and migration time of a wide concentration range of standard DNA mixtures was evaluated. Under optimum GelGreen concentration in the sieving buffer efficient and sensitive separations of DNA fragments with sizes from 100-500 base pairs (bp) were obtained. A comparison in terms of resolution, time of analysis, LOD, LOQ, reproducibility, sizing performance, and cost of analysis was established between two optimized CGE-LIF protocols for DNA analysis, one based on the dye YOPRO-1 (typically used for CGE-LIF of DNA fragments) and another one using the new GelGreen. Analyses using YOPRO-1 were faster than those using GelGreen (ca. 31 min versus 34 min for the analysis of 100-500 bp DNA fragments). On the other side, sensitivity using GelGreen was twofold higher than that using YOPRO-1. The cost of analysis was significantly cheaper (ninefold) using GelGreen than with YOPRO-1. The resolution values and sizing performance were not significantly different between the two dyes (e.g. both dyes allowed the separation of fragments differing in only 2 bp in the 100-200 bp range). The usefulness of the separation method using GelGreen is demonstrated by the characterization of different amplicons obtained by PCR. PMID:23417332

  14. Screening and characterization of sex-specific DNA fragments in the freshwater fish matrinchã, Brycon amazonicus (Teleostei: Characiformes: Characidae).

    PubMed

    da Silva, Eder Marques; Wong, Marina Sek Lien; Martins, Cesar; Wasko, Adriane Pinto

    2012-10-01

    The matrinchã Brycon amazonicus, a commercially important freshwater fish resource, has no heteromorphic sex chromosomes so far described. In the present study, we performed a screening of sex-associated DNA markers in this species, through the use of a random amplified polymorphic DNA (RAPD) assay and a genomic DNA restriction digestion analysis. DNA digestions evidenced no differences between sexes. Sixty-six random primers were used in pooled and individual DNA samples of males and females, and the analysis of the RAPD fingerprints revealed one female sex-associated band. Cloning and sequencing of this band led to the identification of two distinct DNA segments. While one of the isolated fragments showed a significant identity with a described protein gene (phosphatidylinositol glycan anchor biosynthesis, class W), the other fragment, composed of 535 bp, corresponds to a novel DNA marker. Further experiments were performed with this second DNA fragment in order to verify its sex-specificity. Data on dot blot hybridization, using total DNA of both sexes, confirmed its female-specificity in B. amazonicus. A primer set was designed based on its sequence data and used in PCR with DNA samples of this species, leading to diagnose the animals' sexes with a 100 % overall accuracy through a sequence characterized amplified region approach. No amplification results were found for two other species of the genus--B. orbignyanus and B. lundii. The obtained data can lead to the hypothesis that B. amazonicus may present heteromorphic sex chromosomes that should be in an early phase of differentiation. PMID:22527611

  15. Adenosine stimulates DNA fragmentation in human thymocytes by Ca(2+)-mediated mechanisms.

    PubMed

    Szondy, Z

    1994-12-15

    Incubation of human thymocytes with an optimum concentration of adenosine and its receptor site agonist, 2-chloroadenosine, induced increases in intracellular cyclic AMP (cAMP) (from a resting 0.6 +/- 0.1 to 4.1 +/- 0.2 pmol/10(7) cells within 5 min) and Ca2+ (from the resting 85 +/- 7 nM to a peak of 210 +/- 25 nM) levels and resulted in internucleosomal DNA fragmentation and cell death (apoptosis). Other adenosine analogues were also effective at inducing DNA fragmentation, the order of potency being 2-p-(carboxyethylphenylethylamino)-5'-carboxyamidoadenosine < 5'-(N-ethylcarboxamide)adenosine < or = cyclopentyladenosine < 2-chloroadenosine (2-CA). 2-CA treatment (with an optimum concentration of 40 microM) selectively depleted a thymocyte subpopulation (15-20% of the total cells) which expressed higher levels of the CD3 molecule and which was found mainly in the CD4+CD8+ double positive immature thymocyte population. DNA fragmentation was prevented by the addition of actinomycin D or cycloheximide to the thymocyte suspension, indicating that this process required both mRNA and protein synthesis. Endonuclease activation and cell killing were dependent on an early, sustained increase in cytosolic Ca2+ concentration, most of which was of extracellular origin and was a result of an adenosine-induced inositol trisphosphate release. Other agents known to elevate intracellular cAMP levels by different mechanisms failed to induce similar DNA fragmentation, but enhanced the effect of adenosine. This suggested a supporting role for cAMP in adenosine-induced DNA fragmentation. Phorbol dibutyrate, a protein kinase. C activator, previously shown to inhibit Ca(2+)-dependent DNA fragmentation and cell killing in human thymocytes [McConkey, Hartzell, Jondal and Orrenius (1989) J. Biol. Chem. 264, 13399-13402], at 60 ng/ml concentration also prevented adenosine-induced DNA fragmentation when added prior to adenosine. This suggested a complex cross-talk between the adenosine

  16. Mitochondrial DNA Fragmentation to Monitor Processing Parameters in High Acid, Plant-Derived Foods.

    PubMed

    Caldwell, Jane M; Pérez-Díaz, Ilenys M; Harris, Keith; Hassan, Hosni M; Simunovic, Josip; Sandeep, K P

    2015-12-01

    Mitochondrial DNA (mtDNA) fragmentation was assessed in acidified foods. Using quantitative polymerase chain reaction, Ct values measured from fresh, fermented, pasteurized, and stored cucumber mtDNA were determined to be significantly different (P > 0.05) based on processing and shelf-life. This indicated that the combination of lower temperature thermal processes (hot-fill at 75 °C for 15 min) and acidified conditions (pH = 3.8) was sufficient to cause mtDNA fragmentation. In studies modeling high acid juices, pasteurization (96 °C, 0 to 24 min) of tomato serum produced Ct values which had high correlation to time-temperature treatment. Primers producing longer amplicons (approximately 1 kb) targeting the same mitochondrial gene gave greater sensitivity in correlating time-temperature treatments to Ct values. Lab-scale pasteurization studies using Ct values derived from the longer amplicon differentiated between heat treatments of tomato serum (95 °C for <2 min). MtDNA fragmentation was shown to be a potential new tool to characterize low temperature (<100 °C) high acid processes (pH < 4.6), nonthermal processes such as vegetable fermentation and holding times of acidified, plant-derived products. PMID:26556214

  17. Chromosomal aneuploidies and DNA fragmentation of human spermatozoa from patients exposed to perfluorinated compounds.

    PubMed

    Governini, L; Guerranti, C; De Leo, V; Boschi, L; Luddi, A; Gori, M; Orvieto, R; Piomboni, P

    2015-11-01

    This study investigated chromosomal aneuploidies and DNA damage in spermatozoa from male patients contaminated by perfluorinated compounds (PFCs) in whole blood and seminal plasma. Sperm aneuploidy and diploidy rate for chromosomes 18, X and Y were evaluated by FISH; sperm DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling technique coupled to flow cytometry. Our results indicated that PFC contamination was present in 58% of subjects included in the study. A significant increase in alterations of sperm parameters was observed in PFC-positive subjects compared to PFC-negative subjects. As regards the sperm aneuploidy, both disomy and diploidy rates resulted significantly increased in subjects positive for PFC contamination compared to PFC-negative samples. In addition, sperm DNA fragmentation index resulted significantly increased in PFC-contaminated subjects compared to PFC-non-contaminated subjects, with a significant increased level of dimmer DNA fragmentation index. Our results clearly indicate that PFC contamination may detrimentally affect spermatogenesis, disturbing both meiotic segregation and DNA integrity. We could therefore suggest cautions to reduce or eliminate any contact with these compounds because the long-term effects of PFC accumulation in the body are not predictable. PMID:25382683

  18. Highlights of the DNA cutters: a short history of the restriction enzymes

    PubMed Central

    Loenen, Wil A. M.; Dryden, David T. F.; Raleigh, Elisabeth A.; Wilson, Geoffrey G.; Murray, Noreen E.

    2014-01-01

    In the early 1950’s, ‘host-controlled variation in bacterial viruses’ was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine. PMID:24141096

  19. Identification of the Bacterial Community of Maple Sap by Using Amplified Ribosomal DNA (rDNA) Restriction Analysis and rDNA Sequencing

    PubMed Central

    Lagacé, L.; Pitre, M.; Jacques, M.; Roy, D.

    2004-01-01

    The bacterial community of maple sap was characterized by analysis of samples obtained at the taphole of maple trees for the 2001 and 2002 seasons. Among the 190 bacterial isolates, 32 groups were formed according to the similarity of the banding patterns obtained by amplified ribosomal DNA restriction analysis (ARDRA). A subset of representative isolates for each ARDRA group was identified by 16S rRNA gene fragment sequencing. Results showed a wide variety of organisms, with 22 different genera encountered. Pseudomonas and Ralstonia, of the γ- and β-Proteobacteria, respectively, were the most frequently encountered genera. Gram-positive bacteria were also observed, and Staphylococcus, Plantibacter, and Bacillus were the most highly represented genera. The sampling period corresponding to 50% of the cumulative sap flow percentage presented the greatest bacterial diversity according to its Shannon diversity index value (1.1). γ-Proteobacteria were found to be dominant almost from the beginning of the season to the end. These results are providing interesting insights on maple sap microflora that will be useful for further investigation related to microbial contamination and quality of maple products and also for guiding new strategies on taphole contamination control. PMID:15066796

  20. Comparison of DNA Fragmentation Assay in Frozen-Thawed Cat Epididymal Sperm.

    PubMed

    Kunkitti, P; Sjödahl, A; Bergqvist, A-S; Johannisson, A; Axnér, E

    2016-08-01

    DNA fragmentation of frozen-thawed feline epididymal sperm from corpus and cauda regions was evaluated by three different techniques. The DNA fragmentation index (DFI) was compared between techniques: the sperm chromatin structural assay (SCSA(®) ), acridine orange staining techniques (AOT) and the sperm chromatin dispersion (SCD). There were significant differences in DFI among the techniques (p < 0.05) with no correlations. Only DFI values obtained from SCD revealed a significantly higher DFI in corpus compared with cauda spermatozoa (p < 0.05). The discrepancy between techniques might be due to the sensitivity of each technique, differences in severity of DNA damaged that can be detected. The difference in DFI between epididymal regions from SCD technique might indicate different maturational stages of spermatozoa, with less chromatin condensation of spermatozoa in corpus compared with cauda epididymis. PMID:27321406

  1. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.

    PubMed

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-09-24

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp. PMID:24019490

  2. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments

    PubMed Central

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-01-01

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp. PMID:24019490

  3. Types, Causes, Detection and Repair of DNA Fragmentation in Animal and Human Sperm Cells

    PubMed Central

    González-Marín, Clara; Gosálvez, Jaime; Roy, Rosa

    2012-01-01

    Concentration, motility and morphology are parameters commonly used to determine the fertilization potential of an ejaculate. These parameters give a general view on the quality of sperm but do not provide information about one of the most important components of the reproductive outcome: DNA. Either single or double DNA strand breaks can set the difference between fertile and infertile males. Sperm DNA fragmentation can be caused by intrinsic factors like abortive apoptosis, deficiencies in recombination, protamine imbalances or oxidative stress. Damage can also occur due to extrinsic factors such as storage temperatures, extenders, handling conditions, time after ejaculation, infections and reaction to medicines or post-testicular oxidative stress, among others. Two singular characteristics differentiate sperm from somatic cells: Protamination and absence of DNA repair. DNA repair in sperm is terminated as transcription and translation stops post-spermiogenesis, so these cells have no mechanism to repair the damage occurred during their transit through the epididymis and post-ejaculation. Oocytes and early embryos have been shown to repair sperm DNA damage, so the effect of sperm DNA fragmentation depends on the combined effects of sperm chromatin damage and the capacity of the oocyte to repair it. In this contribution we review some of these issues. PMID:23203048

  4. Replication of origin containing adenovirus DNA fragments that do not carry the terminal protein.

    PubMed Central

    van Bergen, B G; van der Ley, P A; van Driel, W; van Mansfeld, A D; van der Vliet, P C

    1983-01-01

    Nuclear extracts from adenovirus type 5 (Ad5) infected HeLa cells were used to study the template requirements for adenovirus DNA replication in vitro. When XbaI digested Ad5 DNA, containing the parental terminal protein (TP), was used as a template preferential synthesis of the terminal fragments was observed. The newly synthesized DNA was covalently bound to the 82 kD preterminal protein (pTP). Plasmid DNAs containing the Ad2 origin sequence or the Ad12 origin sequence with small deletions were analyzed for their capacity to support pTP-primed DNA replication. Circular plasmid DNAs were inactive. When plasmids were linearized to expose the adenovirus origin, both Ad2 and Ad12 TP-free fragments could support initiation and elongation similarly as Ad5 DNA-TP, although with lower efficiency. These observations indicate that the parental terminal protein is dispensable for initiation in vitro. The presence of 29 nucleotides ahead of the molecular end or a deletion of 14 base pairs extending into the conserved sequence (9-22) destroyed the template activity. DNA with a large deletion within the first 8 base pairs could still support replication while a small deletion could not. The results suggest that only G residues at a distance of 4-8 nucleotides from the start of the conserved sequence can be used as template during initiation of DNA replication. Images PMID:6300787

  5. Short bacterial DNA fragments: detection in dialysate and induction of cytokines.

    PubMed

    Schindler, Ralf; Beck, Werner; Deppisch, Reinhold; Aussieker, Mario; Wilde, Adelheid; Göhl, Hermann; Frei, Ulrich

    2004-12-01

    A number of bacterial cytokine-inducing substances (CIS) such as lipopolysaccharides (LPS) and exotoxins have been detected in dialysate and may contribute to inflammation in hemodialysis patients. Short DNA fragments, oligodeoxynucleotides (ODN) of 6 to 20 nucleotides, are able to bind to Toll-like receptors and are stimulatory on immune cells. ODN induce natural killer cell activity and induce IFN-gamma, TNF-alpha, and IL-6 from mononuclear cells. The presence of ODN in dialysate samples and bacterial cultures was investigated. ODN were extracted from fluids by adsorption to reverse-phase columns. ODN were detected in 18 of 20 investigated dialysate samples, in eight of 10 reverse-osmosis water samples, and in all cultures from various bacterial strains. The presence of bacterial DNA in dialysate was confirmed by PCR specific for bacterial tRNA gene sequences. Saline for intravenous use contained 0.02 +/- 0.01 microg/ml DNA, dialysate samples contained 0.28 +/- 0.02 microg/ml, and Pseudomonas cultures contained 1.0 +/- 0.03 microg/ml DNA. ODN from bacterial cultures were only partially removed by ultrafiltration and were able to diffuse through regular high-flux dialyzer membranes. Synthetic cytosine-guanosine dinucleotide-containing ODN were able to induce IL-6 in human mononuclear cells. It is concluded that short bacterial-derived DNA fragments are present in clinically used fluids, e.g., dialysate. These fragments are of sufficient small size to pass through dialyzer membranes. Bacterial DNA fragments may be an overlooked factor contributing to inflammation in hemodialysis patients. PMID:15579524

  6. [PCR-based evaluation of sequence specificity of DNA fragmentation by ultrasound].

    PubMed

    Garafutdinov, R R; Galimova, A A; Sakhabutdinova, A R; Chemeris, A V

    2016-01-01

    Ultrasonic fragmentation, which is a simple and convenient method for the mechanical degradation of DNA, is widely used in modern genome studies as one of the sample preparation steps. It has been recently found that the DNA breaks occur more often in the regions containing 5'-CG-3' dinucleotides. We studied the influence of the 5'-CG-3' dinucleotides on the efficiency of the 28S rRNA gene amplification during PCR with sonicated DNA of Mantis religiosa. It was shown that the amplification rate depends on the template length and the number of 5'-CG-3' dinucleotides. Amplification of the DNA regions with a higher 5'-CG-3' density is less efficient because of their higher sensitivity to ultrasound. The amount of the amplified DNA templates is inversely proportional to the 5'-CG-3'number. PMID:27239847

  7. Screening for JH1 genetic defect carriers in Jersey cattle by a polymerase chain reaction and restriction fragment length polymorphism assay.

    PubMed

    Zhang, Yi; Guo, Gang; Huang, Hetian; Lu, Lu; Wang, Lijie; Fang, Lingzhao; Liu, Lin; Wang, Yachun; Zhang, Shengli

    2015-09-01

    An autosomal recessive genetic defect termed JH1 has been associated with early embryonic loss in the Jersey cattle breed. The genetic basis has been identified as a cytosine to thymine mutation in the CWC15 gene that changes an amino acid from arginine to a stop code. To screen for JH1 carriers in an imported Jersey population in China, a method based on a polymerase chain reaction amplification followed by a restriction fragment length polymorphism assay (PCR-RFLP) was developed for the accurate diagnosis of the JH1 allele. A total of 449 randomly chosen cows were examined with the PCR-RFLP assay, and 31 were identified as JH1 carriers, corresponding to a carrier frequency of 6.9%. The PCR-RFLP method was validated by DNA sequencing of 8 positive and 13 negative samples, with all 21 samples giving the expected DNA sequence. In addition, 3 negative and 3 positive samples were confirmed by a commercial microarray-based single nucleotide polymorphism assay. Finally, samples from 9 bulls in the United States of known status were correctly identified as carriers (5 bulls) or noncarriers (4 bulls). As the JH1 defect has most likely spread worldwide, implementing routine screening is necessary to avoid the risk of carrier-to-carrier matings and to gradually eradicate the deleterious gene. PMID:26179100

  8. An interlaboratory comparison of 16S rRNA gene-based terminal restriction fragment length polymorphism and sequencing methods for assessing microbial diversity of seafloor basalts

    PubMed Central

    Orcutt, Beth; Bailey, Brad; Staudigel, Hubert; Tebo, Bradley M; Edwards, Katrina J

    2009-01-01

    We present an interlaboratory comparison between full-length 16S rRNA gene sequence analysis and terminal restriction fragment length polymorphism (TRFLP) for microbial communities hosted on seafloor basaltic lavas, with the goal of evaluating how similarly these two different DNA-based methods used in two independent labs would estimate the microbial diversity of the same basalt samples. Two samples were selected for these analyses based on differences detected in the overall levels of microbial diversity between them. Richness estimators indicate that TRFLP analysis significantly underestimates the richness of the relatively high-diversity seafloor basalt microbial community: at least 50% of species from the high-diversity site are missed by TRFLP. However, both methods reveal similar dominant species from the samples, and they predict similar levels of relative diversity between the two samples. Importantly, these results suggest that DNA-extraction or PCR-related bias between the two laboratories is minimal. We conclude that TRFLP may be useful for relative comparisons of diversity between basalt samples, for identifying dominant species, and for estimating the richness and evenness of low-diversity, skewed populations of seafloor basalt microbial communities, but that TRFLP may miss a majority of species in relatively highly diverse samples. PMID:19508561

  9. Giardia duodenalis in Damascus, Syria: Identification of Giardia genotypes in a sample of human fecal isolates using polymerase chain reaction and restriction fragment length polymorphism analyzing method.

    PubMed

    Skhal, Dania; Aboualchamat, Ghalia; Al Nahhas, Samar

    2016-02-01

    Giardia duodenalis is a common gastrointestinal parasite that infects humans and many other mammals. It is most prevalent in many developing and industrialized countries. G. duodenalis is considered to be a complex species. While no morphological distinction among different assemblages exist, it can be genetically differentiated into eight major assemblages: A to H. The aim of this study was to determine the genetic heterogeneity of G. duodenalis in human isolates (a study conducted for the first time in Syria). 40 fecal samples were collected from three different hospitals during the hot summer season of 2014. Extraction of genomic DNA from all Giardia positive samples (based on a microscopic examination) was performed using QIAamp DNA Stool Mini Kit. β-giardin gene was used to differentiate between different Giardia assemblages. The 514 bp fragment was amplified using the Polymerase Chain Reaction method, followed by digestion in HaeIII restriction enzyme. Our result showed that genotype A was more frequent than genotype B, 27/40 (67.5%); 4/40 (10%) respectively. A mixed genotype of A+B was only detected in 9 isolates (22.5%). This is the first molecular study performed on G. duodenalis isolates in Syria in order to discriminate among the different genotypes. Further expanded studies using more genes are needed to detect and identify the Giardia parasite at the level of assemblage and sub-assemblage. PMID:26524628

  10. Analysis of the bacterial diversity existing on animal hide and wool: development of a preliminary PCR-restriction fragment length polymorphism fingerprint database for identifying isolates.

    PubMed

    Chen, Yu; Gao, Hongwei; Zhang, Yanming; Deng, Mingjun; Wu, Zhenxing; Zhu, Laihua; Duan, Qing; Xu, Biao; Liang, Chengzhu; Yue, Zhiqin; Xiao, Xizhi

    2012-01-01

    Twenty-one bacterial strains were isolated from imported cattle hide and rabbit wool using two types of media, nutrient broth, and nutrient broth with serum. The bacteria identified were Brevibacillus laterosporus, Leclercia adecarboxylata, Peptococcus niger, Bacillus circulans, Raoultella ornithinolytica, Bacillus subtilis, Bacillus cereus, Bacillus thermobacillus, Bacillus choshinensis, Bacillus sphaericus, Acinetobacter haemolyticus, Sphingomonas paucimobilis, Bacillus thuringiensis, Staphylococcus intermedius, Mycobacteria, Moraxella, Klebsiella pneumoniae, Ralstonia pickettii, Staphylococcus chromogenes, Comamonas testosteroni, and Cupriavidus pauculus. The 16s rDNA gene of each bacterium was amplified using the universal primers 27f and 1492r. The amplicons were digested with AvaI, BamHI, BgII, DraI, EcoRI, EcoRV, HindIII, HinfI, HpaI, PstI, SmaI, TaqII, XbaI, XmaI, AluI, XhoI, and PvuI individually. A specific fingerprint from the PCR-restriction fragment length polymorphism method based on 16s rDNA was obtained for each bacterium. The results showed that the method developed was useful not only for bacterial identification but also for the etiological investigation of pathogens in imported animal hair and wool. PMID:23451394

  11. Two methods that facilitate autoradiography of small /sup 32/P-labeled DNA fragments following electrophoresis in agarose gels

    SciTech Connect

    Cockerill, P.N.

    1988-02-01

    Two methods which permit detection by autoradiography of small /sup 32/P-labeled DNA fragments resolved by agarose gel electrophoresis are described. Agarose gel electrophoresis poses problems for autoradiography as (i) the gels are normally too thick to allow autoradiography without being dried first, and (ii) fragments of DNA of 1000 bp or less in length are readily lost during drying. In this study DNA fragments as small as 121 bp have been retained in agarose gels upon drying. This has been achieved by either (i) first fixing the DNA with the cationic detergent cetyltrimethylammonium bromide, or (ii) drying the agarose gels onto Zeta-Probe charge-modified membranes.

  12. Guanine tetraplex formation by short DNA fragments containing runs of guanine and cytosine.

    PubMed Central

    Penázová, H; Vorlicková, M

    1997-01-01

    Using CD spectroscopy, guanine tetraplex formation was studied with short DNA fragments in which cytosine residues were systematically added to runs of guanine either at the 5' or 3' ends. Potassium cations induced the G-tetraplex more easily with fragments having the guanine run at the 5' end, which is just an opposite tendency to what was reported for (G+T) oligonucleotides. However, the present (G+C) fragments simultaneously adopted other conformers that complicated the analysis. We demonstrate that repeated freezing/thawing, performed at low ionic strength, is a suitable method to exclusively stabilize the tetraplex in the (G+C) DNA fragments. In contrast to KCl, the repeated freeze/thaw cycles better stabilized the tetraplex with fragments having the guanine run on the 3' end. The tendency of guanine blocks to generate the tetraplex destabilized the d(G5).d(C5) duplex whose strands dissociated, giving rise to a stable tetraplex of (dG5) and single-stranded (dC5). In contrast to d(G3C3) and d(G5C5), repeated freezing/thawing induced the tetraplex even with the self-complementary d(C3G3) or d(C5G5); hence the latter oligonucleotides preferred the tetraplex to the apparently very stable duplex. The tetraplexes only included guanine blocks while the 5' end cytosines interfered neither with the tetraplex formation nor the tetraplex structure. PMID:9336200

  13. Modelization of DNA fragmentation induced in human fibroblasts by Fe-56 ions

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Belli, M.; Campa, A.; Esposito, G.; Friedland, W.; Ottolenghi, A.; Paretzke, H.

    DNA double-strand breaks DSB are widely recognized as cellular critical lesions in the pathways leading from initial energy deposition by radiation to the formation of relevant biological endpoints such as gene mutations chromosome aberrations and cell death Chromatin conformation and radiation track structure are expected to have a strong influence on the spatial modulation of DSB induction at the scale of the nucleosome i e 100 base pairs bp and of the low-level chromatin fiber organization i e 1 kbp At larger scales the DNA fragmentation pattern induced by sparsely ionizing radiation approaches a scenario resulting from a random distribution of DSB However the pattern induced by high-LET irradiation can lead to deviation from randomness also at these scales This feature can have important biological consequences since spatial correlation of DSB is thought to affect their reparability Therefore studies on fragment size distributions induced by radiations of various qualities can help to link the physical characteristics of radiation with the cellular endpoints This is an important issue for understanding the main mechanisms of cell damage induced by HZE particles In this work we have compared the pattern of DNA fragmentation in the range 1-5700 kbp induced in human fibroblasts by gamma -rays with that induced by high-energy Fe-ions which have biological significance for radiation protection issues during long term astronauts travels The study has taken into account the comparison of the experimental fragmentation spectra

  14. In vitro selection of bispecific diabody fragments using covalent bicistronic DNA display.

    PubMed

    Nakayama, Masanao; Komiya, Shoko; Fujiwara, Kei; Horisawa, Kenichi; Doi, Nobuhide

    2016-09-16

    Bispecific antibodies with two different antigen-binding sites have been widely used for a variety of medical applications. The activity and stability of antibody fragments can be improved by in vitro evolution. Although the affinity and stability of small bispecific antibody fragments such as diabodies can be further optimized by in vitro display technologies, cell-free display of bispecific antibody fragments has not been reported. In this study, we applied a covalent bicistronic DNA display for the in vitro selection of heterodimeric diabodies. First, we confirmed the antigen-binding activities of a diabody synthesized by an in vitro transcription and translation system. However, when we performed DNA-display selection of a model diabody library in a proof-of-principle experiment, no enrichment of the diabody gene was observed, likely due to a low yield of the diabody heterodimer. To overcome this issue, we introduced cysteine residues at the VH-VL interface of the diabody heterodimer. Using the disulfide-stabilized diabodies, we successfully enriched the diabody gene from a model library. Our results indicate that the covalent bicistronic DNA display technique could be useful for improving the stability and affinity of bispecific diabody fragments. PMID:27473655

  15. Synthesis, integration, and restriction and modification of mycoplasma virus L2 DNA

    SciTech Connect

    Dybvig, K.

    1981-01-01

    Mycoplasma virus L2 is an enveloped, nonlytic virus containing double-stranded, superhelical DNA. The L2 virion contains about 7 to 8 major proteins identified by SDS-polyacrylamide gel electrophoresis, but the virion has no discernible capsid structure. It has been suggested that the L2 virion is a DNA-protein condensation surrounded by a lipid-protein membrane. The host for mycoplasma virus L2 is Acholeplasma laidlawii. A. laidlawii has no cell wall and contains a small genome, 1 x 10/sup 9/ daltons, which is two to three times smaller than that of most bacteria. Infection of A. laidlawii by L2 is nonlytic. The studies in this thesis show that L2 DNA synthesis begins at about 1 hour of infection and lasts throughout the infection. Viral DNA synthesis is inhibited by chloramphenicol, streptomycin, and novobiocin. Packaging of L2 DNA into progeny virus is also inhibited by chloramphenicol and novobiocin. It is concluded that protein synthesis and probably DNA gyrase activity are required for L2 DNA synthesis, and for packaging of L2 DNA into progeny virus. DNA-DNA hybridization studies demonstrate that L2 DNA integrates into the host cell during infection, and subsequent to infection the cells are mycoplasma virus L2 lysogens. The viral site of integration has been roughly mapped. L2 virus is restricted and modified by A. laidlawii strains JA1 and K2. The nature of the modification in strain K2 has been elucidated. Two L2 variants containing insertions in the viral DNA were identified in these studies. Restriction endonuclease cleavage maps of these variants have been determined. DNA from L2 and another isolate of L2, MV-Lg-L 172, are compared in these studies. 74 references, 33 figures, 6 tables. (ACR)

  16. DNA vaccination with VP2 gene fragment confers protection against Infectious Bursal Disease Virus in chickens.

    PubMed

    Pradhan, Satya Narayan; Prince, Prabhu Rajaiah; Madhumathi, Jayaprakasam; Arunkumar, Chakkaravarthy; Roy, Parimal; Narayanan, Rangarajan Badri; Antony, Usha

    2014-06-25

    Infectious Bursal Disease Virus (IBDV) causes immunosuppression in young chickens by destruction of antibody producing B cells in the Bursa of Fabricius and poses a potential threat to the poultry industry. We have examined the protective efficacy of a subunit DNA vaccine against IBDV infection in chickens in this study. An immunodominant VP2 gene fragment (VP252-417) was cloned into CMV promoter based DNA vaccine vector pVAX1 and in vitro expression of the DNA encoded antigens was confirmed by transfection of CHO cells with vaccine constructs followed by RT-PCR and western blot analysis using IBDV-antiserum. Two weeks old chickens were immunized intramuscularly with pVAXVP252-417 and the in vivo transcription of the plasmid DNA was confirmed by RT-PCR analysis of DNA injected muscle tissue at different intervals of post immunization. Tissue distribution analysis revealed that the plasmid DNA was extensively distributed in muscle, spleen, kidney, liver, and bursa tissues. Chickens immunized with pVAXVP252-417 developed high titer (1:12,000) of anti-VP252-417 antibodies. Further, chicken splenocytes from pVAXVP252-417 immunized group showed a significantly high proliferation to the whole viral and recombinant antigen (P<0.01) compared to control groups, which implies that pVAXVP252-417 codes for immunogenic fragment which has epitopes capable of eliciting both B and T cell responses. This is evident by the fact that, pVAXVP252-417 immunized chicken conferred 75% protection against virulent IBDV (vIBDV) challenge compared to the control group. Thus, the present study confirms that the immunodominant VP2 fragment can be used as a potential DNA vaccine against IBDV infection in chickens. PMID:24745626

  17. A cost for high levels of sperm competition in rodents: increased sperm DNA fragmentation.

    PubMed

    delBarco-Trillo, Javier; García-Álvarez, Olga; Soler, Ana Josefa; Tourmente, Maximiliano; Garde, José Julián; Roldan, Eduardo R S

    2016-03-16

    Sperm competition, a prevalent evolutionary process in which the spermatozoa of two or more males compete for the fertilization of the same ovum, leads to morphological and physiological adaptations, including increases in energetic metabolism that may serve to propel sperm faster but that may have negative effects on DNA integrity. Sperm DNA damage is associated with reduced rates of fertilization, embryo and fetal loss, offspring mortality, and mutations leading to genetic disease. We tested whether high levels of sperm competition affect sperm DNA integrity. We evaluated sperm DNA integrity in 18 species of rodents that differ in their levels of sperm competition using the sperm chromatin structure assay. DNA integrity was assessed upon sperm collection, in response to incubation under capacitating or non-capacitating conditions, and after exposure to physical and chemical stressors. Sperm DNA was very resistant to physical and chemical stressors, whereas incubation in non-capacitating and capacitating conditions resulted in only a small increase in sperm DNA damage. Importantly, levels of sperm competition were positively associated with sperm DNA fragmentation across rodent species. This is the first evidence showing that high levels of sperm competition lead to an important cost in the form of increased sperm DNA damage. PMID:26936246

  18. A caspase active site probe reveals high fractional inhibition needed to block DNA fragmentation.

    PubMed

    Méthot, Nathalie; Vaillancourt, John P; Huang, JingQi; Colucci, John; Han, Yongxin; Ménard, Stéphane; Zamboni, Robert; Toulmond, Sylvie; Nicholson, Donald W; Roy, Sophie

    2004-07-01

    Apoptotic markers consist of either caspase substrate cleavage products or phenotypic changes that manifest themselves as a consequence of caspase-mediated substrate cleavage. We have shown recently that pharmacological inhibitors of caspase activity prevent the appearance of two such apoptotic manifestations, alphaII-spectrin cleavage and DNA fragmentation, but that blockade of the latter required a significantly higher concentration of inhibitor. We investigated this phenomenon through the use of a novel radiolabeled caspase inhibitor, [(125)I]M808, which acts as a caspase active site probe. [(125)I]M808 bound to active caspases irreversibly and with high sensitivity in apoptotic cell extracts, in tissue extracts from several commonly used animal models of cellular injury, and in living cells. Moreover, [(125)I]M808 detected active caspases in septic mice when injected intravenously. Using this caspase probe, an active site occupancy assay was developed and used to measure the fractional inhibition required to block apoptosis-induced DNA fragmentation. In thymocytes, occupancy of up to 40% of caspase active sites had no effect on DNA fragmentation, whereas inhibition of half of the DNA cleaving activity required between 65 and 75% of active site occupancy. These results suggest that a high and persistent fractional inhibition will be required for successful caspase inhibition-based therapies. PMID:15067000

  19. Relationship between phospholipase C zeta immunoreactivity and DNA fragmentation and oxidation in human sperm

    PubMed Central

    Park, Ju Hee; Kim, Seul Ki; Kim, Jayeon; Kim, Ji Hee; Chang, Jae Hoon; Kim, Seok Hyun

    2015-01-01

    Objective The study aimed to evaluate the feasibility and reproducibility of measuring phospholipase C zeta (PLCζ) using immunostaining in human sperm and to investigate the relationship between PLCζ immunoreactivity and DNA fragmentation and oxidation in human sperm. Methods Semen samples were obtained from participants (n=44) and processed by the conventional swim-up method. Sperm concentration, motility, normal form by strict morphology, DNA fragmentation index assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling method and immunofluorescent expression for 8-hydroxy-2'-deoxyguanosine (8-OHdG) and PLCζ were assessed. Results When duplicate PLCζ tests were performed on two sperm samples from each of the 44 participants, similar results were obtained (74.1±9.4% vs. 75.4±9.7%). Two measurements of PLCζ were found to be highly correlated with each other (r=0.759, P<0.001). Immunoreactivity of PLCζ was not associated with donor's age, sperm concentration, motility, and the percentage of normal form as well as DNA fragmentation index. However, immunoreactivity of PLCζ showed a significant negative relationship with 8-OHdG immunoreactivity (r=-0.404, P=0.009). Conclusion Measurement of PLCζ by immunostaining is feasible and reproducible. Lower expression of PLCζ in human sperm may be associated with higher sperm DNA oxidation status. PMID:26023673

  20. qPCR-based mitochondrial DNA quantification: influence of template DNA fragmentation on accuracy.

    PubMed

    Jackson, Christopher B; Gallati, Sabina; Schaller, André

    2012-07-01

    Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA (λnDNA) and mtDNA (λmtDNA) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two genomes is demonstrated and which evaluates systematically the impact of DNA degradation on quantification of mtDNA copy number. PMID:22683632

  1. A restriction enzyme-powered autonomous DNA walking machine: its application for a highly sensitive electrochemiluminescence assay of DNA

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2014-12-01

    The construction of a restriction enzyme (Nt.AlwI)-powered DNA walking machine and its application for highly sensitive detection of DNA are described. DNA nanostructure tracks containing four overhang sequences with electrochemiluminescence (ECL) labels and complementary to the walker (target DNA) are self-assembled on the sensing electrode. The walker hybridizes with the complementary sequences on the tracks and forms specific recognition sites for Nt.AlwI, which cleaves the overhang sequences, releases the ECL labels and enables directional movement of the walker along the tracks. The formation of the nanostructure tracks and the Nt.AlwI-assisted cleavage of the overhang sequences in the presence of the walker are verified by using polyacrylamide gel electrophoresis analysis and cyclic voltammetry. The successive movement of the walker on the nanostructure tracks leads to continuous removal of massive ECL labels from the sensing electrode, which results in a significantly amplified suppression of the ECL emission for highly sensitive detection of sequence-specific DNA down to 0.19 pM. Results show that this DNA walking machine can also offer single-base mismatch discrimination capability. The successful application of the DNA walking machine for sequence-specific DNA detection can thus offer new opportunities for molecular machines in biosensing applications.The construction of a restriction enzyme (Nt.AlwI)-powered DNA walking machine and its application for highly sensitive detection of DNA are described. DNA nanostructure tracks containing four overhang sequences with electrochemiluminescence (ECL) labels and complementary to the walker (target DNA) are self-assembled on the sensing electrode. The walker hybridizes with the complementary sequences on the tracks and forms specific recognition sites for Nt.AlwI, which cleaves the overhang sequences, releases the ECL labels and enables directional movement of the walker along the tracks. The formation of the

  2. DNA fragmentation kinetics and postthaw motility of flow cytometric-sorted white-tailed deer sperm.

    PubMed

    Kjelland, M E; González-Marín, C; Gosálvez, J; López-Fernández, C; Lenz, R W; Evans, K M; Moreno, J F

    2011-12-01

    This study examined DNA damage and postthaw motility of white-tailed deer sperm (n = 28) before and after sex selection and conventional sorting using MoFlo XDP SX flow cytometry. Semen samples from the same individuals were treated in 4 different ways: 1) chilled-extended sperm samples (without glycerol); 2) cryopreserved conventional samples, samples directly cryopreserved after the addition of extenders; 3) cryopreserved conventionally sorted samples, sorted samples to remove the dead sperm subpopulation; and 4) cryopreserved sex-sorted samples; sorted samples to remove the dead sperm subpopulation and separation of X- and Y-chromosome-bearing sperm. In all the cases (n = 6), conventional samples showed decreased postthaw motilities (43 ± 26%) when compared with X-sorted samples (59 ± 20%; P < 0.05) and Y-sorted samples (54 ± 20%; P > 0.05). The DNA fragmentation baseline was <5% for frozen-thawed conventional samples, but even less after sex sorting and conventional sorting: 2.4 and 1.7%, respectively. On the other hand, conventional samples showed greater (P < 0.05) DNA fragmentation than the sex-sorted sperm (n = 6) at 96 h (average of 4.8 ± 4.5% and 5.3 ± 4%, respectively). Conventionally sorted samples (n = 8) did not have greater (P > 0.05) DNA fragmentation when compared with the sex-sorted samples. Fragmentation of DNA on X-chromosome and Y-chromosome-bearing sorted sperm were not significantly different (n = 10, P > 0.05) after 96 h (2.6 ± 3.6% and 2.2 ± 0.5%, respectively). Future research should be implemented for examining the fertilizing potential of sex-sorted white-tailed deer sperm (e.g., AI fertility trials). PMID:21788426

  3. HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism.

    PubMed

    Conrad, E; Polonio-Vallon, T; Meister, M; Matt, S; Bitomsky, N; Herbel, C; Liebl, M; Greiner, V; Kriznik, B; Schumacher, S; Krieghoff-Henning, E; Hofmann, T G

    2016-01-01

    Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response. PMID:26113041

  4. HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism

    PubMed Central

    Conrad, E; Polonio-Vallon, T; Meister, M; Matt, S; Bitomsky, N; Herbel, C; Liebl, M; Greiner, V; Kriznik, B; Schumacher, S; Krieghoff-Henning, E; Hofmann, T G

    2016-01-01

    Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response. PMID:26113041

  5. Genomic-Based Restriction Enzyme Selection for Specific Detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP

    PubMed Central

    Mandakovic, Dinka; Glasner, Benjamín; Maldonado, Jonathan; Aravena, Pamela; González, Mauricio; Cambiazo, Verónica; Pulgar, Rodrigo

    2016-01-01

    The gram negative facultative bacterium P. salmonis is the etiological agent of Salmonid Rickettsial Septicaemia (SRS), a severe disease that causes important economic losses in the global salmon farmer industry. Despite efforts to control this disease, the high frequency of new epizootic events indicate that the vaccine and antibiotics treatments have limited effectiveness, therefore the preventive and diagnostic approaches must be improved. A comparison of several methodologies for SRS diagnostic indicate differences in their specificity and its capacity to detect other bacteria coexisting with P. salmonis in culture media (contamination) and fish samples (coinfection), aspects relevant for research, vaccine development and clinical diagnostic. By computer-simulation analyses, we identified a group of restriction enzymes that generate unique P. salmonis 16S rDNA band patterns, distinguishable from all other bacteria. From this information, we designed and developed a PCR-RFLP (Polymerase Chain Reaction—Restriction Fragment Length Polymorphism) assay, which was validated using 16S rDNA universal primers and restriction enzyme PmaCI for the amplification and digestion, respectively. Experimental validation was performed by comparing the restriction pattern of P. salmonis with the restriction patterns generated by bacteria that cohabit with P. salmonis (fish bacterial isolates and culture media contaminants). Our results indicate that the restriction enzyme selection pipeline was suitable to design a more specific, sensible, faster and cheaper assay than the currently used P. salmonis detection methodologies. PMID:27242682

  6. Restriction and sequence alterations affect DNA uptake sequence-dependent transformation in Neisseria meningitidis.

    PubMed

    Ambur, Ole Herman; Frye, Stephan A; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

    2012-01-01

    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID

  7. Restriction and Sequence Alterations Affect DNA Uptake Sequence-Dependent Transformation in Neisseria meningitidis

    PubMed Central

    Ambur, Ole Herman; Frye, Stephan A.; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

    2012-01-01

    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID

  8. Identification of Mycobacterium avium Genotypes with Distinctive Traits by Combination of IS1245-Based Restriction Fragment Length Polymorphism and Restriction Analysis of hsp65

    PubMed Central

    Oliveira, R. S.; Sircili, M. P.; Oliveira, E. M. D.; Balian, S. C.; Ferreira-Neto, J. S.; Leão, S. C.

    2003-01-01

    One-hundred eight Mycobacterium avium isolates from pigs, humans, birds, and bovines were typed by the IS1245-based restriction fragment length polymorphism (RFLP) method and PCR-restriction enzyme analysis (PRA) of hsp65. Nine clusters of isolates showing more than 80% similarity in their RFLP profiles were detected. The largest cluster (cluster B) included 32 of 79 pig isolates (40.5%), 3 of 25 human isolates (12%), and 1 of 2 bovine isolates, comprising 33% of all isolates. The second largest cluster (cluster A) included 18 pig isolates (22.8%) and 6 human isolates (24%). Six smaller clusters included six pig isolates (clusters C and D), four and two human isolates (clusters E and F, respectively), two pig isolates (cluster I), and two pig isolates plus one bovine isolate and the avian purified protein derivative strain (cluster H). Cluster G represented the “bird-type” profile and included the bird isolate in this series, one pig isolate, plus reference strain R13. PRA revealed four allelic variants. Seventy-seven isolates were identified as M. avium PRA variant I, 24 were identified as M. avium PRA variant II, 6 were identified as M. avium PRA variant III, and 1 was identified as M. avium PRA variant IV. Except for three isolates from cluster B, each of the RFLP clusters was associated with a single PRA pattern. Isolates with unique (nonclustered) RFLP profiles were distributed between PRA variants I and II, and there was one unique isolate of PRA variant IV. These observations are consistent with divergent evolution within M. avium, resulting in the emergence of distinct lineages with particular competence to infect animals and humans. PMID:12517823

  9. PCR-Restriction Fragment Length Polymorphism for Rapid, Low-Cost Identification of Isoniazid-Resistant Mycobacterium tuberculosis▿

    PubMed Central

    Caws, Maxine; Tho, Dau Quang; Duy, Phan Minh; Lan, Nguyen Thi Ngoc; Hoa, Dai Viet; Torok, Mili Estee; Chau, Tran Thi Hong; Van Vinh Chau, Nguyen; Chinh, Nguyen Tran; Farrar, Jeremy

    2007-01-01

    PCR-restriction fragment length poymorphism (PCR-RFLP) is a simple, robust technique for the rapid identification of isoniazid-resistant Mycobacterium tuberculosis. One hundred consecutive isolates from a Vietnamese tuberculosis hospital were tested by MspA1I PCR-RFLP for the detection of isoniazid-resistant katG_315 mutants. The test had a sensitivity of 80% and a specificity of 100% against conventional phenotypic drug susceptibility testing. The positive and negative predictive values were 1 and 0.86, respectively. None of the discrepant isolates had mutant katG_315 codons by sequencing. The test is cheap (less than $1.50 per test), specific, and suitable for the rapid identification of isoniazid resistance in regions with a high prevalence of katG_315 mutants among isoniazid-resistant M. tuberculosis isolates. PMID:17428939

  10. Chromosomal assignment of human genomic NotI restriction fragments in a two-dimensional electrophoresis profile

    SciTech Connect

    Yoshikawa, Hirohide; Nagai, Hisaki; Matsubara, Kenichi

    1996-01-01

    Using DNA from sorted human chromosomes and two-dimensional gel electrophoresis, we assigned 2295 NotI sites, 43% of the total, to specific chromosomes and designated the procedure CA-RLGS (chromosome-assigned restriction landmark genomic scanning). Although the NotI enzyme is sensitive to DNA methylation, our results suggested that the majority of the spots did not seem to be affected by this modification. The NotI sites were distributed at higher levels in chromosomes 17, 19, and 22, suggesting higher gene content in these chromosomes. Most spots were assigned to unique chromosomes, but some spots were found on two or more chromosomes. Quantitative analysis revealed the intensity of the DNA spots on the sex chromosomes to be haploid and that of the chromosome 21 spots in DNA from a male with Down syndrome to be trisomic, although there were exceptions. We report here the first-generation CA-RLGS map of the human genome. 23 refs., 4 figs.

  11. Alignment of Escherichia coli K12 DNA sequences to a genomic restriction map.

    PubMed Central

    Rudd, K E; Miller, W; Ostell, J; Benson, D A

    1990-01-01

    We use the extensive published information describing the genome of Escherichia coli and new restriction map alignment software to align DNA sequence, genetic, and physical maps. Restriction map alignment software is used which considers restriction maps as strings analogous to DNA or protein sequences except that two values, enzyme name and DNA base address, are associated with each position on the string. The resulting alignments reveal a nearly linear relationship between the physical and genetic maps of the E. coli chromosome. Physical map comparisons with the 1976, 1980, and 1983 genetic maps demonstrate a better fit with the more recent maps. The results of these alignments are genomic kilobase coordinates, orientation and rank of the alignment that best fits the genetic data. A statistical measure based on extreme value distribution is applied to the alignments. Additional computer analyses allow us to estimate the accuracy of the published E. coli genomic restriction map, simulate rearrangements of the bacterial chromosome, and search for repetitive DNA. The procedures we used are general enough to be applicable to other genome mapping projects. PMID:2183179

  12. DNA fragmentation induced by fe ions in human cells: shielding influence on spatially correlated damage

    SciTech Connect

    Antonelli, F.; Belli, M.; Campa, A.; Chatterjee, A.; Dini, V.; Esposito, G.; Rydberg, B.; Simone, G.; Tabocchini, M.A.

    2003-11-19

    Outside the magnetic field of the Earth, high energy heavy ions constitute a relevant part of the biologically significant dose to astronauts during the very long travels through space. The typical pattern of energy deposition in the matter by heavy ions on the microscopic scale is believed to produce spatially correlated damage in the DNA which is critical for radiobiological effects. We have investigated the influence of a lucite shielding on the initial production of very small DNA fragments in human fibroblasts irradiated with 1 GeV/u iron (Fe) ions. We also used small gamma, Greek-rays as reference radiation. Our results show: (1) a lower effect per incident ion when the shielding is used; (2) an higher DNA Double Strand Breaks (DSB) induction by Fe ions than by small gamma, Greek-rays in the size range 123 kbp; (3) a non-random DNA DSB induction by Fe ions.

  13. DNA fragmentation induced by Fe ions in human cells: shielding influence on spatially correlated damage

    NASA Technical Reports Server (NTRS)

    Antonelli, F.; Belli, M.; Campa, A.; Chatterjee, A.; Dini, V.; Esposito, G.; Rydberg, B.; Simone, G.; Tabocchini, M. A.

    2004-01-01

    Outside the magnetic field of the Earth, high energy heavy ions constitute a relevant part of the biologically significant dose to astronauts during the very long travels through space. The typical pattern of energy deposition in the matter by heavy ions on the microscopic scale is believed to produce spatially correlated damage in the DNA which is critical for radiobiological effects. We have investigated the influence of a lucite shielding on the initial production of very small DNA fragments in human fibroblasts irradiated with 1 GeV/u iron (Fe) ions. We also used gamma rays as reference radiation. Our results show: (1) a lower effect per incident ion when the shielding is used; (2) an higher DNA Double Strand Breaks (DSB) induction by Fe ions than by gamma rays in the size range 1-23 kbp; (3) a non-random DNA DSB induction by Fe ions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  14. Magnetic bead purification of labeled DNA fragments forhigh-throughput capillary electrophoresis sequencing

    SciTech Connect

    Elkin, Christopher; Kapur, Hitesh; Smith, Troy; Humphries, David; Pollard, Martin; Hammon, Nancy; Hawkins, Trevor

    2001-09-15

    We have developed an automated purification method for terminator sequencing products based on a magnetic bead technology. This 384-well protocol generates labeled DNA fragments that are essentially free of contaminates for less than $0.005 per reaction. In comparison to laborious ethanol precipitation protocols, this method increases the phred20 read length by forty bases with various DNA templates such as PCR fragments, Plasmids, Cosmids and RCA products. Our method eliminates centrifugation and is compatible with both the MegaBACE 1000 and ABIPrism 3700 capillary instruments. As of September 2001, this method has produced over 1.6 million samples with 93 percent averaging 620 phred20 bases as part of Joint Genome Institutes Production Process.

  15. Unusual Structures Are Present in DNA Fragments Containing Super-Long Huntingtin CAG Repeats

    PubMed Central

    Duzdevich, Daniel; Li, Jinliang; Whang, Jhoon; Takahashi, Hirohide; Takeyasu, Kunio; Dryden, David T. F.; Morton, A. Jennifer; Edwardson, J. Michael

    2011-01-01

    Background In the R6/2 mouse model of Huntington's disease (HD), expansion of the CAG trinucleotide repeat length beyond about 300 repeats induces a novel phenotype associated with a reduction in transcription of the transgene. Methodology/Principal Findings We analysed the structure of polymerase chain reaction (PCR)-generated DNA containing up to 585 CAG repeats using atomic force microscopy (AFM). As the number of CAG repeats increased, an increasing proportion of the DNA molecules exhibited unusual structural features, including convolutions and multiple protrusions. At least some of these features are hairpin loops, as judged by cross-sectional analysis and sensitivity to cleavage by mung bean nuclease. Single-molecule force measurements showed that the convoluted DNA was very resistant to untangling. In vitro replication by PCR was markedly reduced, and TseI restriction enzyme digestion was also hindered by the abnormal DNA structures. However, significantly, the DNA gained sensitivity to cleavage by the Type III restriction-modification enzyme, EcoP15I. Conclusions/Significance “Super-long” CAG repeats are found in a number of neurological diseases and may also appear through CAG repeat instability. We suggest that unusual DNA structures associated with super-long CAG repeats decrease transcriptional efficiency in vitro. We also raise the possibility that if these structures occur in vivo, they may play a role in the aetiology of CAG repeat diseases such as HD. PMID:21347256

  16. Ejaculate Oxidative Stress Is Related with Sperm DNA Fragmentation and Round Cells

    PubMed Central

    Iommiello, Valeria Maria; Albani, Elena; Di Rosa, Alessandra; Marras, Alessandra; Menduni, Francesca; Morreale, Giovanna; Levi, Shanti Lia; Pisano, Benedetta; Levi-Setti, Paolo Emanuele

    2015-01-01

    Oxidative stress (OS) plays an essential role in male infertility aetiology by affecting sperm quality, function, and also the integrity of sperm DNA. The assessment of oxidative stress in semen may be an important tool to improve the evaluation of sperm reproductive capacity. The purpose of this study was the evaluation of any possible relation between the unbalance of oxidative stress caused by superoxide anion in the ejaculate with the presence of sperm DNA fragmentation and high concentration of round cells. 56 semen samples from males from couples suffering from infertility were evaluated according to World Health Organisation (WHO) 2010 guidelines. Oxidative stress levels from N1 (low) to N4 (high) were assessed in ejaculates using oxiSperm; DFI (sperm DNA fragmentation index) as assessed by the SCSA (Sperm Chromatin Structure Assay) was used for evaluation of sperm chromatin integrity. Our data show that high oxidative stress (N3-N4 levels) correlated positively with a DFI ≥ 30% (P = 0.0379) and round cells ≥1.500.000/mL (P = 0.0084). In conclusion, OS increases sperm DNA damage. Thus evaluation of semen OS extent of sperm DNA damage in infertile man could be useful to develop new therapeutic strategies and improve success of assisted reproduction techniques (ART). PMID:25802519

  17. IS1311 and IS1245 Restriction Fragment Length Polymorphism Analyses, Serotypes, and Drug Susceptibilities of Mycobacterium avium Complex Isolates Obtained from a Human Immunodeficiency Virus-Negative Patient

    PubMed Central

    Dvorska, Lenka; Bartos, Milan; Ostadal, Oldrich; Kaustova, Jarmila; Matlova, Ludmila; Pavlik, Ivo

    2002-01-01

    Six isolates of Mycobacterium avium of genotype dnaJ+ IS901− IS1311+ IS1245+ and serotypes 6 (n = 1), 6/9, (n = 2), and 9 (n = 3) were obtained within a 5-month period from a human immunodeficiency virus-negative patient treated for tuberculosis. The isolates were identified with PvuII restriction fragment length polymorphism (RFLP) analysis as a single IS1311 RFLP type and six different IS1245 RFLP types. Six separate colonies/clones obtained by subculture from each of the six isolates were tested for MICs of a set of 10 drugs. This report documents the appearance of isolates that are resistant to antimycobacterial drugs as the duration of therapy increases. Because isolates recovered from the patient following longer duration of treatment were more likely to be resistant to more antimycobacterial drugs, we would conclude that there was selection for antimycobacterial drug-resistant isolates. Analyses of all 36 clones identified three IS1311 and 22 IS1245 types forming three clusters. Tests of 105 environmental samples collected in the home and the work place of the patient yielded 16 mycobacterial isolates, of which one M. avium from soil was of genotype dnaJ+ IS901+ IS1311+ IS1245+ and serotype 2, and the second M. avium from a vacuum cleaner was of genotype dnaJ+ IS901− IS1311+ IS1245+ and serotype 9. Overall analyses of the results did not reveal any relation between serotype, RFLP type, and drug susceptibility. Based on the course of the disease in the patient and different serotypes, IS1311 and IS1245 RFLP types of isolates of M. avium we suppose represent polyclonal infection. PMID:12354870

  18. Genetic divergence between Mexican Opuntia accessions inferred by polymerase chain reaction-restriction fragment length polymorphism analysis.

    PubMed

    Samah, S; Valadez-Moctezuma, E; Peláez-Luna, K S; Morales-Manzano, S; Meza-Carrera, P; Cid-Contreras, R C

    2016-01-01

    Molecular methods are powerful tools in characterizing and determining relationships between plants. The aim of this study was to study genetic divergence between 103 accessions of Mexican Opuntia. To accomplish this, polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis of three chloroplast intergenic spacers (atpB-rbcL, trnL-trnF, and psbA-trnH), one chloroplast gene (ycf1), two nuclear genes (ppc and PhyC), and one mitochondrial gene (cox3) was conducted. The amplified products from all the samples had very similar molecular sizes, and there were only very small differences between the undigested PCR amplicons for all regions, with the exception of ppc. We obtained 5850 bp from the seven regions, and 136 fragments were detected with eight enzymes, 37 of which (27.2%) were polymorphic. We found that 40% of the fragments from the chloroplast regions were polymorphic, 9.8% of the bands detected in the nuclear genes were polymorphic, and 20% of the bands in the mitochondrial locus were polymorphic. trnL-trnF and psbA-trnH were the most variable regions. The Nei and Li/Dice distance was very short, and ranged from 0 to 0.12; indeed, 77 of the 103 genotypes had the same genetic profile. All the xoconostle accessions (acidic fruits) were grouped together without being separated from three genotypes of prickly pear (sweet fruits). We assume that the genetic divergence between prickly pears and xoconostles is very low, and question the number of Opuntia species currently considered in Mexico. PMID:27323120

  19. Globin gene-associated restriction-fragment-length polymorphisms in southern African peoples.

    PubMed Central

    Ramsay, M; Jenkins, T

    1987-01-01

    The combination of polymorphic restriction-enzyme sites in the 3' region of the beta-globin gene cluster shows very little variation in southern-African Bantu-speaking black and Kalahari !Kung San populations. The sites of the 5' region, on the other hand, show marked variation, and two common haplotypes are present--the "Negro" type (- - - - +) and the "San" type (- + - - +)--in frequencies of .404 and .106, respectively, in the Bantu-speakers and .262 and .405, respectively, in the San. Twenty of 23 beta s-associated haplotypes in southern-African Bantu-speaking black subjects were the same as that found commonly in the Central African Republic (CAR)--i.e., the "Bantu" type--a finding providing the first convincing biological evidence for the common ancestry of geographically widely separated speakers of languages belonging to the Bantu family. The (-alpha) haplotype has a frequency of .21 in the Venda, .07 in both the Sotho-Tswana and the Nguni, and .06 among the !Kung San. These data are interpreted in the light of Plasmodium falciparum malaria selection and population movements in the African subcontinent. PMID:2891298

  20. DNA fragments binding CTCF in vitro and in vivo are capable of blocking enhancer activity

    PubMed Central

    2012-01-01

    Background Earlier we identified ten 100-300-bp long CTCF-binding DNA fragments selected earlier from a 1-Mb human chromosome 19 region. Here the positive-negative selection technique was used to check the ability of CTCF-binding human genomic fragments to block enhancer-promoter interaction when inserted into the genome. Results Ten CTCF-binding DNA fragments were inserted between the CMV enhancer and CMV minimal promoter driving the herpes simplex virus thymidine kinase (HSV-tk) gene in a vector expressing also the neoR gene under a separate promoter. The constructs were then integrated into the genome of CHO cells, and the cells resistant to neomycin and ganciclovir (positive-negative selection) were picked up, and their DNAs were PCR analyzed to confirm the presence of the fragments between the enhancer and promoter in both orientations. Conclusions We demonstrated that all sequences identified by their CTCF binding both in vitro and in vivo had enhancer-blocking activity when inserted between the CMV minimal promoter and enhancer in stably transfected CHO cells. PMID:22480385

  1. Ultrasensitive electrochemical biosensing for DNA using quantum dots combined with restriction endonuclease.

    PubMed

    Zhang, Can; Lou, Jing; Tu, Wenwen; Bao, Jianchun; Dai, Zhihui

    2015-01-21

    A universal and sensitive electrochemical biosensing platform for the detection and identification of DNA using CdSe quantum dots (CdSe QDs) as signal markers was designed. The detection mechanism was based on the specific recognition of MspI endonuclease combined with the signal amplification of gold nanoparticles (AuNPs). MspI endonuclease could recognize its specific sequence in the double-strand DNA (dsDNA) and cleave the dsDNA fragments linked with CdSe QDs from the electrode. The remaining attached CdSe QDs can be easily read out by square-wave voltammetry using an electrodeposited bismuth (Bi) film-modified glass carbon electrode. The concentrations of target DNA could be simultaneously detected by the signal of metal markers. Using mycobacterium tuberculosis (Mtb) DNA as a model, under the optimal conditions, the proposed biosensor could detect Mtb DNA down to 8.7 × 10(-15) M with a linear range of 5 orders of magnitude (from 1.0 × 10(-14) to 1.0 × 10(-9) M) and discriminate mismatched DNA with high selectivity. This strategy presented a universal and convenient biosensing platform for DNA assay, and its satisfactory performances make it a potential candidate for the early diagnosis of gene-related diseases. PMID:25408952

  2. Modification-dependent restriction endonuclease, MspJI, flips 5-methylcytosine out of the DNA helix

    SciTech Connect

    Horton, J. R.; Wang, H.; Mabuchi, M. Y.; Zhang, X.; Roberts, R. J.; Zheng, Y.; Wilson, G. G.; Cheng, X.

    2014-09-27

    MspJI belongs to a family of restriction enzymes that cleave DNA containing 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC). MspJI is specific for the sequence 5(h)mC-N-N-G or A and cleaves with some variability 9/13 nucleotides downstream. Earlier, we reported the crystal structure of MspJI without DNA and proposed how it might recognize this sequence and catalyze cleavage. Here we report its co-crystal structure with a 27-base pair oligonucleotide containing 5mC. This structure confirms that MspJI acts as a homotetramer and that the modified cytosine is flipped from the DNA helix into an SRA-like-binding pocket. We expected the structure to reveal two DNA molecules bound specifically to the tetramer and engaged with the enzyme's two DNA-cleavage sites. A coincidence of crystal packing precluded this organization, however. We found that each DNA molecule interacted with two adjacent tetramers, binding one specifically and the other non-specifically. The latter interaction, which prevented cleavage-site engagement, also involved base flipping and might represent the sequence-interrogation phase that precedes specific recognition. MspJI is unusual in that DNA molecules are recognized and cleaved by different subunits. Such interchange of function might explain how other complex multimeric restriction enzymes act.

  3. Mitochondrial bax translocation accelerates DNA fragmentation and cell necrosis in a murine model of acetaminophen hepatotoxicity.

    PubMed

    Bajt, Mary Lynn; Farhood, Anwar; Lemasters, John J; Jaeschke, Hartmut

    2008-01-01

    Mitochondria generate reactive oxygen and peroxynitrite and release endonucleases during acetaminophen (APAP) hepatotoxicity. Because mitochondrial translocation of Bax can initiate these events, we investigated the potential role of Bax in the pathophysiology of hepatic necrosis after 300 mg/kg APAP in fasted C57BL/6 mice. APAP overdose induced Bax translocation from the cytosol to the mitochondria as early as 1 h after APAP injection. At 6 h, there was extensive centrilobular nitrotyrosine staining (indicator for peroxynitrite formation) and nuclear DNA fragmentation. In addition, mitochondrial intermembrane proteins were released into the cytosol. Plasma alanine aminotransferase (ALT) activities of 5610 +/- 600 U/l indicated extensive necrotic cell death. Conversely, Bax gene knockout (Bax(-/-)) mice had 80% lower ALT activities, less DNA fragmentation, and less intermembrane protein release at 6 h. However, immunohistochemical staining for nitrotyrosine or APAP protein adducts did not show differences between wild-type and Bax(-/-) mice. In contrast to the early hepatoprotection in Bax(-/-) mice, plasma ALT activities (7605 +/- 480 U/l) and area of necrosis (53 +/- 6% hepatocytes) in wild-type animals was similar to values in Bax(-/-) mice at 12 h. In addition, there was no difference in DNA fragmentation or nitrotyrosine immunostaining. We concluded that the rapid mitochondrial Bax translocation after APAP overdose has no effect on peroxynitrite formation but that it contributes to the mitochondrial release of proteins, which cause nuclear DNA fragmentation. However, the persistent oxidant stress and peroxynitrite formation in mitochondria may eventually trigger the permeability transition pore opening and release intermembrane proteins independently of Bax. PMID:17906064

  4. Improved Genotyping Vaccine and Wild-Type Poliovirus Strains by Restriction Fragment Length Polymorphism Analysis: Clinical Diagnostic Implications

    PubMed Central

    Georgopoulou, Amalia; Markoulatos, Panayotis; Spyrou, Niki; Vamvakopoulos, Nicholas C.

    2000-01-01

    The combination of preventive vaccination and diagnostic typing of viral isolates from patients with clinical poliomyelitis constitutes our main protective shield against polioviruses. The restriction fragment length polymorphism (RFLP) adaptation of the reverse transcriptase (RT)-PCR methodology has advanced diagnostic genotyping of polioviruses, although further improvements are definitely needed. We report here on an improved RFLP procedure for the genotyping of polioviruses. A highly conserved segment within the 5′ noncoding region of polioviruses was selected for RT-PCR amplification by the UC53-UG52 primer pair with the hope that it would be most resistant to the inescapable genetic alteration-drift experienced by the other segments of the viral genome. Complete inter- and intratypic genotyping of polioviruses by the present RFLP method was accomplished with a minimum set of four restriction endonucleases (HaeIII, DdeI, NcoI, and AvaI). To compensate for potential genetic drift within the recognition sites of HaeIII, DdeI, or NcoI in atypical clinical samples, the RFLP patterns generated with HpaII and StyI as replacements were analyzed. The specificity of the method was also successfully assessed by RFLP analysis of 55 reference nonpoliovirus enterovirus controls. The concerted implementation of these conditional protocols for diagnostic inter- and intratypic genotyping of polioviruses was evaluated with 21 clinical samples with absolute success. PMID:11101561

  5. Characterization of field strains of infectious laryngotracheitis virus in China by restriction fragment length polymorphism and sequence analysis.

    PubMed

    Yan, Zhuanqiang; Li, Shengpeng; Xie, Qingmei; Chen, Feng; Bi, Yingzuo

    2016-01-01

    Nineteen strains of infectious laryngotracheitis virus (ILTV; Gallid herpesvirus 1) were isolated from dead or diseased birds in chicken flocks from different areas of China between 2010 and 2014 and used to investigate ILTV epidemiology. These strains were characterized using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) patterns and sequence analysis of the thymidine kinase (TK) gene. PCR-RFLP analysis showed that the TK gene generated 2 patterns when digested with restriction endonuclease enzymes. Pattern A corresponded to 2 virulent field strains, while pattern B was characteristic of 2 virulent field strains, 15 low pathogenicity field strains, and all vaccine strains. Sequence analysis of the TK gene indicated that the messenger RNA polyadenylation signals could be identified in some isolates where amino acid 252 was threonine, and in those with methionine at that position. The present study has demonstrated that most of the outbreaks of ILT in China were caused either by low virulence strains or by vaccine-related strains, and also emphasizes the importance of reinforcing ILTV surveillance in both vaccinated and nonvaccinated flocks. PMID:26699520

  6. Preliminary characterization of microbial communities in high altitude wetlands of northwestern Argentina by determining terminal restriction fragment length polymorphisms.

    PubMed

    Ferrero, Marcela; Farías, María E; Siñeriz, Faustino

    2004-01-01

    Laguna de Pozuelos is an extensive wetland in Morthwestern Argentina at 3,600 m above sea level in the Argentinean Andes. The principal lake, placed in the central depression of endorheic basin, is rich in minerals like Cu, As, Fe, etc. It collects water from underground courses and from two main tributaries, namely Santa Catalina River to the north and Cincel River to the south. Following the dry and rainy seasons, the surface of the lake is subject to an annual contraction-expansion cycle, with increasing of salinity during evaporation period. Prokaryotes inhabitants these particular environments have been not described and a few of such places have been surveyed for microbial diversity studies. To systematically explore the underlying communities of Bacteria from the water lake of Laguna de Pozuelos wetland and Cincel River, bacterial 16S rRNA genes (rDNAs) were PCR amplified and analyzed by terminal restriction fragment length polymorphism (T-RFLP) analysis. Analysis of the microbial community with T-RFLP identified a minimum of 19 operational taxonomic units (OTU). T-RF patterns derived from multiple-enzyme digestion with RsaI, HaeIII and HhaI were analyzed in order to provide a preliminary picture of the relative diversity of this complex microbial community. By the combined use of the three restriction endonucleases bacterial populations of this particular place were identified. PMID:17061526

  7. Improved genotyping vaccine and wild-type poliovirus strains by restriction fragment length polymorphism analysis: clinical diagnostic implications.

    PubMed

    Georgopoulou, A; Markoulatos, P; Spyrou, N; Vamvakopoulos, N C

    2000-12-01

    The combination of preventive vaccination and diagnostic typing of viral isolates from patients with clinical poliomyelitis constitutes our main protective shield against polioviruses. The restriction fragment length polymorphism (RFLP) adaptation of the reverse transcriptase (RT)-PCR methodology has advanced diagnostic genotyping of polioviruses, although further improvements are definitely needed. We report here on an improved RFLP procedure for the genotyping of polioviruses. A highly conserved segment within the 5' noncoding region of polioviruses was selected for RT-PCR amplification by the UC(53)-UG(52) primer pair with the hope that it would be most resistant to the inescapable genetic alteration-drift experienced by the other segments of the viral genome. Complete inter- and intratypic genotyping of polioviruses by the present RFLP method was accomplished with a minimum set of four restriction endonucleases (HaeIII, DdeI, NcoI, and AvaI). To compensate for potential genetic drift within the recognition sites of HaeIII, DdeI, or NcoI in atypical clinical samples, the RFLP patterns generated with HpaII and StyI as replacements were analyzed. The specificity of the method was also successfully assessed by RFLP analysis of 55 reference nonpoliovirus enterovirus controls. The concerted implementation of these conditional protocols for diagnostic inter- and intratypic genotyping of polioviruses was evaluated with 21 clinical samples with absolute success. PMID:11101561

  8. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    SciTech Connect

    Tee, Thiam-Tsui; Cheah, Yew-Hoong; Meenakshii, Nallappan; Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  9. GOGOT: a method for the identification of differentially expressed fragments from cDNA-AFLP data

    PubMed Central

    2007-01-01

    Background One-dimensional (1-D) electrophoretic data obtained using the cDNA-AFLP method have attracted great interest for the identification of differentially expressed transcript-derived fragments (TDFs). However, high-throughput analysis of the cDNA-AFLP data is currently limited by the need for labor-intensive visual evaluation of multiple electropherograms. We would like to have high-throughput ways of identifying such TDFs. Results We describe a method, GOGOT, which automatically detects the differentially expressed TDFs in a set of time-course electropherograms. Analysis by GOGOT is conducted as follows: correction of fragment lengths of TDFs, alignment of identical TDFs across different electropherograms, normalization of peak heights, and identification of differentially expressed TDFs using a special statistic. The output of the analysis is a highly reduced list of differentially expressed TDFs. Visual evaluation confirmed that the peak alignment was performed perfectly for the TDFs by virtue of the correction of peak fragment lengths before alignment in step 1. The validity of the automated ranking of TDFs by the special statistic was confirmed by the visual evaluation of a third party. Conclusion GOGOT is useful for the automated detection of differentially expressed TDFs from cDNA-AFLP temporal electrophoretic data. The current algorithm may be applied to other electrophoretic data and temporal microarray data. PMID:17535446

  10. Fragmentation of condensed-phase DNA components by hyperthermal He{sup +} impact

    SciTech Connect

    Deng Zongwu; Imhoff, Marjorie; Bald, Ilko; Illenberger, Eugen; Huels, Michael A.

    2006-07-15

    We have observed severe damage to films of DNA components (thymine, D-ribose, 2-deoxy-D-ribose, and thymidine) induced by 10 to 100 eV He{sup +} ions (2.5-25 eV/amu). The damage is attributed to the kinetic and potential energies, as well as the chemical reactivity of the He{sup +} projectiles. Hyperthermal He{sup +} ion impact on these films results in the complete destruction of the molecules via fragmentation, and direct and indirect (secondary fragment) reactive scattering, all of which leads to the desorption of abundant cation and anion fragments. The chemical composition of the fragments is identified, and the fragmentation patterns are compared to those produced by Ar{sup +} irradiation. While the lower mass of He{sup +} ions causes less efficient desorption of very heavy fragments, several reactive collisions are also observed, including hydrogen abstraction by incident He{sup +} from any of the molecules studied to yield desorbing HeH{sup +}. This process likely occurs via the formation of an intermediate molecular ion (He-H-R)*{sup +}, which decays to HeH{sup +}+R . Compared to Ar{sup +}, here a significant (x23) enhancement in H{sup +} desorption is observed during He{sup +} ion irradiation, which likely involves (a) the decay of the intermediate (He-H-R)*{sup +}, or desorbing HeH{sup +}, and (b) Auger or quasiresonant excitations of C, N, or O atom centers (or C-H, N-H, or O-H bonds) by the incident He{sup +} ion. The formation of several molecular cations, e.g., H{sub 3}O{sup +}, also requires hydrogen abstraction from its parent or adjacent molecules by initial cation fragments prior to desorption.

  11. [Comparison of specific genomic DNA fragment between Microtus fortis calamorum and Microtus fortis fortis].

    PubMed

    Xu, Bing; Hu, Wei-Xin; Yang, Rong; Yu, Yuan-Jing; Wang, Yong; Liu, Xin-Fa; Peng, Xing-Hua

    2003-06-01

    Microtus fortis(Taxonomy ID: 100897), also named as reed vole, is classified as Microtus, Micotinae, Cricetidae, Rodentia, Mammalia on taxonomy. Microtus fortis mainly distributes in China. Some areas of Russia, North Korea and Mongolia close to Northeast borderland of China also have a small number of Microtus fortis in distribution. Microtus fortis in China has principally 4 subspecies, and most of them live is the drainage area of Yangtse River. Schistosoma japonicum (one of commonly parasites in China) can infect about 40 kinds of mammalian animals, including the human being, but could not infect Microtus foris. It is known as the only animal in Dongting Lake region of China which has the ability of natural resistance to Schistosoma japonicum. The Microtus fortis domesticated in laboratory has the same biological characteristics as the wild one and these characteristics could be inherited to its progeny steadily. We got a specific DNA fragment from genomic library of Microtus fortis. This DNA fragment in genomic DNA of human beings, Kunming mice, Balb/c mice and C57BL/6J mice could not be detected by dot blot hybridization and PCR, apart from genomic DNA of Microtus fortis. In this report, the differences of genomic DNA in 34 Microtus fortis were compared between Microtus fortis calamorum(Dongting Lake region of southern China) and Microtus fortis fortis (Ningxia province of northern China). The residing localion of these two subspecies is far away about 1,200 kilometers from each other. The genomic DNA of Microtus fortis calamorum and Microtus fortis fortis were extracted and amplified by PCR according to the specific genomic DNAs sequence of Microtus fortis reported previously (Accession number in GenBank: AF277394). The amplified DNA fragments were inserted into pGEM-T easy vector and sequenced. The DNA fragment sequencing results from the two subspecies were compared to detect whether there was any difference. 19 alleles were found from Microtus fortis (20

  12. [Identification of SHV-type extended spectrum beta-lactamase genes in Pseudomonas aeruginosa by PCR-restriction fragment length polymorphism and insertion site restriction-PCR].

    PubMed

    Kalai Blagui, S; Achour, W; Abdeladhim, A; Ben Hassen, A

    2009-07-01

    We propose a simple and rapid method to discriminate SHV-type extended spectrum beta-lactamase (ESBL) genes in P. aeruginosa based on PCR techniques (PCR-RFLP and RSI-PCR). We studied 22 producing ESBL P. aeruginosa strains isolated from seven immunocompromised patients (19 isolates) and from environmental swabs (three isolates) at the Bone Marrow Transplantation Center of Tunis. Screening PCR with primer pairs designed to detect gene encoding TEM, SHV, OXA group I, OXA group II, OXA-18 and PER-1 ESBL was positive for bla(OXA18) and bla(SHV) genes in all isolates. Pulsed field gel electrophoresis using SpeI endonuclease defined five genotypic groups. For at least one isolate corresponding to each genotype observed, restriction of PCR products by DdeI and BsrI revealed the same restriction pattern that the bla(SHV-1) negative control; in the same way, RSI-PCR products digestion by NruI, thus excluding 35, 238 and 240 mutations characterizing reported ESBL in P. aeruginosa (SHV-2a, SHV5 et SHV12), and suggesting that studied bla(SHV) genes were not ESBL ones. Genomic DNA hybridization by southern blot with probe consisting in bla(SHV-1) gene was positive in these isolates. Sequencing the full-length open reading frame revealed nucleotide sequence of the bla(SHV-1). PCR-RFLP and RSI-PCR results were then confirmed. This approach is effective for screening P. aeruginosa for ESBL genes carriage in epidemiological studies and for detecting new variants. PMID:18838231

  13. Modification-dependent restriction endonuclease, MspJI, flips 5-methylcytosine out of the DNA helix

    DOE PAGESBeta

    Horton, J. R.; Wang, H.; Mabuchi, M. Y.; Zhang, X.; Roberts, R. J.; Zheng, Y.; Wilson, G. G.; Cheng, X.

    2014-09-27

    MspJI belongs to a family of restriction enzymes that cleave DNA containing 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC). MspJI is specific for the sequence 5(h)mC-N-N-G or A and cleaves with some variability 9/13 nucleotides downstream. Earlier, we reported the crystal structure of MspJI without DNA and proposed how it might recognize this sequence and catalyze cleavage. Here we report its co-crystal structure with a 27-base pair oligonucleotide containing 5mC. This structure confirms that MspJI acts as a homotetramer and that the modified cytosine is flipped from the DNA helix into an SRA-like-binding pocket. We expected the structure to reveal two DNAmore » molecules bound specifically to the tetramer and engaged with the enzyme's two DNA-cleavage sites. A coincidence of crystal packing precluded this organization, however. We found that each DNA molecule interacted with two adjacent tetramers, binding one specifically and the other non-specifically. The latter interaction, which prevented cleavage-site engagement, also involved base flipping and might represent the sequence-interrogation phase that precedes specific recognition. MspJI is unusual in that DNA molecules are recognized and cleaved by different subunits. Such interchange of function might explain how other complex multimeric restriction enzymes act.« less

  14. In vivo assembly of DNA-fragments in the moss, Physcomitrella patens.

    PubMed

    King, Brian Christopher; Vavitsas, Konstantinos; Ikram, Nur Kusaira Binti Khairul; Schrøder, Josephine; Scharff, Lars B; Hamberger, Björn; Jensen, Poul Erik; Simonsen, Henrik Toft

    2016-01-01

    Direct assembly of multiple linear DNA fragments via homologous recombination, a phenomenon known as in vivo assembly or transformation associated recombination, is used in biotechnology to assemble DNA constructs ranging in size from a few kilobases to full synthetic microbial genomes. It has also enabled the complete replacement of eukaryotic chromosomes with heterologous DNA. The moss Physcomitrella patens, a non-vascular and spore producing land plant (Bryophyte), has a well-established capacity for homologous recombination. Here, we demonstrate the in vivo assembly of multiple DNA fragments in P. patens with three examples of effective genome editing: we (i) efficiently deleted a genomic locus for diterpenoid metabolism yielding a biosynthetic knockout, (ii) introduced a salt inducible promoter, and (iii) re-routed endogenous metabolism into the formation of amorphadiene, a precursor of high-value therapeutics. These proof-of-principle experiments pave the way for more complex and increasingly flexible approaches for large-scale metabolic engineering in plant biotechnology. PMID:27126800

  15. The early apoptotic DNA fragmentation targets a small number of specific open chromatin regions.

    PubMed

    Di Filippo, Miriam; Bernardi, Giorgio

    2009-01-01

    We report here that early apoptotic DNA fragmentation, as obtained by using an entirely new approach, is the result of an attack at a small number of specific open chromatin regions of interphase nuclei. This was demonstrated as follows: (i) chicken liver was excised and kept in sterile tubes for 1 to 3 hours at 37 degrees C; (ii) this induced apoptosis (possibly because of oxygen deprivation), as shown by the electrophoretic nucleosomal ladder produced by DNA preparations; (iii) low molecular-weight DNA fragments (approximately 200 bp) were cloned, sequenced, and shown to derive predominantly from genes and surrounding 100 kb regions; (iv) a few hundred cuts were produced, very often involving the same chromosomal sites; (v) at comparable DNA degradation levels, micrococcal nuclease (MNase) also showed a general preference for genes and surrounding regions, but MNase cuts were located at sites that were quite distinct from, and less specific than, those cut by apoptosis. In conclusion, the approach presented here, which is the mildest and least intrusive approach, identifies a preferred accessibility landscape in interphase chromatin. PMID:19347039

  16. In vivo assembly of DNA-fragments in the moss, Physcomitrella patens

    PubMed Central

    King, Brian Christopher; Vavitsas, Konstantinos; Ikram, Nur Kusaira Binti Khairul; Schrøder, Josephine; Scharff, Lars B.; Hamberger, Björn; Jensen, Poul Erik; Simonsen, Henrik Toft

    2016-01-01

    Direct assembly of multiple linear DNA fragments via homologous recombination, a phenomenon known as in vivo assembly or transformation associated recombination, is used in biotechnology to assemble DNA constructs ranging in size from a few kilobases to full synthetic microbial genomes. It has also enabled the complete replacement of eukaryotic chromosomes with heterologous DNA. The moss Physcomitrella patens, a non-vascular and spore producing land plant (Bryophyte), has a well-established capacity for homologous recombination. Here, we demonstrate the in vivo assembly of multiple DNA fragments in P. patens with three examples of effective genome editing: we (i) efficiently deleted a genomic locus for diterpenoid metabolism yielding a biosynthetic knockout, (ii) introduced a salt inducible promoter, and (iii) re-routed endogenous metabolism into the formation of amorphadiene, a precursor of high-value therapeutics. These proof-of-principle experiments pave the way for more complex and increasingly flexible approaches for large-scale metabolic engineering in plant biotechnology. PMID:27126800

  17. Large Fragment of DNA Polymerase I from Geobacillus sp. 777: Cloning and Comparison with DNA Polymerases I in Practical Applications.

    PubMed

    Oscorbin, Igor P; Boyarskikh, Ulyana A; Filipenko, Maksim L

    2015-10-01

    A truncated gene of DNA polymerase I from the thermophilic bacteria Geobacillus sp. 777 encoding a large fragment of enzyme (LF Gss pol) was cloned and sequenced. The resulting sequence is 1776-bp long and encodes a 592 aa protein with a predicted molecular mass of 69.8 kDa. Enzyme was overexpressed in E. coli, purified by metal-chelate chromatography, and biochemically characterized. The specific activity of LF Gss pol is 104,000 U/mg (one unit of enzyme was defined as the amount of enzyme that incorporated 10 nmol of dNTP into acid insoluble material in 30 min at 65 °C). The properties of LF Gss pol were compared to commercially available large fragments of DNA polymerase I from G. stearothermophilus (LF Bst pol) and Bacillus smithii (LF Bsm pol). Studied enzymes showed maximum activity at similar pH and concentrations of monovalent/divalent ions, whereas LF Gss pol and LF Bst pol were more thermostable than LF Bsm pol. LF Gss pol is more resistant to enzyme inhibitors (SYBR Green I, heparin, ethanol, urea, blood plasma) in comparison with LF Bst pol and LF Bsm pol. LF Gss pol is also suitable for loop-mediated isothermal amplification and whole genome amplification of human genomic DNA. PMID:26289299

  18. Induced lipid peroxidation in ram sperm: semen profile, DNA fragmentation and antioxidant status.

    PubMed

    Hamilton, Thais Rose dos Santos; de Castro, Letícia Signori; Delgado, Juliana de Carvalho; de Assis, Patrícia Monken; Siqueira, Adriano Felipe Perez; Mendes, Camilla Mota; Goissis, Marcelo Demarchi; Muiño-Blanco, Teresa; Cebrián-Pérez, José Álvaro; Nichi, Marcílio; Visintin, José Antonio; D'Ávila Assumpção, Mayra Elena Ortiz

    2016-04-01

    Action of reactive oxygen species, protamination failures and apoptosis are considered the most important etiologies of sperm DNA fragmentation. This study evaluated the effects of induced lipid peroxidation susceptibility on native semen profile and identified the mechanisms involved in sperm DNA fragmentation and testicular antioxidant defense on Santa Ines ram sperm samples. Semen was collected from 12 adult rams (Ovis aries) performed weekly over a 9-week period. Sperm analysis (motility, mass motility, abnormalities, membrane and acrosome status, mitochondrial potential, DNA fragmentation, lipid peroxidation and intracellular free radicals production); protamine deficiency; PRM1, TNP1 and TNP2 gene expression; and determination of glutathione peroxidase (GPx), glutathione reductase, catalase (CAT) and superoxide dismutase activity and immunodetection in seminal plasma were performed. Samples were distributed into four groups according to the sperm susceptibility to lipid peroxidation after induction with ascorbate and ferrous sulfate (low, medium, high and very high). The results were analyzed by GLM test and post hoc least significant difference. We observed an increase in native GPx activity and CAT immunodetection in groups with high susceptibility to induced lipid peroxidation. We also found an increase in total sperm defects, acrosome and membrane damages in the group with the highest susceptibility to induced lipid peroxidation. Additionally, the low mitochondrial membrane potential, susceptible to chromatin fragmentation and the PRM1 mRNA were increased in the group showing higher susceptibility to lipid peroxidation. Ram sperm susceptibility to lipid peroxidation may compromise sperm quality and interfere with the oxidative homeostasis by oxidative stress, which may be the main cause of chromatin damage in ram sperm. PMID:26811546

  19. flaB Gene as a Molecular Marker for Distinct Identification of Borrelia Species in Environmental Samples by the PCR-Restriction Fragment Length Polymorphism Method ▿

    PubMed Central

    Wodecka, Beata

    2011-01-01

    A new protocol employing nested PCR-restriction fragment length polymorphism (RFLP) based on the flaB gene and two restriction enzymes was worked out. This protocol allows the identification of all Borrelia species transmitted by Ixodes ricinus in Europe, including Borrelia miyamotoi and 3 genetic variants of B. garinii. A dendrogram of flaB sequence similarity was in accordance with RFLP variants. PMID:21841027

  20. Preparation of a phage DNA fragment library for whole genome shotgun sequencing.

    PubMed

    Summer, Elizabeth J

    2009-01-01

    The most efficient method to determine the genomic sequence of a dsDNA phage is to use a whole genome shotgun approach (WGSA). Preparation of a library where each genomic fragment has an equal chance of being represented is critical to the success of the WGSA. For many phages, there are regions of the genome likely to be under-represented in the shotgun library, which results in more gaps in the shotgun assembly than predicted by the Poisson distribution. However, as phage genomes are relatively small, this increased number of gaps does not present an insurmountable impediment to using the WGSA. This chapter will focus on construction of a high-quality random library and sequence analysis of this library in a 96-well format. Techniques are described for the mechanical fragmentation of genomic DNA into 2 kb average size fragments, preparation of the fragmented DNA for shotgun cloning, and advice on the choice of cloning vector for library preparation. Protocols for deepwell block culture, plasmid isolation, and sequencing in 96-well format are given. The rationale for determining the total number of random clones from a library to sequence for a 50 and 150 kb genome is explained. The steps involved in going from hundreds of shotgun sequencing traces to generating contigs will be outlined as well as how to close gaps in the sequence by primer walking on phage DNA and PCR-generated templates. Finally, examples will be given of how biological information about the phage genomic termini can be derived by analysis of the organization of individual clones in the shotgun sequence assembly. Specific examples are given for the circularly permuted termini of pac type phages, the direct terminal repeats found in most T7-like phages, variable host DNA at either end as in the Mu-like phages, and the 5' and 3' overhanging ends of cos type phages. The end result of these steps is the entire DNA sequence of a novel phage, ready for gene prediction. PMID:19082550

  1. Restriction enzyme mapping of ribosomal DNA can distinguish between fasciolid (liver fluke) species.

    PubMed

    Blair, D; McManus, D P

    1989-10-01

    Recognition sites for nine different restriction endonucleases were mapped on rDNA genes of fasciolid species. Southern blots of digested DNA from individual worms were probed sequentially with three different probes derived from rDNA of Schistosoma mansoni and known to span between them the entire rDNA repeat unit in that species. Eighteen recognition sites were mapped for Fasciola hepatica, and seventeen for Fasciola gigantica and Fascioloides magna. Each fasciolid species had no more than two unique recognition sites, the remainder being common to one or both of the other two species. No intraspecific variation in restriction sites was noted in F. hepatica (individuals from 11 samples studied; hosts were sheep, cattle and laboratory animals; geographical origins. Australia, New Zealand, Mexico, U.K., Hungary and Spain), or in F. gigantica (two samples; Indonesia and Malaysia). Only one sample of F. magna was available. One specimen of Fasciola sp. from Japan (specific identity regarded in the literature as uncertain) yielded a restriction map identical to that of F. gigantica. Almost all recognition sites occurred in or near the putative rRNA coding regions. The non-transcribed spacer region had few or no cut sites despite the fact that this region is up to about one half of the entire repeat unit in length. Length heterogeneity was noted in the non-transcribed spacer, even within individual worms. PMID:2552311

  2. Cell-free DNA Fragmentation Patterns in Amniotic Fluid Identify Genetic Abnormalities and Changes due to Storage

    PubMed Central

    Peter, Inga; Tighiouart, Hocine; Lapaire, Olav; Johnson, Kirby L.; Bianchi, Diana W.; Terrin, Norma

    2015-01-01

    Circulating cell-free DNA (cfDNA) has become a promising biomarker in prenatal diagnosis. However, despite extensive studies in different body fluids, cfDNA predictive value is uncertain owing to the confounding factors that can affect its levels, such as gestational age, maternal weight, smoking status, and medications. Residual fresh and archived amniotic fluid (AF) supernatants were obtained from gravid women (mean gestational age 17 wk) carrying euploid (N = 36) and aneuploid (N = 29) fetuses, to characterize cfDNA-fragmentation patterns with regard to aneuploidy and storage time (−80°C). AF cfDNA was characterized by the real-time quantitative polymerase chain reaction amplification of glyceraldehyde-3-phosphate dehydrogenase, gel electrophoresis, and pattern recognition of the DNA fragmentation. The distributions of cfDNA fragment lengths were compared using 6 measures that defined the locations and slopes for the first and last peaks, after elimination of the confounding variables. This method allowed for the unique classification of euploid and aneuploid cfDNA samples in AF, which had been matched for storage time. In addition, we showed that archived euploid AF samples gradually lose long cfDNA fragments: this loss accurately distinguishes them from the fresh samples. We present preliminary data using cfDNA-fragmentation patterns, to uniquely distinguish between AF samples of pregnant women with regard to aneuploidy and storage time, independent of gestational age and initial DNA amount. In addition to potential applications in prenatal diagnosis, these data suggest that archived AF samples consist of large amounts of short cfDNA fragments, which are undetectable using standard real-time polymerase chain reaction amplification. PMID:18382362

  3. Identification of Echinococcus granulosus strains using polymerase chain reaction-restriction fragment length polymorphism amongst livestock in Moroto district, Uganda.

    PubMed

    Chamai, Martin; Omadang, Leonard; Erume, Joseph; Ocaido, Michael; Oba, Peter; Othieno, Emmanuel; Bonaventure, Straton; Kitibwa, Annah

    2016-01-01

    A descriptive study was conducted to identify the different strains of Echinococcus granulosus occurring in livestock in Moroto district, Uganda. Echinococcus cysts from 104 domestic animals, including cattle, sheep, goats and camels, were taken and examined by microscopy, polymerase chain reaction with restriction fragment length polymorphism and Sanger DNA sequencing. Echinococcus granulosus genotypes or strains were identified through use of Bioinformatics tools: BioEdit, BLAST and MEGA6. The major finding of this study was the existence of a limited number of E. granulosus genotypes from cattle, goats, sheep and camels. The most predominant genotype was G1 (96.05%), corresponding to the common sheep strain. To a limited extent (3.95%), the study revealed the existence of Echinococcus canadensis G6/7 in three (n = 3) of the E. granulosus-positive samples. No other strains of E. granulosus were identified. It was concluded that the common sheep strain of Echinococcus sensu stricto and G6/7 of E. canadensis were responsible for echinococcal disease in Moroto district, Uganda. PMID:27543147

  4. Usefulness of IS6110-restriction fragment length polymorphism typing of Brazilian strains of Mycobacterium tuberculosis and comparison with an international fingerprint database.

    PubMed

    Suffys, P N; Ivens de Araujo, M E; Rossetti, M L; Zahab, A; Barroso, E W; Barreto, A M; Campos, E; van Soolingen, D; Kremer, K; Heersma, H; Degrave, W M

    2000-06-01

    Strains of Mycobacterium tuberculosis isolated from 219 different tuberculosis patients, 115 from patients residing in Rio de Janeiro, 79 from Rio Grande do Sul and the remaining from other regions of the country, were analyzed by IS6110-restriction fragment length polymorphism fingerprinting. The IS6110-DNA patterns from these strains were highly polymorphic: 174 different patterns were observed and 25 patterns were shared by 70 isolates (32%). Most strains (93.4%) had multicopy patterns and only 17% of clustered strains had less than six IS6110 copies. Strain clustering was significantly higher for isolates from Rio Grande do Sul (36.7%) in comparison with strains from Rio de Janeiro (22.6%), but only when using high stringency during cluster analysis. Upon screening of an international database containing 3,970 fingerprints of M. tuberculosis strains, 15% of the patterns of Brazilian strains (21% of the strains) were identical to a fingerprint of an isolate from another country and one particular eight-band pattern forming the largest Brazilian cluster was detected in seven additional countries, suggesting that international transmission of tuberculosis from and to Brazil could be occurring frequently. Alternatively,preferential use of certain IS6110 integration sites could also be important in high-copy number strains, having important consequences for the use of databases for epidemiological studies on a large scale. PMID:10919514

  5. [Radiation-induced DNA fragmentation in cells of somatic and generative tissues of Drosophila melanogaster].

    PubMed

    Yushkova, E; Zainullin, V

    2015-01-01

    The levels of DNA fragmentation (using a neutral version of the "Comet assay" method) in the cells of somatic (brain ganglia) and generative (male gonad) tissues of the inbred individuals of the Drosophila wild-type developing in different conditions of a chronic irradiation were estimated. It was found that the radiobiological effect depends on the genotype and cytotype. Irradiation at low doses (0.42 mGy/h) induces the DNA damage in somatic cells of all the studied lines Drosophila in the same way. With the increase in the intensity of chronic irradiation (3.5mGy/h) a significant level of DNA breaks in neuroblasts was observed only for Harwich and Oregon-R stocks, in the cells of male gonad--for all the studied genotypes. PMID:25962282

  6. Fragmentation of DNA components by hyperthermal heavy ion (Ar+ and Xe+) impact in the condensed phase

    NASA Astrophysics Data System (ADS)

    Sarabipour, Sarvenaz; Sarvenaz Sarabipour, Ms; Michaud, Marc; Deng, Zongwu; Huels, Michael A.

    The overriding environmental factor that presently limits human endeavors in space is exposure to heavy ion radiation. While knowledge of its damage to living tissue is essential for radiation protection and risk estimates for astronauts, very little data exists at the molecular level regarding the nascent DNA damage by the primary particle track, or by secondary species during subsequent reaction cascades. This persistent lack of a basic understanding of nascent damage induced by such low dose, high LET radiation, introduces unacceptable errors in radiation risk estimates (based mainly on extrapolation from high dose, low LET radiation), particularly for long term exposure. Mutagenic effects induced by heavy ion radiation to cells are largely due to DNA damage by secondary transient species, i.e. secondary ballistic ions, electrons and radicals generated along the ion tracks; the secondary ions have hyperthermal energies up to several 100 eV, which they will deposit within a few nm in the surrounding medium; thus their LET is very high, and yields lethal clustered DNA lesions. We present measurements of molecular damage induced in films of DNA components by ions with precisely such low energies (1-100 eV) and compare results to conventional electron impact measurements. Experiments are conducted in UHV using a mass selected low energy ion source, and a high-resolution quadrupole MS to monitor ion yields desorbing from molecular films. Among the major fragments, NH4 + is identified in the desorption mass spectra of irradiated films of Adenine, Guanine, Cytosine, indicating efficient deamination; in cells this results in pre-mutagenic lesions. Experiments with 5-amino-Uracil, and comparison to previous results on uracil and thymine show that deamination is a key step in the NH4 + fragment formation. For Adenine, we also observe formation of amine aducts in the films, viz. amination of Adenine, and global fragmentation in all ion impact mass spectra, attributed

  7. Environmental toxicants cause sperm DNA fragmentation as detected by the Sperm Chromatin Structure Assay (SCSA[reg])

    SciTech Connect

    Evenson, Donald P. . E-mail: scsa@brookings.net; Wixon, Regina

    2005-09-01

    Studies over the past two decades have clearly shown that reproductive toxicants cause sperm DNA fragmentation. This DNA fragmentation can usually be detected prior to observing alterations of metaphase chromosomes in embryos. Thus, Sperm Chromatin Structure Assay (SCSA)-detected DNA damage is viewed as the molecular precursor to later gross chromosome damage observed under the light microscope. SCSA measurements of animal or human sperm consist of first obtaining a fresh or flash frozen neat semen sample in LN2 or dry ice. Samples are then sent to a SCSA diagnostic laboratory where the samples are thawed, diluted to {approx}1-2 x 106 sperm/ml, treated for 30 s with a pH 1.2 detergent buffer and then stained with acridine orange (AO). The low pH partially denatures DNA at the sites of DNA strand breaks and the AO-ssDNA fluoresces red while the AO-dsDNA fluoresces green. Flow cytometry measurements of 5000 sperm/sample provide statistically robust data on the ratio of red to green sperm, the extent of the DNA fragmentation and the standard deviations of measures. Numerous experiments on rodents treated with reproductive toxicants clearly showed that SCSA measures are highly dose responsive and have a very low CV. Different agents that act on germ cells at various stages of development usually showed sperm DNA fragmentation when that germ cell fraction arrived in the epididymis or ejaculate. Some of these treated samples were capable of successful in vitro fertilization but with frequent embryo failure. A 2-year longitudinal study of men living a valley town with a reported abnormal level of infertility and spontaneous miscarriages and also a seasonal atmospheric smog pollution, showed, for the first time, that SCSA measurements of human sperm DNA fragmentation were detectable and correlated with dosage of air pollution while the classical semen measures were not correlated. Also, young men spraying pesticides without protective gear are at an increased risk for

  8. Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement

    PubMed Central

    2013-01-01

    Background Thermophilic microorganisms have special advantages for the conversion of plant biomass to fuels and chemicals. Members of the genus Caldicellulosiruptor are the most thermophilic cellulolytic bacteria known. They have the ability to grow on a variety of non-pretreated biomass substrates at or near ~80°C and hold promise for converting biomass to bioproducts in a single step. As for all such relatively uncharacterized organisms with desirable traits, the ability to genetically manipulate them is a prerequisite for making them useful. Metabolic engineering of pathways for product synthesis is relatively simple compared to engineering the ability to utilize non-pretreated biomass. Results Here we report the construction of a deletion of cbeI (Cbes2438), which encodes a restriction endonuclease that is as a major barrier to DNA transformation of C. bescii. This is the first example of a targeted chromosomal deletion generated by homologous recombination in this genus and the resulting mutant, JWCB018 (ΔpyrFA ΔcbeI), is readily transformed by DNA isolated from E. coli without in vitro methylation. PCR amplification and sequencing suggested that this deletion left the adjacent methyltransferase (Cbes2437) intact. This was confirmed by the fact that DNA isolated from JWCB018 was protected from digestion by CbeI and HaeIII. Plasmid DNA isolated from C. hydrothermalis transformants were readily transformed into C. bescii. Digestion analysis of chromosomal DNA isolated from seven Caldicellulosiruptor species by using nine different restriction endonucleases was also performed to identify the functional restriction-modification activities in this genus. Conclusion Deletion of the cbeI gene removes a substantial barrier to routine DNA transformation and chromosomal modification of C. bescii. This will facilitate the functional analyses of genes as well as metabolic engineering for the production of biofuels and bioproducts from biomass. An analysis of

  9. Cas3-Derived Target DNA Degradation Fragments Fuel Primed CRISPR Adaptation.

    PubMed

    Künne, Tim; Kieper, Sebastian N; Bannenberg, Jasper W; Vogel, Anne I M; Miellet, Willem R; Klein, Misha; Depken, Martin; Suarez-Diez, Maria; Brouns, Stan J J

    2016-09-01

    Prokaryotes use a mechanism called priming to update their CRISPR immunological memory to rapidly counter revisiting, mutated viruses, and plasmids. Here we have determined how new spacers are produced and selected for integration into the CRISPR array during priming. We show that Cas3 couples CRISPR interference to adaptation by producing DNA breakdown products that fuel the spacer integration process in a two-step, PAM-associated manner. The helicase-nuclease Cas3 pre-processes target DNA into fragments of about 30-100 nt enriched for thymine-stretches in their 3' ends. The Cas1-2 complex further processes these fragments and integrates them sequence-specifically into CRISPR repeats by coupling of a 3' cytosine of the fragment. Our results highlight that the selection of PAM-compliant spacers during priming is enhanced by the combined sequence specificities of Cas3 and the Cas1-2 complex, leading to an increased propensity of integrating functional CTT-containing spacers. PMID:27546790

  10. Direct calculation of the sizes of DNA fragments separated by gel electrophoresis using programmes written for a pocket calculator.

    PubMed

    Gough, E J; Gough, N M

    1984-01-11

    In order to facilitate the direct computation of the sizes of DNA fragments separated by gel electrophoresis, we have written and evaluated programmes for the Hewlett-Packard 41C programmable calculator. The sizes estimated for DNA fragments of known length using some of these programmes were found to be more accurate than the estimates obtained by conventional graphical procedures. These programmes should be adaptable to other programmable calculators. PMID:6320110

  11. Characterization of unrelated strains of Staphylococcus schleiferi by using ribosomal DNA fingerprinting, DNA restriction patterns, and plasmid profiles.

    PubMed Central

    Grattard, F; Etienne, J; Pozzetto, B; Tardy, F; Gaudin, O G; Fleurette, J

    1993-01-01

    The molecular characteristics of 31 unrelated strains of Staphylococcus schleiferi isolated from 13 hospitals between 1973 and 1991 were determined by ribosomal DNA fingerprinting by using a digoxigenin-labeled DNA probe, genomic DNA restriction patterns, and plasmid profiles. Only six strains harbored one or two plasmids. DNA restriction analysis, which was carried out with five endonucleases (EcoRI, HindIII, PstI, PvuII, and ClaI), did not allow us to discriminate between isolates. Ribotyping with HindIII, ClaI, or EcoRI enzymes generated six, seven, and nine distinct patterns, respectively. With the combination ClaI-EcoRI, 13 ribotypes were obtained among the 31 strains, suggesting a relative heterogeneity within the species. Moreover, all strains shared two or three common bands, according to the endonuclease used, which were relatively specific for S. schleiferi in comparison with the ribosomal banding patterns described for other coagulase-negative staphylococci. These results illustrate that ribotyping can be used for the epidemiological investigation of S. schleiferi isolates and possibly for taxonomic analysis in this species. Images PMID:8385149

  12. Microchip-based terminal restriction fragment length polymorphism for on-site analysis of bacterial communities in freshwater.

    PubMed

    Yamaguchi, Nobuyasu; Matsukawa, Syuhei; Shintome, Yoko; Ichijo, Tomoaki; Nasu, Masao

    2013-01-01

    Assessing microbiological quality assurance by monitoring bacteria in various sources of freshwater used for human consumption, recreation, and food preparation is important for a healthy life. Bacterial number and their community structure in freshwater should be determined as quickly as possible, and "real-time" and "on-site" microbiological methods are required. In this study, we examined the protocol for microchip-based terminal restriction fragment length polymorphism (T-RFLP) analysis, which uses microchip electrophoresis for rapid microbial community analysis. The availability of microchip-based T-RFLP was compared with conventional T-RFLP analysis, which uses a capillary electrophoresis system, with freshwater samples (spring water, river water, groundwater, and hydroponics solution). The detection limit of targeted bacteria by on-chip T-RFLP analysis was 1% (10(3) cells/mL). The fragment sizes determined by the two analysis methods were highly correlated (r(2)=0.98). On-chip T-RFLP analysis was completed within 15 min. T-RFLP profiles of nine hydroponics solution samples were analyzed by multidimensional scaling. Considerable changes and stability in bacterial community structure during hydroponic culture were detected by both analyses. These results show that on-chip T-RFLP analysis can monitor changes in bacterial community structure, as well as conventional T-RFLP analysis. The present results indicate that on-chip T-RFLP analysis is an effective tool for rapid and "on-site" bacterial community profiling in freshwater environments, as well as freshwater used for medical and industrial purposes. PMID:23902975

  13. Mitochondrial restriction fragment length polymorphism (RFLP) and sequence variation among closely related avian species and the genetic characterization of hybrid Dendroica warblers.

    PubMed

    Lovette, I J; Bermingham, E; Rohwer, S; Wood, C

    1999-09-01

    To address several interconnected goals, we used mitochondrial DNA (mtDNA) sequences to explore evolutionary relationships among four potentially hybridizing taxa in a North American avian superspecies (Dendroica occidentalis, D. townsendi, D. virens, and D. nigrescens). We first compared the results of a previous restriction fragment length polymorphism (RFLP)-based study with 1453 nucleotides from the mitochondrial cytochrome oxidase subunit I (COI), ATP-synthase 6 (ATPase 6), and ATP-synthase 8 (ATPase 8) genes. Separate phylogenetic analyses of the RFLP and sequence data provided identical and well-supported hierarchical species-level reconstructions that grouped occidentalis and townsendi as sister taxa. We then explored several general features of mitochondrial evolution via a comparison of the RFLP and sequence data sets. Qualitative rate differences that seemed evident in highly autocorrelated comparisons of RFLP vs. sequence pairwise distances were not supported when autocorrelation was removed. We also noted a high variance in corresponding RFLP and sequence distances after the removal of autocorrelation effects. This variance suggests that caution should be used when combining RFLP and sequence-based data in studies that require the large-scale synthesis of divergence estimates drawn from sources employing different molecular techniques. Finally, we used our parallel RFLP and sequence data to design and validate a rapid and inexpensive polymerase chain reaction-RFLP (PCR-RFLP) protocol for determining species-specific mitochondrial haplotypes. This PCR-RFLP technique will be applied in ongoing studies of the occidentalis/townsendi hybrid zone, where the historic and geographical complexity of the interbreeding populations necessitates the genotyping of thousands of individual warblers. PMID:10564448

  14. C6 haplotypes: associations of a Dde I site polymorphism to complement deficiency genes and the Msp I restriction fragment length polymorphism (RFLP)

    PubMed Central

    Fernie, B A; Hobart, M J; Delbridge, G; Potter, P C; Orren, A; Lachmann, P J

    1994-01-01

    Complement C6 has a common charge polymorphism designated A and B with gene frequencies of 0.65 and 0.35. The probable molecular basis for this is a Glu (C6A) for Ala (C6B) substitution at amino acid position 98, and is detected by digestion with the restriction enzyme Dde I of a polymerase chain reaction (PCR)-amplified fragment of genomic DNA. C6A was found to be Dde I-positive and C6B corresponds to Dde I-negative. We have applied our Dde I A/B polymorphism genotyping method to the investigation of C6-deficient individuals with complete (C6Q0) and sub-total deficiency (C6SD) protein phenotypes, including members of four families. We have also investigated the RFLP detected by digestion of genomic DNA with the enzyme Msp I, which is due to a polymorphic site located in the 5' section of the gene, the variable sequence of which has yet to be determined. Sixteen out of seventeen unrelated C6Q0 subjects were found to be genotypically Dde I B/Msp I-negative; the remaining subject was heterozygous at both the loci under investigation. The C6SD phenotype was found to be associated with the Dde I A/Msp I-positive genotype in two families with combined C6/C7 subtotal deficiency and two with C6SD. It can be concluded that the two forms of C6 deficiency, C6Q0 and C6SD, arose independently on two different C6 allelic backgrounds. These associations have allowed the genotyping of the rare families that contain both types of deficiency. We have also defined a number of normal C6 Dde I/Msp I haplotypes in Caucasians and Cape Coloured populations. PMID:7508350

  15. Restriction fragment length polymorphisms distinguish Leptospira borgpetersenii serovar hardjo type hardjo-bovis isolates from different geographical locations.

    PubMed Central

    Zuerner, R L; Ellis, W A; Bolin, C A; Montgomery, J M

    1993-01-01

    Genetic variability among Leptospira borgpetersenii serovar hardjo type hardjo-bovis isolates representing several geographical regions was determined by restriction endonuclease analysis. Five previously unidentified EcoRI digestion patterns and one previously unidentified HhaI digestion pattern were seen with the various isolates. The copy number and genomic distribution of an L. borgpetersenii insertion sequence (IS1533) was determined. Hardjo-bovis isolate 033 (the type strain for hardjo-bovis) contained 40 well dispersed copies of IS1533. IS1533 probes were used to compare hardjo-bovis isolates by DNA blot hybridization analysis. Use of these probes showed the presence of additional genetic heterogeneity among hardjo-bovis isolates, which restriction endonuclease analysis did not show. Pulsed-field gel electrophoretic analysis of DNAs from several isolates suggested that some polymorphisms arose by genomic rearrangements. All hardjo-bovis isolates were categorized into 14 distinct groups on the basis of common hybridization and endonuclease digestion patterns. Most of these groups were isolated from distinct geographical regions, suggesting that several different clonal populations of hardjo-bovis exist. Images PMID:7681437

  16. Structure and mutagenesis of the DNA modification-dependent restriction endonuclease AspBHI

    PubMed Central

    Horton, John R.; Nugent, Rebecca L.; Li, Andrew; Mabuchi, Megumu Yamada; Fomenkov, Alexey; Cohen-Karni, Devora; Griggs, Rose M.; Zhang, Xing; Wilson, Geoffrey G.; Zheng, Yu; Xu, Shuang-yong; Cheng, Xiaodong

    2014-01-01

    The modification-dependent restriction endonuclease AspBHI recognizes 5-methylcytosine (5mC) in the double-strand DNA sequence context of (C/T)(C/G)(5mC)N(C/G) (N = any nucleotide) and cleaves the two strands a fixed distance (N12/N16) 3′ to the modified cytosine. We determined the crystal structure of the homo-tetrameric AspBHI. Each subunit of the protein comprises two domains: an N-terminal DNA-recognition domain and a C-terminal DNA cleavage domain. The N-terminal domain is structurally similar to the eukaryotic SET and RING-associated (SRA) domain, which is known to bind to a hemi-methylated CpG dinucleotide. The C-terminal domain is structurally similar to classic Type II restriction enzymes and contains the endonuclease catalytic-site motif of DX20EAK. To understand how specific amino acids affect AspBHI recognition preference, we generated a homology model of the AspBHI-DNA complex, and probed the importance of individual amino acids by mutagenesis. Ser41 and Arg42 are predicted to be located in the DNA minor groove 5′ to the modified cytosine. Substitution of Ser41 with alanine (S41A) and cysteine (S41C) resulted in mutants with altered cleavage activity. All 19 Arg42 variants resulted in loss of endonuclease activity. PMID:24604015

  17. Terminal Restriction Fragment Length Polymorphism Analysis of Soil Bacterial Communities under Different Vegetation Types in Subtropical Area

    PubMed Central

    Wu, Zeyan; Lin, Wenxiong; Li, Bailian; Wu, Linkun; Fang, Changxun; Zhang, Zhixing

    2015-01-01

    Soil microbes are active players in energy flow and material exchange of the forest ecosystems, but the research on the relationship between the microbial diversity and the vegetation types is less conducted, especially in the subtropical area of China. In this present study, the rhizosphere soils of evergreen broad-leaf forest (EBF), coniferous forest (CF), subalpine dwarf forest (SDF) and alpine meadow (AM) were chosen as test sites. Terminal-restriction fragment length polymorphisms (T-RFLP) analysis was used to detect the composition and diversity of soil bacterial communities under different vegetation types in the National Natural Reserve of Wuyi Mountains. Our results revealed distinct differences in soil microbial composition under different vegetation types. Total 73 microbes were identified in soil samples of the four vegetation types, and 56, 49, 46 and 36 clones were obtained from the soils of EBF, CF, SDF and AM, respectively, and subsequently sequenced. The Actinobacteria, Fusobacterium, Bacteroidetes and Proteobacteria were the most predominant in all soil samples. The order of Shannon-Wiener index (H) of all soil samples was in the order of EBF>CF>SDF>AM, whereas bacterial species richness as estimated by four restriction enzymes indicated no significant difference. Principal component analysis (PCA) revealed that the soil bacterial communities’ structures of EBF, CF, SDF and AM were clearly separated along the first and second principal components, which explained 62.17% and 31.58% of the total variance, respectively. The soil physical-chemical properties such as total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP) and total potassium (TK) were positively correlated with the diversity of bacterial communities. PMID:26098851

  18. Terminal Restriction Fragment Length Polymorphism for the Identification of Spirorchiid Ova in Tissues from the Green Sea Turtle, Chelonia mydas.

    PubMed

    Chapman, Phoebe A; Traub, Rebecca J; Kyaw-Tanner, Myat T; Owen, Helen; Flint, Mark; Cribb, Thomas H; Mills, Paul C

    2016-01-01

    Blood flukes are among the most common disease causing pathogens infecting vertebrates, including humans and some of the world's most globally endangered fauna. Spirorchiid blood flukes are parasites of marine turtles, and are associated with pathology, strandings and mortalities worldwide. Their ova embolize in tissues and incite significant inflammatory responses, however attempts to draw correlations between species and lesions are frustrated by difficulties in identifying ova beyond the genus level. In this study, a newly developed terminal restriction fragment length polymorphism (T-RFLP) method was validated as a tool for differentiating between mixed spirorchiid ova in turtle tissue. Initially, a multiplex PCR was used to differentiate between the five genera of spirorchiid flukes. Following this, PCR was performed using genus/genera-specific fluorescently tagged primer pairs and PCR products digested analysis using restriction endonucleases. Using capillary electrophoresis, this T-RFLP method could differentiate between twelve species and genotypes of spirorchiid flukes in turtles. It was applied to 151 tissue samples and successfully identified the spirorchiid species present. It was found to be more sensitive than visual diagnosis, detecting infections in 28 of 32 tissues that were negative on histology. Spirorchiids were present in 96.7% of tissues tested, with Neospirorchis genotype 2 being the most prevalent, present in 93% of samples. Mixed infections were common, being present in 60.7% of samples tested. The method described here is, to our knowledge, the first use of the T-RFLP technique on host tissues or in an animal ecology context, and describes a significant advancement in the clinical capacity to diagnose a common cause of illness in our environment. It is proven as a sensitive, specific and cost-efficient means of identifying spirorchiid flukes and ova in turtles, with the potential to contribute valuable information to epidemiological and

  19. Inhibition of DNA fragmentation in thymocytes and isolated thymocyte nuclei by agents that stimulate protein kinase C.

    PubMed

    McConkey, D J; Hartzell, P; Jondal, M; Orrenius, S

    1989-08-15

    Glucocorticoid hormones and Ca2+ ionophores stimulate a suicide process in immature thymocytes, known as apoptosis or programmed cell death, that involves extensive DNA fragmentation. We have recently shown that a sustained increase in cytosolic Ca2+ concentration stimulates DNA fragmentation and cell killing in glucocorticoid- or ionophore-treated thymocytes. However, a sustained increase in the cytosolic Ca2+ level also mediates lymphocyte proliferation, suggesting that apoptosis is blocked in proliferating thymocytes. In this study we report that phorbol esters, which selectively stimulate protein kinase C (PKC), blocked DNA fragmentation and cell death in thymocytes exposed to Ca2+ ionophore or glucocorticoid hormone. The T cell mitogen, concanavalin A, which stimulates thymocytes by a mechanism that involves PKC activation, caused concentration-dependent increases in the cytosolic Ca2+ level that did not result in DNA fragmentation, but incubation with concanavalin A and the PKC inhibitor H-7 (1-(5-isoquinolinylsulfonyl)-2-methylpiperazine) resulted in both DNA fragmentation and cell death. Phorbol ester directly inhibited Ca2+-dependent DNA fragmentation in isolated thymocyte nuclei. Our results strongly suggest that PKC activation blocks thymocyte apoptosis by preventing Ca2+-stimulated endonuclease activation. PMID:2503500

  20. Nucleotide sequence analysis of a cloned DNA fragment from human cells reveals homology to retrotransposons.

    PubMed Central

    Flügel, R M; Maurer, B; Bannert, H; Rethwilm, A; Schnitzler, P; Darai, G

    1987-01-01

    During molecular cloning of proviral DNA of human spumaretrovirus, various recombinant clones were established and analyzed. Blot hybridization revealed that one of the recombinant plasmids had the characteristic features of a member of the long interspersed repetitive sequences family. The DNA element was analyzed by restriction mapping and nucleotide sequencing. It showed a high degree of amino acid sequence homology of 54.3% when compared with the 5'-terminal part of the pol gene product of the murine retrotransposon LIMd. The 3' region of the cloned DNA element encodes proteins with an even higher degree of homology of 67.4% in comparison to the corresponding parts of a member of the primate KpnI sequence family. Images PMID:3031462

  1. A baculovirus alkaline nuclease knockout construct produces fragmented DNA and aberrant capsids

    SciTech Connect

    Okano, Kazuhiro; Vanarsdall, Adam L.; Rohrmann, George F. . E-mail: rohrmanng@orst.edu

    2007-03-01

    DNA replication of bacmid-derived constructs of the Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV) was analyzed by field inversion gel electrophoresis (FIGE) in combination with digestion at a unique Eco81I restriction enzyme site. Three constructs were characterized: a parental bacmid, a bacmid deleted for the alkaline nuclease gene, and a bacmid from which the gp64 gene had been deleted. The latter was employed as a control for comparison with the alkaline nuclease knockout because neither yields infectious virus and their replication is limited to the initially transfected cells. The major difference between DNA replicated by the different constructs was the presence in the alkaline nuclease knockout of high concentrations of relatively small, subgenome length DNA in preparations not treated with Eco81I. Furthermore, upon Eco81I digestion, the alkaline nuclease knockout bacmid also yielded substantially more subgenome size DNA than the other constructs. Electron microscopic examination of cells transfected with the alkaline nuclease knockout indicated that, in addition to a limited number of normal-appearing electron-dense nucleocapsids, numerous aberrant capsid-like structures were observed indicating a defect in nucleocapsid maturation or in a DNA processing step that is necessary for encapsidation. Because of the documented role of the baculovirus alkaline nuclease and its homologs from other viruses in homologous recombination, these data suggest that DNA recombination may play a major role in the production of baculovirus genomes.

  2. Do Pilea Microphylla Improve Sperm DNA Fragmentation and Sperm Parameters in Varicocelized Rats?

    PubMed

    Heidari, Reza; Alizadeh, Rafieh; Abbasi, Niloufar; Pasbakhsh, Parichehr; Hedayatpour, Azim; Farajpour, Mostafa; Khaleghi, Mohammad Reza; Abbasi, Mehdi; Dehpour, Ahmad Reza

    2015-01-01

    Varicocele is one of the most common causes of primary male infertility. Pilea microphylla (PM) is being used as folk medicine. This study was aimed to investigate the effects of PM in a rat model of varicocele. A total of 30 male Wistar rats were divided into control, sham, varicocele, accessory varicocele and PM-treated groups. After 10 weeks of varicocele induction, sperm parameters and chromatin (Aniline blue, acridine orange and toluidine blue) were evaluated, except for the treated and accessory groups that received 50 mg/kg PM orally daily for 10 weeks and then were sacrificed. Sperm parameters significantly decreased in varicocele groups (P < 0.01). Moreover, there was a negative correlation between the DNA fragmentation and sperm parameters in varicocelized rats. Administration of PM led to significantly increased sperm parameters and AO staining (P < 0.05). These findings suggest that PM improves sperm parameters and DNA fragmentation in varicocelized rats. PM can reduce the damage to sperm DNA but not chromatin condensation. PMID:26553082

  3. The effects of aging and neurodegeneration on apoptosis-associated DNA fragmentation and the benefits of nicotinamide.

    PubMed

    Mukherjee, S K; Adams, J D

    1997-01-01

    In this work, the tertiary butylhydroperoxide- (t-BuOOH) treated mouse was used as a model to study the oxidative stress that is associated with various neurodegenerative diseases. DNA was found to be an early target of t-BuOOH attack. Necrosis was associated with extensive DNA fragmentation that occurred in almost all regions of the brain within 20 min following intracerebroventricular (icv) injection of 109.7 mg/kg t-BuOOH. Apoptosis was associated with high levels of DNA fragmentation that was observed at 48 h after icv administration of 21.9 mg/kg t-BuOOH. Susceptibility to DNA damage was found to be age-dependent, since 24-mo-old mice exhibited consistently higher and more pervasive DNA damage than 8 mo-old-mice. Extensive DNA damage was seen in various brain regions in patients with Alzheimer disease (AD) and with both Alzheimer and Parkinson disease (AD-PD). These results directly implicate DNA damage in neurodegeneration. The DNA fragmentation ob-served can lead to both apoptosis and necrosis, as suggested by gel electrophoresis. Nicotinamide, a precursor of NAD in the brain, was able to prevent DNA fragmentation induced by low-dose t-BuOOH, when coadministered with the toxin. PMID:9437658

  4. Assessment of the type and degree of restriction fragment length polymorphism (RFLP) in diploid species of the genus Triticum.

    PubMed

    Le Corre, V; Bernard, M

    1995-06-01

    The A genome of the Triticeae is carried by three diploid species and subspecies of the genus Triticum: T. monococcum ssp. monococcum, T. monococcum ssp. boeoticum, and T. urartu, the A-genome donor of bread wheat. These species carry many genes of agronomic interest, including disease resistances, and may also be used for the genetic mapping of the A genome. The aim of this study was to evaluate the variability present in a sample of 25 accessions representative of this group using RFLP markers. Twenty probes, consisting of genomic DNA or cDNA from wheat, were used in combination with four restriction enzymes. A high level of polymorphism was found, especially at the interspecific level. Selecting the most informative enzymes appeared to be of great importance in order to obtain a stable structure for the diversity observed with only 20 probes. The results are largely consistent with taxonomy and data relating to geographical origins. The probes were also tested on 14 wheat cutivars. A good correlation coefficient was found for their informative values on wheat cultivars and diploid lines. Whether the group of species studied here would be useful for genetic mapping remains to be determined. Nevertheless, RFLP markers will be useful to follow genes that can possibly be introgressed from these species into cultivated wheat. PMID:24173063

  5. Determination of locust bean gum and guar gum by polymerase chain reaction and restriction fragment length polymorphism analysis.

    PubMed

    Meyer, K; Rosa, C; Hischenhuber, C; Meyer, R

    2001-01-01

    A polymerase chain reaction (PCR) was developed to differentiate the thickening agents locust bean gum (LBG) and the cheaper guar gum in finished food products. Universal primers for amplification of the intergenic spacer region between trnL 3' (UAA) exon and trnF (GAA) gene in the chloroplast (cp) genome and subsequent restriction analysis were applied to differentiate guar gum and LBG. The presence of <5% (w/w) guar gum powder added to LBG powder was detectable. Based on data obtained from sequencing this intergenic spacer region, a second PCR method for the specific detection of guar gum DNA was also developed. This assay detected guar gum powder in LBG in amounts as low as 1% (w/w). Both methods successfully detected guar gum and/or LBG in ice cream stabilizers and in foodstuffs, such as dairy products, ice cream, dry seasoning mixes, a finished roasting sauce, and a fruit jelly product, but not in products with highly degraded DNA, such as tomato ketchup and sterilized chocolate cream. Both methods detected guar gum and LBG in ice cream and fresh cheese at levels <0.1%. PMID:11234856

  6. DNA fragmentation and nuclear phenotype in tendons exposed to low-intensity infrared laser

    NASA Astrophysics Data System (ADS)

    de Paoli, Flavia; Ramos Cerqueira, Larissa; Martins Ramos, Mayara; Campos, Vera M.; Ferreira-Machado, Samara C.; Geller, Mauro; de Souza da Fonseca, Adenilson

    2015-03-01

    Clinical protocols are recommended in device guidelines outlined for treating many diseases on empirical basis. However, effects of low-intensity infrared lasers at fluences used in clinical protocols on DNA are controversial. Excitation of endogenous chromophores in tissues and free radicals generation could be described as a consequence of laser used. DNA lesions induced by free radicals cause changes in DNA structure, chromatin organization, ploidy degrees and cell death. In this work, we investigated whether low-intensity infrared laser therapy could alter the fibroblasts nuclei characteristics and induce DNA fragmentation. Tendons of Wistar rats were exposed to low-intensity infrared laser (830 nm), at different fluences (1, 5 and 10 J/cm2), in continuous wave (power output of 10mW, power density of 79.6 mW/cm2). Different frequencies were analyzed for the higher fluence (10 J/cm2), at pulsed emission mode (2.5, 250 and 2500 Hz), with the laser source at surface of skin. Geometric, densitometric and textural parameters obtained for Feulgen-stained nuclei by image analysis were used to define nuclear phenotypes. Significant differences were observed on the nuclear phenotype of tendons after exposure to laser, as well as, high cell death percentages was observed for all fluences and frequencies analyzed here, exception 1 J/cm2 fluence. Our results indicate that low-intensity infrared laser can alter geometric, densitometric and textural parameters in tendon fibroblasts nuclei. Laser can also induce DNA fragmentation, chromatin lost and consequently cell death, using fluences, frequencies and emission modes took out from clinical protocols.

  7. Identification of column edges of DNA fragments by using K-means clustering and mean algorithm on lane histograms of DNA agarose gel electrophoresis images

    NASA Astrophysics Data System (ADS)

    Turan, Muhammed K.; Sehirli, Eftal; Elen, Abdullah; Karas, Ismail R.

    2015-07-01

    Gel electrophoresis (GE) is one of the most used method to separate DNA, RNA, protein molecules according to size, weight and quantity parameters in many areas such as genetics, molecular biology, biochemistry, microbiology. The main way to separate each molecule is to find borders of each molecule fragment. This paper presents a software application that show columns edges of DNA fragments in 3 steps. In the first step the application obtains lane histograms of agarose gel electrophoresis images by doing projection based on x-axis. In the second step, it utilizes k-means clustering algorithm to classify point values of lane histogram such as left side values, right side values and undesired values. In the third step, column edges of DNA fragments is shown by using mean algorithm and mathematical processes to separate DNA fragments from the background in a fully automated way. In addition to this, the application presents locations of DNA fragments and how many DNA fragments exist on images captured by a scientific camera.

  8. Diversity and molecular variation among plasmids in Salmonella enterica serotype Dublin based on restriction enzyme fragmentation pattern analysis.

    PubMed Central

    Browning, L. M.; Wray, C.; Platt, D. J.

    1995-01-01

    Molecular variation within and between plasmids of Salmonella enterica serotype Dublin was analysed. Such variation has been demonstrated in the serotype-specific plasmids (SSP's) of Typhimurium and Enteritidis. The two aims of this study were to determine the plasmid diversity in a host-adapted serotype and also the incidence of molecular variation in the SSP among strains of Dublin using restriction endonuclease fragmentation pattern (REFP) analysis with Pst1, Sma1 and EcoRV. Sixty-five strains were examined from seven countries. Plasmid profile and REFP analysis showed that none of the strains was plasmid-free. Seventy-seven percent of the strains possessed the 72 kb SSP either alone or in combination with another plasmid; 23% harboured plasmids which were molecular variants of the SSP. Four of the variants were more closely related to each other than to the reference SSP and were harboured by Dublin isolated from both the USA and Europe. A further three were shown to be cointegrate plasmids and were similarly distributed. Thirty-two percent of strains possessed the SSP alone. None of the UK strains was resistant to any of the antimicrobial agents tested whereas 74% of the remaining strains were resistant to between one and five antimicrobial agents. This study corroborates previous findings concerning the high degree of stability of the SSP and confirmed the clonal nature of Dublin. Co-resident plasmids provided evidence of sub-clones within localized geographical areas. Images Fig. 2 PMID:7705487

  9. Assessment of microbial dynamics in the Pearl River Estuary by 16S rRNA terminal restriction fragment analysis

    NASA Astrophysics Data System (ADS)

    Wu, Madeline; Song, Liansheng; Ren, Jianping; Kan, Jianjun; Qian, Pei-Yuan

    2004-10-01

    We have evaluated the feasibility of using the terminal restriction fragment length polymorphism (T-RFLP) pattern of polymerase chain reaction (PCR) amplified 16S rRNA sequences to track the changes of the free-living bacterial community for the Pearl River Estuary surface waters. The suitability of specific PCR primers, PCR bias induced by thermal cycles, and field-sampling volumes were critically evaluated in laboratory tests. We established a workable protocol and obtained TRF patterns that reflected the changes in the bacterial population. The temporal dynamics over a 24 h period were examined at one anchored station, as well as the spatial distribution pattern of the bacterial community at several stations, covering the transects along the river discharge direction and across the river plume. The TRF pattern revealed 9 dominant bacterial groups. Changes in their relative abundance reflecting the changes in the bacterial community composition were documented. Many culturable species were isolated from each field sample and a portion of the 16S rRNA gene for each species was sequenced. The species was identified based on sequence data comparison. In this region, the dominant species belong to the γ-subdivision of proteobacteria and the Bacillus/Clostridium group of Firmicutes. We also detected the wide spread distribution of Acinetobacter spp.; many of these species are known nosocomial pathogen for humans.

  10. Molecular Epidemiology of Leptospirosis in Northern Iran by Nested Polymerase Chain Reaction/Restriction Fragment Length Polymorphism and Sequencing Methods

    PubMed Central

    Zakeri, Sedigheh; Sepahian, Neda; Afsharpad, Mandana; Esfandiari, Behzad; Ziapour, Peyman; Djadid, Navid D.

    2010-01-01

    This study was conducted to investigate the prevalence of Leptospira species in Mazandaran Province of Iran by using nested polymerase chain reaction (PCR)/restriction fragment length polymorphism (RFLP) methods and sequencing analysis. Blood samples (n = 119) were collected from humans suspected of having leptospirosis from different parts of the province in 2007. By using an indirect immunofluorescent antibody test (IFAT), we determined that 35 (29.4%) of 119 suspected cases had leptospiral antibody titers ≥ 1:80, which confirmed the diagnosis of leptospirosis. Nested PCR assay also determined that 60 (50.4%) of 119 samples showed Leptospira infection. Furthermore, 44 (73.3%) of 60 confirmed leptospirosis amplified products were subjected to sequencing analysis. Sequence alignment identified L. interrogans, L. kirschneri, and L. wolffii species. All positive cases diagnosed by IFAT or PCR were in patients who reported contact with animals, high-risk occupational activities, and exposure to contaminated water. Therefore, it is important to increase attention about this disease among physicians and to strengthen laboratory capacity for its diagnosis in infected patients in Iran. PMID:20439973

  11. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms.

    PubMed

    Paterson, A H; Lander, E S; Hewitt, J D; Peterson, S; Lincoln, S E; Tanksley, S D

    1988-10-20

    The conflict between the Mendelian theory of particulate inheritance and the observation of continuous variation for most traits in nature was resolved in the early 1900s by the concept that quantitative traits can result from segregation of multiple genes, modified by environmental effects. Although pioneering experiments showed that linkage could occasionally be detected to such quantitative trait loci (QTLs), accurate and systematic mapping of QTLs has not been possible because the inheritance of an entire genome could not be studied with genetic markers. The use of restriction fragment length polymorphisms (RFLPs) has made such investigations possible, at least in principle. Here, we report the first use of a complete RFLP linkage map to resolve quantitative traits into discrete Mendelian factors, in an interspecific back-cross of tomato. Applying new analytical methods, we mapped at least six QTLs controlling fruit mass, four QTLs for the concentration of soluble solids and five QTLs for fruit pH. This approach is broadly applicable to the genetic dissection of quantitative inheritance of physiological, morphological and behavioural traits in any higher plant or animal. PMID:2902517

  12. Restriction fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the mosquito Aedes aegypti

    SciTech Connect

    Severson, D.W.; Thathy, V.; Mori, A.

    1995-04-01

    Susceptibility of the mosquito Aedes aegypti to the malarial parasite Plasmodium gallinaceum was investigated as a quantitative trait using restriction fragment length polymorphisms (RFLP). Two F{sub 2} populations of mosquitoes were independently prepared from pairwise matings between a highly susceptible and a refractory strain of A. aegypti. RFLP were tested for association with oocyst development on the mosquito midgut. Two putative quantitative trait loci (QTL) were identified that significantly affect susceptibility. One QTL, pgs [2,LF98], is located on chromosome 2 and accounted for 65 and 49% of the observed phenotypic variance in the two populations, respectively. A second QTL, pgs[3,MalI], is located on chromosome 3 and accounted for 14 and 10% of the observed phenotypic variance in the two populations, respectively. Both QTL exhibit a partial dominance effect on susceptibility, wherein the dominance effect is derived from the refractory parent. No indication of epistasis between these QTL was detected. Evidence suggests that either a tightly linked cluster of independent genes or a single locus affecting susceptibility to various mosquito-borne parasites and pathogens has evolved near the LF98 locus; in addition to P. gallinaceum susceptibility, this general genome region has previously been implicated in susceptibility to the filaria nematode Brugia malayi and the yellow fever virus. 35 refs., 2 figs., 3 tabs.

  13. A new way of measuring apoptosis by absolute quantitation of inter-nucleosomally fragmented genomic DNA

    PubMed Central

    Hooker, David J.; Mobarok, Masqura; Anderson, Jenny L.; Rajasuriar, Reena; Gray, Lachlan R.; Ellett, Anne M.; Lewin, Sharon R.; Gorry, Paul R.; Cherry, Catherine L.

    2012-01-01

    Several critical events of apoptosis occur in the cell nucleus, including inter-nucleosomal DNA fragmentation (apoptotic DNA) and eventual chromatin condensation. The generation of apoptotic DNA has become a biochemical hallmark of apoptosis because it is a late ‘point of no return’ step in both the extrinsic (cell-death receptor) and intrinsic (mitochondrial) apoptotic pathways. Despite investigators observing apoptotic DNA and understanding its decisive role as a marker of apoptosis for over 20 years, measuring it has proved elusive. We have integrated ligation-mediated PCR and qPCR to design a new way of measuring apoptosis, termed ApoqPCR, which generates an absolute value for the amount (picogram) of apoptotic DNA per cell population. ApoqPCR’s advances over current methods include a 1000-fold linear dynamic range yet sensitivity to distinguish subtle low-level changes, measurement with a 3- to 4-log improvement in sample economy, and capacity for archival or longitudinal studies combined with high-throughput capability. We demonstrate ApoqPCR’s utility in both in vitro and in vivo contexts. Considering the fundamental role apoptosis has in vertebrate and invertebrate health, growth and disease, the reliable measurement of apoptotic nucleic acid by ApoqPCR will be of value in cell biology studies in basic and applied science. PMID:22544708

  14. Novel extraction method of genomic DNA suitable for long-fragment amplification from small amounts of milk.

    PubMed

    Liu, Y F; Gao, J L; Yang, Y F; Ku, T; Zan, L S

    2014-11-01

    Isolation of genomic DNA is a prerequisite for assessment of milk quality. As a source of genomic DNA, milk somatic cells from milking ruminants are practical, animal friendly, and cost-effective sources. Extracting DNA from milk can avoid the stress response caused by blood and tissue sampling of cows. In this study, we optimized a novel DNA extraction method for amplifying long (>1,000 bp) DNA fragments and used it to evaluate the isolation of DNA from small amounts of milk. The techniques used for the separation of milk somatic cell were explored and combined with a sodium dodecyl sulfate (SDS)-phenol method for optimizing DNA extraction from milk. Spectrophotometry was used to determine the concentration and purity of the extracted DNA. Gel electrophoresis and DNA amplification technologies were used for to determine DNA size and quality. The DNA of 112 cows was obtained from milk (samples of 13 ± 1 mL) and the corresponding optical density ratios at 260:280 nm were between 1.65 and 1.75. Concentrations were between 12 and 45 μg/μL and DNA size and quality were acceptable. The specific PCR amplification of 1,019- and 729-bp bovine DNA fragments was successfully carried out. This novel method can be used as a practical, fast, and economical mean for long genomic DNA extraction from a small amount of milk. PMID:25218756

  15. Comparative restriction endonuclease maps of proviral DNA of the primate type C simian sarcoma-associated virus and gibbon ape leukemia virus group.

    PubMed Central

    Trainor, C D; Wong-Staal, F; Reitz, M S

    1982-01-01

    Extrachromosomal DNA was purified from canine thymus cells acutely infected with different strains of infectious primate type C viruses of the woolly monkey (simian) sarcoma helper virus and gibbon ape leukemia virus group. All DNA preparations contained linear proviral molecules of 9.1 to 9.2 kilobases, at least some of which represent complete infectious proviral DNA. Cells infected with a replication-defective fibroblast-transforming sarcoma virus and its helper, a replication-competent nontransforming helper virus, also contained a 6.6- to 6.7-kilobase DNA. These proviral DNA molecules were digested with different restriction endonucleases, and the resultant fragments were oriented to the viral RNA by a combination of partial digestions, codigestion with more than one endonuclease, digestion of integrated proviral DNA, and hybridization with 3'- and 5'-specific viral probes. The 3'- and 5'-specific probes each hybridized to fragments from both ends of proviral DNA, indicating that, in common with those of other retroviruses, these proviruses contain a large terminal redundancy at both ends, each of which consists of sequences derived from both the 3' and 5' regions of the viral RNA. The proviral sequences are organized 3',5'-unique-3',5'. Four restriction enzymes (KpnI, SmaI, PstI, and SstI) recognized sites within the large terminal redundancies, and these sites were conserved within all the isolates tested. This suggests that both the 3' and 5' ends of the genomic RNA of these viruses are extremely closely related. In contrast, the restriction sites within the unique portion of the provirus were not strongly conserved within this group of viruses, even though they were related along most of their genomes. Whereas the 5' 60 to 70% of the RNA of these viruses was more closely related by liquid hybridization experiments than was the 3' 30 to 40%, restriction sites within this region were not preferentially conserved, suggesting that small sequence differences or

  16. Assessment of genetic diversity among strains of Pseudomonas syringae by PCR-restriction fragment length polymorphism analysis of rRNA operons with special emphasis on P. syringae pv. tomato.

    PubMed Central

    Manceau, C; Horvais, A

    1997-01-01

    Phylogenetic relationships among 77 bacterial strains belonging to Pseudomonas syringae and Pseudomonas viridiflava species were assessed by analysis of the PCR-restriction fragment length polymorphism (RFLP) patterns of three DNA fragments corresponding to rrs and rrl genes and the internal transcribed spacer, ITS1. No difference among all strains in rrs and rrl genes was observed with 14 restriction enzymes, which confirms the close relationships existing between these two species. The nucleotidic sequence of the internal transcripted spacer (ITS1) between rrs and rrl for the P. syringae pv. syringae strain CFBP1392 was determined. Restriction maps of the PCR-amplified ITS1 region were prepared and compared for all 77 strains. Seventeen RFLP patterns, forming three main clusters, were distinguished. One contained all strains of P. syringae pv. tomato and of other pathovars which had been previously described as closely related by either pathogenicity studies or biochemical analyses. This cluster was equally far from P. viridiflava and from other P. syringae pathovars. These other pathovars of P. syringae formed a less coherent taxon. PMID:9023928

  17. PyroTRF-ID: a novel bioinformatics methodology for the affiliation of terminal-restriction fragments using 16S rRNA gene pyrosequencing data

    PubMed Central

    2012-01-01

    Background In molecular microbial ecology, massive sequencing is gradually replacing classical fingerprinting techniques such as terminal-restriction fragment length polymorphism (T-RFLP) combined with cloning-sequencing for the characterization of microbiomes. Here, a bioinformatics methodology for pyrosequencing-based T-RF identification (PyroTRF-ID) was developed to combine pyrosequencing and T-RFLP approaches for the description of microbial communities. The strength of this methodology relies on the identification of T-RFs by comparison of experimental and digital T-RFLP profiles obtained from the same samples. DNA extracts were subjected to amplification of the 16S rRNA gene pool, T-RFLP with the HaeIII restriction enzyme, 454 tag encoded FLX amplicon pyrosequencing, and PyroTRF-ID analysis. Digital T-RFLP profiles were generated from the denoised full pyrosequencing datasets, and the sequences contributing to each digital T-RF were classified to taxonomic bins using the Greengenes reference database. The method was tested both on bacterial communities found in chloroethene-contaminated groundwater samples and in aerobic granular sludge biofilms originating from wastewater treatment systems. Results PyroTRF-ID was efficient for high-throughput mapping and digital T-RFLP profiling of pyrosequencing datasets. After denoising, a dataset comprising ca. 10′000 reads of 300 to 500 bp was typically processed within ca. 20 minutes on a high-performance computing cluster, running on a Linux-related CentOS 5.5 operating system, enabling parallel processing of multiple samples. Both digital and experimental T-RFLP profiles were aligned with maximum cross-correlation coefficients of 0.71 and 0.92 for high- and low-complexity environments, respectively. On average, 63±18% of all experimental T-RFs (30 to 93 peaks per sample) were affiliated to phylotypes. Conclusions PyroTRF-ID profits from complementary advantages of pyrosequencing and T-RFLP and is particularly

  18. Functional Coupling of Duplex Translocation to DNA Cleavage in a Type I Restriction Enzyme

    PubMed Central

    Csefalvay, Eva; Lapkouski, Mikalai; Guzanova, Alena; Csefalvay, Ladislav; Baikova, Tatsiana; Bialevich, Vitali; Shamayeva, Katsiaryna; Janscak, Pavel; Kuta Smatanova, Ivana; Panjikar, Santosh; Carey, Jannette; Weiserova, Marie; Ettrich, Rüdiger

    2015-01-01

    Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA cleavage and ATP-dependent DNA translocation activities located on motor subunit HsdR. Functional coupling of DNA cleavage and translocation is a hallmark of the Type I restriction systems that is consistent with their proposed role in horizontal gene transfer. DNA cleavage occurs at nonspecific sites distant from the cognate recognition sequence, apparently triggered by stalled translocation. The X-ray crystal structure of the complete HsdR subunit from E. coli plasmid R124 suggested that the triggering mechanism involves interdomain contacts mediated by ATP. In the present work, in vivo and in vitro activity assays and crystal structures of three mutants of EcoR124I HsdR designed to probe this mechanism are reported. The results indicate that interdomain engagement via ATP is indeed responsible for signal transmission between the endonuclease and helicase domains of the motor subunit. A previously identified sequence motif that is shared by the RecB nucleases and some Type I endonucleases is implicated in signaling. PMID:26039067

  19. [Inhibitory Properties of Nitrogen-Containing Adamantane Derivatives with Monoterpenoid Fragments Against Tyrosyl-DNA Phosphodiesterase I].

    PubMed

    Zakharenko, A L; Ponomarev, K U; Suslov, E V; Korchagina, D V; Volcho, K P; Vasil'eva, I A; Salakhutdinov, N F; Lavrik, O I

    2015-01-01

    It was found that compounds combining diazaadamantane and monoterpenoid fragments are potent inhibitors of new structural type of human recombinant DNA repair enzyme Tyrosyl-DNA phosphodiesterase I (Tdp1). It was demonstrated that the inhibition efficiency depended on the length and flexibility of the aliphatic chain of the substituent. PMID:27125028

  20. Investigation on the Origin of Sperm DNA Fragmentation: Role of Apoptosis, Immaturity and Oxidative Stress.

    PubMed

    Muratori, Monica; Tamburrino, Lara; Marchiani, Sara; Cambi, Marta; Olivito, Biagio; Azzari, Chiara; Forti, Gianni; Baldi, Elisabetta

    2015-01-01

    Sperm DNA fragmentation (sDF) represents a threat to male fertility, human reproduction and the health of the offspring. The causes of sDF are still unclear, even if apoptosis, oxidative assault and defects in chromatin maturation are hypothesized. Using multicolor flow cytometry and sperm sorting, we challenged the three hypothesized mechanisms by simultaneously evaluating sDF and signs of oxidative damage (8-hydroxy, 2'-deoxyguanosine [8-OHdG] and malondialdehyde [MDA]), apoptosis (caspase activity and cleaved poly[ADP-ribose] polymerase [cPARP]) and sperm immaturity (creatine phosphokinase [CK] and excess of residual histones). Active caspases and c-PARP were concomitant with sDF in a high percentage of spermatozoa (82.6% ± 9.1% and 53.5% ± 16.4%, respectively). Excess of residual histones was significantly higher in DNA-fragmented sperm versus sperm without DNA fragmentation (74.8% ± 17.5% and 37.3% ± 16.6%, respectively, p < 0.005), and largely concomitant with active caspases. Conversely, oxidative damage was scarcely concomitant with sDF in the total sperm population, at variance with live sperm, where 8-OHdG and MDA were clearly associated to sDF. In addition, most live cells with active caspase also showed 8-OHdG, suggesting activation of apoptotic pathways in oxidative-injured live cells. This is the first investigation on the origin of sDF directly evaluating the simultaneous presence of the signs of the hypothesized mechanisms with DNA breaks at the single cell level. The results indicate that the main pathway leading to sperm DNA breaks is a process of apoptosis, likely triggered by an impairment of chromatin maturation in the testis and by oxidative stress during the transit in the male genital tract. These findings are highly relevant for clinical studies on the effects of drugs on sDF and oxidative stress in infertile men and for the development of new therapeutic strategies. PMID:25786204

  1. AFLP: a new technique for DNA fingerprinting.

    PubMed Central

    Vos, P; Hogers, R; Bleeker, M; Reijans, M; van de Lee, T; Hornes, M; Frijters, A; Pot, J; Peleman, J; Kuiper, M

    1995-01-01

    A novel DNA fingerprinting technique called AFLP is described. The AFLP technique is based on the selective PCR amplification of restriction fragments from a total digest of genomic DNA. The technique involves three steps: (i) restriction of the DNA and ligation of oligonucleotide adapters, (ii) selective amplification of sets of restriction fragments, and (iii) gel analysis of the amplified fragments. PCR amplification of restriction fragments is achieved by using the adapter and restriction site sequence as target sites for primer annealing. The selective amplification is achieved by the use of primers that extend into the restriction fragments, amplifying only those fragments in which the primer extensions match the nucleotides flanking the restriction sites. Using this method, sets of restriction fragments may be visualized by PCR without knowledge of nucleotide sequence. The method allows the specific co-amplification of high numbers of restriction fragments. The number of fragments that can be analyzed simultaneously, however, is dependent on the resolution of the detection system. Typically 50-100 restriction fragments are amplified and detected on denaturing polyacrylamide gels. The AFLP technique provides a novel and very powerful DNA fingerprinting technique for DNAs of any origin or complexity. Images PMID:7501463

  2. Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes.

    PubMed

    Chand, Mahesh K; Nirwan, Neha; Diffin, Fiona M; van Aelst, Kara; Kulkarni, Manasi; Pernstich, Christian; Szczelkun, Mark D; Saikrishnan, Kayarat

    2015-11-01

    Production of endonucleolytic double-strand DNA breaks requires separate strand cleavage events. Although catalytic mechanisms for simple, dimeric endonucleases are known, there are many complex nuclease machines that are poorly understood. Here we studied the single polypeptide Type ISP restriction-modification (RM) enzymes, which cleave random DNA between distant target sites when two enzymes collide after convergent ATP-driven translocation. We report the 2.7-Å resolution X-ray crystal structure of a Type ISP enzyme-DNA complex, revealing that both the helicase-like ATPase and nuclease are located upstream of the direction of translocation, an observation inconsistent with simple nuclease-domain dimerization. Using single-molecule and biochemical techniques, we demonstrate that each ATPase remodels its DNA-protein complex and translocates along DNA without looping it, leading to a collision complex in which the nuclease domains are distal. Sequencing of the products of single cleavage events suggests a previously undescribed endonuclease model, where multiple, stochastic strand-nicking events combine to produce DNA scission. PMID:26389736

  3. Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes

    PubMed Central

    Chand, Mahesh Kumar; Nirwan, Neha; Diffin, Fiona M.; van Aelst, Kara; Kulkarni, Manasi; Pernstich, Christian; Szczelkun, Mark D.; Saikrishnan, Kayarat

    2015-01-01

    Endonucleolytic double-strand DNA break production requires separate strand cleavage events. Although catalytic mechanisms for simple dimeric endonucleases are available, there are many complex nuclease machines which are poorly understood in comparison. Here we studied the single polypeptide Type ISP restriction-modification (RM) enzymes, which cleave random DNA between distant target sites when two enzymes collide following convergent ATP-driven translocation. We report the 2.7 Angstroms resolution X-ray crystal structure of a Type ISP enzyme-DNA complex, revealing that both the helicase-like ATPase and nuclease are unexpectedly located upstream of the direction of translocation, inconsistent with simple nuclease domain-dimerization. Using single-molecule and biochemical techniques, we demonstrate that each ATPase remodels its DNA-protein complex and translocates along DNA without looping it, leading to a collision complex where the nuclease domains are distal. Sequencing of single cleavage events suggests a previously undescribed endonuclease model, where multiple, stochastic strand nicking events combine to produce DNA scission. PMID:26389736

  4. DNA double-strand breaks induced by high-energy neon and iron ions in human fibroblasts. II. Probing individual notI fragments by hybridization.

    PubMed

    Löbrich, M; Rydberg, B; Cooper, P K

    1994-08-01

    The initial yields of DNA double-strand breaks induced by energetic heavy ions (425 MeV/u neon and 250, 400 and 600 MeV/u iron) in comparison to X rays were measured in normal human diploid fibroblast cells within three small areas of the genome, defined by NotI fragments of 3.2, 2.0 and 1.2 Mbp. The methodology involves NotI restriction endonuclease digestion of DNA from irradiated cells, followed by pulsed-field gel electrophoresis, Southern blotting and hybridization with probes recognizing single-copy sequences within the three NotI fragments. The gradual disappearance of the full-size NotI fragment with dose and the appearance of a smear of broken DNA molecules are quantified. Assuming Poisson statistics for the number of double-strand breaks induced per NotI fragment of known size, absolute yields of DNA double-strand breaks were calculated and determined to be linear with dose in all cases, with the neon ion (LET 32 keV/microns) producing 4.4 x 10(-3) breaks/Mbp/Gy and all three iron-ion beams (LETs from 190 to 350 keV/microns) producing 2.8 x 10(-3) breaks/Mbp/Gy, giving RBE values for production of double-strand breaks of 0.76 for neon and 0.48 for iron in comparison to our previously determined X-ray induction rate of 5.8 x 10(-3) breaks/Mbp/Gy. These RBE values are in good agreement with results of measurements over the whole genome as reported in the accompanying paper (B. Rydberg, M. Löbrich and P. Cooper, Radiat. Res. 139, 133-141, 1994). The distribution of broken DNA molecules was similar for the various radiations, supporting a random distribution of double-strand breaks induced by the heavy ions over Mbp distances; however, correlated breaks (clusters) over much smaller distances are not ruled out. Reconstitution of the 3.2 Mbp NotI fragment was studied during postirradiation incubation of the cells as a measure of rejoining of correct DNA ends. The proportion of breaks repaired decreased with increasing LET. PMID:8052689

  5. Sex Determination in Highly Fragmented Human DNA by High-Resolution Melting (HRM) Analysis

    PubMed Central

    Álvarez-Sandoval, Brenda A.; Manzanilla, Linda R.; Montiel, Rafael

    2014-01-01

    Sex identification in ancient human remains is a common problem especially if the skeletons are sub-adult, incomplete or damaged. In this paper we propose a new method to identify sex, based on real-time PCR amplification of small fragments (61 and 64 bp) of the third exon within the amelogenin gene covering a 3-bp deletion on the AMELX-allele, followed by a High Resolution Melting analysis (HRM). HRM is based on the melting curves of amplified fragments. The amelogenin gene is located on both chromosomes X and Y, showing dimorphism in length. This molecular tool is rapid, sensitive and reduces the risk of contamination from exogenous genetic material when used for ancient DNA studies. The accuracy of the new method described here has been corroborated by using control samples of known sex and by contrasting our results with those obtained with other methods. Our method has proven to be useful even in heavily degraded samples, where other previously published methods failed. Stochastic problems such as the random allele drop-out phenomenon are expected to occur in a less severe form, due to the smaller fragment size to be amplified. Thus, their negative effect could be easier to overcome by a proper experimental design. PMID:25098828

  6. Sex determination in highly fragmented human DNA by high-resolution melting (HRM) analysis.

    PubMed

    Álvarez-Sandoval, Brenda A; Manzanilla, Linda R; Montiel, Rafael

    2014-01-01

    Sex identification in ancient human remains is a common problem especially if the skeletons are sub-adult, incomplete or damaged. In this paper we propose a new method to identify sex, based on real-time PCR amplification of small fragments (61 and 64 bp) of the third exon within the amelogenin gene covering a 3-bp deletion on the AMELX-allele, followed by a High Resolution Melting analysis (HRM). HRM is based on the melting curves of amplified fragments. The amelogenin gene is located on both chromosomes X and Y, showing dimorphism in length. This molecular tool is rapid, sensitive and reduces the risk of contamination from exogenous genetic material when used for ancient DNA studies. The accuracy of the new method described here has been corroborated by using control samples of known sex and by contrasting our results with those obtained with other methods. Our method has proven to be useful even in heavily degraded samples, where other previously published methods failed. Stochastic problems such as the random allele drop-out phenomenon are expected to occur in a less severe form, due to the smaller fragment size to be amplified. Thus, their negative effect could be easier to overcome by a proper experimental design. PMID:25098828

  7. Monte Carlo predictions of DNA fragment-size distributions for large sizes after HZE particle irradiation

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Cucinotta, F. A.; Sachs, R. K.; Brenner, D. J.

    2001-01-01

    DSBs (double-strand breaks) produced by densely ionizing space radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. DSB clustering at large scales, from >100 Mbp down to approximately 2 kbp, is modeled using a Monte-Carlo algorithm. A random-walk model of chromatin is combined with a track model, that predicts the radial distribution of energy from an ion, and the RLC (randomly-located-clusters) formalism, in software called DNAbreak. This model generalizes the random-breakage model, whose broken-stick fragment-size distribution is applicable to low-LET radiation. DSB induction due to track interaction with the DNA volume depends on the radiation quality parameter Q. This dose-independent parameter depends only weakly on LET. Multi-track, high-dose effects depend on the cluster intensity parameter lambda, proportional to fluence as defined by the RLC formalism. After lambda is determined by a numerical experiment, the model reduces to one adjustable parameter Q. The best numerical fits to the experimental data, determining Q, are obtained. The knowledge of lambda and Q allows us to give biophysically based extrapolations of high-dose DNA fragment-size data to low doses or to high LETs.

  8. Klenow Fragment Discriminates against the Incorporation of the Hyperoxidized dGTP Lesion Spiroiminodihydantoin into DNA.

    PubMed

    Huang, Ji; Yennie, Craig J; Delaney, Sarah

    2015-12-21

    Defining the biological consequences of oxidative DNA damage remains an important and ongoing area of investigation. At the foundation of understanding the repercussions of such damage is a molecular-level description of the action of DNA-processing enzymes, such as polymerases. In this work, we focus on a secondary, or hyperoxidized, oxidative lesion of dG that is formed by oxidation of the primary oxidative lesion, 2'-deoxy-8-oxo-7,8-dihydroguanosine (8-oxodG). In particular, we examine incorporation into DNA of the diastereomers of the hyperoxidized guanosine triphosphate lesion spiroiminodihydantoin-2'-deoxynucleoside-5'-triphosphate (dSpTP). Using kinetic parameters, we describe the ability of the Klenow fragment of Escherichia coli DNA polymerase I lacking 3' → 5' exonuclease activity (KF(-)) to utilize (S)-dSpTP and (R)-dSpTP as building blocks during replication. We find that both diastereomers act as covert lesions, similar to a Trojan horse: KF(-) incorporates the lesion dNTP opposite dC, which is a nonmutagenic event; however, during the subsequent replication, it is known that dSp is nearly 100% mutagenic. Nevertheless, using kpol/Kd to define the nucleotide incorporation specificity, we find that the extent of oxidation of the dGTP-derived lesion correlates with its ability to be incorporated into DNA. KF(-) has the highest specificity for incorporation of dGTP opposite dC. The selection factors for incorporating 8-oxodGTP, (S)-dSpTP, and (R)-dSpTP are 1700-, 64000-, and 850000-fold lower, respectively. Thus, KF(-) is rigorous in its discrimination against incorporation of the hyperoxidized lesion, and these results suggest that the specificity of cellular polymerases provides an effective mechanism to avoid incorporating dSpTP lesions into DNA from the nucleotide pool. PMID:26572218

  9. Validation of a field based chromatin dispersion assay to assess sperm DNA fragmentation in the bottlenose dolphin (Tursiops truncatus).

    PubMed

    Sánchez-Calabuig, M-J; López-Fernández, C; Martínez-Nevado, E; Pérez-Gutiérrez, J F; de la Fuente, J; Johnston, S D; Blyde, D; Harrison, K; Gosálvez, J

    2014-10-01

    Over the last two decades, there have been significant advances in the use of assisted reproductive technology for genetic and reproductive management of captive dolphin populations, including evaluation of sperm DNA quality. This study validated a customized sperm chromatin dispersion test (SCDt) for the bottlenose dolphin (Tursiops truncatus) as a means of assessing sperm DNA damage both in the field and in the laboratory. After performing the SCDt, two different sperm morphotypes were identified: (i) sperm with fragmented DNA showed large haloes of dispersed DNA fragments emerging from a compact sperm nucleoid core and (ii) sperm containing non-fragmented DNA displayed small compact haloes surrounded by a dense core of non-dispersed DNA and protein complex. Estimates of sperm DNA fragmentation by means of SCDt were directly comparable to results obtained following a two-tailed comet assay and showed a significant degree of correlation (r = 0.961; p < 0.001). This investigation also revealed that the SCDt, with minor modifications to the standard protocol, can be successfully conducted in the field using a LED florescence microscopy obtaining a high correlation (r = 0.993; p = 0.01) between the data obtained in the laboratory and in the field. PMID:25130370

  10. Short DNA Fragments Are a Hallmark of Heavy Charged-Particle Irradiation and May Underlie Their Greater Therapeutic Efficacy

    PubMed Central

    Pang, Dalong; Chasovskikh, Sergey; Rodgers, James E.; Dritschilo, Anatoly

    2016-01-01

    Growing interest in proton and heavy ion therapy has reinvigorated research into the fundamental biological mechanisms underlying the therapeutic efficacy of charged-particle radiation. To improve our understanding of the greater biological effectiveness of high-LET radiations, we have investigated DNA double-strand breaks (DSBs) following exposure of plasmid DNA to low-LET Co-60 gamma photon and electron irradiation and to high-LET Beryllium and Argon ions with atomic force microscopy. The sizes of DNA fragments following radiation exposure were individually measured to construct fragment size distributions from which the DSB per DNA molecule and DSB spatial distributions were derived. We report that heavy charged particles induce a significantly larger proportion of short DNA fragments in irradiated DNA molecules, reflecting densely and clustered damage patterns of high-LET energy depositions. We attribute the enhanced short DNA fragmentation following high-LET radiations as an important determinant of the observed, enhanced biological effectiveness of high-LET irradiations. PMID:27376024

  11. Short DNA Fragments Are a Hallmark of Heavy Charged-Particle Irradiation and May Underlie Their Greater Therapeutic Efficacy.

    PubMed

    Pang, Dalong; Chasovskikh, Sergey; Rodgers, James E; Dritschilo, Anatoly

    2016-01-01

    Growing interest in proton and heavy ion therapy has reinvigorated research into the fundamental biological mechanisms underlying the therapeutic efficacy of charged-particle radiation. To improve our understanding of the greater biological effectiveness of high-LET radiations, we have investigated DNA double-strand breaks (DSBs) following exposure of plasmid DNA to low-LET Co-60 gamma photon and electron irradiation and to high-LET Beryllium and Argon ions with atomic force microscopy. The sizes of DNA fragments following radiation exposure were individually measured to construct fragment size distributions from which the DSB per DNA molecule and DSB spatial distributions were derived. We report that heavy charged particles induce a significantly larger proportion of short DNA fragments in irradiated DNA molecules, reflecting densely and clustered damage patterns of high-LET energy depositions. We attribute the enhanced short DNA fragmentation following high-LET radiations as an important determinant of the observed, enhanced biological effectiveness of high-LET irradiations. PMID:27376024

  12. Rumen bacterial community evaluated by 454 pyrosequencing and terminal restriction fragment length polymorphism analyses in dairy sheep fed marine algae.

    PubMed

    Castro-Carrera, T; Toral, P G; Frutos, P; McEwan, N R; Hervás, G; Abecia, L; Pinloche, E; Girdwood, S E; Belenguer, A

    2014-03-01

    Developing novel strategies to increase the content of bioactive unsaturated fatty acids (FA) in ruminant-derived products requires a deeper understanding of rumen biohydrogenation and bacteria involved in this process. Although high-throughput pyrosequencing may allow for a great coverage of bacterial diversity, it has hardly been used to investigate the microbiology of ruminal FA metabolism. In this experiment, 454 pyrosequencing and a molecular fingerprinting technique (terminal restriction fragment length polymorphism; T-RFLP) were used concurrently to assess the effect of diet supplementation with marine algae (MA) on the rumen bacterial community of dairy sheep. Eleven lactating ewes were divided in 2 lots and offered a total mixed ration based on alfalfa hay and concentrate (40:60), supplemented with 0 (control) or 8 (MA) g of MA/kg of dry matter. After 54 d on treatments, animals were slaughtered and samples of rumen content and fluid were collected separately for microbial analysis. Pyrosequencing yielded a greater coverage of bacterial diversity than T-RFLP and allowed the identification of low abundant populations. Conversely, both molecular approaches pointed to similar conclusions and showed that relevant changes due to MA addition were observed within the major ruminal phyla, namely Bacteroidetes, Firmicutes, and Proteobacteria. Decreases in the abundance of unclassified Bacteroidales, Porphyromonadaceae, and Ruminococcaceae and increases in as-yet uncultured species of the family Succinivibrionaceae, might be related to a potential role of these groups in different pathways of rumen FA metabolism. Diet supplementation with MA, however, had no effect on the relative abundance of Butyrivibrio and Pseudobutyrivibrio genera. In addition, results from both 454 pyrosequencing and T-RFLP indicate that the effect of MA was rather consistent in rumen content or fluid samples, despite inherent differences between these fractions in their bacterial composition

  13. Dynamics of sperm DNA fragmentation in raw boar semen and fertility.

    PubMed

    Batista, C; van Lier, E; Petrocelli, H

    2016-10-01

    The aims were to evaluate sperm DNA fragmentation (SDF) in boars through the dispersion of their chromatin in raw semen samples, quantifying the extent of SDF, and to assess dynamic aspects of sperm DNA damage after incubation to obtain the rate of sperm DNA fragmentation (rSDF) under thermal conditions similar to the uterus (37°C) over a period of up to 24 hr and to correlate the reproductive outcome of the sows with the SDF of the boars at ejaculation. The study was performed on a pig-breeding farm in southern Uruguay. Sixty-one ejaculates from five of the most frequently used hybrid boars were evaluated. Semen was collected weekly from each of the boars, using the gloved-hand technique and discarding the jelly-like fraction of the ejaculate. Fresh semen was kept in a water bath at 37°C and protected from light, and was thereafter processed with Sperm-Sus-Halomax(®) to evaluate SDF. The smears for time 0 (T0) were made on farm, and thereafter smears were made at the laboratory at 4 hr of obtaining the semen (T4), then every 2 hr (T6, T8, T10, T12) and a final fixation at 24 hr (T24). Differences in SDF were observed among exposure times for all boars (p < .05), but not between T10 and T12 (p = .7751) nor T4 and T24 (p = .9113). In none of the T24 samples, sperm heads could be seen with chromatin dispersion halos. Furthermore, there were differences among boars when comparing sperm rSDF (p < .05). Farrowing rate was not affected by SDF at T0 (r = .38, p = .75), nor was litter size (r = .16, p = .70). With the present experimental conditions, we have not been able to show a relationship between sperm DNA fragmentation at ejaculation and reproductive performance. However, this could be a result of the low number of ejaculates and boars used. PMID:27546051

  14. The Intracellular DNA Sensor IFI16 Gene Acts as Restriction Factor for Human Cytomegalovirus Replication

    PubMed Central

    Gariano, Grazia Rosaria; Dell'Oste, Valentina; Bronzini, Matteo; Gatti, Deborah; Luganini, Anna; De Andrea, Marco; Gribaudo, Giorgio; Gariglio, Marisa; Landolfo, Santo

    2012-01-01

    Human interferon (IFN)-inducible IFI16 protein, an innate immune sensor of intracellular DNA, modulates various cell functions, however, its role in regulating virus growth remains unresolved. Here, we adopt two approaches to investigate whether IFI16 exerts pro- and/or anti-viral actions. First, the IFI16 gene was silenced using specific small interfering RNAs (siRNA) in human embryo lung fibroblasts (HELF) and replication of DNA and RNA viruses evaluated. IFI16-knockdown resulted in enhanced replication of Herpesviruses, in particular, Human Cytomegalovirus (HCMV). Consistent with this, HELF transduction with a dominant negative form of IFI16 lacking the PYRIN domain (PYD) enhanced the replication of HCMV. Second, HCMV replication was compared between HELFs overexpressing either the IFI16 gene or the LacZ gene. IFI16 overexpression decreased both virus yield and viral DNA copy number. Early and late, but not immediate-early, mRNAs and proteins were strongly down-regulated, thus IFI16 may exert its antiviral effect by impairing viral DNA synthesis. Constructs with the luciferase reporter gene driven by deleted or site-specific mutated forms of the HCMV DNA polymerase (UL54) promoter demonstrated that the inverted repeat element 1 (IR-1), located between −54 and −43 relative to the transcription start site, is the target of IFI16 suppression. Indeed, electrophoretic mobility shift assays and chromatin immunoprecipitation demonstrated that suppression of the UL54 promoter is mediated by IFI16-induced blocking of Sp1-like factors. Consistent with these results, deletion of the putative Sp1 responsive element from the HCMV UL44 promoter also relieved IFI16 suppression. Together, these data implicate IFI16 as a novel restriction factor against HCMV replication and provide new insight into the physiological functions of the IFN-inducible gene IFI16 as a viral restriction factor. PMID:22291595

  15. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    PubMed

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. PMID:26682627

  16. Electrochemical biosensor modified with dsDNA monolayer for restriction enzyme activity determination.

    PubMed

    Zajda, Joanna; Górski, Łukasz; Malinowska, Elżbieta

    2016-06-01

    A simple and cost effective method for the determination of restriction endonuclease activity is presented. dsDNA immobilized at a gold electrode surface is used as the enzymatic substrate, and an external cationic redox probe is employed in voltammetric measurements for analytical signal generation. The assessment of enzyme activity is based on a decrease of a current signal derived from reduction of methylene blue which is present in the sample solution. For this reason, the covalent attachment of the label molecule is not required which significantly reduces costs of the analysis and simplifies the entire determination procedure. The influence of buffer components on utilized dsDNA/MCH monolayer stability and integrity is also verified. Electrochemical impedance spectroscopy measurements reveal that due to pinhole formation during enzyme activity measurement the presence of any surfactants should be avoided. Additionally, it is shown that the sensitivity of the electrochemical biosensor can be tuned by changing the restriction site location along the DNA length. Under optimal conditions the proposed biosensor exhibits a linear response toward PvuII activity within a range from 0.25 to 1.50 U/μL. PMID:26859430

  17. DNA Methylation Pattern in Overweight Women under an Energy-Restricted Diet Supplemented with Fish Oil

    PubMed Central

    do Amaral, Cátia Lira; Milagro, Fermín I.; Curi, Rui; Martínez, J. Alfredo

    2014-01-01

    Dietary factors modulate gene expression and are able to alter epigenetic signatures in peripheral blood mononuclear cells (PBMC). However, there are limited studies about the effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) on the epigenetic mechanisms that regulate gene expression. This research investigates the effects of n-3-rich fish oil supplementation on DNA methylation profile of several genes whose expression has been reported to be downregulated by n-3 PUFA in PBMC: CD36, FFAR3, CD14, PDK4, and FADS1. Young overweight women were supplemented with fish oil or control in a randomized 8-week intervention trial following a balanced diet with 30% energy restriction. Fatty acid receptor CD36 decreased DNA methylation at CpG +477 due to energy restriction. Hypocaloric diet-induced weight loss also reduced the methylation percentages of CpG sites located in CD14, PDK4, and FADS1. The methylation patterns of these genes were only slightly affected by the fish oil supplementation, being the most relevant to the attenuation of the weight loss-induced decrease in CD36 methylation after adjusting by baseline body weight. These results suggest that the n-3 PUFA-induced changes in the expression of these genes in PBMC are not mediated by DNA methylation, although other epigenetic mechanisms cannot be discarded. PMID:24579084

  18. Phenotypic debrisoquine 4-hydroxylase activity among extensive metabolizers is unrelated to genotype as determined by the Xba-I restriction fragment length polymorphism.

    PubMed Central

    Turgeon, J; Evans, W E; Relling, M V; Wilkinson, G R; Roden, D M

    1991-01-01

    1. The major pathway for 4-hydroxylation of debrisoquine in man is polymorphic and under genetic control. More than 90% of subjects (extensive metabolizers, EMs) have active debrisoquine 4-hydroxylase (cytochrome P450IID6) while in the remainder (poor metabolizers, PMs), cytochrome P450IID6 activity is greatly impaired. 2. Within the EM group, cytochrome P450IID6-mediated metabolism of a range of substrates varies widely. Some of this intra-phenotype non-uniformity may be explained by the presence of two subsets of subjects with different genotypes (heterozygotes and homozygotes). 3. Cytochrome P450IID6 substrates have not differentiated between these two genotypes. However, a restriction fragment length polymorphism (RFLP) which identifies mutant alleles of cytochrome P450IID6 locus has been described and can definitively assign genotype in some heterozygous EM subjects. 4. In this study, we used RFLP analysis and encainide as a model substrate to determine if non-uniformity in cytochrome P450IID6 activity among EMs is related to genotype. We tested the hypothesis that heterozygotes exhibit intermediate metabolic activity and that homozygous dominants exhibit the highest activity. We proposed encainide as a useful substrate for this purpose since cytochrome P450IID6 catalyzes not only its biotransformation to O-desmethyl encainide (ODE) but also the subsequent metabolism of ODE to 3-methoxy-O-desmethyl encainide (MODE). 5. A single 50 mg oral dose of encainide was administered to 139 normal volunteers and 14 PMs were identified. Urinary ratios among encainide, ODE and MODE in the remaining 125 EM subjects revealed a wide range of cytochrome P450IID6 activity. However, Southern blotting of genomic DNA digested with XbaI identified obligate heterozygotes in both extremes of all ratio distributions.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 PMID:1685663

  19. Variation of Clonal, Mesquite-Associated Rhizobial and Bradyrhizobial Populations from Surface and Deep Soils by Symbiotic Gene Region Restriction Fragment Length Polymorphism and Plasmid Profile Analysis

    PubMed Central

    Thomas, P. M.; Golly, K. F.; Zyskind, J. W.; Virginia, R. A.

    1994-01-01

    Genetic characteristics of 14 Rhizobium and 9 Bradyrhizobium mesquite (Prosopis glandulosa)-nodulating strains isolated from surface (0- to 0.5-m) and deep (4- to 6-m) rooting zones were determined in order to examine the hypothesis that surface- and deep-soil symbiont populations were related but had become genetically distinct during adaptation to contrasting soil conditions. To examine genetic diversity, Southern blots of PstI-digested genomic DNA were sequentially hybridized with the nodDABC region of Rhizobium meliloti, the Klebsiella pneumoniae nifHDK region encoding nitrogenase structural genes, and the chromosome-localized ndvB region of R. meliloti. Plasmid profile and host plant nodulation assays were also made. Isolates from mesquite nodulated beans and cowpeas but not alfalfa, clover, or soybeans. Mesquite was nodulated by diverse species of symbionts (R. meliloti, Rhizobium leguminosarum bv. phaseoli, and Parasponia bradyrhizobia). There were no differences within the groups of mesquite-associated rhizobia or bradyrhizobia in cross-inoculation response. The ndvB hybridization results showed the greatest genetic diversity among rhizobial strains. The pattern of ndvB-hybridizing fragments suggested that surface and deep strains were clonally related, but groups of related strains from each soil depth could be distinguished. Less variation was found with nifHDK and nodDABC probes. Large plasmids (>1,500 kb) were observed in all rhizobia and some bradyrhizobia. Profiles of plasmids of less than 1,000 kb were related to the soil depth and the genus of the symbiont. We suggest that interacting selection pressures for symbiotic competence and free-living survival, coupled with soil conditions that restrict genetic exchange between surface and deep-soil populations, led to the observed patterns of genetic diversity. Images PMID:16349226

  20. Variation of clonal, mesquite-associated rhizobial and bradyrhizobial populations from surface and deep soils by symbiotic gene region restriction fragment length polymorphism and plasmid profile analysis.

    PubMed

    Thomas, P M; Golly, K F; Zyskind, J W; Virginia, R A

    1994-04-01

    Genetic characteristics of 14 Rhizobium and 9 Bradyrhizobium mesquite (Prosopis glandulosa)-nodulating strains isolated from surface (0- to 0.5-m) and deep (4- to 6-m) rooting zones were determined in order to examine the hypothesis that surface- and deep-soil symbiont populations were related but had become genetically distinct during adaptation to contrasting soil conditions. To examine genetic diversity, Southern blots of PstI-digested genomic DNA were sequentially hybridized with the nodDABC region of Rhizobium meliloti, the Klebsiella pneumoniae nifHDK region encoding nitrogenase structural genes, and the chromosome-localized ndvB region of R. meliloti. Plasmid profile and host plant nodulation assays were also made. Isolates from mesquite nodulated beans and cowpeas but not alfalfa, clover, or soybeans. Mesquite was nodulated by diverse species of symbionts (R. meliloti, Rhizobium leguminosarum bv. phaseoli, and Parasponia bradyrhizobia). There were no differences within the groups of mesquite-associated rhizobia or bradyrhizobia in cross-inoculation response. The ndvB hybridization results showed the greatest genetic diversity among rhizobial strains. The pattern of ndvB-hybridizing fragments suggested that surface and deep strains were clonally related, but groups of related strains from each soil depth could be distinguished. Less variation was found with nifHDK and nodDABC probes. Large plasmids (>1,500 kb) were observed in all rhizobia and some bradyrhizobia. Profiles of plasmids of less than 1,000 kb were related to the soil depth and the genus of the symbiont. We suggest that interacting selection pressures for symbiotic competence and free-living survival, coupled with soil conditions that restrict genetic exchange between surface and deep-soil populations, led to the observed patterns of genetic diversity. PMID:16349226

  1. Characterization of Microbial Communities Found in the Human Vagina by Analysis of Terminal Restriction Fragment Length Polymorphisms of 16S rRNA Genes

    PubMed Central

    Coolen, Marco J. L.; Post, Eduard; Davis, Catherine C.; Forney, Larry J.

    2005-01-01

    To define and monitor the structure of microbial communities found in the human vagina, a cultivation-independent approach based on analyses of terminal restriction fragment length polymorphisms (T-RFLP) of 16S rRNA genes was developed and validated. Sixteen bacterial strains commonly found in the human vagina were used to construct model communities that were subsequently used to develop efficient means for the isolation of genomic DNA and an optimal strategy for T-RFLP analyses. The various genera in the model community could best be resolved by digesting amplicons made using bacterial primers 8f and 926r with HaeIII; fewer strains could be resolved using other primer-enzyme combinations, and no combination successfully distinguished certain species of the same genus. To demonstrate the utility of the approach, samples from five women that had been collected over a 2-month period were analyzed. Differences and similarities among the vaginal microbial communities of the women were readily apparent. The T-RFLP data suggest that the communities of three women were dominated by a single phylotype, most likely species of Lactobacillus. In contrast, the communities of two other women included numerically abundant populations that differed from Lactobacillus strains whose 16S rRNA genes had been previously determined. The T-RFLP profiles of samples from all the women were largely invariant over time, indicating that the kinds and abundances of the numerically dominant populations were relatively stable throughout two menstrual cycles. These findings show that T-RFLP of 16S rRNA genes can be used to compare vaginal microbial communities and gain information about the numerically dominant populations that are present. PMID:16332868

  2. Is there a relationship between the chromatin status and DNA fragmentation of boar spermatozoa following freezing-thawing?

    PubMed

    Fraser, L; Strzezek, J

    2007-07-15

    In this study a radioisotope method, which is based on the quantitative measurements of tritiated-labeled actinomycin D ((3)H-AMD) incorporation into the sperm nuclei ((3)H-AMD incorporation assay), was used to assess the chromatin status of frozen-thawed boar spermatozoa. This study also tested the hypothesis that frozen-thawed spermatozoa with altered chromatin were susceptible to DNA fragmentation measured with the neutral comet assay (NCA). Boar semen was diluted in lactose-hen egg yolk-glycerol extender (L-HEY) or lactose ostrich egg yolk lipoprotein fractions-glycerol extender (L-LPFo), packaged into aluminum tubes or plastic straws and frozen in a controlled programmable freezer. In Experiment 1, the chromatin status and DNA fragmentation were measured in fresh and frozen-thawed spermatozoa from the same ejaculates. There was a significant increase in sperm chromatin destabilization and DNA fragmentation in frozen-thawed semen as compared with fresh semen. The proportions of spermatozoa labeled with (3)H-AMD were concurrent with elevated levels of sperm DNA fragmentation in K-3 extender, without cryoprotective substances, compared with L-HEY or L-LPFo extender. Regression analysis revealed that the results of the (3)H-AMD incorporation assay and NCA for frozen-thawed spermatozoa were correlated. Boars differed significantly in terms of post-thaw sperm DNA damage. In Experiment 2, the susceptibility of sperm chromatin to decondensation was assessed using a low concentration of heparin. Treatment of frozen-thawed spermatozoa with heparin revealed enhanced (3)H-AMD binding, suggesting nuclear chromatin decondensation. The deterioration in post-thaw sperm viability, such as motility, mitochondrial function and plasma membrane integrity, was concurrent with increased chromatin instability and DNA fragmentation. This is the first report to show that freezing-thawing procedure facilitated destabilization in the chromatin structure of boar spermatozoa, resulting in

  3. Flexible bent rod model with a saturating induced dipole moment to study the electric linear dichroism of DNA fragments

    NASA Astrophysics Data System (ADS)

    Bertolotto, Jorge A.; Umazano, Juan P.

    2016-06-01

    In the present work we make a theoretical study of the steady state electric linear dichroism of DNA fragments in aqueous solution. The here developed theoretical approach considers a flexible bent rod model with a saturating induced dipole moment. The electric polarizability tensor of bent DNA fragments is calculated considering a phenomenological model which theoretical and experimental backgroung is presented here. The model has into account the electric polarizability longitudinal and transversal to the macroion. Molecular flexibility is described using an elastic potential. We consider DNA fragments originally bent with bending fluctuations around an average bending angle. The induced dipole moment is supposed constant once the electric field strength grows up at critical value. To calculate the reduced electric linear dichroism we determine the optical factor considering the basis of the bent DNA perpendicular to the molecular axis. The orientational distribution function has into account the anisotropic electric properties and the molecule flexibility. We applied the present theoretical background to fit electric dichroism experimental data of DNA fragments reported in the bibliography in a wide range of molecular weight and electric field. From these fits, values of DNA physical properties are estimated. We compare and discuss the results here obtained with the theoretical and experimental data presented by other authors. The original contributions of this work are: the inclusion of the transversal electric polarizability saturating with the electric field, the description of the electric properties with an electric polarizability tensor dependant on the bending angle and the use of an arc model originally bent.

  4. Novel apparatus to measure hyperthermal heavy ion damage to DNA: Strand breaks, base loss, and fragmentation

    SciTech Connect

    Sellami, L.; Lacombe, S.; Hunting, D.; Wagner, R. J.; Huels, M. A.

    2007-08-15

    We have developed a novel apparatus that allows us to irradiate nonvolatile organic films of high mass (1-100 {mu}g range) spread out over a large surface area (42 cm{sup 2}) with low energy (kT-100 eV) heavy ions and to quantitatively analyze the film substance via standard biochemical techniques afterwards. Here we discuss the details of the apparatus and method and show that it allows us to measure substantial damage to double stranded DNA molecules (plasmids) and its fundamental subunits induced by heavy ions with unprecedented low energies, i.e., 2.5 eV/amu; these energies correspond to track end energies of stopping ions or secondary ions created along primary ion tracks. We find that hyperthermal Ar{sup +} ions interacting with plasmid DNA will lead to the formation of single and double strand breaks, as well as fragmentation of nucleosides, which also involve chemical modifications and site specific rupture along the N1-C1 glycosidic bond, resulting in base release. In cells, such localized clustered damage will enhance the severity of DNA strand lesions, thus making them harder to repair.

  5. Characterization of highly and moderately repetitive 500 bp Eco RI fragments from Xenopus laevis DNA.

    PubMed Central

    Hummel, S; Meyerhof, W; Korge, E; Knöchel, W

    1984-01-01

    Three different types of repetitive Eco RI fragments, which comigrate within a visible band of approximately 500 bp at gel electrophoresis of Xenopus laevis DNA Eco RI digests have been cloned and sequenced. These sequences are designated as Repetitive Eco RI Monomers: REM 1, REM 2 and REM 3. The sequences contain direct repeats, inverted repeats and palindromic elements. Genomic organization of the most abundant sequence (REM 1; 0.4% of total DNA) is that of an interspersed sequence. REM 2 (0.08%) is partly organized as an interspersed element and partly found in tandem arrangement, whereas REM 3 (0.02%) represents the tandemly repeated monomeric unit of a satellite DNA. In situ hybridization has shown that REM 1 and REM 2 sequences are found on most chromosomes, REM 1 being preferentially located on specific chromosomal loci. REM 3 is located near the centromere region of only one chromosome pair (presumably number 1). Hybridization of Northern blots from RNAs of different developmental stages revealed that REM 1, REM 2 and REM 3 sequences are transcribed and that transcription is under developmental control. Images PMID:6330690

  6. Risk to fragmented DNA in dry, wet, and frozen states from computed tomography: a comparative theoretical study.

    PubMed

    Wanek, Johann; Rühli, Frank Jakobus

    2016-05-01

    Computed tomography represents the gold standard in forensic and palaeopathological diagnosis. However, the X-rays used may affect the DNA quality through fragmentation and loss of genetic information. Previous work showed that the effects of ionizing radiation on dry DNA are non-significant with P < 10(-8), which cannot be detected by means of polymerase chain reaction methods. In the present paper, complete analytical model that characterizes radiation effects on fragmented DNA in dry, wet, and frozen states is described. Simulation of radiation tracks in water phantom cells was performed using the Geant4-DNA toolkit. Cell hits by electrons with energies between 5 and 20 keV were simulated, and the formation of radiolytic products was assessed at a temperature of 298 K. The diffusion coefficient and the mean square displacement of reactive species were calculated by Stokes-Einstein-Smoluchowski relations at 273 K. Finally, DNA fragment damage was estimated using the density distribution of fragments calculated from atomic force microscopy images. The lowest probability of radiation-induced DNA damage was observed for dry state, with a range from 2.5 × 10(-9) to 7.8 × 10(-12) at 298 K, followed by that for frozen state, with a range from 0.9 to 4 × 10(-7) at 273 K. The highest probability of radiation-induced DNA damage was demonstrated for fragmented DNA in wet state with a range from 2 to 9 × 10(-7) at 298 K. These results significantly improve the interpretation of CT imaging in future studies in forensic and palaeopathological science. PMID:26883247

  7. Cryopreservation method affects DNA fragmentation in trophectoderm and the speed of re-expansion in bovine blastocysts.

    PubMed

    Inaba, Yasushi; Miyashita, Satoshi; Somfai, Tamás; Geshi, Masaya; Matoba, Satoko; Dochi, Osamu; Nagai, Takashi

    2016-04-01

    This study investigated re-expansion dynamics during culture of bovine blastocysts cryopreserved either by slow-freezing or vitrification. Also, the extent and localization of membrane damage and DNA fragmentation in re-expanded embryos were studied. Frozen-thawed embryos showed a significantly lower re-expansion rate during 24 h of post-thawing culture compared to vitrified embryos. Vitrified embryos reached the maximum level of re-expansion rate by 12 h of culture whereas frozen embryos showed a gradual increase in re-expansion rate by 24 h of culture. When assayed by Hoechst/propidium iodide staining there was no difference in the numbers and ratio of membrane damaged cells between re-expanded frozen and vitrified embryos; however, the extent of membrane damage in blastomeres was significantly higher in both groups compared with non-cryopreserved embryos (control). TUNEL assay combined with differential ICM and TE staining revealed a significantly higher number and ratio of TE cells showing DNA-fragmentation in frozen-thawed re-expanded blastocysts compared to vitrified ones; however, vitrification also resulted in an increased extent of DNA fragmentation in TE cells compared with control blastocysts. In frozen-thawed blastocysts increased extent of DNA fragmentation was associated with reduced numbers and proportion of TE cells compared with vitrified and control embryos. The number and ratio of ICM cells and the extent of DNA fragmentation in ICM did not differ among control, frozen and vitrified groups. In conclusion, compared with vitrified embryos, blastocysts preserved by slow-freezing showed a delayed timing of re-expansion which was associated with an increased frequency of DNA fragmentation in TE cells. PMID:26996887

  8. Characterization of eukaryotic DNA N6-methyladenine by a highly sensitive restriction enzyme-assisted sequencing

    PubMed Central

    Luo, Guan-Zheng; Wang, Fang; Weng, Xiaocheng; Chen, Kai; Hao, Ziyang; Yu, Miao; Deng, Xin; Liu, Jianzhao; He, Chuan

    2016-01-01

    Although extensively studied in prokaryotes, the prevalence and significance of DNA N6-methyladenine (6mA or m6dA) in eukaryotes had been underappreciated until recent studies, which have demonstrated that 6mA regulates gene expression as a potential heritable mark. To interrogate 6mA sites at single-base resolution, we report DA-6mA-seq (DpnI-Assisted N6-methylAdenine sequencing), an approach that uses DpnI to cleave methylated adenine sites in duplex DNA. We find that DpnI cuts other sequence motifs besides the canonical GATC restriction sites, thereby expanding the utility of this method. DA-6mA-seq achieves higher sensitivity with nanograms of input DNA and lower sequencing depth than conventional approaches. We study 6mA at base resolution in the Chlamydomonas genome and apply the new method to two other eukaryotic organisms, Plasmodium and Penicillium. Combined with conventional approaches, our method further shows that most 6mA sites are fully methylated on both strands of DNA at various sequence contexts. PMID:27079427

  9. Dehydromonocrotaline generates sequence-selective N-7 guanine alkylation and heat and alkali stable multiple fragment DNA crosslinks.

    PubMed

    Pereira, T N; Webb, R I; Reilly, P E; Seawright, A A; Prakash, A S

    1998-12-01

    Monocrotaline is a pyrrolizidine alkaloid known to cause toxicity in humans and animals. Its mechanism of biological action is still unclear although DNA crosslinking has been suggested to a play a role in its activity. In this study we found that an active metabolite of monocrotaline, dehydromonocrotaline (DHM), alkylates guanines at the N7 position of DNA with a preference for 5'-GG and 5'-GA sequences. In addition, it generates piperidine- and heat-resistant multiple DNA crosslinks, as confirmed by electrophoresis and electron microscopy. On the basis of these findings, we propose that DHM undergoes rapid polymerization to a structure which is able to crosslink several fragments of DNA. PMID:9826770

  10. Dehydromonocrotaline generates sequence-selective N-7 guanine alkylation and heat and alkali stable multiple fragment DNA crosslinks.

    PubMed Central

    Pereira, T N; Webb, R I; Reilly, P E; Seawright, A A; Prakash, A S

    1998-01-01

    Monocrotaline is a pyrrolizidine alkaloid known to cause toxicity in humans and animals. Its mechanism of biological action is still unclear although DNA crosslinking has been suggested to a play a role in its activity. In this study we found that an active metabolite of monocrotaline, dehydromonocrotaline (DHM), alkylates guanines at the N7 position of DNA with a preference for 5'-GG and 5'-GA sequences. In addition, it generates piperidine- and heat-resistant multiple DNA crosslinks, as confirmed by electrophoresis and electron microscopy. On the basis of these findings, we propose that DHM undergoes rapid polymerization to a structure which is able to crosslink several fragments of DNA. PMID:9826770

  11. Structure of 5-hydroxymethylcytosine-specific restriction enzyme, AbaSI, in complex with DNA

    SciTech Connect

    Horton, John R.; Borgaro, Janine G.; Griggs, Rose M.; Quimby, Aine; Guan, Shengxi; Zhang, Xing; Wilson, Geoffrey G.; Zheng, Yu; Zhu, Zhenyu; Cheng, Xiaodong

    2014-07-03

    AbaSI, a member of the PvuRts1I-family of modification-dependent restriction endonucleases, cleaves DNA containing 5-hydroxymethylctosine (5hmC) and glucosylated 5hmC (g5hmC), but not DNA containing unmodified cytosine. AbaSI has been used as a tool for mapping the genomic locations of 5hmC, an important epigenetic modification in the DNA of higher organisms. Here we report the crystal structures of AbaSI in the presence and absence of DNA. These structures provide considerable, although incomplete, insight into how this enzyme acts. AbaSI appears to be mainly a homodimer in solution, but interacts with DNA in our structures as a homotetramer. Each AbaSI subunit comprises an N-terminal, Vsr-like, cleavage domain containing a single catalytic site, and a C-terminal, SRA-like, 5hmC-binding domain. Two N-terminal helices mediate most of the homodimer interface. Dimerization brings together the two catalytic sites required for double-strand cleavage, and separates the 5hmC binding-domains by ~ 70 Å, consistent with the known activity of AbaSI which cleaves DNA optimally between symmetrically modified cytosines ~ 22 bp apart. The eukaryotic SET and RING-associated (SRA) domains bind to DNA containing 5-methylcytosine (5mC) in the hemi-methylated CpG sequence. They make contacts in both the major and minor DNA grooves, and flip the modified cytosine out of the helix into a conserved binding pocket. In contrast, the SRA-like domain of AbaSI, which has no sequence specificity, contacts only the minor DNA groove, and in our current structures the 5hmC remains intra-helical. A conserved, binding pocket is nevertheless present in this domain, suitable for accommodating 5hmC and g5hmC. We consider it likely, therefore, that base-flipping is part of the recognition and cleavage mechanism of AbaSI, but that our structures represent an earlier, pre-flipped stage, prior to actual recognition.

  12. Characterization of HIFU ablation using DNA fragmentation labeling as apoptosis stain

    NASA Astrophysics Data System (ADS)

    Anquez, Jeremie; Corréas, Jean-Michel; Pau, Bernard; Lacoste, François; Yon, Sylvain

    2012-11-01

    The goal of this work was to compare modalities to precisely quantify the extent of thermally induced lesions: gross pathology vs. histopathology vs. devascularization. Liver areas of 14 rabbits were targeted with HIFU and RF ablations in an acute study. Contrast enhanced computorized tomography (CE-CT) scan images were acquired two hours after HIFU and RF treatment to obtain the devascularized volumes of the livers. The animals were then euthanized and deep frozen. The livers were sliced and each slice was photographed and stacked yielding a volume of gross pathology. The volume VGP of the HIFU lesions were derived. The area AGP of the lesions were computed on a particular slice. The lesions were segmented as hypo intense (devascularized) regions on CE-CT images and their volumes VC were computed. The ratios VC/VGP were computed for all the HIFU lesions on all the 14 subjects with a mean value of 1.2. Histology was performed on the livers using Hematoxyline Eosine Staining (HES) and DNA Fragmentation labeling (TUNEL® technology) which characterizes apoptosis. Apoptotic regions of area AT were segmented on the images stained by TUNEL®. No necrosis was identified on the HES data. While TUNEL® did not mark the cores of the RF lesions as apoptotic, the periphery of HIFU and RF lesions was always recognized with TUNEL® as apoptotic. The ratio AGP/AT was computed. The mean value was 0.95 and 0.25 for HIFU and RF lesions respectively. These findings show that the devascularized territory seen on CE-CT scan coincide with the coagulated territories seen with gross pathology. Those actually correspond to cells in apoptosis. It is confirmed that HES stain does not show necrosis 2 hours after thermal ablation. TUNEL® technology for DNA fragmentation labeling appears as a useful marker for thermally induced acute lesions in the liver.

  13. A DNA Metabarcoding Study of a Primate Dietary Diversity and Plasticity across Its Entire Fragmented Range

    PubMed Central

    Quéméré, Erwan; Hibert, Fabrice; Miquel, Christian; Lhuillier, Emeline; Rasolondraibe, Emmanuel; Champeau, Julie; Rabarivola, Clément; Nusbaumer, Louis; Chatelain, Cyrille; Gautier, Laurent; Ranirison, Patrick; Crouau-Roy, Brigitte; Taberlet, Pierre; Chikhi, Lounès

    2013-01-01

    In tropical regions, most primary ecosystems have been replaced by mosaic landscapes in which species must cope with a large shift in the distribution of their habitat and associated food resources. Primates are particularly vulnerable to habitat modifications. Most species persist in small fragments surrounded by complex human-mediated matrices whose structure and connectivity may strongly influence their dispersal and feeding behavior. Behavioral plasticity appears to be a crucial parameter governing the ability of organisms to exploit the resources offered by new matrix habitats and thus to persist in fragmented habitats. In this study, we were interested in the dietary plasticity of the golden-crowned sifaka (Propithecus tattersalli), an endangered species of lemur, found only in the Daraina region in north-eastern Madagascar. We used a DNA-based approach combining the barcoding concept and Illumina next-generation sequencing to (i) describe the species diet across its entire range and (ii) evaluate the influence of landscape heterogeneity on diet diversity and composition. Faeces from 96 individuals were sampled across the entire species range and their contents were analyzed using the trnL metabarcoding approach. In parallel, we built a large DNA reference database based on a checklist of the plant species of the Daraina region. Our results suggest that golden-crowned sifakas exhibit remarkable dietary diversity with at least 130 plant species belonging to 80 genera and 49 different families. We highlighted an influence of both habitat type and openness on diet composition suggesting a high flexibility of foraging strategies. Moreover, we observed the presence of numerous cultivated and naturalized plants in the faeces of groups living in forest edge areas. Overall, our findings support our initial expectation that P. tattersalli is able to cope with the current level of alteration of the landscape and confirm our previous results on the distribution and the

  14. Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF.

    PubMed

    Pogenberg, Vivian; Ogmundsdóttir, Margrét H; Bergsteinsdóttir, Kristín; Schepsky, Alexander; Phung, Bengt; Deineko, Viktor; Milewski, Morlin; Steingrímsson, Eiríkur; Wilmanns, Matthias

    2012-12-01

    Microphthalmia-associated transcription factor (MITF) is a master regulator of melanocyte development and an important oncogene in melanoma. MITF heterodimeric assembly with related basic helix-loop-helix leucine zipper transcription factors is highly restricted, and its binding profile to cognate DNA sequences is distinct. Here, we determined the crystal structure of MITF in its apo conformation and in the presence of two related DNA response elements, the E-box and M-box. In addition, we investigated mouse and human Mitf mutations to dissect the functional significance of structural features. Owing to an unusual three-residue shift in the leucine zipper register, the MITF homodimer shows a marked kink in one of the two zipper helices to allow an out-of-register assembly. Removal of this insertion relieves restricted heterodimerization by MITF and permits assembly with the transcription factor MAX. Binding of MITF to the M-box motif is mediated by an unusual nonpolar interaction by Ile212, a residue that is mutated in mice and humans with Waardenburg syndrome. As several related transcription factors have low affinity for the M-box sequence, our analysis unravels how these proteins discriminate between similar target sequences. Our data provide a rational basis for targeting MITF in the treatment of important hereditary diseases and cancer. PMID:23207919

  15. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities.

    PubMed

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1. PMID:26738439

  16. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    NASA Astrophysics Data System (ADS)

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.

  17. Molecular discrimination of lactobacilli used as starter and probiotic cultures by amplified ribosomal DNA restriction analysis.

    PubMed

    Roy, D; Sirois, S; Vincent, D

    2001-04-01

    Lactic acid bacteria such as Lactobacillus helveticus, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, L. acidophilus, and L. casei related taxa which are widely used as starter or probiotic cultures can be identified by amplified ribosomal DNA restriction analysis (ARDRA). The genetic discrimination of the related species belonging to these groups was first obtained by PCR amplifications by using group-specific or species-specific 16S rDNA primers. The numerical analysis of the ARDRA patterns obtained by using CfoI, HinfI, Tru9I, and ScrFI was an efficient typing tool for identification of species of the L. acidophilus and L. casei complex. ARDRA by using CfoI was a reliable method for differentiation of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. Finally, strains ATCC 393 and ATCC 15820 exhibited unique ARDRA patterns with CfoI and Tru9I restriction enzymes as compared with the other strains of L. casei, L. paracasei, and L. rhamnosus. PMID:11178730

  18. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    PubMed Central

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1. PMID:26738439

  19. Comparison of Mycoplasma arthritidis strains by enzyme-linked immunosorbent assay, immunoblotting, and DNA restriction analysis.

    PubMed Central

    Washburn, L R; Voelker, L L; Ehle, L J; Hirsch, S; Dutenhofer, C; Olson, K; Beck, B

    1995-01-01

    Twenty Mycoplasma arthritidis strains or isolates were compared by a combination of enzyme-linked immunosorbent assay by an antiserum adsorption technique, Western immunoblotting, and restriction analysis of chromosomal DNA. Antigenic markers that defined strains related to strains 158p10p9, PG6, and H606 were identified. In addition, restriction analysis allowed all 20 strains to be divided into six groups. Results of restriction analysis corresponded generally with antigenic similarities, although the former did not allow grouping with as fine a precision as the latter. However, intrastrain antigenic variability, which is common among many Mycoplasma species, including M. arthritidis, introduced a complicating factor into our attempts at antigenic analysis. While serologic and antigenic analyses remain useful, we recommend that they be used with caution and in combination with other techniques for identifying and characterizing new isolates and newly acquired strains. Combinations of these techniques have proven to be useful in our laboratory for quality control and for uncovering interesting relationships among strains subjected to animal passage and their less virulent antecedents and among strains originally classified as the same but obtained from different sources and maintained, sometimes for decades, in different laboratories. PMID:7494014

  20. Presence of DNA fragmentation and lack of neuroprotective effect in DFF45 knockout mice subjected to traumatic brain injury.

    PubMed Central

    Yakovlev, A. G.; Di, X.; Movsesyan, V.; Mullins, P. G.; Wang, G.; Boulares, H.; Zhang, J.; Xu, M.; Faden, A. I.

    2001-01-01

    BACKGROUND: Apoptosis plays an important pathophysiologic role in neuronal cell loss and associated neurologic deficits following traumatic brain injury (TBI). DNA fragmentation represents one of the characteristic biochemical features of neuronal apoptosis and is observed after experimental TBI. DFF45 and DFF40 are essential for DNA fragmentation in various models of apoptosis. MATERIALS AND METHODS: We used mice deficient in DFF45 and wild-type controls. Oligonucleosomal DNA fragmentation induced by TBI was analyzed using in vivo and in vitro assays. Expression and integrity of DFF45 and DFF40 proteins was assessed by Western analysis. Other outcome measurements included neurologic scoring, learning/memory tests, lesion volume measurements (MRI), and assessment of cell viability in vitro among others. RESULTS: We compared the effects of controlled cortical impact (CCI) trauma in DFF45 knockout mice and wild-type controls. Analysis of TBI-induced DNA fragmentation in brain cortex from wild-type and DFF45 knockout mice indicates that, although somewhat delayed, oligonucleosomal cleavage of DNA occurs after TBI in DFF45 knockout mice. DFF45 knockouts showed no significant differences in behavioral outcomes or lesion volumes after TBI as compared to wild-type controls. Using an in vitro reconstitution system, we also demonstrated that cleavage of DFF45 by caspase-3 is not sufficient for DNA fragmentation induced by protein extracts from rat brain cortex. We found that endonuclease activity induced in rat brain cortex following TBI depends on the presence of Mg2+ and Ca2+, but is not inhibited by Zn2+. Primary neuronal cultures from DFF45 knockouts failed to show DNA laddering in response to staurosporine, but did show prominent, albeit delayed, DNA fragmentation following treatment with etoposide. In contrast, primary neurons from wild-type animals demonstrated marked DNA fragmentation following treatment with staurosporine or etoposide. CONCLUSIONS: The results of

  1. Restriction maps of the regions coding for methicillin and tobramycin resistances on chromosomal DNA in methicillin-resistant staphylococci.

    PubMed Central

    Ubukata, K; Nonoguchi, R; Matsuhashi, M; Song, M D; Konno, M

    1989-01-01

    Chromosomal BamHI DNA fragments containing both the mecA gene encoding the penicillin-binding protein responsible for methicillin resistance and the aadD gene encoding 4',4"-adenylyltransferase responsible for tobramycin resistance were cloned from three methicillin- and tobramycin-resistant strains of Staphylococcus aureus and one strain of Staphylococcus epidermidis. Physical maps of the fragments were similar, suggesting their unique origin. Images PMID:2817861

  2. Random rapid amplification of cDNA ends (RRACE) allows for cloning of multiple novel human cDNA fragments containing (CAG)n repeats.

    PubMed

    Carney, J P; McKnight, C; VanEpps, S; Kelley, M R

    1995-04-01

    We describe a new technique for isolating cDNA fragments in which (i) either a partial sequence of the cDNA is known or (ii) a repeat sequence is utilized. We have used this technique, termed random rapid amplification of cDNA ends (random RACE), to isolate a number of trinucleotide repeat (CAG)n-containing genes. Using the random RACE (RRACE) technique, we have isolated over a hundred (CAG)n-containing genes. The results of our initial analysis of ten clones indicate that three are identical to previously cloned (CAG)n-containing genes. Three of our clones matched with expressed sequence tags, one of which contained a CA repeat. The remaining four clones did not match with any sequence in GenBank. These results indicate that this approach provides a rapid and efficient method for isolating trinucleotide repeat-containing cDNA fragments. Finally, this technique may be used for purposes other than cloning repeat-containing cDNA fragments. If only a partial sequence of a gene is known, our system, described here, provides a rapid and efficient method for isolating a fragment of the gene of interest. PMID:7536696

  3. Effect of in vitro exposure to lead chloride on semen quality and sperm DNA fragmentation.

    PubMed

    Gomes, M; Gonçalves, A; Rocha, E; Sá, R; Alves, A; Silva, J; Barros, A; Pereira, M L; Sousa, M

    2015-06-01

    Exposure to lead may cause changes in the male reproductive system. We evaluated the effect of lead chloride (PbCl2) in vitro on semen quality from 31 individuals. Samples were incubated at room temperature for two exposure times (4 h and 8 h) and with two concentrations of PbCl2 (15 μg/ml or 30 μg/ml). Results showed that PbCl2 significantly inhibited rapid progressive motility and caused an increase in the percentage of tail anomalies in both times and concentrations assessed, as well as a decrease in vitality in the group exposed to 30 μg/ml PbCl2. A significant increase in immotile sperm was also observed between the group control and the groups submitted to lead. Total motility and DNA fragmentation also showed a significant decrease and increase, respectively, after 4 h of incubation in the group exposed to 30 μg/ml and in both groups after 8 h of incubation. In conclusion, PbCl2 affected sperm parameters and DNA integrity, which are essential for male fertility. PMID:24521979

  4. DNA fragmentation is increased in non-GABAergic neurons in bipolar disorder but not in schizophrenia

    PubMed Central

    Buttner, Ned; Bhattacharyya, Sujoy; Walsh, John; Benes, Francine M.

    2007-01-01

    Apoptosis is thought to contribute to neuronal loss in bipolar disorder and schizophrenia, although empiric evidence in support of this idea has been lacking. In this study, we investigated whether or not apoptosis is associated with GABAergic interneurons in the anterior cingulate cortex in schizophrenia (n = 14) and bipolar disorder (n = 14) when compared to normal controls (n = 14). A double-labeling technique using the Klenow method of in situ end-labeling (ISEL) of single-stranded DNA breaks was combined with an in situ hybridization localization of mRNA for the 67 kiloDalton (kDa) isoform of glutamate decarboxylase (GAD67) and applied to the anterior cingulate cortex of 14 normal controls, 14 schizophrenics, and 14 patients with bipolar disorder matched for age and postmortem interval. An increase in Klenow-positive, GAD67-negative nuclei was observed in layer V/VI of patients with bipolar disorder, but not schizophrenics. Klenow-positive cells that were also positive for GAD67 mRNA did not show differences in either patient group. Conclusions: This is the first demonstration that there is more DNA fragmentation in cells showing no detectable GAD67 mRNA in patients with bipolar disorder than in schizophrenics or controls. These findings suggest that non-GABAergic cells may be selectively vulnerable to oxidative stress in patients with bipolar disorder. PMID:17442540

  5. DamID-seq: Genome-wide Mapping of Protein-DNA Interactions by High Throughput Sequencing of Adenine-methylated DNA Fragments.

    PubMed

    Wu, Feinan; Olson, Brennan G; Yao, Jie

    2016-01-01

    The DNA adenine methyltransferase identification (DamID) assay is a powerful method to detect protein-DNA interactions both locally and genome-wide. It is an alternative approach to chromatin immunoprecipitation (ChIP). An expressed fusion protein consisting of the protein of interest and the E. coli DNA adenine methyltransferase can methylate the adenine base in GATC motifs near the sites of protein-DNA interactions. Adenine-methylated DNA fragments can then be specifically amplified and detected. The original DamID assay detects the genomic locations of methylated DNA fragments by hybridization to DNA microarrays, which is limited by the availability of microarrays and the density of predetermined probes. In this paper, we report the detailed protocol of integrating high throughput DNA sequencing into DamID (DamID-seq). The large number of short reads generated from DamID-seq enables detecting and localizing protein-DNA interactions genome-wide with high precision and sensitivity. We have used the DamID-seq assay to study genome-nuclear lamina (NL) interactions in mammalian cells, and have noticed that DamID-seq provides a high resolution and a wide dynamic range in detecting genome-NL interactions. The DamID-seq approach enables probing NL associations within gene structures and allows comparing genome-NL interaction maps with other functional genomic data, such as ChIP-seq and RNA-seq. PMID:26862720

  6. Assessment of four DNA fragments (COI, 16S rDNA, ITS2, 12S rDNA) for species identification of the Ixodida (Acari: Ixodida)

    PubMed Central

    2014-01-01

    Background The 5’ region of cytochrome oxidase I (COI) is the standard marker for DNA barcoding. However, COI has proved to be of limited use in identifying some species, and for some taxa, the coding sequence is not efficiently amplified by PCR. These deficiencies lead to uncertainty as to whether COI is the most suitable barcoding fragment for species identification of ticks. Methods In this study, we directly compared the relative effectiveness of COI, 16S ribosomal DNA (rDNA), nuclear ribosomal internal transcribed spacer 2 (ITS2) and 12S rDNA for tick species identification. A total of 307 sequences from 84 specimens representing eight tick species were acquired by PCR. Besides the 1,834 published sequences of 189 tick species from GenBank and the Barcode of Life Database, 430 unpublished sequences representing 59 tick species were also successfully screened by Bayesian analyses. Thereafter, the performance of the four DNA markers to identify tick species was evaluated by identification success rates given by these markers using nearest neighbour (NN), BLASTn, liberal tree-based or liberal tree-based (+threshold) methods. Results Genetic divergence analyses showed that the intra-specific divergence of each marker was much lower than the inter-specific divergence. Our results indicated that the rates of correct sequence identification for all four markers (COI, 16S rDNA, ITS2, 12S rDNA) were very high (> 96%) when using the NN methodology. We also found that COI was not significantly better than the other markers in terms of its rate of correct sequence identification. Overall, BLASTn and NN methods produced higher rates of correct species identification than that produced by the liberal tree-based methods (+threshold or otherwise). Conclusions As the standard DNA barcode, COI should be the first choice for tick species identification, while 16S rDNA, ITS2, and 12S rDNA could be used when COI does not produce reliable results. Besides, NN and BLASTn are

  7. Cloning and expression of small cDNA fragment encoding strong antiviral peptide from Celosia cristata in Escherichia coli.

    PubMed

    Gholizadeh, A; Kohnehrouz, B Baghban; Santha, I M; Lodha, M L; Kapoor, H C

    2005-09-01

    A small cDNA fragment containing a ribosome-inactivating site was isolated from the leaf cDNA population of Celosia cristata by polymerase chain reaction (PCR). PCR was conducted linearly using a degenerate primer designed from the partially conserved peptide of ribosome-inactivating/antiviral proteins. Sequence analysis showed that it is 150 bp in length. The cDNA fragment was then cloned in a bacterial expression vector and expressed in Escherichia coli as a ~57 kD fused protein, and its presence was further confirmed by Western blot analysis. The recombinant protein was purified by affinity chromatography. The purified product showed strong antiviral activity towards tobacco mosaic virus on host plant leaves, Nicotiana glutinosa, indicating the presence of a putative antiviral determinant in the isolated cDNA product. It is speculated that antiviral site is at, or is separate but very close to, the ribosome-inactivating site. We nominate this short cDNA fragment reported here as a good candidate to investigate further the location of the antiviral determinants. The isolated cDNA sequence was submitted to EMBL databases under accession number of AJ535714. PMID:16266271

  8. The Role of DNA Restriction-Modification Systems in the Biology of Bacillus anthracis

    PubMed Central

    Sitaraman, Ramakrishnan

    2016-01-01

    Restriction–modification (R–M) systems are widespread among prokaryotes and, depending on their type, may be viewed as selfish genetic elements that persist as toxin–antitoxin modules, or as cellular defense systems against phage infection that confer a selective advantage to the host bacterium. Studies in the last decade have made it amply clear that these two options do not exhaust the list of possible biological roles for R–M systems. Their presence in a cell may also have a bearing on other processes such as horizontal gene transfer and gene regulation. From genome sequencing and experimental data, we know that Bacillus anthracis encodes at least three methylation-dependent (typeIV) restriction endonucleases (RE), and an orphan DNA methyltransferase. In this article, we first present an outline of our current knowledge of R–M systems in B. anthracis. Based on available DNA sequence data, and on our current understanding of the functions of similar genes in other systems, we conclude with hypotheses on the possible roles of the three REs and the orphan DNA methyltransferase. PMID:26834729

  9. A new mtDNA mutation showing accumulation with time and restriction to skeletal muscle

    SciTech Connect

    Weber, K.; Wilson, J.N.; Taylor, L.

    1997-02-01

    We have identified a new mutation in mtDNA, involving tRNA{sup Leu(CUN)} in a patient manifesting an isolated skeletal myopathy. This heteroplasmic A{r_arrow}G transition at position 12320 affects the T{Psi}C loop at a conserved site and was not found in 120 controls. Analysis of cultured fibroblasts, white blood cells/platelets, and skeletal muscle showed that only skeletal muscle contained the mutation and that only this tissue demonstrated a biochemical defect of respiratory-chain activity. In a series of four muscle-biopsy specimens taken over a 12-year period, there was a gradual increase, from 70% to 90%, in the overall level of mutation, as well as a marked clinical deterioration. Single-fiber PCR confirmed that the proportion of mutant mtDNA was highest in cytochrome c oxidase-negative fibers. This study, which reports a mutation involving tRNA{sup Leu(CUN)}, demonstrates clearly that mtDNA point mutations can accumulate over time and may be restricted in their tissue distribution. Furthermore, clinical deterioration seemed to follow the increase in the level of mutation, although, interestingly, the appearance of fibers deficient in respiratory-chain activity showed a lag period. 32 refs., 4 figs., 1 tab.

  10. Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments.

    PubMed

    Dmytruk, Kostyantyn V; Voronovsky, Andriy Y; Sibirny, Andriy A

    2006-09-01

    The feasibility of using random insertional mutagenesis to isolate mutants of the flavinogenic yeast Candida famata was explored. Mutagenesis was performed by transformation of the yeast with an integrative plasmid containing the Saccharomyces cerevisiae LEU2 gene as a selective marker. The addition of restriction enzyme together with the plasmid (restriction enzyme-mediated integration, REMI) increased the transformation frequency only slightly. Integration of the linearized plasmid occurred randomly in the C. famata genome. To investigate the potential of insertional mutagenesis, it was used for tagging genes involved in positive regulation of riboflavin synthesis in C. famata. Partial DNA sequencing of tagged genes showed that they were homologous to the S. cerevisiae genes RIB1, MET2, and SEF1. Intact orthologs of these genes isolated from Debaryomyces hansenii restored the wild phenotype of the corresponding mutants, i.e., the ability to overproduce riboflavin under iron limitation. The Staphylococcus aureus ble gene conferring resistance to phleomycin was used successfully in the study as a dominant selection marker for C. famata. The results obtained indicate that insertional mutagenesis is a powerful tool for tagging genes in C. famata. PMID:16770625

  11. Single-stranded DNA fragments of insect-specific nuclear polyhedrosis virus act as selective DNA insecticides for gypsy moth control.

    PubMed

    Oberemok, Volodymyr V; Skorokhod, Oleksii A

    2014-07-01

    This paper focuses on the DNA insecticides as a novel preparation against gypsy moth (Lymantria dispar) based on DNA fragments of the anti-apoptotic gene of its nuclear polyhedrosis virus. It was found that the external application of a solution with two single-stranded DNA fragments from BIR and RING domains of LdMNPV (L.dispar multicapsid nuclear polyhedrosis virus) IAP-3 (inhibitor of apoptosis) gene induces a significantly higher mortality of gypsy moth caterpillars in comparison with the application of the control solutions. This effect does not depend on the infection of caterpillars with LdMNPV. The results also show that DNA insecticides based on LdMNPV IAP-3 gene fragments can be selective in action, and at least are not harmful to tobacco hornworm (Manduca sexta) and black cutworm (Agrotis ipsilon). Part of the gypsy moth genome cloned with the fragments of BIR and RING domains of LdMNPV IAP-3 gene as primers, has an overlap with the corresponding part of the LdMNPV IAP-3 gene and L.dispar IAP-1 mRNA for an inhibitor of apoptosis protein with the high cover by query, allows assuming that we cloned a part of gypsy moth anti-apoptosis gene. This finding gives the grounding that proposed here DNA insecticides might act through the blocking of the mechanisms involved in post transcriptional expression of insect anti-apoptosis genes. The results show the insecticidal potential of the viral genome fragments that can be used to create safe and relatively fast-acting DNA insecticides to control the quantity of gypsy moth populations, important task for forestry and agriculture. PMID:25052520

  12. Identification of individual herbal drugs in tea mixtures using restriction analysis of ITS DNA and real-time PCR.

    PubMed

    Slanc, P; Ravnikar, M; Strukelj, B

    2006-11-01

    We have studied a sedative tea made of Valerianae radix (Valeriana officinalis L.), Lupuli strobuli (Humulus lupulus L.), Melissae folium (Melissa officinalis L.) and Menthae piperitae folium (Mentha piperita L.). In order to identify the constituent drugs a method was established involving amplification of the internal transcribed spacers (ITS) region of nuclear ribosomal DNA on the basis of restriction analysis and real-time PCR. ITS regions of individual drugs were amplified and sequenced. Restriction analysis was performed with selected restriction endonucleases Nae I, PshA I and Xcm I. Real-time PCR was carried out, using primers specifically designed for each individual herbal drug. Real-time PCR proved to be a method for identifying individual herbal drugs in a tea mixture with a single DNA extraction in a single PCR run, since its limit of detection is lower than that for restriction analysis. PMID:17152982

  13. Comparison of DNA methylation patterns among mouse cell lines by restriction landmark genomic scanning.

    PubMed Central

    Kawai, J; Hirose, K; Fushiki, S; Hirotsune, S; Ozawa, N; Hara, A; Hayashizaki, Y; Watanabe, S

    1994-01-01

    Restriction landmark genomic scanning (RLGS) is a novel method which enables us to simultaneously visualize a large number of loci as two-dimensional gel spots. By this method, the status of DNA methylation can efficiently be determined by monitoring the appearance or disappearance of spots by using a methylation-sensitive restriction enzyme. In the present study, using RLGS with NotI, we examined, in comparison with a brain RLGS profile, the status of DNA methylation of more than 900 loci among three types of mouse cell lines: the embryonal carcinoma cell line P19, the stable mesenchymal cell line 10T1/2, and our established neuroepithelial (EM) cell lines. We found that the relative numbers of RLGS spots which appeared were less than 3.3% of those surveyed in all cell lines examined. However, 5 to 14% of spots disappeared, the numbers increasing with an increase in the length of the culture period, and many spots were commonly lost in 10T1/2 and in three EM cell lines. Thus, for these cell lines, many more spots disappeared than appeared. However, the numbers of spots disappearing and appearing were well balanced, and the ratio in P19 cells was almost equal to that in liver cells in vivo. These RLGS experimental observations suggested that permanent cell lines such as 10T1/2 are hypermethylated and that our newly established EM cell lines are also becoming heavily methylated at common loci. On the other hand, methylation and demethylation seem to be balanced in P19 cells in a manner similar to that in in vivo liver tissue. Images PMID:7935456

  14. RADOM, an efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae.

    PubMed

    Lin, Qiuhui; Jia, Bin; Mitchell, Leslie A; Luo, Jingchuan; Yang, Kun; Zeller, Karen I; Zhang, Wenqian; Xu, Zhuwei; Stracquadanio, Giovanni; Bader, Joel S; Boeke, Jef D; Yuan, Ying-Jin

    2015-03-20

    We describe rapid assembly of DNA overlapping multifragments (RADOM), an improved assembly method via homologous recombination in Saccharomyces cerevisiae, which combines assembly in yeasto with blue/white screening in Escherichia coli. We show that RADOM can successfully assemble ∼3 and ∼10 kb DNA fragments that are highly similar to the yeast genome rapidly and accurately. This method was tested in the Build-A-Genome course by undergraduate students, where 125 ∼3 kb "minichunks" from the synthetic yeast genome project Sc2.0 were assembled. Here, 122 out of 125 minichunks achieved insertions with correct sizes, and 102 minichunks were sequenced verified. As this method reduces the time-consuming and labor-intensive efforts of yeast assembly by improving the screening efficiency for correct assemblies, it may find routine applications in the construction of DNA fragments, especially in hierarchical assembly projects. PMID:24895839

  15. Cloning Should Be Simple: Escherichia coli DH5α-Mediated Assembly of Multiple DNA Fragments with Short End Homologies

    PubMed Central

    Richardson, Ruth E.; Suzuki, Yo

    2015-01-01

    Numerous DNA assembly technologies exist for generating plasmids for biological studies. Many procedures require complex in vitro or in vivo assembly reactions followed by plasmid propagation in recombination-impaired Escherichia coli strains such as DH5α, which are optimal for stable amplification of the DNA materials. Here we show that despite its utility as a cloning strain, DH5α retains sufficient recombinase activity to assemble up to six double-stranded DNA fragments ranging in size from 150 bp to at least 7 kb into plasmids in vivo. This process also requires surprisingly small amounts of DNA, potentially obviating the need for upstream assembly processes associated with most common applications of DNA assembly. We demonstrate the application of this process in cloning of various DNA fragments including synthetic genes, preparation of knockout constructs, and incorporation of guide RNA sequences in constructs for clustered regularly interspaced short palindromic repeats (CRISPR) genome editing. This consolidated process for assembly and amplification in a widely available strain of E. coli may enable productivity gain across disciplines involving recombinant DNA work. PMID:26348330

  16. Phylogenomics of phrynosomatid lizards: conflicting signals from sequence capture versus restriction site associated DNA sequencing.

    PubMed

    Leaché, Adam D; Chavez, Andreas S; Jones, Leonard N; Grummer, Jared A; Gottscho, Andrew D; Linkem, Charles W

    2015-03-01

    Sequence capture and restriction site associated DNA sequencing (RADseq) are popular methods for obtaining large numbers of loci for phylogenetic analysis. These methods are typically used to collect data at different evolutionary timescales; sequence capture is primarily used for obtaining conserved loci, whereas RADseq is designed for discovering single nucleotide polymorphisms (SNPs) suitable for population genetic or phylogeographic analyses. Phylogenetic questions that span both "recent" and "deep" timescales could benefit from either type of data, but studies that directly compare the two approaches are lacking. We compared phylogenies estimated from sequence capture and double digest RADseq (ddRADseq) data for North American phrynosomatid lizards, a species-rich and diverse group containing nine genera that began diversifying approximately 55 Ma. Sequence capture resulted in 584 loci that provided a consistent and strong phylogeny using concatenation and species tree inference. However, the phylogeny estimated from the ddRADseq data was sensitive to the bioinformatics steps used for determining homology, detecting paralogs, and filtering missing data. The topological conflicts among the SNP trees were not restricted to any particular timescale, but instead were associated with short internal branches. Species tree analysis of the largest SNP assembly, which also included the most missing data, supported a topology that matched the sequence capture tree. This preferred phylogeny provides strong support for the paraphyly of the earless lizard genera Holbrookia and Cophosaurus, suggesting that the earless morphology either evolved twice or evolved once and was subsequently lost in Callisaurus. PMID:25663487

  17. Quantitative and qualitative analyses of DNA fragments based on electrical charge detection on a portable electrophoresis device.

    PubMed

    Chen, Gin-Shin; Chen, Sheng-Fu; Lu, Chih-Cheng

    2004-01-01

    A concept regarding DNA fragments electrophoretic analyses by directly detecting electrical charges is proposed. The arrival time and voltage of charged DNA fragments with different charge-to-mass ratio could be detected using the custom-made micro electronic circuits. These time and voltage information imply the size and intensity information acquired from the conventional slab gel image by fluorescent labeling. A prototype of the portable electrophoresis device consists of a flow channel with the dimension of 35 mm (length) x 0.5 mm (width) x 0.2 mm (depth) on an acrylic substrate, and the detection circuit with amplification gain of 10,000 and analogous filter bandwidth between 0.1 Hz and 10 Hz has been developed. A simple experiment was carried out to demonstrate the feasibility of proposed idea. The volume of 2mul of the DNA ladder (1 Kb Plus DNA ladder, Invitrogen, U.S.A.) with the diluted concentration of 0.1mug/mul was loaded into the reservoir when applying the electrical field of 12.5 V/cm to both end of the flow channel, which was only filled with TBE solution. The preliminary results showed that the developed electrophoresis device can pick up the electrical signals of un-separated DNA fragments with total mass of 0.2 mug , and the magnitude is 0.6 V . Micro flow channels fabricated by an excimer-laser machine and low-noise amplifier with high gain, e.g. 100,000 are being processed. Moreover, HEC (hydroxyethylcellulose) solution will be utilized as the media in the micro channels for DNA fragments separation. PMID:17270819

  18. [Molecular phylogeny of forest and field mice of the genus Apodemus (Muridae, Rodentia) based on the data on restriction analysis of total nuclear DNA].

    PubMed

    Chelomina, G N

    1998-09-01

    Based on restriction-fragment length polymorphism (RFLP) of total nuclear DNA (nDNA), analyses of phylogenetic relations and genetic similarity were performed in nine species of forest and field mice of the genus Apodemus. Genetic distances calculated for different species pairs ranged from 0.24 to 12.53%; i.e., the differences were 50-fold. The estimated evolutionary age of the genus Apodemus is approximately 12 million years. In general, the obtained data on genetic similarity and phylogenetic relationship allow us to differentiate at least three groups of species: (1) southern Paleoarctic (A. argenteus), (2) eastern (A. peninsulae, A. speciosus, and A. agrarius), and (3) western (A. sylvaticus, A. flavicollis, A. ponticus, A. uralensis, and A. fulvipectus) ones. The latter two groups are related to the northern Paleoarctic. Such a division into groups corresponds to characteristic features of karyotype organization and segmentation of satellite DNA (satDNA) of these species, as well as the nature of variation in isozymes and in a fragment of the enzyme-encoding sequence of cytochrome b gene isolated from the mitochondrial genome. Species groups (1) and (3) exhibited a high probability of a monophyletic origin (70 and 99%, respectively). Group (2) is unlikely to be monophyletic, and the genetic distances in it are significantly greater than those in group 3. A. argenteus is the most diverged, both phenogenetically and phylogenetically. The data are consistent with a new zoological classification, which assumes the division of the unified genus Apodemus into two taxa of generic rank and suggest that the southern Paleoarctic forest mouse should be regarded as a separate taxon of at least subgeneric rank. PMID:9879015

  19. BamI, KpnI, and SalI restriction enzyme maps of the DNAs of herpes simplex virus strains Justin and F: occurrence of heterogeneities in defined regions of the viral DNA.

    PubMed Central

    Locker, H; Frenkel, N

    1979-01-01

    We present the locations of the cleavage sites for the BamI, KpnI, and SalI restriction endonucleases within the DNA molecules of herpes simplex virus type 1 (HSV-1) strains Justin and F. These restriction enzymes cleave the HSV-1 DNA at many sites, producing relatively small fragments which should prove useful in future studies of HSV-1 gene structure and function. The mapping data revealed the occurrence of heterogeneity within three regions of the viral genome including (i) the region spanning map coordinates 0.74--0.76, (ii) the ends of the large (L) DNA component, and (iii) the junction between the large (L) and the small (S) components. The heterogeneity in the ends of L and the S-L junctions of HSV-1 (Justin) and HSV-1 (F) DNAs was grossly similar to that previously reported to occur in the ends of L and the S-L junctions of the HSV-1 (KOS) DNA (M. J. Wagner and W. C. Summers, J. Virol. 27:374--387, 1978). Thus, cleavage of these regions with restriction endonucleases yielded sets of minor fragments differing in size by constant increments. However, the various strains of HSV-1 differed with respect to the numbers, size increments, and relative molarities of the various minor fragments, suggesting that the parameters of the heterogeneity are inherited in the structural makeup of the HSV-1 genome. The strain dependence of the pattern of heterogeneity can be most easily explained in terms of variable sizes of the terminally reiterated a sequence, contained in the DNA molecules of these three strains of HSV-1. Images PMID:228068

  20. GeneMarker® Genotyping Software: Tools to Increase the Statistical Power of DNA Fragment Analysis

    PubMed Central

    Hulce, D.; Li, X.; Snyder-Leiby, T.; Johathan Liu, C.S.

    2011-01-01

    The discriminatory power of post-genotyping analyses, such as kinship or clustering analysis, is dependent on the amount of genetic information obtained from the DNA fragment/genotyping analysis. The number of microsatellite loci amplified in one multiplex is limited by the number of dyes and overlapping loci boundaries; requiring researchers to amplify replicate samples with 2 or more multiplexes in order to obtain a genotype for 12–15 loci. AFLP is another method that is limited by the number of dyes, often requiring multiple amplifications of replicate samples to obtain more complete results. Traditionally, researchers export the genotyping results into a spread sheet, manually combine the results for each individual and then import into a third software package for post-genotyping analysis. GeneMarker is highly accurate, user-friendly genotyping software that allows all of these steps to be done in one software package, avoiding potential errors from data transfer to different programs and decreasing the amount of time needed to process the results. The Merge Project tool automatically combines the results from replicate samples processed with different primer sets. Replicate animal (diploid) DNA samples were amplified with three different multiplexes, each multiplex provided information on 4–6 loci. The kinship analysis using the merged results provided a 1017 increase in statistical power with a range of 108 when 5 loci were used versus 1025 when 15 loci were used to determine potential relationship levels with identity by descent calculations. These same sample sets were used in clustering analysis to diagram dendrograms. The dendrogram based on a single multiplex resulted in three branches at a given Euclidian distance. In comparison, the dendrogram that was constructed using the merged results had eight branches at the same Euclidian distance.

  1. A versatile bacterial expression vector designed for single-step cloning of multiple DNA fragments using homologous recombination.

    PubMed

    Holmberg, Mats A; Gowda, Naveen Kumar Chandappa; Andréasson, Claes

    2014-06-01

    Production of recombinant proteins is the starting point for biochemical and biophysical analyses and requires methodology to efficiently proceed from gene sequence to purified protein. While optimized strategies for the efficient cloning of single-gene fragments for bacterial expression is available, efficient multiple DNA fragment cloning still presents a challenge. To facilitate this step, we have developed an efficient cloning strategy based on yeast homologous recombination cloning (YHRC) into the new pET-based bacterial expression vector pSUMO-YHRC. The vector supports cloning for untagged expression as well as fusions to His6-SUMO or His6 tags. We demonstrate that YHRC from single PCR products of 6 independent genes into the vector results in virtually no background. Importantly, in a quantitative assay for functional expression we find that single-step YHRC of 7 DNA fragments can be performed with very high cloning efficiencies. The method and reagents described in this paper significantly simplifies the construction of expression plasmids from multiple DNA fragments, including complex gene fusions, chimeric genes and polycistronic constructs. PMID:24631626

  2. Circulating Bacterial-Derived DNA Fragment Level Is a Strong Predictor of Cardiovascular Disease in Peritoneal Dialysis Patients

    PubMed Central

    Szeto, Cheuk-Chun; Kwan, Bonnie Ching-Ha; Chow, Kai-Ming; Kwok, Jeffrey Sung-Shing; Lai, Ka-Bik; Cheng, Phyllis Mei-Shan; Pang, Wing-Fai; Ng, Jack Kit-Chung; Chan, Michael Ho-Ming; Lit, Lydia Choi-Wan; Leung, Chi-Bon; Li, Philip Kam-Tao

    2015-01-01

    Background Circulating bacterial DNA fragment is related to systemic inflammatory state in peritoneal dialysis (PD) patients. We hypothesize that plasma bacterial DNA level predicts cardiovascular events in new PD patients. Methods We measured plasma bacterial DNA level in 191 new PD patients, who were then followed for at least a year for the development of cardiovascular event, hospitalization, and patient survival. Results The average age was 59.3 ± 11.8 years; plasma bacterial DNA level 34.9 ± 1.5 cycles; average follow up 23.2 ± 9.7 months. At 24 months, the event-free survival was 86.1%, 69.8%, 55.4% and 30.8% for plasma bacterial DNA level quartiles I, II, III and IV, respectively (p < 0.0001). After adjusting for confounders, plasma bacterial DNA level, baseline residual renal function and malnutrition-inflammation score were independent predictors of composite cardiovascular end-point; each doubling in plasma bacterial DNA level confers a 26.9% (95% confidence interval, 13.0 – 42.5%) excess in risk. Plasma bacterial DNA also correlated with the number of hospital admission (r = -0.379, p < 0.0001) and duration of hospitalization for cardiovascular reasons (r = -0.386, p < 0.0001). Plasma bacterial DNA level did not correlate with baseline arterial pulse wave velocity (PWV), but with the change in carotid-radial PWV in one year (r = -0.238, p = 0.005). Conclusions Circulating bacterial DNA fragment level is a strong predictor of cardiovascular event, need of hospitalization, as well as the progressive change in arterial stiffness in new PD patients. PMID:26010741

  3. Restricted access chiral stationary phase synthesized via reversible addition-fragmentation chain-transfer polymerization for direct analysis of biological samples by high performance liquid chromatography.

    PubMed

    Song, Wen-Jun; Wei, Ji-Ping; Wang, Su-Ying; Wang, Huai-Song

    2014-06-17

    Novel hydrophilic microparticles containing β-cyclodextrin (β-CD) were prepared via one-pot synthesis using reversible addition-fragmentation chain-transfer (RAFT) precipitation polymerization, a "controlled/living" radical polymerization technique. The polymerization was initiated by hydrophilic macromolecular chain-transfer agent [poly(2-hydroxyethyl methacrylate), PHEMA]. The hydrophilic PHEMA on the surface of microparticles can well improve their surface hydrophilicity and lead to their biological compatibility. As chiral restricted access material (RAM), the hydrophilic microparticles can be used for determination of enantiomers in biological samples with direct injection via HPLC analysis. PMID:24890695

  4. Clinical Factors Associated with Sperm DNA Fragmentation in Male Patients with Infertility

    PubMed Central

    Komiya, Akira; Kato, Tomonori; Kawauchi, Yoko; Watanabe, Akihiko; Fuse, Hideki

    2014-01-01

    Objective. The clinical factors associated with sperm DNA fragmentation (SDF) were investigated in male patients with infertility. Materials and Methods. Fifty-four ejaculates from infertile Japanese males were used. Thirty-three and twenty-one were from the patients with varicoceles and idiopathic causes of infertility, respectively. We performed blood tests, including the serum sex hormone levels, and conventional and computer-assisted semen analyses. The sperm nuclear vacuolization (SNV) was evaluated using a high-magnification microscope. The SDF was evaluated using the sperm chromatin dispersion test (SCDt) to determine the SDF index (SDFI). The SDFI was compared with semen parameters and other clinical variables, including lifestyle factors. Results. The SDFI was 41.3 ± 22.2% (mean ± standard deviation) and did not depend on the cause of infertility. Chronic alcohol use increased the SDFI to 49.6 ± 23.3% compared with 33.9 ± 18.0% in nondrinkers. The SDFI was related to adverse conventional semen parameters and sperm motion characteristics and correlated with the serum FSH level. The SNV showed a tendency to increase with the SDFI. The multivariate analysis revealed that the sperm progressive motility and chronic alcohol use were significant predictors of the SDF. Conclusion. The SCDt should be offered to chronic alcohol users and those with decreased sperm progressive motility. PMID:25165747

  5. Quantitative study of Helicobacter pylori in gastric mucus by competitive PCR using synthetic DNA fragments.

    PubMed Central

    Furuta, T; Kaneko, E; Suzuki, M; Arai, H; Futami, H

    1996-01-01

    Helicobacter pylori is closely related to upper gastrointestinal diseases, and the precise evaluation of H. pylori infection is necessary for the treatment of these diseases. The aim of the present study was to establish a method for the quantitative detection of H. pylori. We applied a competitive PCR method using various amounts of synthetic DNA fragments containing the same primer-binding and a subset of the same template sequences as the target competing for primer binding and amplification in order to quantify H. pylori in gastric mucus. The results obtained by this method were compared with the results of histological examination, the rapid urease test, bacterial culture, the [13C]urea breath test, and urea and ammonia measurements in gastric juice. As the quantity of H. pylori in gastric mucus increased, the rates of positivity of histological examination, the rapid urease test, and bacterial culture increased. The quantity of H. pylori in gastric mucus was also significantly correlated with the results of the [13C]urea breath test and was negatively correlated with the urea/ammonia ratio in gastric juice. The competitive PCR method provides an objective measure of the quantity of H. pylori and makes it possible to distinguish true negatives from false negatives due to incomplete PCR and true positives from false positives due to contamination. This method is very useful for the precise evaluation of gastric H. pylori infection. PMID:8880492

  6. Universal Multiplex PCR: a novel method of simultaneous amplification of multiple DNA fragments

    PubMed Central

    2012-01-01

    Background Multiplex PCR has been successfully applied in many areas since it was first reported in 1988; however, it suffers from poor universality. Results A novel method called Universal Multiplex PCR (UM-PCR) was created, which simultaneously amplifies multiple target fragments from genomic DNA. The method has two steps. First, the universal adapter-F and universal adapter-R are connected to the forward primers and the reverse primers, respectively. Hairpin structures and cross dimers of five pairs of adapter-primers are detected. Second, UM-PCR amplification is implemented using a novel PCR procedure termed “Two Rounds Mode” (three and 28–32 cycles). The first round (the first three cycles) is named the “One by One Annealing Round”. The second round (28–32 cycles) combines annealing with extension. In the first two cycles of the first round, primers only amplify the specific templates; there are no templates for the universal adapters. The templates of universal adapters begin to be synthesized from the second cycle of the first round, and universal adapters and primers commence full amplification from the third cycle of the first round. Conclusions UM-PCR greatly improves the universality of multiplex PCR. UM-PCR could rapidly detect the genetic purity of maize seeds. In addition, it could be applied in other areas, such as analysis of polymorphisms, quantitative assays and identifications of species. PMID:22894545

  7. Electronic cigarette aerosols and copper nanoparticles induce mitochondrial stress and promote DNA fragmentation in lung fibroblasts.

    PubMed

    Lerner, Chad A; Rutagarama, Pierrot; Ahmad, Tanveer; Sundar, Isaac K; Elder, Alison; Rahman, Irfan

    2016-09-01

    Oxidants or nanoparticles have recently been identified as constituents of aerosols released from various styles of electronic cigarettes (E-cigs). Cells in the lung may be directly exposed to these constituents and harbor reactive properties capable of incurring acute cell injury. Our results show mitochondria are sensitive to both E-cig aerosols and aerosol containing copper nanoparticles when exposed to human lung fibroblasts (HFL-1) using an Air-Liquid Interface culture system, evident by elevated levels of mitochondrial ROS (mtROS). Increased mtROS after aerosol exposure is associated with reduced stability of OxPhos electron transport chain (ETC) complex IV subunit and nuclear DNA fragmentation. Increased levels of IL-8 and IL-6 in HFL-1 conditioned media were also observed. These findings reveal both mitochondrial, genotoxic, and inflammatory stresses are features of direct cell exposure to E-cig aerosols which are ensued by inflammatory duress, raising a concern on deleterious effect of vaping. PMID:27343559

  8. DNA Fragmentation and DSB correlation Induced in Human Fibroblasts by Accelerated 56Fe Ions of Differing Energies

    NASA Astrophysics Data System (ADS)

    Antonelli, F.; Belli, M.; Campa, A.; Dini, V.; Esposito, G.; Furusawa, Y.; Simone, G.; Sorrentino, E.; Tabocchini, M. A.

    HZE particles from space radiation raise an important protection concern during long-term astronauts travels Although these particles are less abundant than protons they are more effective in damaging biological systems It is thought that this is due to the frequent production of spatially correlated DNA damaged sites particularly double strand breaks DSB since this correlation can strongly affect the repair capability of the cells In this work we have studied the DNA fragmentation induced in human fibroblasts by accelerated 56 Fe ions of four different energies i e 115 MeV u 414 MeV u 1 GeV u and 5 GeV u and by gamma-rays used as reference radiation DNA fragmentation was studied in various size ranges varying from 1 to 5700 kbp using Pulsed or Constant Field Gel Electrophoresis The DSB yields have been derived from fragmentation in the overall range as well as in the two ranges 1-23 and 23-5700 kbp The overall DSB yield slightly increased with the ion energy maily due to the contribution of the 23-5700 kbp fragments while that of small fragments 1-23 kbp was almost constant Accordingly the relative biological effectiveness RBE for DSB induction increased with energy from about 1 3 at 115 MeV u to about 1 8 at about 5 GeV u i e less than the RBE for chromosome aberration and cell inactivation The degree of spatial correlation of DSB was evaluated through the departure from the randomness of the fragment distribution with a simple theoretical tool that we have recently introduced To this aim a parameter R was used

  9. Examination of meat components in commercial dog and cat feed by using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs) technique.

    PubMed

    Wang, Hsien-Chi; Lee, Shu-Hwae; Chang, Tien-Jye; Wong, Min-Liang

    2004-07-01

    It has been shown that certain slow neurological diseases such as bovine spongiform encephalopathy (also known as "mad cow" disease) could be transmitted through contaminated food intake by animals; therefore, the examination of meat components in commercial feeds is important for the control of the disease in public health. The combination of polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs) technique was applied to examine the meat components in dog and cat commercial feeds. The partial nucleotide sequence (359 bp) of animal mitochondrial cytochrome b (cytb, CYT) gene was amplified by PCR and then digested with restriction enzyme Alu I or Mbo I. In this work, eight brands of commercial dog and cat feeds available in Taiwan were examined. All brands of dog feeds that were tested contained meat from four different animals (cattle, pig, goat and chicken). In cat feeds, the chicken meat was found in five out of eight brands. PMID:15297759

  10. Immunogenicity of a plasmid DNA vaccine encoding 42kDa fragment of Plasmodium vivax merozoite surface protein-1.

    PubMed

    Sheikh, Inayat Hussain; Kaushal, Deep C; Chandra, Deepak; Kaushal, Nuzhat A

    2016-10-01

    Plasmodium vivax is the second major human malaria parasite that inflicts debilitating morbidity and consequent economic impact in South-East Asian countries. The relapsing nature of P. vivax along with the emergence of drug-resistant P. vivax strains has emphasized the urgent need for a vaccine. However, the development of an effective vivax vaccine is seriously hampered due to the diversity and variation in parasite antigens and non-availability of suitable animal models. DNA based vaccines represent an alternative approach in inducing immunity to multiple targets from different stages of malaria parasite. DNA prime-boosting strategies induce both antibody mediated and cell-mediated immune responses that are the major mechanisms of protection against malaria parasites. We have earlier studied the immunogenicity and protective efficacy of the soluble and refolded forms of recombinant 42kDa fragment of Plasmodium vivax merozoite surface protein-1 (PvMSP-142) using P. cynomolgi rhesus monkey model. In the present study, we have constructed a recombinant DNA vaccine encoding 42kDa fragment of P. vivax MSP-1 and studied the immunogenicity of PvMSP-142 DNA vaccine construct in mice. The 42kDa gene fragment of PvMSP-1 was PCR amplified using gene specific primers and subcloned into pcDNA 3.1 (+) eukaryotic expression vector. In vitro expression of PvMSP-142 plasmid construct was checked by transfection in COS-1 cell line. Indirect immunofluorescence of transfected COS-1 cells probed with monoclonal antibodies against PvMSP-142 exhibited positive fluorescence. Immunization of BALB/c mice with PvMSP-142-pcDNA vaccine construct revealed the immunogenicity of recombinant vaccine plasmid that can be enhanced by prime boosting with recombinant protein corresponding to the DNA vaccine as evidenced by significant elevation of antibody and the cytokines responses. PMID:27311385

  11. Genotypic characterization of Indian isolates of infectious bursal disease virus strains by reverse transcription-polymerase chain reaction combined with restriction fragment length polymorphism analysis.

    PubMed

    Priyadharsini, C V; Senthilkumar, T M A; Raja, P; Kumanan, K

    2016-03-01

    The reverse transcription PCR (RT-PCR) combined with restriction fragment length polymorphism (RFLP) is used for the differentiation of classical virulent (cv), virulent (v) and very virulent (vv) strains of infectious bursal disease virus (IBDV) isolates from chicken bursal tissues in southern states of India. In the present study, six different isolates (MB11, HY12, PY12, BGE14, VCN14 and NKL14) of IBDV strains were subjected for genotyping along with vaccine virus (Georgia, intermediate strain) using RT-PCR for amplification of a 743 bp sequence in the hypervariable region of VP2 gene followed by restriction enzyme digestion with 5 different restriction enzymes (BspMI, SacI, HhaI, StuI and SspI). The RT-PCR products obtained from vvIBDV strains were digested by SspI enzyme except PY12, BGE14 and MB11 isolates. The SacI digested the isolate MB11, PY12 and the vaccine strain, but it did not cleave the very virulent isolates of IBDV. HhaI cleaved all the isolates with different restriction profile patterns. StuI digested all the vvIBDV isolates and BspMI was not able to differentiate field isolates from vaccine strain. Though RT-PCR combined with RFLP is a genotypic method, further confirmation of serotypes to distinguish the vvIBDV from cvIBDV has to be carried out using pathogenicity studies. PMID:26982465

  12. Rational Design of High-Number dsDNA Fragments Based on Thermodynamics for the Construction of Full-Length Genes in a Single Reaction

    PubMed Central

    Birla, Bhagyashree S.; Chou, Hui-Hsien

    2015-01-01

    Gene synthesis is frequently used in modern molecular biology research either to create novel genes or to obtain natural genes when the synthesis approach is more flexible and reliable than cloning. DNA chemical synthesis has limits on both its length and yield, thus full-length genes have to be hierarchically constructed from synthesized DNA fragments. Gibson Assembly and its derivatives are the simplest methods to assemble multiple double-stranded DNA fragments. Currently, up to 12 dsDNA fragments can be assembled at once with Gibson Assembly according to its vendor. In practice, the number of dsDNA fragments that can be assembled in a single reaction are much lower. We have developed a rational design method for gene construction that allows high-number dsDNA fragments to be assembled into full-length genes in a single reaction. Using this new design method and a modified version of the Gibson Assembly protocol, we have assembled 3 different genes from up to 45 dsDNA fragments at once. Our design method uses the thermodynamic analysis software Picky that identifies all unique junctions in a gene where consecutive DNA fragments are specifically made to connect to each other. Our novel method is generally applicable to most gene sequences, and can improve both the efficiency and cost of gene assembly. PMID:26716828

  13. Re-evaluating the kinetics of ATP hydrolysis during initiation of DNA sliding by Type III restriction enzymes

    PubMed Central

    Tóth, Júlia; Bollins, Jack; Szczelkun, Mark D.

    2015-01-01

    DNA cleavage by the Type III restriction enzymes requires long-range protein communication between recognition sites facilitated by thermally-driven 1D diffusion. This ‘DNA sliding’ is initiated by hydrolysis of multiple ATPs catalysed by a helicase-like domain. Two distinct ATPase phases were observed using short oligoduplex substrates; the rapid consumption of ∼10 ATPs coupled to a protein conformation switch followed by a slower phase, the duration of which was dictated by the rate of dissociation from the recognition site. Here, we show that the second ATPase phase is both variable and only observable when DNA ends are proximal to the recognition site. On DNA with sites more distant from the ends, a single ATPase phase coupled to the conformation switch was observed and subsequent site dissociation required little or no further ATP hydrolysis. The overall DNA dissociation kinetics (encompassing site release, DNA sliding and escape via a DNA end) were not influenced by the second phase. Although the data simplifies the ATP hydrolysis scheme for Type III restriction enzymes, questions remain as to why multiple ATPs are hydrolysed to prepare for DNA sliding. PMID:26538601

  14. A Natural Polymorphism in rDNA Replication Origins Links Origin Activation with Calorie Restriction and Lifespan

    PubMed Central

    Kwan, Elizabeth X.; Foss, Eric J.; Tsuchiyama, Scott; Alvino, Gina M.; Kruglyak, Leonid; Kaeberlein, Matt; Raghuraman, M. K.; Brewer, Bonita J.; Kennedy, Brian K.; Bedalov, Antonio

    2013-01-01

    Aging and longevity are complex traits influenced by genetic and environmental factors. To identify quantitative trait loci (QTLs) that control replicative lifespan, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard and a laboratory strain. The predominant QTL mapped to the rDNA, with the vineyard rDNA conferring a lifespan increase of 41%. The lifespan extension was independent of Sir2 and Fob1, but depended on a polymorphism in the rDNA origin of replication from the vineyard strain that reduced origin activation relative to the laboratory origin. Strains carrying vineyard rDNA origins have increased capacity for replication initiation at weak plasmid and genomic origins, suggesting that inability to complete genome replication presents a major impediment to replicative lifespan. Calorie restriction, a conserved mediator of lifespan extension that is also independent of Sir2 and Fob1, reduces rDNA origin firing in both laboratory and vineyard rDNA. Our results are consistent with the possibility that calorie restriction, similarly to the vineyard rDNA polymorphism, modulates replicative lifespan through control of rDNA origin activation, which in turn affects genome replication dynamics. PMID:23505383

  15. Protective Roles of Gadd45 and MDM2 in Blueberry Anthocyanins Mediated DNA Repair of Fragmented and Non-Fragmented DNA Damage in UV-Irradiated HepG2 Cells

    PubMed Central

    Liu, Wei; Lu, Xiangyi; He, Guangyang; Gao, Xiang; Xu, Maonian; Zhang, Jingkai; Li, Meiling; Wang, Lifeng; Li, Zhenjing; Wang, Likui; Luo, Cheng

    2013-01-01

    Growth Arrest and DNA Damage-inducible 45 (Gadd45) and MDM2 proteins, together with p21 and p53, play important roles in cell cycle checkpoints, DNA repair, and genome integrity maintenance. Gadd45 and MDM2 were activated and transcribed instantly by UV irradiation, whereas blueberry anthocyanins (BA) decreased the gene and protein expression levels in HepG2 cells for up to 24 h, and gradually restored the UV-induced fragmented and non-fragmented DNA damage of the nucleus at a time point of 12 h. Nevertheless, UV-irradiated HepG2 cell arrests occurred mainly in the G1 phase, which indicated G1 as a checkpoint. The proteins, p21 and p53, retain cellular integrity, suppressing the oncogenic transformation by interruption of the G1 phase of the cellular cycle, giving time for repairing the damage to DNA, or apoptosis induction if the damage is too severe to be repaired, while MDM2 and Gadd45 concomitantly ensure the presence of p53 and p21. Thus, we conclude that repair, together with Gadd45 and MDM2 genes, were involved in light and dark reaction mechanisms, however, BA could interfere and assist the repair through restoration, although further studies of the complex of the gene cascades triggered and responded to in BA-assisted DNA repair are needed. PMID:24177565

  16. Genetic polymorphism of toll-like receptors 4 gene by polymerase chain reaction-restriction fragment length polymorphisms, polymerase chain reaction-single-strand conformational polymorphism to correlate with mastitic cows

    PubMed Central

    Gupta, Pooja H.; Patel, Nirmal A.; Rank, D. N.; Joshi, C. G.

    2015-01-01

    Aim: An attempt has been made to study the toll-like receptors 4 (TLR4) gene polymorphism from cattle DNA to correlate with mastitis cows. Materials and Methods: In present investigation, two fragments of TLR4 gene named T4CRBR1 and T4CRBR2 of a 316 bp and 382 bp were amplified by polymerase chain reaction (PCR), respectively from Kankrej (22) and Triple cross (24) cattle. The genetic polymorphisms in the two populations were detected by a single-strand conformational polymorphism in the first locus and by digesting the fragments with restriction endonuclease Alu I in the second one. Results: Results showed that both alleles (A and B) of two loci were found in all the two populations and the value of polymorphism information content indicated that these were highly polymorphic. Statistical results of χ2 test indicated that two polymorphism sites in the two populations fit with Hardy–Weinberg equilibrium (p<0.05). Meanwhile, the effect of polymorphism of TLR4 gene on the somatic cell score (SCS) indicated the cattle with allele a in T4CRBR1 showed lower SCS than that of allele B (p<0.05). Thus, the allele A might play an important role in mastitis resistance in cows. Conclusion: The relationship between the bovine mastitis trait and the polymorphism of TLR4 gene indicated that the bovine TLR4 gene may play an important role in mastitis resistance. PMID:27047144

  17. Characterization by restriction fragment length polymorphism and sequence analysis of field and vaccine strains of infectious laryngotracheitis virus involved in severe outbreaks.

    PubMed

    Chacon, Jorge Luis; Mizuma, Matheus Y; Piantino Ferreira, Antonio J

    2010-12-01

    At the end of 2002 and throughout 2003, there was a severe outbreak of infectious laryngotracheitis (ILT) in an intensive production area of commercial hens in the Sao Paulo State of Brazil. ILT virus was isolated from 28 flocks, and 21 isolates were genotyped by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) using four genes and eight restriction enzymes, and by partial sequencing of the infected cell protein 4 (ICP4) and thymidine kinase (TK) genes. Three groups resulted from the combinations of PCR-RFLP patterns: 19 field isolates formed Group I, and the remaining two isolates together with the chicken embryo origin (CEO) vaccine strains formed Group II. Group III comprised the tissue-culture origin (TCO) vaccine strain by itself. The PCR-RFLP results agreed with the sequencing results of two ICP4 gene fragments. The ICP4 gene sequence analysis showed that the 19 field isolates classified into Group I by RFLP-PCR were identical among themselves, but were different to the TCO and CEO vaccines. The two Group II isolates could not be distinguished from one of the CEO vaccines. The nucleotide and amino acid sequence analyses discriminated between the Brazilian and non-Brazilian isolates, as well as between the TCO and CEO vaccines. Sequence analysis of the TK gene enabled classification of the field isolates (Group I) as virulent and non-vaccine. This work shows that the severe ILT outbreak was caused by a highly virulent, non-vaccine strain. PMID:21154050

  18. Generation of porcine reproductive and respiratory syndrome virus by in vitro assembly of viral genomic cDNA fragments.

    PubMed

    Suhardiman, Maman; Kramyu, Jarin; Narkpuk, Jaraspim; Jongkaewwattana, Anan; Wanasen, Nanchaya

    2015-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent for a swine disease affecting the pig industry worldwide. Infection with PRRSV leads to reproductive complications, respiratory illness, and weak immunity to secondary infections. To better control PRRSV infection, novel approaches for generating control measures are critically needed. Here, in vitro Gibson assembly (GA) of viral genomic cDNA fragments was tested for its use as a quick and simple method to recover infectious PRRSV in cell culture. GA involves the activities of T5-exonuclease, Phusion polymerase, and Taq ligase to join overlapping cDNA fragments in an isothermal condition. Four overlapping cDNA fragments covering the entire PRRSV genome and one vector fragment were used to create a plasmid capable of expressing the PRRSV genome. The assembled product was used to transfect a co-culture of 293T and MARC-145 cells. Supernatants from the transfected cells were then passaged onto MARC-145 cells to rescue infectious virus particles. Verification and characterization of the recovered virus confirmed that the GA protocol generated infectious PRRSV that had similar characteristics to the parental virus. This approach was then tested for the generation of a chimeric virus. By replacing one of the four genomic fragments with that of another virus strain, a chimeric virus was successfully recovered via GA. In conclusion, this study describes for the first time the use of GA as a simple, yet powerful tool for generating infectious PRRSV needed for studying PRRSV biology and developing novel vaccines. PMID:25300804

  19. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation

    PubMed Central

    Cho, Chak-Lam; Esteves, Sandro C; Agarwal, Ashok

    2016-01-01

    Varicocele has been associated with reduced male reproductive potential. With the advances in biomolecular techniques, it has been possible to better understand the mechanisms involved in testicular damage provoked by varicocele. Current evidence suggests the central role of reactive oxygen species (ROS) and the resultant oxidative stress (OS) in the pathogenesis of varicocele-associated male subfertility although the mechanisms have not yet been fully described and it is likely to be multifactorial. Excessive ROS is associated with sperm DNA fragmentation, which may mediate the clinical manifestation of poor sperm function and fertilization outcome related to varicocele. Testing of ROS/OS and DNA fragmentation has the potential to provide additional diagnostic and prognostic information compared to conventional semen analysis and may guide therapeutic management strategies in individual patient. PMID:26732105

  20. [Rapid site-directed mutagenesis on full-length plasmid DNA by using designed restriction enzyme assisted mutagenesis].

    PubMed

    Zhang, Baozhong; Ran, Duoliang; Zhang, Xin; An, Xiaoping; Shan, Yunzhu; Zhou, Yusen; Tong, Yigang

    2009-02-01

    To use the designed restriction enzyme assisted mutagenesis technique to perform rapid site-directed mutagenesis on double-stranded plasmid DNA. The target amino acid sequence was reversely translated into DNA sequences with degenerate codons, resulting in large amount of silently mutated sequences containing various restriction endonucleases (REs). Certain mutated sequence with an appropriate RE was selected as the target DNA sequence for designing mutation primers. The full-length plasmid DNA was amplified with high-fidelity Phusion DNA polymerase and the amplified product was 5' phosphorylated by T4 polynucleotide kinase and then self-ligated. After transformation into an E. coli host the transformants were rapidly screened by cutting with the designed RE. With this strategy we successfully performed the site-directed mutagenesis on an 8 kb plasmid pcDNA3.1-pIgR and recovered the wild-type amino acid sequence of human polymeric immunoglobulin receptor (pIgR). A novel site-directed mutagenesis strategy based on DREAM was developed which exploited RE as a rapid screening measure. The highly efficient, high-fidelity Phusion DNA polymerase was applied to ensure the efficient and faithful amplification of the full-length sequence of a plasmid of up to 8 kb. This rapid mutagenesis strategy avoids using any commercial site-directed mutagenesis kits, special host strains or isotopes. PMID:19459340

  1. DpnA, a methylase for single-strand DNA in the Dpn II restriction system, and its biological function

    SciTech Connect

    Cerritelli, S.; Springhorn, S.S.; Lacks, S.A. )

    1989-12-01

    The two DNA-adenine methylases encoded by the Dpn II restriction gene cassette were purified, and their activities were compared on various DNA substrates. DpnA was able to methylate single-strand DNA and double-strand DNA, whereas DpnM methylated only double-strand DNA. Although both enzymes act at 5{prime}-GATC-3{prime} in DNA, DpnA can also methylate sequences altered in the guanine position, but at a lower rate. A deletion mutation in the dpnA gene was constructed and transferred to the chromosome. Transmission by way of the transformation pathway of methylated and unmethylated plasmids to dpnA mutant and wild-type recipients was examined. The mutant cells restricted unmethylated donor plasmic establishment much more strongly than did wild-type cells. In the wild type, the single strands of donor plasmid DNA that enter by the transformation pathway are apparently methylated by DpnA prior to conversion of the plasmid to a double-strand form, in which the plasmid would be susceptible to the Dpn II endonuclease. The biological function of DpnA may, therefore, be the enhancement of plasmid transfer to Dpn II-containing strains of Streptococcus pneumoniae.

  2. Fibered confocal fluorescence microscopy for imaging apoptotic DNA fragmentation at the single-cell level in vivo

    SciTech Connect

    Al-Gubory, Kais H. . E-mail: kais.algubory@jouy.inra.fr

    2005-11-01

    The major characteristic of cell death by apoptosis is the loss of nuclear DNA integrity by endonucleases, resulting in the formation of small DNA fragments. The application of confocal imaging to in vivo monitoring of dynamic cellular events, like apoptosis, within internal organs and tissues has been limited by the accessibility to these sites. Therefore, the aim of the present study was to test the feasibility of fibered confocal fluorescence microscopy (FCFM) to image in situ apoptotic DNA fragmentation in surgically exteriorized sheep corpus luteum in the living animal. Following intra-luteal administration of a fluorescent DNA-staining dye, YO-PRO-1, DNA cleavage within nuclei of apoptotic cells was serially imaged at the single-cell level by FCFM. This imaging technology is sufficiently simple and rapid to allow time series in situ detection and visualization of cells undergoing apoptosis in the intact animal. Combined with endoscope, this approach can be used for minimally invasive detection of fluorescent signals and visualization of cellular events within internal organs and tissues and thereby provides the opportunity to study biological processes in the natural physiological environment of the cell in living animals.

  3. Variation of DNA Fragmentation Levels During Density Gradient Sperm Selection for Assisted Reproduction Techniques

    PubMed Central

    Muratori, Monica; Tarozzi, Nicoletta; Cambi, Marta; Boni, Luca; Iorio, Anna Lisa; Passaro, Claudia; Luppino, Benedetta; Nadalini, Marco; Marchiani, Sara; Tamburrino, Lara; Forti, Gianni; Maggi, Mario; Baldi, Elisabetta; Borini, Andrea

    2016-01-01

    Abstract Predicting the outcome of in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) is one main goal of the present research on assisted reproduction. To understand whether density gradient centrifugation (DGC), used to select sperm, can affect sperm DNA integrity and impact pregnancy rate (PR), we prospectively evaluated sperm DNA fragmentation (sDF) by TUNEL/PI, before and after DGC. sDF was studied in a cohort of 90 infertile couples the same day of IVF/ICSI treatment. After DGC, sDF increased in 41 samples (Group A, median sDF value: 29.25% [interquartile range, IQR: 16.01–41.63] in pre- and 60.40% [IQR: 32.92–93.53] in post-DGC) and decreased in 49 (Group B, median sDF value: 18.84% [IQR: 13.70–35.47] in pre- and 8.98% [IQR: 6.24–15.58] in post-DGC). PR was 17.1% and 34.4% in Group A and B, respectively (odds ratio [OR]: 2.58, 95% confidence interval [CI]: 0.95–7.04, P = 0.056). After adjustment for female factor, female and male age and female BMI, the estimated OR increased to 3.12 (95% CI: 1.05–9.27, P = 0.041). According to the subgroup analysis for presence/absence of female factor, heterogeneity in the association between the Group A and B and PR emerged (OR: 4.22, 95% CI: 1.16–15.30 and OR: 1.53, 95% CI: 0.23–10.40, respectively, for couples without, n = 59, and with, n = 31, female factor). This study provides the first evidence that the DGC procedure produces an increase in sDF in about half of the subjects undergoing IVF/ICSI, who then show a much lower probability of pregnancy, raising concerns about the safety of this selection procedure. Evaluation of sDF before and after DGC configures as a possible new prognostic parameter of pregnancy outcome in IVF/ICSI. Alternative sperm selection strategies are recommended for those subjects who undergo the damage after DGC. PMID:27196465

  4. Molecular typing of Iranian mycobacteria isolates by polymerase chain reaction-restriction fragment length polymorphism analysis of 360-bp rpoB gene

    PubMed Central

    Hadifar, Shima; Moghim, Sharareh; Fazeli, Hossein; GhasemianSafaei, Hajieh; Havaei, Seyed Asghar; Farid, Fariba; Esfahani, Bahram Nasr

    2015-01-01

    Background: Diagnosis and typing of Mycobacterium genus provides basic tools for investigating the epidemiology and pathogenesis of this group of bacteria. Polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis (PRA) is an accurate method providing diagnosis and typing of species of mycobacteria. The present study is conducted by the purpose of determining restriction fragment profiles of common types of mycobacteria by PRA method of rpoB gene in this geographical region. Materials and Methods: Totally 60 clinical and environmental isolates from February to October, 2013 were collected and subcultured and identified by phenotypic methods. A 360 bp fragment of the rpoB gene amplified by PCR and products were digested by MspI and HaeIII enzymes. Results: In the present study, of all mycobacteria isolates identified by PRA method, 13 isolates (21.66%) were Mycobacterium tuberculosis, 34 isolates (56.66%) were rapidly growing Nontuberculosis Mycobacteria (NTM) that including 26 clinical isolates (43.33%) and 8 environmental isolates (13.33%), 11 isolates (18.33%) were clinical slowly growing NTM. among the clinical NTM isolates, Mycobacterium fortuitum Type I with the frequency of 57.77% was the most prevalent type isolates. Furthermore, an unrecorded of the PRA pattern of Mycobacterium conceptionense (HeaIII: 120/90/80, MspI: 120/105/80) was found. This study demonstrated that the PRA method was high discriminatory power for identification and typing of mycobacteria species and was able to identify 96.6% of all isolates. Conclusion: Based on the result of this study, rpoB gene could be a potentially useful tool for identification and investigation of molecular epidemiology of mycobacterial species. PMID:26380237

  5. A polymer, random walk model for the size-distribution of large DNA fragments after high linear energy transfer radiation

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Brenner, D.; Hlatky, L. R.; Sachs, R. K.

    2000-01-01

    DNA double-strand breaks (DSBs) produced by densely ionizing radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. Stochastic DSB clustering at large scales, from > 100 Mbp down to < 0.01 Mbp, is modeled using computer simulations and analytic equations. A random-walk, coarse-grained polymer model for chromatin is combined with a simple track structure model in Monte Carlo software called DNAbreak and is applied to data on alpha-particle irradiation of V-79 cells. The chromatin model neglects molecular details but systematically incorporates an increase in average spatial separation between two DNA loci as the number of base-pairs between the loci increases. Fragment-size distributions obtained using DNAbreak match data on large fragments about as well as distributions previously obtained with a less mechanistic approach. Dose-response relations, linear at small doses of high linear energy transfer (LET) radiation, are obtained. They are found to be non-linear when the dose becomes so large that there is a significant probability of overlapping or close juxtaposition, along one chromosome, for different DSB clusters from different tracks. The non-linearity is more evident for large fragments than for small. The DNAbreak results furnish an example of the RLC (randomly located clusters) analytic formalism, which generalizes the broken-stick fragment-size distribution of the random-breakage model that is often applied to low-LET data.

  6. Does the marine biotoxin okadaic acid cause DNA fragmentation in the blue mussel and the pacific oyster?

    PubMed

    McCarthy, Moira; O'Halloran, John; O'Brien, Nora M; van Pelt, Frank F N A M

    2014-10-01

    Two bivalve species of global economic importance: the blue mussel, Mytilus edulis and the pacific oyster, Crassostrea gigas were exposed in vivo, to the diarrhoetic shellfish toxin okadaic acid (OA), and impacts on DNA fragmentation were measured. Shellfish were exposed using two different regimes, the first was a single (24 h) exposure of 2.5 nM OA (∼0.1 μg/shellfish) and algal feed at the beginning of the trial (T0), after which shellfish were only fed algae. The second was daily exposure of shellfish to two different concentrations of OA mixed with the algal feed over 7 days; 1.2 nM OA (∼0.05 μg OA/shellfish/day) and 50 nM OA (∼2 μg OA/shellfish/day). Haemolymph and hepatopancreas cells were extracted following 1, 3 and 7 days exposure. Cell viability was measured using the trypan blue exclusion assay and remained above 85% for both cell types. DNA fragmentation was examined using the single-cell gel electrophoresis (comet) assay. A significant increase in DNA fragmentation was observed in the two cell types from both species relative to the controls. This increase was greater in the pacific oyster at the higher toxin concentration. However, there was no difference in the proportion of damage measured between the two cell types, and a classic dose response was not observed, increasing toxin concentration did not correspond to increased DNA fragmentation. PMID:25440785

  7. In Vitro Effect of Cell Phone Radiation on Motility, DNA Fragmentation and Clusterin Gene Expression in Human Sperm

    PubMed Central

    Zalata, Adel; El-Samanoudy, Ayman Z; Shaalan, Dalia; El-Baiomy, Youssef; Mostafa, Taymour

    2015-01-01

    Background Use of cellular phones emitting radiofrequency electromagnetic field (RF-EMF) has been increased exponentially and become a part of everyday life. This study aimed to investigate the effects of in vitro RF-EMF exposure emitted from cellular phones on sperm motility index, sperm DNA fragmentation and seminal clusterin (CLU) gene expression. Materials and Methods In this prospective study, a total of 124 semen samples were grouped into the following main categories: i. normozoospermia (N, n=26), ii. asthenozoospermia (A, n=32), iii. asthenoteratozoospermia (AT, n=31) and iv. oligoasthenoteratozoospermia (OAT, n=35). The same semen samples were then divided into two portions non-exposed and exposed samples to cell phone radiation for 1 hour. Before and immediately after exposure, both aliquots were subjected to different assessments for sperm motility, acrosin activity, sperm DNA fragmentation and CLU gene expression. Statistical differences were analyzed using paired t student test for comparisons between two sub-groups where p<0.05 was set as significant. Results There was a significant decrease in sperm motility, sperm linear velocity, sperm linearity index, and sperm acrosin activity, whereas there was a significant increase in sperm DNA fragmentation percent, CLU gene expression and CLU protein levels in the exposed semen samples to RF-EMF compared with non-exposed samples in OAT>AT>A>N groups, respectively (p<0.05). Conclusion Cell phone emissions have a negative impact on exposed sperm motility index, sperm acrosin activity, sperm DNA fragmentation and seminal CLU gene expression, especially in OAT cases. PMID:25918601

  8. [Cell-free DNA fragments increase transcription in human mesenchymal stem cells, activate TLR-dependent signal pathway and supress apoptosis].

    PubMed

    Kostiuk, S V; Malinovskaia, E M; Ermakov, A V; Smirnova, T D; Kameneva, L V; Chvartatskaia, O V; Loseva, P A; Ershova, E S; Liubchenko, L N; Veĭko, N N

    2012-01-01

    Human mesenchymal stem cells (MSCs) are now widely adopted in regenerative medicine. However, many questions on the role of different signaling pathways in the regulation of stem cell (SC) functional activity within the organism remain unaswered. In damaged regions the level of cell death increases and DNA fragments from dead cells (cell-free DNA, cfDNA) are accumulated in blood. We showed that in adipose-derived MSCs exposed in vitro to cfDNA fragments the transcription level increased (the total amount of cellular RNA and the rRNA amount rose). GC-rich CfDNA fragments (GC-DNA) activated the TLR9-dependent signal pathway: the expression of TLR9 and of TLR9-signaling pathway adapter--MyD88--was up-regulated. AT-rich DNA fragments did not increase the TLR9 expression, though, the MyD88 expression level rose. So we suggest that AT-DNA acts via some other receptors that nevertheless activate MyD88-dependent signalling in MSCs. We also showed that cfDNA fragments decreased the activity of caspase, an apoptotic enzyme. So, ctDNA can significantly influence the functional activity ofMSC by activating TLR9- and MyD88-dependent signal pathways and lowering the apoptosis level. PMID:23350199

  9. Association mapping of disease resistance traits in rainbow trout using restriction site associated DNA sequencing.

    PubMed

    Campbell, Nathan R; LaPatra, Scott E; Overturf, Ken; Towner, Richard; Narum, Shawn R

    2014-12-01

    Recent advances in genotyping-by-sequencing have enabled genome-wide association studies in nonmodel species including those in aquaculture programs. As with other aquaculture species, rainbow trout and steelhead (Oncorhynchus mykiss) are susceptible to disease and outbreaks can lead to significant losses. Fish culturists have therefore been pursuing strategies to prevent losses to common pathogens such as Flavobacterium psychrophilum (the etiological agent for bacterial cold water disease [CWD]) and infectious hematopoietic necrosis virus (IHNV) by adjusting feed formulations, vaccine development, and selective breeding. However, discovery of genetic markers linked to disease resistance offers the potential to use marker-assisted selection to increase resistance and reduce outbreaks. For this study we sampled juvenile fish from 40 families from 2-yr classes that either survived or died after controlled exposure to either CWD or IHNV. Restriction site-associated DNA sequencing produced 4661 polymorphic single-nucleotide polymorphism loci after strict filtering. Genotypes from individual survivors and mortalities were then used to test for association between disease resistance and genotype at each locus using the program TASSEL. After we accounted for kinship and stratification of the samples, tests revealed 12 single-nucleotide polymorphism markers that were highly associated with resistance to CWD and 19 markers associated with resistance to IHNV. These markers are candidates for further investigation and are expected to be useful for marker assisted selection in future broodstock selection for various aquaculture programs. PMID:25354781

  10. Association Mapping of Disease Resistance Traits in Rainbow Trout Using Restriction Site Associated DNA Sequencing

    PubMed Central

    Campbell, Nathan R.; LaPatra, Scott E.; Overturf, Ken; Towner, Richard; Narum, Shawn R.

    2014-01-01

    Recent advances in genotyping-by-sequencing have enabled genome-wide association studies in nonmodel species including those in aquaculture programs. As with other aquaculture species, rainbow trout and steelhead (Oncorhynchus mykiss) are susceptible to disease and outbreaks can lead to significant losses. Fish culturists have therefore been pursuing strategies to prevent losses to common pathogens such as Flavobacterium psychrophilum (the etiological agent for bacterial cold water disease [CWD]) and infectious hematopoietic necrosis virus (IHNV) by adjusting feed formulations, vaccine development, and selective breeding. However, discovery of genetic markers linked to disease resistance offers the potential to use marker-assisted selection to increase resistance and reduce outbreaks. For this study we sampled juvenile fish from 40 families from 2-yr classes that either survived or died after controlled exposure to either CWD or IHNV. Restriction site−associated DNA sequencing produced 4661 polymorphic single-nucleotide polymorphism loci after strict filtering. Genotypes from individual survivors and mortalities were then used to test for association between disease resistance and genotype at each locus using the program TASSEL. After we accounted for kinship and stratification of the samples, tests revealed 12 single-nucleotide polymorphism markers that were highly associated with resistance to CWD and 19 markers associated with resistance to IHNV. These markers are candidates for further investigation and are expected to be useful for marker assisted selection in future broodstock selection for various aquaculture programs. PMID:25354781

  11. Severe von Willebrand disease due to a defect at the level of von Willebrand factor mRNA expression: Detection by exonic PCR-restriction fragment length polymorphism analysis

    SciTech Connect

    Nichols, W.C.; Lyons, S.E.; Harrison, J.S.; Cody, R.L.; Ginsburg, D. )

    1991-05-01

    von Willebrand disease (vWD), the most common inherited bleeding disorder in humans, results from abnormalities in the plasma clotting protein von Willebrand factor (vWF). Severe (type III) vWD is autosomal recessive in inheritance and is associated with extremely low or undetectable vWF levels. The authors report a method designed to distinguish mRNA expression from the two vWF alleles by PCR analysis of peripheral blood platelet RNA using DNA sequence polymorphisms located within exons of the vWF gene. This approach was applied to a severe-vWD pedigree in which three of eight siblings are affected and the parents and additional siblings are clinically normal. Each parent was shown to carry a vWF allele that is silent at the mRNA level. Family members inheriting both abnormal alleles are affected with severe vWD, whereas individuals with only one abnormal allele are asymptomatic. Given the frequencies of the two exon polymorphisms reported here, this analysis should be applicable to {approx}70% of type I and type III vWD patients. This comparative DNA and RNA PCR-restriction fragment length polymorphism approach may also prove useful in identifying defects at the level of gene expression associated with other genetic disorders.

  12. Functional domains in Fok I restriction endonuclease.

    PubMed Central

    Li, L; Wu, L P; Chandrasegaran, S

    1992-01-01

    The PCR was used to alter transcriptional and translational signals surrounding the Flavobacterium okeanokoites restriction endonuclease (fokIR) gene, so as to achieve high expression in Escherichia coli. By changing the ribosome-binding site sequence preceding the fokIR gene to match the consensus E. coli signal and by placing a positive retroregulator stem-loop sequence downstream of the gene, Fok I yield was increased to 5-8% of total cellular protein. Fok I was purified to homogeneity with phosphocellulose, DEAE-Sephadex, and gel chromatography, yielding 50 mg of pure Fok I endonuclease per liter of culture medium. The recognition and cleavage domains of Fok I were analyzed by trypsin digestion. Fok I in the absence of a DNA substrate cleaves into a 58-kDa carboxyl-terminal and 8-kDa amino-terminal fragment. The 58-kDa fragment does not bind the DNA substrate. Fok I in the presence of a DNA substrate cleaves into a 41-kDa amino-terminal fragment and a 25-kDa carboxyl-terminal fragment. On further digestion, the 41-kDa fragment degrades into 30-kDa amino-terminal and 11-kDa carboxyl-terminal fragments. The cleaved fragments both bind DNA substrates, as does the 41-kDa fragment. Gel-mobility-shift assays indicate that all the protein contacts necessary for the sequence-specific recognition of DNA substrates are encoded within the 41-kDa fragment. Thus, the 41-kDa amino-terminal fragment constitutes the Fok I recognition domain. The 25-kDa fragment, purified by using a DEAE-Sephadex column, cleaves nonspecifically both methylated (pACYCfokIM) and nonmethylated (pTZ19R) DNA substrates in the presence of MgCl2. Thus, the 25-kDa carboxyl-terminal fragment constitutes the Fok I cleavage domain. Images PMID:1584761

  13. Isolation of cis-acting vaccinia virus DNA fragments promoting the expression of herpes simplex virus thymidine kinase by recombinant viruses.

    PubMed Central

    Vassef, A; Mars, M; Dru, A; Plucienniczak, A; Streeck, R E; Beaud, G

    1985-01-01

    Recombinant TK- vaccinia viruses containing the pBR322 sequence inserted in either orientation within the coding sequence of the viral thymidine kinase gene were constructed. They were characterized by genomic analysis, hybridization studies, reversion to wild-type virus by in vivo recombination, and rescue from their genomes of plasmids which contained all or parts of the pBR322 sequence. TK- cells were infected with one of these recombinant viruses and then transfected with pools of chimeric plasmids composed of a cloned herpes simplex virus thymidine kinase gene which contained upstream inserts of different vaccinia DNA fragments prepared by restriction or sonication. Recombination between homologous pBR322 sequences within infected cells generated selectable recombinant viruses in which expression of the herpes simplex virus thymidine kinase gene was promoted by the upstream vaccinia insert. These viruses were characterized by genomic analysis, hybridization, and in vivo or in vitro phosphorylation of (5-[125I]deoxycytidine as a specific assay for the expressed herpes simplex virus thymidine kinase. Vaccinia DNA inserts were isolated conveniently for transfer to bacteria by rescuing appropriate plasmids from the genome of recombinant viruses. The sequence of 100 nucleotides adjacent to the upstream region of the herpes simplex virus gene was determined in nine different inserts measuring 0.17 to 1.07 kilobase pairs. Images PMID:2989553

  14. Viability and DNA fragmentation of rainbow trout embryos (Oncorhynchus mykiss) obtained from eggs stored at 4 °C.

    PubMed

    Ubilla, A; Valdebenito, I; Árias, M E; Risopatrón, J

    2016-05-01

    In vitro storage of salmonid eggs leads to aging of the cells causing a decline in quality and reducing their capacity to develop and produce embryos. The quality of salmonid embryos is assessed by morphologic analyses; however, data on the application of biomarkers to determine the cell viability and DNA integrity of embryos in these species are limited. The aim of this study was to evaluate the effect on embryo development, viability and DNA fragmentation in the embryonic cells of in vitro storage time at 4 °C of rainbow trout (Oncorhynchus mykiss) eggs. The embryos were obtained by IVF from eggs stored for 0 (control), 48, and 96 hours at 4 °C. At 72 hours after fertilization, dechorionated embryos were examined to determine percentages of developed embryos (embryos with normal cell division morphology), viability (LIVE/DEAD sperm viability kit), and DNA integrity (terminal deoxynucleotidyl transferase [TdT] dUTP nick-end labeling assay). The percentage of developing embryos decreased (P < 0.05) with storage time of the eggs (95.10 ± 2.55; 88.14 ± 4.50; 79.99 ± 6.60 for 0, 48, and 96 hours, respectively). Similarly, cell viability decreased (P < 0.05; 96.07 ± 7.15; 80.42 ± 8.55; 77.47 ± 7.88 for 0, 48, and 96 hours, respectively), and an increase (P < 0.05) in DNA fragmentation in the embryos was observed at 96-hour storage. A positive correlation was found between cell DNA fragmentation and storage time (r = 0.8173; P < 0.0001). The results revealed that terminal deoxynucleotidyl transferase [TdT] dUTP nick-end labeling assay technique is reliable mean to assess the state of the DNA in salmonid embryos and that in vitro eggs storage for 96h reduces embryo development and cell DNA integrity. DNA integrity evaluation constitutes a biomarker of the quality of the ova and resulting embryos so as to predict their capacity to produce good-quality embryos in salmonids, particularly under culture conditions. PMID:26893166

  15. PCR-restriction fragment length polymorphism identification and host range of single-spore isolates of the flexible Frankia sp. strain UFI 132715.

    PubMed

    Lumini, E; Bosco, M

    1996-08-01

    Twelve single-spore isolates of the flexible Elaeagnus-Frankia strain UFI 132715 fulfilled the third and the fourth of Koch's postulates on both Alnus and Elaeagnus axenic plants. Seminested nifD-nifK PCR-restriction fragment length polymorphisms provided evidence for the genetic uniformity of the single-spore frankiae with the mother strain and its plant reisolates and allowed their molecular identification directly inside Alnus and Elaeagnus nodules. The clonal nature of these single-spore-purified frankiae should allow safe mutagenesis programs, while their flexible phenotype makes them a powerful tool for understanding the molecular interactions between Frankia strains and actinorhizal plants and for identifying Frankia nodulation genes. PMID:8702296

  16. Comparison of Large Restriction Fragments of Mycobacterium avium Isolates Recovered from AIDS and Non-AIDS Patients with Those of Isolates from Potable Water

    PubMed Central

    Aronson, T.; Holtzman, A.; Glover, N.; Boian, M.; Froman, S.; Berlin, O. G. W.; Hill, H.; Stelma, G.

    1999-01-01

    We examined potable water in Los Angeles, California, as a possible source of infection in AIDS and non-AIDS patients. Nontuberculous mycobacteria were recovered from 12 (92%) of 13 reservoirs, 45 (82%) of 55 homes, 31 (100%) of 31 commercial buildings, and 15 (100%) of 15 hospitals. Large-restriction-fragment (LRF) pattern analyses were done with AseI. The LRF patterns of Mycobacterium avium isolates recovered from potable water in three homes, two commercial buildings, one reservoir, and eight hospitals had varying degrees of relatedness to 19 clinical isolates recovered from 17 patients. The high number of M. avium isolates recovered from hospital water and their close relationship with clinical isolates suggests the potential threat of nosocomial spread. This study supports the possibility that potable water is a source for the acquisition of M. avium infections. PMID:10074518

  17. Localization by restriction fragment length polymorphism mapping in potato of a major dominant gene conferring resistance to the potato cyst nematode Globodera rostochiensis.

    PubMed

    Barone, A; Ritter, E; Schachtschabel, U; Debener, T; Salamini, F; Gebhardt, C

    1990-11-01

    A major dominant locus conferring resistance against several pathotypes of the root cyst nematode Globodera rostochiensis was mapped on the linkage map of potato using restriction fragment length polymorphism (RFLP) markers. The assessment of resistance versus susceptibility of the plants in the experimental population considered was based on an in vivo (pot) and an in vitro (petri dish) test. By linkage to nine RFLP markers the resistance locus Gro1 was assigned to the potato linkage group IX which is homologous to the tomato linkage group 7. Deviations from the additivity of recombination frequencies between Gro1 and its neighbouring markers in the pot test led to the detection of a few phenotypic misclassifications of small plants with poor root systems that limited the observation of cysts on susceptible roots. Pooled data from both tests provided better estimates of recombination frequencies in the linkage interval defined by the markers flanking the resistance locus. PMID:1980523

  18. Fusion of GFP to the M.EcoKI DNA methyltransferase produces a new probe of Type I DNA restriction and modification enzymes

    SciTech Connect

    Chen, Kai; Roberts, Gareth A.; Stephanou, Augoustinos S.; Cooper, Laurie P.; White, John H.; Dryden, David T.F.

    2010-07-23

    Research highlights: {yields} Successful fusion of GFP to M.EcoKI DNA methyltransferase. {yields} GFP located at C-terminal of sequence specificity subunit does not later enzyme activity. {yields} FRET confirms structural model of M.EcoKI bound to DNA. -- Abstract: We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Foerster resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.

  19. Genetic Heterogeneity of Borrelia burgdorferi Sensu Lato in the Southern United States Based on Restriction Fragment Length Polymorphism and Sequence Analysis

    PubMed Central

    Lin, T.; Oliver, J. H.; Gao, L.; Kollars, T. M.; Clark, K. L.

    2001-01-01

    Fifty-six strains of Borrelia burgdorferi sensu lato, isolated from ticks and vertebrate animals in Missouri, South Carolina, Georgia, Florida, and Texas, were identified and characterized by PCR-restriction fragment length polymorphism (RFLP) analysis of rrf (5S)-rrl (23S) intergenic spacer amplicons. A total of 241 to 258 bp of intergenic spacers between tandemly duplicated rrf (5S) and rrl (23S) was amplified by PCR. MseI and DraI restriction fragment polymorphisms were used to analyze these strains. PCR-RFLP analysis results indicated that the strains represented at least three genospecies and 10 different restriction patterns. Most of the strains isolated from the tick Ixodes dentatus in Missouri and Georgia belonged to the genospecies Borrelia andersonii. Excluding the I. dentatus strains, most southern strains, isolated from the ticks Ixodes scapularis and Ixodes affinis, the cotton rat (Sigmodon hispidus), and cotton mouse (Peromyscus gossypinus) in Georgia and Florida, belonged to Borrelia burgdorferi sensu stricto. Seven strains, isolated from Ixodes minor, the wood rat (Neotoma floridana), the cotton rat, and the cotton mouse in South Carolina and Florida, belonged to Borrelia bissettii. Two strains, MI-8 from Florida and TXW-1 from Texas, exhibited MseI and DraI restriction patterns different from those of previously reported genospecies. Eight Missouri tick strains (MOK-3a group) had MseI patterns similar to that of B. andersonii reference strain 21038 but had a DraI restriction site in the spacer. Strain SCGT-8a had DraI restriction patterns identical to that of strain 25015 (B. bissettii) but differed from strain 25015 in its MseI restriction pattern. Strain AI-1 had the same DraI pattern as other southern strains in the B. bissettii genospecies but had a distinct MseI profile. The taxonomic status of these atypical strains needs to be further evaluated. To clarify the taxonomic positions of these atypical Borrelia strains, the complete sequences of

  20. De novo sequencing of sunflower genome for SNP discovery using RAD (Restriction site Associated DNA) approach

    PubMed Central

    2013-01-01

    Background Application of Single Nucleotide Polymorphism (SNP) marker technology as a tool in sunflower breeding programs offers enormous potential to improve sunflower genetics, and facilitate faster release of sunflower hybrids to the market place. Through a National Sunflower Association (NSA) funded initiative, we report on the process of SNP discovery through reductive genome sequencing and local assembly of six diverse sunflower inbred lines that represent oil as well as confection types. Results A combination of Restriction site Associated DNA Sequencing (RAD-Seq) protocols and Illumina paired-end sequencing chemistry generated high quality 89.4 M paired end reads from the six lines which represent 5.3 GB of the sequencing data. Raw reads from the sunflower line, RHA 464 were assembled de novo to serve as a framework reference genome. About 15.2 Mb of sunflower genome distributed over 42,267 contigs were obtained upon assembly of RHA 464 sequencing data, the contig lengths ranged from 200 to 950 bp with an N50 length of 393 bp. SNP calling was performed by aligning sequencing data from the six sunflower lines to the assembled reference RHA 464. On average, 1 SNP was located every 143 bp of the sunflower genome sequence. Based on several filtering criteria, a final set of 16,467 putative sequence variants with characteristics favorable for Illumina Infinium Genotyping Technology (IGT) were mined from the sequence data generated across six diverse sunflower lines. Conclusion Here we report the molecular and computational methodology involved in SNP development for a complex genome like sunflower lacking reference assembly, offering an attractive tool for molecular breeding purposes in sunflower. PMID:23947483

  1. Short prokaryotic DNA fragment binning using a hierarchical classifier based on linear discriminant analysis and principal component analysis.

    PubMed

    Zheng, Hao; Wu, Hongwei

    2010-12-01

    Metagenomics is an emerging field in which the power of genomic analysis is applied to an entire microbial community, bypassing the need to isolate and culture individual microbial species. Assembling of metagenomic DNA fragments is very much like the overlap-layout-consensus procedure for assembling isolated genomes, but is augmented by an additional binning step to differentiate scaffolds, contigs and unassembled reads into various taxonomic groups. In this paper, we employed n-mer oligonucleotide frequencies as the features and developed a hierarchical classifier (PCAHIER) for binning short (≤ 1,000 bps) metagenomic fragments. The principal component analysis was used to reduce the high dimensionality of the feature space. The hierarchical classifier consists of four layers of local classifiers that are implemented based on the linear discriminant analysis. These local classifiers are responsible for binning prokaryotic DNA fragments into superkingdoms, of the same superkingdom into phyla, of the same phylum into genera, and of the same genus into species, respectively. We evaluated the performance of the PCAHIER by using our own simulated data sets as well as the widely used simHC synthetic metagenome data set from the IMG/M system. The effectiveness of the PCAHIER was demonstrated through comparisons against a non-hierarchical classifier, and two existing binning algorithms (TETRA and Phylopythia). PMID:21121023

  2. Restriction/modification polypeptides, polynucleotides, and methods

    SciTech Connect

    Westpheling, Janet; Chung, DaeHwan; Huddleston, Jennifer; Farkas, Joel A

    2015-02-24

    The present invention relates to the discovery of a novel restriction/modification system in Caldicellulosiruptor bescii. The discovered restriction enzyme is a HaeIII-like restriction enzyme that possesses a thermophilic activity profile. The restriction/modification system also includes a methyltransferase, M.CbeI, that methylates at least one cytosine residue in the CbeI recognition sequence to m.sup.4C. Thus, the invention provides, in various aspects, isolated CbeI or M.CbeI polypeptides, or biologically active fragments thereof; isolated polynucleotides that encode the CbeI or M.CbeI polypeptides or biologically active fragments thereof, including expression vectors that include such polynucleotide sequences; methods of digesting DNA using a CbeI polypeptide; methods of treating a DNA molecule using a M.CbeI polypeptide; and methods of transforming a Caldicellulosiruptor cell.

  3. The Sperm Chromatin Structure Assay (SCSA(®)) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility.

    PubMed

    Evenson, Donald P

    2016-06-01

    Thirty-five years ago the pioneering paper in Science (240:1131) on the relationship between sperm DNA integrity and pregnancy outcome was featured as the cover issue showing a fluorescence photomicrograph of red and green stained sperm. The flow cytometry data showed a very significant difference in sperm DNA integrity between fertile and subfertile bulls and men. This study utilized heat (100°C, 5min) to denature DNA at sites of DNA strand breaks followed by staining with acridine orange (AO) and measurements of 5000 individual sperm of green double strand (ds) DNA and red single strand (ss) DNA fluorescence. Later, the heat protocol was changed to a low pH protocol to denature the DNA at sites of strand breaks; the heat and acid procedures produced the same results. SCSA data are very advantageously dual parameter with 1024 channels (degrees) of both red and green fluorescence. Hundreds of publications on the use of the SCSA test in animals and humans have validated the SCSA as a highly useful test for determining male breeding soundness. The SCSA test is a rapid, non-biased flow cytometer machine measurement providing robust statistical data with exceptional precision and repeatability. Many genotoxic experiments showed excellent dose response data with very low coefficient of variation that further validated the SCSA as being a highly powerful assay for sperm DNA integrity. Twelve years following the introduction of the SCSA test, the terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP nick end labelling (TUNEL) test (1993) for sperm was introduced as the only other flow cytometric assay for sperm DNA fragmentation. However, the TUNEL test can also be done by light microscopy with much less statistical robustness. The COMET (1998) and Sperm Chromatin Dispersion (SCD; HALO) (2003) tests were introduced as light microscope tests that don't require a flow cytometer. Since these tests measure only 50-200 sperm per sample, they suffer from the lack of

  4. Performance Assessment of the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Method for Rapid Detection of Susceptibility to Ethambutol and Molecular Prediction of Extensively Drug-resistant Tuberculosis in Clinical Isolates of Mycobacterium tuberculosis

    PubMed Central

    Arjomandzadegan, M; Nazari, R; Zolfaghari, MR; Taherahmadi, M; Sadrnia, M; Titov, LP; Ahmadi, A; Shojapoor, M

    2015-01-01

    ABSTRACT Introduction: The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was employed for rapid detection of ethambutol (EMB) resistant clinical isolates of Mycobacterium tuberculosis. Materials and Methods: From 182 clinical isolates of M tuberculosis collected from different regions, 103 strains were entered in the investigation. DNA was extracted by Chelex 100 method and PCR was performed using specific primers for embB gene. Polymerase chain reaction products were digested with HaeIII and NlaII restriction endonucleases and the patterns of restriction fragments were analysed. Some randomly selected samples were sequenced. Results: Out of 103 studied strains, 52 were resistant to EMB. The cases of secondary tuberculosis were 53 (51.50 ± 1.77%), and primary cases 50 (48.50 ± 1.77%; p > 0.05). From 63 extensively drug-resistant (XDR), pre-XDR and multidrug-resistant (MDR) isolates, 27 (87%), 18 (81.8%) and 7 (70%) strains were resistant to EMB, respectively. Results of PCR-RFLP method showed that from 27R EMB XDR isolates, 13 (sensitivity 48% with CI: 0.307, 0.66 and specificity 100%), from 18R EMB pre-XDR strains, 4 (sensitivity 22% with CI: 0.09, 0.45 and specificity 100%) and of 7R EMB MDR, 2 (sensitivity 28% with CI: 0.082, 0.64 and specificity 100%) had mutation in ATG-Met codon 306. Results of sequencing were concordant with RFLP method. Overall, sensitivity of the molecular method was 36.5% (CI: 0.09, 0.45) and specificity 100%. None of the 40 pansusceptible strains was embB306 mutants. Extensively drug-resistant strains had a higher proportion of embB306 mutants (43%) than pre-XDR and MDR isolates (odds ratio 6.78; p < 0.001). Conclusion: Fast detection of susceptibility to EMB drug is possible by PCR-RFLP. The embB306 locus is a candidate marker for rapid prediction of high resistance of MDR and XDR forms to anti-tuberculosis drugs using this method. PMID:26624582

  5. Restriction endonuclease fingerprinting by SSCP (REF), an efficient method of screening for mutations in long contiguous segments of DNA

    SciTech Connect

    Liu, O.; Sommer, S.S.

    1994-09-01

    Dideoxy fingerprinting is an efficient method of screening for the presence of mutations in short exons ({le}250 bp). Long contiguous segments can be screened by sequential ddF reactions. To screen long contiguous segments in a more rapid manner, REF has been developed. REF will be described in the context of a model system in exon H of the factor IX gene. A 1 kb segment is PCR amplified and digested with each of five groups of restriction endonucleases. The endonucleases are chosen such that, in each group, the average size of the fragments is about 150 bp. After digestion, the products are mixed, 5{prime} end-labeled with T4 polynucleotide kinase, boiled, and electrophoresed under nondenaturing conditions. Each lane screens 1 kb and contains 70 segments (7 fragments per digestion x 5 digestions x 2 strands). The matrices tested were 5.6% polyacrylamide (PA) and 7.5% GeneAmp{sup {trademark}} (GA) at temperatures of either 23{degrees}C (RT) or 8{degrees}C (LT). Point mutations resulted in the gain or loss of a restriction site in 21% of 24 test mutations. In addition, mutations could be detected if any of 5 restriction fragments with the same mutation (producing 10 denatured segments) displayed abnormal mobility (SSCP component). The average sensitivity per segment of the SSCP component for the 24 point mutations ranged from 49% for PA at RT to 68% with GA at LT. REF detected 96% of the mutations with PA at RT and 100% with GA at RT or LT. These latter two conditions detected 100% of a subsequent blinded sample that contained normal controls and 27 different mutations. A blinded analysis is in progress to determine the sensitivity of REF when the segment size is 2 kb.

  6. Cleavage of Nuclear DNA into Oligonucleosomal Fragments during Cell Death Induced by Fungal Infection or by Abiotic Treatments.

    PubMed Central

    Ryerson, DE; Heath, MC

    1996-01-01

    It is often claimed that programmed cell death (pcd) exists in plants and that a form of pcd known as the hypersensitive response is triggered as a defense mechanism by microbial pathogens. However, in contrast to animals, no feature in plants universally identifies or defines pcd. We have looked for a hallmark of pcd in animal cells, namely, DNA cleavage, in plant cells killed by infection with incompatible fungi or by abiotic means. We found that cell death triggered in intact leaves of two resistant cowpea cultivars by the cowpea rust fungus is accompanied by the cleavage of nuclear DNA into oligonucleosomal fragments (DNA laddering). Terminal deoxynucleotidyl transferase-mediated dUTP nick end in situ labeling of leaf sections showed that fungus-induced DNA cleavage occurred only in haustorium-containing cells and was detectable early in the degeneration process. Such cytologically detectable DNA cleavage was also observed in vascular tissue of infected and uninfected plants, but no DNA laddering was detected in the latter. DNA laddering was triggered by [greater than or equal to]100 mM KCN, regardless of cowpea cultivar, but not by physical cell disruption or by concentrations of H2O2, NaN3, CuSO4, or ZnCl2 that killed cowpea cells at a rate similar to that of ladder-inducing KCN concentrations. These and other results suggest that the hypersensitive response to microbial pathogens may involve a pcd with some of the characteristics of animal apoptosis and that DNA cleavage is a potential indicator of pcd in plants. PMID:12239388

  7. TCH-1030 targeting on topoisomerase I induces S-phase arrest, DNA fragmentation, and cell death of breast cancer cells.

    PubMed

    Liu, Yu-Peng; Chen, Hui-Ling; Tzeng, Cherng-Chyi; Lu, Pei-Jung; Lo, Cheng-Wei; Lee, Yu-Cheng; Tseng, Chih-Hua; Chen, Yeh-Long; Yang, Chia-Ning

    2013-04-01

    Camptothecin (CPT) and its derivatives are powerful anticancer agents, but these compounds are chemically unstable due to their α-hydroxy lactone six-membered E-ring structure, which is essential for trapping topoisomerase I (topo I)-DNA cleavage complexes. Moreover, the reversibility of trapping the topo I-DNA cleavage complex and the tight binding of CPTs to human serum albumin limit the levels of available active drug. CPT analogs are the only clinically available drugs that target topo I. Owing to the clinical importance of CPT analogs, the development of new anticancer agents which inhibit topo I is urgently needed. In the present study, we report the synthesis, biologic evaluation, and molecular mechanism of a series of substituted indeno[1,2-c]quinoline derivatives against the growth of several human cancer cell lines. We found that 9-methoxy-6-(piperazin-1-yl)-11H-indeno[1,2-c]quinoline-11-one O-3-(dimethylamino)propyl oxime (TCH-1030) intercalated into DNA and preferentially inhibited DNA topo I relaxation. Flow cytometric analysis and BrdU incorporation assays indicate that TCH-1030 alters cell cycle progression, induces S-phase arrest, and causes DNA polyploidy (>4 N) that is distinct from the typical G2-M arrest reported with known topoisomerase toxins. Our data indicate that TCH-1030 induces caspase 3 activation, PARP cleavage, γ-H2AX phosphorylation, and, consequently, DNA fragmentation and apoptosis. We also demonstrated that treatment with TCH-1030 significantly inhibits tumor growth in a BT483-xenograft nude mouse model. Taken together, we conclude that the primary mechanism of action of TCH-1030-induced cell cycle retardation and apoptosis-mediated DNA damage involves DNA binding and intercalation as well as topo I inhibition. PMID:23430225

  8. DNA fragmentation in frozen sperm of Equus asinus: Zamorano-Leonés, a breed at risk of extinction.

    PubMed

    Cortés-Gutiérrez, E I; Crespo, F; Gosálvez, A; Dávila-Rodríguez, M I; López-Fernández, C; Gósalvez, J

    2008-05-01

    The dynamics of sperm DNA fragmentation (sDF) and sperm viability were analyzed in frozen-thawed sperm samples of Equus asinus (Zamorano-Leonés), a breed at risk of extinction. Sperm DNA fragmentation was assessed using an adaptation of the sperm chromatin dispersion test developed for stallions in five different frozen samples. Sperm were thawed and incubated at different temperatures (37 degrees C, 25 degrees C, and 4 degrees C) and sDF was assessed at different times and compared. The mean sDF after thawing at the beginning of the experiment was 18.20+/-14.77% and did not differ significantly from the results of a neutral comet assay (22.0+/-19.34%). The tendency in the sDF of all donkeys indicated that sperm DNA is more sensitive to breakage when incubated at 37 degrees C than when incubated at 25 degrees C or 4 degrees C. Interestingly, the tendency was not the same when different animals were compared, and differences in sDF dynamics were established among individuals. sDF correlated negatively with sperm viability in some individuals but not in others. From a conservation perspective, sDF analysis may offer a new way to assess sperm quality in endangered breeds in order to identify and select the best semen samples for artificial reproduction purposes. In particular, we recommend for artificial insemination the use of semen samples with a slow increase in sDF with time after thawing. PMID:18367243

  9. A novel fluorescent biosensor for detection of target DNA fragment from the transgene cauliflower mosaic virus 35S promoter.

    PubMed

    Qiu, Bin; Zhang, Ya-shan; Lin, Yi-bing; Lu, Yu-Jing; Lin, Zhen-yu; Wong, Kwok-Yin; Chen, Guo-nan

    2013-03-15

    In this paper, we reported a convenient fluorescence method for the detection of genetically modified organisms (GMOs). As it is known that the cauliflower mosaic virus (CaMV) 35S promoter is widely used in most transgenic plants (Schnurr and Guerra, 2000), we thus design a simple method based on the detection of a section target DNA (DNA-T) from the transgene CaMV 35S promoter. In this method, the full-length guanine-rich single-strand sequences were split into fragments (Probe 1 and 2) and each part of the fragment possesses two GGG repeats. In the presence of K(+) ion and berberine, if a complementary target DNA of the CaMV 35S promoter was introduced to hybridize with Probe 1 and 2, a G-quadruplex-berberine complex was thus formed and generated a strong fluorescence signal. The generation of fluorescence signal indicates the presence of CaMV 35S promoter. This method is able to identify and quantify Genetically Modified Organisms (GMOs), and it shows wide linear ranges from 5.0×10(-9) to 9.0×10(-7) mol/L with a detection limit of 2.0×10(-9) mol/L. PMID:22959013

  10. Assessment of Chromosomal DNA Fragmentation by Quinolones in an Isogenic Collection of Escherichia coli with Defined Resistance Mechanisms.

    PubMed

    Rodríguez-Martínez, José-Manuel; Santiso, Rebeca; Machuca, Jesús; Bou, Germán; Pascual, Álvaro; Fernández, José Luis

    2016-07-01

    The aim of this study was to investigate the potential usefulness of DNA fragmentation as a quick and simple procedure for detecting resistance to fluoroquinolones (FQ) in isogenic Escherichia coli strains harboring defined and multiple quinolone resistance mechanisms, including low-level quinolone resistance (LLQR) phenotypes. DNA fragmentation assay (Micromax(®)) was evaluated for detecting resistance to FQ in 71 isogenic strains of E. coli harboring specific quinolone resistance mechanisms frequently found in clinical isolates. These isogenic strains represent a consistent and reliable model of increasing minimum inhibitory concentrations (MICs) of ciprofloxacin (CIP), ranging from 0.004 to 16 mg/L. According to CLSI criteria, the assay correctly identified all CIP-resistant strains (MIC ≥4 mg/L). As regards susceptible strains, 96% of bacterial strains were correctly assigned as susceptible to CIP. Moreover, the procedure enabled LLQR phenotypes to be efficiently identified; this subset may show different levels of DNA damage depending on the strain, even with similar MIC. Interestingly, despite increasing the dose according to the MIC, a lower response to quinolones occurs in strains with higher MIC values. This is a simple, rapid, and reliable test for evaluating susceptibility to FQ of E. coli, including the detection of strains harboring LLQR mechanisms. PMID:26890225

  11. Development of Fok-I based nested polymerase chain reaction-restriction fragment length polymorphism analysis for detection of hepatitis B virus X region V5M mutation

    PubMed Central

    Kim, Hong; Hong, Seok-Hyun; Lee, Seoung-Ae; Gong, Jeong-Ryeol; Kim, Bum-Joon

    2015-01-01

    AIM: To develop a Fok-I nested polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis (PRA) method for the detection of hepatitis B virus X region (HBx) V5M mutation. METHODS: Nested PCR was applied into DNAs from 198 chronic patients at 2 different stages [121 patients with hepatocellular carcinoma (HCC) and 77 carrier patients]. To identify V5M mutants, digestion of nested PCR amplicons by the restriction enzyme Fok-I (GGA TGN9↓) was done. For size comparison, the enzyme-treated products were analyzed by electrophoresis on 2.5% agarose gels, stained with ethidium bromide, and visualized on a UV transilluminator. RESULTS: The assay enabled the identification of 69 patients (sensitivity of 34.8%; 46 HCC patients and 23 carrier patients). Our data also showed that V5M prevalence in HCC patients was significantly higher than in carrier patients (47.8%, 22/46 patients vs 0%, 0/23 patients, P < 0.001), suggesting that HBxAg V5M mutation may play a pivotal role in HCC generation in chronic patients with genotype C infections. CONCLUSION: The Fok-I nested PRA developed in this study is a reliable and cost-effective method to detect HBxAg V5M mutation in chronic patients with genotype C2 infection. PMID:26715821

  12. Double Gene Targeting Multiplex Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Assay Discriminates Beef, Buffalo, and Pork Substitution in Frankfurter Products.

    PubMed

    Hossain, M A Motalib; Ali, Md Eaqub; Abd Hamid, Sharifah Bee; Asing; Mustafa, Shuhaimi; Mohd Desa, Mohd Nasir; Zaidul, I S M

    2016-08-17

    Beef, buffalo, and pork adulteration in the food chain is an emerging and sensitive issue. Current molecular techniques to authenticate these species depend on polymerase chain reaction (PCR) assays involving long and single targets which break down under natural decomposition and/or processing treatments. This novel multiplex polymerase chain reaction-restriction fragment length polymorphism assay targeted two different gene sites for each of the bovine, buffalo, and porcine materials. This authentication ensured better security, first through a complementation approach because it is highly unlikely that both sites will be missing under compromised states, and second through molecular fingerprints. Mitochondrial cytochrome b and ND5 genes were targeted, and all targets (73, 90, 106, 120, 138, and 146 bp) were stable under extreme boiling and autoclaving treatments. Target specificity and authenticity were ensured through cross-amplification reaction and restriction digestion of PCR products with AluI, EciI, FatI, and CviKI-1 enzymes. A survey of Malaysian frankfurter products revealed rampant substitution of beef with buffalo but purity in porcine materials. PMID:27501408

  13. Blood levels of histone-complexed DNA fragments are associated with coagulopathy, inflammation and endothelial damage early after trauma

    PubMed Central

    Johansson, Pär I; Windeløv, Nis A; Rasmussen, Lars S; Sørensen, Anne Marie; Ostrowski, Sisse R

    2013-01-01

    Background: Tissue injury increases blood levels of extracellular histones and nucleic acids, and these may influence hemostasis, promote inflammation and damage the endothelium. Trauma-induced coagulopathy (TIC) may result from an endogenous response to the injury that involves the neurohumoral, inflammatory and hemostatic systems. Aims: To study the contribution of extracellular nucleic constituents to TIC, inflammation and endothelial damage. Setting and Design: Prospective observational study. Materials and Methods: We investigated histone-complexed DNA fragments (hcDNA) along with biomarkers of coagulopathy, inflammation and endothelial damage in plasma from 80 trauma patients admitted directly to the Trauma Centre from the scene of the accident. Blood was sampled a median of 68 min (IQR 48-88) post injury. Trauma patients with hcDNA levels >median or ≤median were compared. Results: Trauma patients with high plasma hcDNA had higher Injury Severity Score (ISS) and level of sympathoadrenal activation (higher adrenaline and noradrenaline) and a higher proportion of prolonged activated partial thromboplastin time (APTT) and higher D-dimer, tissue-type plasminogen activator (tPA), Annexin V and soluble CD40 ligand (sCD40L) concurrent with lower plasminogen activator inhibitor (PAI)-1) and prothrombin fragment (PF) 1 + 2 (all P < 0.05), all indicative of impaired thrombin generation, hyperfibrinolysis and platelet activation. Furthermore, patients with high hcDNA had enhanced inflammation and endothelial damage evidenced by higher plasma levels of terminal complement complex (sC5b-9), IL-6, syndecan-1, thrombomodulin and tissue factor pathway inhibitor (all P < 0.05). Conclusions: Excessive release of extracellular histones and nucleic acids seems to contribute to the hypocoagulability, inflammation and endothelial damage observed early after trauma. PMID:23960372

  14. Cellular uptake and fate of fibroin microspheres loaded with randomly fragmented DNA in 3T3 cells

    PubMed Central

    Lee, Jin Sil; Hur, Won

    2016-01-01

    Purified fibroin protein can be obtained in large quantities from silk fibers and processed to form microscopic particles as delivery vehicles for therapeutic agents. In this study, we demonstrated that fibroin microspheres were taken up by 3T3 cells, localized in the nonlysosomal compartment, and secreted from the cytoplasm after medium replenishment. DNA-loaded microspheres were taken up by >95% of 3T3 cells. DNA cargo had no influence on the intracellular trafficking of microspheres, while fluorescently labeled cargo DNA was observed in the lysosomal compartment and in the microspheres. These results indicate that fibroin microspheres can travel through 3T3 cells without making any contact with the lysosomal compartments. The amount of DNA loaded in the microspheres taken up by 3T3 cells was estimated up to 831.0 pg/cell. Thus, fibroin microspheres can deliver a large amount of randomly fragmented DNA (<10 kb) into the cytoplasmic compartment of 3T3 cells. PMID:27257379

  15. The kinetics of force-dependent hybridization and strand-peeling of short DNA fragments

    NASA Astrophysics Data System (ADS)

    Yang, ZhouJie; Yuan, GuoHua; Zhai, WeiLi; Yan, Jie; Chen, Hu

    2016-08-01

    Deoxyribonucleic acid (DNA) carries the genetic information in all living organisms. It consists of two interwound single-stranded (ss) strands, forming a double-stranded (ds) DNA with a right-handed double-helical conformation. The two strands are held together by highly specific basepairing interactions and are further stabilized by stacking between adjacent basepairs. A transition from a dsDNA to two separated ssDNA is called melting and the reverse transition is called hybridization. Applying a tensile force to a dsDNA can result in a particular type of DNA melting, during which one ssDNA strand is peeled away from the other. In this work, we studied the kinetics of strand-peeling and hybridization of short DNA under tensile forces. Our results show that the force-dependent strand-peeling and hybridization can be described with a simple two-state model. Importantly, detailed analysis of the force-dependent transition rates revealed that the transition state consists of several basepairs dsDNA.

  16. Leaf margin phenotype-specific restriction-site-associated DNA-derived markers for pineapple (Ananas comosus L.)

    PubMed Central

    Urasaki, Naoya; Goeku, Satoko; Kaneshima, Risa; Takamine, Tomonori; Tarora, Kazuhiko; Takeuchi, Makoto; Moromizato, Chie; Yonamine, Kaname; Hosaka, Fumiko; Terakami, Shingo; Matsumura, Hideo; Yamamoto, Toshiya; Shoda, Moriyuki

    2015-01-01

    To explore genome-wide DNA polymorphisms and identify DNA markers for leaf margin phenotypes, a restriction-site-associated DNA sequencing analysis was employed to analyze three bulked DNAs of F1 progeny from a cross between a ‘piping-leaf-type’ cultivar, ‘Yugafu’, and a ‘spiny-tip-leaf-type’ variety, ‘Yonekura’. The parents were both Ananas comosus var. comosus. From the analysis, piping-leaf and spiny-tip-leaf gene-specific restriction-site-associated DNA sequencing tags were obtained and designated as PLSTs and STLSTs, respectively. The five PLSTs and two STSLTs were successfully converted to cleaved amplified polymorphic sequence (CAPS) or simple sequence repeat (SSR) markers using the sequence differences between alleles. Based on the genotyping of the F1 with two SSR and three CAPS markers, the five PLST markers were mapped in the vicinity of the P locus, with the closest marker, PLST1_SSR, being located 1.5 cM from the P locus. The two CAPS markers from STLST1 and STLST3 perfectly assessed the ‘spiny-leaf type’ as homozygotes of the recessive s allele of the S gene. The recombination value between the S locus and STLST loci was 2.4, and STLSTs were located 2.2 cM from the S locus. SSR and CAPS markers are applicable to marker-assisted selection of leaf margin phenotypes in pineapple breeding. PMID:26175625

  17. Leaf margin phenotype-specific restriction-site-associated DNA-derived markers for pineapple (Ananas comosus L.).

    PubMed

    Urasaki, Naoya; Goeku, Satoko; Kaneshima, Risa; Takamine, Tomonori; Tarora, Kazuhiko; Takeuchi, Makoto; Moromizato, Chie; Yonamine, Kaname; Hosaka, Fumiko; Terakami, Shingo; Matsumura, Hideo; Yamamoto, Toshiya; Shoda, Moriyuki

    2015-06-01

    To explore genome-wide DNA polymorphisms and identify DNA markers for leaf margin phenotypes, a restriction-site-associated DNA sequencing analysis was employed to analyze three bulked DNAs of F1 progeny from a cross between a 'piping-leaf-type' cultivar, 'Yugafu', and a 'spiny-tip-leaf-type' variety, 'Yonekura'. The parents were both Ananas comosus var. comosus. From the analysis, piping-leaf and spiny-tip-leaf gene-specific restriction-site-associated DNA sequencing tags were obtained and designated as PLSTs and STLSTs, respectively. The five PLSTs and two STSLTs were successfully converted to cleaved amplified polymorphic sequence (CAPS) or simple sequence repeat (SSR) markers using the sequence differences between alleles. Based on the genotyping of the F1 with two SSR and three CAPS markers, the five PLST markers were mapped in the vicinity of the P locus, with the closest marker, PLST1_SSR, being located 1.5 cM from the P locus. The two CAPS markers from STLST1 and STLST3 perfectly assessed the 'spiny-leaf type' as homozygotes of the recessive s allele of the S gene. The recombination value between the S locus and STLST loci was 2.4, and STLSTs were located 2.2 cM from the S locus. SSR and CAPS markers are applicable to marker-assisted selection of leaf margin phenotypes in pineapple breeding. PMID:26175625

  18. Sequence Capture versus Restriction Site Associated DNA Sequencing for Shallow Systematics.

    PubMed

    Harvey, Michael G; Smith, Brian Tilston; Glenn, Travis C; Faircloth, Brant C; Brumfield, Robb T

    2016-09-01

    Sequence capture and restriction site associated DNA sequencing (RAD-Seq) are two genomic enrichment strategies for applying next-generation sequencing technologies to systematics studies. At shallow timescales, such as within species, RAD-Seq has been widely adopted among researchers, although there has been little discussion of the potential limitations and benefits of RAD-Seq and sequence capture. We discuss a series of issues that may impact the utility of sequence capture and RAD-Seq data for shallow systematics in non-model species. We review prior studies that used both methods, and investigate differences between the methods by re-analyzing existing RAD-Seq and sequence capture data sets from a Neotropical bird (Xenops minutus). We suggest that the strengths of RAD-Seq data sets for shallow systematics are the wide dispersion of markers across the genome, the relative ease and cost of laboratory work, the deep coverage and read overlap at recovered loci, and the high overall information that results. Sequence capture's benefits include flexibility and repeatability in the genomic regions targeted, success using low-quality samples, more straightforward read orthology assessment, and higher per-locus information content. The utility of a method in systematics, however, rests not only on its performance within a study, but on the comparability of data sets and inferences with those of prior work. In RAD-Seq data sets, comparability is compromised by low overlap of orthologous markers across species and the sensitivity of genetic diversity in a data set to an interaction between the level of natural heterozygosity in the samples examined and the parameters used for orthology assessment. In contrast, sequence capture of conserved genomic regions permits interrogation of the same loci across divergent species, which is preferable for maintaining comparability among data sets and studies for the purpose of drawing general conclusions about the impact of

  19. Tandem mass spectrometry-based detection of c4'-oxidized abasic sites at specific positions in DNA fragments.

    PubMed

    Chowdhury, Goutam; Guengerich, F Peter

    2009-07-01

    Oxidative damage to DNA has been linked to aging, cancer, and other biological processes. Reactive oxygen species and various antitumor agents including bleomycin and ionizing radiation have been shown to cause oxidative DNA sugar damage. Detection of DNA lesions is important for understanding the toxicological or therapeutic consequences associated with such agents. C4'-oxidized abasic sites (C4-AP) are produced by the antitumor drug bleomycin and ionizing radiation. The currently available methods for the detection of C4-AP cannot provide both structural and sequence information. We have developed an LC-ESI-MS-based approach for specific detection and mapping of C4-AP from a mixture of lesions. We show using Fe-bleomycin-damaged DNA that C4-AP can be detected at cytosine and thymine sites by direct MS analysis. Our results reveal that collision-induced dissociation of C4-AP-containing oligonucleotides results in preferential fragmentation at C4-AP sites with the formation of the unique a* ions (18 amu more than the a-B ions) that allow mapping of the C4-AP sites. Various chemical modification strategies (e.g., reduction with NaBH4 and NaBD4 and derivatization with methoxyamine and hydrazine, followed by LC-MS analysis) were also used for unambiguous detection of C4-AP sites. Finally, we show that the methods described here can detect the presence of C4-AP at specific sites in a complex sample such as hydroxyl radical-damaged DNA. The LC-MS approach was also used for the simultaneous detection of the other C4'-oxidation end product, 3'-phosphoglycolate, at a specific site in hydroxyl radical-damaged DNA. Thus, LC-MS provides a rapid and direct approach for the detection and mapping of oxidative DNA lesions. PMID:19496605

  20. Measuring motion on DNA by the type I restriction endonuclease EcoR124I using triplex displacement

    PubMed Central

    Firman, Keith; Szczelkun, Mark D.

    2000-01-01

    The type I restriction enzyme EcoR124I cleaves DNA following extensive linear translocation dependent upon ATP hydrolysis. Using protein-directed displacement of a DNA triplex, we have determined the kinetics of one-dimensional motion without the necessity of measuring DNA or ATP hydrolysis. The triplex was pre-formed specifically on linear DNA, 4370 bp from an EcoR124I site, and then incubated with endonuclease. Upon ATP addition, a distinct lag phase was observed before the triplex-forming oligonucleotide was displaced with exponential kinetics. As the distance between type I and triplex sites was shortened, the lag time decreased whilst the displacement reaction remained exponential. This is indicative of processive DNA translocation followed by collision with the triplex and oligonucleotide displacement. A linear relationship between lag duration and inter-site distance gives a translocation velocity of 400 ± 32 bp/s at 20°C. Furthermore, the data can only be explained by bi-directional translocation. An endonuclease with only one of the two HsdR subunits responsible for motion could still catalyse translocation. The reaction is less processive, but can ‘reset’ in either direction whenever the DNA is released. PMID:10790375

  1. Absence of superoxide dismutase activity causes nuclear DNA fragmentation during the aging process

    SciTech Connect

    Muid, Khandaker Ashfaqul; Karakaya, Hüseyin Çaglar; Koc, Ahmet

    2014-02-07

    Highlights: • Aging process increases ROS accumulation. • Aging process increases DNA damage levels. • Absence of SOD activity does not cause DNA damage in young cells. • Absence of SOD activity accelerate aging and increase oxidative DNA damages during the aging process. - Abstract: Superoxide dismutases (SOD) serve as an important antioxidant defense mechanism in aerobic organisms, and deletion of these genes shortens the replicative life span in the budding yeast Saccharomyces cerevisiae. Even though involvement of superoxide dismutase enzymes in ROS scavenging and the aging process has been studied extensively in different organisms, analyses of DNA damages has not been performed for replicatively old superoxide dismutase deficient cells. In this study, we investigated the roles of SOD1, SOD2 and CCS1 genes in preserving genomic integrity in replicatively old yeast cells using the single cell comet assay. We observed that extend of DNA damage was not significantly different among the young cells of wild type, sod1Δ and sod2Δ strains. However, ccs1Δ mutants showed a 60% higher amount of DNA damage in the young stage compared to that of the wild type cells. The aging process increased the DNA damage rates 3-fold in the wild type and more than 5-fold in sod1Δ, sod2Δ, and ccs1Δ mutant cells. Furthermore, ROS levels of these strains showed a similar pattern to their DNA damage contents. Thus, our results confirm that cells accumulate DNA damages during the aging process and reveal that superoxide dismutase enzymes play a substantial role in preserving the genomic integrity in this process.

  2. Random mutagenesis strategies for construction of large and diverse clone libraries of mutated DNA fragments.

    PubMed

    Chusacultanachai, Sudsanguan; Yuthavong, Yongyuth

    2004-01-01

    The first important step toward a successful preparation of large and diverse DNA libraries with desired complexity is to select a suitable mutagenesis strategy. This chapter describes three different methods for random mutagenesis, the use of XL1-red cells, error-prone polymerase chain reaction (PCR), and degenerate oligonucleotides-Pfu (DOP). These mutagenesis strategies possess different benefits and pitfalls; thus, they are differentially useful for production of DNA libraries with different density and complexity. The use of XL1-red, an engineered Escherichia coli with DNA repair deficiency, is one of the simplest mutagenesis and requires no subcloning step. After plasmid encoding DNA of inter-est is transformed into the cells, the mutations are simply generated during each round of DNA replication. The mutation frequency of this method is reported to be 1 base change per 2000 nucleotides; however, it can be slightly increased by extending the culture period to allow the accumulation of more mutations. This strategy is suitable for generation of random mutations with low frequency in a large target DNA. Error-prone PCR is one of the most widely used random mutagenesis. During DNA amplification, misincorporation of nucleotides can be promoted by altering the nucleotide ratio and the concentration of divalent cations in the reaction. We discovered that, by adjusting template concentration, frequency of mutation could be controlled easily and a library with desired mutation rate could be obtained. Additionally, efficiency of subsequent cloning steps to insert the PCR product into plasmid DNA is also a key factor determining size and complexity of the libraries. DOP mutagenesis is a rapid and effective method for random mutagenesis of small DNA and peptides. This strategy uses two chemically synthesized degenerate oligonucleotides as primers. By controlling the positions and ratios of degenerate nucleotides used during oligonucleotide synthesis, it is possible to