Science.gov

Sample records for doe environmental cleanup

  1. Science To Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards

    SciTech Connect

    Bredt, Paul R. ); Brockman, Fred J. ); Camaioni, Donald M. ); Felmy, Andrew R. ); Grate, Jay W. ); Hay, Benjamin P.; Hess, Nancy J. ); Meyer, Philip D. ); Murray, Christopher J. ); Pfund, David M. ); Su, Yali ); Thornton, Edward C. ); Weber, William J. ); Zachara, John M. )

    2001-06-19

    Pacific Northwest National Laboratory (PNNL) was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, nine in fiscal year 1998, seven in fiscal year 1999, and five in fiscal year 2000. All of the fiscal year 1996 award projects have published final reports. The 1997 and 1998 award projects have been completed or are nearing completion. Final reports for these awards will be published, so their annual updates will not be included in this document. This section summarizes how each of the 1999 and 2000 grants address significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. The 1999 and 2000 EMSP awards at PNNL are focused primarily in two areas: Tank Waste Remediation, and Soil and Groundwater Cleanup.

  2. Worker Safety and Health Issues Associated with the DOE Environmental Cleanup Program: Insights From the DOE Laboratory Directors' Environmental and Occupational/Public health Standards Steering Group

    SciTech Connect

    M.C. Edelson; Samuel C. Morris; Joan M. Daisey

    2001-03-01

    The U.S. Department of Energy (DOE) Laboratory Directors' Environmental and Occupational/Public Health Standards Steering Group (or ''SSG'') was formed in 1990. It was felt then that ''risk'' could be an organizing principle for environmental cleanup and that risk-based cleanup standards could rationalize clean up work. The environmental remediation process puts workers engaged in cleanup activities at risk from hazardous materials and from the more usual hazards associated with construction activities. In a real sense, the site remediation process involves the transfer of a hypothetical risk to the environment and the public from isolated contamination into real risks to the workers engaged in the remediation activities. Late in its existence the SSG, primarily motivated by its LANL representative, Dr. Harry Ettinger, actively investigated issues associated with worker health and safety during environmental remediation activities. This paper summarizes the insights noted by the SSG. Most continue to be pertinent today.

  3. Environmental compliance and cleanup

    SciTech Connect

    Black, D.G.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the roles of the principal agencies, organizations, and public in environmental compliance and cleanup of the Hanford Site. Regulatory oversight, the Federal Facility Agreement and Consent Order, the role of Indian tribes, public participation, and CERCLA Natural Resource Damage Assessment Trustee Activities are all discussed.

  4. THE ROLE OF LAND USE IN ENVIRONMENTAL DECISION MAKING AT THREE DOE MEGA-CLEANUP SITES FERNALD & ROCKY FLATS & MOUND

    SciTech Connect

    JEWETT MA

    2011-01-14

    This paper explores the role that future land use decisions have played in the establishment of cost-effective cleanup objectives and the setting of environmental media cleanup levels for the three major U.S. Department of Energy (DOE) sites for which cleanup has now been successfully completed: the Rocky Flats, Mound, and Fernald Closure Sites. At each site, there are distinct consensus-building histories throughout the following four phases: (1) the facility shut-down and site investigation phase, which took place at the completion of their Cold War nuclear-material production missions; (2) the decision-making phase, whereby stakeholder and regulatory-agency consensus was achieved for the future land-use-based environmental decisions confronting the sites; (3) the remedy selection phase, whereby appropriate remedial actions were identified to achieve the future land-use-based decisions; and (4) the implementation phase, whereby the selected remedial actions for these high-profile sites were implemented and successfully closed out. At each of the three projects, there were strained relationships and distrust between the local community and the DOE as a result of site contamination and potential health effects to the workers and local residents. To engage citizens and interested stakeholder groups - particularly in the role of final land use in the decision-making process, the site management teams at each respective site developed new public-participation strategies to open stakeholder communication channels with site leadership, technical staff, and the regulatory agencies. This action proved invaluable to the success of the projects and reaching consensus on appropriate levels of cleanup. With the implementation of the cleanup remedies now complete, each of the three DOE sites have become models for future environmental-remediation projects and associated decision making.

  5. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1997 mid-year progress report

    SciTech Connect

    1997-06-01

    The Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996. This report gives a summary of how each grant is addressing significant DOE cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is primarily focused in three areas--Tank Waste Remediation, Soil and Groundwater Cleanup, and Health Effects.

  6. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1998 mid-year progress report

    SciTech Connect

    1998-05-01

    Pacific Northwest National Laboratory was awarded ten (10) Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996 and six (6) in Fiscal Year 1997. This section summarizes how each grant addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in four areas: Tank Waste Remediation, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Cleanup, and Health Effects.

  7. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards -- Fiscal Year 2002 Mid-Year Progress Report

    SciTech Connect

    Bredt, Paul R.; Ainsworth, Calvin C.; Brockman, Fred J.; Camaioni, Donald M.; Egorov, Oleg B.; Felmy, Andrew R.; Gorby, Yuri A.; Grate, Jay W.; Greenwood, Margaret S.; Hay, Benjamin P.; Hess, Nancy J.; Hubler, Timothy L.; Icenhower, Jonathan P.; Mattigod, Shas V.; McGrail, B. Peter; Meyer, Philip D.; Murray, Christopher J.; Panetta, Paul D.; Pfund, David M.; Rai, Dhanpat; Su, Yali; Sundaram, S. K.; Weber, William J.; Zachara, John M.

    2002-06-11

    Pacific Northwest National Laboratory has been awarded a total of 80 Environmental Management Science Program (EMSP) research grants since the inception of the program in 1996. The Laboratory has collaborated on an additional 14 EMSP awards with funding received through other institution. This report describes how each of the projects awarded in 1999, 2000, and 2001 addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in the individual project reports included in this document. Projects are under way in three main areas: Tank Waste Remediation, Decontamination and Decommissioning, and Soil and Groundwater Cleanup.

  8. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards - Fiscal Year 2000 Mid-Year Progress Report

    SciTech Connect

    CD Carlson; SQ Bennett

    2000-07-25

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, eight in fiscal year 1998, and seven in fiscal year 1999. All of the fiscal year 1996 award projects have been completed and will publish final reports, so their annual updates will not be included in this document. This section summarizes how each of the currently funded grants addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research performed at PNNL is focused primarily in four areas: Tank Waste Remediation; Decontamination and Decommissioning; Spent Nuclear Fuel and Nuclear Materials; and Soil and Groundwater Cleanup.

  9. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards - Fiscal Year 2000 Mid-Year Progress Report

    SciTech Connect

    Carlson, Clark D.; Bennett, Sheila Q.

    2000-07-25

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, eight in fiscal year 1998 and seven in fiscal year 1999.(a) All of the fiscal year 1996 awards have been completed and the Principal Investigators are writing final reports, so their summaries will not be included in this document. This section summarizes how each of the currently funded grants addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research performed at PNNL is focused primarily in four areas: Tank Waste Remediation, Decontamination and Decommissioning, Spent Nuclear Fuel and Nuclear Materials, and Soil and Groundwater Cleanup.

  10. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards-Fiscal Year 1999 Mid-Year Progress Report

    SciTech Connect

    Peurrung, L.M.

    1999-06-30

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, and eight in fiscal year 1998. This section summarizes how each grant addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in five areas: Tank Waste Remediation, Decontamination and Decommissioning, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Clean Up, and Health Effects.

  11. Central Plateau Cleanup at DOE's Hanford Site - 12504

    SciTech Connect

    Dowell, Jonathan

    2012-07-01

    The discussion of Hanford's Central Plateau includes significant work in and around the center of the Hanford Site - located about 7 miles from the Columbia River. The Central Plateau is the area to which operations will be shrunk in 2015 when River Corridor cleanup is complete. This work includes retrieval and disposal of buried waste from miles of trenches; the cleanup and closure of massive processing canyons; the clean-out and demolition to 'slab on grade' of the high-hazard Plutonium Finishing Plant; installation of key groundwater treatment facilities to contain and shrink plumes of contaminated groundwater; demolition of all other unneeded facilities; and the completion of decisions about remaining Central Plateau waste sites. A stated goal of EM has been to shrink the footprint of active cleanup to less than 10 square miles by 2020. By the end of FY2011, Hanford will have reduced the active footprint of cleanup by 64 percent exceeding the goal of 49 percent. By 2015, Hanford will reduce the active footprint of cleanup by more than 90 percent. The remaining footprint reduction will occur between 2015 and 2020. The Central Plateau is a 75-square-mile region near the center of the Hanford Site including the area designated in the Hanford Comprehensive Land Use Plan Environmental Impact Statement (DOE 1999) and Record of Decision (64 FR 61615) as the Industrial-Exclusive Area, a rectangular area of about 20 square miles in the center of the Central Plateau. The Industrial-Exclusive Area contains the 200 East and 200 West Areas that have been used primarily for Hanford's nuclear fuel processing and waste management and disposal activities. The Central Plateau also encompasses the 200 Area CERCLA National Priorities List site. The Central Plateau has a large physical inventory of chemical processing and support facilities, tank systems, liquid and solid waste disposal and storage facilities, utility systems, administrative facilities, and groundwater monitoring

  12. Needs for Risk Informing Environmental Cleanup Decision Making - 13613

    SciTech Connect

    Zhu, Ming; Moorer, Richard

    2013-07-01

    This paper discusses the needs for risk informing decision making by the U.S. Department of Energy (DOE) Office of Environmental Management (EM). The mission of the DOE EM is to complete the safe cleanup of the environmental legacy brought about from the nation's five decades of nuclear weapons development and production and nuclear energy research. This work represents some of the most technically challenging and complex cleanup efforts in the world and is projected to require the investment of billions of dollars and several decades to complete. Quantitative assessments of health and environmental risks play an important role in work prioritization and cleanup decisions of these challenging environmental cleanup and closure projects. The risk assessments often involve evaluation of performance of integrated engineered barriers and natural systems over a period of hundreds to thousands of years, when subject to complex geo-environmental transformation processes resulting from remediation and disposal actions. The requirement of resource investments for the cleanup efforts and the associated technical challenges have subjected the EM program to continuous scrutiny by oversight entities. Recent DOE reviews recommended application of a risk-informed approach throughout the EM complex for improved targeting of resources. The idea behind this recommendation is that by using risk-informed approaches to prioritize work scope, the available resources can be best utilized to reduce environmental and health risks across the EM complex, while maintaining the momentum of the overall EM cleanup program at a sustainable level. In response to these recommendations, EM is re-examining its work portfolio and key decision making with risk insights for the major sites. This paper summarizes the review findings and recommendations from the DOE internal reviews, discusses the needs for risk informing the EM portfolio and makes an attempt to identify topics for R and D in integrated

  13. Waste Cleanup: Status and Implications of Compliance Agreements Between DOE and Its Regulators

    SciTech Connect

    Jones, G. L.; Swick, W. R.; Perry, T. C.; Kintner-Meyer, N.K.; Abraham, C. R.; Pollack, I. M.

    2003-02-26

    This paper discusses compliance agreements that affect the Department of Energy's (DOE) cleanup program. Compliance agreements are legally enforceable documents between DOE and its regulators, specifying cleanup activities and milestones that DOE has agreed to achieve. Over the years, these compliance agreements have been used to implement much of the cleanup activity at DOE sites, which is carried our primarily under two federal laws - the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended (CERCLA) and the Resource Conservation and Recovery Act of 0f 1976, as amended (RCRA). Our objectives were to determine the types of compliance agreements in effect at DOE cleanup sites, DOE's progress in achieving the milestones contained in the agreements, whether the agreements allowed DOE to prioritize work across sites according to relative risk, and possible implications the agreements have on DOE's efforts to improve the cleanup program.

  14. DOE sets a course to speed cleanup of its weapon sites

    SciTech Connect

    Powers, M.B.; Island, A.

    1993-10-11

    Thomas P. Grumbly, the US Department of Energy's new environmental and waste czar, is on a mission to prove that it can actually correct a half-century of neglect. But he made it clear to attendees at a cleanup conference in Amelia Island, Florida, late last month that agency weapon-site managers and contractors will shoulder more of the responsibility. DOE headquarters already is shifting specific cleanup decisions to field offices, Grumbly told 400 cleanup firm executives at the annual Decisionmaker's Forum, sponsored by Weapons Complex Monitor, a publication that follows nuclear waste cleanup. To support the change, 1,000 employees will be added over the next three years to provide field offices with more cleanup expertise.

  15. Technologies for environmental cleanup: Soil and ground water

    SciTech Connect

    Ragaini, R.C.

    1992-07-01

    This is the first of a series of four EUROCOURSES that will be conducted under the title of ``Technologies for Envirommental Cleanup.`` This first course will address the needs of today`s environmental protection managers who must deal with the cleanup of soil and ground water contamination. It focuses on recent developments in the areas of policies and regulations, characterization. of.contaminants, subsurface transport and fate of contaminants, cleanup technologies, contaminant risk analysis, and cleanup strategies. Until the goal of acceptable cleanup is achieved, dissemination of information about available cleanup techniques is essential - through courses such as these developed by experts in the US and Europe especially for governmental and industrial managers throughout the world.

  16. Technologies for environmental cleanup: Soil and ground water

    SciTech Connect

    Ragaini, R.C.

    1992-07-01

    This is the first of a series of four EUROCOURSES that will be conducted under the title of Technologies for Envirommental Cleanup.'' This first course will address the needs of today's environmental protection managers who must deal with the cleanup of soil and ground water contamination. It focuses on recent developments in the areas of policies and regulations, characterization. of.contaminants, subsurface transport and fate of contaminants, cleanup technologies, contaminant risk analysis, and cleanup strategies. Until the goal of acceptable cleanup is achieved, dissemination of information about available cleanup techniques is essential - through courses such as these developed by experts in the US and Europe especially for governmental and industrial managers throughout the world.

  17. Environmental cleanup: The challenge at the Hanford Site, Washington, USA

    NASA Astrophysics Data System (ADS)

    Gray, Robert H.; Becker, C. Dale

    1993-07-01

    Numerous challenges face those involved with developing a coordinated and consistent approach to cleaning up the US Department of Energy’s (DOE) Hanford Site in southeastern Washington. These challenges are much greater than those encountered when the site was selected and the world’s first nuclear complex was developed almost 50 years ago. This article reviews Hanford’s history, operations, waste storage/disposal activities, environmental monitoring, and today’s approach to characterize and clean up Hanford under a Federal Facility Agreement and Consent Order, signed by DOE, the Environmental Protection Agency, and the Washington Sate Department of Ecology. Although cleanup of defense-related waste at Hanford holds many positive benefits, negative features include high costs to the US taxpayer, numerous uncertainties concerning the technologies to be employed and the risks involved, and the high probability that special interest groups and activists at large will never be completely satisfied. Issues concerning future use of the site, whether to protect and preserve its natural features or open it to public exploitation, remain to be resolved.

  18. US Department of Energy Environmental Cleanup Technology Development program: Business and research opportunities guide

    SciTech Connect

    Not Available

    1993-12-31

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) is charged with overseeing a multi-billion dollar environmental cleanup effort. EM leads an aggressive national research, development, demonstration, testing, and evaluation program to provide environmental restoration and waste management technologies to DOE sites, and to manage DOE-generated waste. DOE is firmly committed to working with industry to effectuate this cleanup effort. We recognize that private industry, university, and other research and development programs are valuable sources of technology innovation. The primary purpose of this document is to provide you with information on potential business opportunities in the following technical program areas: Remediation of High-Level Waste Tanks; Characterization, Treatment, and Disposal of Mixed Waste; Migration of Contaminants; Containment of Existing Landfills; Decommissioning and Final Disposition, and Robotics.

  19. Technical approach to finalizing sensible soil cleanup levels at the Fernald Environmental Management Project

    SciTech Connect

    Carr, D.; Hertel, B.; Jewett, M.; Janke, R.; Conner, B.

    1996-02-01

    The remedial strategy for addressing contaminated environmental media was recently finalized for the US Department of Energy`s (DOE) Fernald Environmental Management Project (FEMP) following almost 10 years of detailed technical analysis. The FEMP represents one of the first major nuclear facilities to successfully complete the Remedial Investigation/Feasibility Study (RI/FS) phase of the environmental restoration process. A critical element of this success was the establishment of sensible cleanup levels for contaminated soil and groundwater both on and off the FEMP property. These cleanup levels were derived based upon a strict application of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) regulations and guidance, coupled with positive input from the regulatory agencies and the local community regarding projected future land uses for the site. The approach for establishing the cleanup levels was based upon a Feasibility Study (FS) strategy that examined a bounding range of viable future land uses for the site. Within each land use, the cost and technical implications of a range of health-protective cleanup levels for the environmental media were analyzed. Technical considerations in driving these cleanup levels included: direct exposure routes to viable human receptors; cross- media impacts to air, surface water, and groundwater; technical practicality of attaining the levels; volume of affected media; impact to sensitive environmental receptors or ecosystems; and cost. This paper will discuss the technical approach used to support the finalization of the cleanup levels for the site. The final cleanup levels provide the last remaining significant piece to the puzzle of establishing a final site-wide remedial strategy for the FEMP, and positions the facility for the expedient completion of site-wide remedial activities.

  20. UTILIZING THE RIGHT MIX OF ENVIRONMENTAL CLEANUP TECHNOLOGIES

    SciTech Connect

    Bergren, C; Wade Whitaker, W; Mary Flora, M

    2007-05-25

    The Savannah River Site (SRS) Figure 1 is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  1. Union job fight boiling at DOE cleanup sites

    SciTech Connect

    Setzer, S.W.

    1993-11-15

    The US DOE is facing a growing jurisdictional dispute over which unions will perform the majority of clean-up work at its facilities. Unions affiliated with the AFL-CIO Metal Trades Council representing operations employees at the sites believe they have a fundamental right to work. Unions in the AFL-CIO's Building and Construction Trades Dept. insist that they have a clear mandate under federal labor law and the Davis-Bacon Act. The issue has heated up in recent weeks at the policy level and is boiling in a contentious dispute at DOE's Fernald site in Ohio.

  2. MANAGING ELECTRONIC DATA TRANSFER IN ENVIRONMENTAL CLEANUPS

    EPA Science Inventory

    The use of computers and electronic information poses a complex problem for potential litigation in space law. The problem currently manifests itself in at least two ways. First, the Environmental Protection Agency (EPA) enforcement of Comprehensive Environmental Response, Compen...

  3. Bioremediation: environmental clean-up through pathway engineering.

    PubMed

    Singh, Shailendra; Kang, Seung Hyun; Mulchandani, Ashok; Chen, Wilfred

    2008-10-01

    Given the immense risk posed by widespread environmental pollution by inorganic and organic chemicals, novel methods of decontamination and clean-up are required. Owing to the relatively high cost and the non-specificity of conventional techniques, bioremediation is a promising alternative technology for pollutant clean-up. Advances in bioremediation harness molecular, genetic, microbiology, and protein engineering tools and rely on identification of novel metal-sequestering peptides, rational and irrational pathway engineering, and enzyme design. Recent advances have been made for enhanced inorganic chemical remediation and organic chemical degradation using various pathway-engineering approaches and these are discussed in this review. PMID:18760355

  4. Mechanism involved in trichloroethylene-induced liver cancer: Importance to environmental cleanup. 1997 annual progress report

    SciTech Connect

    Bull, R.J.

    1997-06-01

    'The Pacific Northwest National Lab. was awarded ten (10) Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996. This section gives a summary of how each grant is addressing significant DOE cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is primarily focused in three areas-Tank Waste Remediation, Soil and Groundwater Cleanup, and Health Effects.'

  5. Utilizing the right mix of environmental cleanup technologies

    SciTech Connect

    Whitaker, Wade; Bergren, Chris; Flora, Mary

    2007-07-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990's), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical / pH-adjusting injection, phyto-remediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baro-balls, electrical resistance heating, soil vapor extraction, and micro-blowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works pro-actively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  6. Risk averse` DOE is wasting time, money in cleanup effort-GAO

    SciTech Connect

    Newman, P.

    1994-09-01

    According to an August 1994 GAO report, internal strife, poor decisionmaking and conflicting stakeholder interests have plague the cleanup effort and prevented DOE from taking advantages of what its won technology program call the best hope for ensuring a substantive waste reduction. This article details the problems effecting radioactive waste cleanup at DOE facilities, and lists the five technology priorities which have been established.

  7. Project Management Approach to Transition of the Miamisburg Closure Project From Environmental Cleanup to Post-Closure Operations

    SciTech Connect

    Carpenter, C.P.; Marks, M.L.; Smiley, S.L.; Gallaher, D.M.; Williams, K.D.

    2006-07-01

    The U.S. Department of Energy (DOE) used a project management approach to transition the Miamisburg Closure Project from cleanup by the Office of Environmental Management (EM) to post-closure operations by the Office of Legacy Management (LM). Two primary DOE orders were used to guide the site transition: DOE Order 430.1B, Real Property Asset Management, for assessment and disposition of real property assets and DOE Order 413.3, Program and Project Management for Acquisition of Capital Assets, for project closeout of environmental cleanup activities and project transition of post-closure activities. To effectively manage these multiple policy requirements, DOE chose to manage the Miamisburg Closure Project as a project under a cross-member transitional team using representatives from four principal organizations: DOE-LM, the LM contractor S.M. Stoller Corporation, DOE-EM, and the EM contractor CH2M Hill Mound Inc. The mission of LM is to manage the Department's post-transition responsibilities and long-term care of legacy liabilities and to ensure the future protection of human health and the environment for cleanup sites after the EM has completed its cleanup activities. (authors)

  8. DOE environmental assessment report

    SciTech Connect

    Not Available

    1980-02-01

    The US Department of Energy (DOE) has prepared an environmental assessment on the proposed downhole steam generator field test in Kern County, California. Based on these findings DOE has determined that the proposed action does not

  9. Technologies for environmental cleanup: Toxic and hazardous waste management

    SciTech Connect

    Ragaini, R.C.

    1993-12-01

    This is the second in a series of EUROCOURSES conducted under the title, ``Technologies for Environmental Cleanup.`` To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste.

  10. Environmental Assessment For Cleanup and Closure of the Energy Technology Engineering Center. Final Report

    SciTech Connect

    None, None

    2003-03-01

    DOE analyzed two cleanup and closure alternatives and the No Action Alternative, in accordance with the Council on Environmental Quality regulations implementing NEPA (40 CFR Parts 1500-1508) and DOE's NEPA implementing regulations (10 CFR Part 1021). Under Alternative 1, DOE is proposing to clean up the remaining ETEC facilities using the existing site specific cleanup standard of 15 mrem/yr. (plus DOE's As Low As Reasonably Achievable--ALARA-principle) for decontamination of radiological facilities and surrounding soils (Alternative 1). An annual 15-millirem additional radiation dose to the maximally exposed individual (assumed to be an individual living in a residential setting on Area IV) from all exposure pathways (air, soil, groundwater) equates to an additional theoretical lifetime cancer risk of no more than 3 x 10-4 (3 in 10,000). For perspective, it is estimated that the average individual in the United States receives a dose of about 300 millirem each year from natural sources of radiation. However, actual exposures generally will be much lower as a result of the application of the ''as low as reasonably achievable'' (ALARA) principle. Based on post-remediation verification sampling previous cleanups have generally resulted in a 2 x 10-6 level of residual risk. DOE would decontaminate, decommission, and demolish the remaining radiological facilities. DOE would also decommission and demolish the one remaining sodium facility and all of the remaining uncontaminated support buildings for which it is responsible. The ongoing RCRA corrective action program, including groundwater treatment (interim measures), would continue. Other environmental impacts would include 2.5 x 10-3 fatalities as a result of LLW shipments and 6.0 x 10-3 fatalities as a result of emission exhaust from all shipments. DOE would also decommission and demolish the remaining sodium facility and decommission and demolish all of the remaining

  11. 33 CFR 137.55 - Searches for recorded environmental cleanup liens.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... environmental cleanup liens. 137.55 Section 137.55 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL... Standards and Practices § 137.55 Searches for recorded environmental cleanup liens. (a) All...

  12. 33 CFR 137.55 - Searches for recorded environmental cleanup liens.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... environmental cleanup liens. 137.55 Section 137.55 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL... Standards and Practices § 137.55 Searches for recorded environmental cleanup liens. (a) All...

  13. 33 CFR 137.55 - Searches for recorded environmental cleanup liens.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... environmental cleanup liens. 137.55 Section 137.55 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL... Standards and Practices § 137.55 Searches for recorded environmental cleanup liens. (a) All...

  14. 33 CFR 137.55 - Searches for recorded environmental cleanup liens.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... environmental cleanup liens. 137.55 Section 137.55 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL... Standards and Practices § 137.55 Searches for recorded environmental cleanup liens. (a) All...

  15. 33 CFR 137.55 - Searches for recorded environmental cleanup liens.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... environmental cleanup liens. 137.55 Section 137.55 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL... Standards and Practices § 137.55 Searches for recorded environmental cleanup liens. (a) All...

  16. Environmental benefits of Boston Harbor clean-up projects

    SciTech Connect

    Connor, M.S.; Smith, W.M. )

    1990-01-09

    The Massachusetts Water Resources Authority has undertaken one of the largest public works projects in the country to control the pollution of Boston Harbor. The project includes construction of a new primary and secondary treatment plant and sludge treatment facilities, excavation of a long ocean outfall and diffuser, and a solution to the overflow of mixed sewage and stormwater during storms; it will take over twenty years and billions of dollars to construct. A comparison of the relative costs and environmental benefits of relative costs and environmental benefits of the various construction projects, and other pollution control strategies, shows that some projects are more cost-effective than others for solving specific pollution problems. The capture and treatment of combined sewer overflow (CSO) will result in a more dramatic reduction of pathogen contamination than will completion of the primary and secondary treatment plants. Although the flow of raw sewage is intermittent and relatively small, it has high concentrations of bacteria and viruses. On the other hand, the new treatment plants will be more important in reducing toxic contamination of fish and shellfish. In summary, all the planned clean-up projects appear to be necessary to reach the goal of a swimmable, fishable Boston Harbor.

  17. Environmental Cleanup of the East Tennessee Technology Park Year One - Execution with Certainty SM - 13120

    SciTech Connect

    Schubert, A.L.

    2013-07-01

    On August 1, 2011, URS - CH2M Oak Ridge LLC (UCOR) began its five-year, $1.4 billion cleanup of the East Tennessee Technology Park (ETTP), located on the U.S. Department of Energy's (DOE) Oak Ridge Reservation in Tennessee. UCOR will close out cleanup operations that began in 1998 under a previous contract. When the Contract Base scope of work [1] is completed in 2016, the K-25 gaseous diffusion building will have been demolished and all waste dispositioned, demolition will have started on the K-27 gaseous diffusion building, all contact-handled and remote-handled transuranic waste in inventory (approximately 500 cubic meters) will have been transferred to the Transuranic Waste Processing Center, previously designated 'No-Path-To-Disposition Waste' will have been dispositioned to the extent possible, and UCOR will have managed DOE Office of Environmental Management (EM)- owned facilities at ETTP, Oak Ridge National Laboratory (ORNL), and the Y-12 National Security Complex in a safe and cost-effective manner. Since assuming its responsibilities as the ETTP cleanup contractor, UCOR has completed its life-cycle Performance Measurement Baseline; received its Earned Value Management System (EVMS) certification; advanced the deactivation and demolition (D and D) of the K-25 gaseous diffusion building; recovered and completed the Tank W-1A and K-1070-B Burial Ground remediation projects; characterized, packaged, and shipped contact-handled transuranic waste to the Transuranic Waste Processing Center; disposed of more than 90,000 cubic yards of cleanup waste while managing the Environmental Management Waste Management Facility (EMWMF); and provided operations, surveillance, and maintenance activities at DOE EM facilities at ETTP, ORNL, and the Y-12 National Security Complex. Project performance as of December 31, 2012 has been excellent: - Cost Performance Index - 1.06; - Schedule Performance Index - 1.02. At the same time, since safety is the foundation of all cleanup

  18. Active-to-Passive Environmental Cleanup Transition Strategies - 13220

    SciTech Connect

    Gaughan, Thomas F.; Aylward, Robert S.; Denham, Miles E.; Looney, Brian B.; Whitaker, Wade C.; Mills, Gary L.

    2013-07-01

    The Savannah River Site uses a graded approach to environmental cleanup. The selection of groundwater and vadose zone remediation technologies for a specific contamination area is based on the size, contaminant type, contaminant concentration, and configuration of the plume. These attributes are the result of the nature and mass of the source of contamination and the subsurface characteristics in the area of the plume. Many large plumes consist of several zones that are most efficiently addressed with separate complementary corrective action/remedial technologies. The highest concentrations of contaminants are found in the source zone. The most robust, high mass removal technologies are often best suited for remediation of the source zone. In the primary plume zone, active remedies, such as pump-and-treat, may be necessary to remove contaminants and exert hydraulic control of the plume. In the dilute fringe zone, contaminants are generally lower in concentration and can often be treated with passive techniques. A key determination in achieving an acceptable and cost-effective end state for a given waste unit is when to transition from an active treatment system to a more passive or natural approach (e.g., monitored natural attenuation or enhanced attenuation). This paper will discuss the considerations for such a transition as well as provide examples of successful transitions at the Savannah River Site. (authors)

  19. Environmental cleanup of oil production sites in southern Illinois

    SciTech Connect

    Vendl, K.A.; Basso, T.C.; Bengal, L.E.

    1996-12-31

    On January 2, 1988, a 4 million gallon aboveground oil storage tank collapsed in Pennsylvania, resulting in a spill of approximately 3.8 million gallons of diesel fuel. Of that amount, approximately 750,000 gallons entered the Monongahela River. On March 23, 1989, the Exxon Valdez, loaded with 1.26 million barrels (54 million gallons) of crude oil struck the rocks of Bligh Reef near Valdez, Alaska. As a result, more than 11 million gallons of crude oil was released into Prince William Sound within 5 hours of the event. The environmental damage and massive cleanup efforts were the most visible effects of these spills. However, one of the most important, but least discussed outcomes was the enactment of the Oil Pollution Act (OPA), which George Bush signed into law on August 18, 1990. The Oil Pollution Act contains many provisions; one of them is the strengthening of the national response system by providing better coordination of spill contingency planning among federal, state, and local authorities. Another provision is the increase in liability for parties responsible for costs and damages resulting from oil spills. In situations where there is no responsible party, OPA provides funding for the Oil Spill Liability Trust Fund. In this fund, there is $50 million in an emergency appropriation which can be used to contain and remove oil discharges that affect or threaten to affect the surface waters of the United States.

  20. CLEANUP OF ENVIRONMENTAL SAMPLE EXTRACTS USING FLORISIL SOLID-PHASE EXTRACTION CARTRIDGES

    EPA Science Inventory

    Disposable cartridges containing 1 g of Florisil are investigated for cleanup of extracts obtained from various environmental natrices. lution patterns and recoveries are determined for 22 chlorinated hydrocarbons and 16 phthalate esters in the presence of interferents such as co...

  1. An innovative approach to multimedia waste reduction: Measuring performance for environmental cleanup projects

    SciTech Connect

    Phifer, B.E. Jr.; George, S.M. )

    1993-04-01

    One of the greatest challenges we now face in environmental cleanup is measuring the progress of minimizing multimedia transfer releases and achieving waste reduction. Briefly, multimedia transfer refers to the air, land, and water where pollution is not controlled, concentrated, and moved from one medium to another. An example of multimedia transfer would be heavy metals in wastewater sludges moved from water to land disposal. Over $2 billion has been budgeted for environmental restoration site cleanups by the Department of Energy (DOE) for FY 1994. Unless we reduce the huge waste volumes projected to be generated in the near future, then we will devote more and more resources to the management and disposal of these wastes. To meet this challenge, the Martin Marietta Energy Systems, Inc., Oak Ridge Environmental Restoration (ER) Program has explored the value of a multimedia approach by designing an innovative Pollution Prevention Life-Cycle Model. The model consists of several fundamental elements (Fig. 1) and addresses the two major objectives of data gathering and establishing performance measures. Because the majority of projects are in the remedial investigation phase, the focus is on the prevention of unnecessary generation of investigation-derived waste and multimedia transfers at the source. A state-of-the-art tool developed to support the life-cycle model for meeting these objectives is the Numerical Scoring System (NSS), which is a computerized, user-friendly data base system for information management, designed to measure the effectiveness of pollution prevention activities in each phase of the ER Program. This report contains a discussion of the development of the Pollution Prevention Life-Cycle Model and the role the NSS will play in the pollution prevention programs in the remedial investigation phase of the ER Program at facilities managed by Energy Systems for DOE.

  2. MANIPULATING SUBSURFACE COLLOIDS TO ENHANCE CLEANUPS OF DOE WASTE SITES

    EPA Science Inventory

    Colloidal phases, such as submicrometer iron oxyhydroxides, aluminosilicate clays, and humic macromolecules, are important subsurface sorbents for the low-solubility chemicals in DOE wastes. Recent research we have performed as part of DOE's Subsurface Science Program has demonst...

  3. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    SciTech Connect

    Reaven, S.J.

    1994-12-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

  4. Building organizational technical capabilities: a new approach to address the office of environmental management cleanup challenges in the 21. century

    SciTech Connect

    Fiore, J.J.; Rizkalla, E.I.

    2007-07-01

    The United States Department of Energy (DOE), Office of Environmental Management (EM) is responsible for the nations nuclear weapons program legacy wastes cleanup. The EM cleanup efforts continue to progress, however the cleanup continues to be technologically complex, heavily regulated, long-term, and a high life cycle cost estimate (LCCE) effort. Over the past few years, the EM program has undergone several changes to accelerate its cleanup efforts with varying degrees of success. Several cleanup projects continued to experience schedule delays and cost growth. The schedule delays and cost growth have been attributed to several factors such as changes in technical scope, regulatory and safety considerations, inadequacy of acquisition approach and project management. This article will briefly review the background and schools of thought on strategic management and organizational change practiced in the United States over the last few decades to improve an organisation's competitive edge and cost performance. The article will briefly review examples such as the change at General Electric, and the recent experience obtained from the nuclear industry, namely the long-term response to the 1986 Chernobyl accident. The long-term response to Chernobyl, though not a case of organizational change, could provide some insight in the strategic management approaches used to address people issues. The article will discuss briefly EM attempts to accelerate cleanup over the past few years, and the subsequent paradigm shift. The paradigm shift targets enhancing and/or creating organizational capabilities to achieve cost savings. To improve its ability to address the 21. century environmental cleanup challenges and achieve cost savings, EM has initiated new corporate changes to develop new and enhance existing capabilities. These new and enhanced organizational capabilities include a renewed emphasis on basics, especially technical capabilities including safety, project management

  5. 40 CFR 312.25 - Searches for recorded environmental cleanup liens.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 29 2012-07-01 2012-07-01 false Searches for recorded environmental... CONDUCTING ALL APPROPRIATE INQUIRIES Standards and Practices § 312.25 Searches for recorded environmental cleanup liens. (a) All appropriate inquiries must include a search for the existence of...

  6. 40 CFR 312.25 - Searches for recorded environmental cleanup liens.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 28 2011-07-01 2011-07-01 false Searches for recorded environmental... CONDUCTING ALL APPROPRIATE INQUIRIES Standards and Practices § 312.25 Searches for recorded environmental cleanup liens. (a) All appropriate inquiries must include a search for the existence of...

  7. 40 CFR 312.25 - Searches for recorded environmental cleanup liens.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 28 2014-07-01 2014-07-01 false Searches for recorded environmental... CONDUCTING ALL APPROPRIATE INQUIRIES Standards and Practices § 312.25 Searches for recorded environmental cleanup liens. (a) All appropriate inquiries must include a search for the existence of...

  8. 40 CFR 312.25 - Searches for recorded environmental cleanup liens.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 29 2013-07-01 2013-07-01 false Searches for recorded environmental... CONDUCTING ALL APPROPRIATE INQUIRIES Standards and Practices § 312.25 Searches for recorded environmental cleanup liens. (a) All appropriate inquiries must include a search for the existence of...

  9. 40 CFR 312.25 - Searches for recorded environmental cleanup liens.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Searches for recorded environmental... CONDUCTING ALL APPROPRIATE INQUIRIES Standards and Practices § 312.25 Searches for recorded environmental cleanup liens. (a) All appropriate inquiries must include a search for the existence of...

  10. Environmental Cleanup of the Idaho National Laboratory Status Report

    SciTech Connect

    Schubert, A.L.

    2008-07-01

    This paper describes the status of the cleanup of the U.S. Department of Energy's Idaho National Laboratory site (INL). On May 1, 2005 CH2M.WG Idaho, LLC (CWI) began its 7-year, $2.4 billion cleanup of the INL. When the work is completed, 3,406,871 liters (900,000 gallons) of sodium-bearing waste will have been treated; 15 high-level waste tanks will have been grouted and Resource Conservation and Recovery Act (RCRA)- closed; more than 200 facilities will have been demolished or disposed of, including three reactors, several spent fuel basins, and hot cells; thousands of containers of buried transuranic waste will have been retrieved; more than 8,000 cubic meters (10,464 cubic yards) of contact-handled transuranic waste and more than 500 cubic meters (654 cubic yards) of remote-handled transuranic waste will have been characterized, packaged, and shipped offsite; almost 200 release sites and voluntary consent order tank systems will have been remediated; and 3,178 units of spent fuel will have been moved from wet to dry storage. In 2007, CWI began the construction of the Integrated Waste Treatment Unit that will treat the sodium-bearing waste for eventual disposal; removed and disposed the 112-ton Engineering Test Reactor vessel; demolished all significant radiological facilities at Test Area North; continued the exhumation of buried transuranic wastes from the Subsurface Disposal Area at the Radioactive Waste Management Complex; shipped the first of hundreds of containers of remote-handled transuranic waste to the Waste Isolation Pilot Plant; disposed of thousands of cubic meters of low-level and low-level mixed radioactive wastes both onsite and offsite while meeting all regulatory cleanup objectives. (author)

  11. Analysis of DOE international environmental management activities

    SciTech Connect

    Ragaini, R.C.

    1995-09-01

    The Department of Energy`s (DOE) Strategic Plan (April 1994) states that DOE`s long-term vision includes world leadership in environmental restoration and waste management activities. The activities of the DOE Office of Environmental Management (EM) can play a key role in DOE`s goals of maintaining U.S. global competitiveness and ensuring the continuation of a world class science and technology community. DOE`s interest in attaining these goals stems partly from its participation in organizations like the Trade Policy Coordinating Committee (TPCC), with its National Environmental Export Promotion Strategy, which seeks to strengthen U.S. competitiveness and the building of public-private partnerships as part of U.S. industrial policy. The International Interactions Field Office task will build a communication network which will facilitate the efficient and effective communication between DOE Headquarters, Field Offices, and contractors. Under this network, Headquarters will provide the Field Offices with information on the Administration`s policies and activities (such as the DOE Strategic Plan), interagency activities, as well as relevant information from other field offices. Lawrence Livermore National Laboratory (LLNL) will, in turn, provide Headquarters with information on various international activities which, when appropriate, will be included in reports to groups like the TPCC and the EM Focus Areas. This task provides for the collection, review, and analysis of information on the more significant international environmental restoration and waste management initiatives and activities which have been used or are being considered at LLNL. Information gathering will focus on efforts and accomplishments in meeting the challenges of providing timely and cost effective cleanup of its environmentally damaged sites and facilities, especially through international technical exchanges and/or the implementation of foreign-development technologies.

  12. PNNL Continues Progress in Cleanup Technology Development at DOE Labs

    SciTech Connect

    Devary, Joseph L. ); Bengtson, Peter J. ); Graybeal, Judith W. ); Truex, Michael J. ); Fruchter, Jonathan S. ); Liikala, Terry L. ); Greenslade, David L. )

    2003-03-03

    Soil and groundwater contamination remains one of the most time consuming and costly environmental remediation challenges. Several technologies developed by scientists at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) have been shown to be quite effective in treating soils and groundwater plumes. Among them are three techniques for treating problems in situ (in place), rather than physically removing the contaminants and dealing with them at another location. These technologies are in situ redox manipulation (ISRM), in situ gaseous treatment (ISGT) and in situ bioremediation. These techniques are available now for use, license and/or exploration of co-development opportunities.

  13. EFFECTIVE ENVIRONMENTAL COMPLIANCE STRATEGY FOR THE CLEANUP OF K BASINS AT HANFORD SITE WASHINGTON

    SciTech Connect

    AMBALAM, T.

    2004-12-01

    K Basins, consisting of two water-filled storage basins (KW and KE) for spent nuclear fuel (SNF), are part of the 100-K Area of the Hanford Site, along the shoreline of the Columbia River, situated approximately 40 km (25 miles) northwest of the City of Richland, Washington. The KW contained 964 metric tons of SNF in sealed canisters and the KE contained 1152 metric tons of SNF under water in open canisters. The cladding on much of the fuel was damaged allowing the fuel to corrode and degrade during storage underwater. An estimated 1,700 cubic feet of sludge, containing radionuclides and sediments, have accumulated in the KE basin. Various alternatives for removing and processing the SNF, sludge, debris and water were originally evaluated, by USDOE (DOE), in the Environmental Impact Statement (EIS) with a preferred alternative identified in the Record of Decision. The SNF, sludge, debris and water are ''hazardous substances'' under the Comprehensive, Environmental, Response, Compensation and Liability Act of 1980 (CERCLA). Leakage of radiologically contaminated water from one of the basins and subsequent detection of increased contamination in a down-gradient monitoring well helped to form the regulatory bases for cleanup action under CERCLA. The realization that actual or threatened release of hazardous substances from the waste sites and K Basins, if not addressed in a timely manner, may present an imminent and substantial endangerment to public health, welfare and environment led to action under CERCLA, with EPA as the lead regulatory agency. Clean-up of the K Basins as a CERCLA site required SNF retrieval, processing, packaging, vacuum drying and transport to a vaulted storage facility for storage, in conformance with a quality assurance program approved by the Office of Civilian Radioactive Waste Management (OCRWM). Excluding the facilities built for SNF drying and vaulted storage, the scope of CERCLA interim remedial action was limited to the removal of fuel

  14. UTILIZING INNOVATIVE TECHNOLOGIES FOR ENVIRONMENTAL CLEAN-UP, SAVAHHAH RIVER SITE

    SciTech Connect

    Bergren, C

    2009-01-07

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units and facilities that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  15. Model environmental assessment for a property-cleanup/interim-storage remedial action at a formerly utilized site. [Preparation of environmental assessment document

    SciTech Connect

    Merry-Libby, P.

    1982-07-01

    This document has been prepared as a model for the preparation of an Environmental Assessment (EA) for a property-cleanup/interim-storage type of remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy (DOE). For major federal actions significantly affecting the quality of the human environment, an Environmental Impact Statement (EIS) must be prepared to aid DOE in making its decision. However, when it is not clear that an action is major and the impacts are significant, an EA may be prepared to determine whether to prepare an EIS or a finding of no significant impact (FONSI). If it is likely that an action may be major and the impacts significant, it is usually more cost-effective and timely to directly prepare an EIS. If it is likely that a FONSI can be reached after some environmental assessment, as DOE believes may be the case for most property-cleanup/interim-storage remedial actions, preparation of site-specific EAs is an effective means of compliance with NEPA.

  16. Enabling cleanup technology transfer.

    SciTech Connect

    Ditmars, J. D.

    2002-08-12

    Technology transfer in the environmental restoration, or cleanup, area has been challenging. While there is little doubt that innovative technologies are needed to reduce the times, risks, and costs associated with the cleanup of federal sites, particularly those of the Departments of Energy (DOE) and Defense, the use of such technologies in actual cleanups has been relatively limited. There are, of course, many reasons why technologies do not reach the implementation phase or do not get transferred from developing entities to the user community. For example, many past cleanup contracts provided few incentives for performance that would compel a contractor to seek improvement via technology applications. While performance-based contracts are becoming more common, they alone will not drive increased technology applications. This paper focuses on some applications of cleanup methodologies and technologies that have been successful and are illustrative of a more general principle. The principle is at once obvious and not widely practiced. It is that, with few exceptions, innovative cleanup technologies are rarely implemented successfully alone but rather are implemented in the context of enabling processes and methodologies. And, since cleanup is conducted in a regulatory environment, the stage is better set for technology transfer when the context includes substantive interactions with the relevant stakeholders. Examples of this principle are drawn from Argonne National Laboratory's experiences in Adaptive Sampling and Analysis Programs (ASAPs), Precise Excavation, and the DOE Technology Connection (TechCon) Program. The lessons learned may be applicable to the continuing challenges posed by the cleanup and long-term stewardship of radioactive contaminants and unexploded ordnance (UXO) at federal sites.

  17. Identification of radionuclides of concern in Hanford Site environmental cleanup

    SciTech Connect

    Perkins, R.W.; Jenquin, U.P.

    1994-08-01

    The purpose of this document is to consider which radionuclides should be included in conducting environmental surveys relative to site remediation at Hanford. During the operation of the Hanford site, the fission product radionuclides and a large number of activation products including the transuranic radionuclides were formed. The reactor operations and subsequent chemical processing and metallurgical operations resulted in the environmental release of gaseous and liquid effluents containing some radionuclides; however, the majority of the radionuclides were stored in waste tanks or disposed to trenches and cribs. Since some contamination of both soils and subsurface waters occurred, one must decide which radionuclides still remain in sufficient amounts to be of concern at the time when site remediation is to be complete. Many of the radionuclides which have constituted the principal hazard during site operation have half-lives on the order of a year or less; therefore, they will have decayed to insignificant amounts by the year 2030, a possible date for completion of the remediation process.

  18. The GETE approach to facilitating the commercialization and use of DOE-developed environmental technologies

    SciTech Connect

    Harvey, T.N.

    1995-10-01

    The Global Environmental Technology Enterprise (GETE) was conceived to develop and implement strategies to facilitate the commercialization of innovative, cost-effective Department of Energy (DOE)-developed environmental technologies. These strategies are needed to aid DOE`s clean-up mission; to break down barriers to commercialization; and to build partnerships between the federal government and private industry in order to facilitate the development and use of innovative environmental technologies.

  19. Technical papers presented at a DOE meeting on criteria for cleanup of transuranium elements in soil

    SciTech Connect

    Not Available

    1984-09-01

    Transuranium element soil contamination cleanup experience gained from nuclear weapons accidents and cleanup at Eniwetok Atoll was reviewed. Presentations have been individually abstracted for inclusion in the data base. (ACR)

  20. Using integrated geospatial mapping and conceptual site models to guide risk-based environmental clean-up decisions.

    PubMed

    Mayer, Henry J; Greenberg, Michael R; Burger, Joanna; Gochfield, Michael; Powers, Charles; Kosson, David; Keren, Roger; Danis, Christine; Vyas, Vikram

    2005-04-01

    Government and private sector organizations are increasingly turning to the use of maps and other visual models to provide a depiction of environmental hazards and the potential risks they represent to humans and ecosystems. Frequently, the graphic presentation is tailored to address a specific contaminant, its location and possible exposure pathways, and potential receptors. Its format is usually driven by the data available, choice of graphics technology, and the audience being served. A format that is effective for displaying one contaminant at one scale at one site, however, may be ineffective in accurately portraying the circumstances surrounding a different contaminant at the same site, or the same contaminant at a different site, because of limitations in available data or the graphics technology being used. This is the daunting challenge facing the U.S. Department of Energy (DOE), which is responsible for the nation's legacy wastes from nuclear weapons research, testing, and production at over 100 sites in the United States. In this article, we discuss the development and use of integrated geospatial mapping and conceptual site models to identify hazards and evaluate alternative long-term environmental clean-up strategies at DOE sites located across the United States. While the DOE probably has the greatest need for such information, the Department of Defense and other public and private responsible parties for many large and controversial National Priority List or Superfund sites would benefit from a similar approach. PMID:15876215

  1. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    SciTech Connect

    BERGMAN TB

    2011-01-14

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the {approx}200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by

  2. Regulatory and institutional issues impending cleanup at US Department of Energy sites: Perspectives gained from an office of environmental restoration workshop

    SciTech Connect

    Fallon, W E; Gephart, J M; Gephart, R E; Quinn, R D; Stevenson, L A

    1991-05-01

    The US Department of Energy's (DOE) nuclear weapons and energy operations are conducted across a nation-wide industrial complex engaged in a variety of manufacturing, processing, testing, and research and development activities. The overall mission of DOE Office of Environmental Restoration and Waste Management (EM) is to protect workers, the public, and the environment from waste materials generated by past, current, and future DOE activities and to bring the DOE complex into compliance with all applicable laws, regulations, and agreements related to health, safety, and the environment. EM addresses this broad mandate through related and interdependent programs that include corrective actions, waste operations, environmental restoration, and technology development. The EM Office of Environmental Restoration (EM-40) recognizes the importance of implementing a complex-wide process to identify and resolve those issues that may impede progress towards site cleanup. As a first step in this process, FM-40 sponsored an exercise to identify and characterize major regulatory and institutional issues and to formulate integrated action steps towards their resolution. This report is the first product of that exercise. It is intended that the exercise described here will mark the beginning of an ongoing process of issue identification, tracking, and resolution that will benefit cleanup activities across the DOE complex.

  3. Surface Modification of Graphene Oxides by Plasma Techniques and Their Application for Environmental Pollution Cleanup.

    PubMed

    Wang, Xiangxue; Fan, Qiaohui; Chen, Zhongshan; Wang, Qi; Li, Jiaxing; Hobiny, Aatef; Alsaedi, Ahmed; Wang, Xiangke

    2016-02-01

    Graphene oxides (GOs) have come under intense multidisciplinary study because of their unique physicochemical properties and possible applications. The large amount of oxygen-containing functional groups on GOs leads to a high sorption capacity for the removal of various kinds of organic and inorganic pollutants from aqueous solutions in environmental pollution cleanup. However, the lack of selectivity results in difficulty in the selective removal of target pollutants from aqueous solutions in the presence of other coexisting pollutants. Herein, the surface grafting of GOs with special oxygen-containing functional groups using low-temperature plasma techniques and the application of the surface-modified GOs for the efficient removal of organic and inorganic pollutants in environmental pollution are reviewed. This paper gives an account of our research on the application of GO-based nanomaterials in environmental pollution cleanup, including: (1) the synthesis and surface grafting of functional groups on GOs, summarizing various types of low-temperature plasma techniques for the synthesis of graphene/GOs; and (2) the application of graphene/GOs and their composites for the efficient removal of organic and inorganic pollutants from aqueous solutions, including the interaction mechanism according to recently published results. PMID:26915704

  4. HARVESTING EMSP RESEARCH RESULTS FOR WASTE CLEANUP

    SciTech Connect

    Guillen, Donna Post; Nielson, R. Bruce; Phillips, Ann Marie; Lebow, Scott

    2003-02-27

    The extent of environmental contamination created by the nuclear weapons legacy combined with expensive, ineffective waste cleanup strategies at many U.S. Department of Energy (DOE) sites prompted Congress to pass the FY96 Energy and Water Development Appropriations Act, which directed the DOE to: ''provide sufficient attention and resources to longer-term basic science research, which needs to be done to ultimately reduce cleanup costs'', ''develop a program that takes advantage of laboratory and university expertise, and'' ''seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective.'' In response, the DOE initiated the Environmental Management Science Program (EMSP)-a targeted, long-term research program intended to produce solutions to DOE's most pressing environmental problems. EMSP funds basic research to lower cleanup cost and reduce risk to workers, the public, and the environment; direct the nation's scientific infrastructure towards cleanup of contaminated waste sites; and bridge the gap between fundamental research and technology development activities. EMSP research projects are competitively awarded based on the project's scientific, merit coupled with relevance to addressing DOE site needs. This paper describes selected EMSP research projects with long, mid, and short-term deployment potential and discusses the impacts, focus, and results of the research. Results of EMSP research are intended to accelerate cleanup schedules, reduce cost or risk for current baselines, provide alternatives for contingency planning, or provide solutions to problems where no solutions exist.

  5. An innovative approach to multimedia waste reduction measuring performance for environmental cleanup programs

    SciTech Connect

    Phifer, B.E. Jr.

    1993-05-01

    One of the greatest challenges we now face in environmental clean up is measuring the progress of minimizing multimedia transfer releases and achieving waste reduction. Briefly, multimedia transfer refers to the air, land, and water where pollution is not just controlled, concentrated, and moved from one media to another. An example of multimedia transfer would be heavy metals in waste water sludges moved from water to land disposal. Over two billion dollars has been budgeted for environmental restoration site cleanups by the Department of Energy for fiscal year 1994. Unless we reduce the huge waste volumes projected to be generated in the near future, then we will devote more and more resources to manage and dispose of these wastes.

  6. Accelerating cleanup: Paths to closure

    SciTech Connect

    1998-06-01

    This report describes the status of Environmental Management`s (EM`s) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE`s 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM`s accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document.

  7. Gas stream cleanup papers from DOE/METC sponsored contractors review meetings in 1988

    SciTech Connect

    Bedick, R.C.; Kothari, V.P.

    1988-10-01

    This document contains gas stream cleanup papers that were presented at two contractors review meetings sponsored by the Morgantown Energy Technology Center of the US Department of Energy in 1988. The two meetings were (1) the Eighth Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting held May 10-12, 1988, and (2) the Annual Coal Fuel Heat Engines and Gas Stream Cleanup Systems Contractors Review Meeting held June 14-16, 1988. The purpose of the meetings was to present recent technical information on selected projects in the gasification, heat engines, and gas stream cleanup programs. The meetings provided a forum for the exchange and dissemination of gasification, heat engine, and gas stream cleanup research results generated under the sponsorship of the Department of Energy. The gas stream cleanup program was discussed in combination with the gasification and heat engines programs to emphasize the importance of approaching research on gas stream cleanup concepts from a system perspective. Gas stream cleanup is an integral part of all coal conversion technologies. Individual papers are processed separately for the data bases.

  8. Semivolatile and particulate polycyclic aromatic hydrocarbons in environmental tobacco smoke. Cleanup, speciation, and emission factors

    SciTech Connect

    Gundel, L.A.; Mahanama, K.R.R.; Daisey, J.M. |

    1995-06-01

    Studies of phase distributions and emission factors for polycyclic aromatic hydrocarbons (PAH) in environmental tobacco smoke (ETS) require collection and analysis of very small samples. To achieve the necessary selectivity and sensitivity, a method has been devised and tested for extraction and cleanup of gas- and particulate-phase ETS samples. Gas-phase species were trapped by polymeric sorbents, and particles were trapped on filters. The samples were extracted with hot cyclohexane, concentrated, and passed through silica solid-phase extraction columns for cleanup. After solvent change, the PAH were determined by high-performance liquid chromatography with two programmed fluorescence detectors. PAH concentrations in 15-mg aliquots of National Institute of Standards and Technology Standard Reference Material (SRM) 1649 (urban dust/organics) agreed well with published values. Relative precision at the 95% confidence level was 8% for SRM 1649 and 20% for replicate samples (5-mg) of ETS particles. Emission factors have been measured for a range of gas- and particulate-phase polycyclic aromatic hydrocarbons in ETS. The emission factors per cigarette were 13.0 {+-} 0.5 mg of particulate matter, 11.2 + 0.9 {mu}g for gas-phase napthalene, and 74 {+-} 10 ng for particulate benzo[a]pyrene. 21 refs., 5 figs., 7 tabs.

  9. Decommissioning and Environmental Cleanup of a Small Arms Training Facility - 13225

    SciTech Connect

    Adams, Karen M.; Kmetz, Thomas F.; Smith, Sandra B.; Blount, Gerald C.

    2013-07-01

    US DOE performed a (CERCLA) non-time critical removal (NTCR) action at the Small Arms Training Area (SATA) Site Evaluation Area (SEA) located at the Savannah River Site (SRS), in Aiken, South Carolina. From 1951 to May 2010, the SATA was used as a small weapons practice and qualifying firing range. The SATA consisted of 870.1 ha (2,150 ac) of woodlands and open field, of which approximately 2.9 ha (7.3 ac) were used as a firing range. The SATA facility was comprised of three small arms ranges (one static and two interactive), storage buildings for supplies, a weapons cleaning building, and a control building. Additionally, a 113- m (370-ft) long earthen berm was used as a target backstop during live-fire exercises. The berm soils accumulated a large amount of spent lead bullets in the berm face during the facilities 59- years of operation. The accumulation of lead was such that soil concentrations exceeded the U.S. Environmental Protection Agency (USEPA) residential and industrial worker regional screening levels (RSLs). The RSL threshold values are based on standardized exposure scenarios that estimate contaminant concentrations in soil that the USEPA considers protective of humans over a lifetime. For the SATA facility, lead was present in soil at concentrations that exceed both the current residential (400 mg/kg) and industrial (800 mg/kg) RSLs. In addition, the concentration of lead in the soil exceeded the Toxicity Characteristic Leaching Procedure (TCLP) (40 Code of Federal Regulations [CFR] 261.24) regulatory limit. The TCLP analysis simulates landfill conditions and is designed to determine the mobility of contaminants in waste. In addition, a principal threat source material (PTSM) evaluation, human health risk assessment (HHRA), and contaminant migration (CM) analysis were conducted to evaluate soil contamination at the SATA SEA. This evaluation determined that there were no contaminants present that constitute PTSM and the CM analysis revealed that no

  10. Economic impact of accelerated cleanup on regions surrounding the U.S. DOE's major nuclear weapons sites.

    PubMed

    Greenberg, M; Solitare, L; Frisch, M; Lowrie, K

    1999-08-01

    The regional economic impacts of the U.S. Department of Energy's accelerated environmental cleanup plan are estimated for the major nuclear weapons sites in Colorado, Idaho, New Mexico, South Carolina, Tennessee, and Washington. The analysis shows that the impact falls heavily on the three relatively rural regions around the Savannah River (SC), Hanford (WA), and Idaho National Engineering and Environmental Laboratory (ID) sites. A less aggressive phase-down of environmental management funds and separate funds to invest in education and infrastructure in the regions helps buffer the impacts on jobs, personal income, and gross regional product. Policy options open to the federal and state and local governments are discussed. PMID:10765427

  11. Methodology and data used for estimating the complex-wide impacts of alternative environmental restoration clean-up goals

    SciTech Connect

    Shay, M.R.; Short, S.M.; Stiles, D.L.

    1994-03-01

    This paper describes the methodologies and data used for estimating the complex-wide impacts of alternative strategies for conducting remediation of all DOE sites and facilities, but does not address issues relating to Waste Management capabilities. Clean-up strategies and their corresponding goals for contaminated media may be driven by concentration-based regulatory standards, land-use standards (e.g., residential, industrial, wild life reserve, or totally restricted), risk-based standards, or other standards determined through stakeholder input. Strategies implemented to achieve these goals usually require the deployment of (a) clean-up technologies to destroy, remove, or contain the contaminants of concern; (b) institutional controls to prevent potential receptors from coming into contact with the contaminants; or (c) a combination of the above.

  12. Perceptions of on-site hunters: environmental concerns, future land use, and cleanup options at the Savannah river site.

    PubMed

    Burger, J; Sanchez, J

    1999-06-25

    The Department of Energy owns land in 34 states, and most of these lands have been off limits to the public for over 50 years. Although some parts of each site are contaminated, most of many sites are not. With the ending of the Cold War, the department is considering alternative land uses. In this article, the perceptions of hunters and fishermen allowed on site for a limited time were examined, about environmental concerns, future land use, and cleanup options. Although loss of jobs was the foremost concern, preserving parts of the site had more support as a future land use than continuing the nuclear mission, and nearly three-quarters of the sample supported cleanup, regardless of cost. On-site employment was a significant indicator of lower concern about safety and environmental issues, less support for designating the site for research, and more concern for maintaining jobs. PMID:10406350

  13. Accelerating cleanup: Paths to closure

    SciTech Connect

    Edwards, C.

    1998-06-30

    This document was previously referred to as the Draft 2006 Plan. As part of the DOE`s national strategy, the Richland Operations Office`s Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established.

  14. Steam Reforming Application for Treatment of DOE Sodium Bearing Tank Wastes at Idaho National Laboratory for Idaho Cleanup Project

    SciTech Connect

    Landman, W.; Roesener, S.; Mason, B.; Wolf, K.; Amaria, N.

    2007-07-01

    The patented THOR{sup R} steam reforming waste treatment technology has been selected by the Department of Energy (DOE) as the technology of choice for treatment of about one million gallons of Sodium Bearing Waste (SBW) at the Idaho National Laboratory (INL). SBW is an acidic waste created primarily from cleanup of the fuel reprocessing equipment at the Idaho Nuclear Technology and Engineering Center (INTEC) at the INL. SBW contains high concentrations of nitric acid and alkali and aluminum nitrates with minor amounts of many inorganic compounds including radionuclides, mainly cesium. The steam reforming process will convert the SBW into dry, solid, carbonate and aluminate minerals supporting a preferred path for disposal as remote handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Project (WIPP). The Idaho Cleanup Project (ICP) will design, build, and operate an Integrated Waste Treatment Unit (IWTU) that will comprise an integrated THOR{sup R} process system that will utilize dual fluidized bed steam reformers (FBSR) for treatment of the SBW. Design of the IWTU is nearing completion. The IWTU will be constructed at INTEC, immediately east of the New Waste Calcine Facility (NWCF), with planned fabrication and construction to start in early 2007 upon receipt of needed permits and completion of design and engineering. This paper provides a project and process overview of the IWTU and discusses the design and construction status. IWTU equipment and facility designs and bases will be presented. (authors)

  15. Advanced fuel hydrocarbon remediation national test location - groundwater circulation well environmental cleanup systems

    SciTech Connect

    Heath, J.; Lory, E.

    1997-03-01

    When a contaminant is treated in place on the original site it is termed in situ remediation. Bioremediation refers to cleanup effected by living organisms such as bacteria and fungi. Certain species of bacteria are able to consume pollutants as a food source, thus detoxifying these compounds. In situ bioremediation is being considered as a viable and practical solution for reducing petroleum contamination levels in groundwater.

  16. Colorado and the Accelerated Cleanup at Rocky Flats

    SciTech Connect

    Spreng, C.

    2007-07-01

    When the Rocky Flats closure project was declared complete in October 2005, it was the largest environmental cleanup to date. Even more impressive, it was ahead of schedule and well under budget. Several factors combined to produce this success including a performance-based contract with financial incentives, development and application of innovative technologies, and a regulator-backed accelerated approach to the cleanup process. The factor in this success in which the State of Colorado had the largest role was in developing and enforcing the Rocky Flats Cleanup Agreement. In compliance with this agreement, cleanup was accomplished by means of multiple interim actions that led to a comprehensive final decision at the end. A key element that allowed the accelerated cleanup was constant consultation among DOE, its contractor, and the regulators plus collaboration with stakeholders. (authors)

  17. Strategic planning model for achieving stakeholder involvement in environmental at DOE weapons complex sites

    SciTech Connect

    Weber, G.

    1994-12-31

    Within today`s reality a public manager often needs to develop cooperative relationships among a number of individual, program, and organizational stakeholders to accomplish particular projects, programs, or policies. A DOE site manager charged with accomplishing environmental restoration and conversion at former weapons production sites is no exception. Important reasons for this include the technical and political complexity of the clean-up problem; limits on the funding, authority, and other resources available to DOE; authority, responsibilities, and interests of other stakeholders; and the ever present potential for conflict among stakeholders, and power of any one to hinder, if not halt, the clean-up process if conflicts aren`t managed and cooperative relationships established and maintained.

  18. DOE saves time and money with ORAU's upfront characterization

    SciTech Connect

    Cange, Sue

    2012-03-08

    Acting DOE Assistant Manager for Environmental Management Sue Cange shares how ORAU provided valuable upfront characterization work that helped accelerate the cleanup efforts on the Oak Ridge Reservation.

  19. Gas stream cleanup

    SciTech Connect

    Bossart, S.J.; Cicero, D.C.; Zeh, C.M.; Bedick, R.C.

    1990-08-01

    This report describes the current status and recent accomplishments of gas stream cleanup (GSCU) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Gas Stream Cleanup Program is to develop contaminant control strategies that meet environmental regulations and protect equipment in advanced coal conversion systems. Contaminant control systems are being developed for integration into seven advanced coal conversion processes: Pressurized fludized-bed combustion (PFBC), Direct coal-fueled turbine (DCFT), Intergrated gasification combined-cycle (IGCC), Gasification/molten carbonate fuel cell (MCFC), Gasification/solid oxide fuel cell (SOFC), Coal-fueled diesel (CFD), and Mild gasification (MG). These advanced coal conversion systems present a significant challenge for development of contaminant control systems because they generate multi-contaminant gas streams at high-pressures and high temperatures. Each of the seven advanced coal conversion systems incorporates distinct contaminant control strategies because each has different contaminant tolerance limits and operating conditions. 59 refs., 17 figs., 5 tabs.

  20. Ecological risks of DOE`s programmatic environmental restoration alternatives

    SciTech Connect

    Not Available

    1994-06-01

    This report assesses the ecological risks of the Department of Energy`s (DOE) Environmental Restoration Program. The assessment is programmatic in that it is directed at evaluation of the broad programmatic alternatives outlined in the DOE Implementation Plan. It attempts to (1) characterize the ecological resources present on DOE facilities, (2) describe the occurrence and importance of ecologically significant contamination at major DOE facilities, (3) evaluate the adverse ecological impacts of habitat disturbance caused by remedial activities, and (4) determine whether one or another of the programmatic alternatives is clearly ecologically superior to the others. The assessment focuses on six representative facilities: the Idaho National Engineering Laboratory (INEL); the Fernald Environmental Management Project (FEMP); the Oak Ridge Reservation (ORR), including the Oak Ridge National Laboratory (ORNL), Y-12 plant, and K-25 plant; the Rocky Flats Plant; the Hanford Reservation; and the Portsmouth Gaseous Diffusion Plant.

  1. The DOE/DOD Environmental Data Bank

    SciTech Connect

    C de Baca, J.E.

    1996-07-01

    The DOE/DOD Environmental Data Bank was established in 1959 as a central location for storing weapons and equipment environments information from a variety of DOE, DOD, and industrial sources and continues to be maintained by Sandia National Laboratories. The Environmental Data Bank contains approximately 2,900 documents regarding normal and abnormal environments that describe the handling, storage, transportation, use, and general phases, which occur during the life of a weapon system. The Environmental Data Bank contains a vast assortment of resources that document crash, fire, and chemical environments resulting from aircraft, rail, ship, and truck accidents, as well as crash and thermal tests conducted on shipping containers. Also included are studies on the hazards of exposure to liquid natural gas fireballs, chemical fireballs, and hydrogen fireballs. This paper describes the DOE/DOD Environmental Data Bank system, its structure, data sources, and usage, with particular emphasis on its use for safety assessments at Sandia National Laboratories.

  2. Semi-Volatile and Particulate Polycyclic Aromatic Hydrocarbons inEnvironmental Tobacco Smoke: Cleanup, Speciation and EmissionsFactors

    SciTech Connect

    Gundel, L.A.; Mahanama, K.R.R.; Daisey, J.M.

    1995-02-01

    Studies of phase distributions and emission factors for polycyclic aromatic hydrocarbons (PAH) in environmental tobacco smoke (ETS) require collection and analysis of very small samples. To achieve the necessary selectivity and sensitivity, a method has been devised and tested for extraction and cleanup of gas- and particulate-phase ETS samples. Gas-phase species were trapped by polymeric sorbents, and particles were trapped on filters. The samples were extracted with hot cyclohexane, concentrated and passed through silica solid-phase extraction columns for cleanup. After solvent change, the PAH were determined by high performance liquid chromatography with two programmed fluorescence detectors. PAH concentrations in 15-mg aliquots of National Institute of Standards and Technology Standard Reference Material SRM 1649 (Urban DustIOrganics) agreed well with published values. Relative precision at the 95% confidence level was 8% for SRM 1649 and 20% for replicate samples (5 mg) of ETS particles. Emission factors have been measured for a range of gas- and particulate-phase polycyclic aromatic hydrocarbons in ETS. The emission factors per cigarette were 13.0{+-}0.5 mg particulate matter, 11.2{+-}0.9 pg for gas-phase naphthalene and 74{+-}10 {micro}g for particulate benzo(a)pyrene.

  3. Major weapon system environmental life-cycle cost estimating for Conservation, Cleanup, Compliance and Pollution Prevention (C3P2)

    NASA Technical Reports Server (NTRS)

    Hammond, Wesley; Thurston, Marland; Hood, Christopher

    1995-01-01

    The Titan 4 Space Launch Vehicle Program is one of many major weapon system programs that have modified acquisition plans and operational procedures to meet new, stringent environmental rules and regulations. The Environmental Protection Agency (EPA) and the Department of Defense (DOD) mandate to reduce the use of ozone depleting chemicals (ODC's) is just one of the regulatory changes that has affected the program. In the last few years, public environmental awareness, coupled with stricter environmental regulations, has created the need for DOD to produce environmental life-cycle cost estimates (ELCCE) for every major weapon system acquisition program. The environmental impact of the weapon system must be assessed and budgeted, considering all costs, from cradle to grave. The Office of the Secretary of Defense (OSD) has proposed that organizations consider Conservation, Cleanup, Compliance and Pollution Prevention (C(sup 3)P(sup 2)) issues associated with each acquisition program to assess life-cycle impacts and costs. The Air Force selected the Titan 4 system as the pilot program for estimating life-cycle environmental costs. The estimating task required participants to develop an ELCCE methodology, collect data to test the methodology and produce a credible cost estimate within the DOD C(sup 3)P(sup 2) definition. The estimating methodology included using the Program Office weapon system description and work breakdown structure together with operational site and manufacturing plant visits to identify environmental cost drivers. The results of the Titan IV ELCCE process are discussed and expanded to demonstrate how they can be applied to satisfy any life-cycle environmental cost estimating requirement.

  4. Environmental cleanup privatization, products and services directory, January 1997. Second edition

    SciTech Connect

    1997-01-01

    The US Department of Energy has undertaken an ambitious ``Ten Year Plan`` for the Weapons Complex, an initiative to complete cleanup at most nuclear sites within a decade. This Second Edition of the Directory is designed to facilitate privatization which is key to the success of the Plan. The Directory is patterned after the telephone Yellow Pages. Like the Yellow Pages, it provides the user with points of contact for inquiring further into the capabilities of the listed companies. This edition retains the original format of three major sections under the broad headings: Treatment, Characterization, and Extraction/Deliver/Materials Handling. Within each section, companies are listed alphabetically. Also, ``company name`` and ``process type`` indices are provided at the beginning of each section to allow the user quick access to listings of particular interest.

  5. A CsxWO3/ZnO nanocomposite as a smart coating for photocatalytic environmental cleanup and heat insulation

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyong; Yin, Shu; Xue, Dongfeng; Komarneni, Sridhar; Sato, Tsugio

    2015-10-01

    A novel CsxWO3/ZnO smart coating was proposed to achieve multiple functions, such as heat insulation, photodecomposition of toxic NO gas, blocking of harmful UV light, etc. In this composite coating, CsxWO3 nanorods were used as a NIR and UV light shielding material while ZnO nanoparticles were utilized as a photocatalyst and a material to enhance visible light transmittance and block UV light. When the mass ratio of CsxWO3/ZnO was 1, the composite coating possessed a very good visible light transmittance of over 80% and an excellent UV-shielding ability. This novel coating showed heat insulation that is superior to the ITO coating and photocatalytic decontamination of NO gas that is superior to the standard TiO2 (P25). The proposed CsxWO3/ZnO smart coating is a promising material not only for energy saving but also for environmental cleanup.

  6. ISCORS Catalog of References to Parameter Values and Distributions Used in Environmental Pathway Modeling for Cleanup of Sites Contaminated with Radioactivity.

    PubMed

    Wolbarst, Anthony B; Biwer, Bruce M; Cady, Ralph; Chen, Shih-Yew; Domotor, Stephen; Egidi, Philip; LePoire, David J; Mo, Tin; Peterson, Julie; Walker, Stuart

    2005-11-01

    Federal and state regulatory agencies that are concerned with issues of environmental management have adopted approaches toward policy-making that are dose- and risk-informed. To that end they (and others) have developed environmental models and computer codes to mimic the transport of contaminants along air, water, food-chain, and related pathways for estimating potential exposures, doses, and risks to individuals, populations, and ecosystems. Their calculations commonly find application in the planning of remediation, and thereafter in the demonstration of compliance with federal and state cleanup standards. As the models and codes have become more sophisticated, so also have requirements on the accuracy and level of detail of the numerical point values and probability distributions of environmental transfer factors and other parameters that serve as input parameters to them. In response to this growing need, the federal Interagency Steering Committee On Radiation Standards (ISCORS) and the Argonne National Laboratory have developed an on-line, national repository of information on parameter values and distributions of known provenance and demonstrated utility. The ISCORS Catalog of References to Parameter Values and Distributions Used in Environmental Pathway Modeling for Cleanup of Sites Contaminated with Radioactivity is a web-based, indexed compilation of references, compendia, databases, and other sources of peer-reviewed information on parameters. It does not itself contain numerical point values or distributions for any particular parameter, but rather it provides links or directions to sites or other published materials where such information can be obtained. Designed to be user-friendly, easily searchable, and readily up-dateable, the Catalog is being filled, after some initial priming, mainly through on-line submissions of proposed references by the Catalog users themselves. The relevant information on a proposed reference is submitted to ISCORS in a

  7. Development and piloting of an exposure database and surveillance system for DOE cleanup operations. Department of Energy.

    PubMed

    LaMontagne, Anthony D; Van Dyke, Michael V; Martyny, John W; Simpson, Mark W; Holwager, Lee Ann; Clausen, Bret M; Ruttenber, A James

    2002-01-01

    An industrial hygiene exposure database and surveillance system was developed in partnership between National Institute for Occupational Safety and Health (NIOSH)-funded independent investigators and practicing industrial hygienists at the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colo. RFETS is a former U.S. Department of Energy nuclear weapons plant that is now in cleanup phase. This project is presented as a case study in the development of an exposure database and surveillance system in terms that are generalizable to most other industries and work contexts. Steps include gaining organizational support; defining system purpose and scope; defining database elements and coding; planning practical and efficient analysis strategies; incorporating reporting capabilities; and anticipating communication strategies that maximize the probability that surveillance findings will feed back to preventive applications. For each of these topics, the authors describe both general considerations as well as the specific choices made for this system. An important feature of the system is a two-tier task-coding scheme comprising 33 categories of task groups. Examples of grouped analyses of exposure data captured during the system pilot period demonstrate applications to exposure control, medical surveillance, and other preventive measures. PMID:11975659

  8. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects

    SciTech Connect

    White, T.; Contos, L.; Adams, L. )

    1992-03-01

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency's (EPA's) original LIMB Demonstration. The program is operated nuclear DOE's Clean Coal Technology Program of emerging clean coal technologies'' under the categories of in boiler control of oxides of sulfur and nitrogen'' as well as post-combustion clean-up.'' The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).

  9. INNOVATIVE TECHNIQUES USED BY EPA, SCDHEC, AND DOE TO INCREASE STAKEHOLDER AND PUBLIC INVOLVEMENT IN THE CLEANUP OF NUCLEAR PRODUCTION FACILITIES

    SciTech Connect

    Mccollum, L

    2007-01-18

    This paper will describe the importance of public and stakeholder involvement to the decisions being made at Savannah River Site (SRS) regarding the cleanup of major production facilities. For over a decade the Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC) have operated under a three party agreement (known as the Federal Facilities Agreement or FFA) to clean up the SRS from the remnants of the Cold War plutonium production at SRS. During this time, the 3 agencies have consulted with the surrounding and impacted public to gain stakeholder input on the decisions concerning the clean up of various wastes at the SRS. The primary instrument of public input has been and remains the SRS Community Advisory Board (CAB). Much progress has been made over the years in cleaning up the SRS and the CAB has provided invaluable stakeholder input. Many planned decisions have been modified and changed as a result of the input of the CAB. Recently, DOE has decided to move forward with the Decommissioning of excess facilities at the SRS. These facilities include many buildings involved in the various missions of radioactive isotope production at the SRS, including the reactors and the plutonium processing facilities. The discussions of the 3 agencies on how to best accomplish this work have always included discussions about how to best involve and receive input from all stakeholders. The innovative way the 3 agencies have worked together through the public involvement format has application nationally and DOE-Complex wide. The decisions made will impact the surrounding community and the country for years. Multiple meetings with the CAB and other stakeholders will be required and it will be incumbent on the 3 agencies to reach out to and involve all interested parties. At least 3 different approaches could be used for stakeholder involvement. (1) a typical CERCLA ''proposed plan

  10. Sheen surveillance: An environmental monitoring program subsequent to the 1989 Exxon Valdez shoreline cleanup

    SciTech Connect

    Taft, D.G.; Egging, D.E.; Kuhn, H.A.

    1995-12-31

    In the fall of 1989, an aerial surveillance program was implemented to locate oil sheens (or slicks) originating from shorelines affected by the Exxon Valdez spill. The objectives of the program were to identify any oil on the water that warranted response and to identify those sections of shoreline that would be priority candidates for further cleanup in 1990. The program initially surveyed the entire affected area, but, because proportionally fewer sheens were spotted in the Gulf of Alaska, the program was refocused on Prince Williams Sound in early 1990. The surveillance program consisted of frequent low-altitude flights with trained observers in a deHavilland Twin otter outfitted with observation ports and communication equipment. The primary surveillance technique used was direct visual observation. Other techniques, including photography, were tested but proved less effective. The flights targeted all shorelines of concern, particularly those near fishing, subsistence, and recreational areas.the observers attempted to locate all sheens, estimate their size and color, ad identify the source of the oil found in the sheen. Size and color were used to estimate the volume of oil in each sheen. Samples were collected whenever possible during the summer of 1990 using a floating Teflon{trademark} sampling device that was developed for easy deployment from a boat or the pontoon of a float plane. Forty four samples were analyzed by UV-fluorescence spectroscopy. Eleven of these samples were also analyzed by GC/MS. In general, the analyses confirmed the observers` judgment of source. 16 refs., 9 figs., 2 tabs.

  11. Public/private cross-training programs to expedite clean-up and development of environmentally impaired property

    SciTech Connect

    Frank, B.

    1994-12-31

    There is a need to learn how to partner better. In this regard, it would be most useful to monitor a partnership from its inception and as it develops. Such a partnership to follow through its various development stages is the California Environmental Enterprise (CEE), a dynamic Statewide environmental technology services partnership linking private industry, the DOE National Laboratories, State and local governments, regulatory agencies community colleges and universities, public interest and environmental organizations, for the common purpose of facilitating the economic and rehabilitative reuse of environmentally impaired property. In cooperation with Federal agencies, CEE will work actively with the private sector and other major institutions to seek innovative technological solutions to environmental restoration and waste management problems. Through the development of public-private partnerships CEE will broker and facilitate private sector solutions that will leverage collective resources as well as demonstrating and commercializing environmental technologies and systems to the economic benefit of the State and the Nation.

  12. Deriving cleanup guidelines for radionuclides at Brookhaven National Laboratory

    SciTech Connect

    Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

    1997-01-01

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL`s Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory. With the exception of radium, there are no regulations or guidelines to establish cleanup guidelines for radionuclides in soils at BNL. BNL must derive radionuclide soil cleanup guidelines for a number of Operable Units (OUs) and Areas of Concern (AOCs). These guidelines are required by DOE under a proposed regulation for radiation protection of public health and the environment as well as to satisfy the requirements of CERCLA. The objective of this report is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL. Implementation of the approach is briefly discussed.

  13. The DOE/NREL Environmental Science Program

    SciTech Connect

    Douglas R. Lawson; Michael Gurevich

    2001-05-14

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.

  14. DOE Hanford Network Upgrades and Disaster Recovery Exercise Support the Cleanup Mission Now and into the Future

    SciTech Connect

    Eckman, Todd J.; Hertzel, Ali K.; Lane, James J.

    2013-11-07

    In 2013, the U.S. Department of Energy's (DOE) Hanford Site, located in Washington State, funded an update to the critical network infrastructure supporting the Hanford Federal Cloud (HFC). The project, called ET-50, was the final step in a plan that was initiated five years ago called "Hanford's IT Vision, 2015 and Beyond." The ET-50 project upgraded Hanford's core data center switches and routers along with a majority of the distribution layer switches. The upgrades allowed HFC the network intelligence to provide Hanford with a more reliable and resilient network architecture. The culmination of the five year plan improved network intelligence and high performance computing as well as helped to provide 10 Gbps capable links between core backbone devices (10 times the previous bandwidth). These improvements allow Hanford the ability to further support bandwidth intense applications, such as video teleconferencing. The ET-50 switch upgrade, along with other upgrades implemented from the five year plan, have prepared Hanford's network for the next evolution of technology in voice, video, and data. Hand-in-hand with ET-50's major data center outage, Mission Support Alliance's (MSA) Information Management (IM) organization executed a disaster recovery (DR) exercise to perform a true integration test and capability study. The DR scope was planned within the constraints of ET-50's 14 hour datacenter outage window. This DR exercise tested Hanford's Continuity of Operations (COOP) capability and failover plans for safety and business critical Hanford Federal Cloud applications. The planned suite of services to be tested was identified prior to the outage and plans were prepared to test the services ability to failover from the primary Hanford data center to the backup data center. The services tested were: Core Network (backbone, firewall, load balancers); Voicemail; Voice over IP (VoIP); Emergency Notification; Virtual desktops; and, Select set of production applications

  15. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Describes the Superfund, a federal cleanup program created in response to growing public concern over the health and environmental risks posed by hazardous waste sites. Discusses sources, disposal, and movement and risk of hazardous waste. (JRH)

  16. Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: a review.

    PubMed

    Kaur, Ranjeet; Hasan, Abshar; Iqbal, Nusrat; Alam, Samsul; Saini, Mahesh Kr; Raza, Syed Kalbe

    2014-07-01

    In recent years, water pollution and pesticide accumulation in the food chain have become a serious environmental and health hazard problem. Direct determination of these contaminants is a difficult task due to their low concentration level and the matrix interferences. Therefore, an efficient separation and preconcentration procedure is often required prior to the analysis. With the advancement in nanotechnology, various types of magnetic core-shell nanoparticles have successfully been synthesized and received considerable attention as sorbents for decontamination of diverse matrices. Magnetic core-shell nanoparticles with surface modifications have the advantages of large surface-area-to-volume ratio, high number of surface active sites, no secondary pollutant, and high magnetic properties. Due to their physicochemical properties, surface-modified magnetic core-shell nanoparticles exhibit high adsorption efficiency, high rate of removal of contaminants, and easy as well as rapid separation of adsorbent from solution via external magnetic field. Such facile separation is essential to improve the operation efficiency. In addition, reuse of nanoparticles would substantially reduce the treatment cost. In this review article, we have attempted to summarize recent studies that address the preconcentration methods of pesticide residue analysis and removal of toxic contaminants from aquatic systems using magnetic core-shell nanoparticles as adsorbents. PMID:24777942

  17. A life-cycle model approach to multimedia waste reduction measuring performance for environmental cleanup projects

    SciTech Connect

    Phifer, B.E. Jr.; George, S.M.

    1993-07-01

    The Martin Marietta Energy Systems, Inc. (Energy Systems), Environmental Restoration (ER) Program adopted a Pollution Prevention Program in March 1991. The program`s mission is to minimize waste and prevent pollution in remedial investigations (RIs), feasibility studies, decontamination and decommissioning, and surveillance and maintenance site program activities. Mission success will result in volume and/or toxicity reduction of generated waste. The ER Program waste generation rates are projected to steadily increase through the year 2005 for all waste categories. Standard production units utilized to measure waste minimization apply to production/manufacturing facilities. Since ER inherited contaminated waste from previous production processes, no historical production data can be applied. Therefore, a more accurate measure for pollution prevention was identified as a need for the ER Program. The Energy Systems ER Program adopted a life-cycle model approach and implemented the concept of numerically scoring their waste generators to measure the effectiveness of pollution prevention/waste minimization programs and elected to develop a numerical scoring system (NSS) to accomplish these measurements. The prototype NSS, a computerized, user-friendly information management database system, was designed to be utilized in each phase of the ER Program. The NSS was designed to measure a generator`s success in incorporating pollution prevention in their work plans and reducing investigation-derived waste (IDW) during RIs. Energy Systems is producing a fully developed NSS and actually scoring the generators of IDW at six ER Program sites. Once RI waste generators are scored utilizing the NSS, the numerical scores are distributed into six performance categories: training, self-assessment, field implementation, documentation, technology transfer, and planning.

  18. Implementation of the DOE Office of Technology Development Strategic Program Plan for Environmental Education and Development

    SciTech Connect

    Prestwich, S.M.; Chee, T.C.; Middleman, L.I.

    1992-12-31

    With the November 1989 formation of the Office of Technology Development (OTD) within the Office of Environmental Restoration and Waste Management (EM) came the responsibility to develop programs to ensurethat enough trained and educated people would be available to support the achievement of EM`s 30-year goal. This mission responsibility derives from public policy and Departmental environmental management requirements. Within DOE, urgency to move forward resulted from the assumptions (1) that the current workforce was insufficiently prepared for the transition from a production mission to a mission of environmental compliance and cleanup; and (2) that, given current trends and forecasts, the national education infrastructure was unlikely to yield the scientists, engineers, and technicians to meet future DOE workforce needs, especially in the case of women and minorities who, projected to make up two-thirds of the net entering workforce by the year 2000, have traditionally been least prepared for and inclined to enter scientific and technical fields. This paper displays DOE`s environmental education and development mission, goals, and strategy, and describes progress in and plans for implementing this strategy.

  19. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects. Final report, May--August 1991

    SciTech Connect

    White, T.; Contos, L.; Adams, L.

    1992-03-01

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency`s (EPA`s) original LIMB Demonstration. The program is operated nuclear DOE`s Clean Coal Technology Program of ``emerging clean coal technologies`` under the categories of ``in boiler control of oxides of sulfur and nitrogen`` as well as ``post-combustion clean-up.`` The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).

  20. DOE methods for evaluating environmental and waste management samples.

    SciTech Connect

    Goheen, S C; McCulloch, M; Thomas, B L; Riley, R G; Sklarew, D S; Mong, G M; Fadeff, S K

    1994-04-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) provides applicable methods in use by. the US Department of Energy (DOE) laboratories for sampling and analyzing constituents of waste and environmental samples. The development of DOE Methods is supported by the Laboratory Management Division (LMD) of the DOE. This document contains chapters and methods that are proposed for use in evaluating components of DOE environmental and waste management samples. DOE Methods is a resource intended to support sampling and analytical activities that will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the US Environmental Protection Agency (EPA), or others.

  1. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects

    SciTech Connect

    White, T.; Contos, L.

    1991-09-01

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. These data were collected by implementing the Environmental Monitoring Plan (EMP) for the DOE LIMB Demonstration Project Extension, dated August 1988. This document is the fifth EMP status report to be published and presents the data generated during November and December 1990, and January 1991. These reports review a three or four month period and have been published since the project's start in October 1989. The DOE project is an extension of the US Environmental Protection Agency's (EPA) original LIMB Demonstration. The program is operated under DOE's Clean Coal Technology Program of emerging clean coal technologies'' under the categories of in boiler control of oxides of sulfur and nitrogen'' as well as post-combustion clean-up.'' The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs). 5 figs., 12 tabs.

  2. Implementation of the DOE Office of Technology Development Strategic Program Plan for Environmental Education and Development

    SciTech Connect

    Prestwich, S.M.; Chee, T.C. ); Middleman, L.I. )

    1992-01-01

    With the November 1989 formation of the Office of Technology Development (OTD) within the Office of Environmental Restoration and Waste Management (EM) came the responsibility to develop programs to ensurethat enough trained and educated people would be available to support the achievement of EM's 30-year goal. This mission responsibility derives from public policy and Departmental environmental management requirements. Within DOE, urgency to move forward resulted from the assumptions (1) that the current workforce was insufficiently prepared for the transition from a production mission to a mission of environmental compliance and cleanup; and (2) that, given current trends and forecasts, the national education infrastructure was unlikely to yield the scientists, engineers, and technicians to meet future DOE workforce needs, especially in the case of women and minorities who, projected to make up two-thirds of the net entering workforce by the year 2000, have traditionally been least prepared for and inclined to enter scientific and technical fields. This paper displays DOE's environmental education and development mission, goals, and strategy, and describes progress in and plans for implementing this strategy.

  3. Energy Implications of Cleanup Operations

    ERIC Educational Resources Information Center

    Hirst, Eric

    1975-01-01

    Energy needs for environmental cleanup are assessed. Among the conclusions are: the quantities of energy required to achieve various environmental quality goals are small; energy needs for environmental protection can be offset by conservation measures and the conclusions in regard to primary energy closely correspond to those for electrical…

  4. Analysis of the potential use of red horse capabilities and training activities to perform or accelerate air force environmental cleanups. Master's thesis

    SciTech Connect

    Stokes, E.A.; Carpenter, R.A.

    1992-09-01

    There are more than 4,000 Air Force (AF) sites requiring restoration due to hazardous waste contamination. The AF goal is to completely restore all sites by 2000. One method of achieving this ambitious goal is to use in-house capabilities. This study examined the potential use of RED HORSE capabilities and training activities to assist with cleanup of contaminated sites. RED HORSE capabilities and training requirements were compared to the primary cleanup needs of the AF. One finding of this study suggests cleanup of sites contaminated by volatile organic chemicals (VOCs) is the primary need of the AF. The findings also indicate that RED HORSE can not perform remediation work on uncontrolled hazardous waste sites due to a lack of training and protective equipment required by OSHA regulations. This study suggests that if RED HORSE was provided with the required training and equipment, up to 30 technologies are within RED HORSE capabilities and offer high training benefits, and up to 39 would provide moderate or low training benefits.... Environmental management, Civil engineering, Waste treatment, Chemical contamination, Organic compounds, Air force training.

  5. Training and Mentoring the Next Generation of Scientists and Engineers to Secure Continuity and Successes of the US DOE's Environmental Remediation Efforts - 13387

    SciTech Connect

    Lagos, L.

    2013-07-01

    The DOE Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology, engineering, and math (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only five years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 85 DOE Fellows have participated in the Waste Management Symposia since 2008 with a total of 68 student posters and 7 oral presentations given at WM. The DOE Fellows

  6. Integrated Planning for Cleanup of Bethel Valley and Revitalization of the ORNL Main Campus

    SciTech Connect

    Van Hoesen, S. D.; Myrick, T. E.; Eidam, G. R.

    2002-02-26

    This paper describes the efforts currently underway to integrate the planning for, and performance of, the cleanup and modernization of the Oak Ridge National Laboratory (ORNL). UT-Battelle, LLC, is the DOE Office of Science (SC) contractor responsible for ORNL Operations and Bechtel Jacobs Company, LLC, is the DOE Environmental Management (EM) contractor responsible for cleanup of the ORNL site. The two companies are working together to address the 50+ year old ORNL contamination legacy while new facilities for the next 50 years of ORNL operation are being built. These joint efforts have accomplished a number of ''early cleanup actions'' that have significantly reduced the current risk from legacy contamination, are securing approval for cleanup of the ORNL main plant area, and, at the same time, have launched the ORNL modernization efforts.

  7. Cleanup at Los Alamos National Laboratory - the challenges - 9493

    SciTech Connect

    Stiger, Susan G; Hargis, Kenneth M; Graham, Michael J; Rael, George J

    2008-01-01

    This paper provides an overview of environmental cleanup at the Los Alamos National Laboratory (LANL) and some of the unique aspects and challenges. Cleanup of the 65-year old Department of Energy Laboratory is being conducted under a RCRA Consent Order with the State of New Mexico. This agreement is one of the most recent cleanup agreements signed in the DOE complex and was based on lessons learned at other DOE sites. A number of attributes create unique challenges for LANL cleanup -- the proximity to the community and pueblos, the site's topography and geology, and the nature of LANL's on-going missions. This overview paper will set the stage for other papers in this session, including papers that present: Plans to retrieve buried waste at Material Disposal Area B, across the street from oen of Los Alamos' commercial districts and the local newspaper; Progress to date and joint plans with WIPP for disposal of the remaining inventory of legacy transuranic waste; Reviews of both groundwater and surface water contamination and the factors complicating both characterization and remediation; Optimizing the disposal of low-level radioactive waste from ongoing LANL missions; A stakeholder environmental data transparency project (RACER), with full public access to all available information on contamination at LANL, and A description of the approach to waste processing cost recovery from the programs that generate hazardous and radioactive waste at LANL.

  8. From Cleanup to Stewardship. A companion report to Accelerating Cleanup: Paths to Closure and background information to support the scoping process required for the 1998 PEIS Settlement Study

    SciTech Connect

    1999-10-01

    Long-term stewardship is expected to be needed at more than 100 DOE sites after DOE's Environmental Management program completes disposal, stabilization, and restoration operations to address waste and contamination resulting from nuclear research and nuclear weapons production conducted over the past 50 years. From Cleanup to stewardship provides background information on the Department of Energy (DOE) long-term stewardship obligations and activities. This document begins to examine the transition from cleanup to long-term stewardship, and it fulfills the Secretary's commitment to the President in the 1999 Performance Agreement to provide a companion report to the Department's Accelerating Cleanup: Paths to Closure report. It also provides background information to support the scoping process required for a study on long-term stewardship required by a 1998 Settlement Agreement.

  9. Current Progress and Future Plans for the DOE Office of Environmental Management International Program

    SciTech Connect

    Gerdes, K.D.; Marra, J. C.; Peeler, D.K.; Harbour, M.J.J.R.; Fox, K.M.; Vienna, J.D.; Aloy, A.S.; Stefanovsky, S.V.; Bondarkov, M.D.

    2008-07-01

    The U.S. Department of Energy's (DOE) Office of Environmental Management (EM) has collaborated with various international institutes for many years on radioactive waste management challenges of mutual concern. Currently, DOE-EM is performing collaborative work with researchers at the Khlopin Radium Institute and the SIA Radon Institute in Russia and the Ukraine's International Radioecology Laboratory to explore issues related to high-level waste and to investigate experience and technologies that could support DOE-EM site cleanup needs. Specific initiatives include: - Application of the Cold Crucible Induction Heated Melter to DOE Wastes - SIA Radon and Savannah River National Laboratory; - Improved Solubility and Retention of Troublesome Components in SRS and Hanford Waste Glasses - Khlopin Radium Institute, Pacific Northwest National Laboratory and Savannah River National Laboratory; - Long-term Impacts from Radiation/Contamination within the Chernobyl Exclusion Zone, International Radioecology Laboratory and Savannah River National Laboratory. This paper provides an overview of the status of the current International Program task activities. The paper will also provide insight into the future direction for the program. Specific ties to the current DOE-EM technology development multi-year planning effort will be highlighted as well as opportunities for future international collaborations. (authors)

  10. CURRENT PROGRESS AND FUTURE PLANS FOR THE DOE OFFICE OF ENVIRONMENTAL MANAGEMENT INTERNATIONAL PROGRAM

    SciTech Connect

    Marra, J; Kurt D Gerdes, K; David Peeler, D; John Harbour, J; Kevin Fox, K

    2007-11-16

    The U.S. Department of Energy's (DOE) Office of Environmental Management (EM) has collaborated with various international institutes for many years on radioactive waste management challenges of mutual concern. Currently, DOE-EM is performing collaborative work with researchers at the Khlopin Radium Institute and the SIA Radon Institute in Russia and the Ukraine's International Radioecology Laboratory to explore issues related to high-level waste and to investigate experience and technologies that could support DOE-EM site cleanup needs. Specific initiatives include: (1) Application of the Cold Crucible Induction Heated Melter to DOE Wastes--SIA Radon and Savannah River National Laboratory; (2) Improved Solubility and Retention of Troublesome Components in SRS and Hanford Waste Glasses--Khlopin Radium Institute, Pacific Northwest National Laboratory and Savannah River National Laboratory; and (3) Long-term Impacts from Radiation/Contamination within the Chernobyl Exclusion Zone--International Radioecology Laboratory and Savannah River National Laboratory. This paper provides an overview of the status of the current International Program task activities. The paper will also provide insight into the future direction for the program. Specific ties to the current DOE-EM technology development multi-year planning effort will be highlighted as well as opportunities for future international collaborations.

  11. Does further clean-up reduce the matrix enhancement effect in gas chromatographic analysis of pesticide residues in food?

    PubMed

    Schenck, F J; Lehotay, S J

    2000-01-28

    Sample extracts of apples, peas, green beans, oranges, raspberries, clementines, carrots, and wheat obtained using the Food and Drug Administration (acetone extraction) and Canadian Pest Management Regulatory Agency (acetonitrile extraction) multiresidue methods for pesticides were subjected to clean-up using different solid-phase extraction (SPE) cartridges in an attempt to reduce or eliminate the matrix enhancement effect. The matrix enhancement effect is related to the blocking of active sites on the injector liner by matrix components, thereby increasing signal in the presence of matrix versus standards in solvent in which the pesticides themselves interact with the active sites. Graphitized carbon black (GCB) was often used in combination with various anion-exchange SPE cartridges. The extracts were then spiked with organophosphorus insecticides. These process standards were then compared to standards in acetone of the same concentration using gas chromatography with flame photometric detection or ion trap mass spectrometric detection. Sample matrix enhancement varied from little to no effect for some pesticides (e.g. chlorpyrifos, malathion) to >200% in the case of certain susceptible pesticides. The GCB removed color components but showed little effect in reducing matrix enhancement by itself. The anion-exchange cartridges in combination with GCB or not, substantially reduced the matrix enhancement effect but did not eliminate it. PMID:10677079

  12. Steam Reforming Application for Treatment of DOE Sodium Bearing Tank Wastes at Idaho National Laboratory for Idaho Cleanup Project

    SciTech Connect

    Mason, J.B.; Wolf, K.; Ryan, K.; Roesener, S.; Cowen, M.; Schmoker, D.; Bacala, P.; Landman, B.

    2006-07-01

    The patented THOR{sup R} steam reforming waste treatment technology has been selected as the technology of choice for treatment of Sodium Bearing Waste (SBW) at the Idaho National Laboratory (INL) for the Idaho Cleanup Project (ICP). SBW is an acidic tank waste at the Idaho Nuclear Technology and Engineering Center (INTEC) at INL. It consists primarily of waste from decontamination activities and laboratory wastes. SBW contains high concentrations of nitric acid, alkali and aluminum nitrates, with minor amounts of many inorganic compounds including radionuclides, mainly cesium and strontium. The THOR{sup R} steam reforming process will convert the SBW tank waste feed into a dry, solid, granular product. The THOR{sup R} technology was selected to treat SBW, in part, because it can provide flexible disposal options to accommodate the final disposition path selected for SBW. THOR{sup R} can produce a final end-product that will meet anticipated requirements for disposal as Remote-Handled TRU (RH-TRU) waste; and, with modifications, THOR{sup R} can also produce a final end-product that could be qualified for disposal as High Level Waste (HLW). SBW treatment will be take place within the Integrated Waste Treatment Unit (IWTU), a new facility that will be located at the INTEC. This paper provides an overview of the THOR{sup R} process chemistry and process equipment being designed for the IWTU. (authors)

  13. 90074: Nuclear weapons production complex: Environmental compliance and waste management

    SciTech Connect

    Holt, M.

    1997-01-17

    The aging nuclear weapons production complex, managed by the Department of Energy (DOE), faces enormous environmental and waste management problems. Several hundred billion dollars may be needed to clean up leaking waste pits, groundwater contamination, growing accumulations of radioactive - waste, and uncontrolled liquid discharges at DOE facilities. DOE`s cleanup program is carried out by the Office of Environmental Management (EM). Cleanup funding escalated rapidly after the end of the Cold War, although it has plateaued at about $6 billion per year under the Clinton Administration. Congress has expressed growing concern about the rising costs of DOE`s cleanup program. A major cost driver has been environmental regulations and cleanup schedules that the Department is required to meet, although DOE also has been accused of poorly managing many projects and allowing costs to escalate unnecessarily. DOE`s environmental program consists of a variety of major activities, including environmental restoration, waste management, development of new cleanup technology, and stabilization of surplus nuclear material and facilities. Environmental restoration involves cleanup and mitigation of past environmental contamination and uncontained waste sites, including decontamination and decommissioning of permanently closed DOE facilities.

  14. Effort to earn public support and confidence in Hanford Site cleanup work

    SciTech Connect

    Brown, M.C.; Edwards, C. ); Beers, A.A. )

    1991-09-01

    Public involvement is needed for Hanford Site cleanup to succeed. If people do not know about, understand, and support cleanup, it will be more difficult and expensive. The Tri-Party Agreement calls for public involvement in decisions about cleanup options and schedules. This paper defines what public involvement means and how the Washington State Department of Ecology (Ecology), US Environmental Protection Agency (EPA), and US Department of Energy (DOE) have conducted it. Experience and survey research have shown ways to improve our performance. While we have improved our conduct of public meetings, we must identify other ways to involve the public. Efforts continue to open decision making earlier in the decision process, to share information that is clear and understandable, and to open the channels of communication. We have made good progress. We have many opportunities to continue to improve. This paper describes some of the highlights and lessons learned in public involvement in Hanford Site cleanup. 4 refs.

  15. Report on DOE analytical laboratory capacity available to meet EM environmental sampling and analysis needs for FY 93-99

    SciTech Connect

    Not Available

    1994-11-30

    The DOE Analytical Laboratory Capacity Study was conducted to give EM-263 current information about existing and future analytical capacities and capabilities of site laboratories within the DOE Complex. Each DOE site may have one or more analytical laboratories in operation. These facilities were established to support site missions such as production, research and development, and personnel and environmental monitoring. With changing site missions and the DOE directives for environmental monitoring and cleanup, these laboratories are either devoting or planning to devote resources to support EM activities. The DOE site laboratories represent a considerable amount of capital investment and analytical capability, capacity, and expertise that can be applied to support the EM mission. They not only provide cost-effective high-volume analytical laboratory services, but are also highly recognized analytical research and development centers. Several sites have already transferred their analytical capability from traditional production support to environmental monitoring and waste management support. A model was developed to determine the analytical capacity of all laboratories in the DOE Complex. The model was applied at nearly all the major laboratories and the results collected from these studies are summarized in this report.

  16. DOE Chair Excellence Professorship Environmental Disciplines

    SciTech Connect

    Riley, Reginald

    2014-10-08

    The DECM Team worked closely with other academic institutions, industrial companies and government laboratories to do research and educate engineers in “cutting edge” environmentally conscious manufacturing practices and instrumentation. The participating universities also worked individually with local companies on research projects in their specialty areas. Together, they were charged with research application, integration and education in environmentally conscious manufacturing.

  17. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and Environmental Management Science Program research award abstracts. Volume 2 of 3 -- Appendix B

    SciTech Connect

    1998-04-01

    The Department of Energy`s Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation`s nuclear complex. Appendix B provides details about each of the 202 research awards funded by the EMSP. This information may prove useful to researchers who are attempting to address the Department`s environmental management challenges in their work, program managers who are planning, integrating, and prioritizing Environmental Management projects, and stakeholders and regulators who are interested in the Department`s environmental challenges. The research award information is organized by the state and institution in which the lead principal investigator is located. In many cases, the lead principal investigator is one of several investigators at a number of different institutions. In these cases, the lead investigator (major collaborator) at each of the additional institutions is listed. Each research award abstract is followed by a list of high cost projects that can potentially be impacted by the research results. High cost projects are Environmental Management projects that have total costs greater than $50 million from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and have costs or quantities of material associated with an Environmental Management problem area. High cost projects which must remain active in the year 2007 and beyond to manage high risk are also identified. Descriptions of these potentially related high cost Environmental Management projects can be found in Appendix C. Additional projects in the same problem area as a research award can be located using the Index of High Cost Environmental Management Projects by Problem Area, at the end of Appendices B and C.

  18. DOE methods for evaluating environmental and waste management samples

    SciTech Connect

    Goheen, S.C.; McCulloch, M.; Thomas, B.L.; Riley, R.G.; Sklarew, D.S.; Mong, G.M.; Fadeff, S.K.

    1994-10-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) is a resource intended to support sampling and analytical activities for the evaluation of environmental and waste management samples from U.S. Department of Energy (DOE) sites. DOE Methods is the result of extensive cooperation from all DOE analytical laboratories. All of these laboratories have contributed key information and provided technical reviews as well as significant moral support leading to the success of this document. DOE Methods is designed to encompass methods for collecting representative samples and for determining the radioisotope activity and organic and inorganic composition of a sample. These determinations will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the U.S. Environmental Protection Agency, or others. The development of DOE Methods is supported by the Analytical Services Division of DOE. Unique methods or methods consolidated from similar procedures in the DOE Procedures Database are selected for potential inclusion in this document. Initial selection is based largely on DOE needs and procedure applicability and completeness. Methods appearing in this document are one of two types, {open_quotes}Draft{close_quotes} or {open_quotes}Verified{close_quotes}. {open_quotes}Draft{close_quotes} methods that have been reviewed internally and show potential for eventual verification are included in this document, but they have not been reviewed externally, and their precision and bias may not be known. {open_quotes}Verified{close_quotes} methods in DOE Methods have been reviewed by volunteers from various DOE sites and private corporations. These methods have delineated measures of precision and accuracy.

  19. CONSTRUCTION OF BENDING MAGNET BEAMLINE AT THE APS FOR ENVIRONMENTAL STUDIES

    EPA Science Inventory

    Synchrotron radiation studies of materials at the molecular scale can make important contributions to the understanding of the basic science issues underlying environmental cleanup efforts. A recent DOE workshop report "Molecular Environmental Science: Speciation, Reactivity, and...

  20. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems. Volume 1 of 3 -- Report and Appendix A

    SciTech Connect

    1998-04-01

    This report is submitted in response to a Congressional request and is intended to communicate the nature, content, goals, and accomplishments of the Environmental Management Science Program (EMSP) to interested and affected parties in the Department and its contractors, at Federal agencies, in the scientific community, and in the general public. The EMSP was started in response to a request to mount an effort in longer term basic science research to seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective. Section 1, ``Background of the Program,`` provides information on the evolution of the EMSP and how it is managed, and summarizes recent accomplishments. Section 2, ``Research Award Selection Process,`` provides an overview of the ongoing needs identification process, solicitation development, and application review for scientific merit and programmatic relevance. Section 3, ``Linkages to Environmental Cleanup Problems,`` provides an overview of the major interrelationships (linkages) among EMSP basic research awards, Environmental Management problem areas, and high cost projects. Section 4, ``Capitalizing on Science Investments,`` discusses the steps the EMSP plans to use to facilitate the application of research results in Environmental Management strategies through effective communication and collaboration. Appendix A contains four program notices published by the EMSP inviting applications for grants.

  1. Does Environmental Knowledge Inhibit Hominin Dispersal?

    PubMed

    Wren, Colin D; Costopoulos, Andre

    2015-07-01

    We investigated the relationship between the dispersal potential of a hominin population, its local-scale foraging strategies, and the characteristics of the resource environment using an agent-based modeling approach. In previous work we demonstrated that natural selection can favor a relatively low capacity for assessing and predicting the quality of the resource environment, especially when the distribution of resources is highly clustered. That work also suggested that the more knowledge foraging populations had about their environment, the less likely they were to abandon the landscape they know and disperse into novel territory. The present study gives agents new individual and social strategies for learning about their environment. For both individual and social learning, natural selection favors decreased levels of environmental knowledge, particularly in low-heterogeneity environments. Social acquisition of detailed environmental knowledge results in crowding of agents, which reduces available reproductive space and relative fitness. Agents with less environmental knowledge move away from resource clusters and into areas with more space available for reproduction. These results suggest that, rather than being a requirement for successful dispersal, environmental knowledge strengthens the ties to particular locations and significantly reduces the dispersal potential as a result. The evolved level of environmental knowledge in a population depends on the characteristics of the resource environment and affects the dispersal capacity of the population. PMID:26932570

  2. Summary of Model Toxics Control Act (MTCA) Potential Impacts Related to Hanford Cleanup and the Tri-Party Agreement (TPA)

    SciTech Connect

    IWATATE, D.F.

    2000-07-14

    This white paper provides an initial assessment of the potential impacts of the Model Toxics Control Act (MTCA) regulations (and proposed revisions) on the Hanford site cleanup and addresses concerns that MTCA might impose inappropriate or unachievable clean-up levels and drive clean-up costs higher. The white paper and supporting documentation (Appendices A and B) provide DOE with a concise and up-to-date review of potential MTCA impacts to cost and schedule for the Hanford site activities. MTCA, Chapter 70.105D RCW, is the State of Washington's risk based law governing clean-up of contaminated sites and is implemented by The Washington Department of Ecology (Ecology) under the MTCA Clean-up Regulations, Chapter 173-340 WAC. Hanford cleanup is subject to the MTCA requirements as Applicable, Relevant and Appropriate Requirements (ARARs) for those areas of Hanford being managed under the authority of the Federal Resource Conservation and Recovery Act (RCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), and the state Dangerous Waste Regulations. MTCA provides Ecology with authority to implement site clean-up actions under both the federal RCRA and CERCLA regulations as well as the state regulations. Most of the Hanford clean-up actions are being implemented under the CERCLA program, however, there is a trend is toward increased use of MTCA procedures and standards. The application of MTCA to the Hanford clean-up has been an evolving process with some of the Hanford clean-up actions considering MTCA standards as an ARAR and using MTCA procedures for remedy selection. The increased use and application of MTCA standards and procedures could potentially impact both cost and schedule for the Hanford cleanup.

  3. Oil spill response in freshwater: Assessment of the impact of cleanup as a management tool

    SciTech Connect

    Vandermeulen, J.H.; Ross, C.W.

    1995-08-01

    A wide variety of cleanup methods has been used following oil spillage in freshwater environments, but in few cases has there been rigorous follow-up assessment of the possible environmental impact of these methods per se. Where impact of cleanup has been considered, it was largely in the context of effectiveness of oil removal, and rarely to determine any negative environmental impact that the cleanup itself might have. A review of a number of documented oil spill incidents in freshwater environments revealed the following. (1) Follow-up monitoring of spill cleanup has not been seen as a formal or integral part of the cleanup procedure, nor as a regular part of either federal or local governmental spill response. (2) Spill response in the freshwater environment has been guided largely by knowledge gained from marine spill response, and from other environmental fields, despite significant differences between freshwater and marine conditions. (3) Cleanup activities do cause environmental impacts, over and above the impact of the oiling. These include impacts on regrowth of shoreline vegetation, entrainment and enhanced persistence of oil into river and marsh sediments, long-term oiling of creek and river beds resulting from certain methodologies, and impacts from disposal of oiled soils. (4) The {open_quotes}no-action{close_quotes} (i.e. self-clean) option does not appear as a formal response in freshwater spill situations, although there are situations where no cleanup may be considered a valid response option (for example, lightly oiled wetlands). (5) {open_quotes}Habitat rarity{close_quotes} as a separate factor in determining spill response, has had little discussion or application. 57 refs., 2 tabs.

  4. Plutonium mining for cleanup.

    PubMed

    Bramlitt, E T

    1988-08-01

    Cleanup is the act of making a contaminated site relatively free of Pu so it may be used without radiological safety restrictions. Contaminated ground is the focus of major cleanups. Cleanup traditionally involves determining Pu content of soil, digging up soil in which radioactivity exceeds guidelines, and relocating excised soil to a waste-disposal site. Alternative technologies have been tested at Johnston Atoll (JA), where there is as much as 100,000 m3 of Pu-contaminated soil. A mining pilot plant operated for the first 6 mo of 1986 and made 98% of soil tested "clean", from more than 40 kBq kg-1 (1000 pCi g-1) to less than about 500 Bq kg-1 (15 pCi g-1) by concentrating Pu in 2% of the soil. The pilot plant is now installed at the U.S. Department of Energy Nevada Test Site for evaluating cleanup of other contaminated soils and refining cleanup effectiveness. A full-scale cleanup plant has been programmed for JA in 1988. In this paper, previous cleanups are reviewed, and the mining endeavor at JA is detailed. "True soil cleanup" is contrasted with the classical "soil relocation cleanup." The mining technology used for Pu cleanup has been in use for more than a century. Mining for cleanup, however, is unique. It is envisioned as being prominent for radiological and other cleanups in the future. PMID:3410718

  5. Does environmental stability stimulate species renovation?

    NASA Astrophysics Data System (ADS)

    Casellato, C.; Erba, E.

    2009-04-01

    The Tithonian-Berriasian time interval is characterized by a major calcareous nannoplankton speciation episode: several coccolith and nannolith genera and species first appear and rapidly evolve, reaching a high diversity, abundance, and calcification degree. The history of calcareous nannoplankton indicates that times of accelerated rates of radiations (or extinctions) generally correlate with global changes in the geosphere, hydrosphere and atmosphere suggesting that evolutionary patterns are intimately linked to environmental modifications (Roth, 1989; Bown et al., 2004; Erba, 2006). Nevertheless, the Tithonian-Berriasian interval provides examples of intra- and intergeneric accelerated evolutionary rates (an origination event) during a time period of general environmental stability, in absence of coeval environmental change evidence. The Tithonian - Early Berriasian can be regarded as a "quiet" interval as far as the C cycle is concerned; the _13C curve shows a gradual minor decline after the Oxfordian anomalies and prior to the Valanginian event. The Tithonian-Berriasian speciation episode provides an excellent opportunity to study modo and tempo of calcareous nannoplankton evolution relative to absent environmental change, which is believed to be instrumental for driving biological evolution. Nannofossils have been investigated in sections from the Tethys and Atlantic oceans in order to discriminate among local, regional or global causes, and to verify possible diachroneity in calcareous phytoplankton evolution and/or in response to global changes. Calcareous nannofossil species richness, first and last occurrences and relative abundance were achieved. Different evolution modes have been proposed since Darwin's Evolutionary Theory: Phyletic Gradualism (Darwin, 1859), Punctuated Equilibrium (Gould & Eldredge, 1977) and Punctuated Gradualism (Malmgren et al., 1984). Phyletic gradualism holds that new species arise from slow, steady transformation of populations

  6. Streamlined sample cleanup using combined dispersive solid-phase extraction and in-vial filtration for analysis of pesticides and environmental pollutants in shrimp.

    PubMed

    Han, Lijun; Sapozhnikova, Yelena; Lehotay, Steven J

    2014-05-27

    A new method of sample preparation was developed and is reported for the first time. The approach combines in-vial filtration with dispersive solid-phase extraction (d-SPE) in a fast and convenient cleanup of QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts. The method was applied to simultaneous analysis of 42 diverse pesticides and 17 environmental contaminants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls (PCBs), and flame retardants, in shrimp as the sample matrix. Final extracts were analyzed by both low-pressure gas chromatography - triple quadrupole tandem mass spectrometry (LPGC-MS/MS), and high-performance liquid chromatography - triple quadrupole tandem mass spectrometry (HPLC-MS/MS) to provide a wide scope of analysis for targeted analytes. During method development, several different commercial sorbents for d-SPE were investigated and compared with respect to analyte recoveries. The method was validated at 10, 50, and 100 ng g(-1) spiking levels (10-fold lower for PCBs), and the results for nearly all analytes were between 70 and 115% recoveries with ≤17% relative standard deviations. The method was shown to be simple, fast, and effective for multi-application analysis of chemical residues in the representative food and environmental marker matrix. PMID:24832993

  7. Does Environmental Heterogeneity Promote Cognitive Abilities?

    PubMed

    González-Gómez, Paulina L; Razeto-Barry, Pablo; Araya-Salas, Marcelo; Estades, Cristian F

    2015-09-01

    In the context of global change the possible loss of biodiversity has been identified as a major concern. Biodiversity could be seriously threatened as a direct consequence of changes in availability of food, changing thermal conditions, and loss and fragmentation of habitat. Considering the magnitude of global change, an understanding of the mechanisms involved in coping with a changing environment is urgent. We explore the hypothesis that species and individuals experiencing highly variable environments are more likely to develop a wider range of responses to handle the different and unpredictable conditions imposed by global change. In the case of vertebrates, the responses to the challenges imposed by unpredictable perturbations ultimately are linked to cognitive abilities allowing the solving of problems, and the maximization of energy intake. Our models were hummingbirds, which offer a particularly compelling group in which to examine the functional and mechanistic links between behavioral and energetic strategies in individuals experiencing different degrees of social and environmental heterogeneity. PMID:26082484

  8. International technology catalogue: Foreign technologies to support the environmental restoration and waste management needs of the DOE complex

    SciTech Connect

    Matalucci, R.V.; Jimenez, R.D.; Esparza-Baca, C.

    1995-07-01

    This document represents a summary of 27 foreign-based environmental restoration and waste management technologies that have been screened and technically evaluated for application to the cleanup problems of the Department of Energy (DOE) nuclear weapons complex. The evaluation of these technologies was initiated in 1992 and completed in 1995 under the DOE`s International Technology Coordination Program of the Office of Technology Development. A methodology was developed for conducting a country-by-country survey of several regions of the world where specific environmental technology capabilities and market potential were investigated. The countries that were selected from a rank-ordering process for the survey included: then West Germany, the Netherlands, France, Japan, Taiwan, the Czech and Slovak Republics, and the Former Soviet Union. The notably innovative foreign technologies included in this document were screened initially from a list of several hundred, and then evaluated based on criteria that examined for level of maturity, suitability to the DOE needs, and for potential cost effective application at a DOE site. Each of the selected foreign technologies that were evaluated in this effort for DOE application were subsequently matched with site-specific environmental problem units across the DOE complex using the Technology Needs Assessment CROSSWALK Report. For ease of tracking these technologies to site problem units, and to facilitate their input into the DOE EnviroTRADE Information System, they were categorized into the following three areas: (1) characterization, monitoring and sensors, (2) waste treatment and separations, and (3) waste containment. Technical data profiles regarding these technologies include title and description, performance information, development status, key regulatory considerations, intellectual property rights, institute and contact personnel, and references.

  9. Rapid and effective sample cleanup based on graphene oxide-encapsulated core-shell magnetic microspheres for determination of fifteen trace environmental phenols in seafood by liquid chromatography-tandem mass spectrometry.

    PubMed

    Pan, Sheng-Dong; Chen, Xiao-Hong; Shen, Hao-Yu; Li, Xiao-Ping; Cai, Mei-Qiang; Zhao, Yong-Gang; Jin, Mi-Cong

    2016-05-01

    In this study, graphene oxide-encapsulated core-shell magnetic microspheres (GOE-CS-MM) were fabricated by a self-assemble approach between positive charged poly(diallyldimethylammonium) chloride (PDDA)-modified Fe3O4@SiO2 and negative charged GO sheets via electrostatic interaction. The as-prepared GOE-CS-MM was carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer analysis (VSM), and X-ray photoelectron spectroscopy (XPS), and was used as a cleanup adsorbent in magnetic solid-phase extraction (MSPE) for determination of 15 trace-level environmental phenols in seafood coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS). The obtained results showed that the GOE-CS-MM exhibited excellent cleanup efficiency and could availably reduce the matrix effect. The cleanup mechanisms were investigated and referred to π-π stacking interaction and hydrogen bond between GOE-CS-MM and impurities in the extracts. Moreover, the extraction and cleanup conditions of GOE-CS-MM toward phenols were optimized in detail. Under the optimized conditions, the limits of detection (LODs) were found to be 0.003-0.06 μg kg(-1), and satisfactory recovery values of 84.8-103.1% were obtained for the tested seafood samples. It was confirmed that the developed method is simple, fast, sensitive, and accurate for the determination of 15 trace environmental phenols in seafood samples. PMID:27086097

  10. Environmental Restoration Program project management plan for the DOE Oak Ridge Field Office Major System Acquisition OR-1. Revision 1, Environmental Restoration Program

    SciTech Connect

    Not Available

    1992-12-01

    In the early 1940s, the Manhattan Project was conducted in a regulatory and operational environment less sophisticated than today. Less was known of the measures needed to protect human health and safety and the environment from the dangers posed by radioactive and hazardous wastes, and experience in dealing with these hazardous materials has grown slowly. Certain hazards were recognized and dealt with from the beginning. However, the techniques used, though standard practices at the time, are now known to have been inadequate. Consequently, the DOE has committed to an aggressive program for cleaning up the environment and has initiated an Environmental Restoration Program involving all its field offices. The objective of this program is to ensure that inactive and surplus DOE facilities and sites meet current standards to protect human health and the environment. The objective of these activities is to ensure that risks posed to human health and safety and the environment by inactive sites and surplus facilities contaminated with radioactive, hazardous, and/or mixed wastes are either eliminated or reduced to prescribed safe levels. This Project Management Plan for Major System Acquisition OR-1 Project documents, communicates, and contributes to the evolution of, the management organizations, systems, and tools necessary to carry out effectively the long-range complex cleanup of the DOE sites on the Oak Ridge Reservation, and at the Paducah, Kentucky, and Piketon, Ohio, uranium enrichment plants managed by the Department of Energy Oak Ridge Field Office; the cleanup of off-site contamination resulting from past releases; and the Decontamination and Decommissioning of surplus DOE facilities at these installations.

  11. Summary of proposed approach for deriving cleanup guidelines for radionuclides in soil at Brookhaven National Laboratory

    SciTech Connect

    Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

    1996-11-01

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL`s Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory, carried out under an Interagency Agreement (IAG) with the United States Department of Energy (DOE), the United States Environmental Protection Agency (EPA) and the New York State Department of Environmental Conservation (NYSDEC). The objective of this paper is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL.

  12. The strategic planning initiative for accelerated cleanup of Rocky Flats

    SciTech Connect

    Lee, E.; Timm, C.; Corrigan, W.

    1994-12-31

    The difficulties associated with the congressional funding cycles, regulatory redirection, remediation schedule deadlines, and the lack of a mixed waste (MW) repository have adversely impacted the environmental restoration (ER) program across the entire U.S. Department of Energy (DOE) complex including Rocky Flats Plant (RFP). In an effort to counteract and reduce the impacts of these difficulties, RFP management saw the need for developing a revised ER Program. The objective of the revised ER approach is to identify an initiative that would accelerate the cleanup process and reduce costs without compromising either protection of human health or the environment. A special analysis with that assigned objective was initiated in June 1993 using a team that included DOE Headquarters and Rocky Flats Field Office (RFFO), EG&G personnel, and experts from nationally recognized ER firms. The analysis relied on recent regulatory and process innovations such as DOE`s Streamlined Approach for Environmental Restoration (SAFER) and EPA`s Superfund Accelerated Cleanup Model (SACM) and Corrective Action Management Units (CAMU). The analysis also incorporated other ongoing improvements efforts initiated by RFP, such as the Quality Action Team and the Integrated Planning Process.

  13. Check on level of environmental contamination by mercury and cleanup of Abetina Mining area (Grosseto-Italia)

    SciTech Connect

    Belardi, G.; Marabini, A.M.; Passariello, B.

    1996-12-31

    The purpose of the study was to check on the level of environmental contamination and to design a project for cleaning up the Abetina Mine area at Piancastagnaio (Grosseto, Italy). Contamination of this area had occurred during the mining and treatment of cinnabar (HgS) over a prolonged period. The aim of the project is to remove the sources of contamination or render them harmless. Mining of the Piancastagnaio deposit started in 1840, mercury metal being extracted from the ore by thermal treatment. Together with Spain, Italy was the first country to produce this metal and was the world leader in this field between 1936 and 1943. Though mercury production in the Monte Amiata region of Tuscany ceased in 1974 the ensuing environmental impact is very evident, taking the form of rusty old mining and processing works, plus waste tips which still contain considerable amount of mercury even after the ore had been subject to thermal extraction treatment. The research which has been conducted included mapping the area to identify the main sources of mercury and arsenic pollution, as well as the level of environmental contamination. Mercury and arsenic values in excess of 16,000 and 150 ppm respectively are encountered in the most highly-contaminated places. 11 refs., 6 figs., 2 tabs.

  14. All hazardous waste politics is local: Grass-roots advocacy and public participation in siting and cleanup decisions

    SciTech Connect

    Lowry, R.C.

    1998-12-31

    The combined effects of federalism and interest group pluralism pose particularly difficult problems for hazardous waste siting and cleanup decisions. Most national environmental groups have only limited involvement in local hazardous waste politics, while local grass-roots advocates have very different interests and sometimes are pitted against one another. Both the Environmental protection Agency and the Department of energy recently have begun to use site-specific citizen advisory boards at cleanup sites. This approach appears to improve communications at some sites, but does not address the issues of ``not in my back yard`` politics and alleged inequitable exposure to hazardous wastes.

  15. 2003 U.S. Department of Energy Strategic Plan: Protecting National, Energy, and Economic Security with Advanced Science and Technology and Ensuring Environmental Cleanup

    SciTech Connect

    None,

    2003-09-30

    The Department of Energy contributes to the future of the Nation by ensuring energy security, maintaining the safety, security and reliability of the nuclear weapons stockpile, cleaning up the environment from the legacy of the Cold War, and developing innovations in science and technology. After 25 years in existence, the Department now operates 24 preeminent research laboratories and facilities and four power marketing administrations, and manages the environmental cleanup from 50 years of nuclear defense activities that impacted two million acres in communities across the country. The Department has an annual budget of about $23 billion and employs about 14,500 Federal and 100,000 contractor employees. The Department of Energy is principally a national security agency and all of its missions flow from this core mission to support national security. That is true not just today, but throughout the history of the agency. The origins of the Department can be traced to the Manhattan Project and the race to develop the atomic bomb during World War II. Following the war, Congress engaged in a vigorous and contentious debate over civilian versus military control of the atom. The Atomic Energy Act of 1946 settled the debate by creating the Atomic Energy Commission, which took over the Manhattan Project’s sprawling scientific and industrial complex.

  16. Rocky Flats Cleanup Agreement implementation successes and challenges

    SciTech Connect

    Shelton, D.C.

    1997-02-01

    On July 19, 1996 the US Department of Energy (DOE), State of Colorado (CDPHE), and US Environmental Protection Agency (EPA) entered into an agreement called the Rocky Flats Cleanup Agreement (RFCA) for the cleanup and closure of the Rocky Flats Environmental Technology Site (RFETS or Rocky Flats). Major elements of the agreement include: an Integrated Site-Wide Baseline; up to twelve significant enforceable milestones per year; agreed upon soil and water action levels and standards for cleanup; open space as the likely foreseeable land use; the plutonium and TRU waste removed by 2015; streamlined regulatory process; agreement with the Defense Nuclear Facilities Safety Board (DNFSB) to coordinate activities; and a risk reduction focus. Successful implementation of RFCA requires a substantial effort by the parties to change their way of thinking about RFETS and meet the deliverables and commitments. Substantial progress toward Site closure through the implementation of RFCA has been accomplished in the short time since the signing, yet much remains to be done. Much can be learned from the Rocky Flats experience by other facilities in similar situations.

  17. Performance objectives and criteria for conducting DOE environmental audits

    SciTech Connect

    1994-01-01

    This document contains the Performance Objectives and Criteria (POC) that have been developed for environmental audits and assessments conducted by the Office of the Assistant Secretary for Environment, Safety and Health. The Environmental POC can serve multiple purposes. Primarily, they are to serve as guidelines for the technical specialists conducted the audits and assessments, and for the team management. The POC can also serve as supporting documents for training of technical discipline specialists and Team Leaders and as bases for DOE programs and field offices and contractors conducting audit or assessment activities or improving environmental protection programs. It must be recognized that not all of the POC will necessarily apply to all DOE facilities. The users of this document must rely upon their knowledge of the facility and their professional judgment, or the judgment of qualified environmental professionals to determine the applicability of each POC. The POC cover eleven technical disciplines: air; surface water and drinking water quality; groundwater; waste management; toxic and chemical materials; radiation; quality assurance; inactive waste sites and releases; ecological and cultural resources; the National Environmental Policy Act (NEPA); and environmental management systems.

  18. [DOE method for evaluating environmental and waste management samples: Revision 1, Addendum 1

    SciTech Connect

    Goheen, S.C.

    1995-04-01

    The US Dapartment of Energy`s (DOE`s) environmental and waste management (EM) sampling and analysis activities require that large numbers of samples be analyzed for materials characterization, environmental surveillance, and site-remediation programs. The present document, DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods), is a supplemental resource for analyzing many of these samples.

  19. In-situ mineralization of actinides for groundwater cleanup: Laboratory demonstration with soil from the Fernald Environmental Management Project

    SciTech Connect

    Nash, K.L.; Jensen, M.P.; Schmidt, M.A.

    1997-11-01

    An attractive approach to decreasing the probability of actinide migration in the subsurface is to transform the ions into less mobile forms by remote treatment. The process described herein relies on a polyfunctional organophosphorus complexant to sequester the mobile metal ions by complexation/cation exchange in the near term. The cation exchanger is designed to subsequently decompose, transforming the actinides into insoluble phosphate mineral forms as the medium of stable long-term isolation. This material can be generated in situ in the subsurface thus eliminating the need for excavation to immobilize the actinide ions. Previous investigations have identified a suitable organophosphorus reagent and profiled its decomposition kinetics, verified the formation of phosphate mineral phases upon decomposition of the reagent, determined solubility limits for appropriate metal phosphates under groundwater conditions, and examined the cation exchange behavior of the calcium salt of the organophosphorus reagent. In this report, the focus is on a laboratory-scale demonstration of the concept using a soil sample from the Fernald Environmental Management Plant.

  20. TREATMENT TECHNOLOGIES FOR SITE CLEANUP: ANNUAL STATUS REPORT, 11TH EDITION

    EPA Science Inventory

    This report documents the status of treatment technology applications at more than 900 soil and groundwater cleanup projects in EPA's Superfund and RCRA, DOE, and DoD cleanup programs. The report updates the projects included in the previous edition.

  1. 25 Years Of Environmental Remediation In The General Separations Area Of The Savannah River Site: Lessons Learned About What Worked And What Did Not Work In Soil And Groundwater Cleanup

    SciTech Connect

    Blount, Gerald; Thibault, Jeffrey; Millings, Margaret; Prater, Phil

    2015-03-16

    The Savannah River Site (SRS) is owned and administered by the US Department of Energy (DOE). SRS covers an area of approximately 900 square kilometers. The General Separation Area (GSA) is located roughly in the center of the SRS and includes: radioactive material chemical separations facilities, radioactive waste tank farms, a variety of radioactive seepage basins, and the radioactive waste burial grounds. Radioactive wastes were disposed in the GSA from the mid-1950s through the mid-1990s. Radioactive operations at the F Canyon began in 1954; radioactive operations at H Canyon began in 1955. Waste water disposition to the F and H Seepage Basins began soon after operations started in the canyons. The Old Radioactive Waste Burial Ground (ORWBG) began operations in 1952 to manage solid waste that could be radioactive from all the site operations, and ceased receiving waste in 1972. The Mixed Waste Management Facility (MWMF) and Low Level Radioactive Waste Disposal Facility (LLRWDF) received radioactive solid waste from 1969 until 1995. Environmental legislation enacted in the 1970s, 1980s, and 1990s led to changes in waste management and environmental cleanup practices at SRS. The US Congress passed the Clean Air Act in 1970, and the Clean Water Act in 1972; the Resource Conservation and Recovery Act (RCRA) was enacted in 1976; the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA) was enacted by Congress in 1980; the Federal Facilities Compliance Act (FFCA) was signed into law in 1992. Environmental remediation at the SRS essentially began with a 1987 Settlement Agreement between the SRS and the State of South Carolina (under the South Carolina Department of Health and Environmental Control - SCDHEC), which recognized linkage between many SRS waste management facilities and RCRA. The SRS manages several of the larger groundwater remedial activities under RCRA for facilities recognized early on as environmental problems. All subsequent

  2. Environmental Management Performance Report to DOE-RL November 2001

    SciTech Connect

    EDER, D.M.

    2001-11-01

    The purpose of the Environmental Management Performance Report (EMPR) is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's Environmental Management (EM) performance by: Project Hanford Management Contract (PHMC) through Fluor Hanford, Inc. (FH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology support to the EM Mission. This report is a monthly publication that summarizes EM Site performance under RL Operations Office. It is organized by the three sections listed above, with each section containing an Executive Summary and Area Performance Summaries. A glossary of terms is provided at the end of this report for reference purposes.

  3. Environmental Management Performance Report to DOE-RL February 2001

    SciTech Connect

    EDER, D.M.

    2001-02-01

    The purpose of the Environmental Management Performance Report (EMPR) is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's Environmental Management (EM) performance by: Project Hanford Management Contract (PHMC) through Fluor Hanford. Inc. (FH) and its subcontractors; Environmental Restoration Contract through Bechtel Hanford. Inc. (BHI), and its subcontractors; and Pacific Northwest National Laboratories (PNNL) for Science and Technology support to the EM Mission. This report is a monthly publication that summarizes EM Site performance under RL, Operations Office. It is organized by the three sections listed above, with each section containing an Executive Summary and Area Performance Summaries. A glossary of terms is provided at the end of this report for reference purposes.

  4. Environmental Management Performance Report to DOE-RL August 2001

    SciTech Connect

    EDER, D.M.

    2001-08-01

    The purpose of the Environmental Management Performance Report (EMPR) is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's Environmental Management (EM) performance by: Project Hanford Management Contract (PHMC) through Fluor Hanford, Inc. (FH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology support to the EM Mission. This report is a monthly publication that summarizes EM Site performance under RL Operations Office. It is organized by the three sections listed above, with each section containing an Executive Summary and Area Performance Summaries. A glossary of terms is provided at the end of this report for reference purposes.

  5. Appendices to report on DOE analytical laboratory capacity available to meet EM environmental sampling and analysis needs for FY 93-99

    SciTech Connect

    Not Available

    1994-11-30

    The DOE Analytical Laboratory Capacity Study was conducted to give EM-263 current information about existing and future analytical capacities and capabilities of site laboratories within the DOE Complex. Each DOE site may have one or more analytical laboratories in operation. These facilities were established to support site missions such as production, research and development, and personnel and environmental monitoring. With changing site missions and the DOE directives for environmental monitoring and cleanup, these laboratories are either devoting or planning to devote resources to support EM activities. The DOE site laboratories represent a considerable amount of capital investment and analytical capability, capacity, and expertise that can be applied to support the EM mission. They not only provide cost-effective high-volume analytical laboratory services, but are also highly recognized analytical research and development centers. Several sites have already transferred their analytical capability from traditional production support to environmental monitoring and waste management support. A model was developed to determine the analytical capacity of all laboratories in the DOE Complex. The model was applied at nearly all the major laboratories and the results collected from these studies are summarized in this report.

  6. Continuing Clean-up at Oak Ridge, Portsmouth and Paducah-Successes and Near-Term Plans

    SciTech Connect

    Fritz, L. L.; Houser, S. M.; Starling, D. A.

    2002-02-26

    This paper describes the complexities and challenges associated with the Oak Ridge Environmental Management (EM) cleanup program and the steps that DOE and Bechtel Jacobs Company LLC (the Oak Ridge EM team) have collaboratively taken to make significant physical progress and get the job done. Maintaining significant environmental cleanup progress is a daunting challenge for the Oak Ridge EM Team. The scale and span of the Oak Ridge Operations (ORO) cleanup is immense-five major half-century-old installations in three states (three installations are complete gaseous diffusion plants), with concurrent cleanup at the fully operational Oak Ridge National Laboratory and Y-12 National Security Complex, and with regulatory oversight from three states and two United States (US) Environmental Protection Agency (EPA) Regions. Potential distractions arising from funding fluctuations and color-of-money constraints, regulatory negotiations, stakeholder issues, or any one of a number of other potential delay phenomena can not reduce the focus on safely achieving project objectives to maintain cleanup momentum.

  7. TECHNICAL RISK RATING OF DOE ENVIRONMENTAL PROJECTS - 9153

    SciTech Connect

    Cercy, M; Ronald Fayfich, R; Steven P Schneider, S

    2008-12-12

    The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. The scope of work is diverse, with projects ranging from single acquisitions to collections of projects and operations that span several decades and costs from hundreds of millions to billions US$. The need to be able to manage and understand the technical risks from the project to senior management level has been recognized as an enabler to successfully completing the mission. In 2008, DOE-EM developed the Technical Risk Rating as a new method to assist in managing technical risk based on specific criteria. The Technical Risk Rating, and the criteria used to determine the rating, provides a mechanism to foster open, meaningful communication between the Federal Project Directors and DOE-EM management concerning project technical risks. Four indicators (technical maturity, risk urgency, handling difficulty and resolution path) are used to focus attention on the issues and key aspects related to the risks. Pressing risk issues are brought to the forefront, keeping DOE-EM management informed and engaged such that they fully understand risk impact. Use of the Technical Risk Rating and criteria during reviews provides the Federal Project Directors the opportunity to openly discuss the most significant risks and assists in the management of technical risks across the portfolio of DOE-EM projects. Technical Risk Ratings can be applied to all projects in government and private industry. This paper will present the methodology and criteria for Technical Risk Ratings, and provide specific examples from DOE-EM projects.

  8. Technical Risk Rating of DOE Environmental Projects - 9153

    SciTech Connect

    Cercy, Michael; Fayfich, Ronald; Schneider, Steven

    2009-02-11

    The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. The scope of work is diverse, with projects ranging from single acquisitions to collections of projects and operations that span several decades and costs from hundreds of millions to billions US$. The need to be able to manage and understand the technical risks from the project to senior management level has been recognized as an enabler to successfully completing the mission. In 2008, DOE-EM developed the Technical Risk Rating as a new method to assist in managing technical risk based on specific criteria. The Technical Risk Rating, and the criteria used to determine the rating, provides a mechanism to foster open, meaningful communication between the Federal Project Directors and DOE-EM management concerning project technical risks. Four indicators (technical maturity, risk urgency, handling difficulty and resolution path) are used to focus attention on the issues and key aspects related to the risks. Pressing risk issues are brought to the forefront, keeping DOE-EM management informed and engaged such that they fully understand risk impact. Use of the Technical Risk Rating and criteria during reviews provides the Federal Project Directors the opportunity to openly discuss the most significant risks and assists in the management of technical risks across the portfolio of DOE-EM projects. Technical Risk Ratings can be applied to all projects in government and private industry. This paper will present the methodology and criteria for Technical Risk Ratings, and provide specific examples from DOE-EM projects.

  9. DEVELOPMENT AND APPLICATION OF IMMUNOAFFINITY COLUMN CHROMATOGRAPHY AS A CLEANUP METHOD FOR THE DETERMINATION OF ATRAZINE IN COMPLEX ENVIRONMENTAL SAMPLE MEDIA

    EPA Science Inventory

    A rabbit antibody immunoaffinity (IA) column procedure was evaluated as a cleanup method for the determination of atrazine in soil, sediment, and food. Four IA columns were prepared by immobilizing a polyclonal rabbit anti-atrazine antibody solution to HiTrap Sepharose columns. A...

  10. Streamlined sample cleanup using combined dispersive solid-phase extraction and in-vial filtration for analysis of pesticides and environmental pollutants in shrimp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new method of sample preparation was developed and is reported for the first time. The approach combines in-vial filtration with dispersive solid-phase extraction (d-SPE) in a fast and convenient cleanup of QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts. The method was appli...

  11. Nuclear Materials Stewardship Within the DOE Environmental Management Program

    SciTech Connect

    Bilyeu, J. D.; Kiess, T. E.; Gates, M. L.

    2002-02-26

    The Department of Energy (DOE) Environmental Management (EM) Program has made significant progress in planning disposition of its excess nuclear materials and has recently completed several noteworthy studies. Since establishment in 1997, the EM Nuclear Material Stewardship Program has developed disposition plans for excess nuclear materials to support facility deactivation. All nuclear materials have been removed from the Miamisburg Environmental Management Project (Mound), and disposition planning is nearing completion for the Fernald Environmental Management Project and the Rocky Flats Environmental Technology Site. Only a few issues remain for materials at the Hanford and Idaho sites. Recent trade studies include the Savannah River Site Canyons Nuclear Materials Identification Study, a Cesium/Strontium Management Alternatives Trade Study, a Liquid Technical Standards Trade Study, an Irradiated Beryllium Reflectors with Tritium study, a Special Performance Assessment Required Trade Study, a Neutron Source Trade Study, and development of discard criteria for uranium. A Small Sites Workshop was also held. Potential and planned future activities include updating the Plutonium-239 storage study, developing additional packaging standards, developing a Nuclear Material Disposition Handbook, determining how to recover or dispose of Pu-244 and U-233, and working with additional sites to define disposition plans for their nuclear materials.

  12. Relative risk impacts of facility accidents in DOE`s Environmental Restoration and Waste Management Program

    SciTech Connect

    Mueller, C.

    1994-12-31

    The Office of Environmental Restoration and Waste Management (EM) within the U.S. Department of Energy (DOE) is formulating an integrated national program to manage the treatment, storage, and disposal of existing and future wastes at DOE sites. As part of this process, a Programmatic Environmental Impact Statement (PEIS) is being prepared. A principal focus of the EM PEIS is the evaluation of strategies for remediating DOE sites and facilities to ensure the protection of human health and environment. A specific objective of DOE in implementing an integrated waste management program is to {open_quotes}reduce or eliminate risks to human health and safety and to the environment for environmental restoration and waste operation activities.{close_quotes} The EM PEIS calls for separate evaluations of the risk impacts for managing six different waste types: greater-than-Class-C low-level, hazardous, high-level, low-level mixed, low-level, and transuranic. For each waste type, four categorical strategies have been devised for consolidating wastes for treatment and storage: (a) no action, where existing sites will generally store and treat their own wastes consistent with approved plans, (b) decentralization, (c) regionalization, and (d) centralization. The last three alternatives refer to the degree of consolidation and affect the number of sites that will be used to treat, store, and dispose of a given waste type. Each consolidation strategy has associated siting options, and each option involves existing facilities, facilities in the design phase, and new facilities. Each siting option also implies unique inventories of waste to be stored and treated at each site and associated facilities. Finally, a number of treatment technologies and storage and disposal options for each waste type are to be evaluated for each alternative.

  13. DOE Chair of Excellence Professorship in Environmental Disciplines

    SciTech Connect

    Shoou-Yuh Chang

    2013-01-31

    The United States (US) nuclear weapons program during the Cold War left a legacy of radioactive, hazardous, chemical wastes and facilities that may seriously harm the environment and people even today. Widespread public concern about the environmental pollution has created an extraordinary demand for the treatment and disposal of wastes in a manner to protect the public health and safety. The pollution abatement and environmental protection require an understanding of technical, regulatory, economic, permitting, institutional, and public policy issues. Scientists and engineers have a major role in this national effort to clean our environment, especially in developing alternative solutions and evaluation criteria and designing the necessary facilities to implement the solutions. The objective of the DOE Chair of Excellence project is to develop a high quality educational and research program in environmental engineering at North Carolina A&T State University (A&T). This project aims to increase the number of graduate and undergraduate students trained in environmental areas while developing a faculty concentrated in environmental education and research. Although A&T had a well developed environmental program prior to the Massie Chair grant, A&T's goal is to become a model of excellence in environmental engineering through the program's support. The program will provide a catalyst to enhance collaboration of faculty and students among various engineering departments to work together in a focus research area. The collaboration will be expanded to other programs at A&T. The past research focus areas include: hazardous and radioactive waste treatment and disposal fate and transport of hazardous chemicals in the environment innovative technologies for hazardous waste site remediation pollution prevention Starting from 2005, the new research focus was in the improvement of accuracy for radioactive contaminant transport models by ensemble based data assimilation. The

  14. Computer models used to support cleanup decision-making at hazardous and radioactive waste sites

    SciTech Connect

    Moskowitz, P.D.; Pardi, R.; DePhillips, M.P.; Meinhold, A.F.

    1992-07-01

    Massive efforts are underway to cleanup hazardous and radioactive waste sites located throughout the US To help determine cleanup priorities, computer models are being used to characterize the source, transport, fate and effects of hazardous chemicals and radioactive materials found at these sites. Although, the US Environmental Protection Agency (EPA), the US Department of Energy (DOE), and the US Nuclear Regulatory Commission (NRC) have provided preliminary guidance to promote the use of computer models for remediation purposes, no Agency has produced directed guidance on models that must be used in these efforts. To identify what models are actually being used to support decision-making at hazardous and radioactive waste sites, a project jointly funded by EPA, DOE and NRC was initiated. The purpose of this project was to: (1) Identify models being used for hazardous and radioactive waste site assessment purposes; and (2) describe and classify these models. This report presents the results of this study.

  15. Proposed framework for cleanup and site restoration following a terrorist incident involving radioactive material.

    PubMed

    Conklin, W Craig

    2005-11-01

    Cleanup following a terrorism incident involving a radiological dispersal device (RDD) or improvised nuclear device (IND) is likely to be technically challenging, costly, and politically charged. Lessons learned from the Top Officials 2 exercise and the increased threat of terrorist use of an RDD or IND have driven federal officials to push for an agreed-upon process for determining appropriate cleanup levels. State and local authorities generally have the ultimate responsibility for final public health decisions in their jurisdictions. In response to terrorist attacks, local authorities are likely to request federal assistance in assessing the risk and establishing appropriate cleanup levels. It is realistic to expect local and state requests for significant federal assistance in planning and implementing recovery operations. State and local authorities may desire "shared accountability" with the federal government in setting the appropriate cleanup levels. Government officials at all levels will face pressure to say how clean is clean enough and how quickly people can re-enter affected areas. Issues arising include (1) the nature of the relationship between the federal, state, and local leadership involved in the recovery efforts and (2) where the funding for recovery comes from. Many agencies, including the U.S. Environmental Protection Agency (EPA), the U.S. Nuclear Regulatory Commission (NRC), and the U.S. Department of Energy (DOE) have long been involved in cleanup activities involving radioactive materials. These agencies have recognized the need for a participatory process and realize the need to remain flexible when faced with possible unprecedented environmental challenges following a terrorist attack. Currently, the Department of Homeland Security has a committee process underway, with participation of the EPA, NRC, DOE, and other federal agencies, to try to resolve these issues and to begin engaging state, local, and tribal governments, and others as

  16. Ten-year cleanup of U.S. Department of Energy weapon sites: The changing roles for technology development in an era of privatization

    SciTech Connect

    Taylor, L.H.

    1996-12-31

    In its beginning, the U.S. Department of Energy (DOE) Office of Environmental Management (EM) viewed private industry as lacking adequate technology know-how to meet demands of hazardous and radioactive waste problems at the DOE`s laboratories and nuclear weapons production facilities. In November 1989, EM`s Office of Technology Development (recently renamed the Office of Science and Technology) embarked on a bold program of developing and demonstrating {open_quotes}innovative{close_quotes} waste cleanup technologies that would be safer, faster, more effective, and less expensive than the {open_quotes}baseline{close_quotes} commercial methods. This program has engaged DOE sites, national laboratories, and universities to produce preferred solutions to the problems of handling and treating DOE wastes. More recently, much of this work has shifted to joint efforts with private industry partners to accelerate the use of newly developed technologies and to enhance existing commercial methods. To date, the total funding allocation to the Office of Science and Technology program has been about $2.8 billion. If the technology applications` projects of the EM Offices of Environmental Restoration and Waste Management are included, the total funding is closer to $4 billion. Yet, the environmental industry generally has not been very receptive to EM`s innovative technology offerings. And, essentially the same can be said for DOE sites. According to the U.S. General Accounting Office in an August 1994 report, {open_quotes}Although DOE has spent a substantial amount to develop waste cleanup technologies, little new technology finds its way into the agency`s cleanup actions{close_quotes}. The DOE Baseline Environmental Management Report estimated cleanups of DOE`s Cold War legacy of wastes to require the considerable cost of $226 billion over a period of 75 years. 1 tab.

  17. Opportunities for industry participation in DOE`s environmental management technology development program

    SciTech Connect

    Bedick, R.C.; Walker, J.S.

    1996-09-01

    METC has managed about 85 research, development, and demonstration projects on behalf of DOE-EM`s Office of Science and Technology that include those in each of the four major environmental remediation and waste management problem areas: subsurface contaminants (radionuclides, heavy metals, dense nonaqueous phase liquids); decontamination and decommissioning of facilities; high-level waste tank remediation; and mixed waste characterization/treament/disposal. All projects within the Industry Programs are phased or have optional tasks at specific go/no-go decision points, allowing DOE to make investment decisions at various points in the technology development cycle to ensure that we are meeting the technology development goals and the needs of the customer or end-user. This decision making process is formalized in a Technology Investment Decision Model. A brief summary is given of R&D requirements (technology needs) in each of the above-mentioned 4 problem areas.

  18. Integrated wastewater management planning for DOE`s Rocky Flats Environmental Technology Site

    SciTech Connect

    Hopkins, J.; Barthel, J.; Wheeler, M.; Conroy, K.

    1996-02-01

    Rocky Mountain Remediation Services, L.L.C. (RMRS), jointly formed by Morrison Knudsen Corporation and BNFL Inc., provides international experience in the nuclear, environmental, waste management, decontamination and decommissioning (D&D) , and project management industry. The company is currently the environmental restoration, waste management, and D&D subcontractor for Kaiser-Hill Company at the Rocky Flats Environmental Technology Site (RFETS). RMRS offers unique solutions and state-of-the-art technology to assist in resolving the issues that face industries today. RMRS has been working on methods to improve cost savings recognized at RFETS, through application of unique technologies and process engineering. RMRS prepared and is implementing a strategy that focused on identifying an approach to improve cost savings in current wastewater treatment systems and to define a low-cost, safe and versatile wastewater treatment system for the future. Development of this strategy, was targeted by Department of Energy (DOE) Headquarters, DOE Rocky Flats Field Office and Kaiser-Hill as a ``Project Breakthrough`` where old concepts were thrown out the door and the project goals and objectives were developed from the groundup. The objectives of the strategy developed in a project break through session with DOE included lower lifecycle costs, shutdown of one of two buildings at RFETS, Building 374 or Building 774, reduced government capital investment, and support of site closure program goals, identified as the site`s Accelerated Site Action Plan (ASAP). The recommended option allows for removal of water treatment functions from Building 374, the existing process wastewater treatment facility. This option affords the lowest capital cost, lowest unit operating cost, lowest technical management risk, greatest support of ASAP phasing and provides the greatest flexibility for design with unforeseen future needs.

  19. Reactor water cleanup system

    DOEpatents

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  20. Reactor water cleanup system

    DOEpatents

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  1. IOGCC/DOE oil and gas environmental workshop

    SciTech Connect

    Not Available

    1991-05-16

    The Interstate Oil and Gas Compact Commission (IOGCC) in cooperation with US Department of Energy (DOE) has developed a workshop format to allow state regulatory officials and industry representatives the opportunity to participate in frank and open discussions on issues of environmental regulatory compliance. The purpose in providing this forum is to assist both groups in identifying the key barriers to the economic recoverability of domestic oil and gas resources while adequately protecting human health and the environment. The following topics were discussed, groundwater protection; temporarily abandoned and idle wells; effluent discharges; storm water runoff; monitoring and compliance; wetlands; naturally occurring radioactive materials; RCRA reauthorization and oil pollution prevention regulation. At the conclusion, all of the participants were asked to complete a questionnaire which critiqued the day activities. A discussion of each of the issues is made a part of this report as is a summary of the critique questionnaire which were received.

  2. Application of safeguards technology in DOE's environmental restoration program

    SciTech Connect

    Eccleston, G.W.; Baker, M.P.; Hansen, W.R.; Lucas, M.C.; Markin, J.T.; Phillips, J.R.

    1990-01-01

    During the last two decades, the Department of Energy's Office of Safeguards and Security (DOE/OSS) has supported the research and development of safeguards systems analysis methodologies and nondestructive assay (NDS) technology for characterizing, monitoring, and accounting nuclear materials. This paper discusses methodologies and NDA instrumentation developed by the DOE/OSS program that could be applied in the Environmental Restoration Program. NDA instrumentation could be used for field measurements during site characterization and to monitor nuclear materials, heavy metals, and other hazardous materials during site remediation. Systems methodologies can minimize the expenditure of resources and help specify appropriate combinations of NDA instrumentation and chemical analyses to characterize a variety of materials quickly and reduce personnel exposure in hazardous environments. A training program is available to teach fundamental and advanced principles and approaches to characterize and quantify nuclear materials properly and to organize and analyze measurement information for decision making. The ability to characterize the overall volume and distribution of materials at a waste site is difficult because of the inhomogeneous distribution of materials, the requirement for extreme sensitivity, and the lack of resources to collect and chemically analyze a sufficient number of samples. Using a systems study approach based on statistical sampling, the resources necessary to characterize a site can be enhanced by appropriately combining in situ and field NDA measurements with laboratory analyses. 35 refs., 1 figs., 2 tabs.

  3. IOGCC/DOE oil and gas environmental workshop

    SciTech Connect

    Not Available

    1991-12-31

    The Interstate Oil and Gas Compact Commission (IOGCC) in cooperation with US Department of Energy (DOE) has developed a workshop format to allow state regulatory officials and industry representatives the opportunity to participate in frank and open discussions on issues of environmental regulatory compliance. The purpose of providing this forum is to assist both groups in identifying the key barriers to the economic recoverability of domestic oil and gas resources while adequately protecting human health and the environment. The IOGCC and DOE staff worked with key state and industry representatives to develop a list of appropriate regulatory and industry representatives to be invited to participate. These same industry and regulatory representatives also provided a prioritized list of topics to be discussed at this workshop. After the topic leader set out the issue, views of those present were solicited. In almost every case, both the industry representatives and the regulatory personnel spoke with candor in discussing the problems. Common points of discussion for each topic were: (1) conflicting state and federal regulations; (2) conflicting regulations or permit requirements established by different state agencies; (3) increasing compliance costs; and (4) regulatory constraints that will result in ``no net growth`` in California oil and gas production and more likely a net decrease. This report contains a copy of the written presentation for each topic as well as a summary of the participants discussion.

  4. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Complex 34, Greg Beyke, with Current Environmental Solutions, talks to representatives from environmental and federal agencies about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site.

  5. DOE safety and health initiatives. Hearing before the Subcommittee on Energy of the Committee on Science, Space, and Technology, US House of Representatives, One Hundred Third Congress, First Session, October 21, 1993

    SciTech Connect

    Not Available

    1994-01-01

    These hearings discuss worker safety and health protection at US DOE. The focus is effective and safe cleanup at the weapons complex as a model for protecting workers engaged in hazardous waste operations and environmental remediation.

  6. HANFORD SITE RIVER CORRIDOR CLEANUP

    SciTech Connect

    BAZZELL, K.D.

    2006-02-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

  7. Cleanup levels for Am-241, Pu-239, U-234, U-235 & U-238 in soils at the Rocky Flats Environmental Technology Site

    SciTech Connect

    Roberts, R.; Colby, B.; Brooks, L.; Slaten, S.

    1997-07-03

    This presentation briefly outlines a cleanup program at a Rocky Flats site through viewgraphs and an executive summary. Exposure pathway analyses to be performed are identified, and decontamination levels are listed for open space and office worker exposure areas. The executive summary very briefly describes the technical approach, RESRAD computer code to be used for analyses, recommendations for exposure levels, and application of action levels to multiple radionuclide contamination. Determination of action levels for surface and subsurface soils, based on radiation doses, is discussed. 1 tab.

  8. HOT GAS CLEANUP PROCESS

    EPA Science Inventory

    The report gives results of a study to identify and classify 22 hot gas cleanup (HGC) processes for desulfurizing reducing gases at above 430 C according to absorbent type into groups employing solid, molten salt, and molten metal absorbents. It describes each process in terms of...

  9. Evaluation of gasification and gas-cleanup processes for use in molten-carbonate fuel-cell power plants. Task D topical report summary analyses

    SciTech Connect

    Vidt, E.J.

    1982-06-08

    In previous tasks, ten coal gas system configurations were chosen for fuel supply to MCFC power plants. In this report, we have ranked configurations by efficiency, investment, cost of electricity, operability, and environmental effects. The ranking shows that, for MCFC power plants, air-blown, low-Btu, fluidized-bed or entrained-bed gasification systems with hot gas cleanup have cost, operability, efficiency, and environmental advantages over other systems. The cost of electricity, for example, from a hot-gas cleanup, low-Btu, fluidized-bed fuel supply system is 12 percent less than from a medium-Btu system with hot cleanup, and is about 20 percent less than a medium-Btu system with conventional wet, low-temperature cleanup. Additional development of hot cleanup systems is required. Hot halogen removal costs used in this report need to have experimental verification, as does the effectiveness of ZnO for removing H/sub 2/S/COS to below 1 ppM at 650/sup 0/C. Also, the availability of a more effective hot bulk desulfurization system, such as the zinc ferrite system now under development by DOE/METC, would have additional benefits in cost and efficiency for MCFC power plants.

  10. Particulate Hot Gas Stream Cleanup Technical Issues

    SciTech Connect

    Potius, D.; Snyder, T.

    1997-07-01

    performance of APFS. During the past year, particulate samples have been characterized from the DOE/FETC Modular Gas Cleanup Rig (MGCR), the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota Energy and Environmental Research Center (UNDEERC), the Power Systems Development Facility (PSDF), and gasification studies conducted by Herman Research Pty. Ltd. (HRL) of Melbourne, Australia. This paper discusses these analyses and also presents a coherent mechanism describing how and why consolidated ash deposits form in PFBC filter vessels. This description is based on site observations made at the Tidd PFBC, field and laboratory analyses of ashes and nodules collected from Grimethorpe, Tidd and Karhula, and a review of literature describing eutectic formation, sintering, and consolidation of boiler tube deposits.

  11. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    SciTech Connect

    Not Available

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  12. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Complex 34, Cape Canaveral Air Station, several studies are under way for groundwater cleanup of trichloroethylene at the site. Shown here is monitoring equipment for one of the methods, potassium permanganate oxidation. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program in the 60s. The environmental research project involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA, who formed the Interagency NDAPL Consortium (IDC), to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies for representatives from environmental and federal agencies.

  13. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Complex 34, representatives from environmental and Federal agencies head for the block house during presentations about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site.

  14. A new tool for analysis of cleanup criteria decisions.

    PubMed

    Klemic, Gladys A; Bailey, Paul; Elcock, Deborah

    2003-08-01

    Radionuclides and other hazardous materials resulting from processes used in nuclear weapons production contaminate soil, groundwater, and buildings around the United States. Cleanup criteria for environmental contaminants are agreed on prior to remediation and underpin the scope and legacy of the cleanup process. Analysis of cleanup criteria can be relevant for future agreements and may also provide insight into a complex decision making process where science and policy issues converge. An Internet accessible database has been established to summarize cleanup criteria and related factors involved in U.S. Department of Energy remediation decisions. This paper reports on a new user interface for the database that is designed to integrate related information into graphic displays and tables with interactive features that allow exploratory data analysis of cleanup criteria. Analysis of 137Cs in surface soil is presented as an example. PMID:12865746

  15. Alternatives for Ground Water Cleanup

    NASA Astrophysics Data System (ADS)

    Hudak, P. F.

    Aquifer remediation is one of our most difficult environmental challenges; technological limitations and problems arising from the physical and chemical complexities of contaminated subsurface environments thwart our best efforts. A 19-member committee of leaders in environmental engineering, hydrogeology, epidemiology, environmental economics, and environmental policy has written an ambitious book that broadly addresses the groundwater remediation problem. Topics include site characterization, capabilities and limitations of pump-and-treat and alternative technologies, alternative goals for ground water cleanup, and policy implications.One of the book's strengths is its information base, which includes various public and private groups, data from 80 pump-and-treat sites, and an extensive literature review. The text is clearly written and well organized. Specific conclusions are stated at the end of each major chapter, and sound policy recommendations are offered at the end of the final chapter. An appendix summarizes pump-andtreat systems reviewed during the study. Several case studies, diagrams, and photographs effectively illustrate concepts and ideas conveyed in the text.

  16. Tritium research laboratory cleanup and transition project final report

    SciTech Connect

    Johnson, A.J.

    1997-02-01

    This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project`s multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition.

  17. Particulate hot gas stream cleanup technical issues

    SciTech Connect

    1998-09-01

    This is the tenth in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic bed filter elements. Task I is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task I during the past quarter, analyses were performed on a particulate sample from the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota Energy and Environmental Research Center. Analyses are in progress on ash samples from the Advanced Particulate Filter (APF) at the Pressurized Fluidized-Bed Combustor (PFBC) that was in operation at Tidd and ash samples from the Pressurized Circulating Fluid Bed (PCFB) system located at Karhula, Finland. A site visit was made to the Power Systems Development Facility (PSDF) to collect ash samples from the filter vessel and to document the condition of the filter vessel with still photographs and videotape. Particulate samples obtained during this visit are currently being analyzed for entry into the Hot Gas Cleanup (HGCU) data base. Preparations are being made for a review meeting on ash bridging to be held at Department of Energy Federal Energy Technology Center - Morgantown (DOE/FETC-MGN) in the near future. Most work on Task 2 was on hold pending receipt of additional funds; however, creep testing of Schumacher FT20 continued. The creep tests on Schumacher FT20 specimens just recently ended and data analysis and comparisons to other data are ongoing. A summary and analysis of these creep results will be sent out shortly. Creep

  18. Expediting contaminated site cleanup in California

    SciTech Connect

    Newman, B.S.; Conlan, J.T.

    1998-01-01

    California generally has been considered a leader in the advocacy of policies for the cleanup and abatement of environmental pollution. Many of the more innovative programs and policies were developed within the broad framework of California`s Brownfields Initiative. Because both the public and private sectors recognize that environmental cleanup and reuse of California`s industrial properties are major components of economic revitalization, the state has used administrative and legislative tools to provide incentives for redeveloping brownfields contaminated by leaking underground storage tanks (USTs) and other industrial operations. However, it is the broader reach of various state and local policies, programs, agreements and management communication that provide benefits to the majority of the regulated community.

  19. Partnering approach facilitates hazardous waste cleanup

    SciTech Connect

    Marini, R.C.; Gates, S.R.; Tunnicliffe, P.W.

    1994-12-31

    The court dockets are overflowing with lawsuits filed by parties involved in environmental restoration (hazardous waste site cleanup) projects. And it seems that no one is free from potential liability these days. Among other common litigation scenarios, remedial action contractors are suing their clients, the owners; employees and other site workers are suing their employers, the remedial action contractors; and owners are suing their designers, the engineers. In the search for viable solutions to the litigation-riddled environmental cleanup business, several options are emerging. Among them, the design/build, or turnkey approach has become common, as has the less well known, but increasingly popular partnering concept, in which the owner, engineer, and constructor form an alliance that allows them to work in concert toward common goals and under shared and properly assigned risks.

  20. US - Former Soviet Union environmental management activities

    SciTech Connect

    1995-09-01

    The Office of Environmental Management (EM) has been delegated the responsibility for US DOE`s cleanup of nuclear weapons complex. The nature and the magnitude of the waste management and environmental remediation problem requires the identification of technologies and scientific expertise from domestic and foreign sources. This booklet makes comparisons and describes coordinated projects and workshops between the USA and the former Soviet Union.

  1. Progress toward maturity of DOE methods for evaluating environmental and waste management samples

    SciTech Connect

    Cosby, W.C.; Goheen, S.C.; McCulloch, M.

    1994-07-01

    The document DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) has been in circulation since October 1992. DOE Methods is a living document, being updated twice each year. It contains both sampling and analytical methods in support of US Department of Energy/environmental restoration and waste management (DOE/EM) activities. Guidance on how to carry out sampling and analysis activities, focusing of EM needs, is also included in DOE Methods. This guidance applies to all aspects of sampling and analysis for EM. Methods from traditional standard methods documents often cannot provide needed characterization data because of radioactivity or complexity of the matrix. The intent of DOE Methods is to provide an alternative source of methods to meet this need. Efforts are underway to expand the use of DOE Methods throughout all DOE/EM programs. Copies of DOE Methods are available free of charge. The April 1994 update of the document includes 42 methods, of which 13 are new. In October 1994, Revision 2 of DOE Methods will be distributed. It will include additional guidance on how to plan sampling and analysis activities and will also include several new methods. DOE Methods is supported by the Laboratory Management Division of DOE. It is a vehicle for transgressing new technology for characterization capability within the environmental restoration (ER) and/or waste management (WM) community. As DOE Methods continues to evolve, its use and application will continue to grow.

  2. Collaboration in long-term stewardship at DOE Hanford Site

    SciTech Connect

    Moren, R. J.; Zeisloft, J. H.; Feist, E. T.; Brown, D.; Grindstaff, K. D.

    2013-01-10

    The U.S. Department of Energy's (DOE) Hanford Site comprises approximately 1,517 km{sup 2} (586 mi{sup 2}) of land in southeastern Washington. The site was established in 1943 as part of the Manhattan Project to produce plutonium for the nation's nuclear weapons program. As the Cold War era came to an end, the mission of the site transitioned from weapons production to environmental cleanup. As the River Corridor area of the site cleanup is completed, the mission for that portion of the site will transition from active cleanup to continued protection of environment through the Long-Term Stewardship (LTS) Program. The key to successful transition from cleanup to LTS is the unique collaboration among three (3) different DOE Programs and three (3) different prime contractors with each contractor having different contracts. The LTS Program at the site is a successful model of collaboration resulting in efficient resolution of issues and accelerated progress that supports DOE's Richland Office 2015 Vision for the Hanford Site. The 2015 Vision for the Hanford Site involves shrinking the active cleanup footprint of the surface area of the site to approximately 20 mi{sup 2} on the Central Plateau. Hanford's LTS Program is defined in DOE's planning document, Hanford Long-Term Stewardship Program Plan, DOE/RL-2010-35 Rev 1. The Plan defines the relationship and respective responsibilities between the federal cleanup projects and the LTS Program along with their respective contractors. The LTS Program involves these different parties (cleanup program and contractors) who must work together to achieve the objective for transition of land parcels. Through the collaborative efforts with the prime contractors on site over the past two years, 253.8 km{sup 2} (98 mi{sup 2}) of property has been successfully transitioned from the cleanup program to the LTS Program upon completion of active surface cleanup. Upcoming efforts in the near term will include transitioning another large

  3. Environmental Management Performance Report to DOE-RL December 2000

    SciTech Connect

    EDER, D.M.

    2000-12-01

    This section provides an executive level summary of the performance information covered in this report and is intended to bring to Management's attention that information considered to be most noteworthy. All cost, schedule, milestone commitments, performance measures, and safety data is current as of October 31. Accomplishments, Issues and Integration items are current as of November 17 unless otherwise noted. The section begins with a description of notable accomplishments that have occurred since the last report and are considered to have made the greatest contribution toward safe, timely, and cost-effective clean up. Following the accomplishment section is an overall fiscal year-to-date summary analysis addressing cost, schedule, and milestone performance. Overviews of safety ensue. The next segment of the Executive Summary, entitled Critical Issues, is designed to identify the high-level challenges to achieving cleanup progress. The next section includes FY 2001 EM Management Commitment High Visibility Project Milestones and Critical Few Performance Measures. The Key Integration Activities section follows next, highlighting PHMC activities that cross contractor boundaries and demonstrate the shared value of partnering with other Site entities to accomplish the work. Concluding the Executive Summary, a forward-looking synopsis of Upcoming Planned Key Events is provided.

  4. Environmental guidance regulatory bulletin

    SciTech Connect

    1994-12-01

    On September 22,1993, the Environmental Protection Agency (EPA) published [58 Federal Register (FR) 492001 the final OffSite Rule, which defines criteria for approving facilities for receiving waste from response actions taken under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The off-site requirements apply to the off-site management of hazardous substances, pollutants, and contaminants, as defined under CERCLA, that are generated from remedial and removal actions funded or authorized, at least in part, by CERCLA. CERCLA-authorized cleanups include those taken under lead-agency authority, Section 106 Consent Orders, Consent Agreements, Consent Degrees, and Records of Decision (RODs). EPA requires that remedial actions at Federal facilities taken under Sections 104, 106, or 120 of CERCLA comply with the Off-Site Rule for all cleanups enacted through DOE`s lead-agency authority.

  5. Environmental Assessment for decontamination and dismantlement, Pinellas Plant

    SciTech Connect

    1995-06-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) (DOE/EA-1092) of the proposed decontamination and dismantlement of the Pinellas Plant in Largo, Florida. Under the Decontamination and Dismantlement EA, the DOE proposes to clean up facilities, structures, and utilities; dismantle specific structures; and mitigate or eliminate any environmental impacts associated with the cleanup, dismantlement, and related activities. Related activities include utilization of specific areas by new tenants prior to full-scale cleanup. Based on the analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969. Therefore, the preparation of an environmental impact statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  6. Development of sample extraction and clean-up strategies for target and non-target analysis of environmental contaminants in biological matrices.

    PubMed

    Baduel, Christine; Mueller, Jochen F; Tsai, Henghang; Gomez Ramos, Maria Jose

    2015-12-24

    Recently, there has been an increasing trend towards multi-targeted analysis and non-target screening methods as a means to increase the number of monitored analytes. Previous studies have developed biomonitoring methods which specifically focus on only a small number of analytes with similar physico-chemical properties. In this paper, we present a simple and rapid multi-residue method for simultaneous extraction of polar and non-polar organic chemicals from biological matrices, containing up to 5% lipid content. Our method combines targeted multi-residue analysis using gas chromatography triple quadrupole mass spectrometry (GC-QqQ-MS/MS) and a multi-targeted analysis complemented with non-target screening using liquid chromatography coupled to a quadrupole time of flight mass spectrometry (LC-QTOF-MS/MS). The optimization of the chemical extraction procedure and the effectiveness of different clean-up methods were evaluated for two biological matrices: fish muscle (lipid content ∼2%) and breast milk (∼4%). To extract a wide range of chemicals, the partition/extraction procedure used for the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) approach was tested as the initial step for the extraction of 77 target compounds covering a broad compound domain. All the target analytes have different physico-chemical properties (log Kow ranges from -0.3 to 10) and cover a broad activity spectrum; from polar pesticides, pharmaceuticals, personal care products (PPCPs) to highly lipophilic chemicals such as polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochloride pesticides (OCPs). A number of options were explored for the clean-up of lipids, proteins and other impurities present in the matrix. Zirconium dioxide-based sorbents as dispersive solid-phase extraction (d-SPE) and protein-lipid removal filter cartridges (Captiva ND Lipids) provided the best results for GC-MS and LC-MS analysis

  7. Inquiry-Based Instruction: Does School Environmental Context Matter?

    ERIC Educational Resources Information Center

    Pea, Celestine H.

    2012-01-01

    In a larger study on teachers' beliefs about science teaching, one component looks at how school environmental context factors influence inquiry-based science instruction. Research shows that three broad categories of school environmental factors (human, sociocultural, design) impact inquiry-based teaching in some way. A mixed-method, sequential,…

  8. Does More Federal Environmental Funding Increase or Decrease States' Efforts?

    ERIC Educational Resources Information Center

    Clark, Benjamin Y.; Whitford, Andrew B.

    2011-01-01

    We examine the flow of federal grants-in-aid from the U.S. Environmental Protection Agency (EPA) to the states. We simultaneously model two dependent variables (the flow of EPA funds, and state environmental and natural resource budgets) to identify the independent roles of state political institutions, political preferences, economic and…

  9. Texas Coastal Cleanup Report, 1986.

    ERIC Educational Resources Information Center

    O'Hara, Kathryn; And Others

    During the 1986 Coastweek, a national event dedicated to improvement of the marine environment, a large beach cleanup was organized on the Texas coast. The goals of the cleanup were to create public awareness of the problems caused by marine debris, and to collect data on the types and quantities of debris found on the Texas coastline. The…

  10. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Discusses hazardous waste, waste disposal, unsafe exposure, movement of hazardous waste, and the Superfund clean-up process that consists of site discovery, site assessment, clean-up method selection, site clean up, and site maintenance. Argues that proper disposal of hazardous waste is everybody's responsibility. (JRH)

  11. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Complex 34, the Six-Phase Soil Heating site that is involved in a groundwater cleanup project can be seen. The project involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six-Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. In the background is the block house for the complex. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site.

  12. DOE model conference on waste management and environmental restoration

    SciTech Connect

    Not Available

    1990-01-01

    Reports dealing with current topics in waste management and environmental restoration were presented at this conference in six sessions. Session 1 covered the Hot Topics'' including regulations and risk assessment. Session 2 dealt with waste reduction and minimization; session 3 dealt with waste treatment and disposal. Session 4 covered site characterization and analysis. Environmental restoration and associated technologies wee discussed in session 5 and 6. Individual papers have been cataloged separately.

  13. Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system. Environmental information volume

    SciTech Connect

    1998-12-31

    The Clean Coal Technology (CCT) Demonstration Program is a $5 billion technology demonstration program that was legislated by Congress to be funded jointly by the federal government and industrial or other sector participants. The goal of the Program is to make available to the U.S. energy marketplace a number of advanced, more efficient, reliable, and environmentally responsive coal utilization and environmental control technologies. These technologies are intended to reduce or eliminate the economic and environmental impediments that limit the full consideration of coal as a future energy resource. Over the next decade, the Program will advance the technical, environmental and economic performance of these advanced technologies to the point where the private sector will be able to introduce them into the commercial marketplace. Each of these demonstrations is in a scale large enough to generate sufficient design, construction and operation data for the private sector to judge the technology`s commercial potential and to make informed confident decisions on its commercial readiness. The strategy being implemented to achieve the goal of the CCT Demonstration Program is to conduct a multi-phase effort consisting of at least five separate solicitations for projects, each with individual objectives that, when integrated, will make technology options available on a schedule consistent with the demands of the energy market and responsive to the relevant environmental considerations. This paper describes a commercial demonstration project to be fielded in support of this program.

  14. Cleanup worker exposures to hazardous chemicals at a former nuclear weapons plant: piloting of an exposure surveillance system.

    PubMed

    LaMontagne, A D; Van Dyke, M V; Martyny, J W; Ruttenber, A J

    2001-02-01

    Cleanup of former U.S. Department of Energy (DOE) nuclear weapons production facilities involves potential exposures to various hazardous chemicals. We have collaboratively developed and piloted an exposure database and surveillance system for cleanup worker hazardous chemical exposure data with a cleanup contractor at the Rocky Flats Environmental Technology Site (RFETS). A unique system feature is the incorporation of a 34-category work task-coding scheme. This report presents an overview of the data captured by this system during development and piloting from March 1995 through August 1998. All air samples collected were entered into the system. Of the 859 breathing zone samples collected, 103 unique employees and 39 unique compounds were represented. Breathing zone exposure levels were usually low (86% of breathing zone samples were below analytical limits of detection). The use of respirators and other exposure controls was high (87 and 88%, respectively). Occasional high-level excursions did occur. Detailed quantitative summaries are provided for the six most monitored compounds: asbestos, beryllium, carbon tetrachloride, chromium, lead, and methylene chloride. Task and job title data were successfully collected for most samples, and showed specific cleanup activities by pipe fitters to be the most commonly represented in the database. Importantly, these results demonstrate the feasibility of the implementation of integrated exposure database and surveillance systems by practicing industrial hygienists employed in industry as well as the preventive potential and research uses of such systems. This exposure database and surveillance system--the central features of which are applicable in any industrial work setting--has enabled one of the first systematic quantitative characterizations of DOE cleanup worker exposures to hazardous chemicals. PMID:11217724

  15. ``Clean`` fuels: Does the new direction make environmental sense?

    SciTech Connect

    Saricks, C.L.; Wang, M.Q.

    1996-05-01

    This paper examines the ramifications of this a three-pronged energy philosophy, with special reference to its expected environmental impact if it is fully implemented as policy. To recapitulate, the three prongs are to rely on a free energy market to determine winners and losers, which could certainly include Reformulated Gasoline (RFG) if it remains relatively cheap and clean; refocus the bulk of government-sponsored transportation energy research toward a ``great leap ahead`` to fully renewable and essentially pollution-free fuels such as hydrogen and fuel cells; and discontinue AFV pump priming. Of special interest is a premise that appears common to all prongs--that none of these measures represents a retreat from environmental goals or accomplishments on record since the National Environmental Policy Act of 1969 was passed.

  16. 42 CFR 137.308 - Does the Secretary have any enforcement authority for Federal environmental responsibilities...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for Federal environmental responsibilities assumed by Tribes under section 509 of the Act ? 137.308... SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL SELF-GOVERNANCE Construction Nepa Process § 137.308 Does the Secretary have any enforcement authority for Federal environmental...

  17. Benefits of improved environmental cooperation on a joint DoD/DOE facility

    SciTech Connect

    Pratt, G.K.; Gibson, J.D.

    1995-04-01

    Numerous Federal facilities within the US involve multiple government agencies that face overlapping environmental concerns. This paper highlights the benefits of looking beyond the strict letter of environmental regulations that might affect a single tenant or environmental site to cooperative environmental efforts that focus on the entire facility, consistent with the missions of participating agencies. Using Kirtland Air Force Base (AFB) as a model, seven areas of Department of Defense (DoD) and Department of Energy (DOE) environmental cooperation are discussed that span technical, regulatory compliance, and administrative issues.

  18. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and high out-year cost environmental management project descriptions. Volume 3 of 3 -- Appendix C

    SciTech Connect

    1998-04-01

    The Department of Energy`s Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation`s nuclear complex. Appendix C provides details about each of the Department`s 82 high cost projects and lists the EMSP research awards with potential to impact each of these projects. The high cost projects listed are those having costs greater than $50 million in constant 1998 dollars from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and having costs of quantities of material associated with an environmental management problem area. The high cost project information is grouped by operations office and organized by site and project code. Each operations office section begins with a list of research needs associated with that operations office. Potentially related research awards are listed by problem area in the Index of Research Awards by Environmental Management Problem Area, which can be found at the end of appendices B and C. For projects that address high risks to the public, workers, or the environment, refer also the Health/Ecology/Risk problem area awards. Research needs are programmatic or technical challenges that may benefit from knowledge gained through basic research.

  19. Does ecohydrological connectivity affect sensitivity to environmental change?

    EPA Science Inventory

    Our goal is to understand the influences of complex terrain on the sensitivity of carbon and water cycle processes to environmental drivers at different scales. Gravity-driven flowpaths of air and water transport material and energy across and through landscapes, creating connec...

  20. Characterization of hazardous waste residuals from Environmental Restoration Program activities at DOE installations: Waste management implications

    SciTech Connect

    Lazaro, M.A.; Esposito, M.P.

    1995-06-01

    Investigators at Argonne National Laboratory (ANL), with support from associates at the Pacific Northwest Laboratory (PNL), have assembled an inventory of the types and volumes of radioactive, toxic or hazardous, and mixed waste likely to be generated over the next 30 years as the US Department of Energy (DOE) implements its nationwide Environmental Restoration (ER) Program. The inventory and related analyses are being considered for integration into DOE`s Programmatic Environmental Impact Statement (PEIS) covering the potential environmental impacts and risks associated with alternative management practices and programs for wastes generated from routine operations. If this happens, the ER-generated waste could be managed under a set of alternatives considered under the PEIS and selected at the end of the current National Environmental Policy Act process.

  1. TRUEX process solvent cleanup with solid sorbents

    SciTech Connect

    Tse, Pui-Kwan; Reichley-Yinger, L.; Vandegrift, G.F.

    1989-01-01

    Solid sorbents, alumina, silica gel, and Amberlyst A-26 have been tested for the cleanup of degraded TRUEX-NPH solvent. A sodium carbonate scrub alone does not completely remove acidic degradation products from highly degraded solvent and cannot restore the stripping performance of the solvent. By following the carbonate scrub with either neutral alumina or Amberlyst A-26 anion exchange resin, the performance of the TRUEX-NPH is substantially restored. The degraded TRUEX-NPH was characterized before and after treatment by supercritical fluid chromatography. Its performance was evaluated by americium distribution ratios, phase-separation times, and lauric acid distribution coefficients. 17 refs., 2 figs., 5 tabs.

  2. Does WEEE recycling make sense from an environmental perspective?

    SciTech Connect

    Hischier, R. . E-mail: johannes.gauglhofer@empa.ch

    2005-07-15

    The production of electrical and electronic equipment (EEE) is one of the fastest growing markets in the world. At the same time this also means that the amount of waste electrical and electronic equipment (WEEE) will continue to increase in the coming decades. As it is crucial to obtain more knowledge about the environmental consequences of the different WEEE treatment options, a study examining the two Swiss take-back and recycling systems of SWICO (for computers, consumer electronics and telecommunication equipment) and S.EN.S (household appliances) has been conducted. The two systems, which are based on an advanced recycling fee, are well established within Switzerland. With a combined approach of material flow analysis (MFA) and life cycle assessment (LCA), the environmental impacts of these two systems have been estimated, including all further treatment steps, which transform the fractions either into secondary materials or into waste for final disposal. As a baseline, we have used a scenario assuming that no WEEE is recycled and hence only primary production for the similar amount of raw materials. The impact assessment is based on characterization factors according to the Dutch CML methodology. The results show that throughout the complete recycling chain the sorting and dismantling activities of companies are of minor interest; instead the main impact occurs during the treatment applied further downstream to turn the waste into secondary raw materials. Within the two systems in Switzerland, the collection of WEEE seems much more relevant than the sorting and dismantling activities. When comparing the environmental impact of WEEE recycling with that derived from the baseline scenario (incineration of all WEEE and primary production of the raw materials), WEEE recycling proves to be clearly advantageous from an environmental perspective.

  3. Collaboration Results - Applying Technical Solutions To Environmental Remediation Problems

    SciTech Connect

    Boyd, G.; Fiore, J.; Walker, J.; DeRemer, C.; Wight, E.

    2002-02-26

    Within the Department of Energy's Office of Environmental Management (EM), the Office of Science and Technology (OST) identifies and develops innovative technologies that accelerate cleanup of high-priority environmental contamination problems and enable EM closure sites to meet closure schedules. OST manages an integrated research and development program that is essential to completing timely and cost-effective cleanup and stewardship of DOE sites. While innovative technologies can make significant contributions to the cleanup process, in some cases, EM has encountered unexpected barriers to their implementation. Technical obstacles are expected, but administrative challenges-such as regulatory, organizational, and stakeholder issues-must also be addressed. OST has found that collaborative needs identification and problem solving are essential components in overcoming these barriers. Collaboration helps EM meet its cleanup goals, close sites, and reduce the overall cost of cleanup at DOE sites nationwide. This paper presents examples of OST's collaboration efforts that expedite site closure and solve specific cleanup problems at EM sites.

  4. U-PLANT GEOGRAPHIC ZONE CLEANUP PROTOTYPE

    SciTech Connect

    ROMINE, L.D.

    2006-02-01

    The U Plant geographic zone (UPZ) occupies 0.83 square kilometers on the Hanford Site Central Plateau (200 Area). It encompasses the U Plant canyon (221-U Facility), ancillary facilities that supported the canyon, soil waste sites, and underground pipelines. The UPZ cleanup initiative coordinates the cleanup of the major facilities, ancillary facilities, waste sites, and contaminated pipelines (collectively identified as ''cleanup items'') within the geographic zone. The UPZ was selected as a geographic cleanup zone prototype for resolving regulatory, technical, and stakeholder issues and demonstrating cleanup methods for several reasons: most of the area is inactive, sufficient characterization information is available to support decisions, cleanup of the high-risk waste sites will help protect the groundwater, and the zone contains a representative cross-section of the types of cleanup actions that will be required in other geographic zones. The UPZ cleanup demonstrates the first of 22 integrated zone cleanup actions on the Hanford Site Central Plateau to address threats to groundwater, the environment, and human health. The UPZ contains more than 100 individual cleanup items. Cleanup actions in the zone will be undertaken using multiple regulatory processes and decision documents. Cleanup actions will include building demolition, waste site and pipeline excavation, and the construction of multiple, large engineered barriers. In some cases, different cleanup actions may be taken at item locations that are immediately adjacent to each other. The cleanup planning and field activities for each cleanup item must be undertaken in a coordinated and cohesive manner to ensure effective execution of the UPZ cleanup initiative. The UPZ zone cleanup implementation plan (ZCIP) was developed to address the need for a fundamental integration tool for UPZ cleanup. As UPZ cleanup planning and implementation moves forward, the ZCIP is intended to be a living document that will

  5. U Plant Geographic Zone Cleanup Prototype

    SciTech Connect

    Romine, L.D.; Leary, K.D.; Lackey, M.B.; Robertson, J.R.

    2006-07-01

    The U Plant geographic zone (UPZ) occupies 0.83 square kilometers on the Hanford Site Central Plateau (200 Area). It encompasses the U Plant canyon (221-U Facility), ancillary facilities that supported the canyon, soil waste sites, and underground pipelines. The UPZ cleanup initiative coordinates the cleanup of the major facilities, ancillary facilities, waste sites, and contaminated pipelines (collectively identified as 'cleanup items') within the geographic zone. The UPZ was selected as a geographic cleanup zone prototype for resolving regulatory, technical, and stakeholder issues and demonstrating cleanup methods for several reasons: most of the area is inactive, sufficient characterization information is available to support decisions, cleanup of the high-risk waste sites will help protect the groundwater, and the zone contains a representative cross-section of the types of cleanup actions that will be required in other geographic zones. The UPZ cleanup demonstrates the first of 22 integrated zone cleanup actions on the Hanford Site Central Plateau to address threats to groundwater, the environment, and human health. The UPZ contains more than 100 individual cleanup items. Cleanup actions in the zone will be undertaken using multiple regulatory processes and decision documents. Cleanup actions will include building demolition, waste site and pipeline excavation, and the construction of multiple, large engineered barriers. In some cases, different cleanup actions may be taken at item locations that are immediately adjacent to each other. The cleanup planning and field activities for each cleanup item must be undertaken in a coordinated and cohesive manner to ensure effective execution of the UPZ cleanup initiative. The UPZ zone cleanup implementation plan (ZCIP) [1] was developed to address the need for a fundamental integration tool for UPZ cleanup. As UPZ cleanup planning and implementation moves forward, the ZCIP is intended to be a living document that will

  6. Development of biological and chemical methods for environmental monitoring of DOE waste disposal and storage facilities. Final report

    SciTech Connect

    1989-04-01

    Hazardous chemicals in the environment have received ever increasing attention in recent years. In response to ongoing problems with hazardous waste management, Congress enacted the Resource Conservation and Recovery Act (RCRA) in 1976. In 1980, Congress adopted the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA), commonly called Superfund to provide for emergency spill response and to clean up closed or inactive hazardous waste sites. Scientists and engineers have begun to respond to the hazardous waste challenge with research and development on treatment of waste streams as well as cleanup of polluted areas. The magnitude of the problem is just now beginning to be understood. The U.S. Environmental Protection Agency (USEPA) National Priorities List as of September 13 1985, contained 318 proposed sites and 541 final sites (USEPA, 1985). Estimates of up to 30,000 sites containing hazardous wastes (1,200 to 2,000 of which present a serious threat to public health) have been made (Public Law 96-150). In addition to the large number of sites, the costs of cleanup using available technology are phenomenal. For example, a 10-acre toxic waste site in Ohio is to be cleaned up by removing chemicals from the site and treating the contaminated groundwater. The federal government has already spent more than $7 million to remove the most hazardous wastes and the groundwater decontamination alone is expected to take at least 10 years and cost $12 million. Another example of cleanup costs comes from the State of California Commission for Economic Development which predicts a bright economic future for the state except for the potential outlay of $40 billion for hazardous waste cleanup mandated by federal and state laws.

  7. Environmental dose assessment methods for normal operations at DOE nuclear sites

    SciTech Connect

    Strenge, D.L.; Kennedy, W.E. Jr.; Corley, J.P.

    1982-09-01

    Methods for assessing public exposure to radiation from normal operations at DOE facilities are reviewed in this report. The report includes a discussion of environmental doses to be calculated, a review of currently available environmental pathway models and a set of recommended models for use when environmental pathway modeling is necessary. Currently available models reviewed include those used by DOE contractors, the Environmental Protection Agency (EPA), the Nuclear Regulatory Commission (NRC), and other organizations involved in environmental assessments. General modeling areas considered for routine releases are atmospheric transport, airborne pathways, waterborne pathways, direct exposure to penetrating radiation, and internal dosimetry. The pathway models discussed in this report are applicable to long-term (annual) uniform releases to the environment: they do not apply to acute releases resulting from accidents or emergency situations.

  8. DOE Nevada Field Office Environmental Protection Implementation Plan, November 9, 1992--November 9, 1993

    SciTech Connect

    Townsend, Y.E. ); Allen, G.C. ); Latham, A.R.; Black, S.C. )

    1992-11-01

    DOE Order 5400.1, General Environmental Protection Program,'' established environmental protection program requirements, authorities, and responsibilities to assure that the Department of Energy (DOE) operations are in compliance with applicable federal, state, and local environmental protection laws and regulations, executive orders, and internal department policies. Chapter III of DOE Order 5400.1 required that each field organization prepare a plan for implementing the requirements of this order by no later than November 9, 1989, and update the plan annually. Therefore, the Department of Energy/Nevada Field Office (DOE/NV) has prepared this third annual update of its Environmental Protection implementation Plan (EPIP). The Order and corresponding guidances also require estimated budgetary resources necessary for implementation of the Order be identified in the Environmental Protection Implementation Plan. To satisfy this requirement, the estimated costs to effectuate necessary changes in existing programs or processes and to institute new programs or processes for compliance with the Order are provided in the following sections of this plan. The DOE/NV Assistant Manager for Operations (AMO), in consultation with other organizations responsible for line management of plan implementation, is responsible for annual plan revisions.

  9. DOE Nevada Operations Office Environmental Protection Implementation Plan, November 9, 1993--November 9, 1994

    SciTech Connect

    Elle, D.R.; Townsend, Y.E.; Latham, A.R.; Black, S.C.

    1993-11-01

    DOE Order 5400.1, ``General Environmental Protection Program,`` established environmental protection program requirements, authorities, and responsibilities to assure that the Department of Energy (DOE) operations are in compliance with applicable federal, state, and local environmental protection laws and regulations, executive orders, and internal department policies. Chapter III of DOE Order 5400.1 required that each field organization prepare a plan for implementing the requirements of this order by no later than November 9, 1989, and update the plan annually. Therefore, the Department of Energy/Nevada Operations Office (DOE/NV) has prepared this fourth annual update of its Environmental Protection Implementation Plan (EPIP). The Order and corresponding guidances also require estimated budgetary resources necessary for implementation of the Order be identified in the Environmental Protection Implementation Plan. To satisfy this requirement, the estimated costs to effectuate necessary changes in existing programs or processes and to institute new programs or processes for compliance with the Order are provided in the following sections of this plan. The DOE/NV Assistant Manager for Environment, Safety, Security, & Health (AMESSH), in consultation with other organizations responsible for line management of plan implementation, is responsible for annual plan revisions.

  10. DOE Nevada Field Office Environmental Protection Implementation Plan, November 9, 1992--November 9, 1993

    SciTech Connect

    Townsend, Y.E.; Allen, G.C.; Latham, A.R.; Black, S.C.

    1992-11-01

    DOE Order 5400.1, ``General Environmental Protection Program,`` established environmental protection program requirements, authorities, and responsibilities to assure that the Department of Energy (DOE) operations are in compliance with applicable federal, state, and local environmental protection laws and regulations, executive orders, and internal department policies. Chapter III of DOE Order 5400.1 required that each field organization prepare a plan for implementing the requirements of this order by no later than November 9, 1989, and update the plan annually. Therefore, the Department of Energy/Nevada Field Office (DOE/NV) has prepared this third annual update of its Environmental Protection implementation Plan (EPIP). The Order and corresponding guidances also require estimated budgetary resources necessary for implementation of the Order be identified in the Environmental Protection Implementation Plan. To satisfy this requirement, the estimated costs to effectuate necessary changes in existing programs or processes and to institute new programs or processes for compliance with the Order are provided in the following sections of this plan. The DOE/NV Assistant Manager for Operations (AMO), in consultation with other organizations responsible for line management of plan implementation, is responsible for annual plan revisions.

  11. Environmental impact assessment of pharmaceutical prescriptions: Does location matter?

    PubMed

    Oldenkamp, Rik; Huijbregts, Mark A J; Hollander, Anne; Ragas, Ad M J

    2014-11-01

    A methodology was developed for the assessment and comparison of the environmental impact of two alternative pharmaceutical prescriptions. This methodology provides physicians with the opportunity to include environmental considerations in their choice of prescription. A case study with the two antibiotics ciprofloxacin and levofloxacin at three locations throughout Europe showed that the preference for a pharmaceutical might show spatial variation, i.e. comparison of two pharmaceuticals might yield different results when prescribed at different locations. This holds when the comparison is based on both the impact on the aquatic environment and the impact on human health. The relative impacts of ciprofloxacin and levofloxacin on human health were largely determined by the local handling of secondary sludge, agricultural disposal practices, the extent of secondary sewage treatment, and local food consumption patterns. The relative impacts of ciprofloxacin and levofloxacin on the aquatic environment were mostly explained by the presence of specific sewage treatment techniques, as effluents from sewage treatment plants (STPs) are the most relevant emission pathway for the aquatic environment. PMID:24508156

  12. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On top of the block house at Launch Complex 34, representatives from environmental and Federal agencies hear from Laymon Gray, with Florida State University, about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. In the background (left) can be seen the cement platform and walkway from the block house to the pad. Beyond it is the Atlantic Ocean. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site.

  13. Rocketdyne Propulsion & Power DOE Operations Annual Site Environmental Report 1996

    SciTech Connect

    Tuttle, R. J.

    1997-11-10

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by Rocketdyne Propulsion & Power of Boeing North American. Inc. (formerly Rockwell International Corporation). These are identified as the Santa Susana Field Laboratory (SSFL and the De Soto site. The sites have been used for manufacturing; R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site essentially comprises office space and light industry with no remaining radiological operations, and has little potential impact on the environment. The SSFL site, because of its large size (2.668 acres), warrants comprehensive monitoring to ensure protection of the environment.

  14. Document image cleanup and binarization

    NASA Astrophysics Data System (ADS)

    Wu, Victor; Manmatha, Raghaven

    1998-04-01

    Image binarization is a difficult task for documents with text over textured or shaded backgrounds, poor contrast, and/or considerable noise. Current optical character recognition (OCR) and document analysis technology do not handle such documents well. We have developed a simple yet effective algorithm for document image clean-up and binarization. The algorithm consists of two basic steps. In the first step, the input image is smoothed using a low-pass filter. The smoothing operation enhances the text relative to any background texture. This is because background texture normally has higher frequency than text does. The smoothing operation also removes speckle noise. In the second step, the intensity histogram of the smoothed image is computed and a threshold automatically selected as follows. For black text, the first peak of the histogram corresponds to text. Thresholding the image at the value of the valley between the first and second peaks of the histogram binarizes the image well. In order to reliably identify the valley, the histogram is smoothed by a low-pass filter before the threshold is computed. The algorithm has been applied to some 50 images from a wide variety of source: digitized video frames, photos, newspapers, advertisements in magazines or sales flyers, personal checks, etc. There are 21820 characters and 4406 words in these images. 91 percent of the characters and 86 percent of the words are successfully cleaned up and binarized. A commercial OCR was applied to the binarized text when it consisted of fonts which were OCR recognizable. The recognition rate was 84 percent for the characters and 77 percent for the words.

  15. North Slope (Wahluke Slope) expedited response action cleanup plan

    SciTech Connect

    Not Available

    1994-02-01

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  16. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    SciTech Connect

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  17. DOE/EA-1493: Environmental Assessment for Greenidge Multi-Pollutant Control Project (August 2004)

    SciTech Connect

    N /A

    2004-08-10

    DOE has prepared an Environmental Assessment (EA), DOE/EA-1493, titled ''Greenidge Multi-Pollutant Control Project'', to analyze the potential environmental consequences of providing cost-shared funding support for the design, construction, and demonstration of an integrated multipollutant control system at AES's Greenidge Station in Dresden, New York. The system, expected to control emissions of NO{sub x}, SO{sub 2}, SO{sub 3}, HF, HCl, and Hg, would be installed on the existing, coal-fired, 107-MW Unit 4 at Greenidge. The results of the analyses provided in the EA are summarized in this Finding of No Significant Impact. The proposed action is for DOE to provide about $14.5 million for this project, while CONSOL Energy Inc. and its project partners would be responsible for the remaining $21 million. The proposed project will result in technical, environmental, and financial data from the design, operation and construction of the multi-pollutant control system. This 4.5-year, commercial-scale demonstration project would allow utilities, particularly those with units less than 300-MW in capacity, to make decisions regarding the integrated multi-pollutant control system as a viable commercial option. Based on the analyses in the EA, DOE has concluded that the Greenidge Multi-Pollutant Control Project would result in minimal and insignificant consequences to the human environment. Thus, DOE considers that the proposed action, providing cost-shared funding for the project, is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 United States Code 4321, et seq. Therefore, in accordance with 10 CFR Part 1021.322, DOE has concluded that preparation of an Environmental Impact Statement is not required, and DOE is issuing this FONSI.

  18. [Determination of paraquat and diquat in drinking water and environmental water by high performance liquid chromatography coupled with on-line clean-up and solid phase extraction].

    PubMed

    Chen, Jing; Liu, Zhaojin; An, Baochao; Lu, Yan; Xu, Qun

    2012-10-01

    An on-line solid phase extraction (SPE) system was used to eliminate the interferences sufficiently and fulfill the simple and sensitive determination of diquat and paraquat in tap and pond water. This on-line SPE system used two SPE cartridges. One was an Acclaim Mixed-Mode WAX-1 cartridge for the elimination of anionic interferences; the other one was an Acclaim Mixed-Mode WCX-1 cartridge for the enrichment of diquat and paraquat and the elimination of co-enriched cationic interferences. The baseline separation of diquat and paraquat was achieved on an Acclaim Trinity P1 column. A dual-gradient high performance liquid chromatographic (HPLC) system provided an efficient platform to fulfill the on-line SPE and separation, and the system operated under automatic control of chromatography data system software. The complete analysis only required 16 min, and the detection limits of the method were 0.12 microg/L for diquat and 0.10 microg/L for paraquat. The method is simple, rapid and sensitive, and can be applied to the determination of diquat and paraquat in drinking water and environmental water. PMID:23383497

  19. Environmental Survey preliminary report, Department of Energy (DOE) activities at Santa Susana Field Laboratories, Ventura County, California

    SciTech Connect

    Not Available

    1989-02-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) activities at the Santa Susana Field Laboratories Site (DOE/SSFL), conducted May 16 through 26, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by an private contractor. The objective of the survey is to identify environmental problems and areas of environmental risk associated with DOE activities at SSFL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at SSFL, and interviews with site personnel. 90 refs., 17 figs., 28 tabs.

  20. PARTNERING WITH DOE TO APPLY ADVANCED BIOLOGICAL, ENVIRONMENTAL, AND COMPUTATIONAL SCIENCE TO ENVIRONMENTAL ISSUES

    EPA Science Inventory

    On February 18, 2004, the U.S. Environmental Protection Agency and Department of Energy signed a Memorandum of Understanding to expand the research collaboration of both agencies to advance biological, environmental, and computational sciences for protecting human health and the ...

  1. Finland's Cleanup Campaign

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    Finland has received a $20 million loan from the World Bank to attack its pollution problems, mainly water. Improved quality of life, as well as resource conservation are both motives and goals of that country's environmental programs. (BT)

  2. Assessment of the environmental aspects of the DOE phosphoric acid fuel cell program

    NASA Technical Reports Server (NTRS)

    Lundblad, H. L.; Cavagrotti, R. R.

    1983-01-01

    The likely facets of a nationwide phosphoric acid fuel cell (PAFC) power plant commercial system are described. The beneficial and adverse environmental impacts produced by the system are assessed. Eleven specific system activities are characterized and evaluated. Also included is a review of fuel cell technology and a description of DOE's National Fuel Cell Program. Based on current and reasonably foreseeable PAFC characteristics, no environmental or energy impact factor was identified that would significantly inhibit the commercialization of PAFC power plant technology.

  3. Graduate student theses supported by DOE`s Environmental Sciences Division

    SciTech Connect

    Cushman, R.M.; Parra, B.M.

    1995-07-01

    This report provides complete bibliographic citations, abstracts, and keywords for 212 doctoral and master`s theses supported fully or partly by the U.S. Department of Energy`s Environmental Sciences Division (and its predecessors) in the following areas: Atmospheric Sciences; Marine Transport; Terrestrial Transport; Ecosystems Function and Response; Carbon, Climate, and Vegetation; Information; Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP); Atmospheric Radiation Measurement (ARM); Oceans; National Institute for Global Environmental Change (NIGEC); Unmanned Aerial Vehicles (UAV); Integrated Assessment; Graduate Fellowships for Global Change; and Quantitative Links. Information on the major professor, department, principal investigator, and program area is given for each abstract. Indexes are provided for major professor, university, principal investigator, program area, and keywords. This bibliography is also available in various machine-readable formats (ASCII text file, WordPerfect{reg_sign} files, and PAPYRUS{trademark} files).

  4. The US DOE Programmatic Environmental Impact Statement (PEIS) at Rocky Flats Plant

    SciTech Connect

    Ciaglo, T.; Oates, L.; Short, S.

    1994-12-31

    The U.S. DOE Programmatic Environmental Impact Statement (PEIS) is intended to provide an evaluation of the potential and likely impacts of the alternative remediation strategies that could be implemented by DOE across the complex. This paper will discuss the goals and objectives of the DOE PEIS project using Rocky Flats as an example. This paper will discuss the source term data collected for Rocky Flats Plant. Each individual hazardous substance site (IHSS) was allocated to one or more of the following six source term categories: (1) contaminated soils; (2) solid waste; (3) liquid containment; (4) surface water; (5) ground water; (6) facilities.

  5. Low-level waste management alternatives and analysis in DOE`s programmatic environmental impact statement

    SciTech Connect

    Gerstein, J.S.

    1993-03-01

    The Department of Energy is preparing a Programmatic Environmental Impact Statement (PEIS) for the Environmental Restoration and Waste Management Program. The PEIS has been divided into an Environmental Restoration section and a Waste Management section. Each section has a unique set of alternatives. This paper will focus on the waste management alternatives and analysis. The set of alternatives for waste management has been divided into waste categories. These categories are: high-level waste, transuranic waste, low-level waste, low-level mixed waste, greater-than-class C and low-level waste from commercial sources, hazardous waste, and spent nuclear fuel. This paper will discuss the alternatives and analytical approach that will be used to evaluate these alternatives for the low-level waste section. Although the same alternatives will be considered for all waste types, the analysis will be performed separately for each waste type. In the sections that follow, information will be provided on waste management configurations, the analysis of waste management alternatives, waste types and locations, facility and transportation activities, the facility and transportation impacts assessment, and the compilation of impacts.

  6. Innovative technologies for soil cleanup

    SciTech Connect

    Yow, J.L. Jr.

    1992-09-01

    These notes provide a broad overview of current developments in innovative technologies for soil cleanup. In this context, soil cleanup technologies include site remediation methods that deal primarily with the vadose zone and with relatively shallow, near-surface contamination of soil or rock materials. This discussion attempts to emphasize approaches that may be able to achieve significant improvements in soil cleanup cost or effectiveness. However, since data for quantitative performance and cost comparisons of new cleanup methods are scarce, preliminary comparisons must be based on the scientific approach used by each method and on the sits-specific technical challenges presented by each sold contamination situation. A large number of technical alternatives that are now in research, development, and testing can be categorized by the scientific phenomena that they employ and by the site contamination situations that they treat. After cataloging a representative selection of these technologies, one of the new technologies, Dynamic Underground Stripping, is discussed in more detail to highlight a promising soil cleanup technology that is now being field tested.

  7. Marine Debris Clean-Ups as Meaningful Science Learning

    ERIC Educational Resources Information Center

    Stepath, Carl M.; Bacon, Joseph Scott

    2010-01-01

    This seven to eight week hands-on Marine Debris Clean-up Project used a service project to provide an introduction of marine science ecology, watershed interrelationships, the scientific method, and environmental stewardship to 8th grade middle school students. It utilized inquiry based learning to introduce marine debris sources and impacts to…

  8. Researchers vie for role in nuclear-waste cleanup

    SciTech Connect

    Lawler, A.

    1997-03-21

    In 1995 a Department of Energy grants program that was supposed to entice researchers who designed the nuclear arsenal to help in the cleanup. A report from the National Research Council criticized the program and another 10 year plan will be unveiled by DOE which some researchers say leave little room for science. This article gives an overview of the financial, political, and scientific problems surrounding clean up of DOE nuclear facilities.

  9. Environmental Science and Research Foundation annual technical report to DOE-ID, January , 1995--December 31, 1995

    SciTech Connect

    1996-06-01

    The foundation conducts an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain and provide environmental education and support services related to INEL natural resource issues. Also, the foundation, with its university affiliates, conducts ecological and radioecological research on the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including waste management, environmental restoration, spent nuclear fuels, and land management issues. Major accomplishments during CY1995 can be divided into five categories: environmental surveillance program, environmental education, environmental services and support, ecological risk assessment, and research benefitting the DOE-ID mission.

  10. Radiological cleanup of Enewetak Atoll

    SciTech Connect

    Not Available

    1981-01-01

    For 8 years, from 1972 until 1980, the United States planned and carried out the radiological cleanup, rehabilitation, and resettlement of Enewetak Atoll in the Marshall Islands. This documentary records, from the perspective of DOD, the background, decisions, actions, and results of this major national and international effort. The documentary is designed: First, to provide a historical document which records with accuracy this major event in the history of Enewetak Atoll, the Marshall Islands, the Trust Territory of the Pacific Islands, Micronesia, the Pacific Basin, and the United States. Second, to provide a definitive record of the radiological contamination of the Atoll. Third, to provide a detailed record of the radiological exposure of the cleanup forces themselves. Fourth, to provide a useful guide for subsequent radiological cleanup efforts elsewhere.

  11. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    SciTech Connect

    1998-04-01

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from December 31, 1997 through April 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions in preparation for the March 30-31, 1998 NGA Federal Facilities Compliance Task Force Meeting with DOE. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low

  12. Integrating Natural Resource Damage Assessment and environmental restoration activities at DOE facilities

    SciTech Connect

    Bascietto, J.J.; Sharples, F.E.; Suter, G.W. II

    1993-06-01

    Environmental restoration activities are currently under way at several sites owned by the US Department of Energy (DOE) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE is the CERCLA lead response agency for these activities. Section 120(a) of the Superfund Amendments and Reauthorization Act also subjects DOE to liability under Section 107 of CERCLA for natural resource damages resulting from hazardous substance releases at its sites. The Natural Resource Damage Assessment (NRDA) process, by which natural resource injuries are determined and compensatory monetary damages are calculated, is not well known or understood by DOE staff and contractors involved in environmental restoration activities. Nevertheless, natural resource liabilities are potentially a significant source of additional monetary claims for CERCLA hazardous substance releases. This paper describes the requirements of NRDA and explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, in order to more quickly restore environmental services at the lowest total cost to the public. The first section of the paper explains the statutory and regulatory mandates for the NRDA process. The second section briefly describes the four phases of the NRDA process, while the third section examines the three steps in the assessment phase in considerable detail. Finally, the last section focuses on the integration of the CERCLA and NRDA processes.

  13. Integrating natural resource damage assessment and environmental restoration activities at DOE facilities

    SciTech Connect

    1993-10-01

    Environmental restoration activities are currently under way at many U.S. Department of Energy (DOE) sites under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE is the CERCLA lead response agency for these activities. Section 120 of CERCLA also could subject DOE to liability for natural resource damages resulting from hazardous substance releases at its sites. A Natural Resource Damage Assessment (NRDA) process is used to determine whether natural resources have been injured and to calculate compensatory monetary damages to be used to restore the natural resources. In addition to restoration costs, damages may include costs of conducting the damage assessment and compensation for interim losses of natural resource services that occur before resource restoration is complete. Natural resource damages represent a potentially significant source of additional monetary claims under CERCLA, but are not well known or understood by many DOE staff and contractors involved in environmental restoration activities. This report describes the requirements and procedures of NRDA in order to make DOE managers aware of what the process is designed to do. It also explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, showing how the technical and cost analysis concepts of NRDA can be borrowed at strategic points in the CERCLA process to improve decisionmaking and more quickly restore natural resource services at the lowest total cost to the public.

  14. Integrating Natural Resource Damage Assessment and environmental restoration activities at DOE facilities

    SciTech Connect

    Not Available

    1993-10-01

    Environmental restoration activities are currently under way at many US Department of Energy (DOE) sites under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). DOE is the CERCLA lead response agency for these activities. Section 120 of CERCLA also could subject DOE to liability for natural resource damages resulting from hazardous substance releases at its sites. A Natural Resource Damage Assessment (NRDA) process is used to determine whether natural resources have been injured and to calculate compensatory monetary damages to be used to restore the natural resources. In addition to restoration costs, damages may include costs of conducting the damage assessment and compensation for interim losses of natural resource services that occur before resource restoration is complete. Natural resource damages represent a potentially significant source of additional monetary claims under CERCLA, but are not well known or understood by many DOE staff and contractors involved in environmental restoration activities. This report describes the requirements and procedures of NRDA in order to make DOE managers aware of what the process is designed to do. It also explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, showing how the technical and cost analysis concepts of NRDA can be borrowed at strategic points in the CERCLA process to improve decisionmaking and more quickly restore natural resource services at the lowest total cost to the public.

  15. Startup is cleanup, says energy

    SciTech Connect

    Nelson, E.

    1993-12-01

    The 42-year-old plutonium finishing plant (PFP) at the Hanford Nuclear Reservation was put on stand-by in 1989 after reports of numerous safety violations. Energy Department official John Hunter said the plant was shut down simply because it ran out of plutonium to process. His statement is ironic considering that since 1989 the Energy Department has wanted to restart the plant to process the reactive plutonium left inside. This article describes the safety concerns at the PFP. Cleanup options are also discussed. The opinions of several Hanford watchdog groups concerning PFP safety and cleanup possibilities are reviewed.

  16. Environmental management activities

    SciTech Connect

    1997-07-01

    The Office of Environmental Management (EM) has been delegated the responsibility for the Department of Energy`s (DOE`s) cleanup of the nuclear weapons complex. The nature and magnitude of the waste management and environmental remediation problem requires the identification of technologies and scientific expertise from domestic and foreign sources. Within the United States, operational DOE facilities, as well as the decontamination and decommissioning of inactive facilities, have produced significant amounts of radioactive, hazardous, and mixed wastes. In order to ensure worker safety and the protection of the public, DOE must: (1) assess, remediate, and monitor sites and facilities; (2) store, treat, and dispose of wastes from past and current operations; and (3) develop and implement innovative technologies for environmental restoration and waste management. The EM directive necessitates looking beyond domestic capabilities to technological solutions found outside US borders. Following the collapse of the Soviet regime, formerly restricted elite Soviet scientific expertise became available to the West. EM has established a cooperative technology development program with Russian scientific institutes that meets domestic cleanup objectives by: (1) identifying and accessing Russian EM-related technologies, thereby leveraging investments and providing cost-savings; (2) improving access to technical information, scientific expertise, and technologies applicable to EM needs; and (3) increasing US private sector opportunities in Russian in EM-related areas.

  17. Saudis map $450 million gulf spill cleanup

    SciTech Connect

    Not Available

    1991-11-18

    This paper reports on Saudi Arabia which has earmarked about $450 million to clean up Persian Gulf beaches polluted by history's worst oil spills, created during the Persian Gulf crisis. Details of the proposed cleanup measures were outlined by Saudi environmental officials at a seminar on the environment in Dubai, OPEC News Agency reported. The seminar was sponsored by the Gulf Area Oil Companies Mutual Aid Organization, an environmental cooperative agency set up by Persian Gulf governments. Meantime, a Saudi government report has outlined early efforts designed to contain the massive oil spills that hit the Saudi coast before oil could contaminate water intakes at the huge desalination plants serving Riyadh and cooling water facilities at Al Jubail.

  18. Expediting cleanup at the Weldon Spring site under CERCLA and NEPA

    SciTech Connect

    Peterson, J.M.; MacDonell, M.M.; Haroun, L.A.; McCracken, S.H.

    1989-01-01

    The Weldon Spring Site Remedial Action project is being conducted under the Surplus Facilities Management Program of the US Department of Energy (DOE). The DOE has developed an environmental compliance strategy for this project to meet the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Environmental Policy Act (NEPA). A key element of this strategy was the development of an integrated CERCLA/NEPA process to minimize, to the extent possible, the need to prepare duplicate documentation. Additionally, the project is implementing various expedited response actions to mitigate actual or potential uncontrolled releases if radioactively or chemically hazardous substances to the environment and to minimize potential health and safety risks to on-site personnel and local human and biotic populations. These actions are being conducted concurrently with the preparation of major environmental compliance documentation. The initiation of site cleanup via these response actions has fostered a very positive relationship with the US Environmental Protection Agency Region VII, the state of Missouri, and the affected public. 2 refs., 3 figs.

  19. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    SciTech Connect

    1998-07-01

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from April 30, 1998 through June 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed

  20. Applications of metal nanoparticles in environmental cleanup

    EPA Science Inventory

    Iron nanoparticles (INPs) are one of the fastest-developing fields. INPs have a number of key physicochemical properties, such as high surface area, reactivity, optical and magnetic properties, and oxidation and reduction capacities, that make them attractive for water purificati...

  1. Environmental Management

    SciTech Connect

    2014-11-12

    Another key aspect of the NNSS mission is Environmental Management program, which addresses the environmental legacy from historic nuclear weapons related activities while also ensuring the health and safety of present day workers, the public, and the environment as current and future missions are completed. The Area 5 Radioactive Waste Management site receives low-level and mixed low-level waste from some 28 different generators from across the DOE complex in support of the legacy clean-up DOE Environmental Management project. Without this capability, the DOE would not be able to complete the clean up and proper disposition of these wastes. The program includes environmental protection, compliance, and monitoring of the air, water, plants, animals, and cultural resources at the NNSS. Investigation and implementation of appropriate corrective actions to address the contaminated ground water facilities and soils resulting from historic nuclear testing activities, the demolition of abandoned nuclear facilities, as well as installation of ground water wells to identify and monitor the extent of ground water contamination.

  2. Environmental Management

    ScienceCinema

    None

    2015-01-07

    Another key aspect of the NNSS mission is Environmental Management program, which addresses the environmental legacy from historic nuclear weapons related activities while also ensuring the health and safety of present day workers, the public, and the environment as current and future missions are completed. The Area 5 Radioactive Waste Management site receives low-level and mixed low-level waste from some 28 different generators from across the DOE complex in support of the legacy clean-up DOE Environmental Management project. Without this capability, the DOE would not be able to complete the clean up and proper disposition of these wastes. The program includes environmental protection, compliance, and monitoring of the air, water, plants, animals, and cultural resources at the NNSS. Investigation and implementation of appropriate corrective actions to address the contaminated ground water facilities and soils resulting from historic nuclear testing activities, the demolition of abandoned nuclear facilities, as well as installation of ground water wells to identify and monitor the extent of ground water contamination.

  3. Gas cleanup for indirect liquefaction

    SciTech Connect

    Wham, R.M.

    1984-08-01

    Visual aids are presented describing various classes of primary gas cleanup. These are: (1) amine systems (MDEA Process); (2) alkali salt systems; (3) physical absorption systems (Selexol Process, Stretford Process); (4) mixed solvent systems; and (5) Claus Sulfur Recovery System. Flowsheets are also presented for the MDEA, Selexol and Stretford processes.

  4. Great cleanup skims the surface

    SciTech Connect

    Dillingham, S.

    1990-09-03

    Appalled by the pollution of the Great Lakes, the United States embarked on a multibillion-dollar cleanup. Twenty years later the nation's largest freshwater source is teeming with life, but problems caused by man and nature remain. Amid the finger-pointing, states in the region and Congress are continuing to clean up the mess.

  5. Integrated Low Emissions Cleanup system for direct coal fueled turbines

    SciTech Connect

    Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.; Lippert, T.E.

    1993-07-01

    The United States Department of.Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technology in the areas of Pressurized Fluidized Bed Combustion, Integrated Gasification Combined Cycles, and Direct Coal-Fired Turbines. A major technical challenge remaining for the development of coal-fired turbine systems is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic barrier filter, ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases, and is considering cleaning temperatures up to 2100{degrees}F. This document describes Phase II of the program, the design, construction, and shakedown of a bench-scale facility to test and confirm the feasibility of this ILEC technology.

  6. Does the Manitoba science curriculum help teach teens to be more environmentally-minded?

    NASA Astrophysics Data System (ADS)

    Kraljevic, Gabriel M.

    Manitoba does not have a specific course in environmental education (EE) but has related outcomes within the current science and social studies curricula. Has the curriculum created a populace with the knowledge, attitudes and skills to begin to act for environmental change? Do students and teachers perceive science to be the course that should teach EE? This mixed-method study used surveys, student focus groups, observations of recycling habits and teacher interviews to determine if grade 10 students (last year of required science) are acting in positive ways toward the environment. Students from grades nine and ten exhibited almost the same environmental knowledge and attitudes, but the grade tens were more alarmed about the state of the environment and less naive about their abilities to have individual impact. While both groups reported pro-environmental behaviours, neither recycled materials after a luncheon. Where EE should be taught differed between all groups studied.

  7. Hanford Cleanup... Restore the Columbia River Corridor Transition the Central Plateau Prepare and Plan for the End State

    SciTech Connect

    Klein, Keith A.

    2006-07-01

    The U.S. Department of Energy's (DOE) Hanford Site in southeastern Washington State was established during World War II to produce plutonium for nuclear weapons as part of the top-secret Manhattan Project. In 1989, Hanford's mission changed to cleanup and closure; today the site is engaged in one of the world's largest and most aggressive programs to clean up radioactive and hazardous wastes. The size and complexity of Hanford's environmental problems are made even more challenging by the overlapping technical, political, regulatory, financial and cultural issues associated with the cleanup. The physical challenges at the Hanford Site are daunting. More than 50 million gallons of liquid radioactive waste in 177 underground storage tanks; 2,300 tons of spent nuclear fuel;12 tons of plutonium in various forms; 25 million cubic feet of buried or stored solid waste; 270 billion gallons of groundwater contaminated above drinking-water standards spread out over about 80 square miles; more than 1,700 waste sites; and approximately 500 contaminated facilities. With a workforce of approximately 7,000 and a budget of about $1.8 billion dollars this fiscal year, Hanford cleanup operations are expected to be complete by 2035, at a cost of $60 billion dollars. (authors)

  8. EPRI-DOE Conference on Environmentally- Enhanced Hydropower Turbines: Technical Papers

    SciTech Connect

    2011-12-01

    The EPRI-DOE Conference on Environmentally-Enhanced Hydropower Turbines was a component of a larger project. The goal of the overall project was to conduct the final developmental engineering required to advance the commercialization of the Alden turbine. As part of this effort, the conference provided a venue to disseminate information on the status of the Alden turbine technology as well as the status of other advanced turbines and research on environmentally-friendly hydropower turbines. The conference was also a product of a federal Memorandum of Understanding among DOE, USBR, and USACE to share technical information on hydropower. The conference was held in Washington, DC on May 19 and 20, 2011 and welcomed over 100 attendees. The Conference Organizing Committee included the federal agencies with a vested interest in hydropower in the U.S. The Committee collaboratively assembled this conference, including topics from each facet of the environmentally-friendly conventional hydropower research community. The conference was successful in illustrating the readiness of environmentally-enhanced hydropower technologies. Furthermore, the topics presented illustrated the need for additional deployment and field testing of these technologies in an effort to promote the growth of environmentally sustainable hydropower in the U.S. and around the world

  9. GREEDI---The computerization of the DOE/DOD environmental data bank

    SciTech Connect

    Adams, C R; Kephart, E M

    1988-01-01

    One of the major responsibilities of Sandia National Laboratories is to develop shock and vibration specifications for system mechanical, electrical, and pyrotechnic components. The data required to generate these specifications are collected from finite element analyses, from laboratory simulation experiments with hardware, and from environmental tests. The production of the component specifications requires the analysis, comparison, and continual updating of these data. Sandia National Laboratories has also maintained the DOE/DOD Environmental Data Bank for over 25 years to assist in its shock and vibration efforts as well as to maintain data for several other types of environments. A means of facilitating shared access to engineering analysis data and providing an integrated environment to perform shock and vibration data analysis tasks was required. An interactive computer code and database system named GREEDI (a Graphical Resource for an Engineering Environmental Database Implementation) was developed and implemented. This transformed the DOE/DOD Environmental Data Bank from a card index system into an easily accessed computerized engineering database tool that can manage data in digitized form. GREEDI was created by interconnecting the SPEEDI (Sandia Partitioned Engineering Environmental Database Implementation) code, and the GRAFAID code, an interactive X-Y data analysis tool. An overview of the GREEDI software system is presented. 10 refs.

  10. Hazardous waste site cleanup standards: The science behind the numbers

    SciTech Connect

    Markey, T.F.; Strohm, B.C.; Neal, L.W.

    1994-12-31

    This paper reviews two of the more progressive state approaches to establishing risk-based environmental cleanup standards and compares them to federal risk assessment guidance and methods. The objective is to provide a comparative evaluation of the scientific approach used by the New Jersey Department of Environmental Protection and Energy (NJDEPE) and the Massachusetts Department of Environmental Protection (MADEP). To accomplish this the assumptions used in developing generic cleanup criteria were reviewed. This review supported the scientific justification and rationale of regulatory policies which permit the use of site-specific risk assessments in establishing site remediation goals. The benefits of which can be the selection of more cost-effective remedial alternatives which afford comparable levels of protection of the public health and environment.