Science.gov

Sample records for dnapl mass removal

  1. Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal

    NASA Astrophysics Data System (ADS)

    Johnston, C. D.; Davis, G. B.; Bastow, T. P.; Woodbury, R. J.; Rao, P. S. C.; Annable, M. D.; Rhodes, S.

    2014-08-01

    Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L3/L2/T) and mass fluxes (Jc; M/L2/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104 g day- 1 to 24-31 g day- 1 (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions also

  2. Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal.

    PubMed

    Johnston, C D; Davis, G B; Bastow, T P; Woodbury, R J; Rao, P S C; Annable, M D; Rhodes, S

    2014-08-01

    Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L(3)/L(2)/T) and mass fluxes (Jc; M/L(2)/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104gday(-1) to 24-31gday(-1) (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions

  3. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  4. Reductions in contaminant mass discharge following partial mass removal from DNAPL source zones.

    PubMed

    Suchomel, Eric J; Pennell, Kurt D

    2006-10-01

    Although in situ remediation technologies have been used to aggressively treat dense nonaqueous phase liquid (DNAPL) source zones, complete contaminant removal or destruction is rarely achieved. To evaluate the effects of partial source zone mass removal on dissolved-phase contaminant flux, four experiments were conducted in a two-dimensional aquifer cell that contained a tetrachloroethene (PCE) source zone and down-gradient plume region. Initial source zone PCE saturation distributions, quantified using a light transmission system, were expressed in terms of a ganglia-to-pool ratio (GTP), which ranged from 0.16 (13.8% ganglia) to 1.6 (61.5% ganglia). The cells were flushed sequentially with a 4% (wt.) Tween 80 surfactant solution to achieve incremental PCE mass removal, followed by water flooding until steady-state mass discharge and plume concentrations were established. In all cases, the GTP ratio decreased with increasing mass removal, consistent with the observed preferential dissolution of PCE ganglia and persistence of high-saturation pools. In the ganglia-dominated system (GTP = 1.6), greater than 70% mass removal was required before measurable reductions in plume concentrations and mass discharge were observed. For pool-dominated source zones (GTP < 0.3), substantial reductions (>50%) in mass discharge were realized after only 50% mass removal. PMID:17051808

  5. A framework for assessing risk reduction due to DNAPL mass removal from low permeability soils

    SciTech Connect

    Freeze, R.A.; McWhorter, D.B.

    1996-08-01

    Many emerging remediation technologies are designed to remove contaminant mass from source zones at DNAPL sites in response to regulatory requirements. There is often concern in the regulated community as to whether mass removal actually reduces risk, or whether the small risk reductions achieved warrant the large costs incurred. This paper sets out a framework for quantifying the degree to which risk is reduced as mass is removed from shallow, saturated, low-permeability, dual-porosity, DNAPL source zones. Risk is defined in terms of meeting an alternate concentration level (ACL) at a compliance well in an aquifer underlying the source zone. The ACL is back-calculated from a carcinogenic health-risk characterization at a downstream water-supply well. Source-zone mass-removal efficiencies are heavily dependent on the distribution of mass between media (fractures, matrix) and phases (dissolved, sorbed, free product). Due to the uncertainties in currently-available technology performance data, the scope of the paper is limited to developing a framework for generic technologies rather than making risk-reduction calculations for specific technologies. Despite the qualitative nature of the exercise, results imply that very high mass-removal efficiencies are required to achieve significant long-term risk reduction with technology, applications of finite duration. 17 refs., 7 figs., 6 tabs.

  6. Coupling Aggressive Mass Removal with Microbial Reductive Dechlorination for Remediation of DNAPL Source Zones: A Review and Assessment

    PubMed Central

    Christ, John A.; Ramsburg, C. Andrew; Abriola, Linda M.; Pennell, Kurt D.; Löffler, Frank E.

    2005-01-01

    The infiltration of dense non-aqueous-phase liquids (DNAPLs) into the saturated subsurface typically produces a highly contaminated zone that serves as a long-term source of dissolved-phase groundwater contamination. Applications of aggressive physical–chemical technologies to such source zones may remove > 90% of the contaminant mass under favorable conditions. The remaining contaminant mass, however, can create a rebounding of aqueous-phase concentrations within the treated zone. Stimulation of microbial reductive dechlorination within the source zone after aggressive mass removal has recently been proposed as a promising staged-treatment remediation technology for transforming the remaining contaminant mass. This article reviews available laboratory and field evidence that supports the development of a treatment strategy that combines aggressive source-zone removal technologies with subsequent promotion of sustained microbial reductive dechlorination. Physical–chemical source-zone treatment technologies compatible with posttreatment stimulation of microbial activity are identified, and studies examining the requirements and controls (i.e., limits) of reductive dechlorination of chlorinated ethenes are investigated. Illustrative calculations are presented to explore the potential effects of source-zone management alternatives. Results suggest that, for the favorable conditions assumed in these calculations (i.e., statistical homogeneity of aquifer properties, known source-zone DNAPL distribution, and successful bioenhancement in the source zone), source longevity may be reduced by as much as an order of magnitude when physical–chemical source-zone treatment is coupled with reductive dechlorination. PMID:15811838

  7. DNAPL mass transfer and permeability reduction during in situ chemical oxidation with permanganate

    NASA Astrophysics Data System (ADS)

    Li, X. David; Schwartz, Franklin W.

    2004-03-01

    This study utilized a series of laboratory experiments to examine the DNAPL mass removal rate and permeability reduction during ISCO using permanganate (MnO4-). Results show that MnO4- oxidation is effective in removing residual DNAPL from a porous medium. The DNAPL mass removal rate correlated positively with both the hydraulic stress and the oxidant load. A power relationship model of DNAPL mass removal under ISCO was proposed. Results also show that oxidation by-products CO2(g) and Mn oxide can cause pore plugging and flow by-passing. The reduction in hydraulic conductivity due to the Mn oxide precipitates was quantified. Hydraulic conductivity reduction as high as 80% was observed for oxidizing a small quantity of TCE.

  8. Predicting DNAPL mass discharge from pool-dominated source zones.

    PubMed

    Christ, John A; Ramsburg, C Andrew; Pennell, Kurt D; Abriola, Linda M

    2010-05-20

    Models that link simplified descriptions of dense non-aqueous phase liquid (DNAPL) source zone architecture with predictions of mass flux can be effective screening tools for evaluation of source zone management strategies. Recent efforts have focused on the development and implementation of upscaled models to approximate the relationship between mass removal and flux-averaged, down-gradient contaminant concentration (or mass flux) reduction. The efficacy of these methods has been demonstrated for ganglia-dominated source zones. This work extends these methods to source zones dominated by high-saturation DNAPL pools. An existing upscaled mass transfer model was modified to reproduce dissolution behavior in pool-dominated scenarios by employing a two-domain (ganglia and pools) representation of the source zone. The two-domain upscaled model is parameterized using the initial fraction of the source zone that exists as pool regions, the initial fraction of contaminant eluting from these pool regions, and the flux-averaged down-gradient contaminant concentration. Comparisons of model predictions with a series of three-dimensional source zone numerical simulations and data from two-dimensional aquifer cell experiments demonstrate the ability of the model to predict DNAPL dissolution from ganglia- and pool-dominated source zones for all levels of mass recovery. PMID:20227132

  9. IMPACT OF DNAPL SOURCE TREATMENT ON CONTAMINANT MASS FLUX

    EPA Science Inventory

    Implementation of remediation technologies at DNAPL contaminated sites has shown that large quantities of contaminants can be removed or degraded using in-situ heating, flushing or oxidation. The rate and magnitude of DNAPL removal is dependent upon site-specific and technology-...

  10. Coupling Surfactants with Permanganate for PCE DNAPL Removal: Coinjection or Sequential Application as Delivery Methods

    NASA Astrophysics Data System (ADS)

    Dugan, P. J.; Siegrist, R. L.; Crimi, M. L.

    2008-12-01

    Batch experiments and two-dimensional (2-D) flow-through cell experiments were conducted to investigate coupling surfactant-enhanced aquifer remediation (SEAR) with in situ chemical oxidation (ISCO) of tetrachloroethene (PCE) dense nonaqueous phase liquid (DNAPL) for PCE mass destruction. Previous batch screening tests were performed on surfactants and cosolvents in the presence of the oxidant potassium permanganate, to assess compatibility for coupling with permanganate. The anionic surfactants sodium dioctyl sulfosuccinate (Aerosol OT), and sodium hexadecyl diphenyl oxide disulfonate (Dowfax 8390) were compatible and selected for use. Two delivery methods were investigated: (1) coinjection of 0.66 pore volumes (PVs) of 1.0-wt% Aerosol-OT, 0.5-wt% Dowfax 8390, 0.35-wt% CaBr2, and 0.75-wt% NaBr, (for enhanced PCE solubilization) with 0.5-wt% permanganate(for DNAPL mass destruction), and (2) sequential application of 0.66 PVs of the same surfactant solution followed by 0.66 PVs of 0.5-wt% permanganate flush. The 2-D cell packing configuration consisted of a fine-grained silica sand matrix with an embedded medium- grained sand lens, which allowed for the development of a high saturation PCE DNAPL source zone (~9-11% v/v) within the lens of each cell. For both experiments the flushing solutions were delivered at a linear velocity of 52 cm/day. Water quality samples were collected from eight point sampling ports, as well as the cell effluent. Samples were analyzed for PCE, chloride, and permanganate. At the conclusion of the experiments, the mass of PCE removed was quantified by destructively analyzing the cell. Results indicate complete mass removal using sequential application as a delivery method. In the coinjection experiment, cores extracted at the conclusion revealed that 99.8% of PCE DNAPL mass was removed. However, it was not possible to close a mass balance between the initial PCE added and the PCE removed. It is hypothesized this result was due to incomplete

  11. FIELD AND LABORATORY EVALUATION OF DNAPL REMEDIAL PERFORMANCE

    EPA Science Inventory

    The basic goal of DNAPL source treatment is to reduce health and environmental risks posed by the DNAPL contamination. Removing a sufficient mass of DNAPL to achieve concentration-based regulatory goals is difficult because of site hydrogeologic heterogeneity and uncertainties ab...

  12. Surfactant foam technology for in situ removal of heavy chlorinated compounds-DNAPLs.

    PubMed

    Maire, Julien; Coyer, Amandine; Fatin-Rouge, Nicolas

    2015-12-15

    The use of surfactant foam for the remediation of a saturated soil contaminated with a dense non-aqueous phase liquid (DNAPL) was investigated at bench-scale. Despite the presence of the DNAPL, high foam stability was obtained for a mixture of cocamidopropyl betaïne and dodecylsulfate at 0.05%. Foams were assessed in different injection conditions and were compared to commonly used remediation methods. Strong foams improved significantly the DNAPL recovery yield, which amounted up to 98%, owing to the propagation of a flat foam front, with low dissolution (<0.5 g l(-1)) and surfactant consumption (<10 g kg(-1) DNAPL recovered). The effects of important parameters (gas to liquid ratio, injection velocity, gas nature) and methods for foam production on pressure gradient (∇P), remediation efficiency and surfactant consumption were investigated. Even for low injection velocities (4×10(-4) ms(-1)), capillary numbers were high enough (∼8×10(-3)) to push the DNAPL efficiently. DNAPL lowered ∇P for foam propagation because of its destabilising effect. The use of CO2 as gas reduced the ∇Ps for foam propagation by 35%. ∇P were also decreased by 25% for gas to liquid ratios lower than 75%, whereas, DNAPL removal remained high. This technology should lower spreading risks and treatment costs. PMID:26291781

  13. Removal of PCB-DNAPL from a rough-walled fracture using alcohol/polymer flooding.

    PubMed

    Gauthier, M; Kueper, B H

    2006-03-01

    Phase behaviour experiments employing PCB (Aroclor 1242)/alcohol/water systems were conducted with ethanol (EtOH) and n-propanol (nPA). Both exhibited an affinity for the aqueous phase within the entire two-phase region. As much as 88% by volume (88% vol.) EtOH and 80% vol. nPA were necessary to achieve full miscibility of the PCB in the aqueous phase. DNAPL-water interfacial tension (IFT) was reduced from 38.9 dyn/cm to 4.7 dyn/cm and 2.4 dyn/cm with 80% vol. EtOH and 76% vol. nPA. The addition of alcohol brought about 41% and 54% reductions in DNAPL viscosity at maximal concentrations of EtOH and nPA. Density of the PCB-DNAPL was relatively unaffected by the presence of alcohol. A series of seven experiments were conducted where successive slugs of nPA and xanthan gum polymer solutions were injected into a fractured shale sample. A 30% vol. nPA solution injected under a hydraulic gradient of 0.36 allowed enhanced PCB removal primarily through reduction of IFT and resulted in 72% DNAPL recovery. Several pore volumes of alcohol solution were necessary to displace all the potentially mobile non-wetting phase since the high-viscosity DNAPL was mobilized at a lower flow rate than the overall fluid velocity, illustrating non-piston displacement. The injection of a 95% vol. nPA alcohol solution, theoretically at a sufficient concentration to produce fully miscible displacement of the residual DNAPL at equilibrium, resulted in non-equilibrium partitioning of the PCB into the flushing solution, likely due to the high fluid velocities in the fracture. The injection of 200 pore volumes of 95% vol. nPA solution resulted in 94% DNAPL recovery. Alcohol floods operated below the miscibility envelope appear to be a valuable source zone remedial alternative where the objective is to reduce DNAPL mobility to zero, but it should be noted that DNAPL mobility is increased during the application of the technology and steps may need to be taken to prevent unwanted vertical mobilization

  14. Removal of PCB-DNAPL from a rough-walled fracture using alcohol/polymer flooding

    NASA Astrophysics Data System (ADS)

    Gauthier, M.; Kueper, B. H.

    2006-03-01

    Phase behaviour experiments employing PCB (Aroclor 1242)/alcohol/water systems were conducted with ethanol (EtOH) and n-propanol (nPA). Both exhibited an affinity for the aqueous phase within the entire two-phase region. As much as 88% by volume (88% vol.) EtOH and 80% vol. nPA were necessary to achieve full miscibility of the PCB in the aqueous phase. DNAPL-water interfacial tension (IFT) was reduced from 38.9 dyn/cm to 4.7 dyn/cm and 2.4 dyn/cm with 80% vol. EtOH and 76% vol. nPA. The addition of alcohol brought about 41% and 54% reductions in DNAPL viscosity at maximal concentrations of EtOH and nPA. Density of the PCB-DNAPL was relatively unaffected by the presence of alcohol. A series of seven experiments were conducted where successive slugs of nPA and xanthan gum polymer solutions were injected into a fractured shale sample. A 30% vol. nPA solution injected under a hydraulic gradient of 0.36 allowed enhanced PCB removal primarily through reduction of IFT and resulted in 72% DNAPL recovery. Several pore volumes of alcohol solution were necessary to displace all the potentially mobile non-wetting phase since the high-viscosity DNAPL was mobilized at a lower flow rate than the overall fluid velocity, illustrating non-piston displacement. The injection of a 95% vol. nPA alcohol solution, theoretically at a sufficient concentration to produce fully miscible displacement of the residual DNAPL at equilibrium, resulted in non-equilibrium partitioning of the PCB into the flushing solution, likely due to the high fluid velocities in the fracture. The injection of 200 pore volumes of 95% vol. nPA solution resulted in 94% DNAPL recovery. Alcohol floods operated below the miscibility envelope appear to be a valuable source zone remedial alternative where the objective is to reduce DNAPL mobility to zero, but it should be noted that DNAPL mobility is increased during the application of the technology and steps may need to be taken to prevent unwanted vertical mobilization.

  15. Efficient, near-complete removal of DNAPL from three-dimensional, heterogeneous porous media using a novel combination of treatment technologies.

    PubMed

    Johnson, D N; Pedit, J A; Miller, C T

    2004-10-01

    Remediation of porous media containing an entrapped dense nonaqueous phase liquid (DNAPL) is extremely difficult due to the heterogeneity and three-dimensional spatial nature of typical natural systems. A novel treatment technology based on surfactant- and gravity-induced mobilization, dense brine containment and collection, and a vapor-phase extraction polishing step is proposed as a means to remediate such systems. Laboratory experiments are performed using the suggested methodology applied to three-dimensional, heterogeneous systems, which are packed based upon a realization from a correlated random field. Entrapped DNAPL is effectively removed as a result of each component of the technology. Following vapor extraction, less than 1% of the original DNAPL mass remained in the system. While these results are very promising, several open issues must be resolved before this technology can be considered mature; both the investigation of some of these issues and a summary of remaining needs are addressed. PMID:15506211

  16. Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Sleep, B. E.

    2011-12-01

    The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and

  17. Determining Mass and Persistence of a Reactive Brominated-Solvent DNAPL Source Using Mass Depletion-Mass Flux Reduction Relationships During Pumping

    NASA Astrophysics Data System (ADS)

    Johnston, C. D.; Davis, G. B.; Bastow, T.; Annable, M. D.; Trefry, M. G.; Furness, A.; Geste, Y.; Woodbury, R.; Rhodes, S.

    2011-12-01

    Measures of the source mass and depletion characteristics of recalcitrant dense non-aqueous phase liquid (DNAPL) contaminants are critical elements for assessing performance of remediation efforts. This is in addition to understanding the relationships between source mass depletion and changes to dissolved contaminant concentration and mass flux in groundwater. Here we present results of applying analytical source-depletion concepts to pumping from within the DNAPL source zone of a 10-m thick heterogeneous layered aquifer to estimate the original source mass and characterise the time trajectory of source depletion and mass flux in groundwater. The multi-component, reactive DNAPL source consisted of the brominated solvent tetrabromoethane (TBA) and its transformation products (mostly tribromoethene - TriBE). Coring and multi-level groundwater sampling indicated the DNAPL to be mainly in lower-permeability layers, suggesting the source had already undergone appreciable depletion. Four simplified source dissolution models (exponential, power function, error function and rational mass) were able to describe the concentration history of the total molar concentration of brominated organics in extracted groundwater during 285 days of pumping. Approximately 152 kg of brominated compounds were extracted. The lack of significant kinetic mass transfer limitations in pumped concentrations was notable. This was despite the heterogeneous layering in the aquifer and distribution of DNAPL. There was little to choose between the model fits to pumped concentration time series. The variance of groundwater velocities in the aquifer determined during a partitioning inter-well tracer test (PITT) were used to parameterise the models. However, the models were found to be relatively insensitive to this parameter. All models indicated an initial source mass around 250 kg which compared favourably to an estimate of 220 kg derived from the PITT. The extrapolated concentrations from the

  18. The use of mass depletion-mass flux reduction relationships during pumping to determine source zone mass of a reactive brominated-solvent DNAPL

    NASA Astrophysics Data System (ADS)

    Johnston, C. D.; Davis, G. B.; Bastow, T. P.; Annable, M. D.; Trefry, M. G.; Furness, A.; Geste, Y.; Woodbury, R. J.; Rao, P. S. C.; Rhodes, S.

    2013-01-01

    Mass depletion-mass flux relationships usually applied to a groundwater plume were established at field scale for groundwater pumped from within the source zone of a dense non-aqueous phase liquid (DNAPL). These were used as part of multiple lines of evidence in establishing the DNAPL source mass and architecture. Simplified source mass-dissolved concentration models including those described by exponential, power, and error functions as well as a rational mass equation based on the equilibrium stream tube approach were fitted to data from 285 days of source zone pumping (SZP) from a single well which removed 152 kg of dissolved organics from a multi-component, reactive brominated solvent DNAPL. The total molar concentration of the source compound, tetrabromoethane and its daughter products was used as a single measure of contaminant concentration to relate to source mass. A partitioning inter-well tracer test (PITT) conducted prior to the SZP provided estimates of groundwater travel times, enabling parameterisation of the models. After accounting for capture of the down-gradient dissolved plume, all models provided a good fit to the observed data. It was shown that differentiation between models would only emerge after appreciably more pumping from the source zone. The model fits were not particularly sensitive to the exponent parameters and variance of groundwater travel time. In addition, the multi-component nature of the DNAPL did not seem to affect the utility of the models for the period examined. Estimates of the DNAPL mass prior to the start of SZP from the models were greatest where the log of the variance of travel time was used explicitly in the source depletion models (mean 295 kg) compared to where the associated power exponent and variance was fitted freely (mean 258 kg). The estimates of source mass were close to that of 220 kg determined from the PITT. In addition to the PITT, multi-level groundwater sampling from within the source zone provided

  19. EVALUATIONS OF DNAPL REMEDIAL PERFORMANCE BASED ON FIELD MEASUREMENTS OF CONTAMINANT FLUX

    EPA Science Inventory

    Under a concentration-based regulatory framework, the benefits of conducting dense nonaqueous phase liquid (DNAPL) source-zone remediation are questionable because of the impracticality of complete DNAPL elimination at most sites. Removing a sufficient mass of DNAPL to achieve c...

  20. Density-surfactant-motivated removal of DNAPL trapped in dead-end fractures

    NASA Astrophysics Data System (ADS)

    Yeo, In Wook; Ji, Sung-Hoon; Lee, Kang-Kun

    2003-05-01

    Three kinds of experiments were conducted to test existing methods and develop an effective methodology for the remediation of DNAPL trapped in vertical dead-end fractures. A water-flushing method failed to remove TCE from vertical dead-end fractures where no fluid flow occurs. A water-flushing experiment implies that existing remediation methods, utilizing water-based remedial fluid such as surfactant-enhanced method, have difficulty in removing DNAPL trapped from the vertical downward dead-end fractures, because of no water flow through dead-end fractures, capillary, and gravity forces. Fluid denser than TCE was injected into the fracture network, but did not displace TCE from the vertical dead-end fractures. Based on the analysis of the experiments, the increase in the density of the dense fluid and the addition of surfactant to the dense fluid were suggested, and this composite dense fluid with surfactant effectively removed TCE from the vertical dead-end fractures.

  1. High Resolution Numerical Simulation of DNAPL Source Zone Remediation in Heterogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Kueper, B.; West, M.

    2009-05-01

    High resolution numerical simulation was used to evaluate the performance of DNAPL mass removal technologies in spatially correlated random permeablity fields. A number of template sites were created varying according to mean permeability, permeability variance, DNAPL type, and DNAPL release volume. A reactive transport model (RT3D) was coupled with a multiphase flow model (DNAPL3DRX) to simulate DNAPL migration and redistribution followed by treatment using either hydraulic displacment, chemical oxidation with potassium permanganate, surfactant flushing, or enhanced bioremediation. The various technologies were compared to each other on the basis of DNAPL mass removal, mass flux reduction, and concentration reduction. All technologies were also compared to a no treatment scenario involving ten years of dissolution. It is concluded that the performance of any particular technology is dependent on delivery, geology and DNAPL distribution.

  2. Comparison of upscaled models for multistage mass discharge from DNAPL source zones

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Werth, C. J.; Sleep, B. E.

    2014-04-01

    Analytical upscaled models that can describe the depletion of dense nonaqueous phase liquids (DNAPLs) and the associated mass discharge are a practical alternative to computationally demanding and data-intensive multiphase numerical simulators. A major shortcoming of most existing upscaled models is that they cannot reproduce the nonmonotonic, multistage effluent concentrations often observed in experiments and numerical simulations. Upscaled models that can produce multistage concentrations either require calibration, which increases the cost of applying them in the field, or use dual-domain conceptual models that may not apply for spatially complex source zones. In this study, a new upscaled model is presented that can describe the nonmonotonic, multistage average concentrations emanating from complex DNAPL source zones. This is achieved by explicitly considering the temporal evolution of three source zone parameters, namely source zone projected area, the average of local-scale DNAPL saturations, and the average of local-scale aqueous relative permeability, without using empirical parameters. The model is evaluated for two real and twelve hypothetical centimeter-scale complex source zones. The proposed model captures the temporal variations in concentrations better than an empirical model and a dual-domain ganglia-to-pool ratio model. The results provide evidence that effluent concentrations downgradient of DNAPL source zones are controlled by the evolution of the aforementioned macroscopic parameters. This knowledge can be useful for the interpretation of field observations of effluent concentrations downstream of DNAPL source zones, and for the development of predictive upscaled models. Advances in DNAPL characterization techniques are needed to quantify these macroscopic parameters that can be used to guide DNAPL remediation efforts.

  3. ANALYTICAL ASSESSMENT OF THE IMPACTS OF PARTIAL MASS DEPLETION IN DNAPL SOURCE ZONES (SAN FRANCISCO, CA)

    EPA Science Inventory

    Analytical solutions describing the time-dependent DNAPL source-zone mass and contaminant discharge rate are used as a flux-boundary condition in a semi-analytical contaminant transport model. These analytical solutions assume a power relationship between the flow-averaged sourc...

  4. Numerical Modeling to Assess DNAPL Movement and Removal at the Scenic Site Operable Unit Near Baton Rouge, Louisiana: A Case Study.

    SciTech Connect

    Oostrom, Mart; Thorne, Paul D.; White, Mark D.; Truex, Michael J.; Wietsma, Thomas W.

    2003-12-01

    Detailed three-dimensional multifluid flow modeling was conducted to assess movement and removal of dense nonaqueous phase liquid (DNAPL) movement at a waste site in Louisiana. The site’s subsurface consists of several permeable zones separated by (semi) confining clays. In the upper subsurface, the two major permeable zones are, starting with the uppermost zone, the +40- and +20-MSL (mean sea level) zones. At the site, a total of 23,000 m3 of DNAPL was emplaced in an open waste pit between 1962 and 1974. In this period, considerable amounts of DNAPL moved into the subsurface. By 1974 a portion of the DNAPL was removed and the waste site was filled with low-permeability materials and closed. During this process, some of the DNAPL was mixed with the fill material and remained at the site. Between 1974 and 2000, no additional DNAPL recovery activities were implemented. In an effort to reduce the DNAPL source, organic liquid has been pumped through a timed-pumping scheme from a total of 7 wells starting in calendar year 2000. The recovery wells are screened in the lower part of the waste fill material. In site investigations, DNAPL has been encountered in the +40-MSL but not in the +20-MSL zone. The following questions are addressed: (1) Where has the DNAPL migrated vertically and laterally? (2) How much further is DNAPL expected to move in the next century? (3) How effective is the current DNAPL pumping in reducing the DNAPL source? The computational domains for the simulations were derived from 3-D interpolations of borehole logs using a geologic interpretation software (EarthvisionTM ) . The simulation results show that DNAPL primarily entered the subsurface in the period 1962 – 1974, when the waste site was operational. After 1974, the infiltration rates dropped dramatically as a result of the infilling of the waste pit. The simulation results indicate that DNAPL moved from the pit into the underlying +40-MSL zone through two contact zones at the

  5. CONTAMINANT FLUX RESPONSES TO THERMAL TREATMENT OF DNAPL SOURCE ZONES (ABSTRACT ONLY)

    EPA Science Inventory

    Contaminant flux is being proposed as a metric to help elucidate the benefits of DNAPL source-zone remedial efforts. While it is clear that aggressive remediation technologies can rapidly remove DNAPL mass, experience has shown that complete removal is often not practicable. H...

  6. MEASUREMENTS OF CAPILLARY PRESSURE-SATURATION RELATIONSHIPS AND DNAPL DISTRIBUTION IN SILICA SANDS USING LIGHT TRANSMISSION VISUALIZATION

    EPA Science Inventory

    This study is a part of an ongoing research project that aims at assessing the environmental benefits of partial DNAPL removal. The laboratory part of the research project is to examine the functional relationship between DNAPL (modeled by PCE) architecture, mass removal and cont...

  7. Mass removal of chlorinated ethenes from rough-walled fractures using permanganate

    NASA Astrophysics Data System (ADS)

    Tunnicliffe, B. S.; Thomson, N. R.

    2004-11-01

    In situ chemical oxidation (ISCO) employing permanganate is an emerging technology that has been successful at enhancing mass removal from DNAPL source zones in unconsolidated media at the pilot-scale. The focus of this study was to evaluate the applicability of flushing a permanganate solution across two single vertical fractures in a laboratory environment to remove free phase DNAPL. The fracture experiments were designed to represent a portion of a larger fractured aquifer system impacted by a near-surface DNAPL spill over a shallow fractured rock aquifer. Each fracture was characterized by hydraulic and tracer tests, and the aperture field for one of the fractures was mapped using a co-ordinate measurement machine. Following DNAPL emplacement, a series of water and permanganate flushes were performed. To support observations from the fracture experiments, a set of batch experiments was conducted. The data from both fracture experiments showed that the post-oxidation effluent concentration was not impacted by the oxidant flush; however, changes in the aperture distribution, flow field, and flow rate were observed. These changes resulted in a significant decrease to the mass loading from the fractures, and were attributed to the build-up of oxidation by-products (manganese oxides and carbon dioxide) within the fracture which was corroborated by the batch experiment data and visual examination of the walls of one fracture. These results provide insight into the potential impact that a permanganate solution and oxidation by-products can have on the aperture distribution within a fracture and on DNAPL mass transfer rates. A permanganate flush or injection completed within a fractured rock aquifer may lead to the development of an insoluble product adjacent to the DNAPL which results in the reduction or complete elimination of advective regions near the DNAPL and reduces mass transfer rates. This outcome would have significant implications on the plume generating

  8. MICROSCOPIC OBSERVATION AND QUANTIFICATION OF ENHANCED DNAPL REMOVAL BY COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The simultaneous injection of cosolvent and air has been suggested to improve sweep efficiency of cosolvent flooding for dense nonaqueous phase liquid (DNAPL) remediation. Glass micromodel experiments were conducted to investigate the factors that influence perchloroethylene (PCE...

  9. Changes in Contaminant Mass Discharge from DNAPL Source Mass Depletion: Evaluation at Two Field Sites

    EPA Science Inventory

    Changes in contaminant fluxes resulting from aggressive remediation of dense nonaqueous phase liquid (DNAPL) source zone were investigated at two sites, one at Hill Air Force Base (AFB), Utah, and the other at Ft. Lewis Military Reservation, WA. Passive Flux Meters (PFM) and a va...

  10. Long-term mass transfer and mixing-controlled reactions of a DNAPL plume from persistent residuals

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Illangasekare, Tissa H.; Kitanidis, Peter K.

    2014-02-01

    Understanding and being able to predict the long-term behavior of DNAPL (i.e., PCE and TCE) residuals after active remediation has ceased have become increasingly important as attention at many sites turns from aggressive remediation to monitored natural attenuation and long-term stewardship. However, plume behavior due to mass loading and reactions during these later phases is less studied as they involve large spatial and temporal scales. We apply both theoretical analysis and pore-scale simulations to investigate mass transfer from DNAPL residuals and subsequent reactions within the generated plume, and, in particular, to show the differences between early- and late-time behaviors of the plume. In the zone of entry of the DNAPL entrapment zone where the concentration boundary layer in the flowing groundwater has not fully developed, the pore-scale simulations confirm the past findings based on laboratory studies that the mass transfer increases as a power-law function of the Peclét number, and is enhanced due to reactions in the plume. Away from the entry zone and further down gradient, the long-term reactions are limited by the available additive and mixing in the porous medium, thereby behave considerably differently from the entry zone. For the reaction between the contaminant and an additive with intrinsic second-order bimolecular kinetics, the late-time reaction demonstrates a first-order decay macroscopically with respect to the mass of the limiting additive, not with respect to that of the contaminant. The late-time decay rate only depends on the intrinsic reaction rate and the solubility of the entrapped DNAPL. At the intermediate time, the additive decays exponentially with the square of time (t2), instead of time (t). Moreover, the intermediate decay rate also depends on the initial conditions, the spatial distribution of DNAPL residuals, and the effective dispersion coefficient.

  11. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.

    PubMed

    Rivett, Michael O; Dearden, Rachel A; Wealthall, Gary P

    2014-12-01

    data. DNAPL dissolution yielded heterogeneous dissolved-phase plumes of TCE and its dechlorination products that exhibited orders of magnitude local concentration variation. TCE solubility concentrations were relatively localised, but coincident with high saturation DNAPL lens source areas. Biotic dechlorination in the source zone area, however, caused cDCE to be the dominant dissolved-phase plume. The conservative tracer test usefully confirmed the continuity of a permeable gravel unit at depth through the source zone. Although this unit offered significant opportunity for DNAPL bypassing and decreased timeframes for dechlorination, it still transmitted a significant proportion of the contaminant flux. This was attributed to dissolution of DNAPL-mudstone aquitard associated sources at the base of the continuous gravel as well as contaminated groundwater from surrounding less permeable sand and gravel horizons draining into this permeable conduit. The cell extraction well provided an integrated metric of source zone dissolution yielding a mean concentration of around 45% TCE solubility (taking into account dechlorination) that was equivalent to a DNAPL mass removal rate of 0.4tonnes per annum over a 16m(2) cell cross sectional area of flow. This is a significant flux considering the source age and observed occurrence of much of the source mass within discrete lenses/pools. We advocate the need for further detailed field-scale studies on old DNAPL source zones that better resolve persistent pool/lens features and are of prolonged duration to assess the ageing of source zones. Such studies would further underpin the application of more surgical remediation technologies. PMID:25444120

  12. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone

    NASA Astrophysics Data System (ADS)

    Rivett, Michael O.; Dearden, Rachel A.; Wealthall, Gary P.

    2014-12-01

    laboratory data. DNAPL dissolution yielded heterogeneous dissolved-phase plumes of TCE and its dechlorination products that exhibited orders of magnitude local concentration variation. TCE solubility concentrations were relatively localised, but coincident with high saturation DNAPL lens source areas. Biotic dechlorination in the source zone area, however, caused cDCE to be the dominant dissolved-phase plume. The conservative tracer test usefully confirmed the continuity of a permeable gravel unit at depth through the source zone. Although this unit offered significant opportunity for DNAPL bypassing and decreased timeframes for dechlorination, it still transmitted a significant proportion of the contaminant flux. This was attributed to dissolution of DNAPL-mudstone aquitard associated sources at the base of the continuous gravel as well as contaminated groundwater from surrounding less permeable sand and gravel horizons draining into this permeable conduit. The cell extraction well provided an integrated metric of source zone dissolution yielding a mean concentration of around 45% TCE solubility (taking into account dechlorination) that was equivalent to a DNAPL mass removal rate of 0.4 tonnes per annum over a 16 m2 cell cross sectional area of flow. This is a significant flux considering the source age and observed occurrence of much of the source mass within discrete lenses/pools. We advocate the need for further detailed field-scale studies on old DNAPL source zones that better resolve persistent pool/lens features and are of prolonged duration to assess the ageing of source zones. Such studies would further underpin the application of more surgical remediation technologies.

  13. Predicting DNAPL mass discharge and contaminated site longevity probabilities: Conceptual model and high-resolution stochastic simulation

    NASA Astrophysics Data System (ADS)

    Koch, J.; Nowak, W.

    2015-02-01

    Improper storage and disposal of nonaqueous-phase liquids (NAPLs) has resulted in widespread contamination of the subsurface, threatening the quality of groundwater as a freshwater resource. The high frequency of contaminated sites and the difficulties of remediation efforts demand rational decisions based on a sound risk assessment. Due to sparse data and natural heterogeneities, this risk assessment needs to be supported by appropriate predictive models with quantified uncertainty. This study proposes a physically and stochastically coherent model concept to simulate and predict crucial impact metrics for DNAPL contaminated sites, such as contaminant mass discharge and DNAPL source longevity. To this end, aquifer parameters and the contaminant source architecture are conceptualized as random space functions. The governing processes are simulated in a three-dimensional, highly resolved, stochastic, and coupled model that can predict probability density functions of mass discharge and source depletion times. While it is not possible to determine whether the presented model framework is sufficiently complex or not, we can investigate whether and to which degree the desired model predictions are sensitive to simplifications often found in the literature. By testing four commonly made simplifications, we identified aquifer heterogeneity, groundwater flow irregularity, uncertain and physically based contaminant source zones, and their mutual interlinkages as indispensable components of a sound model framework.

  14. Natural and man-made controls on the performance of DNAPL-pump-and-treat systems -- A comparative case study

    SciTech Connect

    Losonsky, G.; Landry, G.R.; Valentine, R.M.

    1996-12-31

    Although the recovery of dense non-aqueous liquids (DNAPLs) using pump-and-treat technology generally does not achieve regulatory cleanup criteria for dissolved phase concentrations in groundwater, the technology is commonly used to achieve two alternate goals--to recover DNAPL mass and to prevent or slow down the spread of DNAPL pools. Both the physico-chemical characteristics of the DNAPL and the hydrogeologic characteristics of the subsurface determine the effectiveness of DNAPL pump-and-treat systems in achieving these goals. Physico-chemical characteristics include density, viscosity, interfacial tension, and solubility. Some of these parameters can change naturally over time, and some can be manipulated using enhanced recovery agents, such as steam or surfactants. Hydrogeologic characteristics include hydraulic conductivity, anisotropy, heterogeneity, fracture porosity, capillary pressure, and hydraulic gradients. The operation of a pump-and-treat system necessarily affects the hydraulic gradients and capillary pressures governing subsurface fluid flow at a DNAPL site. Both naturally occurring low-permeability zones and man-made, compacted clay liners influence DNAPL migration. The performance of a DNAPL pump-and-treat system changes with time. High mass removal may occur early in the operation of such a system, whereas DNAPL migration away from the recovery wells or even out of the pumped hydrostratigraphic unit may dominate later stages of operation of the system. A comparison of several interim corrective measures (ICM) pump-and-treat systems at a site in the Gulf Coast illustrates the combined effects of both natural and man-made controls on the performance of the DNAPL recovery systems.

  15. Diffusion of DNAPL Components into Low Permeability Soils

    NASA Astrophysics Data System (ADS)

    Ayral, D.; Demond, A. H.

    2013-12-01

    Hazardous waste sites contaminated with dense non-aqueous phase liquids (DNAPLs) have proven difficult to remediate. Even though DNAPLs may be removed from high permeability subsurface strata, the storage of compounds making up DNAPLs in low permeability strata constitutes a secondary source that contributes to a dissolved phase plume over an extended period of time. The movement of DNAPL constituents into and out of low permeable strata is considered to occur through diffusion. However, there are few experimentally measured effective diffusion coefficients for DNAPL components in low permeability soils. Thus, the effective diffusion coefficient is commonly estimated from the aqueous phase diffusion coefficient as a function of the porosity of the soil. This study presents measurements of effective diffusion coefficients of chlorinated solvents and an anionic surfactant dioctyl sodium sulfosuccinate (AOT) in silt and clay-silt mixtures. The experimental results are compared with estimated values to evaluate the performance of commonly used methods to estimate effective diffusion coefficients of DNAPL components. These estimation models generally suggest an increase in the effective diffusion coefficient with an increase in porosity. Yet, in low permeable soils with a substantial fraction of clay, the effective diffusion coefficient for chlorinated solutes decreases, although the porosity increases. Thus, calculations of the quantity of mass stored in low permeable strata may be in error if based on rates of diffusion calculated using such models. In addition to chlorinated solvents, DNAPLs often contain surfactants. The high molecular weight of these solutes results in problems when estimating their effective diffusion coefficient in low permeability soils, since commonly models were formulated for use with low molecular weight compounds. Furthermore, some clay minerals present in low permeable soils have a flexible structure which enables them to expand or

  16. ALCOHOL FLUSHING FOR REMOVING DNAPL'S FROM CLAY AND SAND LAYERED AQUIFER SYSTEMS

    SciTech Connect

    N.J. Hayden; P. Padgett; C. Farrell; J. Diebold; X. Zhou; M. Hood

    1999-08-01

    Alcohol flushing, also called cosolvent flushing, is a relatively new in-situ remediation technology that shows promise for removing organic solvents from the soil and groundwater. Soil and groundwater contamination from organic solvents and petroleum products is one of the most serious and widespread environmental problems of our time. Most of the DOE facilities and inactive sites are experiencing soil and groundwater contamination from organic solvents. These water immiscible solvents have entered the subsurface from leaking underground storage tanks and piping, and from past waste handling and disposal practices such as leaking lagoons, holding ponds and landfills. In many cases, they have traveled hundreds of feet down into the saturated zone. If left in the soil, these chemicals may pose a significant environmental and human health risk. Alcohol flushing has potential for application to spilled solvents located deep within the saturated zone which are difficult if not impossible to remove by current remediation strategies, thus, greatly expediting restoration time, reducing total remediation cost and reducing risk.

  17. Dynamics of DNAPL penetration into fractured porous media

    SciTech Connect

    Ross, B.; Lu, N.

    1999-01-01

    Dense nonaqueous phase liquids (DNAPLs) that pool above stratigraphic contacts as a result of capillary forces can migrate downward through fractures in the underlying fine-grained layer. Although the DNAPL in the fracture is excluded from the surrounding porous matrix by capillary forces, the DNAPL constituent will dissolve and migrate by diffusion into the matrix. As a front of moderately soluble DNAPL advances into a fracture, the flux of dissolved material into the matrix increases until it becomes comparable to the rate of flow into the fracture, reducing the pressure in the DNAPL phase and slowing its advance. If the DNAPL front encounters a constriction with sufficiently large entry pressure, its advance will halt temporarily. But as the concentration gradients driving diffusion into the matrix decrease, there will be less DNAPL lost by diffusion and the DNAPL pressure at the constriction will increase until it exceeds the entry pressure, causing the downward advance of the front to suddenly resume. Because the time scales of diffusion are much slower than those of density flow, this analysis suggests that under certain circumstances a DNAPL can suddenly resume its downward advance after a long period of apparent immobility. In one plausible example, a dichloromethane front passes through 5 m of fractured clay in 16 days, is immobile for more than four years, and then suddenly moves again. Where this phenomenon is possible, removal of DNAPL to protect underlying aquifers becomes more important as a remediation goal.

  18. DNAPL Surface Chemistry: Its Impact on DNAPL Distribution in the Vadose Zone and its Manipulation to Enhance Remediation

    SciTech Connect

    Suan Power; Stefan Grimberg; Miles Denham

    2003-06-16

    The remediation of DNAPLs in subsurface environments is often limited by the heterogeneous distribution of the organic fluid. The fraction of DNAPL that is in the high conductivity regions of the subsurface can often be recovered relatively easily, although DNAPL in lower conductivity regions is much more difficult to extract, either through direct pumping or remediation measures based on interface mass transfer. The distribution of DNAPL within the vadose zone is affected by a complex interplay of heterogeneities in the porous matrix and the interfacial properties defining the interactions among all fluid and solid phases. Decreasing the interfacial tension between a DNAPL and water in the vadose zone could change the spreading of the DNAPL, thereby increase the surface area for mass transfer and the effectiveness of soil vapor extraction remediation.

  19. Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones

    NASA Astrophysics Data System (ADS)

    Heiderscheidt, J. L.; Siegrist, R. L.; Illangasekare, T. H.

    2008-11-01

    O 2 formation was found to reduce permeability in and around DNAPL source zones resulting in changes to the overall flow pattern, with the effects depending on source zone configuration. A pool with little or no residual around it, in a relatively homogeneous flow field, appeared to benefit from resulting MnO 2 pore-blocking that substantially reduced mass transfer from the pool even though there was relatively little PCE mass removed from the pool. In contrast, a pool with residual around it (in a more typical heterogeneous flow field) appeared to undergo increased mass transfer as MnO 2 reduced permeability, altering the water flow and increasing the mixing at the DNAPL-water interface. Further, the magnitude of increased PCE mass depletion during oxidation appeared to depend on the PCE source configuration (pool versus ganglia) and decreased as MnO 2 was formed and deposited at the DNAPL-water interface. Overall, the oxidation of PCE mass appeared to be rate-limited by the mass transfer from the DNAPL to aqueous phase.

  20. The influence of precipitate formation on the chemical oxidation of TCE DNAPL with potassium permanganate

    NASA Astrophysics Data System (ADS)

    West, Michael R.; Grant, Gavin P.; Gerhard, Jason I.; Kueper, Bernard H.

    2008-02-01

    A three-dimensional two-phase flow model is coupled to a non-linear reactive transport model to study the efficacy of potassium permanganate treatment on dense, non-aqueous phase liquid (DNAPL) source removal in porous media. A linear relationship between the soil permeability ( k) and concentration of manganese dioxide precipitate ([MnO 2(s)]), k = ko + Srind [MnO 2(s)], is utilized to simulate nodal permeability reductions due to precipitate formation. Using published experimental column studies, an Srind = -5.5 × 10 -16 m 2 L/mg was determined for trichloroethylene (TCE) DNAPL. This Srind was then applied to treatment simulations on three-dimensional TCE DNAPL source zones comprising either DNAPL at residual saturations, or DNAPL at pooled saturations. DNAPL dissolution without oxidation treatment, simulated using equilibrium and the Nambi and Powers [Nambi I, Powers S. Mass transfer correlations for non-aqueous phase liquid dissolution from regions with high initial saturations. Water Resour Res 2003;39(2):1-11, SBH 4] mass transfer expression, required 31 and 36 years, respectively, to eliminate the residual source zone. For equilibrium dissolution with continuous treatment and no precipitate influence ( Srind = 0 m 2 L/mg), the residual source zone was removed after 11 years. However, when considering the precipitate influence (i.e., Srind = -5.5 × 10 -16 m 2 L/mg), 21 years of treatment were necessary to remove the DNAPL. When considering pulse treatments of 1 and 2 years duration followed by only dissolution, approximately 36 and 38 years, respectively, were required before the source zone was depleted, suggesting that there is no benefit to pulse treatment. Similar trends were observed when allowing 10 years of dissolution prior to treatment initiation. The treatment behaviour of the pooled TCE source, while slightly more efficient than the residual saturation source, was similar. Based on simulation findings, the precipitate (rind) formation

  1. Numerical and experimental investigation of DNAPL removal mechanisms in a layered porous medium by means of soil vapor extraction

    NASA Astrophysics Data System (ADS)

    Yoon, Hongkyu; Oostrom, Mart; Wietsma, Thomas W.; Werth, Charles J.; Valocchi, Albert J.

    2009-10-01

    The purpose of this work is to identify the mechanisms that govern the removal of carbon tetrachloride (CT) during soil vapor extraction (SVE) by comparing numerical and analytical model simulations with a detailed data set from a well-defined intermediate-scale flow cell experiment. The flow cell was packed with a fine-grained sand layer embedded in a coarse-grained sand matrix. A total of 499 mL CT was injected at the top of the flow cell and allowed to redistribute in the variably saturated system. A dual-energy gamma radiation system was used to determine the initial NAPL saturation profile in the fine-grained sand layer. Gas concentrations at the outlet of the flow cell and 15 sampling ports inside the flow cell were measured during subsequent CT removal using SVE. Results show that CT mass was removed quickly in coarse-grained sand, followed by a slow removal from the fine-grained sand layer. Consequently, effluent gas concentrations decreased quickly at first, and then started to decrease gradually, resulting in long-term tailing. The long-term tailing was mainly due to diffusion from the fine-grained sand layer to the coarse-grained sand zone. An analytical solution for a one-dimensional advection and a first-order mass transfer model matched the tailing well with two fitting parameters. Given detailed knowledge of the permeability field and initial CT distribution, we were also able to predict the effluent concentration tailing and gas concentration profiles at sampling ports using a numerical simulator assuming equilibrium CT evaporation. The numerical model predictions were accurate within the uncertainty of independently measured or literature derived parameters. This study demonstrates that proper numerical modeling of CT removal through SVE can be achieved using equilibrium evaporation of NAPL if detailed fine-scale knowledge of the CT distribution and physical heterogeneity is incorporated into the model. However, CT removal could also be fit by a

  2. Numerical and experimental investigation of DNAPL removal mechanisms in a layered porous medium by means of soil vapor extraction

    SciTech Connect

    Yoon, Hongkyu; Oostrom, Martinus; Wietsma, Thomas W.; Werth, Charles J.; Valocchi, Albert J.

    2009-10-13

    The purpose of this work is to identify the mechanisms that govern the removal of carbon tetrachloride (CT) during soil vapor extraction (SVE) by comparing multiphase flow simulations with a detailed data set from a well-defined two-dimensional flow cell experiment. The flow cell was packed with two sandy soils including an embedded fine-grained sand layer. Gas concentrations at the outlet of the flow cell and 15 sampling ports inside the flow cell were measured during SVE. A dual-energy gamma radiation system was used to measure an initial NAPL saturation profile in a fine-grained sand layer. Imaging result from a dual-energy gamma radiation system with dyed CT mark along CT migration was used to construct the distribution of initial NAPL saturation in the flow cell for input to numerical simulations. Gas concentration results and photographs during SVE were compared to simulation results using a continuum-based multiphase flow simulator, STOMP (Subsurface Transport Over Multiple Phases). The measured effluent gas concentration decreased quickly at first, and then started to decrease gradually, resulting in long-term tailing. CT mass was removed quickly in coarse sand, followed by a slow removal from the fine-grained sand layer. An analytical solution for a one-dimensional advection and first-order volatilization model matched the tailing well with two fitting parameters. However, given detailed knowledge of the permeability field and initial NAPL distribution, we can predict the tailing and gas concentration profiles at sampling ports using equilibrium NAPL volatilization. NAPL flow occurs in the presence of free NAPL, and must be accounted for to accurately predict NAPL removal during the SVE experiment. The model prediction was accurate within the uncertainty of the measured or literature derived parameters (i.e., dispersivity and soil parameters). This study provides insights into the physical mechanisms of NAPL removal from a low permeability zone, and use of

  3. Biogeochemical gradients above a coal tar DNAPL.

    PubMed

    Scherr, Kerstin E; Backes, Diana; Scarlett, Alan G; Lantschbauer, Wolfgang; Nahold, Manfred

    2016-09-01

    Naturally occurring distribution and attenuation processes can keep hydrocarbon emissions from dense non aqueous phase liquids (DNAPL) into the adjacent groundwater at a minimum. In a historically coal tar DNAPL-impacted site, the de facto absence of a plume sparked investigations regarding the character of natural attenuation and DNAPL resolubilization processes at the site. Steep vertical gradients of polycyclic aromatic hydrocarbons, microbial community composition, secondary water quality and redox-parameters were found to occur between the DNAPL-proximal and shallow waters. While methanogenic and mixed-electron acceptor conditions prevailed close to the DNAPL, aerobic conditions and very low dissolved contaminant concentrations were identified in three meters vertical distance from the phase. Comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) proved to be an efficient tool to characterize the behavior of the present complex contaminant mixture. Medium to low bioavailability of ferric iron and manganese oxides of aquifer samples was detected via incubation with Shewanella alga and evidence for iron and manganese reduction was collected. In contrast, 16S rDNA phylogenetic analysis revealed the absence of common iron reducing bacteria. Aerobic hydrocarbon degraders were abundant in shallow horizons, while nitrate reducers were dominating in deeper aquifer regions, in addition to a low relative abundance of methanogenic archaea. Partial Least Squares - Canonical Correspondence Analysis (PLS-CCA) suggested that nitrate and oxygen concentrations had the greatest impact on aquifer community structure in on- and offsite wells, which had a similarly high biodiversity (H' and Chao1). Overall, slow hydrocarbon dissolution from the DNAPL appears to dominate natural attenuation processes. This site may serve as a model for developing legal and technical strategies for the treatment of DNAPL-impacted sites where contaminant plumes are absent or

  4. The Behavior of an Industrial Chlorinated Solvent DNAPL in the Presence of an Alcohol Cosolvent

    NASA Astrophysics Data System (ADS)

    Myers, J. L.; Lee, C. M.; Falta, R. W.

    2001-12-01

    Chlorinated dense non-aqueous phase liquids (DNAPLs), such as tetrachloroethylene (PCE), pose a significant challenge to groundwater cleanup. Many chlorinated solvents were used first in industrial and commercial cleaning processes prior to release into the environment. As a result, these DNAPLs can contain greases, oils, and even PCBs. These trace contaminants can have very different properties compared to the chlorinated solvents that make up the bulk of the DNAPL. The use of steam, surfactants, and cosolvents are promising techniques for accelerating the removal of DNAPLs from porous media. Many of these techniques are based on laboratory investigations that utilized reagent grade DNAPL chemicals. A major assumption in DNAPL remediation design and modeling is that minor constituents do not have an effect. However, the role of trace contaminants is not well understood. The presence of trace contaminants (absent from reagent grade chemicals) may reduce the ability of remediation techniques to effectively remove all of the contaminants that pose a risk to human health and the environment. This preliminary research investigates the role of trace contaminants on the behavior of an industrial PCE DNAPL in a porous media in the presence of cosolvents. The DNAPL used in this study was first used as part of an industrial degreasing process, then discharged into the subsurface environment, where it remained for more than 10 years. This study includes the determination of the equilibrium phase behavior and preliminary characterization of the trace contaminants. The ternary system of water/n-propanol/DNAPL was used to compare the behavior of the used industrial PCE DNAPL with a reagent grade PCE DNAPL. Behavior of the bulk DNAPL is similar for both the industrial and reagent grade PCE DNAPLs. The distribution of trace contaminants varies and even formed a third phase in some ternary phase mixtures. The isolation of the trace contaminants has important implications regarding

  5. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    SciTech Connect

    Siegrist, R.L. |; Lowe, K.S.; Murdoch, L.D. |; Slack, W.W.; Houk, T.C.

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies.

  6. Geoelectrical monitoring of bioremediation: the DNAPL problem

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Slater, L. D.; Kulessa, B.; Kalin, R.

    2009-12-01

    Geo-electrical methods (e.g. resistivity, induced polarization and self potential) are increasingly being utilized as monitoring aids in remediation experiments. Recent field applications highlight the potential value of these methods in long-term monitoring, and current laboratory research is improving the quantitative interpretation of these geo-electrical signals. However, whereas this has proven true for the remediation of insoluble particles (e.g. heavy metals) and light non-aqueous phase liquids (LNAPLs), geoelectrical monitoring of dense non-aqueous phase liquid (DNAPL) has proven more challenging. Here we report the results of a column experiment aimed at monitoring bio-degradation of DNAPLs using geo-electrical and electrodic potential (based on reactions at the surface of electrodes) methods. We recorded strong electrodic potential signals concurrent with the degradation of the DNAPL as evident from geochemical monitoring (pH,Eh, total organic content, alkalinity, fluid conductivity, gas chromatography/and mass spectrometry). However, resistivity and induced polarization measurements were unresponsive to the degradation processes and apparently insensitive to microbial activity in this DNAPL contaminated system. Our results suggest that some of the characteristic biogeophysical signals associated with microbial growth detected in uncontaminated and LNAPL contaminated systems may not necessarily be observed during DNAPL biodegradation during the time-scale of typical laboratory and field geophysical experiments.

  7. Coupling Surfactant Flushing and Bioaugmentation for PCE-DNAPL Source Zone Treatment

    NASA Astrophysics Data System (ADS)

    Cápiro, N. L.; Granbery, E. K.; Amos, B. K.; Löffler, F. E.; Pennell, K. D.

    2008-12-01

    Enhanced solubilization flushing using a biodegradable surfactant (Tween 80) was combined with bioaugmentation to initiate microbial reductive dechlorination and detoxify residual tetrachloroethene (PCE)- dense nonaqueous phase liquid (DNAPL). Dechlorination activity, spatial distribution of Dehalococcoides spp., and down-gradient plume development were monitored in a 2-D aquifer cell equipped with eighteen sampling ports. Saturation distributions of the PCE-DNAPL source zone were quantified using a light transmission system to determine the ganglia-to-pool (GTP) volume ratio, which was approximately 1.5 (i.e., 60% ganglia and 40% pools) prior to surfactant flushing. Flushing with three pore volumes (PVs) of 4% (w/w) Tween 80 solution recovered approximately 55% of the original PCE mass and reduced PCE effluent concentration from saturation (200 mg/L) to less than 50 mg/L. Following the introduction of reduced basal salts medium amended with 10 mM lactate, nine side ports located upstream and within the initial PCE- DNAPL source zone were augmented with Bio-Dechlor INOCULUM (BDI), a PCE-to-ethene dechlorinating consortium. Flux-averaged measurements of aqueous effluent samples revealed the conversion of PCE to cis-dichloroethene (DCE) with minimal lag time (7 days, approx. 1 PV), and vinyl chloride and ethene were detected within 10 PVs after bioaugmentation. Quantitative real-time PCR (qPCR) targeting Dehalococcoides spp. demonstrated growth once aqueous PCE concentrations decreased below inhibitory levels (~540 mM), with significant growth (2 to 4-orders of magnitude) near the remaining source zone. These results demonstrate the successful colonization of a pool-dominated (NAPL saturation >0.13) PCE- DNAPL source zone by a dechlorinating consortium following partial mass removal, and the potential for locally bioenhanced DNAPL dissolution.

  8. DNAPL accumulation in wells and DNAPL recovery from wells: Model development and application to a laboratory study

    NASA Astrophysics Data System (ADS)

    Sleep, Brent E.; Beranger, Sandra; Reinecke, Stefan; Filion, Yves

    2015-11-01

    Dense nonaqueous phase liquid (DNAPL) accumulation and recovery from wells cannot be accurately modeled through typical pressure or flux boundary conditions due to gravity segregation of water and DNAPL in the wellbore, the effects of wellbore storage, and variations of wellbore inflow and outflow rates with depth, particularly in heterogeneous formations. A discrete wellbore formulation is presented for numerical modeling of DNAPL accumulation in observation wells and DNAPL removal from recovery wells. The formulation includes fluid segregation, changing water and DNAPL levels in the well and the corresponding changes in fluid storage in the wellbore. The method was added to a three-dimensional finite difference model (CompSim) for three phase (water, gas, DNAPL) flow. The model predictions are compared to three-dimensional pilot scale experiments of DNAPL (benzyl alcohol) infiltration, redistribution, recovery, and water flushing. Model predictions match experimental results well, indicating the appropriateness of the model formulation. Characterization of mixing in the extraction well is important for predicting removal of highly soluble organic compounds like benzyl alcohol. A sensitivity analysis shows that the incorporation of hysteresis is critical for accurate prediction. Among the multiphase flow and transport parameters required for modeling, results are most sensitive to soil intrinsic permeability.

  9. Reductive Dechlorination of PCE DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    Sleep, B. E.; Edwards, E. A.

    2006-12-01

    A numerical modeling study was conducted to evaluate the potential impact of reductive dechlorination on enhancement of dissolution of source zones of perchloroethylene (PCE) dense nonaqueous phase liquid (DNAPL). The model included three-phase (water-gas-NAPL) flow and transport with interphase mass transfer. Reductive dechlorination of PCE to ethene was simulated with Monod kinetics with hydrogen as the direct electron donor. Hydrogen was produced from the transformation of ethanol to propionate and acetate. The model also included growth of dechlorinators, fermenters and methanogens, with methane generation from hydrogenotrophic and aceticlastic methanogenesis. The model was applied to the simulation of a two-dimensional bench scale study of reductive dechlorination of a PCE DNAPL source with biostimulation and bioaugmentation with a known PCE dechlorinating culture. In the bench scale study spatial and temporal variation of dissolved concentrations of chlorinated ethenes, electron donors were monitored. Quantitative PCR was also used to track the spatial and temporal variation of the dechlorinators. In this bench scale study, the maximum enhancement of PCE dissolution was approximately threefold. However, this enhancement was not sustained over the entire study, and apparent rates of PCE dissolution, as indicated by maximum dissolved concentrations of total ethenes, declined with time and increasing extent of source removal. The model was used to examine the impact on enhanced dissolution of reduction in source zone size, repartitioning of transformation products, and gas blockage from methane generation. Reductions in source zone size, coupled with a heterogeneous flow field, led to significant reductions in maximum concentrations measured in the bench scale study. Repartitioning of transformation products led to reductions in the maximum dissolved concentrations of PCE transformation products, leading to an apparent reduction in the enhancement of PCE

  10. THE MEASUREMENT AND USE OF CONTAMINANT FLUX FOR PERFORMANCE ASSESSMENT OF DNAPL REMEDIATION

    EPA Science Inventory

    A review is presented of both mass flux as a DNAPL remedial performance metric and reduction in mass flux as a remedial performance objective at one or more control planes down gradient of DNAPL source areas. The use of mass flux to assess remedial performance has been proposed ...

  11. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    SciTech Connect

    McCarty, Perry L.; Spormann, Alfred M.; Criddle, Craig S.

    2001-06-01

    The anaerobic biodegradation of chlorinated solvents is of great interest both for natural attenuation and for engineered remediation of these hazardous contaminants in groundwater. Compounds to be studied are carbon tetrachloride (CT) and the chlorinated ethenes, tetrachloroethene (PCE), trichloroethene (TCE) cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC). The chlorinated solvents often are present as dense non-aqueous-phase liquids (DNAPLs), which are difficult to remove. Biodegradation of DNAPLs was previously thought not possible because of toxicity, but recent evidence indicates that under the right conditions, biodegradation is possible. Anaerobic biodegradation of DNAPLs is the major subject of this research. The specific objectives of this multi-investigator effort are: (1) Evaluate the potential for chlorinated solvent biodegradation near DNAPLs, (2) Provide a molecular understanding of the biological mechanisms involved, (3) Determine cellular components involved in carbon tetrachloride transformation by Pseudomonas stutzeri strain KC without chloroform formation.

  12. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    SciTech Connect

    McCarty, Perry L.; Spormann, Alfred M.; Criddle, Craig S.

    2003-06-01

    The anaerobic biodegradation of chlorinated solvents is of great interest both for natural attenuation and for engineered remediation of these hazardous contaminants in groundwater. Compounds to be studied are carbon tetrachloride (CT) and the chlorinated ethenes, tetrachloroethene (PCE), trichloroethene (TCE) cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC). The chlorinated solvents often are present as dense non-aqueous-phase liquids (DNAPLs), which are difficult to remove. Biodegradation of DNAPLs was previously thought not possible because of toxicity, but recent evidence indicates that under the right conditions, biodegradation is possible. Anaerobic biodegradation of DNAPLs is the major subject of this research. The specific objectives of this multi-investigator effort are: (1) Evaluate the potential for chlorinated solvent biodegradation near DNAPLs, (2) Provide a molecular understanding of the biological mechanisms involved, (3) Determine cellular components involved in carbon tetrachloride transformation by Pseudomonas stutzeri strain KC without chloroform formation.

  13. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    SciTech Connect

    McCarty, Perry L.; Spormann, Alfred M.; Criddle, Craig S.

    2002-06-01

    The anaerobic biodegradation of chlorinated solvents is of great interest both for natural attenuation and for engineered remediation of these hazardous contaminants in groundwater. Compounds to be studied are carbon tetrachloride (CT) and the chlorinated ethenes, tetrachloroethene (PCE), trichloroethene (TCE) cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC). The chlorinated solvents often are present as dense non-aqueous-phase liquids (DNAPLs), which are difficult to remove. Biodegradation of DNAPLs was previously thought not possible because of toxicity, but recent evidence indicates that under the right conditions, biodegradation is possible. Anaerobic biodegradation of DNAPLs is the major subject of this research. The specific objectives of this multi-investigator effort are: (1) Evaluate the potential for chlorinated solvent biodegradation near DNAPLs, (2) Provide a molecular understanding of the biological mechanisms involved, (3) Determine cellular components involved in carbon tetrachloride transformation by Pseudomonas stutzeri strain KC without chloroform formation.

  14. Characterizing long-term contaminant mass discharge and the relationship between reductions in discharge and reductions in mass for DNAPL source areas.

    PubMed

    Brusseau, M L; Matthieu, D E; Carroll, K C; Mainhagu, J; Morrison, C; McMillan, A; Russo, A; Plaschke, M

    2013-06-01

    The objective of this study was to characterize the temporal behavior of contaminant mass discharge, and the relationship between reductions in contaminant mass discharge and reductions in contaminant mass, for a very heterogeneous, highly contaminated source-zone field site. Trichloroethene is the primary contaminant of concern, and several lines of evidence indicate the presence of organic liquid in the subsurface. The site is undergoing groundwater extraction for source control, and contaminant mass discharge has been monitored since system startup. The results show a significant reduction in contaminant mass discharge with time, decreasing from approximately 1 to 0.15 kg/d over five years. Two methods were used to estimate the mass of contaminant present in the source area at the initiation of the remediation project. One was based on a comparison of two sets of core data, collected 3.5 years apart, which suggests that a significant (~80%) reduction in aggregate sediment-phase TCE concentrations occurred between sampling events. The second method was based on fitting the temporal contaminant mass discharge data with a simple exponential source-depletion function. Relatively similar estimates, 784 and 993 kg, respectively, were obtained with the two methods. These data were used to characterize the relationship between reductions in contaminant mass discharge (CMDR) and reductions in contaminant mass (MR). The observed curvilinear relationship exhibits a reduction in contaminant mass discharge essentially immediately upon the initiation of mass reduction. This behavior is consistent with a system wherein significant quantities of mass are present in hydraulically poorly accessible domains for which mass removal is influenced by rate-limited mass transfer. The results obtained from the present study are compared to those obtained from other field studies to evaluate the impact of system properties and conditions on mass-discharge and mass-removal behavior. The

  15. Characterizing Long-term Contaminant Mass Discharge and the Relationship Between Reductions in Discharge and Reductions in Mass for DNAPL Source Areas

    PubMed Central

    Matthieu, D.E.; Carroll, K.C.; Mainhagu, J.; Morrison, C.; McMillan, A.; Russo, A.; Plaschke, M.

    2013-01-01

    The objective of this study was to characterize the temporal behavior of contaminant mass discharge, and the relationship between reductions in contaminant mass discharge and reductions in contaminant mass, for a very heterogeneous, highly contaminated source-zone field site. Trichloroethene is the primary contaminant of concern, and several lines of evidence indicate the presence of organic liquid in the subsurface. The site is undergoing groundwater extraction for source control, and contaminant mass discharge has been monitored since system startup. The results show a significant reduction in contaminant mass discharge with time, decreasing from approximately 1 to 0.15 kg/d. Two methods were used to estimate the mass of contaminant present in the source area at the initiation of the remediation project. One was based on a comparison of two sets of core data, collected 3.5 years apart, which suggests that a significant (~80%) reduction in aggregate sediment-phase TCE concentrations occurred between sampling events. The second method was based on fitting the temporal contaminant mass discharge data with a simple exponential source-depletion function. Relatively similar estimates, 784 and 993 kg, respectively, were obtained with the two methods. These data were used to characterize the relationship between reductions in contaminant mass discharge (CMDR) and reductions in contaminant mass (MR). The observed curvilinear relationship exhibits a reduction in contaminant mass discharge essentially immediately upon initiation of mass reduction. This behavior is consistent with a system wherein significant quantities of mass are present in hydraulically poorly accessible domains for which mass removal is influenced by rate-limited mass transfer. The results obtained from the present study are compared to those obtained from other field studies to evaluate the impact of system properties and conditions on mass-discharge and mass-removal behavior. The results indicated that

  16. FLUX-BASED METHODS FOR DNAPL REMEDIATION DESIGN AND ASSESSMENT

    EPA Science Inventory

    One tool that has been investigated for use in DNAPL site characterization and remediation is mass flux (mass per unit area per unit time) and mass discharge (mass per unit time) measurements. These measurements, when collected across one or more control planes located down grad...

  17. Natural remobilization of multicomponent DNAPL pools due to dissolution.

    PubMed

    Roy, J W; Smith, J E; Gillham, R W

    2002-12-01

    Mixtures of dense nonaqueous phase liquids (DNAPLs) trapped in the subsurface can act as long-term sources of contamination by dissolving into flowing groundwater. If the components have different solubilities then dissolution will alter the composition of the remaining DNAPL. We theorized that a multicomponent DNAPL pool may become mobile due to the natural dissolution process. In this study, we focused on two scenarios: (1) a DNAPL losing light component(s), with the potential for downward migration; and (2) a DNAPL losing dense component(s), with the potential for upward migration following transformation into a less dense than water nonaqueous phase liquid (LNAPL). We considered three binary mixtures of common groundwater contaminants: benzene and tetrachloroethylene (PCE), PCE and dichloromethane (DCM), and DCM and toluene. A number of physical properties that control the retention and transport of DNAPL in porous media were measured for the mixtures, namely: density, interfacial tension, effective solubility, and viscosity. All properties except density exhibited nonlinear relationships with changing molar ratio of the DNAPL. To illustrate the potential for natural remobilization, we modelled the following two primary mechanisms: the reduction in pool height as mass is lost by dissolution, and the changes in fluid properties with changing molar ratio of the DNAPL. The first mechanism always reduces the capillary pressure in the pool, while the second mechanism may increase the capillary pressure or alter the direction of the driving force. The difference between the rate of change of each determines whether the potential for remobilization increases or decreases. Static conditions and horizontal layering were assumed along with a one-dimensional, compositional modelling approach. Our results indicated that for initial benzene/PCE ratios greater than 25:75, the change in density was sufficiently faster than the decline in pool height to promote DNAPL

  18. Comparison of Chlorinated Ethenes DNAPL Reductive Dechlorination by Indigenous and Evanite culture with Surfactant Tween-80

    NASA Astrophysics Data System (ADS)

    Kwon, S.; Hong, S.; Kim, R.; Kim, N.; Ahn, H.; Lee, S.; Kim, Y.

    2010-12-01

    Although many innovative technologies have been developed to enhance remediation of chlorinated ethenes(e.g. tetrachloroethene[PCE], trichloroethene[TCE])DNAPL source zones, they have been ineffective in reducing contaminant concentration to regulatory end points. Thus, combination of surfactant flushing process that removes significant contaminant mass with microbial reductive dechlorination, posttreatment "polishing step" to control the remaining DNAPL that may serve as a source of reducing equivalents and stimulate the dechlorinating bacterial communities may be an attractive remediation process alternatively. Microcosm studies were conducted to explore chlorinated ethenes, PCE/TCE of 3 ~ 30 mg/L dechlorination by indigenous microbial communities from TCE DNAPL source zones of Korea and Evanite culture in the presence of Tween-80 of 10 ~ 5,000 mg/L. In the microcosms for indigenous microbial communities, by-products(e.g. c-DCE, vinyl chloride) of reductive dechlorination of PCE/TCE were not detected. This results suggest dechlorinating bacteria might be not exist or high concentration of chlorinated ethenes inhibit activity of dechlorinating bacteria in indigenous microbial communities. But VFAs like acetate, methane and hydrogen gas from fermentation of Tween-80 were detected. So Tween-80 might estimated to serve as a source of reducing equivalents. To evaluate the dechlorinating ability of Evanite-culture, we added Evanite-culture to the microcosms for indigenous bacteria and monitored by-products of reductive dechlorination of PCE/TCE and VFAs and hydrogen gas.

  19. DNAPL SITE EVALUATION - Project Summary

    EPA Science Inventory

    Dense nonaqueous-phase liquids (DNAPLs), especially chlorinated solvents, are among the most prevalent subsurface contaminants identified in ground-water supplies and at waste disposal sites. There are several site-characterization issues specific to DNAPL sites including (a) the...

  20. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns

    NASA Astrophysics Data System (ADS)

    Harkness, Mark; Fisher, Angela

    2013-08-01

    The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~ 75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity.

  1. Estimation of DNAPL dissolution stage from aqueous phase concentrations in rough-walled fractures

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Jung; Yeo, In Wook

    2013-04-01

    Contamination of dense non-aqueous phase liquids (DNAPLs) poses a serious environmental problem. Because of higher density of DNAPLs than water, they migrate downward through water table, finally entering the fractures where they tend to be trapped as residual phases by capillary resistance of smaller apertures. It has been reported that many industrial complexes in Korea, placed on the fractured bedrock, have been contaminated by DNAPLs. Due to the way DNAPLs are discontinuously in small quantity at unfixed spots even within the site in Korea, DNAPL sources tend to exist scattered in the subsurface environment and are almost impossible to locate, especially in fractured bedrocks. Furthermore, DNAPL contamination is often found after a long period of time has passed since the contamination started. These characteristics of DNAPL contamination make it very difficult to infer DNAPL source configuration, which consequently leads to considerable uncertainties about the effective management and remediation of DNAPL contaminated site. This study aims to figure out DNAPL source zone configuration in rough-walled fractures, in particular dissolution stage of DNAPL, from downgradient aqueous phase concentrations. Interpretation and estimation of the dissolution stage are very important for the design and required time of site remediation. Numerical works have been systematically conducted with a single rough-walled fracture to investigate the interrelationship between DNAPL architecture and downgradient aqueous-phase contaminant concentrations. The finite element code was programmed for fluid flow and solute transport through a rough-walled fracture, which was incorporated with the dissolution kinetics. DNAPL is emplaced as residual phase in a rough-walled fracture with variable apertures measured from a real rock fracture, and the mass transfer is allowed to take place at the interface between DNAPL and flowing groundwater. The aqueous phase contaminant transports with

  2. DEMONSTRATION OF STEAM HEATING FOR REMEDIATION OF DENSE NON-AQUEOUS PHASE LIQUID (DNAPL)

    EPA Science Inventory

    Several technologies were used to evaluate their performances in removing the source of DNAPL, chlorinated solvents, such as trichloroethylene (TCE), from Launch Complex 34, Cape Canaveral Air Station. This project evaluated steam injection as a remediation technology.

  3. Integration of Flux-Based Methods and Triad Principles for DNAPL Site Management, Part II: Review of Flux Measurement Methods

    EPA Science Inventory

    Managing dense nonaqueous phase liquid (DNAPL) contaminated sites continues to be among the most pressing environmental problems currently faced. One approach that has recently been investigated for use in DNAPL site characterization and remediation is mass flux (mass per unit ar...

  4. COMPATIBILITY OF BENTONITE AND DNAPLS

    EPA Science Inventory

    The compatibility of dense non-aqueous phase liquids (DNAPLs), trichloroethylene (TCE), methylene chloride (MC), and creosote with commercially available sodium bentonite pellets was evaluated using stainless steel, double-ring, falling-head permeameters. The Hydraulic conductiv...

  5. Laboratory evidence of natural remobilization of multicomponent DNAPL pools due to dissolution

    NASA Astrophysics Data System (ADS)

    Roy, J. W.; Smith, J. E.; Gillham, R. W.

    2004-10-01

    Mixtures of dense non-aqueous phase liquids (DNAPLs) trapped in the subsurface can act as long-term sources of contamination by dissolving into flowing groundwater. In general, the components of higher solubility are removed more quickly, thus altering the composition of the remaining DNAPL, and possibly leading to changes in its physical properties. Through the development of a simple compositional model, Roy et al. [J. Contam. Hydrol. 2002 (59) 163] showed that preferential dissolution of a mixed DNAPL could potentially result in changes in density and interfacial tension that could subsequently lead to remobilization of an initially static DNAPL pool. The laboratory experiments presented in this next paper provide a proof-of-concept for the previously presented theory, demonstrating and quantifying this process of remobilization. In addition, the experiments provide a data set for evaluation of the model presented by Roy et al. [J. Contam. Hydrol. 2002 (59) 163]. In the four experiments, a DNAPL pool comprised of tetrachloroethene and benzene was created as an open pool overlying glass beads within a water-saturated 2-D flow box. Experiments included rectangular and triangular pools. In each of the experiments, remobilization (as breakthrough) was observed more than 2 weeks after formation of the initial pool. During each experiment, the pool height declined as mass was lost by dissolution, while sampling indicated a decrease in the mole fraction of benzene, the more soluble component. Small protuberances formed along the bottom of the pool as its composition changed with time and the displacement pressure was achieved for various pore throats. Eventually one of the protuberances extended further, forming a finger (breakthrough). In general, the pool emptied as the finger proceeded further into the beads. It was also shown theoretically and experimentally that remobilization will occur sooner for pools with a triangular (pointing down), rather than rectangular

  6. Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE-DNAPL source zone

    NASA Astrophysics Data System (ADS)

    Cápiro, Natalie L.; Löffler, Frank E.; Pennell, Kurt D.

    2015-11-01

    Effective treatment of sites contaminated with dense non-aqueous phase liquids (DNAPLs) requires detailed understanding of the microbial community responses to changes in source zone strength and architecture. Changes in the spatial and temporal distributions of the organohalide-respiring Dehalococcoides mccartyi (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ) were examined in a heterogeneous tetrachloroethene- (PCE-) DNAPL source zone within a two-dimensional laboratory-scale aquifer flow cell. As part of a combined remedy approach, flushing with 2.3 pore volumes (PVs) of 4% (w/w) solution of the nonionic, biodegradable surfactant Tween® 80 removed 55% of the initial contaminant mass, and resulted in a PCE-DNAPL distribution that contained 51% discrete ganglia and 49% pools (ganglia-to-pool ratio of 1.06). Subsequent bioaugmentation with the PCE-to-ethene-dechlorinating consortium BDI-SZ resulted in cis-1,2-dichloroethene (cis-DCE) formation after 1 PV (ca. 7 days), while vinyl chloride (VC) and ethene were detected 10 PVs after bioaugmentation. Maximum ethene yields (ca. 90 μM) within DNAPL pool and ganglia regions coincided with the detection of the vcrA reductive dehalogenase (RDase) gene that exceeded the Dhc 16S rRNA genes by 2.0 ± 1.3 and 4.0 ± 1.7 fold in the pool and ganglia regions, respectively. Dhc and GeoSZ cell abundance increased by up to 4 orders-of-magnitude after 28 PVs of steady-state operation, with 1 to 2 orders-of-magnitude increases observed in close proximity to residual PCE-DNAPL. These observations suggest the involvement of these dechlorinators the in observed PCE dissolution enhancements of up to 2.3 and 6.0-fold within pool and ganglia regions, respectively. Analysis of the solid and aqueous samples at the conclusion of the experiment revealed that the highest VC (≥ 155 μM) and ethene (≥ 65 μM) concentrations were measured in zones where Dhc and GeoSZ were predominately attached to the solids. These findings demonstrate

  7. Forehead Mass Removal by Endoscopic Approach.

    PubMed

    Jung, Soyeon; Jung, Sung Won; Koh, Sung Hoon; Lim, Hyoseob

    2016-03-01

    Patients with forehead mass have a cosmetic problem because the forehead is an important first impression. Conventional skin approach results in visible scar even though surgeons designed the incision along the relaxed skin tension line1. Since Onishi introduced the technique for endoscopic approach in 1995, endoscopic surgery has become rapidly popular in the field of plastic surgery. Endoscopic approach to the forehead mass by small incision on the scalp behind hair line is big advantageous for leaving less ugly scar on the forehead. All procedures need to be identified under the endoscopic visualization. When it was completed, the mass was pulled out. The authors also used the osteotome or rasp when it was the osteoma. The forehead and scalp were applied compressive dressing to prevent hematoma and swelling for 2 days. The cosmesis was excellent because they have no visible scar on the forehead. Endoscopic approaching technique is getting popular and commonly used during the cosmetic surgery because it has many advantages. This method also, however, has difficulties to remove large-sized mass and to perform caudal dissection, and for increased operative times. Furthermore, there are complication of incomplete removal, hematoma, and swelling. The proper candidate is the patient with smooth forehead, with a mobile and soft mass, with a propensity for keloid formation, or hypertrophic scarring. Endoscopic technique is not only advantageous but also disadvantageous. That is why surgeon's selection is more important. PMID:26967101

  8. Reductive dechlorination of trichloroethene DNAPL source zones: source zone architecture versus electron donor availability

    NASA Astrophysics Data System (ADS)

    Krol, M.; Kokkinaki, A.; Sleep, B.

    2014-12-01

    The persistence of dense-non-aqueous-phase liquids (DNAPLs) in the subsurface has led practitioners and regulatory agencies to turn towards low-maintenance, low-cost remediation methods. Biological degradation has been suggested as a possible solution, based on the well-proven ability of certain microbial species to break down dissolved chlorinated ethenes under favorable conditions. However, the biodegradation of pure phase chlorinated ethenes is subject to additional constraints: the continuous release of electron acceptor at a rate governed by mass transfer kinetics, and the temporal and spatial heterogeneity of DNAPL source zones which leads to spatially and temporally variable availability of the reactants for reductive dechlorination. In this work, we investigate the relationship between various DNAPL source zone characteristics and reaction kinetics using COMPSIM, a multiphase groundwater model that considers non-equilibrium mass transfer and Monod-type kinetics for reductive dechlorination. Numerical simulations are performed for simple, homogeneous trichloroethene DNAPL source zones to demonstrate the effect of single source zone characteristics, as well as for larger, more realistic heterogeneous source zones. It is shown that source zone size, and mass transfer kinetics may have a decisive effect on the predicted bio-enhancement. Finally, we evaluate the performance of DNAPL bioremediation for realistic, thermodynamically constrained, concentrations of electron donor. Our results indicate that the latter may be the most important limitation for the success of DNAPL bioremediation, leading to reduced bio-enhancement and, in many cases, comparable performance with water flooding.

  9. [Laboratory Investigation of DNAPL Migration Behavior and Distribution at Varying Flow Velocities Based on Light Transmission Method].

    PubMed

    Gao, Yan-wei; Zheng, Fei; Shi, Xiao-qing; Sun, Yuan-yuan; Xu, Hong-xia; Wu, Ji-chun

    2015-07-01

    The migration and distribution of dense non-aqueous phase liquid (DNAFL) in subsurtace are attectea ny many factors. We selected PCE as the substitute contaminant, and performed several well-controlled two-dimensional sandbox experiments to investigate the effect of flow velocity on DNAPL infiltration and redistribution. Light transmission method (LTM) was used to monitor the transport process of DNAPL in the sandbox and quantitatively measure DNAPL saturation. The spatial moments based on measured DNAPL saturation were used to describe the average spatial behavior of DNAPL plume at various times. Experimental results showed a strong correlation between results obtained by LTM and the known amounts of DNAPL added into the sandbox (R2 >0.98). The LTM accurately reflected the infiltration and redistribution processes. The results of DNAPL saturation and first moment (mass center) showed that the increased velocity promoted not only lateral but also vertical migration, leading to an inclined percolation path. Also vertical migration reacted more sensitive to flow velocity. The second moment (spread variance) showed that the increased velocity promoted lateral and vertical spread, increasing the pollution scope. The histogram of DNAPL saturation showed a unimodal distribution at low flow velocity, but showed a bimodal distribution at lager flow velocity, and the distance between two peaks became higher with the increasing flow velocity. PMID:26489322

  10. Radio frequency heating for in-situ remediation of DNAPL

    SciTech Connect

    Kasevich, R.S.

    1996-08-01

    In-situ radio frequency (RF) heating technology for treating soils contaminated with dense nonaqueous phase liquids (DNAPLs) is described. RF imparts heat to non-conducting materials through the application of carefully controlled RF transmissions, improving contaminant flow characteristics and facilitating separation and removal from subsurface soils. The paper outlines advantages and limitations of RF remediation, process operations, general technology considerations, low permeability media considerations, commercial availability, and costs. Two case histories of RF remediation are briefly summarized. 13 refs., 10 figs.

  11. DNAPL invasion into a partially saturated dead-end fracture

    SciTech Connect

    gwsu@lbl.gov

    2004-06-17

    The critical height for DNAPL entry into a partially watersaturated, dead-end fracture is derived and compared to laboratoryobservations. Experiments conducted in an analog, parallel-plate fracturedemonstrate that DNAPL accumulates above the water until the height ofthe DNAPL overcomes the sum of the capillary forces at the DNAPL-airinterface and at the DNAPL-water interface. These experiments also showthat DNAPL preferentially enters the water at locations where DNAPL haspreviously entered, and the entry heights for these subsequent entriesare lower than the heights measured for the initial invasion. The wettingcontact angle at the DNAPL-water interface becomes larger at thelocations where the DNAPL has already entered the water because ofresidual DNAPL on the fracture walls, which results in lowering thecritical entry height at those locations. The experiments alsodemonstrate that a DNAPL lens can remain nearly immobile above the waterfor a period of time before eventually redistributing itself and enteringthe water.

  12. Long-term Behavior of DNAPL Residuals

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Illangasekare, T.; Kitanidis, P. K.

    2012-12-01

    Understanding and being able to predict the long-term behavior of DNAPL (i.e., TCE) residuals in the source zone are significant in the evaluation of plume spreading. We apply both theoretical analysis and pore-scale simulations to investigate the mass transfer and the effect of reductive dechlorination, in which the contaminant behaves as electron acceptor. At the upfront of the source zone, where the boundary layer has not fully developed, the mass transfer increases as a power-law function of the Peclet number, and is enhanced by biodegradation. These results are consistent with past findings. Under certain conditions, further downstream inside the source zone, the rate of dissolution is slower due to the diluted mass from upstream. Widely applied first-order biodegradation implicitly assumes that the reaction solely depends on the concentration of the contaminant. However, in the slow dilution region, the limitation of electron donor on biodegradation is not negligible. For the reaction between an electron donor and an electron acceptor with intrinsic second-order kinetics, the late-time bio-reaction demonstrates a first-order decay macroscopically with respect to the mass of electron donor, not with respect to that of the contaminant. The late-time decay rate only depends on the intrinsic rate and the solubility of the contaminant. During the intermediate time, affecting by both the concentrations of electron donor and electron acceptor, the first-order decay is not valid. We show that the electron donor decays as exp(-t^2), instead of exp(-t). Moreover, the intermediate-time decay rate is a function of the spatial distribution of DNAPL residuals and the initial conditions.he relationship of the Sherwood number and Peclet number (Comparison of pore-scale simulations and best-fitting curve) he decay of electron donor as a function of t^2

  13. Test plan for single well injection/extraction characterization of DNAPL

    SciTech Connect

    Looney, B.B.; Jerome, K.M.; Burdick, S.; Rossabi, J.; Jarosch, T.R.; Eddy-Dilek, C.A.

    1995-12-01

    Soils and groundwater beneath an abandoned Process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLS, or dense non aqueous Phase liquids. Technologies targeted at the efficient characterization or removal of DNAPL are not currently proven. For example, most DNAPL studies rely on traditional soil and water sampling and the fortuitous observation of immiscible solvent. Once DNAPL is identified, soil excavation (which is only applicable to small contained spill sites) is the only ``proven`` cleanup method. New cleanup approaches based on enhanced removal by surfactants and/or alcohols have been proposed and tested at the pilot scale. As described below, carefully designed experiments similar to the enhanced removal methods may provide important characterization information on DNAPLs.

  14. Savannah River Site DNAPL technical program plan

    SciTech Connect

    Jordan, J.E.; Looney, B.B.; Rossabi, J.; Bergren, C.L.

    1993-12-31

    This document was developed by the environmental remediation and technology development organizations at the Savannah River Site (SRS) and is the Site technical program plan to address the remediation of residual chlorinated hydrocarbon solvents in the groundwater and the soil. These solvents are often labeled dense nonaqueous phase liquids (DNAPLs). At SRS, the primary DNAPL constituents of concern are trichloroethylene (TCE) and tetrachloroethylene (PCE); two commonly used industrial organic solvents. The goal of the technical program plan is to provide clear objectives for DNAPL characterization and remediation activities at SRS. Developed by a task team of researchers at SRS, the objectives and program description document a coordinated, programmatic approach to identify solutions to the complex problem of DNAPL contamination. The purposes of this program are to expedite the development and application of technologies for DNAPL characterization and remediation, to provide a well characterized {open_quotes}real{close_quotes} site to perform the work, and to facilitate DNAPL remediation at SRS. Given the appropriate resources, SRS will provide an intelligent application of technical skills and confidence toward the remediation of DNAPLS. We have completed an initial characterization of DNAPLs that provides unique data on the location, nature, and extent of DNAPL occurrences at a field site. Future activities will leverage the initial characterization data for DNAPLs at SRS to demonstrate efficient progression through the characterization phase leading to cleanup. The initial characterization data provides a tool to focus this program`s activities. As a result, solutions to the complex problem of DNAPL contamination will be tested and demonstrated in the most cost-effective manner. Where appropriate, the program will rely on identifying and utilizing innovative technologies developed by industry and universities.

  15. Complex Electrical Resistivity for Monitoring DNAPL Contamination

    SciTech Connect

    Stephen R. Brown; David Lesmes; John Fourkas

    2003-09-12

    Nearly all Department of Energy (DOE) facilities have landfills and buried waste areas. Of the various contaminants present at these sites, dense non-aqueous phase liquids (DNAPL) are particularly hard to locate and remove. There is an increasing need for external or non-invasive sensing techniques to locate DNAPLs in the subsurface and to track their spread and monitor their breakdown or removal by natural or engineered means. G. Olhoeft and colleagues have published several reports based on laboratory studies using the complex resistivity method which indicate that organic solvents, notably toluene, PCE, and TCE, residing in clay-bearing soils have distinctive electrical signatures. These results have suggested to many researchers the basis of an ideal new measurement technique for geophysical characterization of DNAPL pollution. Encouraged by these results we proposed to bring the field measurement of complex resistivity as a means of pollution characterization from the conceptual stage to practice. We planned to document the detectability of clay-organic solvent interactions with geophysical measurements in the laboratory, develop further understanding of the underlying physical and chemical mechanisms, and then apply these observations to develop field techniques. As with any new research endeavor we note the extreme importance of trying to reproduce the work of previous researchers to ensure that any effects observed are due to the physical phenomena occurring in the specimen and not due to the particular experimental apparatus or method used. To this end, we independently designed and built a laboratory system, including a sample holder, electrodes, electronics, and data analysis software, for the measurement of the complex electrical resistivity properties of soil contaminated with organic solvents. The capabilities and reliability of this technique were documented. Using various standards we performed measurement accuracy, repeatability, and noise immunity

  16. Steam injection for in-situ remediation of DNAPLs in low permeability media

    SciTech Connect

    Sleep, B.

    1996-08-01

    The potential for remediation of dense, nonaqueous phase liquid (DNAPL) contamination by steam injection is investigated, including the advantages and disadvantages of the technology. The primary advantage is the significant enhancement of removal rates through steam distillation. The disadvantages are related to the lack of field experience with the technology and difficulties related to steam override and channeling in heterogeneous soils. The problems related to steam injection in low permeability fractured clay are examined, and removal times and costs are postulated for a hypothetical DNAPL contamination scenario. It is concluded that steam injection has significant potential for remediation of DNAPL in fractured clay soils, but there is significant uncertainty in predictions of the performance of steam injection in these soils. 13 refs., 4 figs., 1 tab.

  17. Application of 4D resistivity image profiling to detect DNAPLs plume.

    NASA Astrophysics Data System (ADS)

    Liu, H.; Yang, C.; Tsai, Y.

    2008-12-01

    iron nanoparticles with pumps water remediation ways. The survey lines use the same length and the same position of the different time observation. The survey lines monitors the iron nanoparticles and pollution flow direction with remediation effect. By used the iron nanoparticles and pumping water remediation ways, the DNAPL plumes had eminent changed. Iron nanoparticles granule is smaller than the micron iron, Therefore the reaction rate was quite quick at the iron nanoparticles and pumps, but the ferric oxide can cause the electronic resistivity to elevate produces after the response. Pumps water rectifies may remove the ferric oxide to cause the electronic resistivity to reduce. The iron nanoparticles and pollution response is extremely obviously of the Resistivity Image Profile.

  18. Characterization of DNAPL Source Zone Architecture and Prediction of Associated Plume Response: Progress and Perspectives

    NASA Astrophysics Data System (ADS)

    Abriola, L. M.; Pennell, K. D.; Ramsburg, C. A.; Miller, E. L.; Christ, J.; Capiro, N. L.; Mendoza-Sanchez, I.; Boroumand, A.; Ervin, R. E.; Walker, D. I.; Zhang, H.

    2012-12-01

    It is now widely recognized that the distribution of contaminant mass will control both the evolution of aqueous phase plumes and the effectiveness of many source zone remediation technologies at sites contaminated by dense nonaqueous phase liquids (DNAPLs). Advances in the management of sites containing DNAPL source zones, however, are currently hampered by the difficulty associated with characterizing subsurface DNAPL 'architecture'. This presentation provides an overview of recent research, integrating experimental and mathematical modeling studies, designed to improve our ability to characterize DNAPL distributions and predict associated plume response. Here emphasis is placed on estimation of the most information-rich DNAPL architecture metrics, through a combination of localized in situ tests and more readily available plume transect concentration observations. Estimated metrics will then serve as inputs to an upscaled screening model for prediction of long term plume response. Machine learning techniques were developed and refined to identify a variety of source zone metrics and associated confidence intervals through the processing of down gradient concentration data. Estimated metrics include the volumes and volume percentages of DNAPL in pools and ganglia, as well as their ratio (pool fraction). Multiphase flow and transport simulations provided training data for model development and assessment that are representative of field-scale DNAPL source zones and their evolving plumes. Here, a variety of release and site heterogeneity (sequential Gaussian permeability) conditions were investigated. Push-pull tracer tests were also explored as a means to provide localized in situ observations to refine these metric estimates. Here, two-dimensional aquifer cell experiments and mathematical modeling were used to quantify upscaled interphase mass transfer rates and the interplay between injection and extraction rates, local source zone architecture, and tracer

  19. ENHANCED MOBILITY OF DENSE NONAQUEOUS-PHASE LIQUIDS (DNAPLs) USING DISSOLVED HUMIC ACIDS

    SciTech Connect

    EDWIN S. OLSON; JOHN R. GALLAGHER; MARC D. KURZ

    1998-10-01

    The specific objectives of this subtask are as follows: � Evaluate the suitability of using humic acids to enhance the solubility and mobility of DNAPL contaminants sorbed to soils. � Evaluate the toxicity and bioavailablity of the DNAPLs to biodegrading microorganisms. To meet the first objective, the Energy & Environmental Research Center (EERC) evaluated a set of humic acids (two) with different chemical compositions and polarities for the following: � Ability of the humates to mobilize/solubilize selected (three) DNAPLs � Mobilization/solubilization in batch soil�water experiments (one soil) � Removal rate via biotreatment with a well-established active microbial culture. The second objective was met by evaluating the inhibiting effects of a leonardite-derived humic acid on active microbial populations.

  20. SYNTHESIS REPORT ON FIVE DENSE, NONAQUEOUS-PHASE LIQUID (DNAPL) REMEDIATION PROJECTS

    EPA Science Inventory

    Dense non-aqueous phase liquid (DNAPL) poses a difficult problem for subsurface remediation because it serves as a continuing source to dissolved phase ground water contamination and is difficult to remove from interstitial pore space or bedrock fractures in the subsurface. Numer...

  1. RELATIONSHIP BETWEEN MASS FLUX REDUCTION AND SOURCE-ZONE MASS REMOVAL: ANALYSIS OF FIELD DATA

    PubMed Central

    DiFilippo, Erica L.

    2010-01-01

    The magnitude of contaminant mass flux reduction associated with a specific amount of contaminant mass removed is a key consideration for evaluating the effectiveness of a source-zone remediation effort. Thus, there is great interest in characterizing, estimating, and predicting relationships between mass flux reduction and mass removal. Published data collected for several field studies were examined to evaluate relationships between mass flux reduction and source-zone mass removal. The studies analyzed herein represent a variety of source-zone architectures, immiscible-liquid compositions, and implemented remediation technologies. There are two general approaches to characterizing the mass-flux-reduction/mass-removal relationship, end-point analysis and time-continuous analysis. End-point analysis, based on comparing masses and mass fluxes measured before and after a source-zone remediation effort, was conducted for 21 remediation projects. Mass removals were greater than 60% for all but three of the studies. Mass flux reductions ranging from slightly less than to slightly greater than one-to-one were observed for the majority of the sites. However, these single-snapshot characterizations are limited in that the antecedent behavior is indeterminate. Time-continuous analysis, based on continuous monitoring of mass removal and mass flux, was performed for two sites, both for which data were obtained under water-flushing conditions. The reductions in mass flux were significantly different for the two sites (90% vs. ~8%) for similar mass removals (~40%). These results illustrate the dependence of the mass-flux-reduction/mass-removal relationship on source-zone architecture and associated mass-transfer processes. Minimal mass flux reduction was observed for a system wherein mass removal was relatively efficient (ideal mass transfer and displacement). Conversely, a significant degree of mass flux reduction was observed for a site wherein mass removal was inefficient

  2. Test plan for Geo-Cleanse{reg_sign} demonstration (in situ destruction of dense non-aqueous phase liquid (DNAPL))

    SciTech Connect

    Jerome, K.M.; Looney, B.B.; Accorsi, F.; Dingens, M.; Wilson, J.T.

    1996-09-01

    Soils and groundwater beneath an abandoned process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLs, or dense non-aqueous phase liquids. Technologies targeted at the efficient characterization or removal of DNAPL are not currently proven. For example, most DNAPL studies rely on traditional soil and water sampling and the fortuitous observation of immiscible solvent. Once DNAPL is identified, soil excavation (which is only applicable to small contained spill sites) is the only proven cleanup method. New cleanup approaches based on destruction of DNAPL either in situ or ex situ have been proposed and tested at the pilot scale. The proposed demonstration, as described in this report will evaluate the applicability to DNAPL plumes of a technology proven for in situ destruction of light non-aqueous phase liquids (LNAPLs) such as oils.

  3. Does increasing the temperature induce DNAPL migration?

    EPA Science Inventory

    Tetrachloroethylene, trichloroethylene, and chlorobenzene have been identified as contaminants in groundwater and are sometimes called Dense Non-Aqueous Phase Liquids (DNAPL). Thermal methods for remediation of contaminated soils and groundwater rely on raising the temperature o...

  4. FIELD ASSESSMENT OF MULTIPLE DNAPL REMEDIATION TECHNIQUES

    EPA Science Inventory

    Five DNAPL remediation technologies were evaluated in constructed test cells at the Dover National Test Site, Dover AFB, Delaware. The technologies were cosolvent solubilization, cosolvent mobilization, surfactant solubilization, complex sugar flushing and air sparging/soil vapor...

  5. Solubilization of DNAPLs by mixed surfactant: reduction in partitioning losses of nonionic surfactant.

    PubMed

    Zhao, Baowei; Zhu, Lizhong; Yang, Kun

    2006-02-01

    Efforts to remediate the dense nonaqueous phase liquids (DNAPLs) by mobilizing them face with risks of driving the contaminants deeper into aquifer zones. This spurs research for modifying the approach for in situ remediation. In this paper, a novel solubilization of DNAPLs by mixed nonionic and anionic surfactant, Triton X-100 (TX100) and sodium dodecylbenzene sulfonate (SDBS), was presented and compared with those by single ones. Given 1:40 phase ratio of DNAPL:water (v/v) and the total surfactant concentration from 0.2 to 10gl(-1), mixed TX100-SDBS at the total mass ratios of 3:1, 1:1 and 1:3 exhibited significant solubilization for the DNAPLs, trichloroethene (TCE), chlorobenzene (CB) and 1,2-dichlorobenzene (1,2-DCB). The solubilization extent by mixed TX100-SDBS was much larger than by single TX100 and even larger than by single SDBS at the ratios of 1:1 and 1:3, respectively. TX100 partitioning into the organic phase dictated the solubilization extent. The TX100 losses into TCE, CB and 1,2-DCB phases were more than 99%, 97% and 97% when single TX100 was used. With SDBS alone, no SDBS partitioned into DNAPLs was observed and in mixed systems, SDBS decreased greatly the partition loss of TX100 into DNAPLs. The extent of TX100 partition decreased with increasing the amount of SDBS. The mechanism for reduction of TX100 partition was discussed. TX100 and SDBS formed mixed micelles in the solution phase. The inability of SDBS to partition into DNAPLs and the mutual affinity of SDBS and TX100 in the mixed micelle controlled the partitioning of TX100 into DNAPL phase. The work presented here demonstrates that mixed nonionic-anionic surfactants would be preferred over single surfactants for solubilization remediation of DNAPLs, which could avoid risks of driving the contaminants deeper into aquifers and decrease the surfactant loss and remediation cost. PMID:15970307

  6. Time-Dependent Interfacial Properties and DNAPL Mobility

    SciTech Connect

    Tuck, D.M.

    1999-03-10

    Interfacial properties play a major role in governing where and how dense nonaqueous phase liquids (DNAPLs) move in the subsurface. Interfacial tension and contact angle measurements were obtained for a simple, single component DNAPL (tetrachloroethene, PCE), complex laboratory DNAPLs (PCE plus Sudan IV dye), and a field DNAPL from the Savannah River Site (SRS) M-Area DNAPL (PCE, trichloroethene [TCE], and maching oils). Interfacial properties for complex DNAPLs were time-dependent, a phenomenon not observed for PCE alone. Drainage capillary pressure-saturation curves are strongly influenced by interfacial properties. Therefore time-dependence will alter the nature of DNAPL migration and penetration. Results indicate that the time-dependence of PCE with relatively high Sudan IV dye concentrations is comparable to that of the field DNAPL. Previous DNAPL mobility experiments in which the DNAPL was dyed should be reviewed to determine whether time-dependent properties influenced the resutls. Dyes appear to make DNAPL more complex, and therefore a more realistic analog for field DNAPLs than single component DNAPLs.

  7. Impact of DNAPL contact on the structure of smectitic clay materials.

    PubMed

    Ayral, Derya; Otero, Margarita; Goltz, Mark N; Demond, Avery H

    2014-01-01

    Smectitic clays have a flexible structure that may be impacted by contact with dense nonaqueous phase liquids (DNAPLs) present at hazardous waste sites. Measurements of the basal spacing of air-dry clays contacted with pure chlorinated solvents and chlorinated DNAPL wastes showed that the intraparticle spacing is similar to that in air. Basal spacings of water-saturated clays contacted with pure chlorinated solvents are similar to those in contact with water, even after extended equilibration times (300 d). In contrast, contact with chlorinated DNAPL wastes reduced the basal spacing of water-saturated sodium smectites in a relatively short time frame, resulting in cracks that were as large as 1mm in aperture. The penetration of these wastes into the intraparticle spacing of clay and the resultant cracking may contribute to the accumulation of chlorinated compounds in clay layers observed in the field and the extended remediation times associated with this mass storage. PMID:24054135

  8. High-resolution experiments on chemical oxidation of DNAPL in variable-aperture fractures

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud; Rajaram, Harihar; Detwiler, Russell L.; Jones, Trevor

    2015-04-01

    Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. We present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were quantified for each experiment. The integrated mass transfer rate from the TCE phase for all experiments exhibited three time regimes: an early-time regime with slower mass transfer rates limited by low specific interfacial area; an intermediate-time regime with higher mass transfer rates resulting from breakup of large TCE blobs, which greatly increases specific interfacial area; and a late-time regime with low mass transfer rates due to the deposition of MnO2 precipitates. In two experiments, mass balance analyses suggested that TCE mass removal rates exceeded the maximum upper bound mass removal rates derived by assuming that oxidation and dissolution are the only mechanisms for TCE mass removal. We propose incomplete oxidation by permanganate and TCE solubility enhancement by intermediate reaction products as potential mechanisms to explain this behavior. We also speculate that some intermediate reaction products with surfactant-like properties may play a role in lowering the TCE-water interfacial tension, thus causing breakup of large TCE blobs. Our quantitative experimental measurements will be useful in the context of developing accurate computational models for chemical oxidation of TCE in fractures.

  9. Processes affecting soil and groundwater contamination by DNAPL in low-permeability media

    SciTech Connect

    McWhorter, D.B.

    1996-08-01

    This paper is one of a set of focus papers intended to document the current knowledge relevant to the contamination and remediation of soils and ground water by dense, nonaqueous phase liquids (DNAPL). The emphasis is on low permeability media such as fractured clay and till and unconsolidated, stratified formations. Basic concepts pertaining to immiscible-fluid mixtures are described and used to discuss such aspects as DNAPL transport, dissolved-phase transport, and equilibrium mass distributions. Several implications for remediation are presented. 27 refs., 8 figs., 4 tabs.

  10. Permanganate oxidation of DNAPL in a large 3-D flow tank

    NASA Astrophysics Data System (ADS)

    Lee, E.; Seol, Y.; Fang, Y. C.; Schwartz, F. W.

    2002-05-01

    Potassium permanganate (KMnO4), as a metal-oxo reagent, can attack a double carbon-carbon bond and therefore oxidize common chlorinated ethylenes, such as trichloroethylene (TCE) and tetrachloroethylene (PCE). This feature of metal-oxo reagents facilitates the use of permanganate to remediation of chlorinated solvents in soil and groundwater. In this study, we evaluated the efficiency of TCE removal by permanganate oxidation in large three-dimensional flooding schemes. We constructed a large 3-D flow tank (L x W x D = 180 cm x 60 cm x 90 cm) where TCE source zone was installed in a saturated porous sandy medium. The tank was flushed at a flow rate of 51 L/day with permanganate solution (1,250 mg/L) for 63 days. Using chemical, electrical, and optical monitoring techniques we estimated temporal and areal variations in TCE, permanganate, MnO2 precipitates, conductivity, and chloride concentrations. TCE emplaced as DNAPL in a upstream source zone gradually moved downstream forming a TCE plume of about 120 cm long, 30 cm wide, and 55 cm deep. This TCE plume diminished considerably over time due to the in situ oxidation of the DNAPL. However, TCE was not completely destroyed and TCE concentration remained high (63 to 228 mg/L) in the shrunken TCE plume downstream after 63 days of permanganate flushing. Mass balance calculation indicated about 28% of TCE still remained in the system. This was attributed to the precipitation of low-permeability reaction by-product, i.e., MnO2, which caused flushing to become less efficient with time. Findings of this study are useful for developing a practical technique for enhancing the efficacy of the oxidative treatment of TCE using permanganate in the field conditions.

  11. Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones

    NASA Astrophysics Data System (ADS)

    Seyedabbasi, Mir Ahmad; Newell, Charles J.; Adamson, David T.; Sale, Thomas C.

    2012-06-01

    The relative contribution of dense non-aqueous phase liquid (DNAPL) dissolution versus matrix diffusion processes to the longevity of chlorinated source zones was investigated. Matrix diffusion is being increasingly recognized as an important non-DNAPL component of source behavior over time, and understanding the persistence of contaminants that have diffused into lower permeability units can impact remedial decision-making. In this study, a hypothetical DNAPL source zone architecture consisting of several different sized pools and fingers originally developed by Anderson et al. (1992) was adapted to include defined low permeability layers. A coupled dissolution-diffusion model was developed to allow diffusion into these layers while in contact with DNAPL, followed by diffusion out of these same layers after complete DNAPL dissolution. This exercise was performed for releases of equivalent masses (675 kg) of three different compounds, including chlorinated solvents with solubilities ranging from low (tetrachloroethene (PCE)), moderate (trichloroethene (TCE)) to high (dichloromethane (DCM)). The results of this simple modeling exercise demonstrate that matrix diffusion can be a critical component of source zone longevity and may represent a longer-term contributor to source longevity (i.e., longer time maintaining concentrations above MCLs) than DNAPL dissolution alone at many sites. For the hypothetical TCE release, the simulation indicated that dissolution of DNAPL would take approximately 38 years, while the back diffusion from low permeability zones could maintain the source for an additional 83 years. This effect was even more dramatic for the higher solubility DCM (97% of longevity due to matrix diffusion), while the lower solubility PCE showed a more equal contribution from DNAPL dissolution vs. matrix diffusion. Several methods were used to describe the resulting source attenuation curves, including a first-order decay model which showed that half-life of

  12. Electroosmosis remediation of DNAPLS in low permeability soils

    SciTech Connect

    Ho, S V.

    1996-08-01

    Electroosmosis is the movement of water through a soil matrix induced by a direct current (DC) electric field. The technique has been used since the 1930s for dewatering and stabilizing fine-grained soils. More recently, electroosmosis has been considered as an in-situ method for soil remediation in which water is injected into the soil at the anode region to flush the contaminants to the cathode side for further treatment or disposal. The major advantage of electroosmosis is its inherent ability to move water uniformly through clayey, silty soils at 100 to 1000 times faster than attainable by hydraulic means, and with very low energy usage. Drawbacks of electroosmosis as a stand-alone technology include slow speed, reliance on solubilizing the contaminants into the groundwater for removal, potentially an unstable process for long term operation, and necessary additional treatment and disposal of the collected liquid. Possible remediation applications of electroosmosis for DNAPLs would be primarily in the removal of residual DNAPLs in the soil pores by electroosmotic flushing. The future of electroosmosis as a broad remedial method lies in how well it can be coupled with complementary technologies. Examples include combining electroosmosis with vacuum extraction, with surfactant usage to deal with non-aqueous phase liquids (NAPLs) through enhanced solubilization or mobilization, with permeability enhancing methods (hydrofracturing, pneumatic fracturing, etc.) to create recovery zones, and with in-situ degradation zones to eliminate aboveground treatment. 33 refs., 1 fig., 1 tab.

  13. Task 1.16 - Enhanced Mobility of Dense Nonaqueoius-Phase Liquids (DNAPLs) Using Dissolved Humic Acids

    SciTech Connect

    Marc D. Kurz

    1997-08-01

    Chlorinated solvent contamination is widespread across the U.S. Department of Energy (DOE) complex and other industrial facilities. Because of the physical properties of dense nonaqueous-phase liquids (DNAPLs), current treatment technologies are generally incapable of completely removing contamination from the source area. Incomplete removal means that the residual DNAPL will persist as a long-term source of groundwater contamination. When DNALPs occur in the subsurface, they resist remediation, owing to low water volubility, high viscosity and interracial tension, and microbial recalcitrance. Because of their high density and polarity, they are usually found sorbed to aquifer solids or in pools on impermeable materials. Surfactants have been used with some success to reduce interracial tension between the aqueous and organic phases and improve volubility of DNAPLs. However, surfactants are expensive and toxic and exhibit an oxygen demand. An alternative is the use of dissolved humic acids in improving DNAPL mobilization and solubilization. Humic acids, a. natural form of organic carbon, are abundant, inexpensive, and nontoxic; biodegrade slowly (low oxygen demand); and have excellent mobilization properties. The present work is to establish the feasibility of using humates for enhancing DNAPL remediation.

  14. Task 1.16 - Enhanced Mobility of Dense Nonaqueous-Phase Liquids (DNAPLs) Using Dissolved Humic Acids

    SciTech Connect

    Edwin S. Olson; Marc D. Kurz

    1998-02-01

    Chlorinated solvent contamination is widespread across the U.S. Department of Energy (DOE) complex and other industrial facilities. Because of the physical properties of dense nonaqueous-phase liquids (DNAPLs), current treatment technologies are generally incapable of completely removing contamination from the source area. Incomplete removal means that the residual DNAPL WN persist as a long-term source of groundwater contamination. When DNALPs occur in the subsurface, they resist remediation, owing to low water volubility, high viscosity and interracial tension, and microbial recalcitrance. Because of their high density and polarity, they are usually found sorbed to aquifer solids or in pools on impermeable materials. Surfactants have been used with some success to reduce interracial tension between the aqueous and organic phases and improve volubility of DNAPLs. However, surfactants are expensive and toxic and exhibit an oxygen demand. An alternative is the use of dissolved humic acids in improving DNAPL mobilization and solubilization. Humic acids, a natural form of organic carbon, are abundant, inexpensive, and nontoxic; biodegrade slowly (low oxygen demand); and have excellent mobilization properties. The present work is to establish the feasibility of using hurnates for enhancing DNAPL remediation.

  15. Interpreting DNAPL saturations in a laboratory-scale injection using one- and two-dimensional modeling of GPR Data

    USGS Publications Warehouse

    Johnson, R.H.; Poeter, E.P.

    2005-01-01

    Ground-penetrating radar (GPR) is used to track a dense non-aqueous phase liquid (DNAPL) injection in a laboratory sand tank. Before modeling, the GPR data provide a qualitative image of DNAPL saturation and movement. One-dimensional (1D) GPR modeling provides a quantitative interpretation of DNAPL volume within a given thickness during and after the injection. DNAPL saturation in sublayers of a specified thickness could not be quantified because calibration of the 1D GPR model is nonunique when both permittivity and depth of multiple layers are unknown. One-dimensional GPR modeling of the sand tank indicates geometric interferences in a small portion of the tank. These influences are removed from the interpretation using an alternate matching target. Two-dimensional (2D) GPR modeling provides a qualitative interpretation of the DNAPL distribution through pattern matching and tests for possible 2D influences that are not accounted for in the 1D GPR modeling. Accurate quantitative interpretation of DNAPL volumes using GPR modeling requires (1) identification of a suitable target that produces a strong reflection and is not subject to any geometric interference; (2) knowledge of the exact depth of that target; and (3) use of two-way radar-wave travel times through the medium to the target to determine the permittivity of the intervening material, which eliminates reliance on signal amplitude. With geologic conditions that are suitable for GPR surveys (i.e., shallow depths, low electrical conductivities, and a known reflective target), the procedures in this laboratory study can be adapted to a field site to delineate shallow DNAPL source zones.

  16. Removal of the samarium isobaric interference from promethium mass analysis

    SciTech Connect

    Shaw, R.W.; Young, J.P.; Smith, D.H.

    1988-02-01

    Resonance ionization mass spectroscopy (RIMS) is used to eliminate isobaric interference when determining the isotopic abundances of an element. In this application, RIMS is applied to the determination of promethium with the removal of samarium interference. In particular, promethium-147 is separated form samarium-147 and samarium-152.

  17. AN EXPERIMENTAL ASSESSMENT OF THE IMPACTS OF PARTIAL DNAPL SOURCE ZONE DELETION USING SPARGING AS A REMEDIATION TECHNIQUE

    EPA Science Inventory

    The contamination of the subsurface environment by dense non-aqueous phase liquids (DNAPL) is a wide-spread problem that poses a significant threat to soil and groundwater quality. Implementing different remediation techniques can lead to the removal of a high fraction of the DNA...

  18. MASS-REMOVAL AND MASS-FLUX-REDUCTION BEHAVIOR FOR IDEALIZED SOURCE ZONES WITH HYDRAULICALLY POORLY-ACCESSIBLE IMMISCIBLE LIQUID

    SciTech Connect

    Brusseau, M. L.; Difilippo, Erica L.; marble, justin C.; Oostrom, Mart

    2008-04-01

    A series of flow-cell experiments was conducted to investigate aqueous dissolution and mass-removal behavior for systems wherein immiscible liquid was non-uniformly distributed in physically heterogeneous source zones. The study focused specifically on characterizing the relationship between mass flux reduction and mass removal for systems for which immiscible liquid is poorly accessible to flowing water. Two idealized scenarios were examined, one wherein immiscible liquid at residual saturation exists within a lower-permeability unit residing in a higher-permeability matrix, and one wherein immiscible liquid at higher saturation (a pool) exists within a higher-permeability unit adjacent to a lower-permeability unit. The results showed that significant reductions in mass flux occurred at relatively moderate mass-removal fractions for all systems. Conversely, minimalmass flux reduction occurred until a relatively large fraction of mass (>80%) was removed for the control experiment, which was designed to exhibit ideal mass removal. In general, mass flux reduction was observed to follow an approximately one-to-one relationship with mass removal. Two methods for estimating mass-flux-reduction/mass-removal behavior, one based on system-indicator parameters (ganglia-to-pool ratio) and the other a simple mass-removal function, were used to evaluate the measured data. The results of this study illustrate the impact of poorly accessible immiscible liquid on mass-removal and mass-flux processes, and the difficulties posed for estimating mass-flux-reduction/mass-removal behavior.

  19. Removal of pooled dense, nonaqueous phase liquid from saturated porous media using upward gradient alcohol floods

    NASA Astrophysics Data System (ADS)

    Lunn, Stuart R. D.; Kueper, Bernard H.

    Laboratory experiments employing 90% by volume alcohol solutions are used to compare the abilities of ethanol and 1-propanol to remove pooled tetrachloroethene (PCE) from saturated porous media using low upward hydraulic gradients. Equilibrium ternary phase diagrams measured for the systems water/PCE/ethanol and water/PCE/1-propanol indicate that for alcohol concentrations below the miscibility envelope, 1-propanol will partition predominantly into the dense, nonaqueous phase liquid (DNAPL) phase while ethanol remains in the aqueous phase. Interfacial tension and phase density measurements show that while both systems demonstrate a reduction in interfacial tension with increasing alcohol content, the density difference between the aqueous and DNAPL phases is only reduced for the 1-propanol system. Two-dimensional experiments in saturated porous media using alcohol floods ranging in size from 0.125 pore volumes (PV) to 1.0 PV recovered between 5.7% and 98.7% of the PCE mass. The removal mechanisms for the ethanol floods included enhanced dissolution followed by miscible displacement, while the 1-propanol floods removed PCE by DNAPL swelling and interfacial tension reduction leading to immiscible displacement followed by miscible displacement. Recovery results and effluent composition histories indicate that hydrodynamic instabilities and dispersion cause significant alcohol slug deterioration and confirm the necessity of using an appropriate size alcohol slug of sufficient concentration for efficient PCE mass recovery.

  20. Analytical model for contaminant mass removal by air sparging

    SciTech Connect

    Rabideau, A.J.; Blayden, J.M.

    1998-12-31

    An analytical model was developed to predict the removal of volatile organic compounds (VOCs) from ground water by air sparging (AS). The model treats the air sparging zone as a completely mixed reactor subject to the removal of dissolved contaminants by volatilization, advection, and first-order decay. Nonequilibrium desorption is approximated as a first-order mass transfer process. The model reproduces the tailing and rebound behavior often observed at AS sites, and would normally require the estimation of three site-specific parameters. Dimensional analysis demonstrates that predicting tailing can be interpreted in terms of kinetic desorption or diffusion of aqueous phase contaminants into discrete air channels. Related work is ongoing to test the model against field data.

  1. Monitoring the decontamination of a site polluted by DNAPLs

    NASA Astrophysics Data System (ADS)

    Audí-Miró, C.; Espinola, R.; Torrentó, C.; Otero, N.; Rossi, A.; Palau, J.; Soler, A.

    2012-04-01

    The aim of this study is to monitor the decontamination of a site polluted by DNAPLs coming from an automotive industry. The contamination was caused by the poor management of the waste generated by the industrial activity, which was discharged into a seepage pit. As a result, soil contamination was produced in the seepage pit area and a plume of DNAPLs-contaminated groundwater was generated. To recover the original environmental quality, a dual action was proposed: in the first place, the removal of the source of contamination and in the second one, the treatment of the DNAPLs plume. The elimination of the source of contamination consisted on a selective excavation of the seepage pit and an offsite management of the contaminated land. To restore the groundwater quality, a passive treatment system using a permeable reactive barrier (PRB) of zero valent iron (ZVI) was implemented. In order to determine the efficiency of the remediation actions, a chemical, isotopic and hydrogeological control of the main solvents detected in groundwater (perchloroethylene -PCE-, trichloroethene -TCE- and cis-dichloroethylene -cis-DCE-) has been established. Results show a decrease in PCE concentration that has been attributed to the removal of the source more than to a degradation process. However, the presence of PCE by-products, TCE and cis-DCE, might indicate a possible PCE biotic degradation. δ13CPCE values analyzed upstream and downstream of the barrier don't show isotopic changes associated to the PRB (values are around -20‰ in all the sampling points). TCE might have experienced a natural advanced degradation process according to the high concentration of cis-DCE found prior the installation of the PRB and the isotopic enrichment in δ13CTCE in some specific areas of the plume (-19.9‰ in the source and -16‰ before the barrier). Slight isotopic changes have been observed in the water flow in a far distance after the barrier (-15.4‰). δ13Ccis-DCE experienced an

  2. Integrated Geophysical Detection of DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    2001-11-01

    Identification of subsurface organic contamination, particularly dense nonaqueous phase liquids (DNAPLs) is one of the highest priorities - and among the most difficult - for remediation of numerous sites, including those of the DOD and DOE. Complex resistivity (CR) is the only geophysical method that has been demonstrated in the laboratory to have high sensitivity to organic compounds, by detecting responses indicative of clay-organic electrochemistry. However, direct detection of organics in the field has been elusive, in part due to the difficulty of obtaining robust measurements at very low contaminant levels in the presence of heterogeneous geological materials and cultural interference (such as metallic utilities and remediation plumbing). This project sought to improve the capability to detect DNAPL by (1) better geophysical imaging of geological pathways that control DNAPL movement and (2) direct detection by detailed comparison of CR lab to field data using this improved imaging. For the first goal, algorithms were developed for the joint tomographic imaging of seismic and resistivity data. The method requires that an empirical relationship can be established between seismic and resistivity; if values are ultimately tied to specific lithologies, then the final tomographic product can be an actual geological cross-section. Because shallow subsurface investigations are now commonly performed using a cone penetrometer (CPT) a new vibratory seismic source was developed to identify sites with clay-organic reactions measurable in the lab from core samples, perform reconnaissance field surveys, and proceed to detailed 2D or 3D cross-hole imaging.

  3. STRATEGY FOR DNAPL RELEASES WITHIN A CONFINED TEST CELL

    EPA Science Inventory

    A controlled-release DNAPL field study site has been constructed at the Groundwater Remediation Field Laboratory (GRFL). Dover AFB., Delaware. This facility was established to evaluate in-situ DNAPL extraction technologies. Two double-walled test cells were installed in an uncont...

  4. CONTROLLED RELEASE, BLIND TEST OF DNAPL REMEDIATION BY ETHANOL FLUSHING

    EPA Science Inventory

    A dense nonaqueous phase liquid (DNAPL) source zone was established within a sheet-pile
    isolated cell through a controlled release of perchloroethylene (PCE) to evaluate DNAPL
    remediation by in-situ cosolvent flushing. Ethanol was used as the cosolvent, and the main remedia...

  5. Comparison of Models Used to Evaluate Mass Removal and Mass Flux Reduction

    NASA Astrophysics Data System (ADS)

    Difilippo, E. L.; Marble, J. C.; Tick, G. R.; Zhang, Z.; Brusseau, M. L.

    2007-12-01

    The purpose of this study was to investigate the application of models of varying complexity to the dissolution of non-uniformly distributed immiscible liquid in physically heterogeneous systems at both the intermediate and field scale. Flow cell experiments focused specifically on characterizing the relationship between mass flux reduction and mass removal for systems wherein immiscible liquid is poorly accessible to flowing water. Both end-point and time continuous data from several field studies were examined to evaluate observed relationships between mass flux reduction and source-zone mass removal. Methods for estimating mass-flux- reduction/mass-removal behavior, based on the use of simple mass-removal functions and 1-D and 3-D mathematical flow and transport models, were applied to the measured data. The simple mass-removal function generated singular curves that could not reproduce the multi-step behavior exhibited by data from both laboratory and field studies. The permeability field and the distribution of the immiscible-liquid zones were represented explicitly in the 3-D model. In contrast, the system was conceptualized as a pseudo-homogeneous medium, with immiscible liquid uniformly distributed throughout the system for the 1-D modeling. With this approach, all factors that influence immiscible-liquid dissolution are incorporated into the calibrated dissolution rate coefficient, which in such cases serves as a composite or lumped term. The calibrated dissolution rate coefficients obtained for the 1-D modeling were approximately two to three orders of magnitude smaller than the values obtained from column experiments, and which were used for the 3-D modeling. The disparity in magnitudes of the values used for the 1-D and 3-D modeling reflects the difference in implicit versus explicit consideration of the larger-scale factors influencing immiscible-liquid dissolution in the systems. However, the calibrated dissolution rate coefficients were similar for

  6. Field test of single well DNAPL characterization using alcohol injection/extraction

    SciTech Connect

    Jerome, K.M.; Looney, B.B.; Rhoden, M.L.; Riha, B.; Burdick, S.

    1996-10-29

    Soils and groundwater beneath an abandoned process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLs, or dense non-aqueous phase liquids. Technologies targeted at efficient characterization or removal of DNAPL are not currently proven. The authors performed injection/extraction characterization tests in six existing wells in A/M Area. Water concentrations for TCE and/or PCE in these wells ranged from 0% to 100% of solubility. For each test, small amounts of solubilizing solution were used to try to confirm or deny the presence or absence of DNAPL in the immediate vicinity of the well screen.

  7. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON (DNAPL CONFERENCE)

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) is being conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island SC. The demonstration is being conducted by Geosyntec, the Nationa...

  8. ENHANCED SOURCE REMOVAL

    EPA Science Inventory

    Two physically and hydraulically isolated test cells have been constructed at the Groundwater Remediation Field Laboratory at Dover Air Force Base, Delaware. The effectiveness of five in-situ techniques for removing DNAPL from soils and aquifers will be evaluated in these cells u...

  9. Analytical modeling of degradation product partitioning kinetics in source zones containing entrapped DNAPL

    NASA Astrophysics Data System (ADS)

    Ramsburg, C. Andrew; Christ, John A.; Douglas, Scott R.; Boroumand, Ali

    2011-03-01

    Liquid-liquid equilibrium experiments indicate that there is a strong thermodynamic driving force for the reversible sequestration of cis-dichloroethene (DCE) within microbially active dense nonaqueous phase liquid (DNAPL) source zones containing chlorinated ethene solvents. Assessment of the importance of degradation product sequestration, however, requires accurate description of the mass transfer kinetics. Partitioning kinetics of cis-DCE were assessed in a series of transport experiments conducted in sandy columns containing uniformly entrapped tetrachloroethene (PCE)-nonaqueous phase liquids (NAPL). Effluent data from these experiments were simulated using an analytical solution adapted from the sorption literature. The solution permits interrogation of the relative importance of mass transfer resistance in the aqueous phase and NAPL. Column data and simulations suggest that the kinetic exchange of cis-DCE may be described with mass transfer correlations developed for the dissolution of pure component NAPLs. Diffusive transport within the entrapped ganglia was relatively fast, offering limited resistance to mass exchange. These results (1) establish the applicability of dissolution-based mass transfer correlations for modeling both absorption and dissolution of degradation products, (2) quantify the thermodynamic driving force for the partitioning of cis-DCE in PCE-NAPL by assessing the ternary phase behavior, and (3) guide incorporation and deployment of partitioning kinetics into multiphase compositional simulators when assessing or designing metabolic reductive dechlorination within DNAPL source zones. While focus is placed on examining degradation product partitioning in DNAPL source zones, results may also be useful when considering rate limitations in other liquid-liquid partitioning processes, such as partitioning tracer tests.

  10. FIELD EVALUATION OF DNAPL EXTRACTION TECHNOLOGIES: PROJECT OVERVIEW

    EPA Science Inventory

    Five DNAPL remediation technologies were evaluated at the Dover National Test Site, Dover AFB, Delaware. The technologies were cosolvent solubilization, cosolvent mobilization, surfactant solubilization, complex sugar flushing and air sparging/soil vapor extraction. The effectiv...

  11. Co-injection of air and steam for the prevention of the downward migration of DNAPLs during steam enhanced extraction: an experimental evaluation of optimum injection ratio predictions.

    PubMed

    Kaslusky, Scott F; Udell, Kent S

    2005-05-01

    When steam is injected into soil containing a dense volatile non-aqueous phase liquid contaminant, the DNAPL vaporized within the heated soil region condenses and accumulates ahead of the steam condensation front. If enough DNAPL accumulates, gravitational forces can overcome trapping forces allowing the liquid contaminant to flow downward. By injecting air with steam, a portion of the DNAPL vapor remains suspended in equilibrium with the air, decreasing liquid contaminant accumulation ahead of the steam condensation front, and thus reducing the possibility of downward migration. In a previous work, a theoretical model was developed to predict the optimum injection ratio of air to steam that would eliminate accumulation of DNAPL ahead of the temperature front and thus minimize the potential for downward migration. In this work, the theoretical model is summarized, and an experiment is presented in order to evaluate the optimum injection ratio prediction. In the experiment, a two-dimensional water saturated sand pack is contaminated with a known mass of TCE (DNAPL). The system is then remediated by co-injecting air and steam at the predicted optimum injection ratio, calculated based on the average contaminant soil concentration in the sand pack. Results for the co-injection of air and steam are compared to results for the injection of pure steam or pure air. Injection at the predicted optimum injection ratio for a volumetric average NAPL saturation, reduced accumulation of the contaminant ahead of the condensation front by over 90%, as compared to steam injection alone. This indicates that the optimum injection ratio prediction is a valuable tool for limiting the spreading of DNAPL during steam-enhanced extraction. Injection at the optimum injection ratio resulted in earlier recovery of contaminant than for steam injection alone. Co-injection of steam and air is also shown to result in much higher recovery rates than air injection alone. PMID:15854722

  12. DNAPLs at DOE sites: Background and assessment of characterization technologies

    SciTech Connect

    Junk, G.A.; Haas, W.J. Jr.

    1993-12-01

    The Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP) within the Office of Technology Development (OTD) has responsibility for identification, evaluation, and delivery of technologies needed for the work of the Department of Energy`s Office of Environmental Restoration and Waste Management. This report addresses part of that responsibility by providing summary information on DNAPL site characterization. A dense nonaqueous phase liquid (DNAPL) is a source of contamination that can persist in the subsurface for decades before dissipating completely into the vapor phase and groundwater. The DNAPL chemicals of particular concern to the DOE are chlorinated volatile organic compounds (Cl VOCS) such as carbon tetrachloride (CCl{sub 4}), trichloroethylene (TCE), and perchloroethylene (PCE). These Cl VOCs were used in multiple ton quantities at DOE sites and were often released to the subsurface. The predicted fate of released Cl VOC liquid is downward movement through the soil under the force of gravity. As it moves, some of the Cl VOC liquid becomes trapped in the soil pores as residual saturation. The liquid also moves rapidly downward if small fractures are present. This migration continues until an impermeable or semi-permeable layer is encountered. Then lateral movement or spreading occurs. The downward and lateral migration in the subsurface leads to DNAPL pools, lenses, and residual saturation that can cause long-term contamination of groundwater at levels well above drinking water standards. Although Cl VOCs have been detected as dissolved components in the groundwater and as vapor in the soil gas at several DOE sites, direct evidence of their presence as DNAPL is sparse and no measurements of the amounts of DNAPL present within a given volume of subsurface have been made. Consequently, unresolved DNAPL issues exist at DOE sites.

  13. Monitoring Genetic and Metabolic Potential for In-Site Bioremediation: Mass Spectrometry

    SciTech Connect

    Buchanan, M.V.

    2000-07-20

    A number of DOE sites are contaminated with mixtures of dense non-aqueous phase liquids (DNAPLs) such as carbon tetrachloride, chloroform, perchloroethylene, and trichloroethylene. At many of these sites, in situ microbial bioremediation is an attractive strategy for cleanup, since it has the potential to degrade DNAPLs in situ without the need for pump-and-treat or soil removal procedures, and without producing toxic byproducts. A rapid screening method to determine broad range metabolic and genetic potential for contaminant degradation would greatly reduce the cost and time involved in assessment for in situ bioremediation, as well as for monitoring ongoing bioremediation treatment. The objective of this project was the development of mass-spectrometry-based methods to screen for genetic potential for both assessment and monitoring of in situ bioremediation of DNAPLs. These methods were designed to provide more robust and routine methods for DNA-based characterization of the genetic potential of subsurface microbes for degrading pollutants. Specifically, we sought to (1) Develop gene probes that yield information equivalent to conventional probes, but in a smaller size that is more amenable to mass spectrometric detection, (2) Pursue improvements to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) methodology in order to allow its more general application to gene probe detection, and (3) Increase the throughput of microbial characterization by integrating gene probe preparation, purification, and MALDI-MS analysis.

  14. Transport with Bimolecular Reactions: Applications to In-Situ Chemical Oxidation of DNAPLs by Permanganate in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud

    Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. Our objectives in this research were to carry out a sequence of experimental, computational and theoretical tasks aimed at improving current understanding of permanganate oxidation in fractured rock systems, and also develop modeling tools that can be used for preliminary design of oxidation schemes at field sites. Our research focused on both free-phase entrapped DNAPL in variable-aperture fractures and dissolved DNAPL in the rock matrix. In the first section of our research, we present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were measured quantitatively. We present results on the time-evolution of fracture-scale TCE consumption and DNAPL removal rates for all the experiments. In the next part of this work, we developed theoretical understanding of the reaction front dynamics in the case of chemical oxidation of aqueous-phase DNAPL within fracture-matrix system, backed up by numerical simulations. We also consider the influence of NOD consumption and contaminant sorption to solid aquifer materials in our models. Based on the results from this task we are able to propose simple strategies for remediation design (e.g. the time needed to degrade DNAPL inside the fracture-matrix system and the permanganate injection pattern) for a given set of conditions. Our numerical simulations of diffusion with bimolecular reaction in the rock matrix demonstrated a transition in the spatially integrated reaction rate - increasing with time initially, and transitioning to a decrease with time. We

  15. Impact of enhanced-flushing reagents and organic-liquid distribution on mass removal and mass-discharge reduction.

    PubMed

    Akyol, Nihat Hakan; Lee, Ann Russo; Brusseau, Mark L

    2013-10-01

    A series of column and flow-cell experiments was conducted to investigate the impact of non-uniform organic-liquid distribution on the relationship between reductions in contaminant mass discharge and reductions in source zone mass under conditions of enhanced-solubilization flushing. Trichloroethene was used as the model organic liquid, and SDS (sodium dodecyl sulfate) and ethanol were used as representative enhanced-flushing reagents. The results were compared to those of water-flood control experiments. Concentrations of trichloroethene in the effluent exhibited multi-step behavior with time, wherein multiple secondary periods of quasi steady state were observed. This non-ideal behavior was observed for both the water-flood and enhanced-flushing experiments. For all flow-cell experiments, the later stage of mass removal was controlled by the more poorly- accessible mass associated with higher-saturation zones. The profiles relating reductions in contaminant mass discharge and reductions in mass exhibited generally similar behavior for both the water-flood and enhanced-flushing experiments. This indicates that while the rates and magnitudes of mass removal are altered by the presence of a solubilization-reagent solution, the fundamental mass-removal process is not. The profiles obtained for the flow-cell systems differed from those obtained for the column systems, highlighting the impact of source-zone heterogeneity on mass-removal behavior. PMID:24563557

  16. Impact of enhanced-flushing reagents and organic-liquid distribution on mass removal and mass-discharge reduction

    PubMed Central

    Akyol, Nihat Hakan; Lee, Ann Russo; Brusseau, Mark L

    2014-01-01

    A series of column and flow-cell experiments was conducted to investigate the impact of non-uniform organic-liquid distribution on the relationship between reductions in contaminant mass discharge and reductions in source zone mass under conditions of enhanced-solubilization flushing. Trichloroethene was used as the model organic liquid, and SDS (sodium dodecyl sulfate) and ethanol were used as representative enhanced-flushing reagents. The results were compared to those of water-flood control experiments. Concentrations of trichloroethene in the effluent exhibited multi-step behavior with time, wherein multiple secondary periods of quasi steady state were observed. This non-ideal behavior was observed for both the water-flood and enhanced-flushing experiments. For all flow-cell experiments, the later stage of mass removal was controlled by the more poorly- accessible mass associated with higher-saturation zones. The profiles relating reductions in contaminant mass discharge and reductions in mass exhibited generally similar behavior for both the water-flood and enhanced-flushing experiments. This indicates that while the rates and magnitudes of mass removal are altered by the presence of a solubilization-reagent solution, the fundamental mass-removal process is not. The profiles obtained for the flow-cell systems differed from those obtained for the column systems, highlighting the impact of source-zone heterogeneity on mass-removal behavior. PMID:24563557

  17. Steam and ET-DSP combined for DNAPL remediation: full-scale site restoration at Young-Rainey Star Center

    SciTech Connect

    Heron, Gorm; Carroll, Steven; Sowers, Hank; McGee, Bruce; Juhlin, Randall; Daniel, Joe; Ingle, David S.

    2004-05-01

    In March of 2003, the United States Department of Energy (DOE) completed a full-scale nonaqueous-phase liquid (NAPL) remediation of Area A of the Northeast Site at the Young-Rainey STAR Center, Largo, Florida. The site was contaminated with approximately 2,300 kg (5,000 lbs) of NAPL constituents such as TCE, cis-1,2-DCE, methylene chloride, toluene, and petroleum hydrocarbons. The site was remediated by SteamTech using a combination of steam-enhanced extraction and electrical resistance heating during operations lasting 4.5 months. After the target volume had been heated to or near boiling temperatures, pressure cycles were used to increase the mass removal rates. Each de-pressurization cycle led to large increases in the vapor phase recovery, until a final phase of diminishing returns was reached. Post-operational sampling at randomly selected locations showed the concentrations of all contaminants of concern (COC) to be well below the remedial goals. The majority of the groundwater samples were below maximum contaminant level (MCL) for all the contaminants of concern. The overall mass balance showed that about 0.5 kg (1 pound) of VOCs remained in the remedial volume, and showed remedial efficiencies of between 99.85 and 99.99 percent for the four chemicals of concern. This is the first full-scale demonstration of complete source removal at a DNAPL site. Since the post-operational sampling shows all concentrations to be below or close to groundwater MCLs, the thermal remedy may be satisfactory for site closure without a polishing phase.

  18. A media maniac's guide to removable mass storage media

    NASA Technical Reports Server (NTRS)

    Kempster, Linda S.

    1996-01-01

    This paper addresses at a high level, the many individual technologies available today in the removable storage arena including removable magnetic tapes, magnetic floppies, optical disks and optical tape. Tape recorders represented below discuss logitudinal, serpantine, logitudinal serpantine,and helical scan technologies. The magnetic floppies discussed will be used for personal electronic in-box applications.Optical disks still fill the role for dense long-term storage. The media capacities quoted are for native data. In some cases, 2 KB ASC2 pages or 50 KB document images will be referenced.

  19. Phase I Field Test Results of an Innovative DNAPL Remediation Technology: The Hydrophobic Lance

    SciTech Connect

    Tuck, D.M.

    1999-01-28

    An innovative technology for recovery of pure phase DNAPL was deployed in the subsurface near the M-Area Settling Basin, continuing the support of the A/M Area Ground Water Corrective Action Program (per Part B requirements). This technology, the Hydrophobic Lance, operates by placing a neutral/hydrophobic surface (Teflon) in contact with the DNAPL. This changes the in situ conditions experienced by the DNAPL, allowing it to selectively drain into a sump from which it can be pumped. Collection of even small amounts of DNAPL can save years of pump-and-treat operation because of the generally low solubility of DNAPL components.

  20. The Outcome of Supernovae in Massive Binaries; Removed Mass, and its Separation Dependence

    NASA Astrophysics Data System (ADS)

    Hirai, Ryosuke; Sawai, Hidetomo; Yamada, Shoichi

    2014-09-01

    The majority of massive stars are formed in binary systems. It is hence reasonable to expect that most core-collapse supernovae (CCSNe) take place in binaries and the existence of a companion star may leave some imprints in observed features. Having this in mind, we have conducted two-dimensional hydrodynamical simulations of the collisions of CCSNe ejecta with the companion star in an almost-equal-mass (~10 M ⊙) binary to find out possible consequences of such events. In particular we pay attention to the amount of mass removed and its dependence on the binary separation. In contrast to the previous surmise, we find that the companion mass is stripped not by momentum transfer but by shock heating. Up to 25% of the original mass can be removed for the closest separations and the removed mass decreases as M ubvpropa -4.3 with the binary separation a. By performing some experimental computations with artificially modified densities of incident ejecta, we show that if the velocity of ejecta is fixed, the density of incident ejecta is the single important parameter that actually determines the removed mass as Mub \\propto ρ ej 1.4. On the other hand, another set of simulations with modified velocities of incident ejecta demonstrate that the strength of the forward shock, which heats up the stellar material and causes the mass loss of the companion star, is actually the key parameter for the removed mass.

  1. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  2. THE IMPACT OF PARTIAL DNAPL SOURCE ZONE REMEDIATION

    EPA Science Inventory

    Dense non-aqueous phase liquids (DNAPL) constitute a long-term source of groundwater contamination and a significant effort is usually required to treat these contaminated waters and bring them back to maximum contaminant level (MCL) required by the regulatory authorities.
    Fi...

  3. SIMULATION OF DNAPL DISTRIBUTION RESULTING FROM MULTIPLE SOURCES

    EPA Science Inventory

    A three-dimensional and three-phase (water, NAPL and gas) numerical simulator, called NAPL, was employed to study the interaction between DNAPL (PCE) plumes in a variably saturated porous media. Several model verification tests have been performed, including a series of 2-D labo...

  4. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLS

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Geiger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2003-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water. The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles

  5. Synergistic, ultrafast mass storage and removal in artificial mixed conductors.

    PubMed

    Chen, Chia-Chin; Fu, Lijun; Maier, Joachim

    2016-08-11

    Mixed conductors-single phases that conduct electronically and ionically-enable stoichiometric variations in a material and, therefore, mass storage and redistribution, for example, in battery electrodes. We have considered how such properties may be achieved synergistically in solid two-phase systems, forming artificial mixed conductors. Previously investigated composites suffered from poor kinetics and did not allow for a clear determination of such stoichiometric variations. Here we show, using electrochemical and chemical methods, that a melt-processed composite of the 'super-ionic' conductor RbAg4I5 and the electronic conductor graphite exhibits both a remarkable silver excess and a silver deficiency, similar to those found in single-phase mixed conductors, even though such behaviour is not possible in the individual phases. Furthermore, the kinetics of silver uptake and release is very fast. Evaluating the upper limit set by interfacial ambipolar diffusion reveals chemical diffusion coefficients that are even higher than those achieved for sodium chloride in bulk liquid water. These results could potentially stimulate systematic research into powerful, even mesoscopic, artificial mixed conductors. PMID:27510217

  6. Assessing the joint impact of DNAPL source-zone behavior and degradation products on the probabilistic characterization of human health risk

    NASA Astrophysics Data System (ADS)

    Henri, Christopher V.; Fernàndez-Garcia, Daniel; de Barros, Felipe P. J.

    2016-02-01

    The release of industrial contaminants into the subsurface has led to a rapid degradation of groundwater resources. Contamination caused by Dense Non-Aqueous Phase Liquids (DNAPLs) is particularly severe owing to their limited solubility, slow dissolution and in many cases high toxicity. A greater insight into how the DNAPL source zone behavior and the contaminant release towards the aquifer impact human health risk is crucial for an appropriate risk management. Risk analysis is further complicated by the uncertainty in aquifer properties and contaminant conditions. This study focuses on the impact of the DNAPL release mode on the human health risk propagation along the aquifer under uncertain conditions. Contaminant concentrations released from the source zone are described using a screening approach with a set of parameters representing several scenarios of DNAPL architecture. The uncertainty in the hydraulic properties is systematically accounted for by high-resolution Monte Carlo simulations. We simulate the release and the transport of the chlorinated solvent perchloroethylene and its carcinogenic degradation products in randomly heterogeneous porous media. The human health risk posed by the chemical mixture of these contaminants is characterized by the low-order statistics and the probability density function of common risk metrics. We show that the zone of high risk (hot spot) is independent of the DNAPL mass release mode, and that the risk amplitude is mostly controlled by heterogeneities and by the source zone architecture. The risk is lower and less uncertain when the source zone is formed mostly by ganglia than by pools. We also illustrate how the source zone efficiency (intensity of the water flux crossing the source zone) affects the risk posed by an exposure to the chemical mixture. Results display that high source zone efficiencies are counter-intuitively beneficial, decreasing the risk because of a reduction in the time available for the production

  7. The outcome of supernovae in massive binaries; removed mass, and its separation dependence

    SciTech Connect

    Hirai, Ryosuke; Sawai, Hidetomo; Yamada, Shoichi

    2014-09-01

    The majority of massive stars are formed in binary systems. It is hence reasonable to expect that most core-collapse supernovae (CCSNe) take place in binaries and the existence of a companion star may leave some imprints in observed features. Having this in mind, we have conducted two-dimensional hydrodynamical simulations of the collisions of CCSNe ejecta with the companion star in an almost-equal-mass (∼10 M {sub ☉}) binary to find out possible consequences of such events. In particular we pay attention to the amount of mass removed and its dependence on the binary separation. In contrast to the previous surmise, we find that the companion mass is stripped not by momentum transfer but by shock heating. Up to 25% of the original mass can be removed for the closest separations and the removed mass decreases as M {sub ub}∝a {sup –4.3} with the binary separation a. By performing some experimental computations with artificially modified densities of incident ejecta, we show that if the velocity of ejecta is fixed, the density of incident ejecta is the single important parameter that actually determines the removed mass as M{sub ub}∝ρ{sub ej}{sup 1.4}. On the other hand, another set of simulations with modified velocities of incident ejecta demonstrate that the strength of the forward shock, which heats up the stellar material and causes the mass loss of the companion star, is actually the key parameter for the removed mass.

  8. Models For Laser Ablation Mass Removal And Impulse Generation In Vacuum

    SciTech Connect

    Sinko, John E.; Gregory, Don A.

    2010-05-06

    To the present day, literature efforts at modeling laser propulsion impulse often used empirical models. Recently, a simple physical approach was demonstrated to be effective for predicting many practical properties of laser ablative impulse generation under vacuum. The model used photochemical mass removal and energy conservation to predict parameters such as the peak momentum coupling coefficient, the optimal fluence position at which this maximum is reached, and various critical properties related to the laser ablation threshold. Although the current model understanding is not complete, improvements in the treatment of mass removal and ambient pressure are expected to allow this type of model to be broadly applicable to many diverse applications using laser ablation impulse generation. In this paper, we also introduce an alternative formulation of the model incorporating photothermal mass removal. Implications and limitations of the model formulation in its initial stage of development are discussed, particularly concerning critical fluence effects and directions for improvement.

  9. Wettability-dependent DNAPL migration in a rough-walled fracture

    NASA Astrophysics Data System (ADS)

    Lee, Hang-Bok; Yeo, In Wook; Ji, Sung-Hoon; Lee, Kang-Kun

    2010-04-01

    The effect of wettability on the migration of dense non-aqueous phase liquids (DNAPLs) through a rough-walled fracture was investigated. The migration characteristics of DNAPL were found to be strongly dependent on the wettability. For a fracture with a hydrophilic surface, DNAPL migrated through larger apertures as disconnected blobs when the groundwater flow regime was linear (Re = 1). However, for non hydrophilic surfaces DNAPL did not migrate in the same way as for the hydrophilic surface. The intermediate-wet surface, with a contact angle of ≈90°, makes gravity pressure dominant over the capillary pressure, resulting in the fastest DNAPL migration. DNAPL was retained on the hydrophobic fracture, where the capillary barrier of larger apertures forced the DNAPL to migrate through the smaller apertures. In the nonlinear flow regime of Re = 60, DNAPL generally migrated downward as a result of the inertial pressure of flowing water for all the wettability conditions, but the local downward migration paths were still determined by the capillary pressure, which resulted in the fastest and slowest migration on the hydrophilic and the hydrophobic fractures, respectively. This study implies that the hydrophilic and intermediate-wet surfaces will be favorable for DNAPL and oil recovery.

  10. Wettability-dependent DNAPL migration in a rough-walled fracture.

    PubMed

    Lee, Hang-Bok; Yeo, In Wook; Ji, Sung-Hoon; Lee, Kang-Kun

    2010-04-01

    The effect of wettability on the migration of dense non-aqueous phase liquids (DNAPLs) through a rough-walled fracture was investigated. The migration characteristics of DNAPL were found to be strongly dependent on the wettability. For a fracture with a hydrophilic surface, DNAPL migrated through larger apertures as disconnected blobs when the groundwater flow regime was linear (Re=1). However, for non hydrophilic surfaces DNAPL did not migrate in the same way as for the hydrophilic surface. The intermediate-wet surface, with a contact angle of approximately 90 degrees , makes gravity pressure dominant over the capillary pressure, resulting in the fastest DNAPL migration. DNAPL was retained on the hydrophobic fracture, where the capillary barrier of larger apertures forced the DNAPL to migrate through the smaller apertures. In the nonlinear flow regime of Re=60, DNAPL generally migrated downward as a result of the inertial pressure of flowing water for all the wettability conditions, but the local downward migration paths were still determined by the capillary pressure, which resulted in the fastest and slowest migration on the hydrophilic and the hydrophobic fractures, respectively. This study implies that the hydrophilic and intermediate-wet surfaces will be favorable for DNAPL and oil recovery. PMID:20110134

  11. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    SciTech Connect

    McCarty, P. L.; Spormann, Alfred M.; Criddle, Craig, S.

    2003-12-11

    Chlorinated solvents are among the most widespread groundwater contaminants in the country, contamination which is also among the most difficult and expensive for remediation. These solvents are biodegradable in the absence of oxygen, but this biodegradation requires both a food source for the organisms (electron donor) and the presence of chlorinated solvent biodegrading organisms. These two requirements are present naturally at some contamination sites, leading to natural attenuation of the solvents. If one or both requirements are absent, then engineered bioremediation either through addition of an external electron donor or through bioaugmentation with appropriate microorganisms, or both, may be used for site remediation. The most difficult case for cleanup is when a large residual of undissolved chlorinated solvents are present, residing as dense -non-aqueous-phase- liquid ( DNAPL). A major focus of this study was on the potential for biodegradation of the solvents when pre sent as DNAPL where concentrations are very high and potential for toxicity to microorganisms exist. Another focus was on a better understanding of the biological mechanisms involved in chlorinated solvent biodegradation . These studies were directed towards the chlorinated solvents, trichloroethene (TCE), tetrachloroethene or perchloroethene (PCE), and carbon tetrachloride (CT). The potential for biodegradation of TCE and PCE DNAPL was clearly demonstrated in this research. From column soil studies and batch studies we found there to be a clear advantage in focusing efforts at bioremediation near the DNAPL. Here, chlorinated solvent concentrations are the highest, both because of more favorable reaction kinetics and because such high solvent concentrations are toxic to microorganisms, such as methanogens, which compete with dehalogenators for the electron donor. Additionally, biodegradation near a PCE DNAPL results in an enhanced dissolution rate for the chlorinated solvent, by factors of

  12. BENCH-SCALE VISUALIZATION OF DNAPL REMEDIATION PROCESSES IN ANALOG HETEROGENEOUS AQUIFERS: SURFACTANT FLOODS, AND IN SITU OXIDATION USING PERMANGANATE

    EPA Science Inventory

    We have conducted well-controlled DNAPL remediation experiments using surfactants (Aerosol MA and Tween 80) to increase solubility and an oxidant (permanganate) to chemically degrade the DNAPL. Photographs and digital image analysis illustrate previously unobserved interactions b...

  13. Dissolution, Cyclodextrin-Enhanced Solubilization, and Mass Removal of an Ideal Multicomponent Organic Liquid

    PubMed Central

    Carroll, Kenneth C.; Brusseau, Mark L.

    2010-01-01

    Laboratory experiments and mathematical modeling were conducted to examine the influence of a hydroxypropyl-beta-cyclodextrin (HPCD) solution on the dissolution of single- and three-component organic liquids. The results of batch experiments showed that HPCD-enhanced solubilization of the organic-liquid mixtures was ideal (describable using Raoult’s Law), and that solubilization-enhancement factors were independent of mixture composition. Addition of the HPCD solution to columns containing residual saturations of the organic liquid enhanced the dissolution and removal of all three compounds in the mixture. The results of the column experiments and multicomponent rate-limited dissolution modeling suggest that solubilization was ideal for both water and cyclodextrin flushing. Concomitantly, the mass-flux reduction versus mass removal behavior was ideal for all experiments. Mass transfer was increased for HPCD solubilization relative to the water flushing due to solubility and concentration-gradient enhancement. Organic-liquid composition did not significantly impact mass transfer coefficients, and fractional mass removal behavior during HPCD solubilization was nearly identical for each compound whether present as a single component or in a mixture. Additionally, mass transfer coefficients for aqueous and HPCD solubilization for single and multicomponent mixtures were not statistically different upon normalizing by the solubility enhancement factor. PMID:19233508

  14. Release of contaminants from a heterogeneously fractured low permeability unit underlying a DNAPL source zone.

    PubMed

    Dearden, R A; Noy, D J; Lelliott, M R; Wilson, R; Wealthall, G P

    2013-10-01

    The invasion of DNAPL into fractured low permeability deposits results in the formation of secondary source zones that represent a long-term source of VOCs to adjacent aquifers. We present data from a site underlain by a fractured mudstone contaminated with TCE DNAPL that was poised for release following remediation of the overlying aquifer. Observations of contaminant distributions and fracture networks from the site and a nearby mudstone exposure respectively, enabled prediction of the imminent aquifer recontamination. The fractures, likely formed by gypsum dissolution, were characterised by fracture apertures and spacings that ranged from 0.01 to 49 mm and 0.047 to 3.37 m (10th and 90th percentile values) respectively. Numerical model results show that prediction of outward mass flux in the first year was highly variable (8 to 32 g/m²/d for an initial constant concentration with depth profile) and dependent on both the fracture spacing and aperture and the contaminant distribution. However after 1 year, assuming a heterogeneous distribution of fractures, mass flux was predictable within a narrow range of values (at 20 years; 0.04-0.08 g/m²/d). Similar results were obtained from more typical fracture networks with spacings of 0.1 to 0.5 m and apertures of 10 to 100 μm. These results suggest that when considering potential recontamination in a bounding aquifer, fracture characterisation may not be necessary and instead the focus should be on determining the surface area contributing contaminant mass to an aquifer, the contaminant concentration depth profiles, the hydraulic properties of the receiving aquifer and the elapsed time since aquifer remediation. PMID:24119249

  15. Nitrate Removal in Two Relict Oxbow Urban Wetlands: A 15N Mass-balance Approach

    EPA Science Inventory

    A 15N-tracer method was used to quantify nitrogen (N) removal processes in two relict oxbow wetlands located adjacent to the Minebank Run restored stream reach in Baltimore County (Maryland, USA) during summer 2009 and early spring 2010. A mass-balance approach was used to determ...

  16. Summary and Status of DNAPL Characterization and Remediation Activities in the A/M-Area, Savannah River Site

    SciTech Connect

    Vangelas, K.M.

    2001-03-02

    This report summarizes historical A/M-Area DNAPL activities and data, and presents the overall A/M-Area strategy flowchart, the status work for each DNAPL source zone (or potential source zone), and future A/M-Area DNAPL plans.

  17. Importance of rock matrix entry pressure on DNAPL migration in fractured geologic materials

    SciTech Connect

    Slough, K.J.; Sudicky, E.A.; Forsyth, P.A.

    1999-03-01

    The capillary pressure versus saturation relationship for various carbonate rocks exhibits a wide range of entry pressures depending on the depositional and diagenetic environment of the rock. The results of a numerical study are presented that focus on the effect of the DNAPL entry pressure of the porous rock matrix on the migration of DNAPL within the fracture network of carbonate rocks. Representative numerical experiments involving the release of DNAPL into a single vertical fracture terminating within a porous carbonate rock that was assigned a variety of measured capillary pressure versus saturation relationships showed that the volume of DNAPL that entered the rock matrix increased dramatically as the entry pressure of the rock matrix decreased. Simulations of a DNAPL-contaminated site located on fractured carbonate bedrock in southern Ontario are also presented which highlight the sensitivity of the extent of the zone of DNAPL contamination within the bedrock to the capillary pressure curves assigned to the rock matrix. One scenario presented demonstrates that the penetration depth and horizontal extent of the zone of DNAPL contamination within the bedrock can be large if the carbonate rock has a high entry pressure, because much of the DNAPL flow is restricted to the fracture network. Another case involving a lower entry pressure for the rock matrix produced a smaller zone of DNAPL contamination, but the bulk of the DNAPL was contained in the rock matrix. The results for both cases suggest that attempts at DNAPL-zone restoration in fractured rock using technologies that are available today would be problematic.

  18. Development and application of a screening model for evaluating bioenhanced dissolution in DNAPL source zones

    NASA Astrophysics Data System (ADS)

    Phelan, Thomas J.; Abriola, Linda M.; Gibson, Jenny L.; Smits, Kathleen M.; Christ, John A.

    2015-12-01

    In-situ bioremediation, a widely applied treatment technology for source zones contaminated with dense non-aqueous phase liquids (DNAPLs), has proven economical and reasonably efficient for long-term management of contaminated sites. Successful application of this remedial technology, however, requires an understanding of the complex interaction of transport, mass transfer, and biotransformation processes. The bioenhancement factor, which represents the ratio of DNAPL mass transfer under microbially active conditions to that which would occur under abiotic conditions, is commonly used to quantify the effectiveness of a particular bioremediation remedy. To date, little research has been directed towards the development and validation of methods to predict bioenhancement factors under conditions representative of real sites. This work extends an existing, first-order, bioenhancement factor expression to systems with zero-order and Monod kinetics, representative of many source-zone scenarios. The utility of this model for predicting the bioenhancement factor for previously published laboratory and field experiments is evaluated. This evaluation demonstrates the applicability of these simple bioenhancement factors for preliminary experimental design and analysis, and for assessment of dissolution enhancement in ganglia-contaminated source zones. For ease of application, a set of nomographs is presented that graphically depicts the dependence of bioenhancement factor on physicochemical properties. Application of these nomographs is illustrated using data from a well-documented field site. Results suggest that this approach can successfully capture field-scale, as well as column-scale, behavior. Sensitivity analyses reveal that bioenhanced dissolution will critically depend on in-situ biomass concentrations.

  19. Field Demonstration of DNAPL Dehalogenation Using Emulsified Zero-Valent Iron

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Geiger, Cherie; Clausen, Chris; Brooks, Kathleen; Coon, Christina; O'Hara, Suzanne; Krug, Thomas; Major, David; Yoon, Sam; Gavaskar, Arun; Holdsworth, Thomas

    2004-01-01

    This paper describes the results of the first field-scale demonstration conducted to evaluate the performance of nano-scale emulsified zero-valent iron (EZVI) injected into the saturated zone to enhance in situ dehalogenation of dense, non-aqueous phase liquids (DNAPLs) containing trichloroethene (TCE). EZVI is an innovative and emerging remediation technology. EZVI is a surfactant-stabilized, biodegradable emulsion that forms emulsion droplets consisting of an oil-liquid membrane surrounding zero-valent iron (ZVI) particles in water. EZVI was injected over a five day period into eight wells in a demonstration test area within a larger DNAPL source area at NASA's Launch Complex 34 (LC34) using a pressure pulse injection method. Soil and groundwater samples were collected before and after treatment and analyzed for volatile organic compounds (V005) to evaluate the changes in VOC mass, concentration and mass flux. Significant reductions in TCE soil concentrations (>80%) were observed at four of the six soil sampling locations within 90 days of EZVI injection. Somewhat lower reductions were observed at the other two soil sampling locations where visual observations suggest that most of the EZVI migrated up above the target treatment depth. Significant reductions in TCE groundwater concentrations (57 to 100%) were observed at all depths targeted with EZVI. Groundwater samples from the treatment area also showed significant increases in the concentrations of cis-1,2-dichloroethene (cDCE), vinyl chloride (VC) and ethene. The decrease in concentrations of TCE in soil and groundwater samples following treatment with EZVI is believed to be due to abiotic degradation associated with the ZVI as well as biodegradation enhanced by the presence of the oil and surfactant in the EZVI emulsion.

  20. Development and application of a screening model for evaluating bioenhanced dissolution in DNAPL source zones.

    PubMed

    Phelan, Thomas J; Abriola, Linda M; Gibson, Jenny L; Smits, Kathleen M; Christ, John A

    2015-12-01

    In-situ bioremediation, a widely applied treatment technology for source zones contaminated with dense non-aqueous phase liquids (DNAPLs), has proven economical and reasonably efficient for long-term management of contaminated sites. Successful application of this remedial technology, however, requires an understanding of the complex interaction of transport, mass transfer, and biotransformation processes. The bioenhancement factor, which represents the ratio of DNAPL mass transfer under microbially active conditions to that which would occur under abiotic conditions, is commonly used to quantify the effectiveness of a particular bioremediation remedy. To date, little research has been directed towards the development and validation of methods to predict bioenhancement factors under conditions representative of real sites. This work extends an existing, first-order, bioenhancement factor expression to systems with zero-order and Monod kinetics, representative of many source-zone scenarios. The utility of this model for predicting the bioenhancement factor for previously published laboratory and field experiments is evaluated. This evaluation demonstrates the applicability of these simple bioenhancement factors for preliminary experimental design and analysis, and for assessment of dissolution enhancement in ganglia-contaminated source zones. For ease of application, a set of nomographs is presented that graphically depicts the dependence of bioenhancement factor on physicochemical properties. Application of these nomographs is illustrated using data from a well-documented field site. Results suggest that this approach can successfully capture field-scale, as well as column-scale, behavior. Sensitivity analyses reveal that bioenhanced dissolution will critically depend on in-situ biomass concentrations. PMID:26484479

  1. Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Geiger, Cherie; Clausen, Chris; Brooks, Kathleen; Coon, Christina; O'Hara, Suzanne; Krug, Thomas; Major, David; Yoon, Woong-Sang; Gavaskar, Arun; Holdsworth, Thomas

    2005-01-01

    This paper describes the results of the first field-scale demonstration conducted to evaluate the performance of nanoscale emulsified zero-valent iron (EZVI) injected into the saturated zone to enhance in situ dehalogenation of dense, nonaqueous phase liquids (DNAPLs) containing trichloroethene (TCE). EZVI is an innovative and emerging remediation technology. EZVI is a surfactant-stabilized, biodegradable emulsion that forms emulsion droplets consisting of an oil-liquid membrane surrounding zero-valent iron (ZVI) particles in water. EZVI was injected over a five day period into eight wells in a demonstration test area within a larger DNAPL source area at NASA's Launch Complex 34 (LC34) using a pressure pulse injection method. Soil and groundwater samples were collected before and after treatment and analyzed for volatile organic compounds (VOCs) to evaluate the changes in VOC mass, concentration and mass flux. Significant reductions in TCE soil concentrations (>80%) were observed at four of the six soil sampling locations within 90 days of EZVI injection. Somewhat lower reductions were observed at the other two soil sampling locations where visual observations suggest that most of the EZVI migrated up above the target treatment depth. Significant reductions in TCE groundwater concentrations (57 to 100%) were observed at all depths targeted with EZVI. Groundwater samples from the treatment area also showed significant increases in the concentrations of cis-1,2-dichloroethene (cDCE), vinyl chloride (VC) and ethene. The decrease in concentrations of TCE in soil and groundwater samples following treatment with EZVI is believed to be due to abiotic degradation associated with the ZVI as well as biodegradation enhanced by the presence of the oil and surfactant in the EZVI emulsion.

  2. Nanoscale and Microscale Iron Emulsions for Treating DNAPL

    NASA Technical Reports Server (NTRS)

    Geiger, Cherie L.

    2002-01-01

    This study demonstrated the feasibility of using emulsified nanoscale and microscale iron particles to enhance dehalogenation of (Dense Non-Aqueous Phase Liquid) DNAPL free-phase. The emulsified system consisted of a surfactant-stabilized, biodegradable oil-in-water emulsion with nanoscale or microscale iron particles contained within the emulsion droplets. It was demonstrated that DNAPLs, such as trichloroethene (TCE), diffuse through the oil membrane of the emulsion particle whereupon they reach an aqueous interior and the surface of an iron particle where dehalogenation takes place. The hydrocarbon reaction by-products of the dehalogenation reaction, primarily ethene (no chlorinated products detected), diffuse out of the emulsion droplet. This study also demonstrated that an iron-emulsion system could be delivered in-situ to the DNAPL pool in a soil matrix by using a simulated push well technique. Iron emulsions degraded pure TCE at a rate comparable to the degradation of dissolved phase TCE by iron particles, while pure iron had a very low degradation rate for free-phase TCE. The iron-emulsion systems can be injected into a sand matrix where they become immobilized and are not moved by flowing water. It has been documented that surfactant micelles possess the ability to pull pooled TCE into emulsion droplets where degradation of TCE takes place.

  3. Application of an Optimal Search Strategy for the DNAPL Source Identification to a Field Site in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Longting, M.; Ye, S.; Wu, J.

    2014-12-01

    Identification and removing the DNAPL source in aquifer system is vital in rendering remediation successful and lowering the remediation time and cost. Our work is to apply an optimal search strategy introduced by Zoi and Pinder[1], with some modifications, to a field site in Nanjing City, China to define the strength, and location of DNAPL sources using the least samples. The overall strategy uses Monte Carlo stochastic groundwater flow and transport modeling, incorporates existing sampling data into the search strategy, and determines optimal sampling locations that are selected according to the reduction in overall uncertainty of the field and the proximity to the source locations. After a sample is taken, the plume is updated using a Kalman filter. The updated plume is then compared to the concentration fields that emanate from each individual potential source using fuzzy set technique. The comparison followed provides weights that reflect the degree of truth regarding the location of the source. The above steps are repeated until the optimal source characteristics are determined. Considering our site case, some specific modifications and work have been done as follows. K random fields are generated after fitting the measurement K data to the variogram model. The locations of potential sources that are given initial weights are targeted based on the field survey, with multiple potential source locations around the workshops and wastewater basin. Considering the short history (1999-2010) of manufacturing optical brightener PF at the site, and the existing sampling data, a preliminary source strength is then estimated, which will be optimized by simplex method or GA later. The whole algorithm then will guide us for optimal sampling and update as the investigation proceeds, until the weights finally stabilized. Reference [1] Dokou Zoi, and George F. Pinder. "Optimal search strategy for the definition of a DNAPL source." Journal of Hydrology 376.3 (2009): 542

  4. Final report for demonstration of in situ oxidation of DNAPL using the Geo-Cleanse technology

    SciTech Connect

    Jerome, K.M.; Riha, B.; Looney, B.B.

    1997-09-23

    At large industrial sites like the A/M Area of the Savannah River Site (SRS), undissolved dense non-aqueous phase liquid (DNAPL) in soil and groundwater is the most significant barrier to successful clean up. DNAPL acts as a reservoir that will continue to generate contaminant levels far above remediation concentration goals well into the future.

  5. THE MIGRATION AND ENTRAPMENT OF DNAPLS IN PHYSICALLY AND CHEMICALLY HETEROGENEOUS POROUS MEDIA

    EPA Science Inventory

    Hazardous dense nonaqueous phase liquids (DNAPLs), such as chlorinated solvents, are slightly water soluble and pose a serious threat to soil and groundwater supplies in many portions of the United States. The migration and entrapment of DNAPLs in the subsurface environment is ty...

  6. Organic Dye Effects on DNAPL Entry Pressure in Water Saturated Porous Media

    SciTech Connect

    Iversen, G.M.

    2001-10-02

    One of three diazo dyes with the same fundamental structure have been used in most studies of DNAPL behavior in porous media to stain the NAPL: Sudan III, Sudan IV, or Oil-Red-O. The dyes are generally implicitly assumed to not influence DNAPL behavior. That assumption was tested using simple entry pressure experiments.

  7. Using polymer solutions to enhance recovery of mobile coal tar and creosote DNAPLs.

    PubMed

    Giese, Steven W; Powers, Susan E

    2002-09-01

    Direct pumping and enhanced recovery of coal tar and creosote dense, non-aqueous phase liquids (DNAPLs) from the subsurface have had mixed results because these DNAPLs are viscous fluids that can potentially alter aquifer wettability. To improve the inefficiencies associated with waterflooding, the research presented here considered the use of a polymer solution that can be added to the injected flood solution to increase the viscosity and decrease the velocity of the flooding solution. Results from one-dimensional, vertically oriented laboratory column experiments that evaluate the recovery of coal-derived DNAPL with both water and polymer flooding solutions are presented. The final DNAPL saturation remaining in the column was assessed in water and oil-wet systems for three viscous DNAPLs. Adding polymer to increase the aqueous solution viscosity did not have a significant impact in water-wet systems. A final DNAPL saturation of approximately 19% was achieved for both water and polymer floods. In contrast, the addition of polymer significantly improved recovery in oil-wet systems. The final saturation was over 40% in oil-wet systems after waterflooding, but approximately 19% with a polymer flushing solution. Although the final saturation produced with polymer flooding was similar between the oil- and water-wet systems, differences in the relative permeability and distribution of DNAPL in the porous matrix caused the DNAPL recovery to be much slower in the oil-wet system. PMID:12236554

  8. DOES FIELD DATA SHOW DOWNWARD MOBILIZATION OF DNAPL DURING THERMAL REMEDIATION? (ABSTRACT)

    EPA Science Inventory

    The question of will DNAPLs be mobilized downward during thermal remediation has been asked many times. Indeed, downward mobilization of DNAPLs during steam injection has been observed in the lab. The mechanism for this downward mobilization was the concentration of the contami...

  9. DOES FIELD DATA SHOW DOWNWARD MOBILIZATION OF DNAPL DURING THERMAL REMEDIATION?

    EPA Science Inventory

    The question of will DNAPLs be mobilized downward during thermal remediation has been asked many times. Indeed, downward mobilization of DNAPLs during steam injection has been observed in the lab. The mechanism for this downward mobilization was the concentration of the contami...

  10. THE MEASUREMENT AND USE OF CONTAMINANT FLUX AS AN ASSESSMENT TOOL FOR DNAPL REMEDIAL PERFORMANCE

    EPA Science Inventory

    Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most sites, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant flux...

  11. MEASUREMENT AND USE OF CONTAMINANT FLUX AS AN ASSESSMENT TOOL FOR DNAPL REMEDIAL PERFORMANCE

    EPA Science Inventory

    Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most sites, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant flux...

  12. Fracture of fusion mass after hardware removal in patients with high sagittal imbalance.

    PubMed

    Sedney, Cara L; Daffner, Scott D; Stefanko, Jared J; Abdelfattah, Hesham; Emery, Sanford E; France, John C

    2016-04-01

    OBJECT As spinal fusions become more common and more complex, so do the sequelae of these procedures, some of which remain poorly understood. The authors report on a series of patients who underwent removal of hardware after CT-proven solid fusion, confirmed by intraoperative findings. These patients later developed a spontaneous fracture of the fusion mass that was not associated with trauma. A series of such patients has not previously been described in the literature. METHODS An unfunded, retrospective review of the surgical logs of 3 fellowship-trained spine surgeons yielded 7 patients who suffered a fracture of a fusion mass after hardware removal. Adult patients from the West Virginia University Department of Orthopaedics who underwent hardware removal in the setting of adjacent-segment disease (ASD), and subsequently experienced fracture of the fusion mass through the uninstrumented segment, were studied. The medical records and radiological studies of these patients were examined for patient demographics and comorbidities, initial indication for surgery, total number of surgeries, timeline of fracture occurrence, risk factors for fracture, as well as sagittal imbalance. RESULTS All 7 patients underwent hardware removal in conjunction with an extension of fusion for ASD. All had CT-proven solid fusion of their previously fused segments, which was confirmed intraoperatively. All patients had previously undergone multiple operations for a variety of indications, 4 patients were smokers, and 3 patients had osteoporosis. Spontaneous fracture of the fusion mass occurred in all patients and was not due to trauma. These fractures occurred 4 months to 4 years after hardware removal. All patients had significant sagittal imbalance of 13-15 cm. The fracture level was L-5 in 6 of the 7 patients, which was the first uninstrumented level caudal to the newly placed hardware in all 6 of these patients. Six patients underwent surgery due to this fracture. CONCLUSIONS The

  13. Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate.

    PubMed

    Butchart, N; Scaife, A A

    2001-04-12

    Chlorofluorocarbons (CFCs), along with bromine compounds, have been unequivocally identified as being responsible for most of the anthropogenic destruction of stratospheric ozone. With curbs on emissions of these substances, the recovery of the ozone layer will depend on their removal from the atmosphere. As CFCs have no significant tropospheric removal process, but are rapidly photolysed above the lower stratosphere, the timescale for their removal is set mainly by the rate at which air is transported from the troposphere into the stratosphere. Using a global climate model we predict that, in response to the projected changes in greenhouse-gas concentrations during the first half of the twenty-first century, this rate of mass exchange will increase by 3% per decade. This increase is due to more vigorous extra-tropical planetary waves emanating from the troposphere. We estimate that this increase in mass exchange will accelerate the removal of CFCs to an extent that recovery to levels currently predicted for 2050 and 2080 will occur 5 and 10 years earlier, respectively. PMID:11298444

  14. Removal of mercury contamination on primary mass standards by hydrogen plasma and thermal desorption

    NASA Astrophysics Data System (ADS)

    Fuchs, P.; Marti, K.; Russi, S.

    2013-02-01

    The removal of a high mercury contamination on a Pt reference mass by thermal desorption was studied directly by x-ray photoemission spectroscopy (XPS). Subsequently the contamination mechanism was investigated. Samples of PtIr and AuPt exposed to vapour of mercury in air were studied using XPS and gravimetric mass determination. We find an extremely rapid mercury contamination which takes place within minutes and reaches an initial equilibrium state after 2 h to 4 h. Roughly 1 to 2 monolayers of mercury adsorbs directly on the metal surface. A natural contamination of carbon and oxygen compounds is at the top. Due to the accumulation of mercury, we find a gain in mass which corresponds to 20 µg to 26 µg for a PtIr standard. XPS data from a historical Pt standard give strong evidence for further average mercury accumulation of (1.3 ± 0.1) µg/year during a period of more than a century. This can be explained by a two-step mechanism presented in this study. The speed of contamination depends on the initial surface conditions. Polishing activates the surface and results in an enhanced accumulation of mercury. Natural contamination by C and O can delay but not prevent contamination. We further demonstrate that the mercury contamination can be removed by both hydrogen plasma and thermal desorption. The removal of mercury by hydrogen plasma can directly be attributed to the synthesis of gaseous mercury dihydrides at low pressures.

  15. Time scales of DNAPL migration in sandy aquifers examined via numerical simulation

    SciTech Connect

    Gerhard, J.I.; Pang, T.; Kueper, B.H.

    2007-03-15

    The time required for dense nonaqueous phase liquid (DNAPL) to cease migrating following release to the subsurface is a valuable component of a site conceptual model. This study uses numerical simulation to investigate the migration of six different DNAPLs in sandy aquifers. The most influential parameters governing migration cessation time are the density and viscosity of the DNAPL and the mean hydraulic conductivity of the aquifer. Releases of between 1 and 40 drums of chlorinated solvent DNAPLs, characterized by relatively high density and low viscosity, require on the order of months to a few years to cease migrating in a heterogeneous medium sand aquifer having an average hydraulic conductivity of 7.4 x 10{sup -3} cm/s. In contrast to this, the release of 20 drums of coal tar {rho}{sub D} = 1061 kg/m{sup 3}, {mu}{sub D} = 0.161 Pa(.)s) requires more than 100 years to cease migrating in the same aquifer. Altering the mean hydraulic conductivity of the aquifer results in a proportional change in cessation times. Parameters that exhibit relatively little influence on migration time scales are the DNAPL-water interfacial tension, release volume, source capillary pressure, mean aquifer porosity, and ambient ground water hydraulic gradient. This study also demonstrates that low-density DNAPLs (e.g., coal tar) give rise to greater amounts of lateral spreading and greater amounts of pooling on capillary barriers than high-density DNAPLs such as trichloroethylene or tetrachloroethylene.

  16. Effects of Gravity and Aperture Statistics on DNAPL Entrapment in Fractures

    NASA Astrophysics Data System (ADS)

    Beattie, J. A.; Cianflone, S.; Dickson, S. E.

    2014-12-01

    Dense non-aqueous phase liquids (DNAPLs) are an important class of groundwater contaminants. Their migration pathways are particularly difficult to locate in fractured rock aquifers, which are abundant in North America. Over one million people in Southern Ontario alone obtain their drinking water from the Silurian dolostone bedrock. Once a DNAPL is trapped in an aquifer, it becomes a long-term threat to the source water quality. It is imperative to be able to locate and quantify trapped DNAPL to implement appropriate remedial strategies. This study quantifies volumetric DNAPL entrapment utilizing an invasion percolation (IP) approach to simulate the imbibition of water in a DNAPL-saturated fracture. The relationship between the volumetric fraction of trapped DNAPL, aperture field statistics and fracture orientation was investigated by varying a number of parameters; overall, 34,560 simulation were completed. The standard deviation (σb) and mean (μb) of the apertures were varied from 0.01-0.3 mm and 0.5-1.5 mm, respectively. The standard deviation (σz) and correlation length (λz) of the mid aperture field were varied from 0.01-10mm and 5-50mm, respectively. Fracture orientation was varied from 60o above (super-horizontal) to 60o below (sub-horizontal) horizontal.The results demonstrate that: 1) fractures oriented sub-horizontally permit the complete drainage of DNAPL, though this does not occur for horizontal and super-horizontal fractures; 2) when the coefficient of variation (COV) is larger than 0.1 the fracture orientation has little effect on the volumetric ratio of DNAPL entrapped; and 3) increasing standard deviation of the mid aperture field increases the range of the volumetric ratio of trapped DNAPL.

  17. Right Ventricle Mass Removal from Tricuspid Valve Apparatus: An Unusual Thromboembolic Complication of Severe Ketoacidosis.

    PubMed

    Haponiuk, Ireneusz; Chojnicki, Maciej; Paczkowski, Konrad; Kosiak, Wojciech; Jaworski, Radosław; Steffens, Mariusz; Szofer-Sendrowska, Aneta; Gierat-Haponiuk, Katarzyna; Tomaszewski, Marek

    2016-01-01

    The presence of a pathologic mass in the right ventricle (RV) may lead to hemodynamic consequences and to a life-threatening incident of pulmonary embolism. The diagnosis of an unstable thrombus in the right heart chamber usually necessitates intensive treatment to dissolve or remove the pathology. We present a report of an unusual complication of severe ketoacidosis: thrombus in the right ventricle, removed from the tricuspid valve (TV) apparatus. A four-year-old boy was diagnosed with diabetes mellitus (DM) type I de novo. During hospitalization, a 13.9 × 8.4 mm tumor in the RV was found in a routine cardiac ultrasound. The patient was referred for surgical removal of the floating lesion from the RV. The procedure was performed via midline sternotomy with extracorporeal circulation (ECC) and mild hypothermia. Control echocardiography showed complete tumor excision with normal atrioventricular valves and heart function. Surgical removal of the thrombus from the tricuspid valve apparatus was effective, safe, and a definitive therapy for thromboembolic complication of pediatric severe ketoacidosis. PMID:27146235

  18. Transport, Targeting, and Applications of Metallic Functional Nanoparticles for Degradation of DNAPL Chlorinated Organic Solvents

    SciTech Connect

    Gregory V. Lowry; Sara Majetich; Krzysztof Matyjaszewski; David Sholl; Robert Tilton

    2006-12-27

    Dense Non-Aqueous Phase Liquid (DNAPL) such as trichloroethylene act as long term sources of groundwater contaminants and are difficult and expensive to remediate. DNAPL-contaminated sites are a significant financial liability for the Department of Energy and the private sector. The objective of this study was to engineer reactive Fe-based nanoparticles with specialized polymeric coatings to make them mobile in the subsurface and to provide them with an affinity for the DNAPL/water interface. The synthesis, characterization, and reactivity/mobility of the engineered particles, and a molecular dynamic model that predicts their behavior at the DNPAL/water interface are described in this report.

  19. Bench-scale visualization of DNAPL remediation processes in analog heterogeneous aquifers: surfactant floods and in situ oxidation using permanganate.

    PubMed

    Conrad, Stephen H; Glass, Robert J; Peplinski, William J

    2002-09-01

    We have conducted well-controlled DNAPL remediation experiments within a 2-D, glass-walled, sand-filled chamber using surfactants (Aerosol MA and Tween 80) to increase solubility and an oxidant (permanganate) to chemically degrade the DNAPL. Initial conditions for each remediation experiment were created by injecting DNAPL as a point source at the top of the chamber and allowing the DNAPL to migrate downward through a water-filled, heterogeneous, sand-pack designed to be evocative of a fluvial depositional environment. This migration process resulted in the DNAPL residing as a series of descending pools. Lateral advection across the chamber was used to introduce the remedial fluids. Photographs and digital image analysis illustrate interactions between the introduced fluids and the DNAPL. In the surfactant experiments, we found that DNAPL configured in a series of pools was easily mobilized. Extreme reductions in DNAPL/water interfacial tension occurred when using the Aerosol MA surfactant, resulting in mobilization into low permeability regions and thus confounding the remediation process. More modest reductions in interfacial tension occurred when using the Tween 80 surfactant resulting in modest mobilization. In this experiment, capillary forces remained sufficient to exclude DNAPL migration into low permeability regions allowing the excellent solubilizing properties of the surfactant to recover almost 90% of the DNAPL within 8.6 pore volumes. Injection of a potassium permanganate solution resulted in precipitation of MnO2, a reaction product, creating a low-permeability rind surrounding the DNAPL pools. Formation of this rind hindered contact between the permanganate and the DNAPL, limiting the effectiveness of the remediation. From these experiments, we see the value of performing visualization experiments to evaluate the performance of proposed techniques for DNAPL remediation. PMID:12236553

  20. Quantification of Dialytic Removal and Extracellular Calcium Mass Balance during a Weekly Cycle of Hemodialysis

    PubMed Central

    Wojcik-Zaluska, Alicja; Ksiazek, Andrzej; Zaluska, Wojciech

    2016-01-01

    Objectives The removal of calcium during hemodialysis with low calcium concentration in dialysis fluid is generally slow, and the net absorption of calcium from dialysis fluid is often reported. The details of the calcium transport process during dialysis and calcium mass balance in the extracellular fluid, however, have not been fully studied. Methods Weekly cycle of three dialysis sessions with interdialytic breaks of 2-2-3 days was monitored in 25 stable patients on maintenance hemodialysis with calcium concentration in dialysis fluid of 1.35 mmol/L. Total and ionic calcium were frequently measured in blood and dialysate. The volume of fluid compartments was measured by bioimpedance. Results Weekly dialytic removal of 12.79 ± 8.71 mmol calcium was found in 17 patients, whereas 9.48 ± 8.07 mmol calcium was absorbed per week from dialysis fluid in 8 patients. Ionic calcium was generally absorbed from dialysis fluid, whereas complexed calcium (the difference of total and ionic calcium in dialysis fluid) was removed from the body. The concentration of total calcium in plasma increased slightly during dialysis. The mass of total and ionic calcium in extracellular fluid decreased during dialysis in patients with the dialytic removal of calcium from the body and did not change in patients with the absorption of calcium from dialysis fluid. Conclusions We conclude that about one third of patients on dialysis with calcium 1.35 mmol/L in dialysis fluid may absorb calcium from dialysis fluid and therefore individual prescriptions of calcium concentration in dialysis fluid should be considered for such patients. PMID:27073861

  1. Mechanisms of material removal and mass transport in focused ion beam nanopore formation

    SciTech Connect

    Das, Kallol Johnson, Harley T.; Freund, Jonathan B.

    2015-02-28

    Despite the widespread use of focused ion beam (FIB) processing as a material removal method for applications ranging from electron microscope sample preparation to nanopore processing for DNA sequencing, the basic material removal mechanisms of FIB processing are not well understood. We present the first complete atomistic simulation of high-flux FIB using large-scale parallel molecular dynamics (MD) simulations of nanopore fabrication in freestanding thin films. We focus on the root mechanisms of material removal and rearrangement and describe the role of explosive boiling in forming nanopores. FIB nanopore fabrication is typically understood to occur via sputter erosion. This can be shown to be the case in low flux systems, where individual ion impacts are sufficiently separated in time that they may be considered as independent events. But our detailed MD simulations show that in high flux FIB processing, above a threshold level at which thermal effects become significant, the primary mechanism of material removal changes to a significantly accelerated, thermally dominated process. Under these conditions, the target is heated by the ion beam faster than heat is conducted away by the material, leading quickly to melting, and then continued heating to nearly the material critical temperature. This leads to explosive boiling of the target material with spontaneous bubble formation and coalescence. Mass is rapidly rearranged at the atomistic scale, and material removal occurs orders of magnitude faster than would occur by simple sputtering. While the phenomenology is demonstrated computationally in silicon, it can be expected to occur at lower beam fluxes in other cases where thermal conduction is suppressed due to material properties, geometry, or ambient thermal conditions.

  2. Influence of residual surfactants on DNAPL characterization using partitioning tracers

    NASA Astrophysics Data System (ADS)

    Cho, Jaehyun; Annable, Michael D.; Rao, P. Suresh C.

    2004-08-01

    The partitioning tracer technique is among the DNAPL source-zone characterization methods being evaluated, while surfactant in-situ flushing is receiving attention as an innovative technology for enhanced source-zone cleanup. Here, we examine in batch and column experiments the magnitude of artifacts introduced in estimating DNAPL content when residual surfactants are present. The batch equilibrium tests, using residual surfactants ranging from 0.05 to 0.5 wt.%, showed that as the surfactant concentrations increased, the tracer partition coefficients decreased linearly for sodium hexadecyl diphenyl oxide disulfonate (DowFax 8390), increased linearly for polyoxyethylene (10) oleyl ether (Brij 97), and decreased slightly or exhibited no observable trend for sodium dihexyl sulfosuccinate (AMA 80). Results from column tests using clean sand with residual DowFax 8390 and Tetrachloroethylene (PCE) were consistent with those of batch tests. In the presence of DowFax 8390 (less than 0.5 wt.%), the PCE saturations were underestimated by up to 20%. Adsorbed surfactants on a loamy sand with positively charged oxides showed false indications of PCE saturation based on partitioning tracers in the absence of PCE. Using no surfactant (background soil) gave a false PCE saturation of 0.0004, while soil contacted by AMA 80, Brij 97, and DowFax 8390 gave false PCE saturations of 0.0024, 0.043, and 0.23, respectively.

  3. Use of an Intermediate-Scale Tank to Study Strategies for Modified NZVI Emplacement for Effective Treatment of DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    Illangasekare, T. H.; Mittal, M.; Phenrat, T.; Fagerlund, F.; Kim, H.; Cihan, A.; Lowry, G. V.

    2009-12-01

    Dense non-aqueous phase liquid (DNAPL) sources act as long term sources of ground water contamination. Emplacing modified nano-scale zero valent iron (NZVI) particles in the source zone and area immediately downstream of the source zone may serve the dual purpose of reducing the mass transfer from entrapped DNAPL and reductive dechlorination of the dissolved mass, thus reducing the total mass loading to the plume. Placement of NZVI is expected to alter porosity resulting in flow bypassing which may reduce treatment efficiency. The magnitude of this reduction will depend on the NZVI mass emplacement and its distribution. Another issue of concern is whether DNAPL mass rebounds if the emplaced NZVI is oxidized. In an ongoing study, the basic processes of NZVI reactivity and mass flux reduction were investigated in small cells, columns and tanks. To understand these processes and upscale them to larger systems, a series of experiments were conducted in a two-dimensional intermediate scale tank. This paper presents the results from one of these experiments that focused on evaluating the effects of emplacing the modified NZVI particles in the source zone with the DNAPL and to intercept the dissolved plume immediately down gradient of the source with the goal of evaluating and quantifying the net mass flux loading to the plume. A 5 cm x 5 cm PCE source zone in a coarse sand lens embedded in a finer sand matrix was created in an intermediate scale tank 2.4 m x 1.2 m x 0.55 m. The mass flux generation from source zone and the plume configuration were monitored using aqueous samples extracted at 4 vertical arrays containing 9 ports in each. Polymer coated NZVI particles were injected 7.5 cm downstream of the source zone creating a reactive zone of 14 cm x 14 cm x 5.5 cm such that the particles blanketed the PCE source zone. Dissolved PCE concentrations were monitored after NZVI injection using the same vertical sampling array. Dechlorination byproducts were monitored to

  4. Migration and Entrapment of DNAPLs in Heterogeneous Systems: Impact of Waste and Porous Medium Composition

    SciTech Connect

    Linda M. Abriola; Avery H. Demond

    2005-01-10

    Dense nonaqueous phase liquids (DNAPLs) pose a significant threat to soil and groundwater at Department of Energy (DOE) sites. Evidence suggests that subsurface wettability variations are present at many of these sites as a result of spatical and temporal variations in aqueous phase chemistry, contaminant aging, mineralogy and organic matter. The presence of such heterogeneity may significantly influence DNAPL migration and entrapment in the saturated zone.

  5. Surfactant foam/bioaugmentation technology for in situ treatment of TCE-DNAPLs.

    SciTech Connect

    Rothmel, R. K.; Peters, R. W.; St. Martin, E.; Deflaun, M. F.; Energy Systems; Envirogen, Inc.

    1998-06-01

    Chlorinated solvents such as trichloroethylene (TCE) are prevalent aquifer contaminants. Depending on the degree of contamination, their physical properties may cause them to occur as dense nonaqueous-phase liquids (DNAPLs) making them difficult to remediate by pump-and-treat methods. Successful in situ bioremediation requires mobilization and dispersion of DNAPLs in order to reduce sediment concentrations to levels nontoxic to degradative bacteria. A bench-scale study was conducted to evaluate a novel remediation technology that utilized surfactant foam for mobilizing and dispersing TCE-DNAPLs combined with a bioaugmentation technology to remediate TCE in situ. Results using the anionic surfactant Steol CS-330 showed that foam injected into TCE-DNAPL-contaminated sand columns enhanced mobilization of TCE-DNAPLs. Mobilization was maximized when the foam was injected in a pulsed operation. Injection of foam followed by artificial groundwater (AGW) and then by foam again resulted in flushing 75% of the initial TCE-DNAPL through an 8-in. column (884 cm3 of sand). The residual TCE was dispersed within the column at concentration levels compatible with biodegradation (<500 {micro}g/g). Adding the TCE-degrading bacterial strain ENV 435 simultaneously with the second pulse of foam resulted in 95-99% degradation of the residual TCE. This level of remediation was achieved with a total of 3 pore volumes (foam/AGW/foam + bacteria) and an aqueous column retention time of 1 h.

  6. Hydrodynamics of foam flows for in situ bioremediation of DNAPL-contaminated subsurface

    SciTech Connect

    Bouillard, J.X.; Enzien, M.; Peters, R.W.; Frank, J.; Botto, R.E.; Cody, G.

    1995-12-31

    In situ remediation technologies such as (1) pump-and-treat, (2) soil vacuum extraction, (3) soil flushing/washing, and (4) bioremediation are being promoted for cleanup of contaminated sites. However, these technologies are limited by flow channeling of chemical treatment agents. Argonne National Laboratory (ANL), the Gas Research Institute, and the Institute of Gas Technology are collaboratively investigating a new bioremediation technology using foams. The ability of a foam to block pores and limit flow bypassing makes it ideal for DNAPL remediation. The hydrodynamics of gas/liquid foam flows differ significantly from the hydrodynamics of single and multiphase nonfoaming flows. This is illustrated using a multiphase flow hydrodynamic computer model and a two-dimensional flow visualization cell. A state-of-the-art, nonintrusive, three-dimensional magnetic resonance imaging technique was developed to visualize DNAPL mobilization in three dimensions. Mechanisms to be investigated are in situ DNAPL interactions with the foam, DNAPL emulsification, DNAPL scouring by the foam, and subsequent DNAPL mobilization/redeposition in the porous media.

  7. Interpreting DNAPL saturations in a laboratory-scale injection with GPR data and direct core measurements

    USGS Publications Warehouse

    Johnson, Raymond H.; Poeter, Eileen P.

    2003-01-01

    Ground penetrating radar (GPR) is used to track a dense non-aqueous phase liquid (DNAPL) injection in a laboratory sand tank. Before data reduction, GPR data provide a qualitative measure of DNAPL saturation and movement. One-dimensional (1D) GPR modeling provides a quantitative interpretation of DNAPL volume within a given thickness during and after the injection. This is confirmed qualitatively by visual inspection of cores and two-dimensional GPR modeling. DNAPL saturation in sub-layers of that thickness could not be quantified because calibration of the 1D GPR model is non-unique when both permittivity and depth of multiple layers are unknown. Accurate quantitative interpretation of DNAPL volumes using 1D GPR modeling requires: 1) identification of a suitable target that produces a strong reflection and is not subject to any multidimensional interference; 2) knowledge of the exact depth of that target; and 3) use of two-way radar-wave travel times through the medium to the target to determine the permittivity of the intervening material, which eliminates reliance upon reflection amplitude. With geologic conditions that are suitable for GPR surveys (i.e., shallow depths and low electrical conductivities), the procedures in this laboratory study can be adapted to a field site to identify DNAPL source zones after a release has occurred.

  8. Numerical Modeling for Integrated Design of a DNAPL Partitioning Tracer Test

    NASA Astrophysics Data System (ADS)

    McCray, J. E.; Divine, C. E.; Dugan, P. J.; Wolf, L.; Boving, T.; Louth, M.; Brusseau, M. L.; Hayes, D.

    2002-12-01

    Partitioning tracer tests (PTTs) are commonly used to estimate the location and volume of nonaqueous-phase liquids (NAPLs) at contaminated groundwater sites. PTTs are completed before and after remediation efforts as one means to assess remediation effectiveness. PTT design is complex. Numerical models are invaluable tools for designing a PTT, particularly for designing flow rates and selecting tracers to ensure proper tracer breakthrough times, spatial design of injection-extraction wells and rates to maximize tracer capture, well-specific sampling density and frequency, and appropriate tracer-chemical masses. Generally, the design requires consideration of the following factors: type of contaminant; distribution of contaminant at the site, including location of hot spots; site hydraulic characteristics; measurement of the partitioning coefficients for the various tracers; the time allotted to conduct the PTT; evaluation of the magnitude and arrival time of the tracer breakthrough curves; duration of the tracer input pulse; maximum tracer concentrations; analytical detection limits for the tracers; estimation of the capture zone of the well field to tracer ensure mass balance and to limit residual tracer concentrations left in the subsurface; effect of chemical remediation agents on the PTT results, and disposal of the extracted tracer solution. These design principles are applied to a chemical-enhanced remediation effort for a chlorinated-solvent dense NAPL (DNAPL) site at Little Creek Naval Amphibious Base in Virginia Beach, Virginia. For this project, the hydrology and pre-PTT contaminant distribution were characterized using traditional methods (slug tests, groundwater and soil concentrations from monitoring wells, and geoprobe analysis), as well as membrane interface probe analysis. Additional wells were installed after these studies. Partitioning tracers were selected based on the primary DNAPL contaminants at the site, expected NAPL saturations

  9. Estimation of mass transfer and kinetics in operating biofilters for removal of VOCs

    SciTech Connect

    Barton, J.W.; Davison, B.H.; Gable, C.C.

    1997-11-18

    Long-term, stable operation of trickle-bed bioreactors remains desirable, but is difficult to achieve for industrial processes, which generate continuous streams of dilute gaseous hydrocarbons. Mass transfer and kinetic parameters are difficult to measure, complicating predictive estimates. Two methods are presented which were used to predict the importance of mass transfer versus kinetics limitations in operating trickle-bed biofilters. Both methods altered the overall kinetic activity of the biofilter and estimated the effective mass transfer coefficient (K{sub 1}a) by varying the VOC (volatile organic contaminant) loading rate and concentration. The first method, used with developing biofilters possessing low biomass, involved addition of cultured biomass to the recirculating liquid to effect an overall change in VOC removal capacity. The second method altered the total bed temperature of a well-established biofilter to effect a change. Results and modeling from these experiments are presented for a mixed culture biofilter which is capable of consuming sparingly soluble alkanes, such as pentane and isobutane. Methods to control overgrowth are discussed which were used to operate one reactor continuously for over 24 months with sustained degradation of VOC alkanes with a rate of 50 g/h/m{sup 3}.

  10. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    DOE PAGESBeta

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin Shammel; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

    2014-05-06

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that both fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm uses knowledge of the true signal peaks derived from the encoded data and allows for both artifacts andmore » noise to be removed with high confidence, decreasing the likelihood of false identifications in subsequent data processing. The result is that IMS-MS can be applied to increase measurement sensitivity while avoiding artifacts that have previously limited its utility.« less

  11. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    NASA Astrophysics Data System (ADS)

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin S.; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

    2014-12-01

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm employs an analytical approach to identify and remove artifacts from the data, decreasing the likelihood of false identifications in subsequent data processing. Following application of the algorithm, IMS-MS measurement sensitivity is greatly increased and artifacts that previously limited the utility of applying the Hadamard transform to IMS are avoided. [Figure not available: see fulltext.

  12. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    SciTech Connect

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin Shammel; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

    2014-12-01

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that both fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm uses knowledge of the true signal peaks derived from the encoded data and allows for both artifacts and noise to be removed with high confidence, decreasing the likelihood of false identifications in subsequent data processing. The result is that IMS-MS can be applied to increase measurement sensitivity while avoiding artifacts that have previously limited its utility.

  13. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    SciTech Connect

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin Shammel; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

    2014-05-06

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that both fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm uses knowledge of the true signal peaks derived from the encoded data and allows for both artifacts and noise to be removed with high confidence, decreasing the likelihood of false identifications in subsequent data processing. The result is that IMS-MS can be applied to increase measurement sensitivity while avoiding artifacts that have previously limited its utility.

  14. Ultrasonic properties of granular media saturated with dnapl/watermixtures

    SciTech Connect

    Ajo-Franklin, J.B.; Geller, J.T.; Harris, J.M.

    2007-09-15

    We present the results of four experiments investigating the ultrasonic properties of granular materials partially saturated with trichloroethylene (TCE), a dense non-aqueous contaminant. P-wave velocity measurements were made under in situ effective stress conditions using a pulse transmission cell at ?250 kHz. Two synthetic samples and two natural aquifer cores were fully saturated with water and then subjected to an axial injection of TCE. The resulting measurements show reductions in P-wave velocity of up to 15% due to contaminant saturation. A theoretical model combining Gassmann fluid substitution and Hill's equation was used to estimate the effects of DNAPL saturation; this model underpredicted observed reductions in velocity at high TCE saturations. A linear relationship, expressed in terms of volumetric contaminant fraction, provided an excellent empirical fit to the laboratory measurements.

  15. On-line electrodialytic salt removal in electrospray ionization mass spectrometry of proteins.

    PubMed

    Chen, Yongjing; Mori, Masanobu; Pastusek, Amanda C; Schug, Kevin A; Dasgupta, Purnendu K

    2011-02-01

    Salts and buffers, commonly used in isolation and stabilization of biological analytes, have a deleterious effect on electrospray ionization mass spectrometry (ESI-MS). Excessive concentrations of salts lead to ion suppression and adduct formation, which mask or complicate ion signals. In this work, we describe a salt remover (SR), configured as a three-compartment flow-through system, where the central compartment is separated from the outer compartments by a cation-exchange membrane (CEM) and an anion-exchange membrane (AEM). One platinum electrode is placed in each of the outer compartments, where water or electrolyte is flowing. The CEM electrode is held at a negative potential relative to the AEM side; cations/anions migrate by electrophoresis to the CEM/AEM receiver liquids, respectively. Proteins have poorer electrophoretic mobility relative to the buffer components, permitting removal of the salt. The salt-free proteins proceed to the ESI source. The capillary scale SR (internal volume 2.5 μL) described here effectively desalted continuous flows of NaCl solutions (200 mequiv/L at 1 μL/min, equivalent to a flux of 200 nequiv/min with 88% efficiency) and achieved >99.8% salt removal with 154 mM NaCl (isotonic saline) at 1 μL/min. With optimized current, >80% of concurrently present 20 μM protein was transmitted. Desalting efficiency and analyte loss was evaluated with different salt concentration and flow rate combinations under different applied current. Good-quality ESI-MS spectra of cytochrome c, myoglobin, and lysozyme as test proteins in a saline solution, passed through the SR, are demonstrated. PMID:21162592

  16. Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon

    SciTech Connect

    Yoo, Jong Hyun

    2000-05-20

    The morphology of craters resulting from high irradiance laser ablation of silicon was measured using a white light interferometry microscope. The craters show a dramatic increase in their depth and volume at a certain irradiance, indicating a change in the primary mechanism for mass removal. Laser shadowgraph imaging was used to characterize and differentiate the mass ejection processes for laser irradiances above and below the threshold value. Time-resolved images show distinct features of the mass ejected at irradiances above the threshold value including the presence of micron-sized particulates; this begins at approximately 300 {approx} 400 ns after the start of laser heating. The analysis of the phenomena was carried out by using two models: a thermal evaporation model and a phase explosion model. Estimation of the crater depth due to the thermally evaporated mass led to a large underestimation of the crater depth for irradiances above the threshold. Above the threshold irradiance, the possibility of phase explosion was analyzed. Two important results are the thickness of the superheated liquid layer that is close to the critical temperature and the time for vapor bubbles that are generated in the superheated liquid to achieve a critical size. After reaching the critical size, vapor bubbles can grow spontaneously resulting in a violent ejection of liquid droplets from the superheated volume. The effects of an induced transparency, i.e. of liquid silicon turning into an optically transparent liquid dielectric medium, are also introduced. The estimated time for a bubble to reach the critical size is in agreement with the delay time measured for the initiation of large mass ejection. Also, the thickness of the superheated liquid layer that is close to the critical temperature at the time of the beginning of the large mass ejection is representative of the crater depth at the threshold irradiance. These results suggest that phase explosion is a plausible thermal

  17. DOE-EMSP Final Report: Characterization of Changes in Colloid and DNAPL Affecting Surface Chemistry and Remediation

    SciTech Connect

    Susan E. Powers; Stefan J. Grimberg; Miles Denham

    2007-02-07

    The waste disposal to the M-area basin and A-14 outfall at the Savannah River Department of Energy facility in Aiken SC (USA) included a wide variety of inorganic aqueous flows and organic solvents in the form of dense non-aqueous phase liquids (DNAPL). The DNAPL has migrated through the subsurface resulting in widespread groundwater contamination. The goal of this research was to identify and quantify processes that could have affected the migration and remediation of the DNAPL in the subsurface. It was hypothesized that the variety of waste disposed at this site could have altered the mineral, microbial and DNAPL properties at this site relative to other DNAPL sites. The DNAPL was determined to have a very low interfacial tension and is suspected to be distributed in fine grained media, thereby reducing the effectiveness of soil vapor extraction remediation efforts. Although the DNAPL is primarily comprised of tetrachloroethene and trichloroethane, it also contains organic acids and several heavy metals. Experimental results suggest that iron from the aqueous and DNAPL phases undergoes precipitation and dechlorination reactions at the DNAPL-water interface, contributing to the low interfacial tension and acidity of the DNAPL. Biological activity in the contaminated region can also contribute to the low interfacial tension. PCE degrading bacteria produce biosurfactants and adhere to the DNAPL-water interface when stressed by high tetrachloroethene or low dissolved oxygen concentrations. The presence of iron can reduce the interfacial tension by nearly an order of magnitude, while the PCE degraders reduced the interfacial tension by nearly 50%. Abiotic changes in the mineral characteristics were not found to be substantially different between contaminated and background samples. The research completed here begins to shed some insight into the complexities of DNAPL fate and migration at sites where co-disposal of many different waste products occurred. Quantifying

  18. Exploring the Influence of Bioremediation on Dissolution in DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    Abriola, L.; Pennell, K.; Löffler, F.; Ramsburg, A.; Christ, J.; Amos, B.; Suchomel, E.

    2006-12-01

    Microbial reductive dechlorination has emerged as a promising technology for remediation of chlorinated solvent contaminated source zones. Bioremediation of dense nonaqeuous phase liquid (DNAPL) source zones can be undertaken as a sole treatment technology or as a "polishing" step following the application of a more aggressive treatment method, such as surfactant flushing. A quantitative assessment of the potential effectiveness of in situ source zone bioremediation requires an understanding of the influence of aggressive treatment on subsequent DNAPL bioavailability, as well as the potential bio-enhancement of DNAPL dissolution under natural gradient conditions. This presentation provides an overview of laboratory and modeling investigations designed to explore bioavailability and the influence of bioactivity on DNAPL dissolution in contaminated sandy media. A novel mathematical model was developed to simulate the interplay between DNAPL architecture, DNAPL dissolution, constituent transport, reductive dechlorination kinetics, and concentration inhibition. Model formulation and parameterization were based on results of batch experiments conducted with selected tetrachloroethene (PCE) -to- cis-1,2-dichloroethene (cis-DCE) dechlorinating isolates. Experiments to explore microbial activity and dissolution enhancement in the vicinity of PCE-NAPL in one dimensional sand columns containing a pure or mixed NAPL (0.25 mol/mol PCE in hexadecane) source zone were used to assess model performance. Experimental results demonstrated PCE to cis-DCE dechlorination in the vicinity of the NAPL, with a four-fold dissolution enhancement. These observations are consistent with numerical model predictions. A model sensitivity analysis reveals that dechlorination kinetics, substrate concentrations, and DNAPL saturation and distribution can each affect the extent of dissolution enhancement. The potential influence of bioactivity on source zone longevity and toxicity is also addressed

  19. Ensemble of surrogates-based optimization for identifying an optimal surfactant-enhanced aquifer remediation strategy at heterogeneous DNAPL-contaminated sites

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Lu, Wenxi; Hou, Zeyu; Zhao, Haiqing; Na, Jin

    2015-11-01

    The purpose of this study was to identify an optimal surfactant-enhanced aquifer remediation (SEAR) strategy for aquifers contaminated by dense non-aqueous phase liquid (DNAPL) based on an ensemble of surrogates-based optimization technique. A saturated heterogeneous medium contaminated by nitrobenzene was selected as case study. A new kind of surrogate-based SEAR optimization employing an ensemble surrogate (ES) model together with a genetic algorithm (GA) is presented. Four methods, namely radial basis function artificial neural network (RBFANN), kriging (KRG), support vector regression (SVR), and kernel extreme learning machines (KELM), were used to create four individual surrogate models, which were then compared. The comparison enabled us to select the two most accurate models (KELM and KRG) to establish an ES model of the SEAR simulation model, and the developed ES model as well as these four stand-alone surrogate models was compared. The results showed that the average relative error of the average nitrobenzene removal rates between the ES model and the simulation model for 20 test samples was 0.8%, which is a high approximation accuracy, and which indicates that the ES model provides more accurate predictions than the stand-alone surrogate models. Then, a nonlinear optimization model was formulated for the minimum cost, and the developed ES model was embedded into this optimization model as a constrained condition. Besides, GA was used to solve the optimization model to provide the optimal SEAR strategy. The developed ensemble surrogate-optimization approach was effective in seeking a cost-effective SEAR strategy for heterogeneous DNAPL-contaminated sites. This research is expected to enrich and develop the theoretical and technical implications for the analysis of remediation strategy optimization of DNAPL-contaminated aquifers.

  20. Unique Interfacial Properties of the Chlorinated Solvent DNAPL at Savannah River National Laboratory

    SciTech Connect

    Powers, S.E.; Omrane, K.; Grimberg, S.J.

    2004-03-31

    Tetrachloroethene and trichloroethene are the primary constituents in a DNAPL found in the unsaturated zone at the Department of Energy's Savannah River Site (SRS). Following equilibration of the SRS DNAPL with deionized water, the measured interfacial tension was less than 2 dynes/cm and the pH of the aqueous phase 3.8, thus indicating the presence of constituents other than chlorinated solvents. Based on contamination history at DOE facilities, we explored the potential for co-contamination by oils, surfactants or organic acids. Non-aqueous potentiometric titration techniques revealed a high acid content (4 mg (as KOH)/g of DNAPL). Surrogate mixtures of TCE with the hydraulic oil, dibutylbutylphosphonate (DBBP) and tributylphosphate (TBP), which were used in the plutonium production process, also had low interfacial tension but not as low as the value measured for the SRS DNAPL. Research to identify the constituents and mechanisms responsible for the low interfacial tension of this DNAPL is on-going.

  1. Petroleum mass removal from low permeability sediment using air sparging/soil vapor extraction: impact of continuous or pulsed operation

    NASA Astrophysics Data System (ADS)

    Kirtland, Brian C.; Aelion, C. Marjorie

    2000-02-01

    Air sparging and soil vapor extraction (AS/SVE) are innovative remediation techniques that utilize volatilization and microbial degradation to remediate petroleum spills from soils and groundwater. This in situ study investigated the use of AS/SVE to remediate a gasoline spill from a leaking underground storage tank (UST) in the low permeability, clayey soil of the Appalachian Piedmont. The objectives of this study were to evaluate AS/SVE in low permeability soils by quantifying petroleum mass removal rates, monitoring vadose zone contaminant levels, and comparing the mass extraction rates of continuous AS/SVE to 8 and 24 h pulsed operation. The objectives were met by collecting AS/SVE exhaust gas samples and vadose zone air from multi-depth soil vapor probes. Samples were analyzed for O 2, CO 2, BTEX (benzene, toluene, ethylbenzene, xylene), and total combustible hydrocarbon (TCH) concentrations using portable hand meters and gas chromatography. Continuous AS/SVE was effective in removing 608 kg of petroleum hydrocarbons from low permeability soil in 44 days (14.3 kg day -1). Mass removal rates ranged from 2.6 times higher to 5.1 times lower than other AS/SVE studies performed in sandy sediments. BTEX levels in the vadose zone were reduced from about 5 ppm to 1 ppm. Ten pulsed AS/SVE tests removed 78 kg in 23 days and the mean mass removal rate (17.6 kg day -1) was significantly higher than the last 15 days of continuous extraction. Pulsed operation may be preferable to continuous operation because of increased mass removal and decreased energy consumption.

  2. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-12-01

    This annual technical progress report is for part of Task 4 (site evaluation), Task 5 (2D seismic design, acquisition, and processing), and Task 6 (2D seismic reflection, interpretation, and AVO analysis) on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford Site. After the SUBCON midyear review in Albuquerque, NM, it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as a monitoring tool to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. The second deployment is to the Department of Defense (DOD) Charleston Naval Weapons Station Solid Waste Management Unit 12 (SWMU-12), Charleston, SC to further test the technique to detect high concentrations of DNAPL. The Charleston Naval Weapons Station SWMU-12 site was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Naval Facilities Engineering Command Southern Division (NAVFAC) personnel. Based upon the review of existing data and due to the shallow target depth, the project team collected three Vertical Seismic Profiles (VSP) and an experimental P-wave seismic reflection line. After preliminary data analysis of the VSP data and the experimental reflection line data, it was decided to proceed with Task 5 and Task 6. Three high resolution P-wave reflection profiles were collected with two objectives; (1) design the reflection survey to image a target depth of 20 feet below land surface to assist in determining the geologic controls on the DNAPL plume geometry, and (2) apply AVO analysis to the seismic data to locate the zone of high concentration of DNAPL. Based upon the results of the data processing and interpretation of the seismic data, the project team was able to map the channel that is controlling the DNAPL plume

  3. Permanganate Treatment of DNAPLs in Reactive Barriers and Source Zone Flooding Schemes - Final Report

    SciTech Connect

    Schwartz, F.W.

    2000-10-01

    This study provides a detailed process-level understanding of the oxidative destruction of the organic contaminant emphasizing on reaction pathways and kinetics. A remarkable rise in the MnO{sup {minus}} consumption rate with TCA and PCE mixtures proves that the phase transfer catalysts have the ability to increase oxidation rate of DNAPLs either in pure phase or mixtures and that there is significant potential for testing the catalyzed scheme under field conditions. Secondly, as an attempt to enhance the oxidation of DNAPL, we are trying to exploit cosolvency effects, utilizing various alcohol-water mixtures to increase DNAPL solubilization. Preliminary results of cosolvency experiments indicate the enhancement in the transfer of nonaqueous phase TCE to TBA-water solution and the rate of TCE degradation in aqueous phase.

  4. Comparison of dechlorination rates for field DNAPL vs synthetic samples: effect of sample matrix

    NASA Astrophysics Data System (ADS)

    O'Carroll, D. M.; Sakulchaicharoen, N.; Herrera, J. E.

    2015-12-01

    Nanometals have received significant attention in recent years due to their ability to rapidly destroy numerous priority source zone contaminants in controlled laboratory studies. This has led to great optimism surrounding nanometal particle injection for insitu remediation. Reported dechlorination rates vary widely among different investigators. These differences have been ascribed to differences in the iron types (granular, micro, or nano-sized iron), matrix solution chemistry and the morphology of the nZVI surface. Among these, the effects of solution chemistry on rates of reductive dechlorination of various chlorinated compounds have been investigated in several short-term laboratory studies. Variables investigated include the effect of anions or groundwater solutes such as SO4-2, Cl-, NO3-, pH, natural organic matters (NOM), surfactant, and humic acid on dechlorination reaction of various chlorinated compounds such as TCE, carbon tetrachloride (CT), and chloroform (CF). These studies have normally centered on the assessment of nZVI reactivity toward dechlorination of an isolated individual contaminant spiked into a ground water sample under ideal conditions, with limited work conducted using real field samples. In this work, the DNAPL used for the dechlorination study was obtained from a contaminatied site. This approach was selected to adequately simulate a condition where the nZVI suspension was in direct contact with DNAPL and to isolate the dechlorination activity shown by the nZVI from the groundwater matrix effects. An ideal system "synthetic DNAPL" composed of a mixture of chlorinated compounds mimicking the composition of the actual DNAPL was also dechlorinated to evaluate the DNAPL "matrix effect" on NZVI dechlorination activity. This approach allowed us to evaluate the effect of the presence of different types of organic compounds (volatile fatty acids and humic acids) found in the actual DNAPL on nZVI dechlorination activity. This presentation will

  5. Cost optimization of DNAPL source and plume remediation under uncertainty using a semi-analytic model

    NASA Astrophysics Data System (ADS)

    Cardiff, Michael; Liu, Xiaoyi; Kitanidis, Peter K.; Parker, Jack; Kim, Ungtae

    2010-04-01

    Dense non-aqueous phase liquid (DNAPL) spills represent a potential long-term source of aquifer contamination, and successful low-cost remediation may require a combination of both plume management and source treatment. In addition, substantial uncertainty exists in many of the parameters that control field-scale behavior of DNAPL sources and plumes. For these reasons, cost optimization of DNAPL cleanup needs to consider multiple treatment options and their associated costs while also gauging the influence of prediction uncertainty on expected costs. In this paper, we present a management methodology for field-scale DNAPL source and plume management under uncertainty. Using probabilistic methods, historical data and prior information are combined to produce a set of equally likely realizations of true field conditions (i.e., parameter sets). These parameter sets are then used in a simulation-optimization framework to produce DNAPL cleanup solutions that have the lowest possible expected net present value (ENPV) cost and that are suitably cautious in the presence of high uncertainty. For simulation, we utilize a fast-running semi-analytic field-scale model of DNAPL source and plume evolution that also approximates the effects of remedial actions. The degree of model prediction uncertainty is gauged using a restricted maximum likelihood method, which helps to produce suitably cautious remediation strategies. We test our methodology on a synthetic field-scale problem with multiple source architectures, for which source zone thermal treatment and electron donor injection are considered as remedial actions. The lowest cost solution found utilizes a combination of source and plume remediation methods, and is able to successfully meet remediation constraints for a majority of possible scenarios. Comparisons with deterministic optimization results show that not taking into account uncertainty can result in optimization strategies that are not aggressive enough and result

  6. The Vapor-phase Multi-stage CMD Test for Characterizing Contaminant Mass Discharge Associated with VOC Sources in the Vadose Zone: Application to Three Sites in Different Lifecycle Stages of SVE Operations

    PubMed Central

    Brusseau, M.L.; Mainhagu, J.; Morrison, C.; Carroll, K.C.

    2015-01-01

    Vapor-phase multi-stage contaminant mass discharge (CMD) tests were conducted at three field sites to measure mass discharge associated with contaminant sources located in the vadose zone. The three sites represent the three primary stages along the soil vapor extraction (SVE) operations lifecycle- pre/initial-SVE, mid-lifecycle, and near-closure. A CMD of 32 g/d was obtained for a site at which soil vapor SVE has been in operation for approximately 6 years, and for which mass removal is currently in the asymptotic stage. The contaminant removal behavior exhibited for the vapor extractions conducted at this site suggests that there is unlikely to be a significant mass of non-vapor-phase contaminant (e.g., DNAPL, sorbed phase) remaining in the advective domains, and that most remaining mass is likely located in poorly accessible domains. Given the conditions for this site, this remaining mass is hypothesized to be associated with the low-permeability (and higher water saturation) region in the vicinity of the saturated zone and capillary fringe. A CMD of 25 g/d was obtained for a site wherein SVE has been in operation for several years but concentrations and mass-removal rates are still relatively high. A CMD of 270 g/d was obtained for a site for which there were no prior SVE operations. The behavior exhibited for the vapor extractions conducted at this site suggest that non-vapor-phase contaminant mass (e.g., DNAPL) may be present in the advective domains. Hence, the asymptotic conditions observed for this site most likely derive from a combination of rate-limited mass transfer from DNAPL (and sorbed) phases present in the advective domain as well as mass residing in lower-permeability (“non-advective”) regions. The CMD values obtained from the tests were used in conjunction with a recently developed vapor-discharge tool to evaluate the impact of the measured CMDs on groundwater quality. PMID:26047819

  7. In Situ Oxidation and Associated Mass-Flux-Reduction/Mass-Removal Behavior for Systems with Organic Liquid Located in Lower-Permeability Sediments

    SciTech Connect

    Marble, justin C.; Carroll, Kenneth C.; Janousek, Hilary; Brusseau, M. L.

    2010-07-21

    The effectiveness of permanganate for in situ chemical oxidation of organic liquid (trichloroethene) trapped in lower-permeability (K) zones located within a higher-permeability matrix was examined in a series of flow-cell experiments. The permanganate solution was applied in both continuous and pulsed-injection modes. Manganese-oxide precipitation, as confirmed by use of SEM-EDS, occurred within, adjacent to, and downgradient of the lower-K zones, reflective of trichloroethene oxidation. During flow interruptions, precipitate formed within the surrounding higher-permeability matrix, indicating diffusive flux of aqueous-phase trichloroethene from the lower-K zones. The impact of permanganate treatment on mass flux behavior was examined by conducting water floods after permanganate injection. The results were compared to those of water-flood control experiments. The amount of water flushing required for complete contaminant mass removal was reduced for all permanganate treatments for which complete removal was characterized. However, the nature of the mass-flux-reduction/mass-removal relationship observed during water flooding varied as a function of the specific permanganate treatment.

  8. Validating a Multiphase Flow Numerical Model for DNAPL Migration in Two-Dimensional Heterogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Gerhard, J. I.; Grant, G. P.; Kueper, B. H.

    2005-12-01

    Following a dense, nonaqueous phase liquid (DNAPL) release to the subsurface, little is known about the rate of DNAPL migration and the time required for its eventual immobilization. Numerical simulations can fill this knowledge gap on the condition that the employed models are sufficiently validated; however, to date, validation for transient DNAPL migration has been limited to one-dimensional homogenous systems (Gerhard and Kueper, 2003). This research focuses on spatially and temporally validating the multiphase numerical model DNAPL-3D (and its associated constitutive relationships) for the infiltration, redistribution, and immobilization of a transient, fixed-volume DNAPL release in two-dimensional heterogeneous porous media. For this purpose, a two-dimensional bench scale experiment was conducted involving the release of 1,2-dichloroethane into an initially water saturated, spatially correlated, randomly heterogeneous sand pack. An image capture and analysis system permitted digital tracking of the evolving DNAPL body until migration ceased. The porous media employed in the bench scale experiment consisted of six, single mesh size sand types for which hysteretic nonwetting phase (NWP) relative permeability-saturation (krN-S) relationships were independently measured at the local scale. The local scale experiments revealed a correlation between porous media mean grain diameter and the maximum value of NWP relative permeability. Predictions of the bench scale experiment with DNAPL-3D were successful in reproducing the observed, complex DNAPL release in both space and time without any model calibration. The simulations revealed that model validation is only possible when the correlation of krN-S relationships to porous media type is accounted for in the formulation of the numerical model. Field scale simulations indicate that both the volume of porous media invaded by NWP, and the time required for NWP migration to cease, will be under predicted if correlation

  9. Laboratory and pilot field-scale testing of surfactants for environmental restoration of chlorinated solvent DNAPLs

    SciTech Connect

    Jackson, R.E.; Fountain, J.C.

    1994-12-31

    This project is composed of two phases and has the objective of demonstrating surfactant-enhanced aquifer remediation (SEAR) as a practical remediation technology at DOE sites with ground water contaminated by dense, non-aqueous phase liquids (DNAPLs), in particular, chlorinated solvents. The first phase of this project, Laboratory and Pilot Field Scale Testing, which is the subject of the work so far, involves (1) laboratory experiments to examine the solubilization of multiple component DNAPLs, e.g., solvents such as perchloroethylene (PCE) and trichloroethylene (TCE), by dilute surfactant solutions, and (2) a field test to demonstrate SEAR technology on a small scale and in an existing well.

  10. Online Matrix Removal Platform for Coupling Gel-Based Separations to Whole Protein Electrospray Ionization Mass Spectrometry

    PubMed Central

    Kim, Ki Hun; Compton, Philip D.; Tran, John C.; Kelleher, Neil L.

    2015-01-01

    A fractionation method called gel-eluted liquid fraction entrapment electrophoresis (GELFrEE) has been used to dramatically increase the number of proteins identified in top-down proteomic workflows; however, the technique involves the use of sodium dodecyl sulfate (SDS), a surfactant that interferes with electrospray ionization. Therefore, an efficient removal of SDS is absolutely required prior to mass analysis. Traditionally, methanol/chloroform precipitation and spin columns have been used, but they lack reproducibility and are difficult to automate. Therefore, we developed an in-line matrix removal platform to enable the direct analysis of samples containing SDS and salts. Only small molecules like SDS permeate a porous membrane and are removed in a manner similar to cross-flow filtration. With this device, near-complete removal of SDS is accomplished within 5 min and proteins are subsequently mobilized into a mass spectrometer. The new platform was optimized for the analysis of GELFrEE fractions enriched for histones extracted from human HeLa cells. All four core histones and their proteoforms were detected in a single spectrum by high-resolution mass spectrometry. The new method versus protein precipitation/resuspension showed 2- to 10-fold improved signal intensities, offering a clear path forward to improve proteome coverage and the efficiency of top-down proteomics. PMID:25836738

  11. Transport, Targeting and Applications of Metallic Functional Nanoparticles for Degradation of DNAPL Chlorinated Organic Solvents

    SciTech Connect

    Lowry, Gregory V.; Majetich, Sara; Sholl, David; Tilton, Robert D.; Matyjaszewski, Krzysztof; Liu, Yueqiang; Sarbu, Traian; Almusallam, Abdulwahab; Redden, George D.; Meakin, Paul; Rollins, Harry W.

    2004-03-31

    Recently, laboratory and field studies have demonstrated that zero-valent iron nanoparticles (colloids) can rapidly transform dissolved chlorinated organic solvents into non-toxic compounds. This technology also has the potential to address Dense Non- Aqueous Phase Liquid (DNAPL) contamination, one of DOE's primary contamination problems. This project develops and tests polymer-modified reactive nanoscale Fe0 particles for in situ delivery to chlorinated solvents that are present as DNAPLs in the subsurface. The surfaces of reactive Fe0-based nanoparticles are modified with amphiphilic block copolymers to maintain a stable suspension of the particles in water for transport in a porous matrix and to create an affinity for the water-DNAPL interface. Ultimately this will provide an improved technology to locate and eliminate DNAPL, a recalcitrant and persistent source for groundwater contamination by chlorinated solvents. Candidate polymers have been synthesized and attached to 20 nm SiO2 particles using Atom Transfer Radical Polymerization (ATRP). The physical properties (hydrodynamic radius, stability, TCE-water partitioning behavior, mobility in a porous matrix) of these nanostructures have been determined. The particles (dp {approx}102 nm) are water soluble and partition to the TCE-water interface. The physical and chemical properties (e.g. oxide phase and thickness) of Fe0 nanoparticles synthesized using different techniques and the effects of these properties on particle reactivity and efficiency have been evaluated. Numerical models (Brownian Dynamics) have been developed to predict the aqueous diffusivities of these particle-polymer nanostructures.

  12. EVALUATION OF TECHNOLOGIES FOR IN SITU CLEANUP OF DNAPL CONTAMINATED SITES

    EPA Science Inventory

    Ground water contamination by non-aqueous phase liquids poses one of the greatest remedial challenges in the field of environmental engineering. Denser-than-water non-aqueous phase liquids (DNAPLs) are especially problematic due to their low water solubility, high density, an...

  13. EVALUATION OF TECHNOLOGIES FOR IN SITU CLEANUP OF DNAPL CONTAMINATED SITES

    EPA Science Inventory

    Ground-water contamination by nonaqueous phase liquids poses one of the greatest remedial challenges In the field of environmental engineering. Denser-than-water nonaqueous phase liquids (DNAPLs) are especially problematic due to their tow water solubility, high density, and capi...

  14. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON (BATTELLE PRESENTATION)

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) is being conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island SC. The EZVI technology was developed at the University of Central ...

  15. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON (Battelle Conference)

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) was conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island, SC. The EZVI technology was developed at the University of Central Fl...

  16. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) is being conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island SC. The demonstration is being conducted by Geosyntec, the Nationa...

  17. Noninvasive determination of the location and distribution of DNAPL using advanced seismic reflection techniques.

    PubMed

    Temples, T J; Waddell, M G; Domoracki, W J; Eyer, J

    2001-01-01

    Recent advances in seismic reflection amplitude analysis (e.g., amplitude versus offset-AVO, bright spot mapping) technology to directly detect the presence of subsurface DNAPL (e.g., CCl4) were applied to 216-Z-9 crib, 200 West Area, DOE Hanford Site, Washington. Modeling to determine what type of anomaly might be present was performed. Model results were incorporated in the interpretation of the seismic data to determine the location of any seismic amplitude anomalies associated with the presence of high concentrations of CCl4. Seismic reflection profiles were collected and analyzed for the presence of DNAPL. Structure contour maps of the contact between the Hanford fine unit and the Plio/Pleistocene unit and between the Plio/Pleistocene unit and the caliche layer were interpreted to determine potential DNAPL flow direction. Models indicate that the contact between the Plio/Pleistocene unit and the caliche should have a positive reflection coefficient. When high concentrations of CCl4 are present, the reflection coefficient of this interface displays a noticeable positive increase in the seismic amplitude (i.e., bright spot). Amplitude data contoured on the Plio/Pleistocene-caliche boundary display high values indicating the presence of DNAPL to the north and east of the crib area. The seismic data agree well with the well control in areas of high concentrations of CCl4. PMID:11341013

  18. Characterizing The Microbial Community In A TCE DNAPL Site: SABRE Column And Field Studies

    EPA Science Inventory

    The SABRE (Source Area BioREmediation) project is evaluating accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. In support of a field scale pilot test, column studies were conducted to design the system and ob...

  19. A SCREENING MODEL FOR SIMULATING DNAPL FLOW AND TRANSPORT IN POROUS MEDIA: THEORETICAL DEVELOPMENT

    EPA Science Inventory

    There exists a need for a simple tool that will allow us to analyze a DNAPL contamination scenario from free-product release to transport of soluble constituents to downgradient receptor wells. The objective of this manuscript is to present the conceptual model and formulate the ...

  20. ENHANCED CONTACT OF COSOLVENT AND DNAPL IN POROUS MEDIA BY CONCURRENT INJECTION OF COSOLVENT AND AIR

    EPA Science Inventory

    Remediation of sites contaminated by dense nonaqueous phase liquids (DNAPLS) is a major
    environmental problem and cosolvent flooding is proposed as a remedial alternative. The
    efficacy of cosolvent flooding is a function of the degree of mixing between the injected
    remed...

  1. A MODIFIED LIGHT TRANSMISSION VISUALIZATION METHOD FOR DNAPL SATURATION MEASUREMENTS IN 2-D MODELS

    EPA Science Inventory

    In this research, a light transmission visualization (LTV) method was used to quantify dense non-aqueous phase liquids (DNAPL) saturation in two-dimensional (2-D), two fluid phase systems. The method is an expansion of earlier LTV methods and takes into account both absorption an...

  2. THE DNAPL REMEDIATION CHALLENGE: IS THERE A CASE FOR SOURCE DEPLETION?

    EPA Science Inventory

    Releases of Dense Non-Aqueous Phase Liquids (DNAPLs) at a large number of public and private sector sites in the United States pose significant challenges in site remediation and long-term site management. Extensive contamination of groundwater occurs as a result of significant ...

  3. MONITOIRNG OF A CONTROLLED DNAPL SPILL USING A PROTOTYPE DIELECTRIC LOGGING TOOL

    EPA Science Inventory

    The U. S. Geological Survey (USGS) utilized their prototype dielectric logging tool to monitor a controlled Dense Non-Aqueous Phase Liquid (DNAPL) spill into a large tank located at the University of California Richmond Field Station (RFS) containing multiple sand and clayey sand...

  4. Spatial And Temporal Distribution Of Microbial Communities In A TCE DNAPL Site: SABRE Field Studies

    EPA Science Inventory

    The SABRE (Source Area BioREmediation) project was conducted to evaluate accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. To study performance of this technology, a test cell was constructed with a longitudi...

  5. Mass Spectrum Analysis of Gas Emitted during Organic Contaminant Removal from a Metal Surface with an Arc in Low Vacuum

    SciTech Connect

    Sugimoto, Masaya; Takeda, Koichi

    2006-05-05

    The gas emitted during organic contaminant removal from a metal surface with an arc in low vacuum is investigated using a quadrupole mass spectrometer. The experimental results show that fragment molecules of the contaminant material, which are created by the decomposition of the contaminant material, exist in the emitted gas. The decomposition rate of the contaminant increased with the treatment current, which indicates that the decomposition occurs not in the cathode spot, but in the arc column.

  6. PROGRESS REPORT. MIGRATION AND ENTRAPMENT OF DNAPLS IN HETEROGENEOUS SYSTEMS: IMPACT OF WASTE AND POROUS MEDIUM COMPOSITION

    EPA Science Inventory

    Previously funded EMSP research efforts have been directed towards the quantification of dense nonaqueous phase liquid (DNAPL) migration and entrapment behavior in physically and chemically heterogeneous systems. This important research has demonstrated that chemical heterogeneit...

  7. Bisphenol-A removal in various wastewater treatment processes: operational conditions, mass balance, and optimization.

    PubMed

    Guerra, P; Kim, M; Teslic, S; Alaee, M; Smyth, S A

    2015-04-01

    Bisphenol-A (BPA) was analyzed in 499 liquid and 347 solid samples collected from twenty-five wastewater treatment plants (WWTPs) to investigate parameters affecting BPA occurrence, removal, and fate. Lagoons, chemically-assisted primary treatment, secondary treatment, and advanced treatment processes were included. Median BPA concentrations in influent and final effluent were 400 ng/L and 150 ng/L, respectively. Median removal efficiencies ranged from 1 to 77%. Respective median BPA levels in primary sludge, secondary biological sludge, and biosolids were 230, 260, and 460 ng/g with digested biosolids having the highest concentrations. The biological aerated filter and membrane bioreactor processes showed the best performance, while chemically-assisted primary treatment achieved the lowest removal. Biodegradation and sorption contributing to BPA removal were influenced by operational conditions: hydraulic retention time (HRT), solids retention time (SRT), and mixed liquor suspended solids (MLSS). The influence of HRT, SRT, and MLSS in the bioreactor was stronger during cold temperatures. In order to achieve above 80% removal, the required conditions for HRT, SRT, and MLSS were 13 h, 7 days, and 1600 mg/L during summer (median temperature 19 °C) and 13 h, 17 days, and 5300 mg/L during winter (median temperature 10 °C); indicating that longer SRT and higher MLSS were needed during winter. BPA's sorption tendency to sludge was strongly influenced by the degree of nitrification and HRT. PMID:25684568

  8. On the upscaling of mass transfer rate expressions for interpretation of source zone partitioning tracer tests

    NASA Astrophysics Data System (ADS)

    Boroumand, Ali; Abriola, Linda M.

    2015-02-01

    Analysis of partitioning tracer tests conducted in dense nonaqueous phase liquid (DNAPL) source zones relies on conceptual models that describe mass exchange between the DNAPL and aqueous phases. Such analysis, however, is complicated by the complex distribution of entrapped DNAPL mass and formation heterogeneity. Due to parameter uncertainty in heterogeneous regions and the desire to reduce model complexity, the effect of mass transfer limitations is often neglected, and an equilibrium-based model is typically used to interpret test results. This work explores the consequences of that simplifying assumption on test data interpretation and develops an alternative upscaled modeling approach to quantify effective mass transfer rates. To this end, a series of partitioning tracer tests is numerically simulated in heterogeneous two-dimensional PCE-DNAPL source zones, representative of a range of hydraulic conductivity and DNAPL mass distribution characteristics. The effective mass transfer coefficient corresponding to each test is determined by fitting an upscaled model to the simulated data, and regression analysis is performed to explore the correlation between various source zone metrics and the effective mass transfer coefficient. Results suggest that vertical DNAPL spreading, Reynolds number, pool fraction, and the effective organic phase saturation are the most significant parameters controlling tracer partitioning rates. Finally, a correlation for prediction of the effective (upscaled) mass transfer coefficient is proposed and verified using existing experimental data. The developed upscaled model incorporates the influence of physical heterogeneity on the rate of tracer partitioning and, thus, can be used for the estimation of source zone mass distribution characteristics from tracer test results.

  9. Development of a clusterwise-linear-regression-based forecasting system for characterizing DNAPL dissolution behaviors in porous media.

    PubMed

    Wang, S; Huang, G H; He, L

    2012-09-01

    Groundwater contamination by dense non-aqueous phase liquids (DNAPLs) has become an issue of great concern in many industrialized countries due to their serious threat to human health. Dissolution and transport of DNAPLs in porous media are complicated, multidimensional and multiphase processes, which pose formidable challenges for investigation of their behaviors and implementation of effective remediation technologies. Numerical simulation models could help gain in-depth insight into complex mechanisms of DNAPLs dissolution and transport processes in the subsurface; however, they were computationally expensive, especially when a large number of runs were required, which was considered as a major obstacle for conducting further analysis. Therefore, proxy models that mimic key characteristics of a full simulation model were desired to save many orders of magnitude of computational cost. In this study, a clusterwise-linear-regression (CLR)-based forecasting system was developed for establishing a statistical relationship between DNAPL dissolution behaviors and system conditions under discrete and nonlinear complexities. The results indicated that the developed CLR-based forecasting system was capable not only of predicting DNAPL concentrations with acceptable error levels, but also of providing a significance level in each cutting/merging step such that the accuracies of the developed forecasting trees could be controlled. This study was a first attempt to apply the CLR model to characterize DNAPL dissolution and transport processes. PMID:22789814

  10. Dissolved plume attenuation with DNAPL source remediation, aqueous decay and volatilization — Analytical solution, model calibration and prediction uncertainty

    NASA Astrophysics Data System (ADS)

    Parker, Jack C.; Park, Eungyu; Tang, Guoping

    2008-11-01

    A vertically-integrated analytical model for dissolved phase transport is described that considers a time-dependent DNAPL source based on the upscaled dissolution kinetics model of Parker and Park with extensions to consider time-dependent source zone biodecay, partial source mass reduction, and remediation-enhanced source dissolution kinetics. The model also considers spatial variability in aqueous plume decay, which is treated as the sum of aqueous biodecay and volatilization due to diffusive transport and barometric pumping through the unsaturated zone. The model is implemented in Excel/VBA coupled with (1) an inverse solution that utilizes prior information on model parameters and their uncertainty to condition the solution, and (2) an error analysis module that computes parameter covariances and total prediction uncertainty due to regression error and parameter uncertainty. A hypothetical case study is presented to evaluate the feasibility of calibrating the model from limited noisy field data. The results indicate that prediction uncertainty increases significantly over time following calibration, primarily due to propagation of parameter uncertainty. However, differences between the predicted performance of source zone partial mass reduction and the known true performance were reasonably small. Furthermore, a clear difference is observed between the predicted performance for the remedial action scenario versus that for a no-action scenario, which is consistent with the true system behavior. The results suggest that the model formulation can be effectively utilized to assess monitored natural attenuation and source remediation options if careful attention is given to model calibration and prediction uncertainty issues.

  11. Dissolved plume attenuation with DNAPL source remediation, aqueous decay and volatilization--analytical solution, model calibration and prediction uncertainty.

    PubMed

    Parker, Jack C; Park, Eungyu; Tang, Guoping

    2008-11-14

    A vertically-integrated analytical model for dissolved phase transport is described that considers a time-dependent DNAPL source based on the upscaled dissolution kinetics model of Parker and Park with extensions to consider time-dependent source zone biodecay, partial source mass reduction, and remediation-enhanced source dissolution kinetics. The model also considers spatial variability in aqueous plume decay, which is treated as the sum of aqueous biodecay and volatilization due to diffusive transport and barometric pumping through the unsaturated zone. The model is implemented in Excel/VBA coupled with (1) an inverse solution that utilizes prior information on model parameters and their uncertainty to condition the solution, and (2) an error analysis module that computes parameter covariances and total prediction uncertainty due to regression error and parameter uncertainty. A hypothetical case study is presented to evaluate the feasibility of calibrating the model from limited noisy field data. The results indicate that prediction uncertainty increases significantly over time following calibration, primarily due to propagation of parameter uncertainty. However, differences between the predicted performance of source zone partial mass reduction and the known true performance were reasonably small. Furthermore, a clear difference is observed between the predicted performance for the remedial action scenario versus that for a no-action scenario, which is consistent with the true system behavior. The results suggest that the model formulation can be effectively utilized to assess monitored natural attenuation and source remediation options if careful attention is given to model calibration and prediction uncertainty issues. PMID:18502537

  12. Completely autotrophic nitrogen-removal over nitrite in lab-scale constructed wetlands: evidence from a mass balance study.

    PubMed

    Sun, Guangzhi; Austin, David

    2007-06-01

    A mass-balance study was carried out to investigate the transformation of nitrogenous pollutants in vertical flow wetlands. Landfill leachate containing low BOD, but a high concentration of ammonia, was treated in four wetland columns under predominately aerobic conditions. Influent total nitrogen in the leachate consisted mainly of ammonia with less than 1% nitrate and nitrite, and negligible organic nitrogen. There was a substantial loss of total nitrogen (52%) in one column, whereas other columns exhibited zero to minor losses (<12%). Net nitrogen loss under study conditions was unexpected. Correlations between pH, nitrite and nitrate concentrations indicated the removal of nitrogen under study conditions did not follow the conventional, simplistic, chemistry of autotrophic nitrification. Through mass-balance analysis, it was found that CANON (Completely Autotrophic Nitrogen-removal Over Nitrite) was responsible for the transformation of nitrogen into gaseous form, thereby causing the loss of nitrogen mass. The results show that CANON can be native to aerobic engineered wetland systems treating wastewater that contains high ammonia and low BOD. PMID:17349669

  13. Mass flow of antibiotics in a wastewater treatment plant focusing on removal variations due to operational parameters.

    PubMed

    Marx, Conrad; Günther, Norbert; Schubert, Sara; Oertel, Reinhard; Ahnert, Markus; Krebs, Peter; Kuehn, Volker

    2015-12-15

    Wastewater treatment plants (WWTPs) are not designed to purposefully eliminate antibiotics and therefore many previous investigations have been carried out to assess their fate in biological wastewater treatment processes. In order to consolidate previous findings regarding influencing factors like the solid and hydraulic retention time an intensive monitoring was carried out in a municipal WWTP in Germany. Over a period of 12months daily samples were taken from the in- and effluent as well as diverse sludge streams. The 14 selected antibiotics and one metabolite cover the following classes: cephalosporins, diaminopyrimidines, fluoroquinolones, lincosamide, macrolides, penicillins, sulfonamides and tetracyclines. Out of the 15 investigated substances, the removal of only clindamycin and ciprofloxacin show significant correlations to SRT, temperature, HRT and nitrogen removal. The dependency of clindamycin's removal could be related to the significant negative removal (i.e. production) of clindamycin in the treatment process and was corrected using the human metabolite clindamycin-sulfoxide. The average elimination was adjusted from -225% to 3% which suggests that clindamycin can be considered as an inert substance during the wastewater treatment process. Based on the presented data, the mass flow analysis revealed that macrolides, clindamycin/clindamycin-sulfoxide and trimethoprim were mainly released with the effluent, while penicillins, cephalosporins as well as sulfamethoxazole were partly degraded in the studied WWTP. Furthermore, levofloxacin and ciprofloxacin are the only antibiotics under investigation with a significant mass fraction bound to primary, excess and digested sludge. Nevertheless, the sludge concentrations are highly inconsistent which leads to questionable results. It remains unclear whether the inconsistencies are due to insufficiencies in sampling and/or analytical determination or if the fluctuations can be considered reasonable for

  14. Anesthetic management of right atrial mass removal and pulmonary artery thrombectomy in a patient with primary antiphospholipid antibody syndrome.

    PubMed

    Rawat, S K S; Mehta, Yatin; Vats, Mayank; Mishra, Yugal; Khurana, Poonam; Trehan, Naresh

    2010-01-01

    Antiphospholipid antibody syndrome (APLAS) characterises a clinical condition of arterial and venous thrombosis associated with phospholipids directed antibodies. APLAS occurs in 2% of the general population. However, one study demonstrated that 7.1% of hospitalised patients were tested positive for at least one of the three anticardiolipin antibody idiotype. Antiphospholipid antibodies often inhibit phospholipids dependent coagulation in vitro and interfere with laboratory testing of hemostasis. Therefore, the management of anticoagulation during cardiopulmonary bypass can be quite challenging in these patients. Here, we present a case of right atrial mass removal and pulmonary thrombectomy in a patient of APLAS. PMID:20075534

  15. Mass media-led antismoking campaign can remove the education gap in quitting behavior.

    PubMed Central

    Macaskill, P; Pierce, J P; Simpson, J M; Lyle, D M

    1992-01-01

    This study investigated whether the effective mass media-led antismoking campaigns in Australia had the traditional differential effect across educational levels. Our population surveys included random samples of 12,851 people before the campaign and 11,609 several years after the campaign had started. No statistically significant differences were found in quitting across education levels in three of the four subgroups. Mass media-led antismoking campaigns may play an important role in getting the antismoking message to the less educated. PMID:1536344

  16. Apparatus for passive removal of subsurface contaminants and mass flow measurement

    DOEpatents

    Jackson, Dennis G.; Rossabi, Joseph; Riha, Brian D.

    2003-07-15

    A system for improving the Baroball valve and a method for retrofitting an existing Baroball valve. This invention improves upon the Baroball valve by reshaping the interior chamber of the valve to form a flow meter measuring chamber. The Baroball valve sealing mechanism acts as a rotameter bob for determining mass flow rate through the Baroball valve. A method for retrofitting a Baroball valve includes providing static pressure ports and connecting a measuring device, to these ports, for measuring the pressure differential between the Baroball chamber and the well. A standard curve of nominal device measurements allows the mass flow rate to be determined through the retrofitted Baroball valve.

  17. Experimental and numerical investigation of DNAPL infiltration and spreading in a 2-D sandbox by means of light transmission method

    NASA Astrophysics Data System (ADS)

    Zheng, F.; Shi, X.; Wu, J.; Gao, Y. W.

    2013-12-01

    Chlorinated solvents such as trichloroethene (TCE) and tetrachloroethene (PCE) are widespread groundwater contaminants often referred to as dense non-aqueous phase liquids (DNAPLs). Accuracy description of the spreading behavior and configuration for subsurface DNAPL migration is important, especially favourable for design effective remediation strategies. In this study, a 2-D experiment was conducted to investigate the infiltration behavior and spatial distribution of PCE in saturated porous media. Accusand 20/30 mesh sand (Unimin, Le Sueur, MN) was used as the background medium with two 70/80 and 60/70 mesh lenses embedded to simulate heterogeneous conditions. Dyed PCE of 100 ml was released into the flow cell at a constant rate of 2ml/min using a Harvard Apparatus syringe pump with a 50 ml glass syringe for two times, and 5 ml/min water was continuously injected through the inlet at the left side of the sandbox, while kept the same effluent rate at right side to create hydrodynamic condition. A light transmission (LT) system was used to record the migration of PCE and determine the saturation distribution of PCE in the sandbox experiment with a thermoelectrically air-cooled charged-coupled device (CCD) camera. All images were processed using MATLAB to calculate thickness-averaged PCE saturation for each pixel. Mass balance was checked through comparing injected known mounts of PCE with that calculated from LT analysis. Results showed that LT method is effective to delineate PCE migration pathways and quantify the saturation distribution. The relative errors of total PCE volumes calculated by LT analysis at different times were within 15% of the injected PCE volumes. The simulation are conducted using the multiphase modeling software T2VOC, which calibrated by the LT analysis results of three recorded time steps to fit with the complete spatial-temporal distribution of the PCE saturation. Model verification was then performed using the other eight recorded time

  18. Determination of arsenic in gold by flow injection inductively coupled plasma mass spectrometry with matrix removal by reductive precipitation

    NASA Astrophysics Data System (ADS)

    Becotte-Haigh, Paul; Tyson, Julian F.; Denoyer, Eric; Hinds, Michael W.

    1996-12-01

    Arsenic was determined in gold by flow injection hydride generation inductively coupled plasma-mass spectrometry following a batch mode reductive precipitation removal of the interfering gold matrix. A solution of potassium iodide, L-ascorbic acid, and hydrochloric acid was used as the reluctant. The recovery of gold by precipitation and filtration was 99 ± 3%. The detection limit for arsenic in gold was 55 ng g -1 in the solid. The concentration of arsenic that was determined in the Royal Canadian Mint gold sample FAU-10 was 29.7 μg g -1 in the solid; this value was indistinguishable, with 95% confidence, from values determined at the Royal Canadian Mint by graphite furnace atomic absorption spectrometry and by inductively coupled plasma-mass spectrometry. The standard deviation for four replicate determinations of the arsenic in FAU-10 was 0.972 μg g -1 in the solid.

  19. Displacement and sweep efficiencies in a DNAPL recovery test using micellar and polymer solutions injected in a five-spot pattern

    NASA Astrophysics Data System (ADS)

    Martel, Richard; Hébert, Alain; Lefebvre, René; Gélinas, Pierre; Gabriel, Uta

    2004-11-01

    Soil washing with micellar solutions is a promising alternative for the remediation of DNAPL source zones. As with any flushing technology, the success of soil washing with micellar solutions depends in a very large part on the ability of the solution to contact the contaminant (sweep efficiency) and then on the efficiency of contaminant removal once this contact is made (displacement efficiency). We report here on a field test where a micellar solution was used to recover a DNAPL in an open five-spot pattern in which polymer solutions were also injected before and after the washing solution to improve sweep efficiency. The washing solution formulation was optimised in the laboratory prior to the test to obtain good dissolution capacity. For a high-concentration and low-volume soil flushing remediation test such as the one performed (0.8 pore volumes of actual washing solution injected), slug sizing of the washing solution is critical. It was evaluated by an analytical solution. In a five-spot pattern, the displacement efficiency of the washing solution was observed to vary in the porous medium as a function of the radial distance from the injection well because: (1) the volume of the washing solution flowing through a section of the test cell changes (maximum close to the injection well and minimal at the pumping wells); (2) the in situ velocity changes (maximum at the wells and minimum between the wells) and; (3) the contact time of the washing solution with the NAPL changes as a function of the distance from the injection well. The relative importance of the recovery mechanisms, mobilisation and dissolution, was also observed to vary in the test cell. The reduced velocity increased the contact time of the washing solution with the DNAPL enhancing its dissolution, but the decrease of the capillary number caused less mobilisation. The washing process is much more extensive around the injection well. The use of an injection-pumping pattern allowing a complete sweep

  20. Displacement and sweep efficiencies in a DNAPL recovery test using micellar and polymer solutions injected in a five-spot pattern.

    PubMed

    Martel, Richard; Hébert, Alain; Lefebvre, René; Gélinas, Pierre; Gabriel, Uta

    2004-11-01

    Soil washing with micellar solutions is a promising alternative for the remediation of DNAPL source zones. As with any flushing technology, the success of soil washing with micellar solutions depends in a very large part on the ability of the solution to contact the contaminant (sweep efficiency) and then on the efficiency of contaminant removal once this contact is made (displacement efficiency). We report here on a field test where a micellar solution was used to recover a DNAPL in an open five-spot pattern in which polymer solutions were also injected before and after the washing solution to improve sweep efficiency. The washing solution formulation was optimised in the laboratory prior to the test to obtain good dissolution capacity. For a high-concentration and low-volume soil flushing remediation test such as the one performed (0.8 pore volumes of actual washing solution injected), slug sizing of the washing solution is critical. It was evaluated by an analytical solution. In a five-spot pattern, the displacement efficiency of the washing solution was observed to vary in the porous medium as a function of the radial distance from the injection well because: (1) the volume of the washing solution flowing through a section of the test cell changes (maximum close to the injection well and minimal at the pumping wells); (2) the in situ velocity changes (maximum at the wells and minimum between the wells) and; (3) the contact time of the washing solution with the NAPL changes as a function of the distance from the injection well. The relative importance of the recovery mechanisms, mobilisation and dissolution, was also observed to vary in the test cell. The reduced velocity increased the contact time of the washing solution with the DNAPL enhancing its dissolution, but the decrease of the capillary number caused less mobilisation. The washing process is much more extensive around the injection well. The use of an injection-pumping pattern allowing a complete sweep

  1. IN-SITU THERMAL TREATMENT SYSTEM PERFORMANCE AND MASS REMOVAL METRICS AT FORT LEWIS

    EPA Science Inventory

    The EGDY is the source of a potentially expanding three mile long TCE plume in a sole source drinking water aquifer. Thermal remediation is being employed to reduce source mass loading to the dissolved phase aquifer plume and reduce the time to reach site cleanup goals. This is...

  2. Modeling GPR data to interpret porosity and DNAPL saturations for calibration of a 3-D multiphase flow simulation

    USGS Publications Warehouse

    Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.

    2002-01-01

    Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.

  3. Refinement of the Kansas City Plant site conceptual model with respect to dense non-aqueous phase liquids (DNAPL)

    SciTech Connect

    Korte, N.E.; Hall, S.C.; Baker, J.L.

    1995-10-01

    This document presents a refinement of the site conceptual model with respect to dense non-aqueous phase liquid (DNAPL) at the US Department of Energy Kansas City Plant (KCP). This refinement was prompted by a review of the literature and the results of a limited study that was conducted to evaluate whether pools of DNAPL were present in contaminated locations at the KCP. The field study relied on the micropurge method of sample collection. This method has been demonstrated as a successful approach for obtaining discrete samples within a limited aquifer zone. Samples were collected at five locations across 5-ft well screens located at the base of the alluvial aquifer at the KCP. The hypothesis was that if pools of DNAPL were present, the dissolved concentration would increase with depth. Four wells with highly contaminated groundwater were selected for the test. Three of the wells were located in areas where DNAPL was suspected, and one where no DNAPL was believed to be present. The results demonstrated no discernible pattern with depth for the four wells tested. A review of the data in light of the available technical literature suggests that the fine-grained nature of the aquifer materials precludes the formation of pools. Instead, DNAPL is trapped as discontinuous ganglia that are probably widespread throughout the aquifer. The discontinuous nature of the DNAPL distribution prevents the collection of groundwater samples with concentrations approaching saturation. Furthermore, the results indicate that attempts to remediate the aquifer with conventional approaches will not result in restoration to pristine conditions because the tortuous groundwater flow paths will inhibit the efficiency of fluid-flow-based treatments.

  4. A/M Area DNAPL characterization report for cores collected in 2Q99

    SciTech Connect

    Vangelas , K.M.

    2000-01-27

    Drilling activities were conducted in the second quarter of 1999 in the A/M Area to further delineate the soil contamination and potential areas of dense non-aqueous phase liquids below the water table emanating from the M-Basin. The purpose of the work was to further understand the subsurface contaminant distribution and to identify locations below the water table where aggressive DNAPL remediation technologies should be pursued.

  5. Analyzing Remediation Technologies for Department of Energy Sites contaminated with DNAPL Pollitants - Thesis

    SciTech Connect

    Anthony F. Paptyi, Captain, USAF

    1997-03-01

    A comprehensive literature review to investigate the following topics: * Decision analysis - with specific attention to geologic applications * Multiattribute Utility Theory (MAUT) The development of DA tools that will accommodate life cycle cost, time, stochastic performance measures, and decision maker preferences for selecting remediation or containment technology trains for DNAPL contaminated sites A thorough sensitivity analysis of the results of the WAG6 site specific analysis for a specified spill volume Conclusions regarding the model and the sensitivity analysis Recommendations for further research

  6. Performance evaluation using a three compartment mass balance for the removal of volatile organic compounds in pilot scale constructed wetlands.

    PubMed

    Seeger, Eva M; Reiche, Nils; Kuschk, Peter; Borsdorf, Helko; Kaestner, Matthias

    2011-10-01

    To perform a general assessment of treatment efficiency, a mass balance study was undertaken for two types of constructed wetlands (CWs), planted gravel filters and plant root mat systems, for treating VOC (benzene; MTBE) polluted groundwater under field conditions. Contaminant fate was investigated in the respective water, plant, and atmosphere compartments by determining water and atmospheric contaminant loads and calculating contaminant plant uptake, thereby allowing for an extended efficiency assessment of CWs. Highest total VOC removal was achieved during summer, being pronounced for benzene compared to MTBE. According to the experimental results and the calculations generated by the balancing model, degradation in the rhizosphere and plant uptake accounted for the main benzene removal processes, of 76% and 13% for the gravel bed CW and 83% and 11% for the root mat system. Volatilization flux of benzene and MTBE was low (<5%) for the gravel bed CW, while in the root mat system direct contact of aqueous and gaseous phases favored total MTBE volatilization (24%). With this applied approach, we present detailed contaminant mass balances that allow for conclusive quantitative estimation of contaminant elimination and distribution processes (e.g., total, surface, and phytovolatilization, plant uptake, rhizodegradation) in CWs under field conditions. PMID:21848285

  7. Mixed region reactors for in situ treatment of DNAPL contaminated low permeability media

    SciTech Connect

    West, O.R.; Siegrist, R.L.

    1996-08-01

    Fine-textured soils and sediments contaminated by dense non-aqueous phase liquids (DNAPLs) present a significant environmental restoration challenge. An emerging approach to rapid in situ treatment within low permeability media involves the use of soil mixing to create mixed region reactors wherein biological or physical/chemical treatment processes can be employed. In cohesive soils, mixing breaks up the original soil structure and produces soil aggregates or clods separated by interaggregate void spaces. These void spaces create preferential flow paths for more efficient extraction of contaminants from the soil matrix or more rapid diffusion of treatment agents into the soil aggregates. This enhancement technology has been most successfully used with vapor stripping. However, other technologies can also be coupled with soil mixing including chemical degradation, biodegradation and solidification. The application of this technology to DNAPL-contaminated low permeability media appears promising but requires further experiments and models that can simulate the movement of DNAPLs in mixed regions. 11 refs., 6 figs.

  8. A mechanism of basal spacing reduction in sodium smectitic clay materials in contact with DNAPL wastes.

    PubMed

    Ayral-Cinar, Derya; Otero-Diaz, Margarita; Demond, Avery H

    2016-09-01

    There has been concern regarding the possible attack of clays in aquitards, slurry walls and landfill liners by dense nonaqueous phase liquid (DNAPL) wastes, resulting in cracking. Despite the fact that a reduction in basal spacing in sodium smectitic clay materials has been linked to cracking, no plausible mechanism by which this reduction occurs in contact with waste DNAPLs has been formulated. To elucidate a mechanism, screening studies were conducted that showed that the combination of an anionic surfactant (AOT), a nonionic surfactant (TritonX-100) and a chlorinated solvent, tetrachloroethylene (PCE), could replicate the basal spacing reduction and cracking behavior of water-saturated bentonite caused by two waste DNAPLs obtained from the field. FTIR measurements of this system showed a displacement of the HOH bending band of water symptomatic of desiccation. Sorption measurements showed that the uptake of AOT by bentonite increased eight fold in the presence of TritonX-100 and PCE. The evidence presented here supports a mechanism of syneresis, involving the extraction of water from the interlayer space of the clay through the synergistic sorption of a nonionic and anionic surfactant mixture. It is speculated that the solvation of water in reverse micellar aggregates is the process driving the syneresis. PMID:27343864

  9. Vacuum-enhanced pumping to improve DNAPL recovery in a confined aquifer

    SciTech Connect

    Reisinger, H.J.; Mountain, S.A.; Hubbard, P. Jr.; Carlson, K.; Montney, P.A.

    1995-12-31

    Dense, nonaqueous-phase liquids (DNAPLs) in the form of chlorinated solvents have been used in various phases of US industry for many years. As a result of their use prior to the advent of standardized handling and disposal regulations, they have found their way into the environment at many active and inactive industrial sites. Because of their unique physiochemical characteristics, DNAPLs present unique challenges in the site remediation process. At one such site in the northeast US, dichloromethane, or methylene chloride, entered a confined aquifer from underground storage tanks (USTs) and became subject to environmental remediation. The initial remediation approach was conventional groundwater extraction and treatment via physical separation and diffused aeration. The expansion of the dichloromethane plume resulted in the need for improved DNAPL recovery and dissolved-phase hydraulic control. Through conceptual analysis and pilot testing, vacuum-enhanced dual-phase recovery was determined to be a feasible remedial alternative. Vacuum-enhanced recovery, using a custom-designed pump, was implemented in this confined aquifer, increasing the volume of methylene chloride impacted groundwater recovered by a factor of nearly three, and hydraulic control of the plume was realized.

  10. In situ vertical circulation column: Containment system for small-scale DNAPL field experiments

    SciTech Connect

    Sorel, D.; Cherry, J.A.; Lesage, S.

    1998-12-31

    The in situ vertical circulation column (ISVCC) is a cylindrical containment system consisting of an instrumented steel cylinder used for experimental ground water studies in sandy aquifers. Vertical flow is imposed inside the ISVCC. Although vertical wells are an option, the ISVCC installed in the Borden Aquifer is instrumented with horizontal wells and monitoring ports to avoid creating vertical preferential flow paths. Pure phase DNAPL (tetrachloroethene and 1,1,1-trichloroethane) was slowly pumped into two ports in the center of the column. Following this DNAPL injection, an aqueous solution of vitamin B{sub 12} and reduced titanium was circulated through the column to promote degradation of the solvents. Processes observed in the ISVCC included DNAPL distribution, dissolution, and degradation, and geochemical evolution of the aquifer. The ISVCC provides a convenient means for testing in situ technologies in the experimental stage or for selection of proven technologies to find the most effective at a specific site. It is inexpensive, easy to install, and maximizes control over flow distribution in a heterogeneous aquifer. Its application will be restricted where low hydraulic conductivity beds are present in the aquifer.

  11. Mass of chlorinated volatile organic compounds removed by Pump-and-Treat, Naval Air Warfare Center, West Trenton, New Jersey, 1996-2010

    USGS Publications Warehouse

    Lacombe, Pierre J.

    2011-01-01

    Pump and Treat (P&T) remediation is the primary technique used to contain and remove trichloroethylene (TCE) and its degradation products cis 1-2,dichloroethylene (cDCE) and vinyl chloride (VC) from groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. Three methods were used to determine the masses of TCE, cDCE, and VC removed from groundwater by the P&T system since it became fully operational in 1996. Method 1, is based on the flow volume and concentrations of TCE, cDCE, and VC in groundwater that entered the P&T building as influent. Method 2 is based on withdrawal volume from each active recovery well and the concentrations of TCE, cDCE, and VC in the water samples from each well. Method 3 compares the maximum monthly amount of TCE, cDCE, and VC from Method 1 and Method 2. The greater of the two values is selected to represent the masses of TCE, cDCE and VC removed from groundwater each month. Previously published P&T monthly reports used Method 1 to determine the mass of TCE, cDCE, and VC removed. The reports state that 8,666 pounds (lbs) of TCE, 13,689 lbs of cDCE, and 2,455 lbs of VC were removed by the P&T system during 1996-2010. By using Method 2, the mass removed was determined to be 8,985 lbs of TCE, 17,801 lbs of cDCE, and 3,056 lbs of VC removed, and Method 3, resulted in 10,602 lbs of TCE, 21,029 lbs of cDCE, and 3,496 lbs of VC removed. To determine the mass of original TCE removed from groundwater, the individual masses of TCE, cDCE, and VC (determined using Methods 1, 2, and 3) were converted to numbers of moles, summed, and converted to pounds of original TCE. By using the molar conversion the mass of original TCE removed from groundwater by Methods 1, 2, and 3 was 32,381 lbs, 39,535 lbs, and 46,452 lbs, respectively, during 1996-2010. P&T monthly reports state that 24,805 lbs of summed TCE, cDCE, and VC were removed from groundwater. The simple summing method underestimates the mass of original TCE removed by the P&T system.

  12. Characterization Activities to Determine the Extent of DNAPL in the Vadose Zone at the A-014 Outfall of A/M Area

    SciTech Connect

    Jackson, D.G.

    2000-09-05

    The purpose of this investigation was to perform characterization activities necessary to confirm the presence and extent of DNAPL in the shallow vadose zone near the headwaters of the A-014 Outfall. Following the characterization, additional soil vapor extraction wells and vadose monitoring probes were installed to promote and monitor remediation activities in regions of identified DNAPL.

  13. Removing costs from the health care supply chain: lessons from mass retail.

    PubMed

    Agwunobi, John; London, Paul A

    2009-01-01

    Improved supply-chain management and high-volume purchasing have benefited other industries. This same approach could also reduce health care costs. Streamlining layers in the supply chain and using purchasing volume to reduce prices can save money and may improve care. Providing access to in-store health clinics and low-cost generic drugs are examples of how this approach is being tested by mass retailers. We examine lessons learned from these and similar initiatives and identify opportunities to cut the costs of generic and name-brand drugs, medical supplies, over-the-counter remedies, and vision care. PMID:19738249

  14. Origin of Saturn's rings and inner moons by mass removal from a lost Titan-sized satellite.

    PubMed

    Canup, Robin M

    2010-12-16

    The origin of Saturn's rings has not been adequately explained. The current rings are more than 90 to 95 per cent water ice, which implies that initially they were almost pure ice because they are continually polluted by rocky meteoroids. In contrast, a half-rock, half-ice mixture (similar to the composition of many of the satellites in the outer Solar System) would generally be expected. Previous ring origin theories invoke the collisional disruption of a small moon, or the tidal disruption of a comet during a close passage by Saturn. These models are improbable and/or struggle to account for basic properties of the rings, including their icy composition. Saturn has only one large satellite, Titan, whereas Jupiter has four large satellites; additional large satellites probably existed originally but were lost as they spiralled into Saturn. Here I report numerical simulations of the tidal removal of mass from a differentiated, Titan-sized satellite as it migrates inward towards Saturn. Planetary tidal forces preferentially strip material from the satellite's outer icy layers, while its rocky core remains intact and is lost to collision with the planet. The result is a pure ice ring much more massive than Saturn's current rings. As the ring evolves, its mass decreases and icy moons are spawned from its outer edge with estimated masses consistent with Saturn's ice-rich moons interior to and including Tethys. PMID:21151108

  15. The transport behaviour of elemental mercury DNAPL in saturated porous media: analysis of field observations and two-phase flow modelling.

    PubMed

    Sweijen, Thomas; Hartog, Niels; Marsman, Annemieke; Keijzer, Thomas J S

    2014-06-01

    Mercury is a contaminant of global concern. The use of elemental mercury in various (former) industrial processes, such as chlorine production at chlor-alkali plants, is known to have resulted in soil and groundwater contaminations worldwide. However, the subsurface transport behaviour of elemental mercury as an immiscible dense non-aqueous phase liquid (DNAPL) in porous media has received minimal attention to date. Even though, such insight would aid in the remediation effort of mercury contaminated sites. Therefore, in this study a detailed field characterization of elemental mercury DNAPL distribution with depth was performed together with two-phase flow modelling, using STOMP. This is to evaluate the dynamics of mercury DNAPL migration and the controls on its distribution in saturated porous media. Using a CPT-probe mounted with a digital camera, in-situ mercury DNAPL depth distribution was obtained at a former chlor-alkali-plant, down to 9 m below ground surface. Images revealing the presence of silvery mercury DNAPL droplets were used to quantify its distribution, characteristics and saturation, using an image analysis method. These field-observations with depth were compared with results from a one-dimensional two-phase flow model simulation for the same transect. Considering the limitations of this approach, simulations reasonably reflected the variability and range of the mercury DNAPL distribution. To further explore the impact of mercury's physical properties in comparison with more common DNAPLs, the migration of mercury and PCE DNAPL in several typical hydrological scenarios was simulated. Comparison of the simulations suggest that mercury's higher density is the overall controlling factor in controlling its penetration in saturated porous media, despite its higher resistance to flow due to its higher viscosity. Based on these results the hazard of spilled mercury DNAPL to cause deep contamination of groundwater systems seems larger than for any other

  16. The transport behaviour of elemental mercury DNAPL in saturated porous media: Analysis of field observations and two-phase flow modelling

    NASA Astrophysics Data System (ADS)

    Sweijen, Thomas; Hartog, Niels; Marsman, Annemieke; Keijzer, Thomas J. S.

    2014-06-01

    Mercury is a contaminant of global concern. The use of elemental mercury in various (former) industrial processes, such as chlorine production at chlor-alkali plants, is known to have resulted in soil and groundwater contaminations worldwide. However, the subsurface transport behaviour of elemental mercury as an immiscible dense non-aqueous phase liquid (DNAPL) in porous media has received minimal attention to date. Even though, such insight would aid in the remediation effort of mercury contaminated sites. Therefore, in this study a detailed field characterization of elemental mercury DNAPL distribution with depth was performed together with two-phase flow modelling, using STOMP. This is to evaluate the dynamics of mercury DNAPL migration and the controls on its distribution in saturated porous media. Using a CPT-probe mounted with a digital camera, in-situ mercury DNAPL depth distribution was obtained at a former chlor-alkali-plant, down to 9 m below ground surface. Images revealing the presence of silvery mercury DNAPL droplets were used to quantify its distribution, characteristics and saturation, using an image analysis method. These field-observations with depth were compared with results from a one-dimensional two-phase flow model simulation for the same transect. Considering the limitations of this approach, simulations reasonably reflected the variability and range of the mercury DNAPL distribution. To further explore the impact of mercury's physical properties in comparison with more common DNAPLs, the migration of mercury and PCE DNAPL in several typical hydrological scenarios was simulated. Comparison of the simulations suggest that mercury's higher density is the overall controlling factor in controlling its penetration in saturated porous media, despite its higher resistance to flow due to its higher viscosity. Based on these results the hazard of spilled mercury DNAPL to cause deep contamination of groundwater systems seems larger than for any other

  17. A NEW TWO-PHASE FLOW AND TRANSPORT MODEL WITH INTERPHASE MASS EXCHANGE

    EPA Science Inventory

    The focus of this numerical investigation is on modelling the emplacement and subsequent removal, through dissolution, of a Denser-than-water Non-Aqueous Phase Liquid (DNAPL) in a saturated groundwater system. pecifically the model must address two flow and transport regimes. irs...

  18. Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction

    SciTech Connect

    Yoon, Hongkyu; Werth, Charlie; Valocchi, Albert J.; Oostrom, Martinus

    2008-09-26

    An existing multiphase flow simulator was modified in order to determine the effects of four mechanisms on NAPL mass removal in a strongly layered heterogeneous vadose zone during soil vapor extraction (SVE): a) NAPL flow, b) diffusion and dispersion from low permeability zones, c) slow desorption from sediment grains, and d) rate-limited dissolution of trapped NAPL. The impact of water and NAPL saturation distribution, NAPL type (i.e., free, residual, or trapped) distribution, and spatial heterogeneity of the permeability field on these mechanisms were evaluated. Two different initial source zone architectures (one with and one without trapped NAPL) were considered and these architectures were used to evaluate seven different SVE scenarios. For all runs, slow diffusion from low permeability zones that gas flow bypassed was a dominant factor for diminished SVE effectiveness at later times. This effect was more significant at high water saturation due to the decrease of gas-phase relative permeability. Transverse dispersion contributed to fast NAPL mass removal from the low permeability layer in both source zone architectures, but longitudinal dispersion did not affect overall mass removal time. Both slow desorption from sediment grains and rate-limited mass transfer from trapped NAPL only marginally affected removal times. However, mass transfer from trapped NAPL did affect mass removal at late time, as well as the NAPL distribution. NAPL flow from low to high permeability zones contributed to faster mass removal from the low permeability layer, and this effect increased when water infiltration was eliminated. These simulations indicate that if trapped NAPL exists in heterogeneous porous media, mass transfer can be improved by delivering gas directly to zones with trapped NAPL and by lowering the water content, which increases the gas relative permeability and changes trapped NAPL to free NAPL.

  19. Removing a Major Uncertainty in Mass and Age Determinations of Young Stars

    NASA Astrophysics Data System (ADS)

    Huerta, Marcos; Hartigan, Patrick

    2005-08-01

    Mass and age measurements of young stars rely on the stars' placement in an HR diagram relative to pre-main-sequence evolutionary tracks. Uncertainties in T_eff include a systematic error introduced by converting spectral types to T_eff according to a conversion scale derived from main-sequence stars. The advent of sophisticated synthetic spectra and modern molecular opacities offers us an opportunity to determine a new T_eff scale designed for young stars. We propose to measure T_eff for a large sample of non- accreting (weak-lined) T Tauri stars using low resolution red spectra on Goldcam. The resulting spectra will make it possible to estimate T_eff for any young star by simply finding the best spectral match with a star in our sample. This procedure will also work for accreting (classical) T Tauri stars, where weak-lined T Tauri stars are used as photospheric templates to distinguish stellar features from accretion signatures.

  20. Normalization Approaches for Removing Systematic Biases Associated with Mass Spectrometry and Label-Free Proteomics

    SciTech Connect

    Callister, Stephen J.; Barry, Richard C.; Adkins, Joshua N.; Johnson, Ethan T.; Qian, Weijun; Webb-Robertson, Bobbie-Jo M.; Smith, Richard D.; Lipton, Mary S.

    2006-02-01

    Central tendency, linear regression, locally weighted regression, and quantile techniques were investigated for normalization of peptide abundance measurements obtained from high-throughput liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR MS). Arbitrary abundances of peptides were obtained from three sample sets, including a standard protein sample, two Deinococcus radiodurans samples taken from different growth phases, and two mouse striatum samples from control and methamphetamine-stressed mice (strain C57BL/6). The selected normalization techniques were evaluated in both the absence and presence of biological variability by estimating extraneous variability prior to and following normalization. Prior to normalization, replicate runs from each sample set were observed to be statistically different, while following normalization replicate runs were no longer statistically different. Although all techniques reduced systematic bias, assigned ranks among the techniques revealed significant trends. For most LC-FTICR MS analyses, linear regression normalization ranked either first or second among the four techniques, suggesting that this technique was more generally suitable for reducing systematic biases.

  1. A Steady-State Mass Transfer Model of Removing CPAs from Cryopreserved Blood with Hollow Fiber Modules

    PubMed Central

    Ding, Weiping; Zhou, Xiaoming; Heimfeld, Shelly; Reems, Jo-Anna; Gao, Dayong

    2010-01-01

    Hollow fiber modules are commonly used to conveniently and efficiently remove cryoprotective agents (CPAs) from cryopreserved cell suspensions. In this paper, a steady-state model coupling mass transfers across cell and hollow fiber membranes is theoretically developed to evaluate the removal of CPAs from cryopreserved blood using hollow fiber modules. This steady-state model complements the unsteady-state model which was presented in our previous study. As the steady-state model, unlike the unsteady-state model, can be used to evaluate the effect of ultrafiltration flow rates on the clearance of CPAs. The steady-state model is validated by experimental results and then is compared with the unsteady-state model. Using the steady-state model, the effects of ultrafiltration flow rates, NaCl concentrations in dialysate, blood flow rates and dialysate flow rates on CPA concentration variation and cell volume response are investigated in detail. According to the simulative results, the osmotic damage of red blood cells (RBCs) can easily be reduced by increasing ultrafiltration flow rates, increasing NaCl concentrations in dialysate, increasing blood flow rates or decreasing dialysate flow rates. PMID:20524740

  2. Removal of sodium dodecyl sulfate from protein samples prior to matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Puchades, M; Westman, A; Blennow, K; Davidsson, P

    1999-01-01

    Sodium dodecyl sulfate (SDS) is widely used for protein solubilization and for separation of proteins by SDS polyacrylamide gel electrophoresis (SDS-PAGE). However, SDS interferes with other techniques used for characterization of proteins, such as mass spectrometry (MS) and amino acid sequencing. In this paper, we have compared three procedures to remove SDS from proteins, including chloroform/methanol/water extraction (C/M/W), cold acetone extraction and desalting columns, in order to find a rapid and reproducible procedure that provides sufficient reduction of SDS and high recovery rates for proteins prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). A 1000-fold reduction of SDS concentration and a protein recovery at approximately 50% were obtained with the C/M/W procedure. The cold acetone procedure gave a 100-fold reduction of SDS and a protein recovery of approximately 80%. By using desalting columns, the removal of SDS was 100-fold, with a protein recovery of nearly 50%. Both the C/M/W and the cold acetone methods provided sufficient reduction of SDS, high recovery rates of protein and allowed the acquisition of MALDI spectra. The use of n-octyl-beta-D-glucopyranoside in the protein sample preparation enhanced the MALDI signal for protein samples containing more than 2 10(-4)% SDS, after the C/M/W extraction. Following the cold acetone procedure, the use of n-octylglucoside was found to be necessary in order to obtain spectra, but they were of lower quality than those obtained with the C/M/W method, probably due to higher residual amounts of SDS. PMID:10209872

  3. Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment--a review.

    PubMed

    Verlicchi, P; Al Aukidy, M; Zambello, E

    2012-07-01

    This review focuses on 118 pharmaceuticals, belonging to seventeen different therapeutic classes, detected in raw urban wastewater and effluent from an activated sludge system, a usual treatment adopted for urban wastewaters worldwide prior to final discharge into surface water bodies. Data pertaining to 244 conventional activated sludge systems and 20 membrane biological reactors are analysed and the observed ranges of variability of each selected compound in their influent and effluent reported, with particular reference to the substances detected most frequently and in higher concentrations. A snapshot of the ability of these systems to remove such compounds is provided by comparing their global removal efficiencies for each substance. Where possible, the study then evaluates the average daily mass load of the majority of detected pharmaceuticals exiting the secondary treatment step. The final part of the review provides an assessment of the environmental risk posed by their presence in the secondary effluent by means of the risk quotient that is the ratio between the average pharmaceutical concentration measured in the secondary effluent and the predicted no-effect concentration. Finally, mass load rankings of the compounds under review are compared with those based on their risk level. This analysis shows that the highest amounts discharged through secondary effluent pertain to one antihypertensive, and several beta-blockers and analgesics/anti-inflammatories, while the highest risk is posed by antibiotics and several psychiatric drugs and analgesics/anti-inflammatories. These results are reported with a view to aiding scientists and administrators in planning measures aiming to reduce the impact of treated urban wastewater discharge into surface water bodies. PMID:22583809

  4. DEMONSTRATION OF PILOT-SCALE PREVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. I. SPIRAL WOUND MEMBRANE MODULES

    EPA Science Inventory

    During the summer of 1996, a pilot-scale demonstration of a surfactant enhanced aquifer remediation (SEAR) process for removal of dense non-aqueous phase liquids (DNAPLs) from soils was conducted at Hill Air Force Base in Layton, Utah. Five thousand gallons of the extracted DNAP...

  5. Numerical modeling analysis of hydrodynamic and microbial controls on DNAPL pool dissolution and detoxification: Dehalorespirers in co-culture

    NASA Astrophysics Data System (ADS)

    Wesseldyke, Eric S.; Becker, Jennifer G.; Seagren, Eric A.; Mayer, Alex S.; Zhang, Changyong

    2015-04-01

    Dissolution of dense non-aqueous phase liquid (DNAPL) contaminants like tetrachloroethene (PCE) can be "bioenhanced" via biodegradation, which increases the concentration gradient at the DNAPL-water interface. Model simulations were used to evaluate the impact of ecological interactions between different dehalorespiring strains and hydrodynamics on the bioenhancement effect and the extent of PCE dechlorination. Simulations were performed using a two-dimensional coupled flow-transport model, with a DNAPL pool source and two microbial species, Dehalococcoides mccartyi 195 and Desulfuromonas michiganensis, which compete for electron acceptors (e.g., PCE), but not for their electron donors. Under biostimulation, low vx conditions, D. michiganensis alone significantly enhanced dissolution by rapidly utilizing aqueous-phase PCE. In co-culture under these conditions, D. mccartyi 195 increased this bioenhancement modestly and greatly increased the extent of PCE transformation. Although D. michiganensis was the dominant population under low velocity conditions, D. mccartyi 195 dominated under high velocity conditions due to bioclogging effects.

  6. Using NMR decay-time measurements to monitor and characterize DNAPL and moisture in subsurface porous media

    SciTech Connect

    Timothy A. White; Russel C. Hertzog; Christian Straley

    2007-12-01

    Knowing how environmental properties affect dense nonaqueous phase liquid (DNAPL) solvent flow in the subsurface is essential for developing models of flow and transport in the vadose zone necessary for designing remediation and long-term stewardship strategies. For example, one must know if solvents are flowing in water-wetted or solvent-wetted environments, the pore-size distribution of the region containing DNAPLs, and the impact of contaminated plumes and their transport mechanisms in porous media. Our research investigates the capability and limitations of low-field proton nuclear magnetic resonance (NMR) relaxation decay-rate measurements for determining environmental properties affecting DNAPL solvent flow in the subsurface. The measurements that can be performed with the laboratory low-field system can also be performed in situ in the field with the current generation of commercial borehole logging tools. The oil and gas industry uses NMR measurements in deep subsurface, consolidated formations to determine porosity and hydrocarbon content and to estimate formation permeability. These determinations rely on the ability of NMR to distinguish between water and hydrocarbons in the pore space and to obtain the distribution of pore sizes from relaxation decay-rate distributions. In this paper we will show how NMR measurement techniques can be used to characterize, monitor, and evaluate the dynamics of mixed-fluids (water-DNAPL) in unconsolidated near-surface porous environments and describe the use of proton NMR T2 (spin-spin relaxation time) measurements in unconsolidated sandy-soil samples to identify and characterize the presence of DNAPLs in these environments. The potential of NMR decay-rate distributions for characterizing DNAPL fluids in the subsurface and understanding their flow mechanisms has not previously been exploited; however, near-surface unsaturated vadose zone environments do provide unique challenges for using NMR measurements. These

  7. Carbon mass balance and microbial ecology in a laboratory scale reactor achieving simultaneous sludge reduction and nutrient removal.

    PubMed

    Huang, Pei; Li, Liang; Kotay, Shireen Meher; Goel, Ramesh

    2014-04-15

    Solids reduction in activated sludge processes (ASP) at source using process manipulation has been researched widely over the last two-decades. However, the absence of nutrient removal component, lack of understanding on the organic carbon, and limited information on key microbial community in solids minimizing ASP preclude the widespread acceptance of sludge minimizing processes. In this manuscript, we report simultaneous solids reduction through anaerobiosis along with nitrogen and phosphorus removals. The manuscript also reports carbon mass balance using stable isotope of carbon, microbial ecology of nitrifiers and polyphosphate accumulating organisms (PAOs). Two laboratory scale reactors were operated in anaerobic-aerobic-anoxic (A(2)O) mode. One reactor was run in the standard mode (hereafter called the control-SBR) simulating conventional A(2)O type of activated sludge process and the second reactor was run in the sludge minimizing mode (called the modified-SBR). Unlike other research efforts where the sludge minimizing reactor was maintained at nearly infinite solids retention time (SRT). To sustain the efficient nutrient removal, the modified-SBR in this research was operated at a very small solids yield rather than at infinite SRT. Both reactors showed consistent NH3-N, phosphorus and COD removals over a period of 263 days. Both reactors also showed active denitrification during the anoxic phase even if there was no organic carbon source available during this phase, suggesting the presence of denitrifying PAOs (DNPAOs). The observed solids yield in the modified-SBR was 60% less than the observed solids yield in the control-SBR. Specific oxygen uptake rate (SOUR) for the modified-SBR was almost 44% more than the control-SBR under identical feeding conditions, but was nearly the same for both reactors under fasting conditions. The modified-SBR showed greater diversity of ammonia oxidizing bacteria and PAOs compared to the control-SBR. The diversity of PAOs

  8. Material Property Estimation for Direct Detection of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

    SciTech Connect

    John H. Bradford; Stephen Holbrook; Scott B. Smithson

    2004-12-09

    The focus of this project is direct detection of DNAPL's specifically chlorinated solvents, via material property estimation from multi-fold surface ground-penetrating radar (GPR) data. We combine state-of-the-art GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects.

  9. Model Parameter Variability for Enhanced Anaerobic Bioremediation of DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    Mao, X.; Gerhard, J. I.; Barry, D. A.

    2005-12-01

    The objective of the Source Area Bioremediation (SABRE) project, an international collaboration of twelve companies, two government agencies and three research institutions, is to evaluate the performance of enhanced anaerobic bioremediation for the treatment of chlorinated ethene source areas containing dense, non-aqueous phase liquids (DNAPL). This 4-year, 5.7 million dollars research effort focuses on a pilot-scale demonstration of enhanced bioremediation at a trichloroethene (TCE) DNAPL field site in the United Kingdom, and includes a significant program of laboratory and modelling studies. Prior to field implementation, a large-scale, multi-laboratory microcosm study was performed to determine the optimal system properties to support dehalogenation of TCE in site soil and groundwater. This statistically-based suite of experiments measured the influence of key variables (electron donor, nutrient addition, bioaugmentation, TCE concentration and sulphate concentration) in promoting the reductive dechlorination of TCE to ethene. As well, a comprehensive biogeochemical numerical model was developed for simulating the anaerobic dehalogenation of chlorinated ethenes. An appropriate (reduced) version of this model was combined with a parameter estimation method based on fitting of the experimental results. Each of over 150 individual microcosm calibrations involved matching predicted and observed time-varying concentrations of all chlorinated compounds. This study focuses on an analysis of this suite of fitted model parameter values. This includes determining the statistical correlation between parameters typically employed in standard Michaelis-Menten type rate descriptions (e.g., maximum dechlorination rates, half-saturation constants) and the key experimental variables. The analysis provides insight into the degree to which aqueous phase TCE and cis-DCE inhibit dechlorination of less-chlorinated compounds. Overall, this work provides a database of the numerical

  10. Ground penetrating radar surveys over an alluvial DNAPL site, Paducah Gaseous Diffusion Plant, Kentucky

    SciTech Connect

    Carpenter, P.J. |; Doll, W.E.; Phillips, B.E.

    1994-09-01

    Ground penetrating radar (GPR) surveys were used to map shallow sands and gravels which are DNAPL migration pathways at the Paducah Gaseous Diffusion Plant in western Kentucky. The sands and gravels occur as paleochannel deposits, at depths of 17-25 ft, embedded in Pleistocene lacustrine clays. More than 30 GPR profiles were completed over the Drop Test Area (DTA) to map the top and base of the paleochannel deposits, and to assess their lateral continuity. A bistatic radar system was used with antenna frequencies of 25 and 50 MHz. An average velocity of 0.25 ft/ns for silty and clayey materials above the paleochannel deposits was established from radar walkaway tests, profiles over culverts of known depth, and comparison of radar sections with borings. In the south portion of the DTA, strong reflections corresponded to the water table at approximately 9-10 ft, the top of the paleochannel deposits at approximately 18 ft, and to gravel horizons within these deposits. The base of these deposits was not visible on the radar sections. Depth estimates for the top of the paleochannel deposits (from 50 records) were accurate to within 2 ft across the southern portion of the DTA. Continuity of these sands and gravels could not be assessed due to interference from air-wave reflections and lateral changes in signal penetration depth. However, the sands and gravels appear to extend across the entire southern portion of the DTA, at depths as shallow as 17 ft. Ringing, air-wave reflections and diffractions from powerlines, vehicles, well casings, and metal equipment severly degraded GPR profiles in the northern portion of the DTA; depths computed from reflection times (where visible) were accurate to within 4 ft in this area. The paleochannel deposits are deeper to the north and northeast where DNAPL has apparently pooled (DNAPL was not directly imaged by the GPR, however). Existing hydrogeological models of the DTA will be revised.