Science.gov

Sample records for domestic refrigerators proceso

  1. [Factors affecting the temperature of domestic refrigerators].

    PubMed

    Derens, E; Laguerre, O; Palagos, B

    2001-01-01

    A survey was carried out in France in 1999 in order to know the air temperature in domestic refrigerators and the factors which may effect this temperature. Temperatures were recorded at three levels (top, middle and bottom of the refrigerator compartment). A questionnaire was filled to acquire the following information: characteristic of family (number of family members, age, profession, income...), characteristic of refrigerator (trade, type, age, temperature setting, refrigerating type...) and the use condition (room temperature, near by heat source, built in, door opening frequency...). The average temperature of the 119 surveyed refrigerators was 6.6 degrees C. Descriptive analysis and multi dimensional analysis of factors effecting refrigerator temperature were carried out. The classification tree and the segmentation confirm the influence of the use condition (frequency of door opening, temperature setting, near by heat source and built in). There is no direct effect of one factor but the combination of all of them. PMID:11474586

  2. Alternative refrigerants and refrigeration cycles for domestic refrigerators

    SciTech Connect

    Sand, J.R.; Rice, C.L.; Vineyard, E.A.

    1992-12-01

    This project initially focused on using nonazeotropic refrigerant mixtures (NARMs) in a two-evaporator refrigerator-freezer design using two stages of liquid refrigerant subcooling. This concept was proposed and tested in 1975. The work suggested that the concept was 20% more efficient than the conventional one-evaporator refrigerator-freezer (RF) design. After considerable planning and system modeling based on using a NARM in a Lorenz-Meutzner (L-M) RF, the program scope was broadened to include investigation of a ``dual-loop`` concept where energy savings result from exploiting the less stringent operating conditions needed to satisfy cooling, of the fresh food section. A steady-state computer model (CYCLE-Z) capable of simulating conventional, dual loop, and L-M refrigeration cycles was developed. This model was used to rank the performance of 20 ozone-safe NARMs in the L-M refrigeration cycle while key system parameters were systematically varied. The results indicated that the steady-state efficiency of the L-M design was up to 25% greater than that of a conventional cycle. This model was also used to calculate the performance of other pure refrigerants relative to that of dichlorodifluoromethane, R-12, in conventional and dual-loop RF designs. Projected efficiency gains for these cycles were more modest, ranging from 0 to 10%. Individual compressor calorimeter tests of nine combinations of evaporator and condenser temperatures usually used to map RF compressor performance were carried out with R-12 and two candidate L-M NARMs in several compressors. Several models of a commercially produced two-evaporator RF were obtained as test units. Two dual-loop RF designs were built and tested as part of this project.

  3. Domestic Refrigeration, Freezer, and Window Air Conditioner Service. Teacher Edition.

    ERIC Educational Resources Information Center

    Clemons, Mark

    This curriculum guide contains six units of instruction for a course in domestic refrigerator, freezer, and window air conditioner service. The units cover the following topics: (1) service fundamentals; (2) mechanical components and functions; (3) electrical components and control devices; (4) refrigerator and freezer service; (5) domestic ice…

  4. Analysis of a domestic refrigerator cycle with an ejector

    SciTech Connect

    Tomasek, M.L.; Radermacher, R.

    1995-08-01

    In this paper, an improved cooling cycle for a conventional domestic refrigerator-freezer utilizing an ejector for vapor precompression is analyzed using an idealized model Its energy efficiency is compared to that of the conventional refrigerator-freezer system. Emphasis is placed on off-design conditions. The ejector-enhanced refrigeration cycle consists of two evaporators that operate at different pressure and temperature levels. The ejector combines the vapor flows exiting the two evaporators into one at an intermediate pressure level The ejector cycle gives an increase of up to 12.4% in the coefficient of performance (COP) compared to that of a standard refrigerator-freezer refrigeration cycle. The analysis includes calculations on the optimum throat diameters of the ejector. The investigation on the off-design performance of the ejector cycle shows little dependency of energy consumption on constant ejector throat diameters.

  5. Temperature distribution and prevalence of Listeria spp. in domestic, retail and industrial refrigerators in Greece.

    PubMed

    Sergelidis, D; Abrahim, A; Sarimvei, A; Panoulis, C; Karaioannoglou, P; Genigeorgis, C

    1997-02-01

    The present paper examined the presence of Listeria spp. in the environment of domestic, retail and industrial refrigerators. From 136 household refrigerators, 136 surface samples were taken from the walls or shelves, and 125 from cheese compartments. Only two refrigerators harboured L. monocytogenes. From 228 food store refrigerators, 335 samples were taken. Of these, 118 were in in contact with cheeses, 69 with sausages, 21 with cheese and sausages, 20 with miscellaneous products and 107 from refrigerator handles. Listeria spp. and L. monocytogenes were found in 3.1% and 1.7%, of the samples respectively. Listeria spp. was not detected in any of the nine dairy plant refrigerators examined. Listeria monocytogenes and L. innocua were found in 4.5 and 36.4%, respectively, of the 22 refrigerators inside meat processing plants, with only one of 22 refrigerators handles being positive for L. monocytogenes. Temperature distribution in the refrigerators was also investigated. Fifty five per cent of the 136 domestic and 32% of the 228 retail store refrigerators had temperatures of greater than or equal to 9 degrees C. The range of refrigeration temperatures of the industrial refrigerators was 0-2 degrees C for meat plants and 2-7 degrees C for dairy plants. No correlation of any kind could be established between the prevalence of Listeria spp. and the temperature of the various refrigerators due to the low number of positive samples. PMID:9039563

  6. THERMODYNAMIC PERFORMANCE LIMIT AND EVAPORATOR DESIGN CONSIDERATIONS FOR NARM-BASED DOMESTIC REFRIGERATOR-FREEZER SYSTEMS

    EPA Science Inventory

    The paper gives results of an investigation of non-azeotrophic refrigerant mixtures (NARMs) for a two-temperature-level heat exchange process found in a domestic refrigerator-freezer. deal (constant air temperature) heat exhcange processes are assumed. he results allow the effect...

  7. Domestic Refrigerators; Appliance Repair--Advanced: 9027.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This course outline is presented to provide the major appliance service student with a fundamental knowledge of the procedures necessary to repair a refrigerator using information on electrical circuitry and mechanical functioning components. The course may be taught in 90 or 135 clock hours, depending on the amount of detail presented and the…

  8. Enhancing the performance of the domestic refrigerator with hot gas injection to suction line

    NASA Astrophysics Data System (ADS)

    Berman, E. T.; Hasan, S.; Mutaufiq

    2016-04-01

    The purpose of this study was to determine the increase in performance of a domestic refrigerator that uses hot gas injection (IHG) to the suction line. The experiment was conducted by flowing refrigerant from the discharge line to the suction line. To get performance data, measurements performed on the liquid brine as cooling load with various temperatures (range from 3°C to – 3°C). The working fluid is used as a cooling medium is R-134a. The experimental results showed that the injection of hot gas to the suction line generates an increase in the coefficient of performance systems (COPs) of 7% and is able to lower the discharge temperature, causing the compressor to work lighter/easier, saving electric power needed by the refrigerator.

  9. Experimental and cost analyses of a one kilowatt-hour/day domestic refrigerator-freezer

    SciTech Connect

    Vineyard, E.A.; Sand, J.R.

    1997-05-01

    Over the past ten years, government regulations for energy standards, coupled with the utility industry`s promotion of energy-efficient appliances, have prompted appliance manufacturers to reduce energy consumption in refrigerator-freezers by approximately 40%. Global concerns over ozone depletion have also required the appliance industry to eliminate CFC-12 and CFC-11 while concurrently improving energy efficiency to reduce greenhouse emissions. In response to expected future regulations that will be more stringent, several design options were investigated for improving the energy efficiency of a conventionally designed, domestic refrigerator-freezer. The options, such as cabinet and door insulation improvements and a high-efficiency compressor were incorporated into a prototype refrigerator-freezer cabinet and refrigeration system. Baseline energy consumption of the original 1996 production refrigerator-freezer, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. The goal for the project was to achieve an energy consumption that is 50% below in 1993 National Appliance Energy Conservation Act (NAECA) standard for 20 ft{sup 3} (570 l) units. Based on discussions with manufacturers to determine the most promising energy-saving options, a laboratory prototype was fabricated and tested to experimentally verify the energy consumption of a unit with vacuum insulation around the freezer, increased door thicknesses, a high-efficiency compressor, a low wattage condenser fan, a larger counterflow evaporator, and adaptive defrost control.

  10. Heating of domestic water by waste heat recovery from household refrigerating equipment

    NASA Astrophysics Data System (ADS)

    Reil, J.; Kaster, B.; Wegner, M.

    1982-09-01

    Heat from a 370 l deep freeze was used to heat water in a 250 l boiler. Both units were made from mass produced components. Tests show that the functions of cooling and deep freezing units can be effectively combined with one warm water boiler. The necessary expenditure for the appliance is, however, only economical with deep freezing units because with normal domestic refrigerators the amount of waste heat is too small. The economy of the unit could be considerably increased by the development of a mass produced motor compressor with a sufficiently large oil cooler to accomplish an optimum thermal insulation of the motor compressor surface area.

  11. Microbiological safety of domestic refrigerators and the dishcloths used to clean them in Guadalajara, Jalisco, Mexico.

    PubMed

    Macías-Rodríguez, M E; Navarro-Hidalgo, V; Linares-Morales, J R; Olea-Rodríguez, M A; Villarruel-López, A; Castro-Rosas, J; Gómez-Aldapa, C A; Torres-Vitela, M R

    2013-06-01

    Household refrigerators are a potential pathogen contamination source for foods. An evaluation of the microbiological safety of 200 refrigerators in Guadalajara, Jalisco, Mexico, was made by visual inspection, ATP-bioluminescence levels, indicator microorganisms including Escherichia coli and Staphylococcus aureus, and the presence of Listeria monocytogenes and Salmonella. Additionally, interviews of the owners of the refrigerators were carried out to determine relationships between food storage practices, demographic aspects, and microbiological status. Dishcloths used to clean refrigerators were also analyzed. Operational conditions (cleanliness, fullness, organization, frequency of cleaning, and temperature) were evaluated by trained observers. Results showed deficient cleanliness in 55% of refrigerators, 22% were completely full, 43% very disorganized, 28% were usually cleaned only once in 3 to 6 months, and 53% had internal temperatures >7.1°C. ATP-bioluminescence levels were >300 relative light units on 67 and 74% of shelves and drawers, respectively, indicating that surfaces were dirty according to the luminometer manufacturer. Psychrotrophic aerobic bacteria counts on shelves, drawers, and dishcloths were 6.3, 5.2, and 6.3 log CFU/cm(2); for coliform bacteria, 5.2, 3.9, and 4.7 CFU/cm(2); for E. coli, 3.7, 3.5, and 4.8 CFU/cm(2); and for Staphylococcus aureus, 2.1, 2.5, and 2.3 CFU/cm(2), respectively. L. monocytogenes and Salmonella were isolated from 59.5, 20.5, and 17% and 32.5, 8.0 and 12.5% of shelves, drawers, and dishcloths, respectively. Four Salmonella serotypes and nine serogroups (partially serotyped isolates) were identified. The most prevalent were Salmonella Anatum (39.5%), Salmonella group E1 (19.7%), and Salmonella group E1 monophasic (12.5%). Operational conditions and microbiological status were clearly deficient in sampled refrigerators, highlighting the consequent risk of foodborne disease among users. Educational programs are needed to

  12. Recent Refrigeration Cycle Technologies for Household Refrigerators

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi

    The household refrigerator is one of the most important and the biggest energy-consuming home appliances. This paper summarize recent refrigeration cycle developments in the field of domestic household refrigerators based on a survey of publications.

  13. Staphylococcus aureus isolates from Irish domestic refrigerators possess novel enterotoxin and enterotoxin-like genes and are clonal in nature.

    PubMed

    Smyth, Davida S; Kennedy, Jean; Twohig, Jane; Miajlović, Helen; Bolton, Declan; Smyth, Cyril J

    2006-03-01

    A previous study carried out by the National Food Centre in Dublin on bacterial contamination of Irish domestic refrigeration systems revealed that 41% were contaminated with Staphylococcus aureus. One hundred fifty-seven S. aureus isolates were screened by multiplex PCR analysis for the presence of 15 staphylococcal enterotoxin and enterotoxin-like genes (sea-see, seg-sei, selj-selo, and selq) and the toxic shock toxin superantigen tst gene. Of the refrigerator isolates, 64.3% possessed more than one staphylococcal enterotoxin or staphylococcal enterotoxin-like gene. All bar one of the 101 staphylococcal enterotoxin or staphylococcal enterotoxin-like gene-positive strains possessed the egc locus bearing the seg, sei, selm, seln, and selo genes. Twelve random amplified polymorphic DNA (RAPD) types accounted for 119 (75.8%) of the strains, two of these types accounting for 25 (RAPD type 1, 15.9%) and 52 (RAPD type 5, 33.1%), respectively. All of the RAPD type 5 isolates possessed the egc gene cluster only. The RAPD type 5 amplicon profile was identical to that of S. aureus isolates associated with osteomyelitis in broiler chickens in Northern Ireland that also possessed the egc locus only. However, the RAPD type 5 domestic refrigerator and chicken isolates differed in penicillin G sensitivity, production of Protein A and staphylokinase, and crystal violet agar growth type. These findings highlight that the average Irish household refrigerator harbors potential enterotoxin-producing S. aureus that may or may not be of animal origin and, accordingly, is a potential reservoir for staphylococcal food poisoning. PMID:16541679

  14. Experimental Performance of R-1234yf and R-1234ze as Drop-in Replacements for R-134a in Domestic Refrigerators

    SciTech Connect

    Karber, Kyle M; Abdelaziz, Omar; Vineyard, Edward Allan

    2012-01-01

    Concerns about anthropogenic climate change have generated an interest in low global warming potential (GWP) refrigerants and have spawned policies and regulations that encourage the transition to low GWP refrigerants. Recent research has largely focused on hydrofluoroolefins (HFOs), including R-1234yf (GWP = 4) as a replacement for R-134a (GWP = 1430) in automotive air-conditioning applications. While R-1234yf and R-1234ze (GWP = 6) have been investigated theoretically as a replacements for R-134a in domestic refrigeration, there is a lack of experimental evidence. This paper gives experimental performance data for R-1234yf and R-1234ze as drop-in replacements for R134a in two household refrigerators one baseline and one advanced technology. An experiment was conducted to evaluate and compare the performance of R-134a to R-1234yf and R-1234ze, using AHAM standard HRF-1 to evaluate energy consumption. These refrigerants were tested as drop-in replacements, with no performance enhancing modifications to the refrigerators. In Refrigerator 1 and 2, R-1234yf had 2.7% and 1.3% higher energy consumption than R-134a, respectively. This indicates that R-1234yf is a suitable drop-in replacement for R-134a in domestic refrigeration applications. In Refrigerator 1 and 2, R-1234ze had 16% and 5.4% lower energy consumption than R-134a, respectively. In order to replace R-134a with R-1234ze in domestic refrigerators the lower capacity would need to be addressed, thus R-1234ze might not be suitable for drop-in replacement.

  15. A GUIDE FOR USE IN DEVELOPING TRAINING PROGRAMS IN VOCATIONAL REFRIGERATION AND AIR CONDITIONING (DOMESTIC).

    ERIC Educational Resources Information Center

    Mississippi State Univ., State College.

    THE MATERIAL IN THIS CURRICULUM GUIDE WAS DEVELOPED TO HELP THE INSTRUCTOR TRAIN STUDENTS TO MEET THE ENTRY REQUIREMENTS FOR REFRIGERATION AND AIR CONDITIONING TRADESMEN. EXPERIENCED TEACHERS DETERMINED OBJECTIVES, DEVELOPED A JOB ANALYSIS, IDENTIFIED THE INSTRUCTIONAL CONTENT, SEQUENCED LEARNING EXPERIENCES, AND SELECTED PERTINENT LITERATURE. THE…

  16. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    EPA Science Inventory

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  17. Refrigerant poisoning

    MedlinePlus

    A refrigerant is a chemical that makes things cold. This article discusses poisoning from sniffing or swallowing such chemicals. ... occurs when people intentionally sniff a type of refrigerant called Freon. This article is for information only. ...

  18. Malone refrigeration

    SciTech Connect

    Swift, G.W.

    1993-01-01

    Malone refrigeration is the use of a liquid near its critical points without evaporations as working fluid in a regenerative or recuperative refrigeration cycle such as the Stirling and Brayton cycles. It's potential advantages include compactness, efficiency, an environmentally benign working fluid, and reasonable cost. One Malone refrigerator has been built and studied; two more are under construction. Malone refrigeration is such a new, relatively unexplored technology that the potential for inventions leading to improvements in efficiency and simplicity is very high.

  19. Thermoacoustic refrigeration

    NASA Technical Reports Server (NTRS)

    Garrett, Steven L.; Hofler, Thomas J.

    1991-01-01

    A new refrigerator which uses resonant high amplitude sound in inert gases to pump heat is described and demonstrated. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). The thermoacoustic refrigerator has no sliding seals, requires no lubrication, uses only low-tolerance machine parts, and contains no expensive components. Because the compressor moving mass is typically small and the oscillation frequency is high, the small amount of vibration is very easily isolated. This low vibration and lack of sliding seals makes thermoacoustic refrigeration an excellent candidate for food refrigeration and commercial/residential air conditioning applications. The design, fabrication, and performance of the first practical, autonomous thermoacoustic refrigerator, which will be flown on the Space Shuttle (STS-42), are described, and designs for terrestrial applications are presented.

  20. Malone refrigeration

    SciTech Connect

    Swift, G W

    1992-01-01

    Malone refrigeration is the use of a liquid near its critical point, without evaporation, as working fluid in a refrigeration cycle such as the Stirling cycle. We discuss relevant properties of appropriate liquids, and describe two Malone refrigerators. The first completed several years ago, established the basic principles of use of liquids in such cycles. The second, now under construction, is a linear, free-piston machine.

  1. Malone refrigeration

    SciTech Connect

    Swift, G.W.

    1993-06-01

    Malone refrigeration is the use of a liquid near its critical points without evaporations as working fluid in a regenerative or recuperative refrigeration cycle such as the Stirling and Brayton cycles. It`s potential advantages include compactness, efficiency, an environmentally benign working fluid, and reasonable cost. One Malone refrigerator has been built and studied; two more are under construction. Malone refrigeration is such a new, relatively unexplored technology that the potential for inventions leading to improvements in efficiency and simplicity is very high.

  2. Thermotile Refrigerators

    NASA Technical Reports Server (NTRS)

    Park, Brian V.

    1994-01-01

    Thermoelectric tiles provide cooling exactly where needed. Thermotile is modular thermoelectric cooling unit that incorporates sensor and electronic circuitry in addition to thermoelectric device. Refrigerator/freezer is lined with thermotiles clipped into supporting lattices. Small fans used to circulate air in refrigerator and freezer compartments. Elimination of conventional mechanical refrigeration machinery reduces number of moving parts and completely eliminates noise and vibration. Data capabilities of thermotile refrigeration system used for diagnosis of defects or monitoring local temperatures. Thermotiles produced by automated manufacturing techniques. Custom shapes molded as needed.

  3. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    SciTech Connect

    Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar

    2012-07-19

    This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

  4. Vaccine refrigeration

    PubMed Central

    McColloster, Patrick J; Martin-de-Nicolas, Andres

    2014-01-01

    This commentary reviews recent changes in Centers for Disease Control (CDC) vaccine storage guidelines that were developed in response to an investigative report by the Office of the Inspector General. The use of temperature data loggers with probes residing in glycol vials is advised along with storing vaccines in pharmaceutical refrigerators. These refrigerators provide good thermal distribution but can warm to 8 °C in less than one hour after the power is discontinued. Consequently, electric grid instability influences appropriate refrigerator selection and the need for power back-up. System Average Interruption Duration Index (SAIDI) values quantify this instability and can be used to formulate region-specific guidelines. A novel aftermarket refrigerator regulator with a battery back-up power supply and microprocessor control system is also described. PMID:24442209

  5. Thermoelectric refrigerator

    NASA Technical Reports Server (NTRS)

    Park, Brian V. (Inventor); Smith, Jr., Malcolm C. (Inventor); McGrath, Ralph D. (Inventor); Gilley, Michael D. (Inventor); Criscuolo, Lance (Inventor); Nelson, John L. (Inventor)

    1996-01-01

    A refrigerator is provided which combines the benefits of superinsulation materials with thermoelectric devices and phase change materials to provide an environmentally benign system that is energy efficient and can maintain relatively uniform temperatures for extended periods of time with relatively low electrical power requirements. The refrigerator includes a thermoelectric assembly having a thermoelectric device with a hot sink and a cold sink. The superinsulation materials include a plurality of vacuum panels. The refrigerator is formed from an enclosed structure having a door. The vacuum panels may be contained within the walls of the enclosed structure and the door. By mounting the thermoelectric assembly on the door, the manufacturer of the enclosed structure is simplified and the overall R rating of the refrigerator increased. Also an electrical motor and propellers may be mounted on the door to assist in the circulation of air to improve the efficiency of the cold sink and the hot sink. A propeller and/or impeller is preferably mounted within the refrigerator to assist in establishing the desired air circulation flow path.

  6. Refrigeration Showcases

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through the Technology Affiliates Program at the Jet Propulsion Laboratory (JPL), valuable modifications were made to refrigerator displays built by Displaymor Manufacturing Company, Inc. By working with JPL, Displaymor could address stiffer requirements that ensure the freshness of foods. The application of the space technology meant that the small business would be able to continue to market its cases without incurring expenses that could threaten the viability of the business, and the future of several dozen jobs. Research and development improvements in air flow distribution and refrigeration coil technology contributed greatly to certifying Displaymor's showcases given the new federal regulations. These modifications resulted in a refrigerator case that will keep foods cooler, longer. Such changes maintained the openness of the display, critical to customer visibility and accessibility, impulse buying, and cross-merchandising.

  7. Supercooling Refrigerator

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A Goddard/Philips research project resulted in a refrigeration system which works without seals, lubricants or bearings. The system, originally developed to cool satellite-based scientific instruments, has an extensive range of potential spinoffs. It is called the Stirling Cycle Cryogenic Cooler and eliminates friction by using electronically controlled linear magnetic bearings. Mechanical failure, contamination are eliminated.

  8. Refrigeration Servicing.

    ERIC Educational Resources Information Center

    Hamilton, Donald L.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the services required to be performed on refrigeration equipment. The course contains four study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work…

  9. Magnetic Refrigeration Development

    NASA Technical Reports Server (NTRS)

    Deardoff, D. D.; Johnson, D. L.

    1984-01-01

    Magnetic refrigeration is being developed to determine whether it may be used as an alternative to the Joule-Thomson circuit of a closed cycle refrigerator for providing 4 K refrigeration. An engineering model 4-15 K magnetic refrigerator has been designed and is being fabricated. This article describes the overall design of the magnetic refrigerator.

  10. Fluorescent refrigeration

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Buchwald, Melvin I.; Gosnell, Timothy R.

    1995-01-01

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.

  11. Refrigeration and Food Safety

    MedlinePlus

    ... Types of Bacteria in Refrigerated Foods Safe Refrigerator Temperature Safe Handling of Foods for Refrigerating Placement of ... or packed in snow. He realized the cold temperatures would keep game for times when food was ...

  12. Refrigeration and Cryogenics Specialist. J3ABR54530

    ERIC Educational Resources Information Center

    Air Force Training Command, Sheppard AFB, TX.

    This document package contains an Air Force course used to train refrigeration and cryogenics specialists. The course is organized in six blocks designed for group instruction. The blocks cover the following topics: electrical principles; fundamentals of tubing and piping; metering devices, motor controls, domestic and commercial refrigeration;…

  13. US vaccine refrigeration guidelines: loose links in the cold chain.

    PubMed

    McColloster, Patrick J

    2011-05-01

    This commentary compares Centers for Disease Control (CDC) guidelines for vaccine storage with international cold chain standards. Problems related to the use of domestic refrigerators in clinical settings are discussed. Optimal vaccine refrigerator design characteristics are summarized. The adoption of World Health Organization storage recommendations is advised. PMID:21422821

  14. Refrigerant directly cooled capacitors

    DOEpatents

    Hsu, John S.; Seiber, Larry E.; Marlino, Laura D.; Ayers, Curtis W.

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  15. Refrigeration and Air Conditioning Equipment, 11-9. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This military-developed text consists of three blocks of instructional materials for use by those studying to become refrigeration and air conditioning specialists. Covered in the individual course blocks are the following topics: refrigeration and trouble analysis, thermodynamics, and principles of refrigeration; major components and domestic and…

  16. Fluorescent refrigeration

    DOEpatents

    Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.

    1995-09-05

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.

  17. Optimal refrigerator

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.; Hovhannisyan, Karen; Mahler, Guenter

    2010-05-01

    We study a refrigerator model which consists of two n -level systems interacting via a pulsed external field. Each system couples to its own thermal bath at temperatures Th and Tc , respectively (θ≡Tc/Th<1) . The refrigerator functions in two steps: thermally isolated interaction between the systems driven by the external field and isothermal relaxation back to equilibrium. There is a complementarity between the power of heat transfer from the cold bath and the efficiency: the latter nullifies when the former is maximized and vice versa. A reasonable compromise is achieved by optimizing the product of the heat-power and efficiency over the Hamiltonian of the two systems. The efficiency is then found to be bounded from below by ζCA=(1)/(1-θ)-1 (an analog of the Curzon-Ahlborn efficiency), besides being bound from above by the Carnot efficiency ζC=(1)/(1-θ)-1 . The lower bound is reached in the equilibrium limit θ→1 . The Carnot bound is reached (for a finite power and a finite amount of heat transferred per cycle) for lnn≫1 . If the above maximization is constrained by assuming homogeneous energy spectra for both systems, the efficiency is bounded from above by ζCA and converges to it for n≫1 .

  18. Optimal refrigerator.

    PubMed

    Allahverdyan, Armen E; Hovhannisyan, Karen; Mahler, Guenter

    2010-05-01

    We study a refrigerator model which consists of two n -level systems interacting via a pulsed external field. Each system couples to its own thermal bath at temperatures T h and T c, respectively (θ ≡ T c/T h < 1). The refrigerator functions in two steps: thermally isolated interaction between the systems driven by the external field and isothermal relaxation back to equilibrium. There is a complementarity between the power of heat transfer from the cold bath and the efficiency: the latter nullifies when the former is maximized and vice versa. A reasonable compromise is achieved by optimizing the product of the heat-power and efficiency over the Hamiltonian of the two systems. The efficiency is then found to be bounded from below by [formula: see text] (an analog of the Curzon-Ahlborn efficiency), besides being bound from above by the Carnot efficiency [formula: see text]. The lower bound is reached in the equilibrium limit θ → 1. The Carnot bound is reached (for a finite power and a finite amount of heat transferred per cycle) for ln n > 1. If the above maximization is constrained by assuming homogeneous energy spectra for both systems, the efficiency is bounded from above by ζ CA and converges to it for n > 1. PMID:20866207

  19. REACH. Refrigeration Units.

    ERIC Educational Resources Information Center

    Snow, Rufus; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of refrigeration. The instructional units focus on refrigeration fundamentals, tubing and pipe, refrigerants, troubleshooting, window air conditioning, and…

  20. Stirling Refrigerator

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.

  1. Thermoacoustically driven refrigerator with double thermoacoustic-Stirling cycles

    NASA Astrophysics Data System (ADS)

    Luo, Ercang; Dai, Wei; Zhang, Yong; Ling, Hong

    2006-02-01

    Recently, considerable research efforts have been made to search substitution technologies for chlorofluorocarbon-based vapor compression cycles due to the concern over environmental issues. This letter introduces a helium-based thermoacoustic refrigeration system, which is a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine, for domestic refrigeration purpose. In the regenerators of both the refrigerator and the prime mover, helium gas experiences near to reversible high efficiency Stirling process. At the operating point with 3.0MPa mean pressure, 57.7Hz frequency, and 2.2kW heat input, the experimental cooler provides a lowest temperature of -64.4°C and 250W cooling power at -22.1°C. These results show good potential of the system to be an alternative in near future for domestic refrigeration with advantages of environment-friendliness, no moving parts, and heat driven mechanism.

  2. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1996-11-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  3. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1996-07-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  4. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1999-01-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilities access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  5. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1996-01-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. it consolidates and facilitates.access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  6. Method and refrigerants for replacing existing refrigerants in centrifugal compressors

    SciTech Connect

    Kopko, W.L.

    1991-12-31

    This patent describes a method for replacing an existing refrigerant in a centrifugal compressor. It comprises selecting a desired impeller Mach number for the centrifugal compressor; selecting a base refrigerant constituent; combining at least one additive refrigerant constituent with the base refrigerant constituent to form a replacement refrigerant having at least one physical or chemical property different from the existing refrigerant and substantially providing the desired impeller Mach number in the centrifugal compressor; and replacing the existing refrigerant with the replacement refrigerant.

  7. Refrigerating machine oil

    SciTech Connect

    Nozawa, K.

    1981-03-17

    Refrigerating machine oil to be filled in a sealed motorcompressor unit constituting a refrigerating cycle system including an electric refrigerator, an electric cold-storage box, a small-scaled electric refrigerating show-case, a small-scaled electric cold-storage show-case and the like, is arranged to have a specifically enhanced property, in which smaller initial driving power consumption of the sealed motor-compressor and easier supply of the predetermined amount of the refrigerating machine oil to the refrigerating system are both guaranteed even in a rather low environmental temperature condition.

  8. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1994-05-27

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  9. Refrigeration for Cryogenic Sensors

    NASA Technical Reports Server (NTRS)

    Gasser, M. G. (Editor)

    1983-01-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests; split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  10. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1995-06-01

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  11. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1995-02-01

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase-out of chemical compounds of environmental concern.

  12. New Rules for Refrigerants.

    ERIC Educational Resources Information Center

    Jackson, Robert

    1999-01-01

    Discusses how educational facilities can comply with new Environmental Protection Agency regulations regarding commercial refrigerants. Tips include developing a compliance plan with a manager in charge of it, and developing an accurate and complete refrigerant-systems assessment. (GR)

  13. Reciprocating magnetic refrigerator

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1985-01-01

    A 4 to 15 K magnetic refrigerator to test as an alternative to the Joule-Thomson circuit as the low temperature stage of a 4 to 300 K closed-cycle refrigerator was developed. The reciprocating magnetic refrigerator consists of two matrices of gadolinium gallium garnet spheres located in tandem on a single piston which alternately moves each matrix into a 7 telsa magnetic field. A separate helium gas circuit is used as the heat exchange mechanism for the low and the high temperature extremes of the magnetic refrigerator. Details of the design and results of the initial refrigerator component tests are presented.

  14. Histologic and temperature alterations induced by skin refrigerants.

    PubMed

    Dzubow, L M

    1985-05-01

    The histologic alterations induced by spray refrigerants independent of and in combination with dermabrasion were studied with the use of the domestic pig as a model. Tissue injury was found to be a function of spray duration and freeze intensity. Both preabrasion freezing and postabrasion refreezing could produce damage additive to that of mechanical planing. Skin surface and intradermal temperature variations during refrigeration were recorded. The possible implications of these findings as they pertain to clinical dermabrasion are discussed. PMID:4008684

  15. Energy analysis of an ammonia-water absorption refrigeration system

    SciTech Connect

    Dincer, I.; Dost, S.

    1996-09-01

    Absorption refrigeration systems (ARSs) are run on heat-operated cycles. In these systems a secondary fluid (i.e., absorbent) is used to absorb the primary fluid (i.e., refrigerant) vaporized in the evaporator. ARSs for industrial and domestic applications have been attracting increasing interest throughout the world. A simple energy analysis technique for ammonia-water refrigeration systems is presented and verified with actual experimental data taken from the literature. Comparison was made in terms of the coefficient of performance, and very good agreement was found.

  16. Domestic Violence

    MedlinePlus

    ... AQ FREQUENTLY ASKED QUESTIONS FAQ083 WOMEN’S HEALTH Domestic Violence • What is domestic violence? • What are the types of abuse? • How can ... available to help abused women? What is domestic violence? Domestic violence is a pattern of threatening or ...

  17. Refrigerator Based on Chemisorption

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1987-01-01

    Reversible chemical reaction generates pressurized oxygen for cooling. Concept for cryogenic refrigerator based on chemical absorption of oxygen by praseodymium/cerium oxide (PCO) compound. Refrigerator produces cryogenic liquid for cooling infrared sensors. Also used for liquefying air and separating oxygen from nitrogen in air. In chemisorption refrigerator, PCO alternately absorbs and desorbs oxygen depending on whether cooled or heated. One pair of compressors accepts oxygen while others releases it. Compressed oxygen liquefied when precooked and expanded.

  18. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1997-02-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alterative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on various refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  19. Manufacture of refrigeration oils

    SciTech Connect

    Chesluk, R.P.; Platte, H.J.; Sequeira, A.J.

    1981-12-08

    Lubricating oils suitable for use in refrigeration equipment in admixture with fluorinated hydrocarbon refrigerants are produced by solvent extraction of naphthenic lubricating oil base stocks, cooling the resulting extract mixture, optionally with the addition of a solvent modifier, to form a secondary raffinate and a secondary extract, and recovering a dewaxed oil fraction of lowered pour point from the secondary raffinate as a refrigeration oil product. The process of the invention obviates the need for a separate dewaxing operation, such as dewaxing with urea, as conventionally employed for the production of refrigeration oils.

  20. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1998-08-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufactures and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on many refrigerants including propane, ammonia, water, carbon dioxide, propylene, ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  1. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  2. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  3. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-06-23

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  4. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-11-24

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  5. Laboratory evaluation of an ozone-safe nonazeotropic refrigerant mixture in a Lorenz-Meutzner refrigerator freezer design

    NASA Astrophysics Data System (ADS)

    Sand, J. R.; Vineyard, E. A.; Baxter, V. D.

    The Lorenz-Meutzner refrigerator freezer (RF) circuit has been proposed as a design which would operate with nonazeotropic refrigerant mixtures (NARMS) and significantly increase the thermodynamic efficiency of household refrigerators. Several ozone-safe and more environmentally acceptable refrigerants are known which could be blended into a NARM to replace R-12 for this domestic refrigeration application. Laboratory tests were performed on a Lorenz-Meutzner (L-M) RF using an R-32/R-124 NARM. Comparisons are made between the baseline performance of the refrigerator with R-12 before it was modified to the L-Ni design and that of the L-M circuit operating with R-12 and the NARM. Circuiting and component changes resulting from initial testing of this unit are described. Computer modeling and compressor calorimeter results for R-12 and the NARM used in the test unit are also presented. Small performance gains (approximately 3 percent) are seen for the NARM over R-12 in the same refrigerator freezer circuit. Modeling results and steady-state data suggest larger improvements (approximately 15 percent) are possible. It is felt that the larger improvements predicted from modeling and compressor calorimetry data are not being realized due to poor heat transfer and refrigerant circuiting arrangements.

  6. Refrigerant leak detector

    NASA Technical Reports Server (NTRS)

    Byrne, E. J.

    1979-01-01

    Quantitative leak detector visually demonstrates refrigerant loss from precision volume of large refrigeration system over established period of time from single test point. Mechanical unit is less costly than electronic "sniffers" and is more reliable due to absence of electronic circuits that are susceptible to drift.

  7. Thermoacoustic engines and refrigerators

    NASA Astrophysics Data System (ADS)

    Garrett, Steven L.

    2012-06-01

    Thermoacoustic engines and refrigerators use gas inertia and compressibility to eliminate many of the mechanical contrivances required by traditional engines and refrigerators while providing potentially attractive options that might reduce environmental impacts. The operation of both standing-wave and traveling-wave devices will be described and illustrated with thermoacoustic devices that have been used outside the laboratory.

  8. Theory of cascade refrigeration

    NASA Astrophysics Data System (ADS)

    Quack, Hans H.

    2012-06-01

    The maximum difference between the warm and cold temperature of a refrigeration cycle is limited by properties of the refrigerant and/or losses associated with the transport of the refrigerant. For larger temperature differences, one has to arrange several refrigeration cycles "above" each other, each cycle spanning a certain temperature difference. This approach is called cascade refrigeration and has played an important role in the history of cryogenics. For a theory of cascade refrigeration it is helpful to define a general one-stage non-reversible refrigeration step and to visualize it within the temperature-entropy diagram. Then one can combine several one-stage cycles to a cascade. There exist two types of cascades: "Full" cascades, where all entropy gains of a lower stage are transferred to the next higher temperature stage, and "partial" cascades, where each single cycle goes up to ambient temperature, where a part of the entropy gain is removed, and only the rest of the entropy gain is transferred to the next higher temperature stage. In cryogenic refrigeration "partial" cascades are generally more efficient than "full" cascades.

  9. Domestic Violence

    MedlinePlus

    Domestic violence is a type of abuse. It usually involves a spouse or partner, but it can also ... a child, elderly relative, or other family member. Domestic violence may include Physical violence that can lead to ...

  10. Domestic violence

    MedlinePlus

    Domestic violence is when a person uses abusive behavior to control a partner or other family member. The ... of any age, sex, culture, or class. When domestic violence is aimed at a child, it is called ...

  11. Domestic Violence

    MedlinePlus

    Domestic violence is a type of abuse. It usually involves a spouse or partner, but it can also be ... child, elderly relative, or other family member. Domestic violence may include Physical violence that can lead to ...

  12. Ranking of refrigerants.

    PubMed

    Restrepo, Guillermo; Weckert, Monika; Brüggemann, Rainer; Gerstmann, Silke; Frank, Hartmut

    2008-04-15

    Environmental ranking of refrigerants is of need in many instances. The aim is to assess the relative environmental hazard posed by 40 refrigerants, including those used in the past, those presently used, and some proposed substitutes. Ranking is based upon ozone depletion potential, global warming potential, and atmospheric lifetime and is achieved by applying the Hasse diagram technique, a mathematical method that allows us to assess order relationships of chemicals. The refrigerants are divided into 13 classes, of which the chlorofluorocarbons, hydrofluorocarbons, hydrochlorofluorocarbons, hydrofluoroethers, and hydrocarbons contain the largest number of single substances. The dominance degree, a method for measuring order relationships among classes, is discussed and applied to the 13 refrigerant classes. The results show that some hydrofluoroethers are as problematic as the hydrofluorocarbons. Hydrocarbons and ammonia are the least problematic refrigerants with respect to the three environmental properties. PMID:18497145

  13. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1992-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on R-32, R-123, R-124, R- 125, R-134a, R-141b, R142b, R-143a, R-152a, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses polyalkylene glycol (PAG), ester, and other lubricants. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits.

  14. Feasibility of cool storage systems in refrigeration

    NASA Astrophysics Data System (ADS)

    Elmahgary, Yehia; Kekkonen, Veikko; Laitinen, Ari; Pihala, Hannu

    1989-05-01

    In the present report, the economic viability and technical feasibility of selected cool storage systems are considered. Cool storage has clear potential for several applications: in connection with air-conditioning systems, domestic refrigerating and freezing systems; commercially e.g., in the dairy and vegetable industries; and in deep freezing, as in the meat industry. Air-conditioning has limited significance in Finland. For this reason it was not investigated in this study. In domestic refrigeration and freezing two systems were investigated; a controlled cooling/heating system and a simple built-in system in individual refrigerators and freezers. The central cooling/heating system in houses was found to be economically unattractive. It also has several technical drawbacks. The simple built-in system appeared to be promising. The amount of savings is rationally a function of the difference between day and night tariffs and the costs of installing an automatic switch and storage media. In the vegetable and dairy industries cool storage also has considerable potential. Several systems were investigated in this respect and compared to the conventional system. The cool storage system using Cristopia balls, one of the most common commercial systems available in Europe, was not economical at a tariff difference of 10 p/k Wh or more. Cool storage for freezing in meat plants was also investigated.

  15. Pulse Tube Refrigerator

    NASA Astrophysics Data System (ADS)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  16. Photovoltaic refrigeration application: Assessment of the near-term market

    NASA Technical Reports Server (NTRS)

    Rosenblum, L.; Bifano, W. J.; Poley, W. A.; Scudder, L. R.

    1977-01-01

    This foreign and domestic market assessment was performed as part of the Tests and Applications Project being conducted by NASA-LeRC as part of the Department of Energy's (DOE) National Photovoltaic Program. One of the objectives of that program was to stimulate the demand for photovoltaic power systems so that appropriate markets would be developed in concert with the increasing photovoltaic production capacity. The refrigeration application represented a possible market for photovoltaics; hence, a brief survey of potential applications was conducted. Both refrigerators and refrigeration systems were considered in the assessment although the primary emphasis is on refrigerators of 9 cu ft of less. Three user sectors were examined: (1) government, (2) commercial/institutional, and (3) general public.

  17. The toxicity of refrigerants

    SciTech Connect

    Calm, J.M.

    1996-07-01

    This paper presents toxicity data and exposure limits for refrigerants. The data address both acute (short-term, single exposure) and chronic (long-term, repeated exposure) effects, with emphasis on the former. The refrigerants covered include those in common use for the last decade, those used as components in alternatives, and selected candidates for future replacements. The paper also reviews the toxicity indicators used in both safety standards and building, mechanical, and fire codes. It then outlines current classification methods for refrigerant safety and relates them to standard and code usage.

  18. Refrigerated cryogenic envelope

    DOEpatents

    Loudon, John D.

    1976-11-16

    An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

  19. Joule Thomson refrigerator

    NASA Technical Reports Server (NTRS)

    Chan, Chung K. (Inventor); Gatewood, John R. (Inventor)

    1988-01-01

    A bi-directional Joule Thomson refrigerator is described, which is of simple construction at the cold end of the refrigerator. Compressed gas flowing in either direction through the Joule Thomson expander valve and becoming liquid, is captured in a container in direct continuous contact with the heat load. The Joule Thomson valve is responsive to the temperature of the working fluid near the valve, to vary the flow resistance through the valve so as to maintain a generally constant flow mass between the time that the refrigerator is first turned on and the fluid is warm, and the time when the refrigerator is near its coldest temperature and the fluid is cold. The valve is operated by differences in thermal coefficients of expansion of materials to squeeze and release a small tube which acts as the expander valve.

  20. Thermoacoustic engines and refrigerators

    SciTech Connect

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  1. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  2. Miscibility comparison for three refrigerant mixtures and four component refrigerants

    SciTech Connect

    Kang, H.M.; Pate, M.B.

    1999-07-01

    Miscibility data were taken and compared for seven different refrigerants when mixed with the same polyol ester (POE) lubricant. Four of the seven refrigerants were single-component refrigerants while three of the refrigerants were mixtures composed of various combinations of the pure refrigerants. The purpose of this research was to investigate the difference in miscibility characteristics between refrigerant mixtures and their respective component refrigerants. The POE lubricant was a penta erythritol mixed-acid type POE which has a viscosity ISO32. The four pure refrigerants were R-32, R-125, R-134a, and R-143a and the three refrigerant mixtures were R-404A, R407C, and R-410A. The miscibility tests were performed in a test facility consisting of a series of miniature test cells submerged in a constant temperature bath. The test cells were constructed to allow for complete visibility of the refrigerant/lubricant mixtures under all test conditions. The tests were performed over a concentration range of 0 to 100% and a temperature range of {minus}40 to 194 F. The miscibility test results for refrigerant mixtures are compared to component refrigerants. In all cases, the refrigerant mixtures appear to have better miscibility than their most immiscible pure component.

  3. ARTI Refrigerant Database

    SciTech Connect

    Cain, J.M.

    1993-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

  4. Downhole pulse tube refrigerators

    SciTech Connect

    Swift, G.; Gardner, D.

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  5. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1992-11-09

    The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. A computerized version is available that includes retrieval software.

  6. Adsorption Refrigeration System

    SciTech Connect

    Wang, Kai; Vineyard, Edward Allan

    2011-01-01

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacks of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.

  7. Helium-refrigeration system

    SciTech Connect

    Specht, J.R.; Millar, B.; Sutherland, A.

    1995-08-01

    The design, procurement, and preliminary construction was completed for adding two more wet expansion engines to two helium refrigerators. These will be added in mid-year FY 1995. In addition a variable speed drive will be added to an existing helium compressor. This is part of an energy conservation upgrade project to reduce operating costs from the use of electricity and liquid nitrogen. This project involves the replacement of Joule-Thompson valves in the refrigerators with expansion engines resulting in system efficiency improvements of about 30% and improved system reliability.

  8. Refrigeration for photomultipliers.

    PubMed

    Broadfoot, A L

    1966-08-01

    A closed-cycle mechanical refrigeration system has been adapted to cool photomultipliers automatically. Temperature is adjustable between +50 degrees and -55 degrees C and is stable to within +/-0.30 degrees C. An important feature of the design is the flexible connection to the cold box which allows extensive freedom of motion; this freedom is particularly important in astronomy where the cold box is mounted on the end of a telescope. Liquid Freon refrigerants have been used to cool photomultipliers for rocket flights. A brief description of two methods is given. PMID:20057521

  9. Low-temperature magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  10. Status Of Sorption Cryogenic Refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1988-01-01

    Report reviews sorption refrigeration. Developed for cooling infrared detectors, cryogenic research, and other advanced applications, sorption refrigerators have few moving parts, little vibration, and lifetimes of 10 years or more. Describes types of sorption stages, multistage and hybrid refrigeration systems, power requirements, cooling capacities, and advantages and disadvantages of various stages and systems.

  11. MOBILE AIR CONDITIONER REFRIGERANT EVALUATION

    EPA Science Inventory

    The paper discusses an evaluation of refrigerant from mobile air conditioners. The data gathered indicate that CFC-l2 refrigerant does not degrade significantly with use. Furthermore, while small amounts of contaminant are removed with the refrigerant during servicing, most of th...

  12. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    SciTech Connect

    Nelson, Caleb; Reis, Chuck; Nelson, Eric; Armer, James; Arthur, Rob; Heath, Richard; Rono, James; Hirsch, Adam; Doebber, Ian

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  13. Domestic Violence

    MedlinePlus

    ... to anyone regardless of race, age, sexual orientation, religion, or gender. Domestic violence affects people of all ... ABOUT The Attorney General Budget & Performance Strategic Plans History AGENCIES BUSINESS Business Opportunities Small & Disadvantaged Business Grants ...

  14. Enhanced naphthenic refrigeration oils for household refrigerator systems

    SciTech Connect

    Reyes-Gavilan, J.L.; Flak, G.T.; Tritcak, T.R.; Barbour, C.B.

    1997-12-31

    Due to industry concerns about the successful employment of hydrofluorocarbon-immiscible hydrocarbon oils in refrigeration systems, enhanced naphthenic refrigeration oils have been developed. These products have been designed to be more dispersible with hydrofluorocarbon (HFC) refrigerants, such as R-134a, in order to facilitate lubricant return to the compressor and to ensure proper energy efficiency of the system. Bench tests and system performance evaluations indicate the feasibility of these oils for use in household refrigeration applications. Results of these evaluations are compared with those obtained with polyol esters and typical naphthenic mineral oils employed in chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigeration applications.

  15. Trend of Refrigeration and Air-Conditioning Technology in Korea

    NASA Astrophysics Data System (ADS)

    Oh, Hoo-Kyu; Papk, Ki-Won

    It can be said that refrigeration and air-conditioning technology in Korea dates back to the ancient dynasty, all the way up to the Sokkuram(700s) and Seokbinggo(1700s), But modern refrigeration and air-conditioning technology was first developed in and introduced to Korea in the1960swith the modernization of Korea, Today it is at a level which meets that of advanced countries in both the industrial and domestic fields. As of 2003, there were about 700 companies that owned cold storage/freezing/refrigeration facilities, with cold storage capacity of about 2,000, 000tons and capacity per company of about 3,000 tons. These facilities most are continuously expanding and automating their facilities. 62 million units of refrigeration and air-conditioning machinery and equipment were produced in 2003, worth a total of 7.7 trillion won(about 7.7 thousand million US). On the academic side there are 9 universities and 12 junior colleges with courses in either refrigeration and air-conditioning or architectural equipment. Academic societies such as the Society of Air-conditioning and Refrigerating Engineers of Korea(SAREK), and industrial societies like the Korean Association of Refrigeration(KAR) are active members of the refrigeration and air-conditioning industry. The1eare also national/government-established research institutions such as the Korea Institute of Science and Technology(KIST), the Korea Institute of Machinery and Materials (KIMM), the Korea Institute of Energy Research(KIER), and the Korea Institute of Industrial Technology (KITECH).

  16. Dilution refrigeration for space applications

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Petrac, D.

    1990-01-01

    Dilution refrigerators are presently used routinely in ground based applications where temperatures below 0.3 K are required. The operation of a conventional dilution refrigerator depends critically on the presence of gravity. To operate a dilution refrigerator in space many technical difficulties must be overcome. Some of the anticipated difficulties are identified in this paper and possible solutions are described. A single cycle refrigerator is described conceptually that uses forces other than gravity to function and the stringent constraints imposed on the design by requiring the refrigerator to function on the earth without using gravity are elaborated upon.

  17. Fundamentals of Refrigeration.

    ERIC Educational Resources Information Center

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the principles of the refrigeration process. The course contains five study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work units, each…

  18. Improved cryogenic refrigeration system

    NASA Technical Reports Server (NTRS)

    Higa, W. H.

    1967-01-01

    Two-position shuttle valve simplifies valving arrangement and crank-shaft configuration in gas-balancing and Stirling-cycle refrigeration systems used to produce temperatures below 173 degrees K. It connects the displacer and regenerator alternately to the supply line or the return line of the compressor, and establishes constant pressure on the drive piston.

  19. Solar Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  20. Thermoacoustic engines and refrigerators

    SciTech Connect

    Swift, G.W.

    1995-07-01

    We ordinarily think of a sound wave in a gas as consisting of coupled pressure and displacement oscillations. However, temperature oscillations always accompany the pressure changes. The combination of all these oscillations, and their interaction with solid boundaries, produces a rich variety of `thermoacoustic` effects. Although these effects as they occur in every-day life are too small to be noticed, one can harness extremely loud sound waves in acoustically sealed chambers to produce powerful heat engines, heat pumps and refrigerators. Whereas typical engines and refrigerators have crankshaft-coupled pistons or rotating turbines, thermoacoustic engines and refrigerators have at most a single flexing moving part (as in a loudspeaker) with no sliding seals. Thermoacoustic devices may be of practical use where simplicity, reliability or low cost is more important than the highest efficiency (although one cannot say much more about their cost-competitiveness at this early stage). This paper discusses the fundamentals of thermoacoustic engines and refrigerators, research in this field, and their commercial development. 16 refs., 5 figs.

  1. Scaling of Thermoacoustic Refrigerators

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zeegers, J. C. H.; ter Brake, H. J. M.

    2008-03-01

    The possibility of scaling-down thermoacoustic refrigerators is theoretically investigated. Standing-wave systems are considered as well as traveling-wave. In the former case, a reference system is taken that consists of a resonator tube (50 cm) with a closed end and a PVC stack (length 5 cm). Helium is used at a mean pressure of 10 bar and an amplitude of 1 bar. The resulting operating frequency is 1 kHz. The variation of the performance of the refrigerator when scaled down in size is computed under the prerequisites that the temperature drop over the stack or the energy flux or its density are fixed. The analytical results show that there is a limitation in scaling-down a standing-wave thermoacoustic refrigerator due to heat conduction. Similar scaling trends are considered in traveling-wave refrigerators. The traveling-wave reference system consists of a feedback inertance tube of 0.567 m long, inside diameter 78 mm, a compliance volume of 2830 cm3 and a 24 cm thermal buffer tube. The regenerator is sandwiched between two heat exchangers. The system is operated at 125 Hz and filled with 30 bar helium gas. Again, the thermal conductance forms a practical limitation in down-scaling.

  2. Foaming characteristics of HFC refrigerants

    SciTech Connect

    Goswami, D.Y.; Shah, D.O.; Jotshi, C.K.; Bhagwat, S.; Leung, M.; Gregory, A.S.

    1997-06-01

    A detailed study was conducted at the University of Florida to experimentally determine the absorption and desorption rates of HFC and blended refrigerants in polyolester lubricant and to define the characteristics of the foam formed when the refrigerant leaves the refrigerant/lubricant mixture after being exposed to a pressure drop. The alternative refrigerants examined include HFC-32 (R-32), R-125, R-134a, and R-143a. Also examined were blended refrigerants R-404A, R407C, and R410A. These refrigerants were tested with two ISO 68 polyolesters (Witco SL68 and ICI RL 68H). To establish baseline results, refrigerants R-12 and R-22 were tested with mineral oils ISO32 (3GS) and ISO 68 (4GS).

  3. Domestic violence.

    PubMed

    2016-03-30

    Essential facts Domestic violence and abuse includes any incident or repeated incidents of controlling, coercive or threatening behaviour, violence or abuse between family members or intimate partners (including former partners). It can involve psychological, physical, sexual, financial and emotional abuse, as well as 'honour'-based violence and forced marriage. According to the Office for National Statistics, at least 1.4 million women and 700,000 men aged between 16 and 59 experienced domestic abuse in England and Wales in 2013/14 - equivalent to 8.5% of women and 4.5% of men. PMID:27027171

  4. Discussion of Refrigeration Cycle Using Carbon Dioxide as Refrigerant

    NASA Astrophysics Data System (ADS)

    Ji, Amin; Sun, Miming; Li, Jie; Yin, Gang; Cheng, Keyong; Zhen, Bing; Sun, Ying

    Nowadays, the problem of the environment goes worse, it urges people to research and study new energy-saving and environment-friendly refrigerants, such as carbon dioxide, at present, people do research on carbon dioxide at home and abroad. This paper introduces the property of carbon dioxide as a refrigerant, sums up and analyses carbon dioxide refrigeration cycles, and points out the development and research direction in the future.

  5. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  6. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  7. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  8. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  9. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  10. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  11. Condensation of refrigerants flowing inside smooth and corrugated tubes

    SciTech Connect

    Hinton, D.L.; Conklin, J.C.; Vineyard, E.A.

    1995-07-01

    Because heat exchanger thermal performance has a direct fluence on the overall cycle performance of vapor-compression refrigeration machinery,enhanced heat transfer surfaces are of interest to improve the efficiency of heat pumps and air conditioners. We investigated R-22 and a nonazeotropic refrigerant mixture (NARM) of 75% R-143a and 25% R-124 (by mass) to study their thermal performance in a condenser made of conventional smooth tubes and another condenser made of corrugated, or spirally indented, tubes. We investigated the condensing heat transfer and pressure drop characteristics in an experimental test loop model of a domestic beat pump system employing a variable speed compressor. The refrigerant circulates inside the central tube and the water circulates in the annulus. At refrigerant mass fluxes of approximately 275--300 kg/m{sup 2}s, the measured irreversible pressure drop of the corrugated surface was 23% higher than that of the smooth surface for the R-22. At refrigerant mass fluxes of 350-370 kg/m{sup 2}s, the irreversible pressure drop of the corrugated surface was 36% higher than that of the smooth surface for the NARM. The average heat transfer coefficient for the corrugated surface for R-22 was roughly 40% higher than that for the smooth tube surface at refrigerant mass fluxes of 275--295 kg/m{sup 2}s. The average heat transfer coefficient for the corrugated surface for the NARM was typically 70% higher than that for the smooth tube surface at refrigerant mass fluxes of 340--385 kg/m{sup 2}s.

  12. Multilayer Thermionic Refrigeration

    SciTech Connect

    Mahan, G.D.

    1999-08-30

    A review is presented of our program to construct an efficient solid state refrigerator based on thermionic emission of electrons over periodic barriers in the solid. The experimental program is to construct a simple device with one barrier layer using a three layers: metal-semiconductor-metal. The theoretical program is doing calculations to determine: (i) the optimal layer thickness, and (ii) the thermal conductivity.

  13. Reciprocating Magnetic Refrigerator

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1985-01-01

    Unit cools to 4 K by adiabatic demagnetization. Two porous matrices of paramagnetic material gadolinium/gallium/garnet held in long piston called displacer, machined out of Micarta (phenol formaldehyde polymer). Holes in side of displacer allow heat-exchange fluid to flow to and through matrices within. Piston seals on displacer prevent substantial mixing of fluid in two loops. Magnetic refrigerator provides continuous rather than "one-shot" cooling.

  14. Thermoacoustic Refrigerator's Stack Optimization

    NASA Astrophysics Data System (ADS)

    El-Fawal, Mawahib Hassan; Mohd-Ghazali, Normah; Yaacob, Mohd. Shafik; Darus, Amer Nordin

    2010-06-01

    The standing wave thermoacoustic refrigerator, which uses sound generation to transfer heat, was developed rapidly during the past four decades. It was regarded as a new, promising and environmentally benign alternative to conventional compression vapor refrigerators, although it was not competitive regarding the coefficient of performance (COP) yet. Thus the aim of this paper is to enhance thermoacoustic refrigerator's stack performance through optimization. A computational optimization procedure of thermoacoustic stack design was fully developed. The procedure was designed to achieve optimal coefficient of performance based on most of the design and operating parameters. Cooling load and acoustic power governing equations were set assuming the linear thermoacoustic theory. Lagrange multipliers method was used as an optimization technique tool to solve the governing equations. Numerical analyses results of the developed design procedure are presented. The results showed that the stack design parameters are the most significant parameters for the optimal overall performance. The coefficient of performance obtained increases by about 48.8% from the published experimental optimization methods. The results are in good agreement with past established studies.

  15. Japanese activities in refrigeration technology

    NASA Astrophysics Data System (ADS)

    Fujita, T.; Ohtsuka, T.; Ishizaki, Y.

    This paper reviews recent activities in refrigeration technology in Japan. The projects described are stimulated by growing industrial needs or form part of large national projects. The JNR project on the MAGLEV train is currently the most powerful activity and it demands knowledge in all the different disciplines of cryogenics in particular on various scales of refrigeration. Research activities are also directed towards the development of Stirling cycle and magnetic refrigerators for applications in a wider area.

  16. NICE3: Industrial Refrigeration System

    SciTech Connect

    Simon, P.

    1999-09-29

    Energy Concepts has developed an absorption-augmented system as a cost-effective means of achieving more cooling capacity with a substantial reduction in energy consumption and greenhouse gas emissions for industrial refrigeration. It cuts fuel consumption by 30% by combining an internal combustion engine with a mechanical compression refrigeration system and an absorption refrigeration system. The absorption system is powered by engine waste heat. Conventional industrial refrigeration uses mechanical vapor compression, powered by electric motors, which results in higher energy costs. By the year 2010, the new system could cut fuel consumption by 19 trillion Btu and greenhouse emissions by more than 1 million tons per year.

  17. Piezoelectrically-driven Thermoacoustic Refrigerator

    NASA Astrophysics Data System (ADS)

    Chinn, Daniel George

    Thermoacoustic refrigeration is an emerging refrigeration technology which does not require any moving parts or harmful refrigerants in its operation. This technology uses acoustic waves to pump heat across a temperature gradient. The vast majority of thermoacoustic refrigerators to date have used electromagnetic loudspeakers to generate the acoustic input. In this thesis, the design, construction, operation, and modeling of a piezoelectrically-driven thermoacoustic refrigerator are detailed. This refrigerator demonstrates the effectiveness of piezoelectric actuation in moving 0.3 W of heat across an 18 degree C temperature difference with an input power of 7.6 W. The performance characteristics of this class of thermoacoustic-piezoelectric refrigerators are modeled by using DeltaEC software and the predictions are experimentally validated. The obtained results confirm the validity of the developed model. Furthermore, the potential of piezoelectric actuation as effective means for driving thermoacoustic refrigerators is demonstrated as compared to the conventional electromagnetic loudspeakers which are heavy and require high actuation energy. The developed theoretical and experimental tools can serve as invaluable means for the design and testing of other piezoelectrically-driven thermoacoustic refrigerator configurations.

  18. THERMODYNAMIC PROPERTIES OF SELECTED HFC REFRIGERANTS

    EPA Science Inventory

    Hydrofluorocarbon (HFC) refrigerants are possible alternatives to replace ozone-depleting chlorofluorocarbon and hydrochlorofluorocarbon (HCFC) refrigerants. The flammability of a proposed new refrigerant is a major consideration in assessing its utility for a particular applicat...

  19. Refrigerator-freezer energy testing with alternative refrigerants

    NASA Astrophysics Data System (ADS)

    Vineyard, E. A.; Sand, J. R.; Miller, W. A.

    1989-07-01

    As a result of the Montreal Protocol that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must be resolved. Among these are energy impacts, system compatibility, cost, and availability. In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers. The results are presented for an 18 cubic foot (0.51 cubic meter), top-mount refrigerator-freezer with a static condenser using the following refrigerants: R12, R500, R12/Dimethyl-ether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12 /DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants indicating a higher capacity. While the R134a and R22/R142b results were less promising, changes to the refrigeration system, such as a different capillary tube or compressor, may improve performance.

  20. Alternative Drop-in Refrigerant to R22 for Refrigerating System of Refrigerated Warehouse

    NASA Astrophysics Data System (ADS)

    Bandoh, Yuriko; Furuyama, Kyoko; Saito, Motomu; Sato, Haruki; Morimoto, Masanori; Iwasaki, Minoru; Tonouchi, Takashi; Kotani, Yasuhisa

    We tested to use several compositions of a four-component-mixture R 32/125/134a/600 as a refrigerant for replacing R 22 in refrigeration system of refrigerated warehouses. R 32, R 125, and R 134a are hydrofluorocarbons and R 600 is normal butane. The refrigeration system designed for R 22 can be used without any change or with very minor change. By using appropriate composition of the four-component refrigerant, existing refrigeration system can provide best performance because the adjusted properties of the refrigerant can somewhat compensate for the individual hardware problems. Practical operation test was done by using a refrigeration system of nominal cooling capacity of 30.2 kW with a 22 kW two-stage compressor which equipped for an 858m3 refrigerated warehouse maintaining at -30°C. The pressure condition and the coefficient of performance of R 32/125/134a/600 are similar to R 22 from a theoretical viewpoint. The power consumption of R 32/125/134a/600 was small enough or not to be worse than that of R22, which was confirmed from the actual test results.

  1. The refrigerator revolution

    SciTech Connect

    Ayres, E.; French, H.

    1996-09-01

    This article discusses how a simple, new technology threw the best-laid plans of the chemical and refrigerator industries into disarray-and provided a new perspective on how future environmental agreements can be reached. In recent years, a series of massive business mergers has mesmerized the industrial world. However in the early 1990s a German environmentalist, triggered global reprocussions in the wake of the mandate to phase out the use of ozone depleting substances. The economic and political background of this is explained in detail.

  2. Sun synchronous solar refrigeration

    NASA Astrophysics Data System (ADS)

    The primary goal of this project was to prototype a complete Sun Synchronous Solar Powered Refrigerator. The key element to the technology is the development of the hermetic motor compressor assembly. The prototype was to be developed to either the stage where Polar Products could receive additional venture capital or to the point whereby Polar could use their own capital to manufacture the systems. Our goal was to construct a prototype which would be the next step to a proven and market ready product. To demonstrate the technology under laboratory conditions was a very minimal goal.

  3. Cycling Joule Thomson refrigerator

    NASA Technical Reports Server (NTRS)

    Tward, E. (Inventor)

    1983-01-01

    A symmetrical adsorption pump/compressor system having a pair of mirror image legs and a Joule Thomson expander, or valve, interposed between the legs thereof for providing a, efficient refrigeration cycle is described. The system further includes a plurality of gas operational heat switches adapted selectively to transfer heat from a thermal load and to transfer or discharge heat through a heat projector, such as a radiator or the like. The heat switches comprise heat pressurizable chambers adapted for alternate pressurization in response to adsorption and desorption of a pressurizing gas confined therein.

  4. Regenerative Sorption Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Wen, Liang-Chi; Bard, Steven

    1991-01-01

    Two-stage sorption refrigerator achieves increased efficiency via regenerative-heating concept in which waste heat from praseodymium/cerium oxide (PCO) chemisorption compressor runs charcoal/krypton (C/Kr) sorption compressor. Waste heat from each PCO sorption compressor used to power surrounding C/Kr sorption compressor. Flows of heat in two compressor modules controlled by gas-gap thermal switches. Has no wearing moving parts other than extremely long life, room-temperature check valves operating about twice per hour. Virtually no measurable vibration, and has potential operating life of at least ten years.

  5. Semiconductor-based optical refrigerator

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Sheik-Bahae, Mansoor

    2002-01-01

    Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.

  6. Low refrigerant charge detecting device

    SciTech Connect

    Pettitt, E.D.

    1988-05-24

    In an air conditioning system charged with a refrigerant whose amount may diminish in time, the system is described including an evaporator, an improved low refrigerant charge detecting device comprising a sealed bellows containing refrigerant having a stationary end and an extendible end. The extendible end supports an electrical contact and forms with a protruding temperature probe portion exposed to the refrigerant leaving the evaporator. An open bellows has a stationary end open to the refrigerant leaving the evaporator and an extendible end fixed to the extendible end of the fixed bellows about the probe portion, and a bimetal element exposed to ambient air supporting an electrical contact located opposite the first mentioned contact.

  7. Malone cycle refrigerator development

    SciTech Connect

    Shimko, M.A.; Crowley, C.J.

    1999-07-01

    This paper describes the progress made in demonstrating a Malone Cycle Refrigerator/Freezer. The Malone cycle is similar to the Stirling cycle but uses a supercritical fluid in place of real gas. In the approach, solid-metal diaphragms are used to seal and sweep the working volumes against the high working fluid pressures required in Malone cycle machines. This feature eliminates the friction and leakage that accounted for nearly half the losses in the best piston-defined Malone cycle machines built to date. The authors successfully built a Malone cycle refrigerator that: (1) used CO{sub 2} as the working fluid, (2) operated at pressures up to 19.3 Mpa (2,800 psi), (3) achieved a cold end metal temperatures of {minus}29 C ({minus}20 F), and (4) produced over 400 Watts of cooling at near ambient temperatures. The critical diaphragm components operated flawlessly throughout characterization and performance testing, supporting the conclusion of high reliability based on analysis of fatigue date and actual strain measurements.

  8. Anomalous Brownian refrigerator

    NASA Astrophysics Data System (ADS)

    Rana, Shubhashis; Pal, P. S.; Saha, Arnab; Jayannavar, A. M.

    2016-02-01

    We present a detailed study of a Brownian particle driven by Carnot-type refrigerating protocol operating between two thermal baths. Both the underdamped as well as the overdamped limits are investigated. The particle is in a harmonic potential with time-periodic strength that drives the system cyclically between the baths. Each cycle consists of two isothermal steps at different temperatures and two adiabatic steps connecting them. Besides working as a stochastic refrigerator, it is shown analytically that in the quasistatic regime the system can also act as stochastic heater, depending on the bath temperatures. Interestingly, in non-quasistatic regime, our system can even work as a stochastic heat engine for certain range of cycle time and bath temperatures. We show that the operation of this engine is not reliable. The fluctuations of stochastic efficiency/coefficient of performance (COP) dominate their mean values. Their distributions show power law tails, however the exponents are not universal. Our study reveals that microscopic machines are not the microscopic equivalent of the macroscopic machines that we come across in our daily life. We find that there is no one to one correspondence between the performance of our system under engine protocol and its reverse.

  9. Helium dilution refrigeration system

    DOEpatents

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  10. Helium dilution refrigeration system

    DOEpatents

    Roach, Patrick R.; Gray, Kenneth E.

    1988-01-01

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  11. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... factory-made assembly of refrigerating components designed to compress and liquefy a specific refrigerant that is remotely located from the refrigerated equipment and consists of 1 or more refrigerant compressors, refrigerant condensers, condenser fans and motors, and factory supplied accessories....

  12. ADVANCED INSULATIONS FOR REFRIGERATOR/FREEZERS: THE POTENTIAL FOR NEW SHELL DESIGNS INCORPORATING POLYMER BARRIER CONSTRUCTION

    EPA Science Inventory

    The report examines domestic refrigerator/freezer (R/F) design alternatives which may offer greater increase in thermal performance than is possible with panel/foam composites. (NOTE: Current efforts to design and build R/Fs with high performance insulation technology are directe...

  13. Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants. Final report, Part 1

    SciTech Connect

    Cavestri, R.C.

    1997-07-01

    Part one of this research provides manufacturers of components of air-conditioning and refrigeration equipment with a useful list of lubricant additives, sources, functional properties and chemical species. The list in part one is comprised of domestic lubricant additive suppliers and the results of a literature search that was specifically targeted for additives reported to be useful in polyolester chemistry.

  14. 46 CFR 147.90 - Refrigerants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Refrigerants. 147.90 Section 147.90 Shipping COAST GUARD... Special Requirements for Particular Materials § 147.90 Refrigerants. (a) Only refrigerants listed in ANSI/ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating...

  15. 46 CFR 147.90 - Refrigerants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Refrigerants. 147.90 Section 147.90 Shipping COAST GUARD... Special Requirements for Particular Materials § 147.90 Refrigerants. (a) Only refrigerants listed in ANSI/ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating...

  16. 46 CFR 147.90 - Refrigerants.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Refrigerants. 147.90 Section 147.90 Shipping COAST GUARD... Special Requirements for Particular Materials § 147.90 Refrigerants. (a) Only refrigerants listed in ANSI/ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating...

  17. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  18. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  19. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  20. 46 CFR 147.90 - Refrigerants.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Refrigerants. 147.90 Section 147.90 Shipping COAST GUARD... Special Requirements for Particular Materials § 147.90 Refrigerants. (a) Only refrigerants listed in ANSI/ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating...

  1. 46 CFR 147.90 - Refrigerants.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Refrigerants. 147.90 Section 147.90 Shipping COAST GUARD... Special Requirements for Particular Materials § 147.90 Refrigerants. (a) Only refrigerants listed in ANSI/ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating...

  2. Cryogenic refrigeration apparatus

    DOEpatents

    Crunkleton, J.A.

    1992-03-31

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling. 6 figs.

  3. Cryogenic refrigeration apparatus

    DOEpatents

    Crunkleton, James A.

    1992-01-01

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling.

  4. Multistation refrigeration system

    NASA Technical Reports Server (NTRS)

    Wiebe, E. R. (Inventor)

    1978-01-01

    A closed cycle refrigeration (CCR) system is disclosed for providing cooling at different parts of a maser. The CCR includes a first station for cooling the maser's parts, except the amplifier portion, to 4.5 K. The CCR further includes means with a 3.0 K station for cooling the maser's amplifier to 3.0 K and, thereby, increases the maser's gain and/or bandwith by a significant factor. The means which provide the 3.0 K cooling include a pressure regulator, heat exchangers, an expansion valve, and a vacuum pump, which coact to cause helium, provided from a compressor, to liquefy and thereafter expand so as to vaporize. The heat of vaporization for the helium is provided by the maser amplifier, which is thereby cooled to 3.0 K.

  5. Magnetic refrigeration for maser amplifier cooling

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1982-01-01

    The development of a multifrequency upconverter-maser system for the DSN has created the need to develop a closed-cycle refrigerator (CCR) capable of providing more than 3 watts of refrigeration capability at 4.5 K. In addition, operating concerns such as the high cost of electrical power consumption and the loss of maser operation due to CCR failures require that improvements be made to increase the efficiency and reliability of the CCR. One refrigeration method considered is the replacement of the Joule-Thomson expansion circuit with a magnetic refrigeration. Magnetic refrigerators can provide potentially reliable and highly efficient refrigeration at a variety of temperature ranges and cooling power. The concept of magnetic refrigeration is summarized and a literature review of existing magnetic refrigerator designs which have been built and tested and that may also be considered as possibilities as a 4 K to 15 K magnetic refrigeration stage for the DSN closed-cycle refrigerator is provided.

  6. ISS Update: Solar Powered Refrigerator

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot interviews Mike Ewert, Life Support and Thermal Systems Engineer. Ewert co-invented the solar powered refrigerator for stowage of medical samples, preservation ...

  7. Control system for thermoelectric refrigerator

    NASA Technical Reports Server (NTRS)

    Nelson, John L. (Inventor); Criscuolo, Lance (Inventor); Gilley, Michael D. (Inventor); Park, Brian V. (Inventor)

    1996-01-01

    Apparatus including a power supply (202) and control system is provided for maintaining the temperature within an enclosed structure (40) using thermoelectric devices (92). The apparatus may be particularly beneficial for use with a refrigerator (20) having superinsulation materials (46) and phase change materials (112) which cooperate with the thermoelectric device (92) to substantially enhance the overall operating efficiency of the refrigerator (20). The electrical power supply (202) and control system allows increasing the maximum power capability of the thermoelectric device (92) in response to increased heat loads within the refrigerator (20). The electrical power supply (202) and control system may also be used to monitor the performance of the cooling system (70) associated with the refrigerator (20).

  8. Magnetic refrigeration apparatus and method

    DOEpatents

    Barclay, J.A.; Overton, W.C. Jr.; Stewart, W.F.

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  9. Magnetic refrigeration apparatus and method

    DOEpatents

    Barclay, John A.; Overton, Jr., William C.; Stewart, Walter F.

    1984-01-01

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  10. Ten degree Kelvin hydride refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    A compact hydride absorption refrigeration system with few moving parts for 10 Kelvin operation is disclosed and comprises liquid hydrogen producing means in combination with means for solidifying and subliming the liquid hydrogen produced. The liquid hydrogen is sublimed at about 10 Kelvin. By using a symmetrical all hydrogen redundant loop system, a 10 Kelvin refrigeration system can be operated for many years with only a fraction of the power required for prior art systems.

  11. Short-Cycle Adsorption Refrigerator

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1988-01-01

    Modular adsorption/Joule-Thomson-effect refrigerator offers fast regeneration; adsorption/desorption cycle time expected to be 1 minute. Pressurized hydrogen generated by bank of compressor modules during heating phase passes through system of check valves and expands in Joule-Thomson junction as it enters refrigeration chamber. Hydrogen absorbs heat from load before it is sucked out by another bank of compressor modules in cooling phase.

  12. Halocarbon refrigerant detection methods. Final report

    SciTech Connect

    Tapscott, R.E.; Sohn, C.W.

    1996-01-01

    The Montreal Protocol and the U.S. Clean Air Act limit the production of ozone-depleting substances, including many refrigerants. Three options for cost-effectively phasing out these refrigerants from Army installations are: (1) refrigerant containment, (2) retrofit conversion to accommodate alternative refrigerant, and (3) replacement with cooling systems using alternative refrigerant. This report contributes to the first option by identifying and assessing methods to detect chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants that leak from air-conditioning and refrigeration systems. As background, the report describes the relevant sections of the Montreal Protocol and the Clean Air Act, and gives an overview of refrigerants. This is followed by a description of the technologies used in refrigerant leak detection, and a survey of detector types available and their price ranges. Appendixes provide an extensive list of detector products and their specifications, plus manufacturer addresses and phone numbers.

  13. Non-intrusive refrigerant charge indicator

    DOEpatents

    Mei, Viung C.; Chen, Fang C.; Kweller, Esher

    2005-03-22

    A non-intrusive refrigerant charge level indicator includes a structure for measuring at least one temperature at an outside surface of a two-phase refrigerant line section. The measured temperature can be used to determine the refrigerant charge status of an HVAC system, and can be converted to a pressure of the refrigerant in the line section and compared to a recommended pressure range to determine whether the system is under-charged, properly charged or over-charged. A non-intrusive method for assessing the refrigerant charge level in a system containing a refrigerant fluid includes the step of measuring a temperature at least one outside surface of a two-phase region of a refrigerant containing refrigerant line, wherein the temperature measured can be converted to a refrigerant pressure within the line section.

  14. Performance and energy saving analysis of a refrigerator using hydrocarbon mixture (HC-R134a) as working fluid

    NASA Astrophysics Data System (ADS)

    Mohtar, M. N.; Nasution, H.; Aziz, A. A.

    2015-12-01

    The use of hydrocarbon mixture as a working fluid in a refrigerator system is rarely explored. Almost all domestic refrigerators use hydroflourocarbon R134a (HFC-R134a) as refrigerants. In this study, hydrocarbon gas (HC-R134a) is used as the alternative refrigerant to replace HFC-R134a. It has a composition of R290 (56%), R600a (54.39%) and additive (0.1%wt) blended for the trials. The experiments were conducted with 105 g and 52.5 g refrigerant mass charge, subjected to internal heat load of 0, 1, 2, 3 and 4 kg respectively. The study investigates the coefficient of performance of the refrigerator (COPR) and energy consumption. The results show that the use of HC-R134a as the replaceable refrigerant can save energy ranging from 2.04% to 7.09%, as compared to the conventional HFC-R134a refrigerant. Naturally, the COPR improvement and temperature distribution using HC-R134a are much better than HFC-R134a

  15. Modelling of a refrigerating system coupled with a refrigerated room

    NASA Astrophysics Data System (ADS)

    Wang, Hongwei

    1991-08-01

    The development of a set of comprehensive computer models to simulate and analyze both steady state and non steady state behavior of a refrigerating system coupled with a refrigerated room is described. The refrigerating system is a single stage vapor compression system consisting of four basic elements: a reciprocating piston compressor, a dry expansion evaporator (or cooler), a shell and tube watercooled condensor and a thermostatic expansion valve. To validate the computer models, a test plant on which steady state and dynamic measurements were carried out, was set up. Experiments to determine several empirical constants encountered in the models were done, and the simulation results were compared with a series of measurements within a wide range of operation conditions. The validated models were applied to the prediction of the air distributions in a cold store and the study of a system with different capacity control systems, proving the capability and reliability of the models.

  16. Superinsulation in refrigerators and freezers

    SciTech Connect

    Vineyard, E.; Stovall, T.K.; Wilkes, K.E.; Childs, K.W.

    1998-02-01

    The results presented here were obtained during Phase 4 of the first CRADA, which had the specific objective of determining the lifetime of superinsulations when installed in simulated refrigerator doors. The second CRADA was established to evaluate and test design concepts proposed to significantly reduce energy consumption in a refrigerator-freezer that is representative of approximately 60% of the US market. The stated goal of this CRADA is to demonstrate advanced technologies which reduce, by 50%, the 1993 National Appliance Energy Conservation Act (NAECA) standard energy consumption for a 20 ft{sup 3} (570 L) top-mount, automatic-defrost, refrigerator-freezer. For a unit this size, the goal translates to an energy consumption of 1.003 kWh/d. The general objective of the research is to facilitate the introduction of efficient appliances by demonstrating design changes that can be effectively incorporated into new products. In previous work on this project, a Phase 1 prototype refrigerator-freezer achieved an energy consumption of 1.413 kWh/d [Vineyard, et al., 1995]. Following discussions with an advisory group comprised of all the major refrigerator-freezer manufacturers, several options were considered for the Phase 2 effort, one of which was cabinet heat load reductions.

  17. Air conditioning and refrigeration engineering

    SciTech Connect

    Kreith, F.

    1999-12-01

    This book supplies the basics of design, from selecting the optimum system and equipment to preparing the drawings and specifications. It discusses the four phases of preparing a project: gathering information, developing alternatives, evaluating alternatives, and selling the best solution. In addition, the author breaks down the responsibilities of the engineer design documents, computer aided design, and government codes and standards. It provides you with an easy reference to all aspects of the topic. This resource addresses the most current areas of interest, such as computer aided design and drafting, desiccant air conditioning and energy conservation. It is a thorough and convenient guide to air conditioning and refrigeration engineering. Contents include: introduction; psychrometrics; air-conditioning processes and cycles; refrigerants and refrigeration cycles; outdoor design conditions and indoor design criteria; load calculations; air handling units and packaged units; refrigeration components and evaporative coolers; water systems; heating systems; refrigeration systems; thermal storage system; air system basics; absorption systems; air-conditioning systems and selection; and desiccant dehumidification and air-conditioning.

  18. Performance of two mixed refrigerant processes providing refrigeration at 70 K

    NASA Astrophysics Data System (ADS)

    Narayanan, Vineed; Venkatarathnam, G.

    2016-09-01

    Mixed refrigerant process refrigerators are ideal for use in superconducting transformers, fault current limiters, etc. placed in a liquid nitrogen bath. Traditional mixed refrigerant processes used above 70 K cannot be used in these applications. The performance of two mixed refrigerant processes suitable for the above applications has been studied, the results of which are presented in this paper.

  19. Krypton based adsorption type cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Schember, Helene (Inventor)

    1987-01-01

    Krypton and monolithic porous carbon such as Saran carbon are used respectively as the sorbate and sorbent of an absorption type refrigerator to improve refrigeration efficiency and operational longevity.

  20. Krypton based adsorption type cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Schember, Helene R. (Inventor)

    1989-01-01

    Krypton and a monolithic porous carbon such as Saran carbon are used respectively as the sorbate and sorbent of an adsorption type refrigerator to improve refrigeration efficiency and operational longevity.

  1. A class of internally irreversible refrigeration cycles

    NASA Astrophysics Data System (ADS)

    Ait-Ali, Mohand A.

    1996-03-01

    A Carnot-like irreversible refrigeration cycle is modelled with two isothermal and two non-adiabatic, irreversible processes. The generic source of internal irreversibility, measured by the Clausius inequality, is a general irreversibility term which could include any heat leaks into the Joule - Thompson expansion valve, the evaporator and compressor cold boxes. This cycle is optimized first for maximum refrigeration power and maximum refrigeration load, then for maximum coefficient of performance. Its performances are compared with those of the endoreversible refrigeration cycle, based on a propane stage of a classical cascade liquefaction cycle example. Both cycle models achieve optimum power and maximum refrigeration load at nearly the same refrigeration temperature, but only the coefficient of performance of the irreversible refrigeration cycle reaches a maximum. Moreover, its prediction of heat conductance allocation between evaporator and condenser appears to be not only more conservative, but also more realistic for actual design considerations of refrigeration cycles.

  2. Refrigeration system having dual suction port compressor

    DOEpatents

    Wu, Guolian

    2016-01-05

    A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portion of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.

  3. Thermoelectric refrigerator having improved temperature stabilization means

    DOEpatents

    Falco, Charles M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

  4. REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    EPA Science Inventory

    Large refrigeration systems are found in several applications including supermarkets, cold storage warehouses, and industrial processes. The sizes of these systems are a contributing factor to their problems of high refrigerant leak rates because of the thousands of connections, ...

  5. A review of pulse tube refrigeration

    NASA Technical Reports Server (NTRS)

    Radebaugh, Ray

    1990-01-01

    This paper reviews the development of the three types of pulse tube refrigerators: basic, resonant, and orifice types. The principles of operation are given. It is shown that the pulse tube refrigerator is a variation of the Stirling-cycle refrigerator, where the moving displacer is substituted by a heat transfer mechanism or by an orifice to bring about the proper phase shifts between pressure and mass flow rate. A harmonic analysis with phasors is described which gives reasonable results for the refrigeration power, yet is simple enough to make clear the processes which give rise to the refrigeration. The efficiency and refrigeration power are compared with those of other refrigeration cycles. A brief review is given of the research being done at various laboratories on both one- and two-stage pulse tubes. A preliminary assessment of the role of pulse tube refrigerators is discussed.

  6. EVALUATION OF REFRIGERANT FROM MOBILE AIR CONDITIONERS

    EPA Science Inventory

    The report gives results of a project to provide a scientific basis for choosing a reasonable standard of purity for recycled chlorofluorocarbon (CFC) refrigerant in operating automobile air conditioners. The quality of refrigerant from air conditioners in automobiles of differen...

  7. A historical look at chlorofluorocarbon refrigerants

    SciTech Connect

    Bhatti, M.S.

    1999-07-01

    A class of chemical compounds called chlorofluorocarbon refrigerants has been in widespread use since the 1930s in such diverse applications as refrigerants for refrigerating and air-conditioning systems, blowing agents for plastic foams, solvents for microelectronic circuitry and dry cleaning, sterilants for medical instruments, aerosol propellants for personal hygiene products and pesticides, and freezants for food. This paper describes the historical development of the chlorofluorocarbon refrigerants and gives brief biographical sketches of the inventors. 85 refs., 8 figs., 4 tabs.

  8. Wheel-type magnetic refrigerator

    DOEpatents

    Barclay, John A.

    1983-01-01

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  9. Wheel-type magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1983-10-11

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.

  10. Wheel-type magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1982-01-20

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  11. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant. 29 figs.

  12. Piston sealing arrangement for a cryogenic refrigerator

    SciTech Connect

    Green, G.F.; Humphrey, J.C.

    1984-02-21

    A sealing arrangement for a rectilinear reciprocable piston within a cryogenic refrigerator comprising a buffer defined by dual O-rings disposed around the circumference of the piston and containing pressurized gas of the same type as the refrigeration gas. The buffer limits or prevents both the entrance of contaminants and also the escape of the refrigeration gas.

  13. Solar Refrigerators Store Life-Saving Vaccines

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Former Johnson Space Center engineer David Bergeron used his experience on the Advanced Refrigeration Technology Team to found SunDanzer Refrigeration Inc., a company specializing in solar-powered refrigerators. The company has created a battery-free unit that provides safe storage for vaccines in rural and remote areas around the world.

  14. Method and apparatus for desuperheating refrigerant

    DOEpatents

    Zess, James A.; Drost, M. Kevin; Call, Charles J.

    1997-01-01

    The present invention is an apparatus and method for de-superheating a primary refrigerant leaving a compressor wherein a secondary refrigerant is used between the primary refrigerant to be de-superheated. Reject heat is advantageously used for heat reclaim.

  15. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, Jr., Karl A.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant.

  16. Ideal orifice pulse tube refrigerator performance

    NASA Technical Reports Server (NTRS)

    Kittel, P.

    1992-01-01

    The recent development of orifice pulse tube refrigerators has raised questions as to what limits their ultimate performance. Using an analogy to the Stirling cycle refrigerator, the efficiency (cooling power per unit input power) of an ideal orifice pulse tube refrigerator is shown to be T1/T0, the ratio of the cold temperature to the hot temperature.

  17. 49 CFR 173.174 - Refrigerating machines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or...

  18. 49 CFR 173.174 - Refrigerating machines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or...

  19. 49 CFR 173.174 - Refrigerating machines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or...

  20. 49 CFR 173.174 - Refrigerating machines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or...

  1. 49 CFR 173.174 - Refrigerating machines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or...

  2. Physical and chemical properties of refrigeration lubricants

    SciTech Connect

    Sunami, Motoshi

    1999-07-01

    The physical and chemical properties of refrigeration lubricants are discussed. Although much attention has been focused on the performance of candidate lubricants for use with hydrofluorocarbons (HFCs) in order to obtain satisfactory lubrication performance in compressors, the properties of the lubricants themselves have not been well discussed. In this paper, the properties of refrigeration lube base stocks and of lube-refrigerant mixtures are described, specifically the viscosity, density, and refrigerant solubility, the change in viscosity and density due to solution with HFCs, and the insulation properties of the base stocks and the refrigerant mixture.

  3. Magnetic refrigeration using flux compression in superconductors

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Strayer, D. M.; Jackson, H. W.; Petrac, D.

    1990-01-01

    The feasibility of using flux compression in high-temperature superconductors to produce the large time-varying magnetic fields required in a field cycled magnetic refrigerator operating between 20 K and 4 K is presently investigated. This paper describes the refrigerator concept and lists limitations and advantages in comparison with conventional refrigeration techniques. The maximum fields obtainable by flux compression in high-temperature supercoductor materials, as presently prepared, are too low to serve in such a refrigerator. However, reports exist of critical current values that are near usable levels for flux pumps in refrigerator applications.

  4. A recuperative superfluid stirling refrigerator

    SciTech Connect

    Brisson, J.G.; Swift, G.W.

    1993-07-01

    A superfluid Stirling refrigerator has been built with a counterflow heat exchanger serving as a recuperative regenerator. It has achieved temperatures of 296 mK with a 4% {sup 3}He-{sup 4}He mixture. Cooling power versus temperature and speed is presented for a 6.6% mixture.

  5. Solar-powered jet refrigerator

    NASA Technical Reports Server (NTRS)

    Chai, V. W.; Lansing, F. L.

    1979-01-01

    Design criteria are easily evaluated by tool. Thermodynamic analysis of solar-powered vapor-jet refrigerator combines important performance parameters in nomogram that assist design of practical system. Projected coefficients of performance for difference ejector configurations, working fluids, and other design variables are easily obtained from nomogram.

  6. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2001-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  7. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  8. Low-temperature magnetic refrigerator

    DOEpatents

    Barclay, John A.

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  9. Photovoltaic panel-generator based autonomous power source for small refrigeration units

    SciTech Connect

    Kattakayam, T.A.; Srinivasan, K.

    1996-06-01

    This article describes an autonomous power source for a domestic refrigeration unit which is powered by a field of photovoltaic panels backed-up by a generator set. Salient design features and results from some of the tests on the unit are presented. methodologies for reliable and efficient operation of the refrigerator have been evolved. A finite time delay between cut-out and cut-in of the compressor, changes in invertor design to meet the demands at start and at run of the motor, choice of battery capacity so as to eliminate the need for a power conditioner are found to result in energy conservation. The entire unit has been made from indigenously available components and uses minimal electronic controls. Such units have applications for the storage of vaccines and life saving medicines which require uninterrupted refrigeration, in medical shops, rural health centres, veterinary laboratories, etc. 12 refs., 13 figs.

  10. Direct condensation refrigerant recovery and restoration system

    SciTech Connect

    Grant, D.C.H.

    1992-03-10

    This patent describes a refrigerant recovery and purification system for removing gaseous refrigerant from a disabled refrigeration unit, cleaning the refrigerant of contaminants, and converting the gaseous refrigerant to a liquid state for storage. It comprises a low pressure inlet section; a high pressure storage section; the low pressure inlet section comprising: an oil and refrigerant gas separator, including a separated oil removal means, first conduit means for connecting an inlet of the separator to the disabled refrigerant unit, a slack-sided accumulator, second conduit means connecting the separator to the slack-sided accumulator, a reclaim condenser, third conduit means connecting the separator and the reclaim condenser in series, an evaporator coil in the reclaim condenser connectable to a conventional operating refrigeration system for receiving a liquid refrigerant under pressure for expansion therein, the evaporator coil forming a condensing surface for condensing the refrigerant gas at near atmospheric pressure in the condenser, a liquid receiver, a reclaimed refrigerant storage tank, fourth conduit means further connecting the liquid receiver in series with the reclaim condenser, downstream thereof, means between the reclaim condenser and the liquid receiver.

  11. Keeping Cool With Solar-Powered Refrigeration

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the midst of developing battery-free, solar-powered refrigeration and air conditioning systems for habitats in space, David Bergeron, the team leader for NASA's Advanced Refrigerator Technology Team at Johnson Space Center, acknowledged the need for a comparable solar refrigerator that could operate in conjunction with the simple lighting systems already in place on Earth. Bergeron, a 20-year veteran in the aerospace industry, founded the company Solus Refrigeration, Inc., in 1999 to take the patented advanced refrigeration technology he co-developed with his teammate, Johnson engineer Michael Ewert, to commercial markets. Now known as SunDanzer Refrigeration, Inc., Bergeron's company is producing battery-free, photovoltaic (PV) refrigeration systems under license to NASA, and selling them globally.

  12. Evaluation on environment-friendly refrigerants with similar normal boiling points in ejector refrigeration system

    NASA Astrophysics Data System (ADS)

    Wang, F.; Shen, S. Q.; Li, D. Y.

    2014-12-01

    Based on the "hypothetical throat area" theory and the "constant-pressure mixing" theory, a thermodynamic model for ejector was set up by introducing the real properties of refrigerants. Refrigerants which have similar normal boiling points with each other may act as replacement to each other in substitute progress. In this paper, eight environment-friendly refrigerants were divided into 4 pairs for study according to their normal boiling point. In each refrigerant pair, the entrainment ratios of ejector, system COP, pump power et al. of refrigerants were compared and analyzed. Lastly, the performances of the transcritical and subcritical ejector refrigeration cycles with propylene were calculated and compared.

  13. Dilution Refrigerator for Nuclear Refrigeration and Cryogenic Thermometry Studies

    NASA Astrophysics Data System (ADS)

    Nakagawa, Hisashi; Hata, Tohru

    2014-07-01

    This study explores the design and construction of an ultra-low temperature facility in order to realize the Provisional low-temperature scale from 0.9 mK to 1 K (PLTS-2000) in Japan, to disseminate its use through calibration services, and to study thermometry at low temperatures below 1 K. To this end, a dilution refrigerator was constructed in-house that has four sintered silver discrete heat exchangers for use as a precooling stage of a copper nuclear demagnetization stage. A melting curve thermometer attached to the mixing chamber flange could be cooled continuously to 4.0 mK using the refrigerator. The dependence of minimum temperatures on circulation rates can be explained by the calculation of Frossati's formula based on a perfect continuous counterflow heat exchanger model, assuming that the Kapitza resistance has a temperature dependence. Residual heat leakage to the mixing chamber was estimated to be around 86 nW. A nuclear demagnetization cryostat with a nuclear stage containing an effective amount of copper (51 mol in a 9 T magnetic field) is under construction, and we will presently start to work toward the realization of the PLTS-2000. In this article, the design and performance of the dilution refrigerator are reported.

  14. Study on the Materials for Compressor and Reliability of Refrigeration Circuit in Refrigerator with R134a Refrigerant

    NASA Astrophysics Data System (ADS)

    Komatsubara, Takeo; Sunaga, Takasi; Takahasi, Yasuki

    R134a was selected as the alternative refrigerant for R12 because of the similar thermodynamic properties with R12. But refrigeration oil for R12 couldn't be used for R134a because of the immiscibility with R134a. To solve this problem we researched miscible oil with R134a and selected polyol ester oil (POE) as refrigeration oil. But we found sludge deposition into capillary tube after life test of refrigerator with POE and detected metal soap, decomposed oil and alkaline ions by analysis of sludge. This results was proof of phenomena like oil degradation, precipitation of process materials and wear of compressor. Therefore we improved stability and lubricity of POE, reevaluated process materials and contaminations in refrigerating circuit. In this paper we discuss newly developed these technologies and evaluation results of it by life test of refrigerator.

  15. Investigation of design options for improving the energy efficiency of conventionally designed refrigerator-freezers

    SciTech Connect

    Sand, J.R.; Vineyard, E.A.; Bohman, R.H.

    1993-11-01

    Several design options for improving the energy efficiency of conventionally-designed, domestic refrigerator freezers (RFs) were incorporated into two 1990 production RF cabinets and refrigeration systems. The baseline performance of the original units and unit components were extensively documented to provide a firm basis for experimentally measured energy savings. A detailed refrigerator system computer model which could simulate cycling behavior was used to evaluate the daily energy use impacts for each modification, and modeled versus experimental results are compared. The model was shown to track measured RF performance improvement sufficiently well that it was used with some confidence to investigate additional options that could not be experimentally investigated. Substantial improvements in RF efficiency were demonstrated with relatively minor changes in system components and refrigeration circuit design. However, each improvement exacts a penalty in terms of increased cost or system complexity/reliability. For RF sizes typically sold in the United States (18-22 ft{sup 3} [510--620 1]), alternative, more-elaborate, refrigeration cycles may be required to achieve the program goal (1.00 Kilowatt-hour per day for a 560 l, top mount RF.

  16. Quantum-enhanced absorption refrigerators.

    PubMed

    Correa, Luis A; Palao, José P; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators. PMID:24492860

  17. Quantum-enhanced absorption refrigerators

    PubMed Central

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators. PMID:24492860

  18. Novel materials for laser refrigeration

    NASA Astrophysics Data System (ADS)

    Hehlen, Markus P.

    2009-02-01

    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which hωmax < Ep/8, where h&omegamax is the maximum phonon energy of the host material and Ep is the pump energy for the rare-earth dopant. Transition-metal and OH- impurities at levels >100 ppb are believed to be the main reason for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF3-LiF are considered as alternatives to ZBLAN, and the crystalline system KPb2Cl5 :Dy3+ is identified as a prime candidate for high-efficiency laser cooling.

  19. Stability of split Stirling refrigerators

    NASA Astrophysics Data System (ADS)

    de Waele, A. T. A. M.; Liang, W.

    2009-02-01

    In many thermal systems spontaneous mechanical oscillations are generated under the influence of large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the cold finger are connected by a flexible tube. The displacer in the cold head is suspended by a spring. Its motion is pneumatically driven by the pressure oscillations generated by the compressor. In this paper we give the basic dynamic equations of split Stirling refrigerators and investigate the possibility of spontaneous mechanical oscillations if a large temperature gradient develops in the cold finger, e.g. during or after cool down. These oscillations would be superimposed on the pressure oscillations of the compressor and could ruin the cooler performance.

  20. Quantum-enhanced absorption refrigerators

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-02-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators.

  1. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    ERIC Educational Resources Information Center

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  2. Molecular modeling of fluoropropene refrigerants.

    PubMed

    Raabe, Gabriele

    2012-05-17

    Different fluoropropenes are currently considered as refrigerants, either as pure compounds or as components in low GWP (global warming potential) refrigerant mixtures. Due to their limited commercial production, experimental data for the thermophysical properties of fluoropropenes and their mixtures are in general rare, which hampers the exploration of their performance in technical applications. In principle, molecular simulation can be used to predict the relevant properties of refrigerants and refrigerant blends, provided that adequate intermolecular potential functions ("force fields") are available. In our earlier work (Raabe, G.; Maginn, E. J., J. Phys. Chem. B2010, 114, 10133-10142), we introduced a transferable force field for fluoropropenes comprising the compounds 3,3,3-trifluoro-1-propene (HFO-1243zf), 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), and hexafluoro-1-propene (HFO-1216). In this paper, we provide an extension of the force field model to the trans- and cis-1,3,3,3-tetrafluoro-1-propene (HFO-1234ze(E), HFO-1234ze) and the cis-1,2,3,3,3-pentafluoro-1-propene (HFO-1225ye(Z)) as well as revised simulation results for HFO-1216. We present Gibbs ensemble simulation results on the vapor pressures, saturated densities, and heats of vaporization of these compounds in comparison with experimental results. The simulation results show that the force field model enables reliable predictions of the properties of the different fluoropropenes and also reproduces well the differing vapor-liquid coexistence and vapor pressure curve of the cis- and trans-isomers of 1,3,3,3-tetrafluoro-1-propene, HFO-1234ze and HFO-1234ze(E). For these two isomers, we also present molecular dynamics simulation studies on their local structure. PMID:22519953

  3. Suction muffler for refrigeration compressor

    DOEpatents

    Nelson, Richard T.; Middleton, Marc G.

    1983-01-01

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell.

  4. Suction muffler for refrigeration compressor

    DOEpatents

    Nelson, R.T.; Middleton, M.G.

    1983-01-25

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell. 5 figs.

  5. Simulation of a refrigerant evaporator

    NASA Astrophysics Data System (ADS)

    Vandermeer, Jakob Stefanus

    A computer model for the design and optimization of the compressor refrigeration cycle especially with respect to dynamic behavior was developed. A steady state version was also developed. The model describing the refrigerant is divided into the evaporation and superheating regions. A mechanism based on empirics corrects the model for the influence of transportation times in the evaporation region. The mass balance of the refrigerant in the superheat region is regarded as quasi-static, because of the small mass of the vapor. The energy balance accounts for a distributed model and is represented by the steady state solution of the partial differential equation which describes this area for the steady conditions. A correction for the dynamical effects was added to this solution, for all influencing parameters, according to the analytical dynamic solution for the case of the evaporation temperature as input parameter. The expansion device model was worked out for the usual type of device in combination with a dry evaporator, the thermostatic expansion valve. Validation tests are described.

  6. Magnetic refrigerator for hydrogen liquefaction

    NASA Astrophysics Data System (ADS)

    Numazawa, T.; Kamiya, K.; Utaki, T.; Matsumoto, K.

    2014-07-01

    This paper reviews the status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. When we compare the consuming energy of hydrogen liquefaction with high pressurized hydrogen gas, FOM must be larger than 0.57 for hydrogen liquefaction. Thus, we need to develop a highly efficient liquefaction method. Magnetic refrigeration using the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency >50%, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system with >80% liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 s of the cycle. By using the simulation, we estimate the efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained for operation temperature between 20 K and 77 K including LN2 work input.

  7. Theoretical Analysis of Heat Pump Cycle Characteristics with Pure Refrigerants and Binary Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru; Uematsu, Masahiko; Watanabe, Koichi

    In recent years there has been an increasing interest of the use of nonazeotropic binary mixtures to improve performance in heat pump systems, and to restrict the consumption of chlorofluorocarbon (CFC) refrigerants as internationally agreed-upon in the Montreal Protocol. However, the available knowledge on the thermophysical properties of mixtures is very much limited particularly with respect to quantitative information. In order to systematize cycle performance with Refrigerant 12 (CCl2F2) + Refrigerant 22 (CHClF2) and Refrigerant 22 + Refrigerant 114 (CClF2-CClF2) systems which are technically important halogenated refrigerant mixtures, the heat pump cycle analysis in case of using these mixtures was theoretically studied. It became clear that the maximum coefficients of performance with various pure refrigerants and binary refrigerant mixtures were obtained at the reduced condensing temperature being 0.9 when the same temperature difference between condensing and evaporating temperature was chosen.

  8. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-freezer means refrigeration equipment that— (1) Is not a consumer product (as defined in § 430.2 of part... in cross-section. Holding temperature application means a use of commercial refrigeration...

  9. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-freezer means refrigeration equipment that— (1) Is not a consumer product (as defined in § 430.2 of part... in cross-section. Holding temperature application means a use of commercial refrigeration...

  10. Energy Efficient Commercial Refrigeration with Carbon Dioxide Refrigerant and Scroll Expanders

    SciTech Connect

    Dieckmann, John

    2013-04-04

    Current supermarket refrigeration systems are built around conventional fluorocarbon refrigerants – HFC-134a and the HFC blends R-507 and R404A, which replaced the CFC refrigerants, R-12 and R-502, respectively, used prior to the Montreal Protocol phase out of ozone depleting substances. While the HFC refrigerants are non-ozone depleting, they are strong greenhouse gases, so there has been continued interest in replacing them, particularly in applications with above average refrigerant leakage. Large supermarket refrigeration systems have proven to be particularly difficult to maintain in a leak-tight condition. Refrigerant charge losses of 15% of total charge per year are the norm, making the global warming impact of refrigerant emissions comparable to that associated with the energy consumption of these systems.

  11. Magnetic refrigeration for low-temperature applications

    NASA Technical Reports Server (NTRS)

    Barclay, J. A.

    1985-01-01

    The application of refrigeration at low temperatures ranging from production of liquid helium for medical imaging systems to cooling of infrared sensors on surveillance satellites is discussed. Cooling below about 15 K with regenerative refrigerators is difficult because of the decreasing thermal mass of the regenerator compared to that of the working material. In order to overcome this difficulty with helium gas as the working material, a heat exchanger plus a Joule-Thomson or other exponder is used. Regenerative magnetic refrigerators with magnetic solids as the working material have the same regenerator problem as gas refrigerators. This problem provides motivation for the development of nonregenerative magnetic refrigerators that span approximately 1 K to approximately 0 K. Particular emphasis is placed on high reliability and high efficiency. Calculations indicate considerable promise in this area. The principles, the potential, the problems, and the progress towards development of successful 4 to 20 K magnetic refrigerators are discussed.

  12. Not all counterclockwise thermodynamic cycles are refrigerators

    NASA Astrophysics Data System (ADS)

    Dickerson, R. H.; Mottmann, J.

    2016-06-01

    Clockwise cycles on PV diagrams always represent heat engines. It is therefore tempting to assume that counterclockwise cycles always represent refrigerators. This common assumption is incorrect: most counterclockwise cycles cannot be refrigerators. This surprising result is explored here for quasi-static ideal gas cycles, and the necessary conditions for refrigeration cycles are clarified. Three logically self-consistent criteria can be used to determine if a counterclockwise cycle is a refrigerator. The most fundamental test compares the counterclockwise cycle with a correctly determined corresponding Carnot cycle. Other criteria we employ include a widely accepted description of the functional behavior of refrigerators, and a corollary to the second law that limits a refrigerator's coefficient of performance.

  13. Compatibility of refrigerants and lubricants with elastomers

    SciTech Connect

    Hamed, G.R.; Seiple, R.H.

    1992-07-01

    Information contained in this reporters designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. Swell measurements have been made on approximately 50% of the proposed elastomers (94 total)in both the lubricant (7 total) and refrigerant (10 total) materials. Swell behavior in the these fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 hours and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

  14. High-Performance, Low Environmental Impact Refrigerants

    NASA Technical Reports Server (NTRS)

    McCullough, E. T.; Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.

    2001-01-01

    Refrigerants used in process and facilities systems in the US include R-12, R-22, R-123, R-134a, R-404A, R-410A, R-500, and R-502. All but R-134a, R-404A, and R-410A contain ozone-depleting substances that will be phased out under the Montreal Protocol. Some of the substitutes do not perform as well as the refrigerants they are replacing, require new equipment, and have relatively high global warming potentials (GWPs). New refrigerants are needed that addresses environmental, safety, and performance issues simultaneously. In efforts sponsored by Ikon Corporation, NASA Kennedy Space Center (KSC), and the US Environmental Protection Agency (EPA), ETEC has developed and tested a new class of refrigerants, the Ikon (registered) refrigerants, based on iodofluorocarbons (IFCs). These refrigerants are nonflammable, have essentially zero ozone-depletion potential (ODP), low GWP, high performance (energy efficiency and capacity), and can be dropped into much existing equipment.

  15. Manganese Nitride Sorption Joule-Thomson Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Phillips, Wayne M.

    1992-01-01

    Proposed sorption refrigeration system of increased power efficiency combines MnxNy sorption refrigeration stage with systems described in "Regenerative Sorption Refrigerator" (NPO-17630). Measured pressure-vs-composition isotherms for reversible chemisorption of N2 in MnxNy suggest feasibility to incorporate MnxNy chemisorption stage in Joule-Thomson cryogenic system. Discovery represents first known reversible nitrogen chemisorption compression system. Has potential in nitrogen-isotope separation, nitrogen purification, or contamination-free nitrogen compression.

  16. Hydrogen Refrigerator Would Cool Below 10 K

    NASA Technical Reports Server (NTRS)

    Jones, J. A.

    1986-01-01

    Closed-cycle hydrogen refrigerator uses low-level heat energy to cool objects to temperature of 10 K. Refrigerator needs only fraction of energy of previous equipment with similar low-temperature capability. Unit compact and light in weight. With valves as only moving parts, reliable for many years. Refrigeration concept adapted to cooling superconducting magnets on magnetically levitated railcars, nuclear-particle accelerators, and variety of other cryogenic equipment.

  17. Magnon-driven quantum dot refrigerators

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Huang, Chuankun; Liao, Tianjun; Chen, Jincan

    2015-12-01

    A new model of refrigerator consisting of a spin-splitting quantum dot coupled with two ferromagnetic reservoirs and a ferromagnetic insulator is proposed. The rate equation is used to calculate the occupation probabilities of the quantum dot. The expressions of the electron and magnon currents are obtained. The region that the system can work in as a refrigerator is determined. The cooling power and coefficient of performance (COP) of the refrigerator are derived. The influences of the magnetic field, applied voltage, and polarization of two leads on the performance are discussed. The performances of two different magnon-driven quantum dot refrigerators are compared.

  18. Application of magnetic refrigeration and its assessment

    NASA Astrophysics Data System (ADS)

    Kitanovski, Andrej; Egolf, Peter W.

    2009-04-01

    Magnetic refrigeration has the potential to replace conventional refrigeration—with often problematic refrigerants—in several niche markets or even some main markets of the refrigeration domain. Based on this insight, for the Swiss Federal Office of Energy a list of almost all existing refrigeration technologies was worked out. Then an evaluation how good magnetic refrigeration applies to each of these technologies was performed. For this purpose a calculation tool to determine the coefficient of performance ( COP) and the exergy efficiency as a function of the magnetic field strength and the rotation frequency of a rotary-type magnetic refrigerator was developed. The evaluation clearly shows that some application domains are more ideal for a replacement of conventional refrigerators by their magnetic counterparts than others. In the pre-study, four good examples were chosen for a more comprehensive investigation and working out of more detailed results. In this article, the calculation method is briefly described. COP values and exergy efficiencies of one very suitable technology, namely the magnetic household refrigerator, are presented for different operation conditions. Summarizing, it is stated that magnetic refrigeration is a serious environmentally benign alternative to some conventional cooling, refrigeration and air-conditioning technologies.

  19. Piezoelectric driven thermo-acoustic refrigerator

    NASA Astrophysics Data System (ADS)

    Chinn, D. G.; Nouh, M.; Aldraihem, O.; Baz, A.

    2011-03-01

    Thermoacoustic refrigeration is an emerging refrigeration technology which does not rely for in its operation on the use of any moving parts or harmful refrigerants. This technology uses acoustic waves to pump heat across a temperature gradient. The vast majority of thermoacoustic refrigerators to date have used electromagnetic loudspeakers to generate the acoustic input. In this paper, the design, construction, operation, and modeling of a piezoelectric-driven thermoacoustic refrigerator are detailed. This refrigerator demonstrates the effectiveness of piezoelectric actuation in moving 0.3 W of heat across an 18 degree C temperature difference with an input power of 7.6 W. The performance characteristics of this class of thermoacoustic-piezoelectric refrigerator are modeled using DeltaEC software and the predictions are validated experimentally. The obtained results confirm the validity of the developed model. Furthermore, the potential of piezoelectric actuation as effective means for driving thermoacoustic refrigerators is demonstrated as compared to the conventional electromagnetic loudspeakers which are heavy and require high actuation energy. The developed theoretical and experimental tools can serve as invaluable means for the design and testing of other piezoelectric driven thermoacoustic refrigerator configurations.

  20. Measurement of Concentration of Refrigerant in Refrigeration Oil by Capacitance Sensor

    NASA Astrophysics Data System (ADS)

    Fukuta, Mitsuhiro; Yanagisawa, Yadashi; Ogi, Yasuhiro; Tanaka, Junya

    In general, refrigeration oil of good solubility with refrigerant is used in refrigeration compressors, and development of a concentration sensor of refrigerant dissolved in the oil is needed. In this study, oil and refrigerant concentrations are measured with newly developed capacitance sensor which measure the change of dielectric constant with the concentration. It is found that in most cases of oil-refrigerant combinations the dielectric constant of refrigerant is two to three times as large as that of refrigeration oil and the dielectric constant of mixtures increases linearly with the concentration of refrigerant. When measuring the refrigerant concentration of R410A, t he measurement of the concentration by the dielectric constant is also feasible as long as the composition of each refrigerant component dissolved in the oil does not change from the nominal composition. Prototypes of small sensors, such as a cylindrical type and a needle type, are developed and the performance of the needle sensor with shield is preferable. A correlation for a given oil-refrigerant mixture obtained by a large capacitance sensor is applicable for the small sensors after correcting for stray capacitance. Flow of fluid in the sensors does not affect the capacitance measured by the sensors, while bubbles due to foaming do affect the measurement.

  1. Magnetic refrigeration: the basis for a new refrigeration technology. Los Alamos Mini-Review

    SciTech Connect

    Keller, W.E.

    1982-11-01

    The history of and operating principle for magnetic refrigeration, the selection of magnetic refrigeration materials with favorable thermomagnetic properties, e.g., gadolinium alloys and compounds, the advantages of greater compactness, efficiency and reliability for magnetic refrigeration as compared with conventional gas systems, and research in this field at Los Alamos are described. (LCL)

  2. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  3. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each...

  4. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each...

  5. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each...

  6. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each...

  7. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each...

  8. Refrigeration generation using expander-generator units

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  9. Prediction of Dangerous Time in Case Hydrocarbon Refrigerant Leaks into Household Refrigerator Cabinet

    NASA Astrophysics Data System (ADS)

    Meguro, Takatoshi; Kaji, Nobufuji; Miyake, Kunihiro

    Hydrocarbon refrigerators are now on sale in European countries. However, hydrocarbons are flammable. A common claim is that concentration of hydrocarbon in the refrigerator could exceed the lower explosive limit by a sudden leak and then a spark ignites a flame causing overpressure. There is the need of the studies on potential risks originated from the use of flammable refrigerants. Thus, the flow rate of the fresh air into the refrigerator cabinet has been defined experimentally, and the spatial average concentration in the refrigerator cabinet has been analyzed theoretically to predict the dangerous time in excess of the lower explosive limit.

  10. Fermilab's Satellite Refrigerator Expansion Engines

    SciTech Connect

    Peterson, Thomas J.

    1983-01-01

    Each of Fermilab's 24 satellite refrigerators includes two reciprocating expanders, a "wet" engine and a "dry" engine. The wet engines and all but eleven of the dry engines were manufactured by Koch Process Systems (Westboro, Massachusetts). These are basically Koch Model 1400 expaaders installed in cryostats designed by Fermilab. The other eleven dry engines are an in-hou~e design referred to as "Gardner-Fermi" engines since they evolved from the GX3-2500 engines purchas~d from Gardner Cryogenics. Table I surmnarizes the features of our three types of expanders....

  11. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  12. Refrigeration system with clearance seals

    SciTech Connect

    Holland, N. J.

    1985-02-26

    In a refrigeration system such as a split Stirling system, fluid seals associated with the reciprocating displacer are virtually dragless clearance seals. Movement of the displacer relative to the pressure variations in the working volume of gas is retarded by a discrete braking element. Because it is not necessary that the brake providing any sealing action, the brake can be designed for greater durability and less dependence on ambient and operating temperatures. Similarly, the clearance seal can be formed of elements having low thermal expansion such that the seal is not temperature dependent. In the primary embodiments the braking element is a split friction brake.

  13. A multipurpose 3He refrigerator

    NASA Astrophysics Data System (ADS)

    Pizzo, L.; Dall'Oglio, G.; Martinis, L.; Sabbatini, L.

    2006-10-01

    We introduce a mini 3He refrigerator, operating at ˜300 mK starting from 4.2 K without pumping on the main 4He bath. The innovative idea is that the present one is suitable for a very fast operation; for its use, it is sufficient a storage 4He Dewar. In this way we drastically reduce the time required to cool it down, because there is no need for a classic cryostat. This prototype is particularly aimed for all those operations in which it is necessary to test a large number of samples that do not require long duration measurements at low temperature.

  14. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  15. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1) Have enough capacity to maintain the cargo vapor pressure in each cargo tank served by the system below the set pressure of the relief valves under ambient temperatures of 45 °C (113 °F) still air and 32...

  16. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1) Have enough capacity to maintain the cargo vapor pressure in each cargo tank served by the system below the set pressure of the relief valves under ambient temperatures of 45 °C (113 °F) still air and 32...

  17. DESIGN AND OPTIMIZATION OF A REFRIGERATION SYSTEM

    EPA Science Inventory

    The paper discusses the design and optimization of a refrigeration system, using a mathematical model of a refrigeration system modified to allow its use with the optimization program. he model was developed using only algebraic equations so that it could be used with the optimiz...

  18. The Thermodynamics of a Refrigeration System.

    ERIC Educational Resources Information Center

    Azevedo e Silva, J. F. M.

    1991-01-01

    An attempt to clarify the teaching of some of the concepts of thermodynamics through the observation of an experiment with an ordinary refrigeration system is presented. The cycle of operation in the refrigeration system and the individual processes in the cycle are described. (KR)

  19. Commercial Refrigeration Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    The program guide for commercial refrigeration technology courses in Florida identifies primary considerations for the organization, operation, and evaluation of a vocational education program. Following an occupational description for the job title for refrigeration mechanic, and its Dictionary of Occupational Titles code, are six sections…

  20. 21 CFR 1250.34 - Refrigeration equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Refrigeration equipment. 1250.34 Section 1250.34 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.34 Refrigeration...

  1. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Indirect refrigeration. 154.1720 Section 154.1720 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design and Operating Requirements § 154.1720 Indirect refrigeration....

  2. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Indirect refrigeration. 154.1720 Section 154.1720 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design and Operating Requirements § 154.1720 Indirect refrigeration....

  3. Thermal resistance of perlite-based evacuated insulations for refrigerators

    SciTech Connect

    Yarbrough, D.W.; Graves, R.S.; Weaver, F.J.; McElroy, D.L.

    1986-09-01

    The thermal resistances of two side panels which were cut from imported refrigerators and of a single, newly manufactured evacuated packet were measured using a linear heat flow technique. The panels were composites of foamed-in-place urethane surrounding perlite-filled evacuated packets. One panel contained an apparently punctured packet and was found to have a thermal resistance at 300 K in the range 0.617 to 0.950 m/sup 2/ x K/W for 2.54 cm (3.5 to 5.4 ft/sup 2/ x h x /sup 0/F/Btu for 1.0 in.). A second apparently undamaged packet had thermal resistances in the range 1.66 to 2.45 m/sup 2/ x K/W for 2.54 cm (9.4 to 13.9 ft/sup 2/ x h x /sup 0/F/Btu for 1.0 in.). The internal pressure of the undamaged packet was calculated to be in the range 100 to 1000 Pa by comparing packet thermal properties with apparent thermal conductivities, k/sub a/, obtained as a function of pressure for the perlite removed from the damaged packet. The thermal resistance for the single evacuated packet was determined by framing the packet with polyisocyanurate of known k/sub a/ and measuring heat flow across the assembly. This yielded a thermal resistance of 18.1 ft/sup 2/ x h x /sup 0/F/Btu for 1.0 in. The k/sub a/ values of two domestic perlites and the perlite removed from the punctured refrigerator packet were measured at 300 K and pressures from atmospheric down to about 5 Pa using a radial heat flow technique. Near 1 atm the k/sub a/ of fine domestic perlite at a density of 246 kg/m/sup 3/ was 5% above that of the foreign perlite at 225 kg/m/sup 3/, but the domestic product had a k/sub a/ up to 45% greater than that of the foreign product under vacuum. The mean particle diameter of the imported perlite was near 13 ..mu..m, while the mean particle diameter of the domestic product was near 21 ..mu..m.

  4. Compatibility of refrigerants and lubricants with elastomers

    SciTech Connect

    Hamed, G.R.; Seiple, R.H.

    1992-10-01

    Information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on the availability of additional quantities of R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 hours and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

  5. Coordination-Cluster-Based Molecular Magnetic Refrigerants.

    PubMed

    Zhang, Shaowei; Cheng, Peng

    2016-08-01

    Coordination polymers serving as molecular magnetic refrigerants have been attracting great interest. In particular, coordination cluster compounds that demonstrate their apparent advantages on cryogenic magnetic refrigerants have attracted more attention in the last five years. Herein, we mainly focus on depicting aspects of syntheses, structures, and magnetothermal properties of coordination clusters that serve as magnetic refrigerants on account of the magnetocaloric effect. The documented molecular magnetic refrigerants are classified into two primary categories according to the types of metal centers, namely, homo- and heterometallic clusters. Every section is further divided into several subgroups based on the metal nuclearity and their dimensionalities, including discrete molecular clusters and those with extended structures constructed from molecular clusters. The objective is to present a rough overview of recent progress in coordination-cluster-based molecular magnetic refrigerants and provide a tutorial for researchers who are interested in the field. PMID:27381662

  6. Dynamic simulation of a reverse Brayton refrigerator

    SciTech Connect

    Peng, N.; Xiong, L. Y.; Dong, B.; Liu, L. Q.; Lei, L. L.; Tang, J. C.

    2014-01-29

    A test refrigerator based on the modified Reverse Brayton cycle has been developed in the Chinese Academy of Sciences recently. To study the behaviors of this test refrigerator, a dynamic simulation has been carried out. The numerical model comprises the typical components of the test refrigerator: compressor, valves, heat exchangers, expander and heater. This simulator is based on the oriented-object approach and each component is represented by a set of differential and algebraic equations. The control system of the test refrigerator is also simulated, which can be used to optimize the control strategies. This paper describes all the models and shows the simulation results. Comparisons between simulation results and experimental data are also presented. Experimental validation on the test refrigerator gives satisfactory results.

  7. Sorption compressor/mechanical expander hybrid refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, J. A.; Britcliffe, M.

    1987-01-01

    Experience with Deep Space Network (DSN) ground-based cryogenic refrigerators has proved the reliability of the basic two-stage Gifford-McMahon helium refrigerator. A very long life cryogenic refrigeration system appears possible by combining this expansion system or a turbo expansion system with a hydride sorption compressor in place of the usual motor driven piston compressor. To test the feasibility of this system, a commercial Gifford-McMahon refrigerator was tested using hydrogen gas as the working fluid. Although no attempt was made to optimize the system for hydrogen operation, the refrigerator developed 1.3 W at 30 K and 6.6 W at 60 K. The results of the test and of theoretical performances of the hybrid compressor coupled to these expansion systems are presented.

  8. Counterflow absorber for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  9. Permanent magnet array for the magnetic refrigerator

    NASA Astrophysics Data System (ADS)

    Lee, S. J.; Kenkel, J. M.; Pecharsky, V. K.; Jiles, D. C.

    2002-05-01

    Recent research into the development of magnetic refrigeration (MR) operating at room temperature has shown that it can provide a reliable, energy-efficient cooling system. To enhance the cooling power of the magnetic refrigerator, it is required to use a magnetic refrigerant material with large magnetocaloric effect (MCE) at the appropriate temperature. Most advanced magnetic refrigerant materials show largest MCE at high applied magnetic fields generated by a superconducting magnet. For application of MCE to air conditioners or household refrigerators, it is essential to develop a permanent magnet array to form a compact, strong, and energy-efficient magnetic field generator. Generating a magnetic field well above the remanence of a permanent magnet material is hard to achieve through conventional designs. A permanent magnet array based on a hollow cylindrical flux source is found to provide an appropriate geometry and magnetic field strength for MR applications.

  10. Compatibility of refrigerants and lubricants with elastomers

    SciTech Connect

    Hamed, G.R.; Seiple, R.H.

    1993-01-01

    The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on availability of additional R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.