Science.gov

Sample records for dominant electron trap

  1. Characterization of a Dominant Electron Trap in GaNAs Using Deep-Level Spectroscopy

    SciTech Connect

    Johnston, S. W.; Kurtz, S. R.

    2006-08-01

    Dilute-nitrogen GaNAs epitaxial layers grown by metal-organic chemical vapor deposition were characterized by deep-level transient spectroscopy (DLTS). For all samples, the dominant DLTS signal corresponds to an electron trap having an activation energy of about 0.25 to 0.35 eV. The minority-carrier trap density in the p-type material is quantified based on computer simulation of the devices. The simulations show that only about 2% of the traps in the depleted layer are filled during the transient. The fraction of the traps that are filled depends strongly on the depth of the trap, but only weakly on the doping of the layers and on the conduction-band offset. The simulations provide a pathway to obtain semi-quantitative data for analysis of minority-carrier traps by DLTS.

  2. Trapped-electron runaway effect

    NASA Astrophysics Data System (ADS)

    Nilsson, E.; Decker, J.; Fisch, N. J.; Peysson, Y.

    2015-08-01

    In a tokamak, trapped electrons subject to a strong electric field cannot run away immediately, because their parallel velocity does not increase over a bounce period. However, they do pinch toward the tokamak center. As they pinch toward the center, the trapping cone becomes more narrow, so eventually they can be detrapped and run away. When they run away, trapped electrons will have a very different signature from circulating electrons subject to the Dreicer mechanism. The characteristics of what are called trapped-electron runaways are identified and quantified, including their distinguishable perpendicular velocity spectrum and radial extent.

  3. Electron trapping mechanisms in magnetron injection guns

    NASA Astrophysics Data System (ADS)

    Pagonakis, Ioannis Gr.; Piosczyk, Bernhard; Zhang, Jianhua; Illy, Stefan; Rzesnicki, Tomasz; Hogge, Jean-Philippe; Avramidis, Konstantinos; Gantenbein, Gerd; Thumm, Manfred; Jelonnek, John

    2016-02-01

    A key parameter for the gyrotron operation and efficiency is the presence of trapped electrons. Two electron trapping mechanisms can take place in gyrotrons: (i) the adiabatic trap and (ii) the magnetic potential well. Their influence on the gyrotron operation is analyzed. Two gun design criteria are then proposed to suppress both mechanisms in order to minimize the risk of possible problems. Experimental results of three high power gyrotrons are presented and their performance is correlated to the presence of populations of trapped electrons. Finally, some very general gun design principles are presented for the limitation of harmful electron trapping.

  4. Collisionless Trapped Electron Mode Turbulence

    NASA Astrophysics Data System (ADS)

    Lang, Jianying; Chen, Yang; Parker, Scott

    2006-10-01

    Collisionless Trapped Electron Mode (CTEM) turbulence is a likely canidate for explaining anomolous transport in tokamak discharges that have a strong density gradient relative to the ion temperature gradient. Here, CTEM turbulence is investigated using the Gyrokinetic δf GEM code. GEM is electromagnetic, includes full drift-kinetic electrons, generaly axisymmetric equilbria, collisions and minority species. Here, the flux-tube limit is taken and β is so small that the simulations are essentially electrostatic. Linear theory predicts that the instability occurs at √2ɛRLn>1, which agrees very well with the simulation results. With increasing density gradient, it is observed that the most unstable mode transitions from a CTEM to drift wave mode and the short-wavelength modes are most unstable ( 2 > kρi> 1). Nonlinear simulations are underway to address the parametric dependence of particle and energy transport. The importance of zonal flows for CTEM turbulence, is still not well understood and is under investigation. D. R. Ernst et. al., Phys. Plasma 11 (2004) 2637 T. Dannert and F. Jenko, Phys. Plasma 12 (2005) 072309 R. Gatto et. al., Phys. Plasma 13 (2006) 022306 Y. Chen and S. E. Parker, J. Comput. Phys. 189 (2003) 463 Y. Chen ad S.E. Parker, accepted, to appear in J. Comput. Phys. (2006) J. Wesson (1997) Tokamaks, Oxford Science

  5. Trapped Electron Precession Shear Induced Fluctuation Decorrelation

    SciTech Connect

    T.S. Hahm; P.H. Diamond; E.-J. Kim

    2002-07-29

    We consider the effects of trapped electron precession shear on the microturbulence. In a similar way the strong E x B shear reduces the radial correlation length of ambient fluctuations, the radial variation of the trapped electron precession frequency can reduce the radial correlation length of fluctuations associated with trapped electrons. In reversed shear plasmas, with the explicit dependence of the trapped electron precession shearing rate on B(subscript)theta, the sharp radial gradient of T(subscript)e due to local electron heating inside qmin can make the precession shearing mechanism more effective, and reduce the electron thermal transport constructing a positive feedback loop for the T(subscript)e barrier formation.

  6. Identification of silicon as the dominant hole trap in YVO4 crystals

    NASA Astrophysics Data System (ADS)

    Garces, N. Y.; Halliburton, L. E.; Stevens, K. T.; Shone, M.; Foundos, G. K.

    2002-02-01

    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) have been used to characterize the dominant hole trap in undoped Czochralski-grown yttrium-orthovanadate (YVO4) crystals. A silicon impurity, present inadvertently, replaces a vanadium ion and allows a hole to be trapped on one of the four adjacent oxygen ions. The unpaired spin resides in an oxygen p orbital oriented perpendicular to the plane defined by the silicon ion, the electron-deficient oxygen, and the two yttrium ions nearest the oxygen. Principal values of the g matrix (2.0033, 2.0090, and 2.0771) were obtained from EPR data taken at 15 K. Direct verification of the participation of silicon was obtained from ENDOR data taken at 12 K. We have found that this trapped-hole center appeared in large concentrations in all of our Czochralski-grown YVO4 crystals that were exposed to ionizing radiation (i.e., x rays or an ultraviolet laser beam) while the crystal was at 77 K. Interestingly, a small concentration of this trapped-hole center was present in some as-grown YVO4 crystals before exposure to ionizing radiation.

  7. Electron Traps at the Ice Surface

    NASA Astrophysics Data System (ADS)

    Bockstedte, Michel; Auburger, Philipp; Michl, Anja

    Water, water clusters and ice possess the fascinating ability to solvate electrons. On the surface of water cluster1 and thin crystalline ice structures on a metal substrate2 long-living solvated electron states were observed that evolve from pre-existing surface traps. The identification of such traps provides important insight into the electronic structure of the water or ice surface, and the dissociative interaction of electrons with adsorbates. Models2,3 based on the bilayer terminated Ih-(0001) surface related such traps to orientational defects or vacancies. So far, the understanding of the electronic structure of the ice surface with the electron traps is incomplete. Here we address this issue including also water ad-structures4 within hybrid density functional theory and many-body perturbation theory (G0W0). We identify a hierachy of traps with increasing vertical electron affinity, ranging from hexagon adrows to clusters of orientational defects and vacancies with dangling OH-groups. Siefermann and Abel, Angew. Chem. Int. Ed. 50, 5264 (2011). Bovensiepen et al., J. Chem. Phys. C 113, 979 (2013). Hermann et al., J. Phys.: cond. matter 20, 225003 (2008). Mehlhorn and Morgenstern, Phys. Rev. Lett. 99, 246101 (2007)

  8. Impurity transport in trapped electron mode driven turbulence

    SciTech Connect

    Mollen, A.; Fueloep, T.; Moradi, S.; Pusztai, I.

    2013-03-15

    Trapped electron mode turbulence is studied by gyrokinetic simulations with the GYRO code and an analytical model including the effect of a poloidally varying electrostatic potential. Its impact on radial transport of high-Z trace impurities close to the core is thoroughly investigated, and the dependence of the zero-flux impurity density gradient (peaking factor) on local plasma parameters is presented. Parameters such as ion-to-electron temperature ratio, electron temperature gradient, and main species density gradient mainly affect the impurity peaking through their impact on mode characteristics. The poloidal asymmetry, the safety factor, and magnetic shear have the strongest effect on impurity peaking, and it is shown that under certain scenarios where trapped electron modes are dominant, core accumulation of high-Z impurities can be avoided. We demonstrate that accounting for the momentum conservation property of the impurity-impurity collision operator can be important for an accurate evaluation of the impurity peaking factor.

  9. Electron beam ion sources and traps (invited)

    NASA Astrophysics Data System (ADS)

    Becker, Reinard

    2000-02-01

    The electron beam method of stepwise ionization to highest charge states has found applications in electron beam ion sources (EBISs) for accelerators and atomic physics collision experiments as well as in electron beam ion traps (EBITs) for x-ray and mass spectroscopy. A dense and almost monoenergetic electron beam provides a unique tool for ionization, because radiative recombination by slow electrons is negligible and charge exchange is almost avoided in ultrahigh vacua. These are essential differences to electron cyclotron resonance ion sources with inevitable low energy electrons and comparatively high gas pressure. The distinction between EBIS and EBIT as genuine devices has become meaningless, because EBISs may work as traps and almost all EBITs are feeding beamlines for external experiments. More interesting is to note the diversification of these devices, which demonstrates that a matured technology is finding dedicated answers for different applications. At present we may distinguish six major lines of development and application: high current EBISs for upcoming hadron colliders, super EBITs in the energy range above 300 keV for quantum electrondynamics tests, inexpensive and small EBISTs for atomic physics studies, a highly efficient EBIS with oscillating electrons, MEDEBIS for tumor therapy with C6+, and charge breeding in facilities for exotic radioactive beams.

  10. Pure electron plasmas in asymmetric traps*

    NASA Astrophysics Data System (ADS)

    Chu, R.; Wurtele, J. S.; Notte, J.; Peurrung, A. J.; Fajans, J.

    1993-07-01

    Pure electron plasmas are routinely confined within cylindrically symmetric Penning traps. In this paper the static and dynamic properties of plasmas confined in traps with applied electric field asymmetries are investigated. Simple analytical theories are derived and used to predict the shapes of the stable noncircular plasma equilibria observed in experiments. Both analytical and experimental results agree with those of a vortex-in-cell simulation. For an l=1 diocotron mode in a cylindrically symmetric trap, the plasma rotates as a rigid column in a circular orbit. In contrast, plasmas in systems with electric field asymmetries are shown to have an analog to the l=1 mode in which the shape of the plasma changes as it rotates in a noncircular orbit. These bulk plasma features are studied with a Hamiltonian model. It is seen that, for a small plasma, the area enclosed by the orbit of the center of charge is an invariant when electric field perturbations are applied adiabatically. This invariant has been observed experimentally. The breaking of the invariant is also studied. The dynamic Hamiltonian model is also used to predict the shape and frequency of the large amplitude l=1 and l=2 diocotron modes in symmetric traps.

  11. Effect of Single-Electron Interface Trapping in Decanano MOSFETs: A 3D Atomistic Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Balasubramaniam, R.; Brown, A. R.; Davies, J. H.

    2000-01-01

    We study the effect of trapping/detrapping of a single-electron in interface states in the channel of n-type MOSFETs with decanano dimensions using 3D atomistic simulation techniques. In order to highlight the basic dependencies, the simulations are carried out initially assuming continuous doping charge, and discrete localized charge only for the trapped electron. The dependence of the random telegraph signal (RTS) amplitudes on the device dimensions and on the position of the trapped charge in the channel are studied in detail. Later, in full-scale, atomistic simulations assuming discrete charge for both randomly placed dopants and the trapped electron, we highlight the importance of current percolation and of traps with strategic position where the trapped electron blocks a dominant current path.

  12. Electron beam ion source and electron beam ion trap (invited)

    SciTech Connect

    Becker, Reinard; Kester, Oliver

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  13. Proposed LLNL electron beam ion trap

    SciTech Connect

    Marrs, R.E.; Egan, P.O.; Proctor, I.; Levine, M.A.; Hansen, L.; Kajiyama, Y.; Wolgast, R.

    1985-07-02

    The interaction of energetic electrons with highly charged ions is of great importance to several research fields such as astrophysics, laser fusion and magnetic fusion. In spite of this importance there are almost no measurements of electron interaction cross sections for ions more than a few times ionized. To address this problem an electron beam ion trap (EBIT) is being developed at LLNL. The device is essentially an EBIS except that it is not intended as a source of extracted ions. Instead the (variable energy) electron beam interacting with the confined ions will be used to obtain measurements of ionization cross sections, dielectronic recombination cross sections, radiative recombination cross sections, energy levels and oscillator strengths. Charge-exchange recombinaion cross sections with neutral gasses could also be measured. The goal is to produce and study elements in many different charge states up to He-like xenon and Ne-like uranium. 5 refs., 2 figs.

  14. Electron Trapping and Charge Transport by Large Amplitude Whistlers

    NASA Technical Reports Server (NTRS)

    Kellogg, P. J.; Cattell, C. A.; Goetz, K.; Monson, S. J.; Wilson, L. B., III

    2010-01-01

    Trapping of electrons by magnetospheric whistlers is investigated using data from the Waves experiment on Wind and the S/WAVES experiment on STEREO. Waveforms often show a characteristic distortion which is shown to be due to electrons trapped in the potential of the electrostatic part of oblique whistlers. The density of trapped electrons is significant, comparable to that of the unperturbed whistler. Transport of these trapped electrons to new regions can generate potentials of several kilovolts, Trapping and the associated potentials may play an important role in the acceleration of Earth's radiation belt electrons.

  15. Ultrafast electron trapping in ligand-exchanged quantum dot assemblies.

    PubMed

    Turk, Michael E; Vora, Patrick M; Fafarman, Aaron T; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R; Kikkawa, James M

    2015-02-24

    We use time-integrated and time-resolved photoluminescence and absorption to characterize the low-temperature optical properties of CdSe quantum dot solids after exchanging native aliphatic ligands for thiocyanate and subsequent thermal annealing. In contrast to trends established at room temperature, our data show that at low temperature the band-edge absorptive bleach is dominated by 1S3/2h hole occupation in the quantum dot interior. We find that our ligand treatments, which bring enhanced interparticle coupling, lead to faster surface state electron trapping, a greater proportion of surface-related photoluminescence, and decreased band-edge photoluminescence lifetimes. PMID:25635923

  16. The AE-8 trapped electron model environment

    NASA Technical Reports Server (NTRS)

    Vette, James I.

    1991-01-01

    The machine sensible version of the AE-8 electron model environment was completed in December 1983. It has been sent to users on the model environment distribution list and is made available to new users by the National Space Science Data Center (NSSDC). AE-8 is the last in a series of terrestrial trapped radiation models that includes eight proton and eight electron versions. With the exception of AE-8, all these models were documented in formal reports as well as being available in a machine sensible form. The purpose of this report is to complete the documentation, finally, for AE-8 so that users can understand its construction and see the comparison of the model with the new data used, as well as with the AE-4 model.

  17. Energy Measurements of Trapped Electrons from a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, Neal; Auerbach, David; Berry, Melissa; Blumenfeld, Ian; Clayton, Christopher E.; Decer, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Johnson, Devon; Joshi, Chadrashekhar; Katsouleas, Thomas; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.

    2007-01-03

    Recent electron beam driven plasma wakefield accelerator experiments carried out at SLAC indicate trapping of plasma electrons. More charge came out of than went into the plasma. Most of this extra charge had energies at or below the 10 MeV level. In addition, there were trapped electron streaks that extended from a few GeV to tens of GeV, and there were mono-energetic trapped electron bunches with tens of GeV in energy.

  18. Nonextensive statistical mechanics approach to electron trapping in degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Mebrouk, Khireddine; Gougam, Leila Ait; Tribeche, Mouloud

    2016-06-01

    The electron trapping in a weakly nondegenerate plasma is reformulated and re-examined by incorporating the nonextensive entropy prescription. Using the q-deformed Fermi-Dirac distribution function including the quantum as well as the nonextensive statistical effects, we derive a new generalized electron density with a new contribution proportional to the electron temperature T, which may dominate the usual thermal correction (∼T2) at very low temperatures. To make the physics behind the effect of this new contribution more transparent, we analyze the modifications arising in the propagation of ion-acoustic solitary waves. Interestingly, we find that due to the nonextensive correction, our plasma model allows the possibility of existence of quantum ion-acoustic solitons with velocity higher than the Fermi ion-sound velocity. Moreover, as the nonextensive parameter q increases, the critical temperature Tc beyond which coexistence of compressive and rarefactive solitons sets in, is shifted towards higher values.

  19. Stability of trapped electrons in SiO{sub 2}

    SciTech Connect

    Fleetwood, D.M.; Winokur, P.S.; Flament, O.; Leray, J.L.

    1999-05-01

    Thermally stimulated current and capacitance voltage methods are used to investigate the thermal stability of trapped electrons associated with radiation-induced trapped positive charge in metal{endash}oxide{endash}semiconductor capacitors. The density of deeply trapped electrons in radiation-hardened 45 nm oxides exceeds that of shallow electrons by a factor of {approximately}3 after radiation exposure, and by up to a factor of 10 or more during biased annealing. Shallow electron traps anneal faster than deep traps, and exhibit response that is qualitatively consistent with existing models of compensated E{sub {gamma}}{sup {prime}} centers in SiO{sub 2}. Deeper traps may be part of a different dipole complex, and/or have shifted energy levels that inhibit charge exchange with the Si. {copyright} {ital 1999 American Institute of Physics.}

  20. 40-keV electron durable trapping electron

    SciTech Connect

    Feynman, J.; Hardy, D.A.; Mullen, E.G.

    1984-03-01

    The positron and extent of the region in which electrons with energies less than 40-keV are durably trapped in the nightside magnetosphere is found for both normal and disturbed geomagnetic conditions by using data from the P78-2 (SCATHA) satellite. The region of the magnetosphere from 5.3 to 7.9 R/sub E/ was studied. In this region neither solar-magnetic nor geocentric-solar magnetospheric coordinates order the data satisfactorily. A new coordinate systems called composite coordinates is introduced. It takes account of the fact that this region of the magnetosphere is strongly influenced by both the earth's ddipole field and the direction of the solar wind. In composite coordinates when Kp< or =4+, 40-keV electron fluxes were almost continuously present in a region centered on the equatorial palne and 1.2 R/sub E/ in half width. At larger composite coordinate latitudes there is another region more than 1 R/sub E/ thick within which 40-keV electron fluxes routinely appear and disappear on time scales of one hour as the trapping boundary actively moves over the satellite. We have no evidence that SCATHA over entered the tail lobes where no particles are trapped. When Kp> or =6- the region in which 40-keV electron fluxes were always present moved earthward and/or thinned but remained ordered in composite coordinates. We suggest that the new coordinate system will be useful for ordering other data sets taken in this region of the magnetosphere.

  1. Cyclotron Resonance of Electrons Trapped in a Microwave Cavity

    ERIC Educational Resources Information Center

    Elmore, W. C.

    1975-01-01

    Describes an experiment in which the free-electron cyclotron resonance of electrons trapped in a microwave cavity by a Penning trap is observed. The experiment constitutes an attractive alternative to one of the Gardner-Purcell variety. (Author/GS)

  2. Electronic circuit provides automatic level control for liquid nitrogen traps

    NASA Technical Reports Server (NTRS)

    Turvy, R. R.

    1968-01-01

    Electronic circuit, based on the principle of increased thermistor resistance corresponding to decreases in temperature provides an automatic level control for liquid nitrogen cold traps. The electronically controlled apparatus is practically service-free, requiring only occasional reliability checks.

  3. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, Neil; /SLAC

    2009-10-30

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped electron

  4. Collisionless microtearing modes in hot tokamaks: Effect of trapped electrons

    SciTech Connect

    Swamy, Aditya K.; Ganesh, R.; Brunner, S.; Vaclavik, J.; Villard, L.

    2015-07-15

    Collisionless microtearing modes have recently been found linearly unstable in sharp temperature gradient regions of large aspect ratio tokamaks. The magnetic drift resonance of passing electrons has been found to be sufficient to destabilise these modes above a threshold plasma β. A global gyrokinetic study, including both passing electrons as well as trapped electrons, shows that the non-adiabatic contribution of the trapped electrons provides a resonant destabilization, especially at large toroidal mode numbers, for a given aspect ratio. The global 2D mode structures show important changes to the destabilising electrostatic potential. The β threshold for the onset of the instability is found to be generally downshifted by the inclusion of trapped electrons. A scan in the aspect ratio of the tokamak configuration, from medium to large but finite values, clearly indicates a significant destabilizing contribution from trapped electrons at small aspect ratio, with a diminishing role at larger aspect ratios.

  5. The electronic McPhail trap.

    PubMed

    Potamitis, Ilyas; Rigakis, Iraklis; Fysarakis, Konstantinos

    2014-01-01

    Certain insects affect cultivations in a detrimental way. A notable case is the olive fruit fly (Bactrocera oleae (Rossi)), that in Europe alone causes billions of euros in crop-loss/per year. Pests can be controlled with aerial and ground bait pesticide sprays, the efficiency of which depends on knowing the time and location of insect infestations as early as possible. The inspection of traps is currently carried out manually. Automatic monitoring traps can enhance efficient monitoring of flying pests by identifying and counting targeted pests as they enter the trap. This work deals with the hardware setup of an insect trap with an embedded optoelectronic sensor that automatically records insects as they fly in the trap. The sensor responsible for detecting the insect is an array of phototransistors receiving light from an infrared LED. The wing-beat recording is based on the interruption of the emitted light due to the partial occlusion from insect's wings as they fly in the trap. We show that the recordings are of high quality paving the way for automatic recognition and transmission of insect detections from the field to a smartphone. This work emphasizes the hardware implementation of the sensor and the detection/counting module giving all necessary implementation details needed to construct it. PMID:25429412

  6. The Electronic McPhail Trap

    PubMed Central

    Potamitis, Ilyas; Rigakis, Iraklis; Fysarakis, Konstantinos

    2014-01-01

    Certain insects affect cultivations in a detrimental way. A notable case is the olive fruit fly (Bactrocera oleae (Rossi)), that in Europe alone causes billions of euros in crop-loss/per year. Pests can be controlled with aerial and ground bait pesticide sprays, the efficiency of which depends on knowing the time and location of insect infestations as early as possible. The inspection of traps is currently carried out manually. Automatic monitoring traps can enhance efficient monitoring of flying pests by identifying and counting targeted pests as they enter the trap. This work deals with the hardware setup of an insect trap with an embedded optoelectronic sensor that automatically records insects as they fly in the trap. The sensor responsible for detecting the insect is an array of phototransistors receiving light from an infrared LED. The wing-beat recording is based on the interruption of the emitted light due to the partial occlusion from insect's wings as they fly in the trap. We show that the recordings are of high quality paving the way for automatic recognition and transmission of insect detections from the field to a smartphone. This work emphasizes the hardware implementation of the sensor and the detection/counting module giving all necessary implementation details needed to construct it. PMID:25429412

  7. Chapter 12: Trapped Electrons as Electrical (Quantum) Circuits

    NASA Astrophysics Data System (ADS)

    Verdú, José

    2014-01-01

    In this chapter, we present a detailed model of the equivalent electric circuit of a single trapped particle in a coplanar-waveguide (CPW) Penning trap. The CPW-trap, which is essentially a section of coplanar-waveguide transmission-line, is designed to make it compatible with circuit-quantum electrodynamic architectures. This will enable a single trapped electron, or geonium atom, as a potential building block of microwave quantum circuits. The model of the trapped electron as an electric circuit was first introduced by Hans Dehmelt in the 1960s. It is essential for the description of the electronic detection using resonant tank circuits. It is also the basis for the description of the interaction of a geonium atom with other distant quantum systems through electrical (microwave) signals.

  8. Ionization-Induced Electron Trapping inUltrarelativistic Plasma Wakes

    SciTech Connect

    Oz, E.; Deng, S.; Katsouleas, T.; Muggli, P.; Barnes, C.D.; Blumenfeld, I.; Decker, F.J.; Emma, P.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.; Krejcik, P.; O'Connell, C.; Siemann, R.H.; Walz, D.; Auerbach, D.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; /UCLA

    2007-04-06

    The onset of trapping of electrons born inside a highly relativistic, 3D beam-driven plasma wake is investigated. Trapping occurs in the transition regions of a Li plasma confined by He gas. Li plasma electrons support the wake, and higher ionization potential He atoms are ionized as the beam is focused by Li ions and can be trapped. As the wake amplitude is increased, the onset of trapping is observed. Some electrons gain up to 7.6 GeV in a 30.5 cm plasma. The experimentally inferred trapping threshold is at a wake amplitude of 36 GV/m, in good agreement with an analytical model and PIC simulations.

  9. Trapped electron losses by interactions with coherent VLF waves

    NASA Astrophysics Data System (ADS)

    Walt, M.; Inan, U. S.; Voss, H. D.

    1996-07-01

    VLF whistler waves from lightning enter the magnetosphere and cause the precipitation of energetic trapped electrons by pitch angle scattering. These events, known as Lightning-induced Electron Precipitation (LEP) have been detected by satellite and rocket instruments and by perturbations of VLF waves traveling in the earth-ionosphere waveguide. Detailed comparison of precipitating electron energy spectra and time dependence are in general agreement with calculations of trapped electron interactions with ducted whistler waves. In particular the temporal structure of the precipitation and the dynamic energy spectra of the electrons confirm this interpretation of the phenomena. There are discrepancies between observed and measured electron flux intensities and pitch angle distributions, but these quantities are sensitive to unknown wave intensities and trapped particle fluxes near the loss cone angle. The overall effect of lightning generated VLF waves on the lifetime of trapped electrons is still uncertain. The flux of electrons deflected into the bounce loss cone by a discrete whistler wave has been measured in a few cases. However, the area of the precipitation region is not known, and thus the total number of electrons lost in an LEP event can only be estimated. While the LEP events are dramatic, more important effects on trapped electrons may arise from the small but numerous deflections which increase the pitch angle diffusion rate of the electron population.

  10. Trapped electron losses by interactions with coherent VLF waves

    SciTech Connect

    Walt, M.; Inan, U.S.; Voss, H.D.

    1996-07-01

    VLF whistler waves from lightning enter the magnetosphere and cause the precipitation of energetic trapped electrons by pitch angle scattering. These events, known as Lightning-induced Electron Precipitation (LEP) have been detected by satellite and rocket instruments and by perturbations of VLF waves traveling in the earth-ionosphere waveguide. Detailed comparison of precipitating electron energy spectra and time dependence are in general agreement with calculations of trapped electron interactions with ducted whistler waves. In particular the temporal structure of the precipitation and the dynamic energy spectra of the electrons confirm this interpretation of the phenomena. There are discrepancies between observed and measured electron flux intensities and pitch angle distributions, but these quantities are sensitive to unknown wave intensities and trapped particle fluxes near the loss cone angle. The overall effect of lightning generated VLF waves on the lifetime of trapped electrons is still uncertain. The flux of electrons deflected into the bounce loss cone by a discrete whistler wave has been measured in a few cases. However, the area of the precipitation region is not known, and thus the total number of electrons lost in an LEP event can only be estimated. While the LEP events are dramatic, more important effects on trapped electrons may arise from the small but numerous deflections which increase the pitch angle diffusion rate of the electron population. {copyright} {ital 1996 American Institute of Physics.}

  11. Zeeman shift of an electron trapped near a surface

    NASA Astrophysics Data System (ADS)

    Bennett, Robert; Eberlein, Claudia

    2014-04-01

    Boundary-dependent corrections to the spin energy eigenvalues of an electron in a weak magnetic field and confined by a harmonic trapping potential are investigated. The electromagnetic field is quantized through a normal-mode expansion obeying the Maxwell boundary conditions at the material surface. We couple the electron to this photon field and a classical magnetic field in the Dirac equation, to which we apply the unitary Foldy-Wouthuysen transformation in order to generate a nonrelativistic approximation of the Hamiltonian to the desired order. We obtain the Schrödinger eigenstates of an electron subject to double confinement by a harmonic potential and a classical magnetic field, and then use these within second-order perturbation theory to calculate the spin energy shift that is attributable to the surface-modified quantized field. We find that a pole at the eigenfrequency of a set of generalized Landau transitions gives dominant oscillatory contributions to the energy shift in the limit of tight harmonic confinement in a weak magnetic field, which also make the energy shift preferable to the magnetic moment for a physically meaningful interpretation.

  12. Trapped electrons in vacuum for a scalable quantum processor

    SciTech Connect

    Ciaramicoli, G.; Marzoli, I.; Tombesi, P.

    2004-09-01

    We describe in detail a theoretical scheme to trap and manipulate an arbitrary number of electrons in vacuum for universal quantum computation. The particles are confined in a linear array of Penning traps by means of a combination of static electric and magnetic fields. Two-electron operations are realized by controlling the Coulomb interaction between neighboring particles. The performances of such a device are evaluated in terms of clock speed, fidelity, and decoherence rates.

  13. Design and operation of the electron beam ion trap

    SciTech Connect

    Vogel, D.

    1990-05-30

    This report describes the basic features and operating principles of the Electron Beam Ion Trap. The differences between EBIT and other sources of highly charged ions are outlined. Its features and operating parameters are discussed. The report also explains why certain design choices were necessary and the constraints involved in building an electron beam ion trap. EBIT's evaporation cooling system is described in detail. 13 refs., 8 figs.

  14. Short wavelength trapped electron modes in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Gong, X. Y.; Dong, J. Q.; Huang, Q. H.; Gong, L.; Li, J. C.

    2016-04-01

    The collisionless trapped electron modes in the short wavelength region k⊥ρs>1 (SWTEMs) are studied with the gyrokinetic integral eigenmode equation in tokamak plasmas. Here, we present a systematic study of the correlation between the SWTEMs and short wavelength ion temperature gradient (SWITG) modes. The kθρs spectra of TEM have double humps in the short wavelength and long wavelength regions, respectively. The SWITG modes with trapped electron effects taking into account have broader kθρs spectra. Dependences of growth rate and real frequency of SWTEMs on the various parameters, such as ion temperature gradient (ηi), the temperature gradient of trapped electrons (ηe), toroidicity (ɛn), magnetic shear ( s ̂ ), safety factor (q), and the ratio of temperature (Te/Ti), are investigated in detail. It is found that the SWTEMs propagate in the electron diamagnetic drift direction and require temperature gradient of trapped electrons ηe exceeding thresholds. Moreover, the ion temperature gradient has a strong stabilizing effect on the SWTEMs. The SWTEMs become stable in both regimes of toroidicity ɛn > 0.1 and magnetic shear s ̂>0.5 regardless of the fraction of trapped electrons. In addition, the properties of short wavelength ITG (SWITG) modes are discussed with different ratio of trapped electrons. It is found that trapped electrons of greater fraction have a stronger destabilizing effect on the SWTEM and SWITG modes. These results are significant for the electrons anomalous transport experiments in the future.

  15. Global gyrokinetic simulations of trapped-electron mode and trapped-ion mode microturbulence

    NASA Astrophysics Data System (ADS)

    Drouot, T.; Gravier, E.; Reveille, T.; Sarrat, M.; Collard, M.; Bertrand, P.; Cartier-Michaud, T.; Ghendrih, P.; Sarazin, Y.; Garbet, X.

    2015-08-01

    This paper presents a reduced kinetic model, which describes simultaneously trapped-ion (TIM) and trapped-electron (TEM) driven modes. Interestingly, the model enables the study of a full f problem for ion and electron trapped particles at very low numerical cost. The linear growth rate obtained with the full f nonlinear code Trapped Element REduction in Semi Lagrangian Approach is successfully compared with analytical predictions. Moreover, nonlinear results show some basic properties of collisionless TEM and TIM turbulence in tokamaks. A competition between streamer-like structures and zonal flows is observed for TEM and TIM turbulence. Zonal flows are shown to play an important role in suppressing the nonlinear transport and strongly depend on the temperature ratio Te/Ti .

  16. Dynamic selective environments and evolutionary traps in human-dominated landscapes.

    PubMed

    Rodewald, Amanda D; Shustack, Daniel P; Jones, Todd M

    2011-09-01

    Human activities can alter selective environments in ways that can reduce the usefulness of certain ornamental traits as honest signals of individual quality and, in some cases, may create evolutionary traps, where rapid changes in selective environments result in maladaptive behavioral decisions. Using the sexually dichromatic, socially monogamous Northern Cardinal (Cardinalis cardinalis) as a model, we hypothesized that urbanization would erode the relationship between plumage coloration and reproductive success. Because the exotic Amur honeysuckle (Lonicera maackii) provides carotenoids, is a preferred habitat attribute, and increases vulnerability to nest predation, we predicted the presence of an evolutionary trap, whereby the brightest males would achieve the lowest reproductive success. Working at 14 forests in Ohio, USA, 2006-2008, we measured plumage color, monitored reproduction, and quantified habitat within territories. In rural landscapes, the brightest males bred earliest in the season and secured more preferred territories; however, annual reproduction declined with plumage brightness. Coloration of urban males was not associated with territory attributes or reproduction. Female redness across all landscapes was negatively related to reproduction. Poor reproductive performance of otherwise higher-quality males probably resulted from preferences for honeysuckle, which reduces annual reproduction when used as a nesting substrate early in the season. In this way, exotic shrubs prompted an evolutionary trap that was avoided in urban forests where anthropogenic resources disassociated male color and reproductive phenology and success. Our study illustrates how modified selective environments in human-dominated landscapes might shape microevolutionary processes in wild bird populations. PMID:21939074

  17. Trapped Electron Mode Turbulence Driven Intrinsic Rotation in Tokamak Plasmas

    SciTech Connect

    Wang, W. X.; Hahm, T. S.; Ethier, S.; Zakharov, L. E.

    2011-02-07

    Recent progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported with emphasis on electron thermal transport dominated regimes. The turbulence driven intrinsic torque associated with nonlinear residual stress generation by the fluctuation intensity and the intensity gradient in the presence of zonal flow shear induced asymmetry in the parallel wavenumber spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current. These results qualitatively reproduce empirical scalings of intrinsic rotation observed in various experiments. The origin of current scaling is found to be due to enhanced kll symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic torque on pressure gradient is that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving residual stress, increase with the strength of turbulence drive, which is R0/LTe and R0/Lne for the trapped electron mode. __________________________________________________

  18. Radiation-Reaction Trapping of Electrons in Extreme Laser Fields

    NASA Astrophysics Data System (ADS)

    Ji, L. L.; Pukhov, A.; Kostyukov, I. Yu.; Shen, B. F.; Akli, K.

    2014-04-01

    A radiation-reaction trapping (RRT) of electrons is revealed in the near-QED regime of laser-plasma interaction. Electrons quivering in laser pulse experience radiation reaction (RR) recoil force by radiating photons. When the laser field reaches the threshold, the RR force becomes significant enough to compensate for the expelling laser ponderomotive force. Then electrons are trapped inside the laser pulse instead of being scattered off transversely and form a dense plasma bunch. The mechanism is demonstrated both by full three-dimensional particle-in-cell simulations using the QED photonic approach and numerical test-particle modeling based on the classical Landau-Lifshitz formula of RR force. Furthermore, the proposed analysis shows that the threshold of laser field amplitude for RRT is approximately the cubic root of laser wavelength over classical electron radius. Because of the pinching effect of the trapped electron bunch, the required laser intensity for RRT can be further reduced.

  19. Electron source for a mini ion trap mass spectrometer

    DOEpatents

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  20. Electron source for a mini ion trap mass spectrometer

    DOEpatents

    Dietrich, D.D.; Keville, R.F.

    1995-12-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  1. Electron trapping and acceleration across a parabolic plasma density profile.

    PubMed

    Kim, J U; Hafz, N; Suk, H

    2004-02-01

    It is known that as a laser wakefield passes through a downward density transition in a plasma some portion of the background electrons are trapped in the laser wakefield and the trapped electrons are accelerated to relativistic high energies over a very short distance. In this study, by using a two-dimensional (2D) particle-in-cell (PIC) simulation, we suggest an experimental scheme that can manipulate electron trapping and acceleration across a parabolic plasma density channel, which is easier to produce and more feasible to apply to the laser wakefield acceleration experiments. In this study, 2D PIC simulation results for the physical characteristics of the electron bunches that are emitted from the parabolic density plasma channel are reported in great detail. PMID:14995568

  2. Trap-control system for polarized-electron source

    SciTech Connect

    Agranovich, V.L.; Beloglazov, V.I.; Efimov, V.P.; Kuz'menko, V.S.

    1985-11-01

    An electronic logic system for controlling accumulation and holding of electrons with energies less than 10 eV for polarization is described. A source of polarized electrons based on spin exchange with atoms of polarized hydrogen has been created for physics research on the linear accelerator of the Kharkov Applied Physics Institute. It was necessary to create functional supply and control circuits that feed to the trap electrodes pulsed voltages of given amplitude, polarity and duration. A diagram of the trap-control system is shown.

  3. Electron Cooling of Ions and Antiprotons in Traps

    SciTech Connect

    Zwicknagel, Guenter

    2006-03-20

    For a theoretical description of electron cooling of ions or antiprotons in traps we have investigated the energy loss and cooling force in a strongly magnetized electron plasma employing both perturbation approaches and more complete numerical simulations. Some characteristic features for cooling under conditions prevailing in Penning traps are presented. One particular feature is, that the energy loss in strongly magnetized electrons, which tend to move along the field lines like beads on a wire, strongly depends on the sign of the interaction. The energy loss can be significantly larger for antiprotons than for protons. Special attention is paid to the cooling of highly charged ions, here bare Uranium, in HITRAP. The time evolution of the energy distribution of the trapped ions is studied within a simplified model which takes into account the related heating of the electrons. The feedback of this heating on the energy loss results in an intricate dependency of the cooling times on the density of the electrons and the ratio of the number of ions to the number of electrons in the trap. From this analysis we find that cooling times less than about a second are feasible for electron cooling of bare Uranium in HITRAP.

  4. Electron trapping in rad-hard RCA IC's irradiated with electrons and gamma rays

    NASA Technical Reports Server (NTRS)

    Danchenko, V.; Brashears, S. S.; Fang, P. H.

    1984-01-01

    Enhanced electron trapping has been observed in n-channels of rad-hard CMOS devices due to electron and gamma-ray irradiation. Room-temperature annealing results in a positive shift in the threshold potential far beyond its initial value. The slope of the annealing curve immediately after irradiation was found to depend strongly on the gate bias applied during irradiation. Some dependence was also observed on the electron dose rate. No clear dependence on energy and shielding over a delidded device was observed. The threshold shift is probably due to electron trapping at the radiation-induced interface states and tunneling of electrons through the oxide-silicon energy barrier to fill the radiation-induced electron traps. A mathematical analysis, based on two parallel annealing kinetics, hole annealing and electron trapping, is applied to the data for various electron dose rates.

  5. ELECTRON TRAPPING IN WIGGLER AND QUADRUPOLE MAGNETS OF CESRTA

    SciTech Connect

    Wang, Lanfa; Huang, Xiaobiao; Pivi, Mauro; /SLAC

    2010-08-25

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D [1]. One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with long lifetime in a quadrupole magnet due to the mirror field trapping mechanism and photoelectrons produced in the wiggler zero field zone have long lifetime due to their complicated trajectory.

  6. Electron Collisions in a Magneto-Optical Trap

    NASA Astrophysics Data System (ADS)

    Dech, Jeffery Michael

    Measurements of the multiple ionization cross section ratios of Cesium were performed with ion time-of-flight (TOF) spectroscopy with a magneto-optical trap (MOT) apparatus, updating the previous measurement which dates back almost a century. Results are presented for collisions at energies of 50 eV to 120 eV. With a MOT, experiments can be performed with trapped, cold atomic targets which allow for unparalleled accuracy and experiments with signicant excited state target fractions above those achievable in most atomic beam experiments. A basic overview of optical cooling trapping, electron collision and atomic phenomena are presented. Experimental studies of electrons with Argon and Cesium targets were performed, measuring the multiple ionization ratios with ion TOF spectroscopy. The experimental apparatus and analysis methods are described in detail. Results are compared with previous measurements of multiple ionization ratios for both targets. Agreement within experimental error is found with the results of Tate and Smith across the energy range.

  7. Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids.

    PubMed

    Boehme, Simon C; Azpiroz, Jon Mikel; Aulin, Yaroslav V; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Infante, Ivan; Houtepen, Arjan J

    2015-05-13

    Charge trapping is an ubiquitous process in colloidal quantum-dot solids and a major limitation to the efficiency of quantum dot based devices such as solar cells, LEDs, and thermoelectrics. Although empirical approaches led to a reduction of trapping and thereby efficiency enhancements, the exact chemical nature of the trapping mechanism remains largely unidentified. In this study, we determine the density of trap states in CdTe quantum-dot solids both experimentally, using a combination of electrochemical control of the Fermi level with ultrafast transient absorption and time-resolved photoluminescence spectroscopy, and theoretically, via density functional theory calculations. We find a high density of very efficient electron traps centered ∼0.42 eV above the valence band. Electrochemical filling of these traps increases the electron lifetime and the photoluminescence quantum yield by more than an order of magnitude. The trapping rate constant for holes is an order of magnitude lower that for electrons. These observations can be explained by Auger-mediated electron trapping. From density functional theory calculations we infer that the traps are formed by dicoordinated Te atoms at the quantum dot surface. The combination of our unique experimental determination of the density of trap states with the theoretical modeling of the quantum dot surface allows us to identify the trapping mechanism and chemical reaction at play during charge trapping in these quantum dots. PMID:25853555

  8. Two-stream instability model with electrons trapped in quadrupoles

    NASA Astrophysics Data System (ADS)

    Channell, P. J.

    2009-08-01

    We formulate the theory of the two-stream instability (e-cloud instability) with electrons trapped in quadrupole magnets. We show that a linear instability theory can be sensibly formulated and analyzed. The growth rates are considerably smaller than the linear growth rates for the two-stream instability in drift spaces and are close to those actually observed.

  9. Dissipative trapped-electron instability in quasihelically symmetric stellarators

    SciTech Connect

    Rafiq, T.; Hegna, C.C.

    2006-05-15

    The linear electrostatic dissipative trapped-electron mode is investigated in a quasihelically symmetric (QHS) stellarator and a configuration whose symmetry is spoiled by the addition of a mirror contribution to the magnetic spectrum. The effect of the trapped electrons is accounted for using the drift kinetic equation with an energy-dependent Krook collision operator and an effective collision frequency giving the rate of detrapping. The ballooning mode formalism and Wentzel-Kramers-Brillouin type boundary conditions are used to solve an eigenvalue problem for a drift wave equation with nearly adiabatic electrons in a fully three-dimensional magnetohydrodynamic equilibria. The trapped-electron growth rate is calculated using a perturbative approach. Multiple classes of helically localized and toroidally localized eigenfunctions in the ballooning space are calculated. The results of the QHS configuration is compared and contrasted with the results of the mirror configuration. The helically trapped modes are found to be most destabilizing. In both configurations the magnitude of the linear growth rates are comparable, crudely indicating the same level of anomalous flux as has also been observed in the edge region of experiments.

  10. Auroral Electrons Trapped and Lost: A Vlasov Simulation Study

    NASA Astrophysics Data System (ADS)

    Gunell, H.; Andersson, L.; De Keyser, J. M.; Mann, I.

    2014-12-01

    In the upward current region of the aurora, about two thirds of the total voltage between the auroral ionosphere and the equatorial magnetosphere can be concentrated in a stationary double layer at an altitude of about one earth radius, as Vlasov simulations of the plasma on a magnetic field line have shown (Gunell, et al., Ann. Geophys., 31, 1227-1240, 2013). We perform numerical experiments, changing the total voltage between the ionosphere and the equatorial magnetosphere during the course of the simulation. In the initial state, the total acceleration voltage is 3 kV and there is a double layer approximately 5000 km above the ionospheric end of the system. When the voltage is increased, electrons are trapped between the double layer and the magnetic mirror in a region of velocity space that initially was empty. When the voltage is decreased to its initial value these trapped electrons are released upwards. If the voltage is lowered first and then raised back to where it started, the newly trapped electrons remain trapped. As a consequence of the difference between the two cases, the electron pitch angle distribution, below the double layer, carries information about the recent history of the acceleration voltage. In both cases, most of the change in voltage, ΔV, is assumed by the double layer, in agreement with a study of Cluster data that could confine most of ΔV to altitudes below the spacecraft (Forsyth et al., JGR, 117, A12203, 2012). Hysteresis effects in the double layer position are seen in connection with the electron trapping. This work was supported by the Belgian Science Policy Office through the Solar-Terrestrial Centre of Excellence and by PRODEX/Cluster contract 13127/98/NL/VJ(IC)-PEA 90316.

  11. Fluctuation characteristics and transport properties of collisionless trapped electron mode turbulence

    SciTech Connect

    Xiao Yong; Holod, Ihor; Zhang Wenlu; Lin Zhihong; Klasky, Scott

    2010-02-15

    The collisionless trapped electron mode turbulence is investigated by global gyrokinetic particle simulation. The zonal flow dominated by low frequency and short wavelength acts as a very important saturation mechanism. The turbulent eddies are mostly microscopic, but with a significant portion in the mesoscale. The ion heat transport is found to be diffusive and follows the local radial profile of the turbulence intensity. However, the electron heat transport demonstrates some nondiffusive features and only follows the global profile of the turbulence intensity. The nondiffusive features of the electron heat transport is further confirmed by nonlognormal statistics of the flux-surface-averaged electron heat flux. The radial and time correlation functions are calculated to obtain the radial correlation length and autocorrelation time. Characteristic time scale analysis shows that the zonal flow shearing time and eddy turnover time are very close to the effective decorrelation time, which suggests that the trapped electrons move with the fluid eddies. The fluidlike behaviors of the trapped electrons and the persistence of the mesoscale eddies contribute to the transition of the electron turbulent transport from gyro-Bohm scaling to Bohm scaling when the device size decreases.

  12. Solubility trapping in formation water as dominant CO(2) sink in natural gas fields.

    PubMed

    Gilfillan, Stuart M V; Lollar, Barbara Sherwood; Holland, Greg; Blagburn, Dave; Stevens, Scott; Schoell, Martin; Cassidy, Martin; Ding, Zhenju; Zhou, Zheng; Lacrampe-Couloume, Georges; Ballentine, Chris J

    2009-04-01

    Injecting CO(2) into deep geological strata is proposed as a safe and economically favourable means of storing CO(2) captured from industrial point sources. It is difficult, however, to assess the long-term consequences of CO(2) flooding in the subsurface from decadal observations of existing disposal sites. Both the site design and long-term safety modelling critically depend on how and where CO(2) will be stored in the site over its lifetime. Within a geological storage site, the injected CO(2) can dissolve in solution or precipitate as carbonate minerals. Here we identify and quantify the principal mechanism of CO(2) fluid phase removal in nine natural gas fields in North America, China and Europe, using noble gas and carbon isotope tracers. The natural gas fields investigated in our study are dominated by a CO(2) phase and provide a natural analogue for assessing the geological storage of anthropogenic CO(2) over millennial timescales. We find that in seven gas fields with siliciclastic or carbonate-dominated reservoir lithologies, dissolution in formation water at a pH of 5-5.8 is the sole major sink for CO(2). In two fields with siliciclastic reservoir lithologies, some CO(2) loss through precipitation as carbonate minerals cannot be ruled out, but can account for a maximum of 18 per cent of the loss of emplaced CO(2). In view of our findings that geological mineral fixation is a minor CO(2) trapping mechanism in natural gas fields, we suggest that long-term anthropogenic CO(2) storage models in similar geological systems should focus on the potential mobility of CO(2) dissolved in water. PMID:19340078

  13. Impurity color centers in quartz and trapped electron dating - Electron spin resonance, thermoluminescence studies.

    NASA Technical Reports Server (NTRS)

    Mcmorris, D. W.

    1971-01-01

    Investigation of impurity-related electron-hole traps that are known to be sensitive to ionizing radiations. Electron spin resonance (ESR) equivalent natural doses were determined for the Al hole trap in virgin specimens; the doses agreed with estimates based on published data for the Ge electron trap. The 0.17 deg/sec 180 and 300 C thermoluminescence (TL) peaks in natural specimens were found to have activation energies approximately correct for the Ge trap. The 300 C peak was also found to be correlated with annealing of the Ge electron resonance in gamma-irradiated, step-annealed specimens. Although the 300 C peak occurs in virgin specimens, the corresponding natural Ge electron resonance was not observed.

  14. Electrons under the dominant action of shock-electric fields

    NASA Astrophysics Data System (ADS)

    Fahr, Hans J.; Verscharen, Daniel

    2016-03-01

    We consider a fast magnetosonic multifluid shock as a representation of the solar-wind termination shock. We assume the action of the transition happens in a three-step process: In the first step, the upstream supersonic solar-wind plasma is subject to a strong electric field that flashes up on a small distance scale Δz ≃ U1/ Ωe (first part of the transition layer), where Ωe is the electron gyro-frequency and U1 is the upstream speed. This electric field both decelerates the supersonic ion flow and accelerates the electrons up to high velocities. In this part of the transition region, the electric forces connected with the deceleration of the ion flow strongly dominate over the Lorentz forces. We, therefore, call this part the demagnetization region. In the second phase, Lorentz forces due to convected magnetic fields compete with the electric field, and the highly anisotropic and energetic electron distribution function is converted into a shell distribution with energetic shell electrons storing about 3/4 of the upstream ion kinetic energy. In the third phase, the plasma particles thermalize due to the relaxation of free energy by plasma instabilities. The first part of the transition region opens up a new thermodynamic degree of freedom never before taken into account for the electrons, since the electrons are usually considered to be enslaved to follow the behavior of the protons in all velocity moments like density, bulk velocity, and temperature. We show that electrons may be the downstream plasma fluid that dominates the downstream plasma pressure.

  15. Dynamics and reactivity of trapped electrons on supported ice crystallites.

    PubMed

    Stähler, Julia; Gahl, Cornelius; Wolf, Martin

    2012-01-17

    The solvation dynamics and reactivity of localized excess electrons in aqueous environments have attracted great attention in many areas of physics, chemistry, and biology. This manifold attraction results from the importance of water as a solvent in nature as well as from the key role of low-energy electrons in many chemical reactions. One prominent example is the electron-induced dissociation of chlorofluorocarbons (CFCs). Low-energy electrons are also critical in the radiation chemistry that occurs in nuclear reactors. Excess electrons in an aqueous environment are localized and stabilized by the local rearrangement of the surrounding water dipoles. Such solvated or hydrated electrons are known to play an important role in systems such as biochemical reactions and atmospheric chemistry. Despite numerous studies over many years, little is known about the microscopic details of these electron-induced chemical processes, and interest in the fundamental processes involved in the reactivity of trapped electrons continues. In this Account, we present a surface science study of the dynamics and reactivity of such localized low-energy electrons at D(2)O crystallites that are supported by a Ru(001) single crystal metal surface. This approach enables us to investigate the generation and relaxation dynamics as well as dissociative electron attachment (DEA) reaction of excess electrons under well-defined conditions. They are generated by photoexcitation in the metal template and transferred to trapping sites at the vacuum interface of crystalline D(2)O islands. In these traps, the electrons are effectively decoupled from the electronic states of the metal template, leading to extraordinarily long excited state lifetimes on the order of minutes. Using these long-lived, low-energy electrons, we study the DEA to CFCl(3) that is coadsorbed at very low concentrations (∼10(12) cm(-2)). Using rate equations and direct measurement of the change of surface dipole moment, we

  16. Natural variations in the geomagnetically trapped electron population

    NASA Technical Reports Server (NTRS)

    Vampola, A. L.

    1972-01-01

    Temporal variations in the trapped natural electron flux intensities and energy spectra are discussed and demonstrated using recent satellite data. These data are intended to acquaint the space systems engineer with the types of natural variations that may be encountered during a mission and to augment the models of the electron environment currently being used in space system design and orbit selection. An understanding of the temporal variations which may be encountered should prove helpful. Some of the variations demonstrated here which are not widely known include: (1) addition of very energetic electrons to the outer zone during moderate magnetic storms: (2) addition of energetic electrons to the inner zone during major magnetic storms; (3) inversions in the outer zone electron energy spectrum during the decay phase of a storm injection event and (4) occasional formation of multiple maxima in the flux vs altitude profile of moderately energetic electrons.

  17. Spectroscopy of Argon Excited in an Electron Beam Ion Trap

    SciTech Connect

    Trabert, E

    2005-04-18

    Argon is one of the gases best investigated and most widely used in plasma discharge devices for a multitude of applications that range from wavelength reference standards to controlled fusion experiments. Reviewing atomic physics and spectroscopic problems in various ionization stages of Ar, the past use and future options of employing an electron beam ion trap (EBIT) for better and more complete Ar data in the x-ray, EUV and visible spectral ranges are discussed.

  18. Motion of trapped electrons in gyro-resonant electromagnetic field

    NASA Astrophysics Data System (ADS)

    Hafizi, B.; Aamodt, R. E.

    1987-12-01

    It is shown that the phase space of magnetically trapped electrons in plasmas interacting with gyro-resonant electromagnetic waves is divided into two parts. In one, as a particle gains energy its turning point moves towards the region of weaker magnetic field; in the other, energy gain results in the turning point moving towards the region of stronger magnetic field, with possible detrapping. Present address: Lodestar Research Corporation, P.O. Box 4545, Boulder, CO 80306, USA

  19. Upgrade of the electron beam ion trap in Shanghai

    NASA Astrophysics Data System (ADS)

    Lu, D.; Yang, Y.; Xiao, J.; Shen, Y.; Fu, Y.; Wei, B.; Yao, K.; Hutton, R.; Zou, Y.

    2014-09-01

    Over the last few years the Shanghai electron beam ion trap (EBIT) has been successfully redesigned and rebuilt. The original machine, developed under collaboration with the Shanghai Institute of Applied Physics, first produced an electron beam in 2005. It could be tuned with electron energies between 1 and 130 keV and beam current up to 160 mA. After several years of operation, it was found that several modifications for improvements were necessary to reach the goals of better electron optics, higher photon detection, and ion injection efficiencies, and more economical running costs. The upgraded Shanghai-EBIT is made almost entirely from Ti instead of stainless steel and achieves a vacuum of less than 10-10 Torr, which helps to minimize the loss of highly changed ions through charge exchange. Meanwhile, a more compact structure and efficient cryogenic system, and excellent optical alignment have been of satisfactory. The magnetic field in the central trap region can reach up till 4.8 T with a uniformity of 2.77 × 10-4. So far the upgraded Shanghai-EBIT has been operated up to an electron energy of 151 keV and a beam current of up to 218 mA, although promotion to even higher energy is still in progress. Radiation from ions as highly charged as Xe53+, 54+ has been produced and the characterization of current density is estimated from the measured electron beam width.

  20. Upgrade of the electron beam ion trap in Shanghai

    SciTech Connect

    Lu, D.; Yang, Y.; Xiao, J.; Shen, Y.; Fu, Y.; Wei, B.; Yao, K.; Hutton, R.; Zou, Y.

    2014-09-15

    Over the last few years the Shanghai electron beam ion trap (EBIT) has been successfully redesigned and rebuilt. The original machine, developed under collaboration with the Shanghai Institute of Applied Physics, first produced an electron beam in 2005. It could be tuned with electron energies between 1 and 130 keV and beam current up to 160 mA. After several years of operation, it was found that several modifications for improvements were necessary to reach the goals of better electron optics, higher photon detection, and ion injection efficiencies, and more economical running costs. The upgraded Shanghai-EBIT is made almost entirely from Ti instead of stainless steel and achieves a vacuum of less than 10{sup −10} Torr, which helps to minimize the loss of highly changed ions through charge exchange. Meanwhile, a more compact structure and efficient cryogenic system, and excellent optical alignment have been of satisfactory. The magnetic field in the central trap region can reach up till 4.8 T with a uniformity of 2.77 × 10{sup −4}. So far the upgraded Shanghai-EBIT has been operated up to an electron energy of 151 keV and a beam current of up to 218 mA, although promotion to even higher energy is still in progress. Radiation from ions as highly charged as Xe{sup 53+,} {sup 54+} has been produced and the characterization of current density is estimated from the measured electron beam width.

  1. Trapping and acceleration of upflowing ionospheric electrons in the magnetosphere by electrostatic electron cyclotron harmonic waves

    NASA Astrophysics Data System (ADS)

    Horne, Richard B.

    2015-02-01

    During geomagnetically active conditions upflowing field-aligned electrons which form part of the Birkland current system have been observed at energies of up to 100 eV. If the first adiabatic invariant is conserved, these electrons would reach the conjugate ionosphere without trapping in the magnetosphere. Here we show, by using quasi-linear diffusion theory, that electrostatic electron cyclotron harmonic (ECH) waves can diffuse these low-energy electrons in pitch angle via Doppler-shifted cyclotron resonance and trap them in the magnetosphere. We show that energy diffusion is comparable to pitch angle diffusion up to energies of a few keV. We suggest that ECH waves trap ionospheric electrons in the magnetosphere and accelerate them to produce butterfly pitch angle distributions at energies of up to a few keV. We suggest that ECH waves play a role in magnetosphere-ionosphere coupling and help provide the source electron population for the radiation belts.

  2. Optimum Electron Distributions for Space Charge Dominated Beams in Photoinjectors

    SciTech Connect

    Limborg-Deprey, C.; Bolton, P.R.; /SLAC

    2006-06-15

    The optimum photo-electron distribution from the cathode of an RF photoinjector producing a space charge dominated beam is a uniform distribution contained in an ellipsoid. For such a bunch distribution, the space charge forces are linear and the emittance growth induced by those forces is totally reversible and consequently can be compensated. With the appropriate tuning of the emittance compensation optics, the emittance, at the end of photoinjector beamline, for an ellipsoidal laser pulse, would only have two contributions, the cathode emittance and the RF emittance. For the peak currents of 50A and 100 A required from the SBand and L-Band RF gun photoinjectors discussed here, the RF emittance contribution is negligible. If such an ellipsoidal photo-electron distribution were available, the emittance at the end of the beamline could be reduced to the cathode emittance. Its value would be reduced by more than 40% from that obtained using cylindrical shape laser pulses. This potentially dramatic improvement warrants review of the challenges associated with the production of ellipsoidal photo-electrons. We assume the photo-electrons emission time to be short enough that the ellipsoidal electron pulse shape will come directly from the laser pulse. We shift the challenge to ellipsoidal laser pulse shaping. To expose limiting technical issues, we consider the generation of ellipsoidal laser pulse shape in terms of three different concepts.

  3. Phase space analysis for dynamics of three vortices of pure electron plasma trapped with Penning trap

    SciTech Connect

    Sanpei, Akio; Soga, Yukihiro; Ito, Kiyokazu; Himura, Haruhiko

    2015-06-29

    A trilinear phase space analysis is applied for dynamics of three electron clumps confined with a Penning-Malmberg trap. We show that the Aref’s concept of phase space describe the observed features of the dynamics of three point vortices qualitatively. In vacuum, phase point P moves to physical region boundary in phase space, i.e. triangular configuration cannot be kept. With the addition of a low level background vorticity distribution (BGVD), the excursion of the clumps is reduced and the distance between P and stable point does not extend in the phase space.

  4. Intensity dependent waiting time for strong electron trapping events in speckle stimulated raman scatter

    SciTech Connect

    Rose, Harvey; Daughton, W; Yin, L

    2009-01-01

    The onset of Stimulated Raman scatter from an intense laser speckle is the simplest experimentally realizable laser-plasma-interaction environment. Despite this data and recent 3D particle simulations, the controlling mechanism at the onset of backscatter in the kinetic regime when strong electron trapping in the daughter Langmuir wave is a dominant nonlinearity is not understood. This paper explores the consequences of assuming that onset is controlled by large thermal fluctuations. A super exponential dependence of mean reflectivity on speckle intensity in the onset regime is predicted.

  5. Momentum Transport in Electron-Dominated Spherical Torus Plasmas

    SciTech Connect

    Kaye, S. M.; Solomon, W.; Bell, R. E.; LeBlanc, B. P.; Levinton, F.; Menard, J.; Rewoldt, G.; Sabbagh, S.; Wang, W.; Yuh, H.

    2009-02-24

    The National Spherical Torus Experiment (NSTX) operates between 0.35 and 0.55 T, which, when coupled to up to 7 MW of neutral beam injection, leads to central rotation velocities in excess of 300 km/s and ExB shearing rates up to 1 MHz. This level of ExB shear can be up to a factor of five greater than typical linear growth rates of long-wavelength ion (e.g., ITG) modes, at least partially suppressing these instabilities. Evidence for this turbulence suppression is that the inferred diffusive ion thermal flux in NSTX H-modes is often at the neoclassical level, and thus these plasmas operate in an electron-dominated transport regime. Analysis of experiments using n=3 magnetic fields to change plasma rotation indicate that local rotation shear influences local transport coefficients, most notably the ion thermal diffusivity, in a manner consistent with suppression of the low-k turbulence by this rotation shear. The value of the effective momentum diffusivity, as inferred from steady-state momentum balance, is found to be larger than the neoclassical value. Results of perturbative experiments indicate inward pinch velocities up to 40 m/s and perturbative momentum diffusivities of up to 4 m2/s, which are larger by a factor of several than those values inferred from steady-state analysis. The inferred pinch velocity values are consistent with values based on theories in which low-k turbulence drives the inward momentum pinch. Thus, in Spherical Tori (STs), while the neoclassical ion energy transport effects can be relatively high and dominate the ion energy transport, the neoclassical momentum transport effects are near zero, meaning that transport of momentum is dominated by any low-k turbulence that exists.

  6. Trapping and Frequency Variability in Electron Acoustic Waves

    SciTech Connect

    Driscoll, C. F.; Anderegg, F.; Dubin, D. H. E.; O'Neil, T. M.

    2009-11-10

    Electron Acoustic Waves (EAWs) with a phase velocity less than twice the plasma thermal velocity are observed on pure ion plasma columns. At low excitation amplitudes, the EAW frequencies agree with theory; but at moderate excitation the EAW is more frequency-variable than typical Langmuir waves, and at large excitations resonance is observed over a broad range. Laser Induced Fluorescence measurements of the wave-coherent ion velocity distribution show phase-reversals and wave-particle trapping plateaux at {+-}v{sub ph}, as expected, and corroborate the unusual role of kinetic pressure in the EAW.

  7. Observations of intense trapped electron fluxes at synchronous altitudes

    NASA Technical Reports Server (NTRS)

    Davidson, G. T.; Filbert, P. C.; Nightingale, R. W.; Imhof, W. L.; Reagan, J. B.

    1988-01-01

    The concept of flux limiting in the outer radiation belt proposed by Kennel and Petschek (1966) has been tested in a dynamic situation by using data acquired with instruments aboard the SCATHA satellite. A case-by-case analysis of 12 events for evidence of flux limiting under various magnetospheric conditions is made. The reuslts indicate qualitative agreement with the flux limiting theory for all the events studied. Even the quiescent events and hard-spectrum events are consistent with flux limiting. The limiting flux level at any instant appears to depend strongly on the recent history of the trapped electrons and plasma in the outer magnetosphere.

  8. Impurity effects on trapped electron mode in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Du, Huarong; Wang, Zheng-Xiong; Dong, J. Q.

    2016-07-01

    The effects of impurity ions on the trapped electron mode (TEM) in tokamak plasmas are numerically investigated with the gyrokinetic integral eigenmode equation. It is shown that in the case of large electron temperature gradient ( η e ), the impurity ions have stabilizing effects on the TEM, regardless of peaking directions of their density profiles for all normalized electron density gradient R / L n e . Here, R is the major radius and L n e is the electron density gradient scale length. In the case of intermediate and/or small η e , the light impurity ions with conventional inwardly (outwardly) peaked density profiles have stabilizing effects on the TEM for large (small) R / L n e , while the light impurity ions with steep inwardly (outwardly) peaked density profiles can destabilize the TEM for small (large) R / L n e . Besides, the TEM driven by density gradient is stabilized (destabilized) by the light carbon or oxygen ions with inwardly (outwardly) peaked density profiles. In particular, for flat and/or moderate R / L n e , two independent unstable modes, corresponding respectively to the TEM and impurity mode, are found to coexist in plasmas with impurity ions of outwardly peaked density profiles. The high Z tungsten impurity ions play a stronger stabilizing role in the TEM than the low Z impurity ions (such as carbon and oxygen) do. In addition, the effects of magnetic shear and collision on the TEM instability are analyzed. It is shown that the collisionality considered in this work weakens the trapped electron response, leading to a more stable TEM instability, and that the stabilizing effects of the negative magnetic shear on the TEM are more significant when the impurity ions with outwardly peaked density profile are taken into account.

  9. Trapped Energetic Electrons in the Magnetosphere of Ganymede

    NASA Technical Reports Server (NTRS)

    Eviatar, Aharon; Williams, Donald J.; Paranicas, Chris; McEntire, Richard W.; Mauk, Barry H.; Kivelson, Margaret G.

    2000-01-01

    On May 7, 1997, the Galileo orbiter flew through the magnetosphere of Ganymede and crossed flux tubes connected at both ends to the satellite. Energetic electrons, observed during this encounter by means of the Energetic Particle Detector on board Galileo, showed double loss cones and "butterfly" type pitch angle distributions, as has been noted in past publications. In addition, as the spacecraft flew toward Ganymede, both the shape and magnitude of the spectrum changed. The intensities decreased, with the greatest depletion observed at the lowest energies, and the monotonic slope characteristic of the Jovian environment was replaced by a rollover of the spectrum at the low-energy end. The spectra lead us to infer a strongly energy-dependent injection efficiency into the trapping region. As on previous encounters, the pitch angle distributions confirmed the position of the magnetopause as indicated by the magnetometer measurements, but the spectra remained Jovian until the trapping region was reached. Various physical mechanisms capable of generating the observed spectra and pitch angle distributions, including downstream reconnection insertion followed by magnetic gradient drift and absorption of the lowest-energy electrons by Ganymede and injection from Jovian flux tubes upstream are assessed.

  10. Ultrafast Electron Trapping in Ligand-Exchanged Quantum Dot Assemblies

    NASA Astrophysics Data System (ADS)

    Kikkawa, J. M.; Turk, M. E.; Vora, P. M.; Fafarman, A. T.; Diroll, B. T.; Murray, C. B.; Kagan, C. R.

    2015-03-01

    We use time-integrated and time-resolved photoluminescence and absorption to characterize the low-temperature (10 K) optical properties of CdSe quantum dot (QD) solids with different ligand and annealing preparation. Close-packed CdSe quantum dot solids are prepared with native aliphatic ligands and with thiocyanate with and without thermal annealing. Using sub-picosecond, broadband time-resolved photoluminescence and absorption, we find that ligand exchange increases the rate of carrier surface trapping. We further determine that holes within the QD core, rather than electrons, can bleach the band-edge transition in these samples at low temperature, a finding that comes as a surprise given what is known about the surface treatment in these QDs. We find that our ligand treatments lead to faster electron trapping to the quantum dot surface, a greater proportion of surface photoluminescence, and an increased rate of nonradiative decay due to enhanced interparticle coupling upon exchange and annealing. All aspects of this work supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Award No. DE-SC0002158.

  11. Motion of trapped electrons and protons in Saturn's inner magnetosphere

    SciTech Connect

    Thomsen, M.F.; Van Allen, J.A.

    1980-11-01

    A summary is given of basic formulas for the guiding center motion of energetic charged particles trapped in a dipolar magnetic field. These formulas for longitudinal drift rates, latitudinal bounce periods, equatorial gyroradii, and equatorial gyroperiods are then stated in convenient numerical form for electrons and protons as functions of kinetic energy E, magnetic shell parameter L, and equatorial pitch angle a/sub 0/ for a slightly simplified model of the observed magnetic field of Saturn. To aid in the study of the interaction of charged particles with the rings and inner satellites of Saturn, additional formulas are given for the time interval between successive encounters of charged particles with a satellite in a circular prograde orbit and for the energy of electrons whose longitudinal angular velocity is resonant, or synchronous, with the Keplerian angular velocity of such a satellite.

  12. Optimal VLF Parameters for Pitch Angle Scattering of Trapped Electrons

    NASA Astrophysics Data System (ADS)

    Albert, J. M.; Inan, U. S.

    2001-12-01

    VLF waves are known to determine the lifetimes of energetic radiation belt electrons in the inner radiation belt and slot regions. Artificial injection of such waves from ground- or space-based transmitters may thus be used to affect the trapped electron population. In this paper, we seek to determine the optimal parameters (frequency and wave normal angle) of a quasi-monochromatic VLF wave using bounce-averaged quasi-linear theory. We consider the cumulative effects of all harmonic resonances and determine the diffusion rates of particles with selected energies on particular L-shells. We also compare the effects of the VLF wave to diffusion driven by other whistler-mode waves (plasmaspheric hiss, lightning, and VLF transmitters). With appropriate choice of the wave parameters, it may be possible to substantially reduce the lifetime of selected classes of particles.

  13. Origin of hole and electron traps in graphene oxide

    NASA Astrophysics Data System (ADS)

    Kotin, I. A.; Antonova, I. V.; Orlov, O. M.; Smagulova, S. A.

    2016-06-01

    Charge-carrier capture/emission processes proceeding with the participation of localized states in graphene oxide (GO) in test structures of Au/SiO2/GO/SiO2/Si were examined by charge deep-level transient spectroscopy (Q-DLTS). Two groups of traps capable of capturing both electrons and holes in GO were detected. The energy levels of these groups with reference to the electronic band structure of Si were found to be at EV + 0.75 eV (EC ‑ 0.37 eV) and EV + 0.55 eV (EC ‑ 0.55 eV). Such levels are proposed to be inherent to graphene islands in which charge carriers are emitted from energy levels in the vicinity of the Dirac point. Two groups of levels are suggested to be attributed to graphene islands, with and without p-doping with oxygen.

  14. Transport properties of overheated electrons trapped on a helium surface

    NASA Astrophysics Data System (ADS)

    Closa, Fabien; Raphäel, Elie; Chepelianskii, Alexei D.

    2014-08-01

    An ultra-strong photovoltaic effect has recently been reported for electrons trapped on a liquid helium surface under a microwave excitation tuned at intersubband resonance [D. Konstantinov, A.D. Chepelianskii, K. Kono, J. Phys. Soc. Jpn 81, 093601 (2012)]. In this article, we analyze theoretically the redistribution of the electron density induced by an overheating of the surface electrons under irradiation, and obtain quantitative predictions for the photocurrent dependence on the effective electron temperature and confinement voltages. We show that the photo-current can change sign as a function of the parameters of the electrostatic confinement potential on the surface, while the photocurrent measurements reported so far have been performed only at a fixed confinement potential. The experimental observation of this sign reversal could provide a reliable estimation of the electron effective temperature in this new out of equilibrium state. Finally, we have also considered the effect of the temperature on the outcome of capacitive transport measurement techniques. These investigations led us to develop, numerical and analytical methods for solving the Poisson-Boltzmann equation in the limit of very low temperatures which could be useful for other systems.

  15. The charge transport mechanism and electron trap nature in thermal oxide on silicon

    NASA Astrophysics Data System (ADS)

    Islamov, Damir R.; Gritsenko, Vladimir A.; Perevalov, Timofey V.; Orlov, Oleg M.; Krasnikov, Gennady Ya.

    2016-08-01

    The charge transport mechanism of electron via traps in amorphous SiO2 has been studied. Electron transport is limited by phonon-assisted tunneling between traps. Thermal and optical trap energies Wt=1.6 eV, Wopt=3.2 eV, respectively, were determined. Charge flowing leads to oxygen vacancies generation, and the leakage current increases due to the increase of charge trap density. Long-time annealing at high temperatures decreased the leakage current to initial values due to oxygen vacancies recombination with interstitial oxygen. It is found that the oxygen vacancies act as electron traps in SiO2.

  16. Electron Spin Resonance Study of Electrons Trapped in Solid Molecular Hydrogen Films

    NASA Astrophysics Data System (ADS)

    Sheludiakov, S.; Ahokas, J.; Järvinen, J.; Vainio, O.; Lehtonen, L.; Zvezdov, D.; Khmelenko, V.; Lee, D. M.; Vasiliev, S.

    2016-05-01

    We report on the measurements of electrons trapped in solid molecular films of H2, HD, and D2. A narrow ESR line associated with the trapped electrons was detected with g=2.00233(5), which turned out to be shifted by -0.3 G from the free electron resonance. Comparison is made with earlier measurements where a similar line has been seen. In addition, for a text {D}2{:}text {H}2 mixture, after raising the temperature above 1 K, we observe a strong line at the location of the electron cyclotron resonance. The line amplitude is dependent on temperature and has an activation energy of 26 K. We believe that at elevated temperatures, electrons diffuse from the bulk of the film to the surface.

  17. Zonal flow generation from trapped electron mode turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Hahm, T. S.

    2009-11-01

    Most existing zonal flow generation theory [1,2] has been developed with a usual assumption of qrρiθ<<1 (qr is the radial wave number of zonal flow, and ρiθ is the ion poloidal gyroradius). However, recent nonlinear gyrokinetic simulations of trapped electron mode (TEM) turbulence exhibit a relatively short radial scale of the zonal flows with qrρiθ˜1 [3,4,5]. This work reports an extension of zonal flow growth calculation to this short wavelength regime via the wave kinetics approach. A generalized expression for the polarization shielding for arbitrary radial wavelength [6] which extends the Rosenbluth-Hinton formula in the long wavelength limit [7] is applied. The electron nonlinearity effects on zonal flow are investigated by using GTC simulation. This work was supported by the China Scholarship Council (LW), U.S. DoE Contract No. DE--AC02--09CH11466 (TSH, LW), the U. S. DOE SciDAC center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas, and the U. S. DOE SciDAC-FSP Center for Plasma Edge Simulation (TSH). [1] P. H. Diamond et al., IAEA-CN-69/TH3/1 (1998). [2] L. Chen, Z. Lin, and R. White, Phys. Plasmas 7, 3129 (2000). [3] Z. Lin et al., IAEA-CN-138/TH/P2-8 (2006). [4] D. Ernst et al., Phys. Plasmas 16, 055906 (2009). [5] Y. Xiao and Z. Lin, ``Turbulent transport of trapped electron modes in collisionless plasmas'', submitted to Phys. Rev. Lett. (2009). [6] Lu Wang and T.S. Hahm, Phys. Plasmas 16, 062309 (2009). [7] M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998).

  18. Electron-Stimulated Reactions in Thin D2O Films on Pt(111) Mediated by Electron Trapping

    SciTech Connect

    Petrik, Nikolay G.; Kimmel, Greg A.

    2004-08-22

    We have measured the electron-stimulated desorption (ESD) of D2, O2 and D2O, the electron-stimulated dissociation of D2O at the D2O/Pt interface, and the total electron-stimulated sputtering in thin D2O films adsorbed on Pt(111) as a function of the D2O coverage (i.e. film thickness). Qualitatively different behavior is observed above and below a threshold coverage of ~2 monolayers (ML). For coverages less than ~2 ML electron irradiation results in D2O ESD and some D2 ESD, but no detectible reactions at the water/Pt interface and no O2 ESD. For larger coverages, electron-stimulated reactions at the water/Pt interface occur, O2 is produced and the total electron-stimulated sputtering of the film increases. An important step in the electron-stimulated reactions is the reaction between water ions (generated by the incident electrons) and electrons trapped in the water films to form dissociative neutral molecules. However, the electron trapping depends sensitively on the water coverage: For coverages less than ~ 2 ML, the electron trapping probability is low and the electrons trap preferentially at the water/vacuum interface. For larger coverages, the electron trapping increases and the electrons are trapped in the bulk of the film. We propose that the coverage dependence of the trapped electrons is responsible for the observed coverage dependence of the electron-stimulated reactions.

  19. Theoretical Studies of Pure Electron Plasmas in Asymmetric Traps.

    NASA Astrophysics Data System (ADS)

    Chu, Ronson Yiu-Yuen

    Pure electron plasmas are routinely confined within cylindrically symmetric Penning traps by static electric and magnetic fields. However, the azimuthal symmetry can be broken by applied perturbations. In this thesis, the static and dynamic properties of plasmas confined in traps with such applied electric field asymmetries are investigated. The shapes of the non-circular plasma equilibria are studied both analytically and numerically. A simple analytic model for the boundary of a uniform density asymmetric plasma is derived, and it agrees well with vortex-in-cell simulations. Both the analytical results and numerical simulations agree with the shapes observed in experiments. Furthermore, an energy principle is used to prove that these asymmetric plasmas are stable to {bf E }times{bf B} drift perturbations, when the asymmetries are small. For an l = 1 diocotron mode in a cylindrically symmetric trap, the plasma rotates as a rigid column in a circular orbit. In contrast, plasmas in systems with electric field asymmetries are shown to have an analog to the l = 1 mode in which the shape of the plasma changes as it rotates in a non-circular orbit. These bulk plasma features are studied with a Hamiltonian model, in which elliptical plasma shapes are assumed. Equations for the motion of the center of the plasma, its ellipticity, and its orientation are derived. It is seen that, for a small plasma, the evolution of the plasma shape and orientation has little effect on the center of charge motion, and the area enclosed by the center of charge orbit is an invariant when electric field perturbations are applied adiabatically. This invariant has been observed experimentally. Detailed studies are made of the breaking of the invariant when perturbations are rapidly applied. The dynamic Hamiltonian model is also used to predict the shape and frequency of the large amplitude l = 1 and l = 2 diocotron modes in symmetric traps, and good agreement with experimental results is

  20. Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes

    SciTech Connect

    Asahi, Y. Tsutsui, H.; Tsuji-Iio, S.; Ishizawa, A.; Watanabe, T.-H.

    2014-05-15

    Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger than or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.

  1. Reduced Modeling of Electron Trapping Nonlinearity in Raman Scattering

    NASA Astrophysics Data System (ADS)

    Strozzi, D. J.; Berger, R. L.; Rose, H. A.; Langdon, A. B.; Williams, E. A.

    2009-11-01

    The trapping of resonant electrons in Langmuir waves generated by stimulated Raman scattering (SRS) gives rise to several nonlinear effects, which can either increase or decrease the reflectivity. We have implemented a reduced model of these nonlinearities in the paraxial propagation code pF3D [R. L. Berger et al., Phys. Plasmas 5 (1998)], consisting of a Landau damping reduction and Langmuir-wave frequency downshift. Both effects depend on the local wave amplitude, and gradually turn on with amplitude. This model is compared with 1D seeded Vlasov simulations, that include a Krook relaxation operator to mimic, e.g., transverse sideloss out of a multi-D, finite laser speckle. SRS in these runs develops from a counter-propagating seed light wave. Applications to ICF experiments will also be presented.

  2. A model of the trapped electron population for solar minimum

    NASA Technical Reports Server (NTRS)

    Teague, M. J.; Vette, J. I.

    1974-01-01

    A model is presented of the trapped electron environment of solar minimum conditions. Solar maximum models have been presented for the inner radiation zone (AE-5 1967), and for the outer radiation zone (AE-4 1967). The present solar minimum model consists of an inner zone model (AE-5 1975 Projected) with an epoch of 1975, and an outer zone model with an epoch of 1964. With only minor modifications this latter model is identical to the AE-4 1964 model presented previous. The model, however, has not previously been issued in computer form. AE-4 1964 is based upon satellite data, while the inner zone solar minimum model AE-5 1975 Projected consists entirely of extrapolations from AE-5 1967. While the two components of the solar minimum model have epochs 11 years part, it is assumed that any differences between the successive solar minima are smaller than the model error, and the complete model is associated with an epoch of 1975.

  3. Nonlinear Trapped Electron Mode Pinch in Strong Turbulence Regime

    NASA Astrophysics Data System (ADS)

    Hatch, David; Terry, P. W.

    2006-10-01

    Recent work has shown that there is an inward flux component in collisionless trapped electron mode turbulence produced by a nonlinear cross phase^2. The result was obtained for a weak turbulence regime, consistent with near threshold conditions. We extend this work to the strong turbulence regime, applying asymptotic analysis to the nonlinear frequency expressions generated from self-consistent statistical closure theory. We first check to see if there is a consistent strong turbulence regime for the previously considered threshold ordering^2, and examine the properties and scalings of the inward flux components. We then examine other orderings that are further above the instability threshold. The orderings will be compared with experimental profiles to determine likely regimes and nonlinear pinch properties. ^2P.W. Terry and R. Gatto, Phys. Plasmas 13, 062309 (2006).

  4. Trapped electron mode turbulence driven intrinsic rotation in Tokamak plasmas.

    PubMed

    Wang, W X; Hahm, T S; Ethier, S; Zakharov, L E; Diamond, P H

    2011-02-25

    Progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported. The turbulence-driven intrinsic torque associated with nonlinear residual stress generation due to zonal flow shear induced asymmetry in the parallel wave number spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing experimental empirical scalings of intrinsic rotation. The origin of current scaling is found to be enhanced k(∥) symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The intrinsic torque is proportional to the pressure gradient because both turbulence intensity and zonal flow shear, which are two key ingredients for driving residual stress, increase with turbulence drive, which is R/L(T(e)) and R/L(n(e)) for the trapped electron mode. PMID:21405577

  5. Vlasov simulations of electron trapping on auroral field lines

    NASA Astrophysics Data System (ADS)

    Gunell, H.; Mann, I.; De Keyser, J.; Andersson, L.

    2012-04-01

    relation. The altitude of the double layer decreases with an increasing field-aligned potential drop. Here, we use Vlasov simulations to study how the time dependent formation of the potential drop can lead to trapping of electrons between the electric field that accelerates them downward and the magnetic mirror, which reflects them back up again. The presence of a trapped population influences the shape of the potential profile. Thus, it is important for the understanding of auroral acceleration to also understand the processes that trap and release particles.

  6. Hole Surface Trapping Dynamics Directly Monitored by Electron Spin Manipulation in CdS Nanocrystals.

    PubMed

    Li, Xiao; Feng, Donghai; Tong, Haifang; Jia, Tianqing; Deng, Li; Sun, Zhenrong; Xu, Zhizhan

    2014-12-18

    A new detection technique, pump-spin orientation-probe ultrafast spectroscopy, is developed to study the hole trapping dynamics in colloidal CdS nanocrystals. The hole surface trapping process spatially separates the electron-hole pairs excited by the pump pulse, leaves the core negatively charged, and thus enhances the electron spin signal generated by the orientation pulse. The spin enhancement transients as a function of the pump-orientation delay reveal a fast and a slow hole trapping process with respective time constants of sub-10 ps and sub-100 ps, orders of magnitude faster than that of carrier recombination. The power dependence of hole trapping dynamics elucidates the saturation process and relative number of traps, and suggests that there are three subpopulations of nanoparticles related to hole surface trapping, one with the fast trapping pathway only, another with the slow trapping pathway only, and the third with both pathways together. PMID:26273979

  7. Nonlinear acceleration of the electron inertia-dominated magnetohydrodynamic modes due to electron parallel compressibility

    SciTech Connect

    Matsumoto, Taro; Naitou, Hiroshi; Tokuda, Shinji; Kishimoto, Yasuaki

    2005-09-15

    The behavior of the collisionless magnetohydrodynamics modes is investigated by the gyrokinetic particle simulation in a cylindrical tokamak plasma in the parameter region where the effects of electron inertia and electron parallel compressibility are competitive for magnetic reconnection. Although the linear growth of the m=1 internal kink-tearing mode is dominated by the electron inertia, it is found that the growth rate can be nonlinearly accelerated due to the electron parallel compressibility proportional to the ion sound Larmor radius {rho}{sub s}. It is also found that, as decreasing the electron skin depth {delta}{sub e}, the maximum growth rate before the internal collapse saturates independently of the microscopic scales such as {delta}{sub e} and {rho}{sub s}. The acceleration of growth rate is also observed in the nonlinear phase of the m=2 double tearing mode.

  8. Development of diagnostic and manipulation systems for space-charge dominated electron beams and confined electron plasmas in ELTRAP

    SciTech Connect

    Rome, M.; Cavaliere, F.; Maero, G.; Paroli, B.; Pozzoli, R.; Cavenago, M.; Ikram, M.

    2013-03-19

    Modifications have been implemented in the Penning-Malmberg device ELTRAP aimed at performing studies on the dynamics of space-charge dominated nanosecond electron bunches traveling along the magnetic field. In particular, a Thomson backscattering apparatus has been developed where an infrared (IR) laser pulse collides with the bunched electron beam. The frequency-shifted backscattered radiation, acquired by means of a photomultiplier (PMT), can be exploited to evaluate information on energy, energy spread and density of the bunch. The achievable sensitivity of the diagnostics has been estimated, and valuable information on the main parameters affecting the signal-to-noise (S/N) ratio has been obtained [B. Paroli, F. Cavaliere, M. Cavenago, F. De Luca, M. Ikram, G. Maero, C. Marini, R. Pozzoli, and M. Rome, JINST 7, P01008 (2012)]. A series of upgrades are under way, aimed at increasing the S/N ratio through the use of a new laser for the electron source, the insertion of a stray light shield, and the optimization of the detection electronics. Moreover, electromagnetic simulations relevant to the design and implementation of a microwave heating system are presented. The generation of an electron plasma in ELTRAP by means of a low-power radio frequency (RF) drive in the MHz range applied on one of the trap electrodes and under ultra-high vacuum (UHV) conditions has previously been demonstrated [B. Paroli, F. De Luca, G. Maero, F. Pozzoli, and M. Rome, Plasma Sources Sci. Technol. 19, 045013 (2010)]. The new heating system will allow the extension of the RF studies to the GHz range and in particular the production of a more energetic electron plasma via cyclotron resonant excitation.

  9. Development of diagnostic and manipulation systems for space-charge dominated electron beams and confined electron plasmas in ELTRAP

    NASA Astrophysics Data System (ADS)

    Romé, M.; Cavaliere, F.; Cavenago, M.; Ikram, M.; Maero, G.; Paroli, B.; Pozzoli, R.

    2013-03-01

    Modifications have been implemented in the Penning-Malmberg device ELTRAP aimed at performing studies on the dynamics of space-charge dominated nanosecond electron bunches traveling along the magnetic field. In particular, a Thomson backscattering apparatus has been developed where an infrared (IR) laser pulse collides with the bunched electron beam. The frequency-shifted backscattered radiation, acquired by means of a photomultiplier (PMT), can be exploited to evaluate information on energy, energy spread and density of the bunch. The achievable sensitivity of the diagnostics has been estimated, and valuable information on the main parameters affecting the signal-to-noise (S/N) ratio has been obtained [B. Paroli, F. Cavaliere, M. Cavenago, F. De Luca, M. Ikram, G. Maero, C. Marini, R. Pozzoli, and M. Romé, JINST 7, P01008 (2012)]. A series of upgrades are under way, aimed at increasing the S/N ratio through the use of a new laser for the electron source, the insertion of a stray light shield, and the optimization of the detection electronics. Moreover, electromagnetic simulations relevant to the design and implementation of a microwave heating system are presented. The generation of an electron plasma in ELTRAP by means of a low-power radio frequency (RF) drive in the MHz range applied on one of the trap electrodes and under ultra-high vacuum (UHV) conditions has previously been demonstrated [B. Paroli, F. De Luca, G. Maero, F. Pozzoli, and M. Romé, Plasma Sources Sci. Technol. 19, 045013 (2010)]. The new heating system will allow the extension of the RF studies to the GHz range and in particular the production of a more energetic electron plasma via cyclotron resonant excitation.

  10. Intrinsic rotation drive by collisionless trapped electron mode turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Peng, Shuitao; Diamond, P. H.

    2016-04-01

    Both the parallel residual stress and parallel turbulent acceleration driven by electrostatic collisionless trapped electron mode (CTEM) turbulence are calculated analytically using gyrokinetic theory. Quasilinear results show that the parallel residual stress contributes an outward flux of co-current rotation for normal magnetic shear and turbulence intensity profile increasing outward. This may induce intrinsic counter-current rotation or flattening of the co-current rotation profile. The parallel turbulent acceleration driven by CTEM turbulence vanishes, due to the absence of a phase shift between density fluctuation and ion pressure fluctuation. This is different from the case of ion temperature gradient turbulence, for which the turbulent acceleration can provide co-current drive for normal magnetic shear and turbulence intensity profile increasing outward. Its order of magnitude is predicted to be the same as that of the divergence of the residual stress [L. Wang and P. H. Diamond, Phys. Rev. Lett. 110, 265006 (2013)]. A possible connection of these theoretical results to experimental observations of electron cyclotron heating effects on toroidal rotation is discussed.

  11. A hybrid density functional study on the electron and hole trap states in anatase titanium dioxide.

    PubMed

    Yamamoto, Takenori; Ohno, Takahisa

    2012-01-14

    We present a theoretical study on electron and hole trap states in the bulk and (001) surface of anatase titanium dioxide using screened hybrid density functional calculations. In both the bulk and surface, calculations suggest that the neutral and ionized oxygen vacancies are possible electron traps. The doubly ionized oxygen vacancy is the most stable in the bulk, and is a candidate for a shallow donor in colorless anatase crystals. The hole trap states are localized at oxygen anions in both the bulk and surface. The self-trapped electron centered at a titanium cation cannot be produced in the bulk, but can be formed at the surface. The electron trap level at the surface oxygen vacancy is consistent with observations by photoelectron spectroscopy. The optical absorptions and luminescence in UV-irradiated anatase nanoparticles are found to come from the surface self-trapped hole and the surface oxygen vacancy. PMID:22127526

  12. The magnetic trapping mode of an electron beam ion trap: New opportunities for highly charged ion research

    SciTech Connect

    Beiersdorfer, P.; Schweikhard, L.; Lopez-Urrutia, J.C.; Widmann, K.

    1996-11-01

    Using x-ray spectroscopic techniques, we have investigated the properties of an electron beam ion trap (EBIT) after the electron beam is switched off. In the absence of the electron beam, bare, and hydrogenlike Kr{sup 35+} and Kr{sup 36+} ions remain trapped due to externally applied magnetic and electric fields for at least 5 s; xenon ions with an open {ital L} shell, i.e., Xe{sup 45+}{endash}Xe{sup 52+}, remain trapped at least as long as 20 s. The ion storage time in this {open_quote}{open_quote}magnetic trapping mode{close_quote}{close_quote} depends on the pressure of background atoms as well as on the value of the externally applied trapping potential, and even longer ion storage times appear possible. The magnetic trapping mode enables a variety of new opportunities for atomic physics research involving highly charged ions, which include the study of charge transfer reactions, Doppler-shift-free measurements of the Lamb shift, measurements of radiative lifetimes of long-lived metastable levels, or ion-ion collision studies, by x-ray or laser spectroscopy, and mass spectrometry. Because the trap is filled {ital in} {ital situ} during the electron trapping phase, transfer losses associated with filling the trap from an external source are avoided. We present spectra of the {ital K}-shell emission from heliumlike and hydrogenlike Kr{sup 34+} and Kr{sup 35+} as well as Xe{sup 52+} and Xe{sup 53+} that are produced by charge transfer reactions in collisions between ions and neutral atoms. Marked differences with {ital K}-shell spectra produced by electron-impact excitation are evident. We use the measurements to infer the Lamb shift contribution to the energy of the 1{ital s}{sub 1/2}{endash}2{ital p}{sub 3/2} transition in hydrogenlike Xe{sup 53+} and determine it to be 31276(12) eV. The measurement technique can be applied to any ion produced in an EBIT so that Doppler-shift-free Lamb shift measurements of hydrogenlike U{sup 91+} are within reach.

  13. Imaging Electronic Trap States in Perovskite Thin Films with Combined Fluorescence and Femtosecond Transient Absorption Microscopy.

    PubMed

    Simpson, Mary Jane; Doughty, Benjamin; Yang, Bin; Xiao, Kai; Ma, Ying-Zhong

    2016-05-01

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. The remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps. PMID:27103096

  14. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy

    DOE PAGESBeta

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; Doughty, Benjamin; Yang, Bin

    2016-04-22

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less

  15. X-ray spectroscopy of highly-ionized atoms in an electron beam ion trap (EBIT)

    SciTech Connect

    Marrs, R.E.; Bennett, C.; Chen, M.H.; Cowan, T.; Dietrich, D.; Henderson, J.R.; Knapp, D.A.; Levine, M.A.; Schneider, M.B.; Scofield, J.H.

    1988-01-01

    An Electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged-ions (q /le/ 70+) for x-ray spectroscopy measurements. Recent measurements of dielectronic recombination, electron impact excitation and transition energies are presented. 15 refs., 12 figs., 1 tab.

  16. A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Egedal, Jan; Le, Ari; Daughton, William

    2013-06-01

    From spacecraft data, it is evident that electron pressure anisotropy develops in collisionless plasmas. This is in contrast to the results of theoretical investigations, which suggest this anisotropy should be limited. Common for such theoretical studies is that the effects of electron trapping are not included; simply speaking, electron trapping is a non-linear effect and is, therefore, eliminated when utilizing the standard methods for linearizing the underlying kinetic equations. Here, we review our recent work on the anisotropy that develops when retaining the effects of electron trapping. A general analytic model is derived for the electron guiding center distribution f¯(v∥,v⊥) of an expanding flux tube. The model is consistent with anisotropic distributions observed by spacecraft, and is applied as a fluid closure yielding anisotropic equations of state for the parallel and perpendicular components (relative to the local magnetic field direction) of the electron pressure. In the context of reconnection, the new closure accounts for the strong pressure anisotropy that develops in the reconnection regions. It is shown that for generic reconnection in a collisionless plasma nearly all thermal electrons are trapped, and dominate the properties of the electron fluid. A new numerical code is developed implementing the anisotropic closure within the standard two-fluid framework. The code accurately reproduces the detailed structure of the reconnection region observed in fully kinetic simulations. These results emphasize the important role of pressure anisotropy for the reconnection process. In particular, for reconnection geometries characterized by small values of the normalized upstream electron pressure, βe∞, the pressure anisotropy becomes large with p∥≫p⊥ and strong parallel electric fields develop in conjunction with this anisotropy. The parallel electric fields can be sustained over large spatial scales and, therefore, become important for

  17. Inducible Protein Traps with Dominant Phenotypes for Functional Analysis of the Drosophila Genome

    PubMed Central

    Singari, Swetha; Javeed, Naureen; Tardi, Nicholas J.; Marada, Suresh; Carlson, Jeff C.; Kirk, Steven; Thorn, Judith M.; Edwards, Kevin A.

    2014-01-01

    The Drosophila melanogaster genome has been extensively characterized, but there remains a pressing need to associate gene products with phenotypes, subcellular localizations, and interaction partners. A multifunctional, Minos transposon-based protein trapping system called Hostile takeover (Hto) was developed to facilitate in vivo analyses of endogenous genes, including live imaging, purification of protein complexes, and mutagenesis. The Hto transposon features a UAS enhancer with a basal promoter, followed by an artificial exon 1 and a standard 5′ splice site. Upon GAL4 induction, exon 1 can splice to the next exon downstream in the flanking genomic DNA, belonging to a random target gene. Exon 1 encodes a dual tag (FLAG epitope and mCherry red fluorescent protein), which becomes fused to the target protein. Hto was mobilized throughout the genome and then activated by eye-specific GAL4; an F1 screen for abnormal eye phenotypes was used to identify inserts that express disruptive fusion proteins. Approximately 1.7% of new inserts cause eye phenotypes. Of the first 23 verified target genes, 21 can be described as regulators of cell biology and development. Most are transcription factor genes, including AP-2, CG17181, cut, klu, mamo, Sox102F, and sv. Other target genes [l(1)G0232, nuf, pum, and Syt4] make cytoplasmic proteins, and these lines produce diverse fluorescence localization patterns. Hto permits the expression of stable carboxy-terminal subfragments of proteins, which are rarely tested in conventional genetic screens. Some of these may disrupt specific cell pathways, as exemplified by truncated forms of Mastermind and Nuf. PMID:24172131

  18. Stability of relativistic electron trapping by strong whistler or electromagnetic ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Mourenas, D.; Agapitov, O. V.; Vainchtein, D. L.; Mozer, F. S.; Krasnoselskikh, V.

    2015-08-01

    In the present paper, we investigate the trapping of relativistic electrons by intense whistler-mode waves or electromagnetic ion cyclotron waves in the Earth's radiation belts. We consider the non-resonant impact of additional, lower amplitude magnetic field fluctuations on the stability of electron trapping. We show that such additional non-resonant fluctuations can break the adiabatic invariant corresponding to trapped electron oscillations in the effective wave potential. This destruction results in a diffusive escape of electrons from the trapped regime of motion and thus can lead to a significant reduction of the efficiency of electron acceleration. We demonstrate that when energetic electrons are trapped by intense parallel or very oblique whistler-mode waves, non-resonant magnetic field fluctuations in the whistler-mode frequency range with moderate amplitudes around 3 -15 pT (much less intense than the primary waves) can totally disrupt the trapped motion. However, the trapping of relativistic electrons by electromagnetic ion cyclotron waves is noticeably more stable. We also discuss how the proposed approach can be used to estimate the effects of wave amplitude modulations on the motion of trapped particles.

  19. A Landau fluid model for dissipative trapped electron modes

    SciTech Connect

    Hedrick, C.L.; Leboeuf, J.N.; Sidikman, K.L.

    1995-09-01

    A Landau fluid model for dissipative trapped electron modes is developed which focuses on an improved description of the ion dynamics. The model is simple enough to allow nonlinear calculations with many harmonics for the times necessary to reach saturation. The model is motivated by a discussion that starts with the gyro-kinetic equation and emphasizes the importance of simultaneously including particular features of magnetic drift resonance, shear, and Landau effects. To ensure that these features are simultaneously incorporated in a Landau fluid model with only two evolution equations, a new approach to determining the closure coefficients is employed. The effect of this technique is to reduce the matching of fluid and kinetic responses to a single variable, rather than two, and to allow focusing on essential features of the fluctuations in question, rather than features that are only important for other types of fluctuations. Radially resolved nonlinear calculations of this model, advanced in time to reach saturation, are presented to partially illustrate its intended use. These calculations have a large number of poloidal and toroidal harmonics to represent the nonlinear dynamics in a converged steady state which includes cascading of energy to both short and long wavelengths.

  20. Electron trapping optical data storage system and applications

    NASA Technical Reports Server (NTRS)

    Brower, Daniel; Earman, Allen; Chaffin, M. H.

    1993-01-01

    A new technology developed at Optex Corporation out-performs all other existing data storage technologies. The Electron Trapping Optical Memory (ETOM) media stores 14 gigabytes of uncompressed data on a single, double-sided 130 mm disk with a data transfer rate of up to 120 megabits per second. The disk is removable, compact, lightweight, environmentally stable, and robust. Since the Write/Read/Erase (W/R/E) processes are carried out photonically, no heating of the recording media is required. Therefore, the storage media suffers no deleterious effects from repeated W/R/E cycling. This rewritable data storage technology has been developed for use as a basis for numerous data storage products. Industries that can benefit from the ETOM data storage technologies include: satellite data and information systems, broadcasting, video distribution, image processing and enhancement, and telecommunications. Products developed for these industries are well suited for the demanding store-and-forward buffer systems, data storage, and digital video systems needed for these applications.

  1. Laboratory Astrophysics Using the Electron Beam Ion Trap

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.

    2014-06-01

    X-ray astronomy has seen profound growth in discovery space for over a decade resulting almost entirely from the successful operation of three X-ray observatories: Chandra, XMM-Newton, and Suzaku. The high sensitivity, high resolution instrumentation on these satellites have provided the X-ray astrophysicists with relatively straightforward access to powerful line diagnostics that tightly constrain the physical parameters of celestial sources. For example, accurate measurements of transition energies, line shapes, and intensities provide quantitative measures of a velocity fields, electron densities and temperatures. X-ray measurements probe sources unattainable by any other wavelength bands, such as the regions of accretion disks near black holes, and the hot intracluster medium in clusters of galaxies. Thus, X-ray astronomy in the age of Chandra, XMM-Newton, and Suzaku provides important pieces of the puzzles necessary to understand the formation and evolution of galaxies, stars, the phenomena near black holes, and the evolution of the universe as a whole. Unfortunately, accurate unambiguous interpretation of high quality spectra is often limited by the accuracy and completeness of atomic data rather than the uncertainties related to counting statistics or instrumentation. Starting over twenty years ago, the electron beam ion trap facility at Lawrence Livermore National Laboratory has been used to benchmark spectral models used to interpret celestial data, and to address specific problems facing the astrophysics community. More recently, the portable FLASH-EBIT, built and maintained at the Max Planck Institute for Nuclear Physics, Heidelberg and coupled to third and fourth generation light sources has opened new measurement regimes relavant to the high energy astrophysics community. Selected results will be presented. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  2. Modeling of Trapped Electron Effects on Electron Cyclotron Current Drive for Recent DIII-D Experiments

    SciTech Connect

    Lin-Liu, Y.R.; Sauter, O.; Harvey, R.W.; Chan, V.S.; Luce, T.C.; Prater, R.

    1999-08-01

    Owing to its potential capability of generating localized non-inductive current, especially off-axis, Electron Cyclotron Current Drive (ECCD) is considered a leading candidate for current profile control in achieving Advanced Tokamak (AT) operation. In recent DIII-D proof-of-principle experiments [1], localized off-axis ECCD has been clearly demonstrated for first time. The measured current drive efficiency near the magnetic axis agrees well with predictions of the bounce-averaged Fokker-Planck theory [2,3]. However, the off-axis current drive efficiency was observed to exceed the theoretical results, which predict significant degradation of the current drive efficiency due to trapped electron effects. The theoretical calculations have been based on an assumption that the effective collision frequency is much smaller than the bounce frequency such that the trapped electrons are allowed to complete the banana orbit at all energies. The assumption might be justified in reactor-grade tokamak plasmas, in which the electron temperature is sufficiently high or the velocity of resonant electrons is much larger than the thermal velocity, so that the influence of collisionality on current drive efficiency can be neglected. For off-axis deposition in the present-day experiments, the effect of high density and low temperature is to reduce the current drive efficiency, but the increasing collisionality reduces the trapping of current-carrying electrons, leading to compensating increases in the current drive efficiency. In this work, we use the adjoint function formulation [4] to examine collisionality effects on the current drive efficiency.

  3. Gyrokinetic studies of trapped electron mode turbulence in the Helically Symmetric eXperiment stellarator

    SciTech Connect

    Faber, B. J.; Pueschel, M. J.; Terry, P. W.; Proll, J. H. E.; Hegna, C. C.; Weir, G. M.; Likin, K. M.; Talmadge, J. N.

    2015-07-15

    Gyrokinetic simulations of plasma microturbulence in the Helically Symmetric eXperiment are presented. Using plasma profiles relevant to experimental operation, four dominant drift wave regimes are observed in the ion wavenumber range, which are identified as different flavors of density-gradient-driven trapped electron modes. For the most part, the heat transport exhibits properties associated with turbulence driven by these types of modes. Additionally, long-wavelength, radially localized, nonlinearly excited coherent structures near the resonant central flux surface, not predicted by linear simulations, can further enhance flux levels. Integrated heat fluxes are compatible with experimental observations in the corresponding density gradient range. Despite low shearing rates, zonal flows are observed to regulate turbulence but can be overwhelmed at higher density gradients by the long-wavelength coherent structures.

  4. IBS in a CAM-Dominated Electron Beam

    SciTech Connect

    Burov, A.; Nagaitsev, S.; Shemyakin, A.; Gusachenko, I.

    2006-03-20

    Electron cooling of the 8.9 GeV/c antiprotons in the Recycler ring requires high-quality dc electron beam with the current of several hundred mA and the kinetic energy of 4.3 MeV. That high electron current is attained through beam recirculation (charge recovery). The primary current path is from the magnetized cathode at high voltage terminal to the ground, where the electron beam interacts with the antiproton beam and cooling takes place, and then to the collector in the terminal. The energy distribution function of the electron beam at the collector determines the required collector energy acceptance. Multiple and single intra-beam scattering as well as the dissipation of density micro-fluctuations during the beam transport are studied as factors forming a core and tails of the electron energy distribution. For parameters of the Fermilab electron cooler, the single intra-beam scattering (Touschek effect) is found to be of the most importance.

  5. Role of density gradient driven trapped electron mode turbulence in the H-mode inner core with electron heating

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.; Rhodes, T. L.; Dimits, A. M.; Bravenec, R.; Grierson, B. A.; Holland, C.; Lohr, J.; Marinoni, A.; McKee, G. R.; Petty, C. C.; Rost, J. C.; Schmitz, L.; Wang, G.; Zemedkun, S.; Zeng, L.

    2016-05-01

    A series of DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven trapped electron mode (DGTEM) turbulence dominates the inner core of H-mode plasmas during strong electron cyclotron heating (ECH). Adding 3.4 MW ECH doubles Te/Ti from 0.5 to 1.0, which halves the linear DGTEM critical density gradient, locally reducing density peaking, while transport in all channels displays extreme stiffness in the density gradient. This suggests that fusion α-heating may degrade inner core confinement in H-mode plasmas with moderate density peaking and low collisionality, with equal electron and ion temperatures, key conditions expected in burning plasmas. Gyrokinetic simulations using GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] (and GENE [Jenko et al., Phys. Plasmas 7, 1904 (2000)]) closely match not only particle, energy, and momentum fluxes but also density fluctuation spectra from Doppler backscattering (DBS), with and without ECH. Inner core DBS density fluctuations display discrete frequencies with adjacent toroidal mode numbers, which we identify as DGTEMs. GS2 [Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)] predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q0>qmin>1 .

  6. 'Programming' Electron Beam Ion Traps To Produce Atomic Data Relevant To Plasma Physics

    SciTech Connect

    Currell, Fred; O'Rourke, Brian; Kavanagh, Anthony; Li Yueming; Nakamura, Nobuyuki; Ohtani, Shunsuke; Watanabe, Hirofumi

    2009-09-10

    After a brief review of the processes taking place in electron beam ions traps (EBITs), the means by which EBITs are used to make measurements of electron impact ionization cross-sections and dielectronic recombination resonance strengths are discussed. In particular, results from a study involving holmium ions extracted from an electron beam ion trap are used to illustrate a technique for studying dielectronic recombination in open-shell target ions.

  7. A gyro-kinetic model for trapped electron and ion modes

    NASA Astrophysics Data System (ADS)

    Drouot, Thomas; Gravier, Etienne; Reveille, Thierry; Ghizzo, Alain; Bertrand, Pierre; Garbet, Xavier; Sarazin, Yanick; Cartier-Michaud, Thomas

    2014-10-01

    In tokamak plasmas, it is recognized that ITG (ion temperature gradient instability) and trapped electron modes (TEM) are held responsible for turbulence giving rise to anomalous transport. The present work focuses on the building of a model including trapped kinetic ions and trapped kinetic electrons. For this purpose, the dimensionality is reduced by averaging the motion over the cyclotron motion and the "banana" orbits, according to the fact that the instabilities are characterized by frequencies of the order of the low trapped particle precession frequency. Moreover, a set of action-angle variables is used. The final model is 4D (two-dimensional phase space parametrized by the two first adiabatic invariants namely the particle energy and the trapping parameter). In this paper, the trapped ion and electron modes (TIM and TEM) are studied by using a linear analysis of the model. This work is currently performed in order to include trapped electrons in an existing semi lagrangian code for which TIM modes are already taken into account. This study can be considered as a first step in order to include kinetic trapped electrons in the 5D gyrokinetic code GYSELA [J. Abiteboul et al., ESAIM Proc. 32, 103 (2011)]. Contribution to the Topical Issue "Theory and Applications of the Vlasov Equation", edited by Francesco Pegoraro, Francesco Califano, Giovanni Manfredi and Philip J. Morrison.

  8. Electronic properties and deep traps in electron-irradiated n-GaN

    SciTech Connect

    Brudnyi, V. N.; Verevkin, S. S.; Govorkov, A. V.; Ermakov, V. S.; Kolin, N. G.; Korulin, A. V.; Polyakov, A. Ya.; Smirnov, N. B.

    2012-04-15

    The study is concerned with the effect of electron irradiation (with the energies E = 7 and 10 MeV and doses D = 10{sup 16}-10{sup 18} cm{sup -2}) and subsequent heat treatments in the temperature range 100-1000 Degree-Sign C on the electrical properties and the spectrum of deep traps of undoped (concentration of electrons n = 1 Multiplication-Sign 10{sup 14}-1 Multiplication-Sign 10{sup 16} cm{sup -3}), moderately Si-doped (n = (1.2-2) Multiplication-Sign 10{sup 17} cm{sup -3}), and heavily Si-doped (n = (2-3.5) Multiplication-Sign 10{sup 18} cm{sup -3}) epitaxial n-GaN layers grown on Al{sub 2}O{sub 3} substrates by metal-organic chemical vapor deposition. It is found that, on electron irradiation, the resistivity of n-GaN increases, this is due to a shift of the Fermi level to the limiting position close to E{sub c} -0.91 eV. The spectrum of deep traps is studied for the initial and electron-irradiated n-GaN. It is shown that the initial properties of the irradiated material are restored in the temperature range 100-1000 Degree-Sign C, with the main stage of the annealing of radiation defects at about 400 Degree-Sign C.

  9. Electron Transport Dominated Regimes in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Porkolab, M.; Dorris, J.; Bonoli, P. T.; Ennever, P.; Fiore, C.; Greenwald, M.; Hubbard, A.; Ma, Y.; Reinke, M. L.; Rice, J.; Rost, J.; Tsujii, N.; Lin, L.; Candy, J.; Waltz, R.; Diamond, P.; Lee, C. J.

    2010-11-01

    In ohmically heated low density plasmas where τE ne, the so-called neo-Alcator regime, TRANSP results indicate that χi<< χe, while nonlinear gyrokinetic analysis for the measured profiles predicts the opposite inequality [1]. This regime is of great interest for transport studies since Ti < Te, and the electron and ion transport channels can be separated and studied separately. At the same time, measurements of turbulent fluctuations with Phase Contrast Imaging diagnostic (PCI) indicated reasonable agreement with GYRO predictions at frequencies 80-250 kHz, corresponding to core ITG turbulence. The turbulent spectrum at lower frequencies could not be identified since the PCI technique does not allow separation of the core plasma fluctuations from those at the edge. Here we present measurements and analysis from a more extensive set of plasma regimes than previously. Of particular current interest is the role of electron drift wave turbulence driven by ohmic electron drift, U [2], since in these low density regimes U/Cs <= 6, and experimentally we find that the global confinement τE Cs/U where Cs = (Te/mi)^1/2. [1] L. Lin, Invited talk, APS-DPP, 11, 2009, Atlanta, GA. [2] C.J. Lee, P. Diamond, M. Porkolab, presented at TTF workshop, 2010.

  10. Electron bunching in a Penning trap and accelerating process for CO2 gas mixture active medium

    NASA Astrophysics Data System (ADS)

    Tian, Xiu-Fang; Wu, Cong-Feng; Jia, Qi-Ka

    2015-12-01

    In PASER (particle acceleration by stimulated emission of radiation), in the presence of an active medium incorporated in a Penning trap, moving electrons can become bunched, and as they get enough energy, they escape the trap forming an optical injector. These bunched electrons can enter the next PASER section filled with the same active medium to be accelerated. In this paper, electron dynamics in the presence of a gas mixture active medium incorporated in a Penning trap is analyzed by developing an idealized 1D model. We evaluate the energy exchange occurring as the train of electrons traverses into the next PASER section. The results show that the oscillating electrons can be bunched at the resonant frequency of the active medium. The influence of the trapped time and population inversion are analyzed, showing that the longer the electrons are trapped, the more energy from the medium the accelerated electrons get, and with the increase of population inversion, the decelerated electrons are virtually unchanged but the accelerated electrons more than double their peak energy values. The simulation results show that the gas active medium needs a lower population inversion to bunch the electrons compared to a solid active medium, so the experimental conditions can easily be achieved. Supported by National Natural Science Foundation of China (10675116) and Major State Basic Research Development Programme of China (2011CB808301)

  11. Self-generated zonal flows in the plasma turbulence driven by trapped-ion and trapped-electron instabilities

    SciTech Connect

    Drouot, T.; Gravier, E.; Reveille, T.; Collard, M.

    2015-10-15

    This paper presents a study of zonal flows generated by trapped-electron mode and trapped-ion mode micro turbulence as a function of two plasma parameters—banana width and electron temperature. For this purpose, a gyrokinetic code considering only trapped particles is used. First, an analytical equation giving the predicted level of zonal flows is derived from the quasi-neutrality equation of our model, as a function of the density fluctuation levels and the banana widths. Then, the influence of the banana width on the number of zonal flows occurring in the system is studied using the gyrokinetic code. Finally, the impact of the temperature ratio T{sub e}/T{sub i} on the reduction of zonal flows is shown and a close link is highlighted between reduction and different gyro-and-bounce-average ion and electron density fluctuation levels. This reduction is found to be due to the amplitudes of gyro-and-bounce-average density perturbations n{sub e} and n{sub i} gradually becoming closer, which is in agreement with the analytical results given by the quasi-neutrality equation.

  12. Self-generated zonal flows in the plasma turbulence driven by trapped-ion and trapped-electron instabilities

    NASA Astrophysics Data System (ADS)

    Drouot, T.; Gravier, E.; Reveille, T.; Collard, M.

    2015-10-01

    This paper presents a study of zonal flows generated by trapped-electron mode and trapped-ion mode micro turbulence as a function of two plasma parameters—banana width and electron temperature. For this purpose, a gyrokinetic code considering only trapped particles is used. First, an analytical equation giving the predicted level of zonal flows is derived from the quasi-neutrality equation of our model, as a function of the density fluctuation levels and the banana widths. Then, the influence of the banana width on the number of zonal flows occurring in the system is studied using the gyrokinetic code. Finally, the impact of the temperature ratio Te/Ti on the reduction of zonal flows is shown and a close link is highlighted between reduction and different gyro-and-bounce-average ion and electron density fluctuation levels. This reduction is found to be due to the amplitudes of gyro-and-bounce-average density perturbations ne and ni gradually becoming closer, which is in agreement with the analytical results given by the quasi-neutrality equation.

  13. Hot electron dominated rapid transverse ionization growth in liquid water.

    PubMed

    Brown, Michael S; Erickson, Thomas; Frische, Kyle; Roquemore, William M

    2011-06-20

    Pump/probe optical-transmission measurements are used to monitor in space and time the ionization of a liquid column of water following impact of an 800-nm, 45-fs pump pulse. The pump pulse strikes the 53-μm-diameter column normal to its axis with intensities up to 2 × 10(15) W/cm2. After the initial photoinization and for probe delay times < 500 fs, the neutral water surrounding the beam is rapidly ionized in the transverse direction, presumably by hot electrons with initial velocities of 0.55 times the speed of light (relativistic kinetic energy of ~100 keV). Such velocities are unusual for condensed-matter excitation at the stated laser intensities. PMID:21716461

  14. Electron Cloud Generation And Trapping in a Quadrupole Magnet at the Los Alamos PSR

    SciTech Connect

    Macek, R.J.; Browman, A.A.; Ledford, J.E.; Borden, M.J.; O'Hara, J.F.; McCrady, R.C.; Rybarcyk, L.J.; Spickermann, T.; Zaugg, T.J.; Pivi, M.T.F.; /SLAC

    2007-11-14

    A diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies with this diagnostic show that the electron flux striking the wall in the quadrupole is comparable to or larger than in an adjacent drift. In addition, the trapped electron signal, obtained using the sweeping feature of diagnostic, was larger than expected and decayed very slowly with an exponential time constant of 50 to 100 {micro}s. Experimental results were also obtained which suggest that a significant fraction of the electrons observed in the adjacent drift space were seeded by electrons ejected from the quadrupole.

  15. Pumped helium system for cooling positron and electron traps to 1.2 K

    NASA Astrophysics Data System (ADS)

    Wrubel, J.; Gabrielse, G.; Kolthammer, W. S.; Larochelle, P.; McConnell, R.; Richerme, P.; Grzonka, D.; Oelert, W.; Sefzick, T.; Zielinski, M.; Borbely, J. S.; George, M. C.; Hessels, E. A.; Storry, C. H.; Weel, M.; Müllers, A.; Walz, J.; Speck, A.

    2011-06-01

    Extremely precise tests of fundamental particle symmetries should be possible via laser spectroscopy of trapped antihydrogen ( H¯) atoms. H¯ atoms that can be trapped must have an energy in temperature units that is below 0.5 K—the energy depth of the deepest magnetic traps that can currently be constructed with high currents and superconducting technology. The number of atoms in a Boltzmann distribution with energies lower than this trap depth depends sharply upon the temperature of the thermal distribution. For example, ten times more atoms with energies low enough to be trapped are in a thermal distribution at a temperature of 1.2 K than for a temperature of 4.2 K. To date, H¯ atoms have only been produced within traps whose electrode temperature is 4.2 K or higher. A lower temperature apparatus is desirable if usable numbers of atoms that can be trapped are to eventually be produced. This report is about the pumped helium apparatus that cooled the trap electrodes of an H¯ apparatus to 1.2 K for the first time. Significant apparatus challenges include the need to cool a 0.8 m stack of 37 trap electrodes separated by only a mm from the substantial mass of a 4.2 K Ioffe trap and the substantial mass of a 4.2 K solenoid. Access to the interior of the cold electrodes must be maintained for antiprotons, positrons, electrons and lasers.

  16. Observation of relativistic electron precipitation during a rapid decrease of trapped relativistic electron flux

    NASA Astrophysics Data System (ADS)

    Millan, R. M.; Lin, R. P.; Smith, D. M.; McCarthy, M. P.

    2007-05-01

    We present the first quantitative comparison of precipitating and geomagnetically trapped electron flux during a relativistic electron depletion event. Intense bremsstrahlung X-ray emission from relativistic electron precipitation was observed on January 19-20, 2000 (21:20-00:45 UT) by the germanium spectrometer on the MAXIS balloon payload (-7.2 to -9.3 E, 74 S corresponding to IGRF L = 4.7, 1920-2240 MLT). A rapid decrease in the geosynchronous >2 MeV electron flux was simultaneously observed at GOES-8 and GOES-10, and between 0.34-3.6 MeV by GPS ns33 at L = 4.7. The observations show that electrons were lost to the atmosphere early in the flux depletion event, during a period of magnetic field stretching in the tail. The observed X-ray spectrum is well modeled by an exponential distribution of precipitating electrons with an e-folding energy of 290 keV and a lower-energy cut-off of 400 keV. The duration of the event implies precipitation extended over at least 3 hours of MLT, assuming a source fixed in local time. Comparison of the precipitation rate with the flux decrease measured at GPS implies that the loss cone flux was only ~1% of the equatorial flux. However, precipitation is sufficient to account for the rate of flux decrease if it extended over 2-3 hours of local time.

  17. Instability due to trapped electrons in magnetized multi-ion dusty plasmas

    NASA Astrophysics Data System (ADS)

    Haider, M. M.; Ferdous, T.; Duha, S. S.

    2015-05-01

    An attempt has been made to find out the effects of trapped electrons in dust-ion-acoustic solitary waves in magnetized multi-ion plasmas, as in most space plasmas, the hot electrons follow the trapped/vortex-like distribution. To do so, we have derived modified Zakharov-Kuznetsov equation using reductive perturbation method and its solution. A small- perturbation technique was employed to find out the instability criterion and growth rate of such a wave.

  18. Emittance and Current of Electrons Trapped in a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, N.; Blumenfeld, I.; Decker, F. J.; Hogan, M. J.; Ischebeck, R.; Iverson, R. H.; Siemann, R. H.; Walz, D. R.; Clayton, C. E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W. B.; Zhou, M.; Katsouleas, T.; Muggli, P.; Oz, E.; Martins, S.

    2009-01-22

    In recent experiments plasma electrons became trapped in a plasma wakefield accelerator (PWFA). The transverse size of these trapped electrons on a downstream diagnostic yields an upper limit measurement of transverse normalized emittance divided by peak current, {epsilon}{sub N,{sub x}}/I. The lowest upper limit for {epsilon}{sub N,{sub x}}/I measured in the experiment is 1.3{center_dot}10{sup -10} m/A.

  19. Emittance and Current of Electrons Trapped in a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, N; Blumenfeld, I; Clayton, C.E.; Decker, F.J.; Hogan, M.J.; Huang, C.; Ischebeck, R.; Iverson, R.H.; Joshi, C.; Katsouleas, T.; Lu, W.; Marsh, K.A.; Mori, W.B.; Muggli, P; Oz, E.; Siemann, R.H.; Walz, D.R.; Zhou, M.; /SLAC /UCLA /USC

    2008-09-24

    In recent experiments plasma electrons became trapped in a plasma wakefield accelerator (PWFA). The transverse size of these trapped electrons on a downstream diagnostic yields an upper limit measurement of transverse normalized emittance divided by peak current, {var_epsilon}{sub N,x}/I. The lowest upper limit for {var_epsilon}{sub N,x}/I measured in the experiment is 1.3 {center_dot} 10{sup -10} m/A.

  20. Charge transfer fluorescence and 34 nm exciton diffusion length in polymers with electron acceptor end traps

    DOE PAGESBeta

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; Karten, Brianne; Asaoka, Sadayuki; Wu, Qin; Cook, Andrew R.; Miller, John R.

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are asmore » large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length LD =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.« less

  1. Charge transfer fluorescence and 34 nm exciton diffusion length in polymers with electron acceptor end traps

    SciTech Connect

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; Karten, Brianne; Asaoka, Sadayuki; Wu, Qin; Cook, Andrew R.; Miller, John R.

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are as large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length LD =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.

  2. Phase-Space Density Analyses of the AE-8 Trapped Electron and the AP-8 Trapped Proton Model Environments

    SciTech Connect

    T.E. Cayton

    2005-08-12

    The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, {mu}, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of {mu} and K, and for 3.5 R{sub E} < L < 6.5 R{sub E}, the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R{sub E} for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits {mu}-dependent local minima around L = 5 R{sub E}. Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K{sub c}. Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons.

  3. Pulse radiolysis study on electrons trapped in semiclathrates and non-clathrate hydrates

    SciTech Connect

    Zagorski, Z.P.

    1987-02-12

    Trapping of electrons in specific water molecule vacancies, observed previously in crystalline aqueous clathrates, has also been found in semiclathrates (e.g., tetramethylammonium hydroxide pentahydrate), in clathrates showing hydrogen bonds between host and guest molecules (e.g., piperazine clathrate), and also in inorganic hydrates (e.g., sodium carbonate decahydrate). The lifetime of the electron is sometimes longer than in the case of true clathrates; e.g., t/sub 1/2/ = 3.5 ms (first-order decay in piperazine clathrate). The existence of comparatively long-lived electrons at room temperature may be considered a general phenomenon. The condition for its occurrence is the presence of OH/sup -/ or F/sup -/ anion, which can substitute for H/sub 2/O in the aqueous part of the compound and when displaced leaves an electron trap. In other ionic and nonionic compounds, the condition for the trapping of long-lived electrons is protonation of the principal compound, thereby leaving the solution or melt alkaline during the crystallization of the hydrate. Interpretation in terms of preexistent traps invokes the crystal imperfections chemistry, which in the case of hydrates has not yet been noticed. It has been assumed that electrons occupy the vacancies temporarily revealing their presence. In some clathrates and other hydrates, the long-lived electron traps do not occur; instead, the electron shows a similar spectrum (620 nm maximum), decaying by 2-3 orders of magnitude faster than in long-lived traps. It is assumed that this is a case of electron digging its own hole, although an alternative explanation may be through trapping in other kinds of crystal imperfections in the aqueous moiety of the hydrate.

  4. Intrinsic electron traps in atomic-layer deposited HfO2 insulators

    NASA Astrophysics Data System (ADS)

    Cerbu, F.; Madia, O.; Andreev, D. V.; Fadida, S.; Eizenberg, M.; Breuil, L.; Lisoni, J. G.; Kittl, J. A.; Strand, J.; Shluger, A. L.; Afanas'ev, V. V.; Houssa, M.; Stesmans, A.

    2016-05-01

    Analysis of photodepopulation of electron traps in HfO2 films grown by atomic layer deposition is shown to provide the trap energy distribution across the entire oxide bandgap. The presence is revealed of two kinds of deep electron traps energetically distributed at around Et ≈ 2.0 eV and Et ≈ 3.0 eV below the oxide conduction band. Comparison of the trapped electron energy distributions in HfO2 layers prepared using different precursors or subjected to thermal treatment suggests that these centers are intrinsic in origin. However, the common assumption that these would implicate O vacancies cannot explain the charging behavior of HfO2, suggesting that alternative defect models should be considered.

  5. Study of electron trapping by a transversely ellipsoidal bubble in the laser wake-field acceleration

    SciTech Connect

    Cho, Myung-Hoon; Kim, Young-Kuk; Hur, Min Sup

    2013-09-15

    We present electron trapping in an ellipsoidal bubble which is not well explained by the spherical bubble model by [Kostyukov et al., Phys. Rev. Lett. 103, 175003 (2009)]. The formation of an ellipsoidal bubble, which is elongated transversely, frequently occurs when the spot size of the laser pulse is large compared to the plasma wavelength. First, we introduce the relation between the bubble size and the field slope inside the bubble in longitudinal and transverse directions. Then, we provide an ellipsoidal model of the bubble potential and investigate the electron trapping condition by numerical integration of the equations of motion. We found that the ellipsoidal model gives a significantly less restrictive trapping condition than that of the spherical bubble model. The trapping condition is compared with three-dimensional particle-in-cell simulations and the electron trajectory in test potential simulations.

  6. Trapping of Electron Cloud LLC/Cesrta Quadrupole and Sextupole Magnets

    SciTech Connect

    Wang, L; Pivi, M.; /SLAC

    2011-08-18

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D [1]. One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in CESRTA and ILC quadrupole and sextupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with a long lifetime in a quadrupole and sextupole magnet due to the mirror field trapping mechanism. We study the effects of magnet strength, bunch current, ante-chamber effect, bunch spacing effect and secondary emission yield (SEY) in great detail. The development of an electron cloud in magnets is the main concern where a weak solenoid field is not effective. Quadrupole and sextupole magnets have mirror field configurations which may trap electrons by the mirror field trapping mechanism [2]. Fig.1 shows the orbit of a trapped electron in a quadrupole magnet. The electron makes gyration motion (called transverse motion) and also moves along the field line (called longitudinal motion). At the mirror point (middle of the field line), there is a maximum longitudinal energy and minimum transverse energy. When the electron moves away from the mirror point, its longitudinal energy reduces and the transverse energy increases as the magnetic field increases. If the magnetic field is strong enough, the longitudinal energy becomes zero at one point and then the electron is turned back by the strong field. Note that the electrons are trapped in the region near the middle of the field lines. Although all quadrupole and sextupole magnets can trap electrons in principle, the trapping

  7. A study of electrically active traps in AlGaN/GaN high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Cui, Sharon; Ma, T. P.; Hung, Ting-Hsiang; Nath, Digbijoy; Krishnamoorthy, Sriram; Rajan, Siddharth

    2013-10-01

    We have studied electron conduction mechanisms and the associated roles of the electrically active traps in the AlGaN layer of an AlGaN/GaN high electron mobility transistor structure. By fitting the temperature dependent I-V (Current-Voltage) curves to the Frenkel-Poole theory, we have identified two discrete trap energy levels. Multiple traces of I-V measurements and constant-current injection experiment all confirm that the main role of the traps in the AlGaN layer is to enhance the current flowing through the AlGaN barrier by trap-assisted electron conduction without causing electron trapping.

  8. Observation of relativistic electron precipitation during a rapid decrease of trapped electron flux

    NASA Astrophysics Data System (ADS)

    Millan, R. M.; Lin, R. P.; Smith, D. M.; McCarthy, M. P.; Sample, J. G.; Shprits, Y.

    2006-12-01

    Rapid depletions of the trapped electron flux are often observed, and illustrate the important role played by losses in controlling electron variability in the radiation belts. The observed decrease may be partly due to adiabatic effects, but some of the electrons are lost either through magnetopause shadowing or through precipitation into Earth's atmosphere. On January 19, 2000, duskside precipitation was observed near the start of a rapid flux depletion event, during a period of magnetic field stretching in the tail. The observations were made with the germanium spectrometer on the MAXIS balloon payload and show that real losses were occurring during the initial decrease which has previously been attributed to purely adiabatic effects. A quantitative comparison of the precipitation rate with the change in electron flux measured at GPS implies that only ~1% of the loss cone was filled, however, precipitation alone is sufficient to account for the flux decrease if it extended over 2-3 hours of local time. We present these results and compare the observed loss rate with the theoretical loss rate expected for pitch-angle scattering by EMIC waves.

  9. Photon-activated electron hopping in a single-electron trap enhanced by Josephson radiation

    NASA Astrophysics Data System (ADS)

    Lotkhov, S. V.; Jalali-Jafari, B.; Zorin, A. B.

    2016-04-01

    Using a Josephson junction interferometer (DC SQUID) as a microwave source for irradiating a single-electron trap, both devices fabricated on the same chip, we study the process of photon-assisted tunneling as an effective mechanism of single photon detection. High sensitivity down to a very small oscillation amplitude v J ˜ 10 nV ≪ E act ≲ h f J and down to low photon absorption rates Γph ˜ (1-50) Hz, as well as a clear threshold type of operation with an activation energy Eact ˜ 400 μeV, is demonstrated for the trap with respect to the microwave photons of frequency fJ ˜ (100-200) GHz. Tunable generation is demonstrated with respect to the power and frequency of the microwave signal produced by the SQUID source biased within the subgap voltage range. A much weaker effect is observed at the higher junction voltages along the quasiparticle branch of the I-V curve; this response mostly appears due to the recombination phonons.

  10. Observations of the dissipative trapped electron instability in a mirror plasma produced by electron-cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Suetsugu, Y.; Kawai, Y.

    1986-02-01

    The dissipative trapped electron instability driven by the finite Larmor radius effects is observed in a mirror plasma produced by electron-cyclotron resonance using the Lisitano coil. The effect of the radial electron temperature gradient on the excitation of this mode is studied theoretically and experimentally. It is found that the electron temperature gradient opposite to the density gradient tends to stabilize this mode.

  11. Systematics in a measurement of the electron's electric dipole moment using trapped molecular ions

    NASA Astrophysics Data System (ADS)

    Grau, Matt; Cossel, Kevin; Cairncross, William; Gresh, Dan; Zhou, Yan; Ye, Jun; Cornell, Eric

    2015-05-01

    A precision measurement of the electron's electric dipole moment (EDM) has important implications for physics beyond the Standard Model. Trapped molecular ions offer high sensitivity in such an experiment because of the large effective electric fields and long coherence times that are possible. Our experiment uses Ramsey spectroscopy of HfF+ ions in a linear RF trap with rotating bias fields, achieving coherence times beyond 1 second for 1000 trapped ions. Compared to other electron EDM experiments that use molecular beams, we will be sensitive to a different class of systematic errors. In this work we investigate systematic errors arising from all fields involved in the experiment, including the trapping and polarizing electric fields, magnetic field gradients, and motional effects such as geometric phases. This work was supported by NIST and NSF.

  12. Effects of trapped electrons on ion reflection in an oblique shock wave

    SciTech Connect

    Toida, Mieko; Inagaki, Junya

    2015-06-15

    A magnetosonic shock wave propagating obliquely to an external magnetic field can trap electrons and accelerate them to ultrarelativistic energies. The trapped electrons excite two-dimensional (2D) electromagnetic fluctuations with finite wavenumbers along the shock front. We study effects of the trapped electrons on ion motions through the 2D fluctuations. It is analytically shown that the fraction of ions reflected from the shock front is enhanced by the 2D fluctuations. This is confirmed by 2D (two space coordinates and three velocities) relativistic, electromagnetic particle simulations with full ion and electron dynamics and calculation of test ions in the electromagnetic fields averaged along the shock front. A comparison between 2D and one-dimensional electromagnetic particle simulations is also shown.

  13. A Statistical Analysis on the Precipitated and Trapped Electron Fluxes Using Long-term POES Observations

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Ni, B.; Li, W.; Zhao, Z.; Gu, X.; Shi, R.; Hu, Z.

    2013-12-01

    We present a statistical analysis on the electron precipitation and trapped fluxes using NOAA POES data from 1998 to 2013, which covers more than an entire solar circle. The data of precipitation and trapped electron fluxes and the ratios between them are comprehensively investigated as a function of L-shell, magnetic local time (MLT), and geomagnetic conditions. Our results will help establish the major features of precipitated and trapped electron dynamics in the inner magnetosphere and their dependence on the level of geomagnetic activity, spatial location and phase of a solar cycle. We also investigate electron precipitation near the area of the South Atlantic Anomaly and compare the results with other regions where the ambient magnetic field configuration is normal. By doing so, we intend to explore the effect of precipitation caused by drift loss cone in contrast to that caused by bounce loss cone.

  14. Threshold for Trapping Positrons in the Wake Driven by a Ultra-relativistic Electron Bunch

    SciTech Connect

    Wang, X.; Muggli, P.; Katsouleas, T.; Ischebeck, R.; Hogan, M. J.; Joshi, C.; Mori, W. B.

    2009-01-22

    We have recently proposed a new concept for generating, injecting and accelerating positrons in a plasma using a double-pulse electron bunch. Monte Carlo simulations show that the number of the positrons produced in a foil target has an exponentially decay energy spectrum. The energy threshold for the trapping of these positrons in a ultra-relativistic electron wake is investigated numerically. For a typical 28.5 GeV electron drive bunch, the trapping threshold for the positrons is a few MeV, and therefore a majority of positrons generated in the foil target are focused and accelerated by the plasma wake.

  15. Dependence of electron trapping on bubble geometry in laser-plasma wakefield acceleration

    SciTech Connect

    Li, X. F.; Yu, Q.; Huang, S.; Zhang, F.; Kong, Q.; Gu, Y. J.; Kawata, S.

    2014-07-15

    The effect of bubble shape in laser-plasma electron acceleration was investigated. We showed the general existence of an ellipsoid bubble. The electromagnetic field in this bubble and its dependence on bubble shape were determined through theory. The electron-trapping cross-section for different bubble aspect ratios was studied in detail. When the shape of the bubble was close to spherical, the trapping cross-section reached to the maximum. When the bubble deviated from a spherical shape, the cross-section decreased until electron injection no longer occurred. These results were confirmed by particle-in-cell simulation.

  16. Abnormal behavior of midgap electron trap in HB-GaAs during thermal annealing

    NASA Astrophysics Data System (ADS)

    Min, Suk-Ki; Kim, Eun Kyu; Cho, Hoon Young

    1988-05-01

    The behavior of the EL2 family in horizontal Bridgman-(HB) grown GaAs by two thermal annealing methods, furnace annealing and rapid thermal annealing, was studied through deep level transient spectroscopy (DLTS) measurements, and a similar behavior of another group of electron traps was observed. As the annealing time is increased, the EL2 trap (Ec-0.81 eV) is transformed to the new trap, EX2 (Ec-0.73 eV), and finally to the other new trap, EX1 (Ec-0.86 eV). Also the EL6 group (Ec-0.18, 0.22, 0.27, and 0.35 eV) varied similarly to the EL2 family as a trap (Ec-0.27 eV) is transformed to the first trap (Ec-0.18 eV) and then the second trap (Ec-0.22 eV). This result revealed that the EL2 family is related to the EL6 group. From the study of photocapacitance quenching, the existence of metastable states of the EL2 family is identified. These results suggest that the atomic structure of the EL2 trap may be an arsenic antisite with an interstitial arsenic and a double vacancy, such as VAsAsIVGaAsGa or its complex.

  17. Design and Fabrication of Cryostat Interface and Electronics for High Performance Antimatter Trap (HI-PAT)

    NASA Technical Reports Server (NTRS)

    Smith, Gerald A.

    1999-01-01

    Included in Appendix I to this report is a complete set of design and assembly schematics for the high vacuum inner trap assembly, cryostat interfaces and electronic components for the MSFC HI-PAT. Also included in the final report are summaries of vacuum tests, and electronic tests performed upon completion of the assembly.

  18. Investigation of ion capture in an electron beam ion trap charge-breeder for rare isotopes

    NASA Astrophysics Data System (ADS)

    Kittimanapun, Kritsada

    Charge breeding of rare isotope ions has become an important ingredient for providing reaccelerated rare isotope beams for science. At the National Superconducting Cyclotron Laboratory (NSCL), a reaccelerator, ReA, has been built that employs an advanced Electron Beam Ion Trap (EBIT) as a charge breeder. ReA will provide rare-isotope beams with energies of a few hundred keV/u up to tens of MeV/u to enable the study of properties of rare isotopes via low energy Coulomb excitation and transfer reactions, and to investigate nuclear reactions important for nuclear astrophysics. ReA consists of an EBIT charge breeder, a charge-over-mass selector, a room temperature radio-frequency quadrupole accelerator, and a superconducting radio-frequency linear accelerator. The EBIT charge breeder features a high-current electron gun, a long trap structure, and a hybrid superconducting magnet to reach both high acceptance for injected low-charge ions as well as high-electron beam current densities for fast charge breeding. In this work, continuous ion injection and capture in the EBIT have been investigated with a dedicated Monte-Carlo simulation code and in experimental studies. The Monte-Carlo code NEBIT considers the electron-impact ionization cross sections, space charge due to the electron beam current, ion dynamics, electric field from electrodes, and magnetic field from the superconducting magnet. Experiments were performed to study the capture efficiency as a function of injected ion beam current, electron beam current, trap size, and trap potential depth. The charge state evolution of trapped ions was studied, providing information about the effective current density of the electron beam inside the EBIT. An attempt was made to measure the effective space-charge potential of the electron beam by studying the dynamics of a beam injected and reflected inside the trap.

  19. Electron trapping in amorphous silicon: A quantum molecular dynamics study

    SciTech Connect

    Yang, Lin H.; Kalia, R.K.; Vashishta, P.

    1990-12-01

    Quantum molecular dynamics (QMD) simulations provide the real-time dynamics of electrons and ions through numerical solutions of the time-dependent Schrodinger and Newton equations, respectively. Using the QMD approach we have investigated the localization behavior of an excess electron in amorphous silicon at finite temperatures. For time scales on the order of a few picoseconds, we find the excess electron is localized inside a void of radius {approximately}3 {Angstrom} at finite temperatures. 12 refs.

  20. Non-linear Collective Oscillations of Electrons in a Diamagnetic Kepler Trap

    NASA Astrophysics Data System (ADS)

    Godino, Joseph; Kunhardt, Erich; Carr, Wayne

    2001-10-01

    The Diamagnetic Kepler Trap is a potential energy well that arises from a static Coulomb potential in a superimposed uniform magnetic field. In an experimental arrangement with this configuration, we generate a system of electrons and ions by ionization of the neutral background gas that has a typical density of 10^12 particles per cubic centimeter. The lifetime of the trapped electrons is sufficiently long that we can observe collective oscillations. Here, we examine these oscillations by coupling a probe to the plasma and measuring the induced current. We find that as we deepen the potential energy well these oscillations progress through a sequence of linear, non-linear and chaotic behavior. Using the photographs of the light emission from the excited neutrals, we observe that the non-linearity of the collective oscillations results from an increase in the trapped electron density that moves in a direction parallel to the magnetic field lines. From the FFT of the induced current, we find that the transition from linearity to chaos occurs through intermittent fluctuations in the measured signal that are manifest in the broadening of the spectrum. Since the applied sphere voltage never collapses, the electrons remain trapped in the potential energy well and we conclude that the chaos results from a breakdown of the collective behavior into that of many individual singly trapped electrons.

  1. Location Of Hole And Electron Traps On Nanocrystalline Anatase TiO2

    SciTech Connect

    Mercado, Candy C.; Knorr, Fritz J.; McHale, Jeanne L.; Usmani, Shirin M.; Ichimura, Andrew S.; Saraf, Laxmikant V.

    2012-05-17

    The defect photoluminescence from TiO2 nanoparticles in the anatase phase is reported for nanosheets which expose predominantly (001) surfaces, and compared to that from conventional anatase nanoparticles which expose mostly (101) surfaces. Also reported is the weak defect photoluminescence of TiO2 nanotubes, which we find using electron back-scattered diffraction to consist of walls which expose (110) and (100) facets. The nanotubes exhibit photoluminescence that is blue-shifted and much weaker than that from conventional TiO2 nanoparticles. Despite the preponderance of (001) surfaces in the nanosheet samples, they exhibit photoluminescence similar to that of conventional nanoparticles. We assign the broad visible photoluminescence of anatase nanoparticles to two overlapping distributions: hole trap emission associated with oxygen vacancies on (101) exposed surfaces, which peaks in the green, and a broader emission extending into the red which results from electron traps on under-coordinated titanium atoms, which are prevalent on (001) facets. The results of this study suggest how morphology of TiO2 nanoparticles could be optimized to control the distribution and activity of surface traps. Our results also shed light on the mechanism by which the TiCl4 surface treatment heals traps on anatase and mixed-phase TiO2 films, and reveals distinct differences in the trap-state distributions of TiO2 nanoparticles and nanotubes. The molecular basis for electron and hole traps and their spatial separation on different facets is discussed.

  2. Complete erasing of ghost images on computed radiography plates and role of deeply trapped electrons

    NASA Astrophysics Data System (ADS)

    Ohuchi-Yoshida, Hiroko; Kondo, Yasuhiro

    2011-12-01

    Computed radiography (CR) plates made of europium-doped Ba(Sr)FBr(I) were simultaneously exposed to filtered ultraviolet light and visible light in order to erase ghost images, i.e., latent image that is unerasable with visible light (LIunVL) and reappearing one, which are particularly observed in plates irradiated with a high dose and/or cumulatively over-irradiated. CR samples showing LIunVLs were prepared by irradiating three different types of CR plates (Agfa ADC MD10, Kodak Directview Mammo EHRM2, and Fuji ST-VI) with 50 kV X-ray beams in the dose range 8.1 mGy-8.0 Gy. After the sixth round of simultaneous 6 h exposures to filtered ultraviolet light and visible light, all the LIunVLs in the three types of CR plates were erased to the same level as in an unirradiated plate and no latent images reappeared after storage at 0 °C for 14 days. With conventional exposure to visible light, LIunVLs consistently remained in all types of CR plates irradiated with higher doses of X-rays and latent images reappeared in the Agfa M10 plates after storage at 0 °C. Electrons trapped in deep centers cause LIunVLs and they can be erased by simultaneous exposures to filtered ultraviolet light and visible light. To study electrons in deep centers, the absorption spectra were examined in all types of irradiated CR plates by using polychromatic ultraviolet light from a deep-ultraviolet lamp. It was found that deep centers showed a dominant peak in the absorption spectra at around 324 nm for the Agfa M10 and Kodak EHRM2 plates, and at around 320 nm for the Fuji ST-VI plate, in each case followed by a few small peaks. The peak heights were dose-dependent for all types of CR samples, suggesting that the number of electrons trapped in deep centers increases with the irradiation dose.

  3. Increasing measurement sensitivity for the electron's electric dipole moment using trapped molecular ions

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Gresh, Daniel; Cairncross, William; Grau, Matt; Ng, Kia Boon; Ni, Yiqi; Cornell, Eric; Ye, Jun

    2016-05-01

    Based on our latest measurements of the electron's electric dipole moment (eEDM) using trapped HfF+ ions, after 100 hours of data collection, the statistical error still dominates in our overall uncertainty budget. Overcoming the bottleneck of limited statistical sensitivity can increase the precision of the eEDM measurement directly. Here, we present the progress of three ongoing experiments: (1) applying STImulated Raman Adiabatic Passage (STIRAP) with rotating linear polarization for increased coherent population transfer from the ground X1Σ+ state to the eEDM-sensitive 3Δ1 state; (2) implementing a new ion-counting detector toward shot-noise limited sensitivity with significant suppression technical noise; (3) exploring the possibility of using the ground 3Δ1 state of ThF+ ions to realize a larger effective electric field and a longer coherence time. These experiments provide a route towards an order of magnitude increase in statistical sensitivity in the second generation of measurements.

  4. Probability of relativistic electron trapping by parallel and oblique whistler-mode waves in Earth's radiation belts

    SciTech Connect

    Artemyev, A. V. Vasiliev, A. A.; Neishtadt, A. I.; Mourenas, D.; Krasnoselskikh, V.

    2015-11-15

    We investigate electron trapping by high-amplitude whistler-mode waves propagating at small as well as large angles relative to geomagnetic field lines. The inhomogeneity of the background magnetic field can result in an effective acceleration of trapped particles. Here, we derive useful analytical expressions for the probability of electron trapping by both parallel and oblique waves, paving the way for a full analytical description of trapping effects on the particle distribution. Numerical integrations of particle trajectories allow to demonstrate the accuracy of the derived analytical estimates. For realistic wave amplitudes, the levels of probabilities of trapping are generally comparable for oblique and parallel waves, but they turn out to be most efficient over complementary energy ranges. Trapping acceleration of <100 keV electrons is mainly provided by oblique waves, while parallel waves are responsible for the trapping acceleration of >100 keV electrons.

  5. Transverse Emittance and Current of Multi-GeV Trapped Electrons in a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, N.; Blumenfeld, I.; Clayton, C.E.; Decker, F.J.; Hogan, M.J.; Huang, C.; Ischebeck, R.; Iverson, R.H.; Joshi, C.; Katsouleas, T.; Lu, W.; Marsh, K.A.; Martins, S.F.; Mori, W.B.; Muggli, P.; Oz, E.; Siemann, R.H.; Walz, D.R.; Zhou, M.; /UCLA

    2009-10-17

    Multi-GeV trapped electron bunches in a plasma wakefield accelerator (PWFA) are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that emittance scales inversely with the square root of the plasma density in the nonlinear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents.

  6. Trapped Electron Instability of Electron Plasma Waves: Vlasov simulations and theory

    NASA Astrophysics Data System (ADS)

    Berger, Richard; Chapman, Thomas; Brunner, Stephan

    2013-10-01

    The growth of sidebands of a large-amplitude electron plasma wave is studied with Vlasov simulations for a range of amplitudes (. 001 < eϕ0 /Te < 1) and wavenumbers (0 . 25 trapped electron. In 2D simulations, we find that the instability persists and co-exists with the filamentation instability. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD.

  7. The uses of electron beam ion traps in the study of highly charged ions

    SciTech Connect

    Knapp, D.

    1994-11-02

    The Electron Beam Ion Trap (EBIT) is a relatively new tool for the study of highly charged ions. Its development has led to a variety of new experimental opportunities; measurements have been performed with EBITs using techniques impossible with conventional ion sources or storage rings. In this paper, I will highlight the various experimental techniques we have developed and the results we have obtained using the EBIT and higher-energy Super-EBIT built at the Lawrence Livermore National Laboratory. The EBIT employs a high-current-density electron beam to trap, ionize, and excite a population of ions. The ions can be studied in situ or extracted from the trap for external experiments. The trapped ions form an ionization-state equilibrium determined by the relative ionization and recombination rates. Ions of several different elements may simultaneously be present in the trap. The ions are nearly at rest, and, for most systems, all in their ground-state configurations. The electron-ion interaction energy has a narrow distribution and can be varied over a wide range. We have used the EBIT devices for the measurement of electron-ion interactions, ion structure, ion-surface interactions, and the behavior of low-density plasmas.

  8. Electron, positron, and photon wakefield acceleration: trapping, wake overtaking, and ponderomotive acceleration.

    PubMed

    Esirkepov, T; Bulanov, S V; Yamagiwa, M; Tajima, T

    2006-01-13

    The electron, positron, and photon acceleration in the first cycle of a laser-driven wakefield is investigated. Separatrices between different types of the particle motion (trapped, reflected by the wakefield and ponderomotive potential, and transient) are demonstrated. The ponderomotive acceleration of electrons can be largely compensated by the wakefield action, in contrast to positrons and positively charged mesons. The electron bunch energy spectrum is analyzed. The maximum upshift of an electromagnetic wave frequency during reflection from the wakefield is obtained. PMID:16486465

  9. Electron, Positron, and Photon Wakefield Acceleration: Trapping, Wake Overtaking, and Ponderomotive Acceleration

    SciTech Connect

    Esirkepov, T.; Bulanov, S.V.; Yamagiwa, M.; Tajima, T.

    2006-01-13

    The electron, positron, and photon acceleration in the first cycle of a laser-driven wakefield is investigated. Separatrices between different types of the particle motion (trapped, reflected by the wakefield and ponderomotive potential, and transient) are demonstrated. The ponderomotive acceleration of electrons can be largely compensated by the wakefield action, in contrast to positrons and positively charged mesons. The electron bunch energy spectrum is analyzed. The maximum upshift of an electromagnetic wave frequency during reflection from the wakefield is obtained.

  10. Hole and electron traps in the YAlO{sub 3} single crystal scintillator

    SciTech Connect

    Laguta, V. V.; Nikl, M.; Rosa, J.; Vedda, A.; Mihokova, E.; Blazek, K.

    2009-07-15

    The processes of hole and electron localization in YAlO{sub 3} single crystals were investigated by electron-spin resonance. It was found that holes created by UV or x-ray irradiation are trapped at regular oxygen ions forming two types of O{sup -} hole centers corresponding to hole localization at two inequivalent oxygen ions which are located in Y and Al planes, respectively. The hole can be either autolocalized or additionally stabilized by a defect in the neighborhood of the oxygen ion such as yttrium vacancy or an impurity ion at Y site. This leads to a variety of O{sup -} centers which differ both by thermal stability (from about 14 K up to room temperature) and spectral parameters. Electron-type trapping sites are assigned to Y{sub Al} antisite ions. After trapping an electron they become paramagnetic Y{sub Al}{sup 2+} centers. They are found in several configurations with thermal stability up to above 300 K that enables the radiative recombination of freed holes with such localized electrons and the appearance of thermoluminescence peaks. It is shown that the electron trapped around Y{sub Al} antisite ion is additionally stabilized either by an oxygen vacancy or by a defect at Y site. The yttrium antisite ions in the lattice were directly identified by {sup 89}Y nuclear magnetic resonance.

  11. Real-Space Mapping of Surface Trap States in CIGSe Nanocrystals Using 4D Electron Microscopy.

    PubMed

    Bose, Riya; Bera, Ashok; Parida, Manas R; Adhikari, Aniruddha; Shaheen, Basamat S; Alarousu, Erkki; Sun, Jingya; Wu, Tom; Bakr, Osman M; Mohammed, Omar F

    2016-07-13

    Surface trap states in copper indium gallium selenide semiconductor nanocrystals (NCs), which serve as undesirable channels for nonradiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with subpicosecond temporal and nanometer spatial resolutions. Here, we precisely map the collective surface charge carrier dynamics of copper indium gallium selenide NCs as a function of the surface trap states before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, the removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs. PMID:27228321

  12. Oxygen vacancy and EC - 1 eV electron trap in ZnO

    NASA Astrophysics Data System (ADS)

    Chicot, Gauthier; Muret, Pierre; Santailler, Jean-Louis; Feuillet, Guy; Pernot, Julien

    2014-11-01

    Fourier transform deep level transient spectroscopy has been performed between 80 and 550 K in five n-type ZnO samples grown by different techniques. The capture cross section and ionization energy of four electron traps have been deduced from Arrhenius diagrams. A trap 1 eV below the conduction band edge is systematically observed in the five samples with a large apparent capture cross section for electrons (1.6 ± 0.4 × 10-13 cm2) indicating a donor character. The assignment of this deep level to the oxygen vacancy is discussed on the basis of available theoretical predictions.

  13. Lithium-related states as deep electron traps in ZnO

    NASA Astrophysics Data System (ADS)

    Lopatiuk, O.; Chernyak, L.; Osinsky, A.; Xie, J. Q.

    2005-11-01

    Carrier trapping in Li-doped ZnO was studied using Electron Beam Induced Current technique, as well as cathodoluminescence spectroscopy and persistent photoconductivity measurements. Under electron beam excitation, the minority carrier diffusion length underwent a significant increase, which was correlated with growing carrier lifetime, as demonstrated by the irradiation-induced decay of CL intensity of the near-band-edge transition. Variable-temperature cathodoluminescence and photoconductivity experiments showed evidence of carrier trapping and yielded activation energies of 280 and 245 meV, respectively. These observations are attributed to the presence of a deep, Li-related acceptor state.

  14. Generation of angular-momentum-dominated electron beams from a photoinjector

    SciTech Connect

    Sun, Yin-E.; Piot, Philippe; Kim, Kwang-Je; Barov, Nikolas; Lidia, Steven; Santucci, James; Tikhoplav, Rodion; Wennerberg, Jason

    2004-11-30

    Various projects under study require an angular-momentum-dominated electron beam generated by a photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g. possible electron injectors for light sources and linear colliders). In this paper, we report our experimental study of an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be in good agreement with theoretical and numerical models.

  15. Generation of angular-momentum-dominated electron beams from a photoinjector

    SciTech Connect

    Sun, Y.-E; Piot, P.; Kim, K.-J.; Barov, N.; Lidia, S.; Santucci, J.; Tikhoplav, R.; Wennerberg, J.; /Fermilab

    2004-11-01

    Various projects under study require an angular-momentum-dominated electron beam generated by a photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g. possible electron injectors for light sources and linear colliders). In this paper, we report our experimental study of an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be in good agreement with theoretical and numerical models.

  16. Observation of dielectronic recombination through two-electron-one-photon correlative stabilization in an electron-beam ion trap

    SciTech Connect

    Zou, Y.; Crespo Lopez-Urrutia, J.R.; Ullrich, J.

    2003-04-01

    Dielectronic recombination (DR) for He-like Ar{sup 16+} through both one-electron-one-photon and two-electron-one-photon (TEOP) stabilizations of Li-like states was studied with an electron-beam ion trap (EBIT). It turned out that this is an excellent method to investigate TEOP transitions. Its advantages are a high branching ratio for the TEOP transition and clean conditions under which spectator electrons are controlled. Further, state- and configuration-resolved KLL DR cross sections were obtained due to the unsurpassed electron energy resolution achieved in the EBIT in the energy range around 2 keV.

  17. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps

    SciTech Connect

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Yugova, T. G.; Cox, H.; Helava, H.; Makarov, Yu.; Usikov, A. S.

    2014-05-14

    Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ∼10{sup 17} cm{sup −3} to (2–5) × 10{sup 14} cm{sup −3}. The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ∼5 × 10{sup 13} cm{sup −3} versus 2.9 × 10{sup 16} cm{sup −3} in the standard samples, with a similar decrease in the electron traps concentration.

  18. All-optical control of electron trapping in plasma channels

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serguei Y.; Shadwick, Bradley A.; Davoine, Xavier

    2013-10-01

    Generation of background-free, polychromatic electron beams using laser plasma acceleration in longitudinally uniform, mm-length dense plasma channels is demonstrated. Periodic self-injection and acceleration transfers up to 10 percents of the drive pulse energy to several 100-pC charge, GeV-scale-energy electron bunches, each having a few-percent energy spread. Negative chirp of the broad-bandwidth (up to 400 nm), few-Joule-energy driver reduces the nonlinear frequency red-shift, preventing rapid self-steepening of the pulse, whereas the channel suppresses diffraction of the pulse leading edge. The pulse thus remains uncompressed through electron dephasing, strongly reducing unwanted continuous injection. As a bonus, delayed self-compression of the driver extends the dephasing length, boosting electron energy to the GeV level. The number of the quasi-monoenergetic bunches, their charge, energy, and energy separation can be controlled by varying the channel radius and the acceleration length, whereas accumulation of the noise (viz. continuously injected charge) is prevented by the proper dispersion control via negative chirp of the pulse. These clean polychromatic beams can drive tunable, multi-color gamma-ray Compton sources. Supported by the U.S. DOE Grant DE-SC0008382, NSF Grant PHY-1104683, and DOD AFOSR Grant FA9550-11-1-0157. The CALDER-Circ simulations were performed using HPC resources of GENCI-CCRT and GENCI-CINES (grant 2013-057027).

  19. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    SciTech Connect

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin E-mail: chilf@suda.edu.cn Chi, Li-Feng E-mail: chilf@suda.edu.cn Wang, Sui-Dong E-mail: chilf@suda.edu.cn

    2015-03-23

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.

  20. Effect of two-temperature trapped electrons to nonlinear dust-ion-acoustic solitons

    SciTech Connect

    Moslem, Waleed M.; El-Taibany, W.F.

    2005-12-15

    Propagation of three-dimensional dust-ion-acoustic solitons is investigated in a dusty plasma consisting of positive ions, negatively variable-charged dust particles, and two-temperature trapped electrons. We use the reductive perturbation theory to reduce the basic set of fluid equations to one evolution equation called damped modified Kadontsev-Petviashivili equation. Exact solution of this equation is not possible, so we obtain the time evolution solitary wave form approximate solution. It is found that only compressive soliton can propagate in this system. We develop a theoretical estimate condition under which the solitons can propagate. It is found that this condition is satisfied for Saturn's F ring. It is found also that low electron temperature has a role on the behavior of the soliton width, i.e., for lower (higher) range of low electron temperature the soliton width decreases (increases). However, high electron temperature decreases the width. The trapped electrons have no effect on the soliton width. The ratio of free low (high) to trapped low (high) electron temperatures increases the soliton amplitude. Also, the amplitude increases with free low and free high electron temperatures. To investigate the stabilty of the waves, we used a method based on energy consideration to obtain a condition for stable solitons. It is found that this condition depends on dust charge variation, streaming velocity, directional cosine of the wave vector k along the x axis, and temperatures of dust particles, ions, and free electrons.

  1. De-trapping Magnetic Mirror Confined Fast Electrons by Shear Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gekelman, W. N.; Pribyl, P.; Papadopoulos, K.

    2013-12-01

    Highly energetic electrons produced naturally or artificially can be trapped in the Earth's radiation belts for months, posing a danger to valuable space satellites. Concepts that can lead to radiation belts mitigation have drawn a great deal of interest. We report a clear demonstration in a controlled lab experiment that a shear Alfvén wave can effectively de-trap energetic electrons confined by a magnetic mirror field. The experiment is performed in a quiescent afterglow plasma in the Large Plasma Device (LaPD) at UCLA. A hot electron ring, along with hard x-rays of energies of 100 keV ~ 3 MeV, is generated by 2nd harmonic electron cyclotron resonance heating and is trapped in a magnetic mirror field (Rmirror = 1.1 ~ 4, Bmin = 438 Gauss). A shear Alfvén wave (fAlfvén ~ 0.5 fci, BAlfvén / B0 ~ 0.1%), is launched with a rotating magnetic field antenna with arbitrary polarization. Irradiated by the Alfvén wave, the loss of electrons is modulated at fAlfvén. The periodic loss of electrons is found to be related to the spatial distortion of the hot electron ring, and continues even after the termination of the wave. The effect is found to be caused only by the right-hand (electron diamagnetic direction) circularly polarized component of the Alfvén wave. Hard x-ray tomography, constructed from more than 1000 chord projections at each axial location, shows electrons are lost in both the radial and axial direction. X-ray spectroscopy shows electrons over a broad range of energy de-trapped by the Alfvén wave, which suggests a non-resonant nature of the de-trapping process. The de-trapping process is found to be accompanied by electro-magnetic fluctuations in the frequency range of 1~5 fLH, which are also modulated at the frequency of the Alfvén wave. To exclude the possible role of whistler waves in this electron de-trapping process, whistler waves at these frequencies are launched with an antenna in absence of the Alfvén wave and no significant electron loss

  2. Electronics of an ion trap with integrated time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Schneider, Christian; Schowalter, Steven J.; Yu, Peter; Hudson, Eric R.

    2016-01-01

    Recently, we reported an ion trap experiment with an integrated time-of-flight mass spectrometer (TOFMS) [Phys. Rev. Appl. 2, 034013 (2014)] focussing on the improvement of mass resolution and detection limit due to sample preparation at millikelvin temperatures. The system utilizes a radio-frequency (RF) ion trap with asymmetric drive for storing and manipulating laser-cooled ions and features radial extraction into a compact $275$ mm long TOF drift tube. The mass resolution exceeds $m / \\Delta m = 500$, which provides isotopic resolution over the whole mass range of interest in current experiments and constitutes an improvement of almost an order of magnitude over other implementations. In this manuscript, we discuss the experimental implementation in detail, which is comprised of newly developed drive electronics for generating the required voltages to operate RF trap and TOFMS, as well as control electronics for regulating RF outputs and synchronizing the TOFMS extraction.

  3. Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam

    SciTech Connect

    Lotov, K. V.; Sosedkin, A. P.; Petrenko, A. V.; Amorim, L. D.; Vieira, J.; Fonseca, R. A.; Silva, L. O.; Gschwendtner, E.; Muggli, P.

    2014-12-15

    It is shown that co-linear injection of electrons or positrons into the wakefield of the self-modulating particle beam is possible and ensures high energy gain. The witness beam must co-propagate with the tail part of the driver, since the plasma wave phase velocity there can exceed the light velocity, which is necessary for efficient acceleration. If the witness beam is many wakefield periods long, then the trapped charge is limited by beam loading effects. The initial trapping is better for positrons, but at the acceleration stage a considerable fraction of positrons is lost from the wave. For efficient trapping of electrons, the plasma boundary must be sharp, with the density transition region shorter than several centimeters. Positrons are not susceptible to the initial plasma density gradient.

  4. Free-electron maser with high-selectivity Bragg resonator using coupled propagating and trapped modes

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Golubev, I. I.; Golubykh, S. M.; Zaslavskii, V. Yu.; Zotova, I. V.; Kaminsky, A. K.; Kozlov, A. P.; Malkin, A. M.; Peskov, N. Yu.; Perel'Shteĭn, É. A.; Sedykh, S. N.; Sergeev, A. S.

    2010-10-01

    A free-electron maser (FEM) with a double-mirror resonator involving a new modification of Bragg structures operating on coupled propagating and quasi-cutoff (trapped) modes has been studied. The presence of trapped waves in the feedback chain improves the selectivity of Bragg resonators and ensures stable single-mode generation regime at a considerable superdimensionality of the interaction space. The possibility of using the new feedback mechanism has been confirmed by experiments with a 30-GHz FEM pumped by the electron beam of LIU-3000 (JINR) linear induction accelerator, in which narrow-band generation was obtained at a power of ˜10 MW and a frequency close to the cutoff frequency of the trapped mode excited in the input Bragg reflector.

  5. Trapping Image State Electrons on Graphene Layers and Islands

    NASA Astrophysics Data System (ADS)

    Dadap, Jerry; Niesner, Daniel; Fauster, Thomas; Zaki, Nader; Knox, Kevin; Yeh, Po-Chi; Bhandari, Rohan; Osgood, Richard M.; Petrovic, Marin; Kralj, Marko

    2012-02-01

    The understanding of graphene-metal interfaces is of utmost importance in graphene transport phenomena. To probe this interface we use time- and angle-resolved two-photon photoemission to map the bound, unoccupied electronic structure of the weakly coupled graphene/Ir(111) system. The energy, dispersion, and lifetime of the lowest three image-potential states are measured. In addition, the weak interaction between Ir and the smooth, epitaxial graphene permits observation of resonant transitions from an unquenched Shockley-type surface state of the Ir substrate to graphene/Ir image-potential states. The image-potential-state lifetimes are comparable to those of mid-gap clean metal surfaces. Evidence of localization of the excited image-state electrons on single-atom-layer graphene islands is provided by coverage-dependent measurements.

  6. Trapping surface electrons on graphene layers and islands

    NASA Astrophysics Data System (ADS)

    Niesner, D.; Fauster, Th.; Dadap, J. I.; Zaki, N.; Knox, K. R.; Yeh, P.-C.; Bhandari, R.; Osgood, R. M.; Petrović, M.; Kralj, M.

    2012-02-01

    We report the use of time- and angle-resolved two-photon photoemission to map the bound, unoccupied electronic structure of the weakly coupled graphene/Ir(111) system. The energy, dispersion, and lifetime of the lowest three image-potential states are measured. In addition, the weak interaction between Ir and graphene permits observation of resonant transitions from an unquenched Shockley-type surface state of the Ir substrate to graphene/Ir image-potential states. The image-potential-state lifetimes are comparable to those of midgap clean metal surfaces. Evidence of localization of the excited electrons on single-atom-layer graphene islands is provided by coverage-dependent measurements.

  7. INTEGRATING THE STORED GRAIN ADVISOR PRO EXPERT SYSTEM WITH AN AUTOMATED ELECTRONIC ELECTRONIC GRAIN PROBE TRAPPING SYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Automation of grain sampling should help to increase the adoption of stored-grain integrated pest management. A new commercial electronic grain probe trap (OPI Insector™) has recently been marketed. To make accurate insect management decisions, managers need to know both the insect species and numbe...

  8. Identification of free radical intermediates in oxidized wine using electron paramagnetic resonance spin trapping.

    PubMed

    Elias, Ryan J; Andersen, Mogens L; Skibsted, Leif H; Waterhouse, Andrew L

    2009-05-27

    Free radicals are thought to be key intermediates in the oxidation of wine, but their nature has not been established. Electron paramagnetic resonance spectroscopy was used to detect and identify several free radical species in wine under oxidative conditions with the aid of spin traps. The 1-hydroxylethyl radical was the sole radical species observed when α-(4-pyridyl-1-oxide)-N-tert-butylnitrone was used as a spin trap in a heated (55 °C), low-sulfite (15 mg L(-1)) red wine. This radical appears to arise from ethanol oxidation via the hydroxyl radical, and this latter species was confirmed by using a high concentration (1.5 M) of the 5,5-dimethylpyrroline-N-oxide spin trap, thus providing the first direct evidence of the Fenton reaction in wine. Hydroxyl radical formation in wine was corroborated by converting hydroxyl radicals to methyl radicals by its reaction with dimethyl sulfoxide. The novel spin trap 5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide was also used in this study to identify sulfite radicals in wine for the first time. This spin trap has also been shown to trap hydroperoxyl radicals, the generation of which is predicted in wine; however, no evidence of this species was observed. PMID:19358607

  9. INTEGRATING THE STORED GRAIN ADVISOR PRO EXPERT SYSTEM WITH AN AUTOMATED ELECTRONIC GRAIN PROBE TRAPPING SYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Automation of grain sampling should help to increase the adoption of stored-grain integrated pest management. A new commercial electronic grain probe trap (OPI Insector) has recently been marketed. To make accurate insect management decisions, managers need to know both the insect species and number...

  10. Predicting Stored Grain Insect Population Densities Using an Electronic Probe Trap

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manual sampling of insects in stored grain is a laborious and time consuming process. Automation of grain sampling should help to increase the adoption of stored-grain integrated pest management. A new commercial electronic grain probe trap (OPI Insector™) has recently been marketed. We field tested...

  11. Two-dimensional calculation of finite-beta modifications of drift and trapped-electron modes

    SciTech Connect

    Rewoldt, G.; Tang, W.M.; Frieman, E.A.

    1980-05-01

    A previous electrostatic calculation for the two-dimensional spatial structure of drift and trapped-electron modes is extended to include finite-..beta.. effects. Specifically, the parallel perturbed vector potential and the parallel Ampere's law are added to the calculation. Illustrative results are presented.

  12. Injection and Trapping of Tunnel-Ionized Electrons into Laser-Produced Wakes

    SciTech Connect

    Pak, A.; Marsh, K. A.; Joshi, C.; Martins, S. F.; Lu, W.; Mori, W. B.

    2010-01-15

    A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented. Here a mixture of helium and trace amounts of nitrogen gas was used. Electrons from the K shell of nitrogen were tunnel ionized near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from majority helium atoms and the L shell of nitrogen. The spectrum of the accelerated electrons, the threshold intensity at which trapping occurs, the forward transmitted laser spectrum, and the beam divergence are all consistent with this injection process. The experimental measurements are supported by theory and 3D OSIRIS simulations.

  13. Electron and hole trap distribution and transport in titanium dioxide nanotubes

    NASA Astrophysics Data System (ADS)

    Mercado, Candy Cadang

    Titanium dioxide functions as an electron transport medium in dye sensitized solar cells. Nanotubular anatase titanium dioxide is expected to be a better photoanode because of the direct path of the electrons from injection to the working electrode due to the ordered nanotube walls. However, the performance of titanium dioxide nanotube-based solar cells lags behind the nanoparticulate-based. In this work, the crystallographic and defect properties of titanium dioxide nanotubes are examined with spectroscopic and materials characterization techniques in order to understand its electrical properties. Defects in the crystal structure lead to trap states within the bandgap which either assist or hinder electron collection. Shallow traps, those within the range of kT from the conduction band help in increasing the density of states thus increasing conduction. Deep traps capture the electrons and increase the probability of recombination with the oxidized form of the electrolyte. To probe these intra-band states, intra-band photoluminescence spectroscopy was used. Nanotube photoluminescence consists of three types of emission at approximate peak positions of 425 nm (2.9 eV), 550 nm (2.2 eV), and 650 nm (1.9 eV), which are attributed to recombination of the following nature: exciton, mobile electrons to trapped holes, and mobile holes to trapped electrons, respectively. These defects are similar to that found in nanoparticulate anatase. Although the nature of the defects is the same, the emission intensity in nanotubes is lower than nanoparticles. However, comparison with single nanotube photoluminescence revealed that quenching in "bulk" array is caused by significant charge transport in the lateral direction (between neighboring nanotubes). The orientation of the nanotube wall length is parallel (with slight angular deviations) to the c-axis direction of the unit cell as shown by electron backscatter diffraction. This leads to exposed planes of (100), (110), and (101

  14. Electron self-injection and trapping into an evolving plasma bubble.

    PubMed

    Kalmykov, S; Yi, S A; Khudik, V; Shvets, G

    2009-09-25

    The blowout (or bubble) regime of laser wakefield acceleration is promising for generating monochromatic high-energy electron beams out of low-density plasmas. It is shown analytically and by particle-in-cell simulations that self-injection of the background plasma electrons into the quasistatic plasma bubble can be caused by slow temporal expansion of the bubble. Sufficient criteria for the electron trapping and bubble's expansion rate are derived using a semianalytic nonstationary Hamiltonian theory. It is further shown that the combination of bubble's expansion and contraction results in monoenergetic electron beams. PMID:19905519

  15. Initial commissioning results with the NSCL Electron Beam Ion Trap

    SciTech Connect

    Schwarz, S.; Kittimanapun, K.; Lapierre, A.; Leitner, D.; Ottarson, J.; Portillo, M.; Bollen, G.; Lopez-Urrutia, J. R. Crespo; Kester, O.

    2012-02-15

    The ReA reaccelerator is being added to the National Superconducting Cyclotron Laboratory (NSCL) fragmentation facility in order to provide exotic rare-isotope beams, not available at the Isotope Separation On-Line facilities, in the several-MeV/u energy range. The first stage of the NSCL reaccelerator complex, consisting of an EBIT charge breeder, a room-temperature radiofrequency quadrupole (RFQ) accelerator, and superconducting linear accelerator modules, has been completed and is being put into operation. Commissioning of the EBIT has started by extracting charge-bred residual gas ions, ions created from a Ne gas jet directed across the EBIT's electron beam and ions captured from an external test ion source. Charge-bred ions from the Ne gas jet have been extracted as a pulse and accelerated through the RFQ and the two cryomodules.

  16. Surface trap mediated electronic transport in biofunctionalized silicon nanowires

    NASA Astrophysics Data System (ADS)

    Puppo, F.; Traversa, F. L.; Di Ventra, M.; De Micheli, G.; Carrara, S.

    2016-08-01

    Silicon nanowires (SiNWs), fabricated via a top-down approach and then functionalized with biological probes, are used for electrically-based sensing of breast tumor markers. The SiNWs, featuring memristive-like behavior in bare conditions, show, in the presence of biomarkers, modified hysteresis and, more importantly, a voltage memory component, namely a voltage gap. The voltage gap is demonstrated to be a novel and powerful parameter of detection thanks to its high-resolution dependence on charges in proximity of the wire. This unique approach of sensing has never been studied and adopted before. Here, we propose a physical model of the surface electronic transport in Schottky barrier SiNW biosensors, aiming at reproducing and understanding the voltage gap based behavior. The implemented model describes well the experimental I–V characteristics of the device. It also links the modification of the voltage gap to the changing concentration of antigens by showing the decrease of this parameter in response to increasing concentrations of the molecules that are detected with femtomolar resolution in real human samples. Both experiments and simulations highlight the predominant role of the dynamic recombination of the nanowire surface states, with the incoming external charges from bio-species, in the appearance and modification of the voltage gap. Finally, thanks to its compactness, and strict correlation with the physics of the nanodevice, this model can be used to describe and predict the I–V characteristics in other nanostructured devices, for different than antibody-based sensing as well as electronic applications.

  17. Surface trap mediated electronic transport in biofunctionalized silicon nanowires.

    PubMed

    Puppo, F; Traversa, F L; Ventra, M Di; Micheli, G De; Carrara, S

    2016-08-26

    Silicon nanowires (SiNWs), fabricated via a top-down approach and then functionalized with biological probes, are used for electrically-based sensing of breast tumor markers. The SiNWs, featuring memristive-like behavior in bare conditions, show, in the presence of biomarkers, modified hysteresis and, more importantly, a voltage memory component, namely a voltage gap. The voltage gap is demonstrated to be a novel and powerful parameter of detection thanks to its high-resolution dependence on charges in proximity of the wire. This unique approach of sensing has never been studied and adopted before. Here, we propose a physical model of the surface electronic transport in Schottky barrier SiNW biosensors, aiming at reproducing and understanding the voltage gap based behavior. The implemented model describes well the experimental I-V characteristics of the device. It also links the modification of the voltage gap to the changing concentration of antigens by showing the decrease of this parameter in response to increasing concentrations of the molecules that are detected with femtomolar resolution in real human samples. Both experiments and simulations highlight the predominant role of the dynamic recombination of the nanowire surface states, with the incoming external charges from bio-species, in the appearance and modification of the voltage gap. Finally, thanks to its compactness, and strict correlation with the physics of the nanodevice, this model can be used to describe and predict the I-V characteristics in other nanostructured devices, for different than antibody-based sensing as well as electronic applications. PMID:27418560

  18. Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells.

    PubMed

    Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis

    2016-01-01

    A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries. PMID:27499446

  19. Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis

    2016-08-01

    A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries.

  20. Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells

    PubMed Central

    Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis

    2016-01-01

    A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries. PMID:27499446

  1. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging.

    PubMed

    Maldiney, Thomas; Lecointre, Aurélie; Viana, Bruno; Bessière, Aurélie; Bessodes, Michel; Gourier, Didier; Richard, Cyrille; Scherman, Daniel

    2011-08-01

    Focusing on the use of nanophosphors for in vivo imaging and diagnosis applications, we used thermally stimulated luminescence (TSL) measurements to study the influence of trivalent lanthanide Ln(3+) (Ln = Dy, Pr, Ce, Nd) electron traps on the optical properties of Mn(2+)-doped diopside-based persistent luminescence nanoparticles. This work reveals that Pr(3+) is the most suitable Ln(3+) electron trap in the diopside lattice, providing optimal trap depth for room temperature afterglow and resulting in the most intense luminescence decay curve after X-ray irradiation. This luminescence dependency toward the electron trap is maintained through additional doping with Eu(2+), allowing UV-light excitation, critical for bioimaging applications in living animals. We finally identify a novel composition (CaMgSi(2)O(6):Eu(2+),Mn(2+),Pr(3+)) for in vivo imaging, displaying a strong near-infrared afterglow centered on 685 nm, and present evidence that intravenous injection of such persistent luminescence nanoparticles in mice allows not only improved but highly sensitive detection through living tissues. PMID:21702453

  2. Electron trap level of hydrogen incorporated nitrogen vacancies in silicon nitride

    SciTech Connect

    Sonoda, Ken'ichiro Tsukuda, Eiji; Tanizawa, Motoaki; Yamaguchi, Yasuo

    2015-03-14

    Hydrogen incorporation into nitrogen vacancies in silicon nitride and its effects on electron trap level are analyzed using simulation based on density functional theory with temperature- and pressure-dependent hydrogen chemical potential. If the silicon dangling bonds around a nitrogen vacancy are well separated each other, hydrogen incorporation is energetically stable up to 900 °C, which is in agreement with the experimentally observed desorption temperature. On the other hand, if the dangling bonds strongly interact, the incorporation is energetically unfavorable even at room temperature because of steric hindrance. An electron trap level caused by a nitrogen vacancy becomes shallow by the hydrogen incorporation. An electron is trapped in a deep level created by a silicon dangling bond before hydrogen incorporation, whereas it is trapped in a shallow level created by an anti-bonding state of a silicon-silicon bond after hydrogen incorporation. The simulation results qualitatively explain the experiment, in which reduced hydrogen content in silicon nitride shows superior charge retention characteristics.

  3. Effect of Quasihelical Symmetry on Trapped-Electron Mode Transport in the HSX Stellarator

    SciTech Connect

    Guttenfelder, W.; Lore, J.; Anderson, D. T.; Anderson, F. S. B.; Likin, K. M.; Talmadge, J. N.; Canik, J. M.; Dorland, W.

    2008-11-21

    This Letter presents theory-based predictions of anomalous electron thermal transport in the Helically Symmetric eXperiment stellarator, using an axisymmetric trapped-electron mode drift wave model. The model relies on modifications to a tokamak geometry that approximate the quasihelical symmetry in the Helically Symmetric eXperiment (particle trapping and local curvature) and is supported by linear 3D gyrokinetic calculations. Transport simulations predict temperature profiles that agree with experimental profiles outside a normalized minor radius of {rho}>0.3 and energy confinement times that agree within 10% of measurements. The simulations can reproduce the large measured electron temperatures inside {rho}<0.3 if an approximation for turbulent transport suppression due to shear in the radial electric field is included.

  4. Effect of Quasihelical Symmetry on Trapped-Electron Mode Transport in the HSX Stellarator

    SciTech Connect

    Guttenfelder, W.; Lore, J.; Anderson, David; Anderson, F. S.B.; Canik, John; Dorland, W.; Likin, K.; Talmadge, J.

    2008-01-01

    This Letter presents theory-based predictions of anomalous electron thermal transport in the Helically Symmetric eXperiment stellarator, using an axisymmetric trapped-electron mode drift wave model. The model relies on modifications to a tokamak geometry that approximate the quasihelical symmetry in the Helically Symmetric eXperiment (particle trapping and local curvature) and is supported by linear 3D gyrokinetic calculations. Transport simulations predict temperature profiles that agree with experimental profiles outside a normalized minor radius of rho > 0.3 and energy confinement times that agree within 10% of measurements. The simulations can reproduce the large measured electron temperatures inside rho < 0.3 if an approximation for turbulent transport suppression due to shear in the radial electric field is included.

  5. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    NASA Astrophysics Data System (ADS)

    Wang, R.; Williams, C. C.

    2015-09-01

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  6. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  7. Trapping of electrons in troughs of self generated electromagnetic standing waves in a bounded plasma column

    SciTech Connect

    Bhattacharjee, Sudeep; Sahu, Debaprasad; Pandey, Shail; Chatterjee, Sanghomitro; Dey, Indranuj; Roy Chowdhury, Krishanu

    2014-01-15

    Observations and measurements are reported on electron trapping in troughs of self-generated electromagnetic standing waves in a bounded plasma column confined in a minimum-B field. The boundaries are smaller than the free space wavelength of the waves. Earlier work of researchers primarily focused upon electron localization effects induced by purely electrostatic perturbation. We demonstrate the possibility in the presence of electromagnetic standing waves generated in the bounded plasma column. The electron trapping is verified with electrostatic measurements of the plasma floating potential, electromagnetic measurements of the wave field profile, and optical intensity measurements of Argon ionic line at 488 nm. The experimental results show a reasonably good agreement with predictions of a Monte Carlo simulation code that takes into account all kinematical and dynamical effects in the plasma in the presence of bounded waves and external fields.

  8. Electron trapping and transport by supersonic solitons in one-dimensional systems

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J. S.

    1978-01-01

    A one-dimensional chain of ions or molecules and electrons described by a Froehlich-type Hamiltonian with quartic phonon anharmonicities is investigated. It is shown that the anharmonic lattice supports supersonic solitons which under favorable circumstances may trap electrons and transport them along the lattice. For a lattice constant/soliton spatial extent quotient of the order of 0.1, rough estimates give electron trapping energies in the meV range. They imply a useful temperature range, up to tens of degrees K, for observing the new effect. The activation energy of a lattice soliton is proportional to the molecular mass and is therefore quite high (about 1 eV) for typical quasi-one-dimensional organic systems.

  9. Studying electrons on curved surfaces by trapping and manipulating multielectron bubbles in liquid helium.

    PubMed

    Vadakkumbatt, Vaisakh; Joseph, Emil; Pal, Anustuv; Ghosh, Ambarish

    2014-01-01

    Investigations of two-dimensional electron systems (2DES) have been achieved with two model experimental systems, covering two distinct, non-overlapping regimes of the 2DES phase diagram, namely the quantum liquid phase in semiconducting heterostructures and the classical phases observed in electrons confined above the surface of liquid helium. Multielectron bubbles in liquid helium offer an exciting possibility to bridge this gap in the phase diagram, as well as to study the properties of electrons on curved flexible surfaces. However, this approach has been limited because all experimental studies have so far been transient in nature. Here we demonstrate that it is possible to trap and manipulate multielectron bubbles in a conventional Paul trap for several hundreds of milliseconds, enabling reliable measurements of their physical properties and thereby gaining valuable insight to various aspects of curved 2DES that were previously unexplored. PMID:25081283

  10. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    SciTech Connect

    Wang, R.; Williams, C. C.

    2015-09-15

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  11. Atomic origin of high-temperature electron trapping in metal-oxide-semiconductor devices

    SciTech Connect

    Shen, Xiao; Dhar, Sarit; Pantelides, Sokrates T.

    2015-04-06

    MOSFETs based on wide-band-gap semiconductors are suitable for operation at high temperature, at which additional atomic-scale processes that are benign at lower temperatures can get activated, resulting in device degradation. Recently, significant enhancement of electron trapping was observed under positive bias in SiC MOSFETs at temperatures higher than 150 °C. Here, we report first-principles calculations showing that the enhanced electron trapping is associated with thermally activated capturing of a second electron by an oxygen vacancy in SiO{sub 2} by which the vacancy transforms into a structure that comprises one Si dangling bond and a bond between a five-fold and a four-fold Si atoms. The results suggest a key role of oxygen vacancies and their structural reconfigurations in the reliability of high-temperature MOS devices.

  12. Detection of Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy: Spin-Trapping with Iron-Dithiocarbamates.

    PubMed

    Maia, Luisa B; Moura, José J G

    2016-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is the ideal methodology to identify radicals (detection and characterization of molecular structure) and to study their kinetics, in both simple and complex biological systems. The very low concentration and short life-time of NO and of many other radicals do not favor its direct detection and spin-traps are needed to produce a new and persistent radical that can be subsequently detected by EPR spectroscopy.In this chapter, we present the basic concepts of EPR spectroscopy and of some spin-trapping methodologies to study NO. The "strengths and weaknesses" of iron-dithiocarbamates utilization, the NO traps of choice for the authors, are thoroughly discussed and a detailed description of the method to quantify the NO formation by molybdoenzymes is provided. PMID:27094413

  13. Rare-earth neutral metal injection into an electron beam ion trap plasma

    SciTech Connect

    Magee, E. W. Beiersdorfer, P.; Brown, G. V.; Hell, N.

    2014-11-15

    We have designed and implemented a neutral metal vapor injector on the SuperEBIT high-energy electron beam ion trap at the Lawrence Livermore National Laboratory. A horizontally directed vapor of a europium metal is created using a thermal evaporation technique. The metal vapor is then spatially collimated prior to injection into the trap. The source's form and quantity constraints are significantly reduced making plasmas out of metal with vapor pressures ≤10{sup −7} Torr at ≥1000 °C more obtainable. A long pulsed or constant feed metal vapor injection method adds new flexibility by varying the timing of injection and rate of material being introduced into the trap.

  14. Electron microscopic time-lapse visualization of surface pore filtration on particulate matter trapping process.

    PubMed

    Sanui, Ryoko; Hanamura, Katsunori

    2016-09-01

    A scanning electron microscope (SEM) was used to dynamically visualize the particulate matter (PM) trapping process on diesel particulate filter (DPF) walls at a micro scale as 'time-lapse' images corresponding to the increase in pressure drop simultaneously measured through the DPF. This visualization and pressure drop measurement led to the conclusion that the PM trapping in surface pores was driven by PM bridging and stacking at constricted areas in porous channels. This caused a drastic increase in the pressure drop during PM accumulation at the beginning of the PM trapping process. The relationship between the porous structure of the DPF and the depth of the surface pore was investigated in terms of the porosity distribution and PM penetration depth near the wall surface with respect to depth. The pressure drop calculated with an assumed surface pore depth showed a good correspondence to the measured pressure drop. PMID:26923765

  15. Influence of ion movement in a particle trap on the bound electron g factor

    NASA Astrophysics Data System (ADS)

    Michel, Niklas; Zatorski, Jacek; Keitel, Christoph H.

    2015-11-01

    In the relativistic description of atomic systems in external fields, the total momentum and the external electric field couple to the angular momentum of the individual particles. Therefore, the motional state of an ion in a particle trap influences measurements of internal observables such as energy levels or the g factor. We calculate the resulting relativistic shift of the Larmor frequency and the corresponding g -factor correction for a bound electron in a hydrogenlike ion in the 1 S state due to the ion moving in a Penning trap and show that it is negligible at the current precision of measurements. We also show that the analogous energy shift for measurements with an ion in the ground state of a Paul trap vanishes in leading order.

  16. Electron Traps Detected in p-type GaAsN Using Deep Level Transient Spectroscopy

    SciTech Connect

    Johnston, S.; Kurtz, S.; Friedman, D.; Ptak, A.; Ahrenkiel, R.; Crandall, R.

    2005-01-01

    The GaAsN alloy can have a band gap as small as 1.0 eV when the nitrogen composition is about 2%. Indium can also be added to the alloy to increase lattice matching to GaAs and Ge. These properties are advantageous for developing a highly-efficient, multi-junction solar cell. However, poor GaAsN cell properties, such as low open-circuit voltage, have led to inadequate performance. Deep-level transient spectroscopy of p-type GaAsN has identified an electron trap having an activation energy near 0.2 eV and a trap density of at least 1016 cm-3. This trap level appears with the addition of small amounts of nitrogen to GaAs, which also corresponds to an increased drop in open-circuit voltage.

  17. EBIT (Electron Beam Ion Trap), N-Division Experimental Physics. Annual report, 1994

    SciTech Connect

    Schneider, D.

    1995-10-01

    The experimental groups in the Electron Beam Ion Trap (EBIT) program continue to perform front-line research with trapped and extracted highly charged ions (HCI) in the areas of ion/surface interactions, atomic spectroscopy, electron-ion interaction and structure measurements, highly charged ion confinement, and EBIT development studies. The ion surface/interaction studies which were initiated five years ago have reached a stage where they an carry out routine investigations, as well as produce breakthrough results towards the development of novel nanotechnology. At EBIT and SuperEBIT studies of the x-ray emission from trapped ions continue to produce significant atomic structure data with high precision for few electron systems of high-Z ions. Furthermore, diagnostics development for magnetic and laser fusion, supporting research for the x-ray laser and weapons programs, and laboratory astrophysics experiments in support of NASA`s astrophysics program are a continuing effort. The two-electron contributions to the binding energy of helium like ions were measured for the first time. The results are significant because their precision is an order of magnitude better than those of competing measurements at accelerators, and the novel technique isolates the energy corrections that are the most interesting. The RETRAP project which was initiated three years ago has reached a stage where trapping, confining and electronic cooling of HCI ions up to Th{sup 80+} can be performed routinely. Measurements of the rates and cross sections for electron transfer from H{sub 2} performed to determine the lifetime of HCI up to Xe{sup q+} and Th{sup q+} (35 {le} q {le} 80) have been studied at mean energies estimated to be {approximately} 5 q eV. This combination of heavy ions with very high charges and very low energies is rare in nature, but may be encountered in planned fusion energy demonstration devices, in highly charged ion sources, or in certain astrophysical events.

  18. Nonthermally Dominated Electron Acceleration during Magnetic Reconnection in a Low-beta Plasma

    SciTech Connect

    Li, Xiaocan

    2015-07-21

    This work was motivated by electron acceleration during solar flares. After some introductory remarks on proposed particle acceleration mechanisms and questions needing answers, dynamic simulations and simulation results are presented including energy spectra and the formation of the power law distribution. In summary, magnetic reconnection is highly efficient at converting the free magnetic energy stored in a magnetic shear and accelerating electrons to nonthermal energies in low-β regime. The nonthermal electrons have a dominant fraction and form power-law energy spectra with spectral index p ~ 1 in low-β regime. Electrons are preferentially accelerated along the curvature drift direction along the electric field induced by the reconnection outflow. The results can be applied to explain the observations of electron acceleration during solar flares.

  19. Electron Flood Charge Compensation Device for Ion Trap Secondary Ion Mass Spectrometry

    SciTech Connect

    Appelhans, Anthony David; Ward, Michael Blair; Olson, John Eric

    2002-11-01

    During secondary ion mass spectrometry (SIMS) analyses of organophosphorous compounds adsorbed onto soils, the measured anion signals were lower than expected and it was hypothesized that the low signals could be due to sample charging. An electron flood gun was designed, constructed and used to investigate sample charging of these and other sample types. The flood gun was integrated into one end cap of an ion trap secondary ion mass spectrometer and the design maintained the geometry of the self-stabilizing extraction optics used in this instrument. The SIMION ion optics program was used to design the flood gun, and experimental results agreed with the predicted performance. Results showed the low anion signals from the soils were not due to sample charging. Other insulating and conducting samples were tested using both a ReO4- and a Cs+ primary ion beam. The proximity of the sample and electron source to the ion trap aperture resulted in generation of background ions in the ion trap via electron impact (EI) ionization during the period the electron gun was flooding the sample region. When using the electron gun with the ReO4- primary beam, the required electron current was low enough that the EI background was negligible; however, the high electron flood current required with the Cs+ beam produced background EI ions that degraded the quality of the mass spectra. The consequences of the EI produced cations will have to be evaluated on a sample-by-sample basis when using electron flood. It was shown that the electron flood gun could be intentionally operated to produce EI spectra in this instrument. This offers the opportunity to measure, nearly simultaneously, species evaporating from a sample, via EI, and species bound to the surface, via SIMS.

  20. Nonthermally dominated electron acceleration during magnetic reconnection in a low-β plasma

    DOE PAGESBeta

    Li, Xiaocan; Guo, Fan; Li, Hui; Li, Gang

    2015-09-24

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization.more » We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. Thus, the nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the highly efficient electron acceleration in solar flares and other astrophysical systems.« less

  1. Nonthermally dominated electron acceleration during magnetic reconnection in a low-β plasma

    SciTech Connect

    Li, Xiaocan; Guo, Fan; Li, Hui; Li, Gang

    2015-09-24

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization. We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. Thus, the nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the highly efficient electron acceleration in solar flares and other astrophysical systems.

  2. A study of inner zone electron data and their comparison with trapped radiation models

    NASA Technical Reports Server (NTRS)

    Teague, M. J.; Schofield, N. J.; Chan, K. W.; Vette, J. I.

    1979-01-01

    A summary and intercomparison of recent inner radiation zone electron data are presented. The morphology of the inner radiation zone is described and the data compared with the current generation of inner zone trapped electron models. An analytic representation of the inner zone equatorial pitch angle distribution is presented. This model was based upon data from eight satellites and was used to reduce all data to the form of equatorial flux. Although no Starfish-free high energy electron measurements were available from the inner portion of the inner radiation zone, it was found that the AE-6 model provided a good description of the present solar maximum environment.

  3. Contrast mechanism due to interface trapped charges for a buried SiO2 microstructure in scanning electron microscopy.

    PubMed

    Zhang, Hai-Bo; Li, Wei-Qin; Wu, Dan-Wei

    2009-01-01

    We clarify the scanning electron microscopic contrast mechanism for imaging a buried SiO(2) trench microstructure with interface trapped charges by simulating both electron scattering and transport. Here, the interface trapped charges make the SiO(2) film more negatively charged and increase excess holes in the space charge distribution of the electron scattering region. The generated positive surface electric field thus redistributes some emitted secondary electrons and results in the dark contrast. This contrast mechanism is validated by comparing with experiments, and it may also provide an interesting approach for imaging and detecting deep interface trapped charges in insulating films. PMID:19029106

  4. Laser-driven wavebreaking, electron trapping, and mono-energetic beam production

    NASA Astrophysics Data System (ADS)

    Esarey, Eric

    2006-10-01

    Recent breakthrough results reported in Nature demonstrate that laser-plasma accelerators can produce high quality (e.g., narrow energy spread) electron bunches at the 100 MeV level that may be useful for numerous applications. More recently, high quality electron beams at 1 GeV were produced in experiments at LBNL using 40 TW laser pulse interacting with a 3.3 cm plasma channel. In these experiments, the accelerated electrons were self-trapped from the background plasma, often attributed to the process of wavebreaking. Using a warm fluid model, a general analytic theory of wavebreaking has been developed that is valid for all regimes of interest, i.e., arbitrary temperature and phase velocity. This theory indicates that the maximum electric field obtainable by a relativistic plasma wave is lower that previously calculated. The relation between wavebreaking and particle trapping is discussed, and various quantities, such as the fraction of electrons trapped (i.e., the dark current), are calculated. A variety of methods for particle trapping relevant to present experiments, including 2D wavebreaking, density ramps, and laser injection, will be described. Limitations from dephasing and pump depletion will be summarized. Also presented will be 2D and 3D simulations modeling the production high quality electron beams from laser-plasma accelerators. C.G.R. Geddes et al., Nature 431, 538 (2004); S.P.D. Mangles et al., ibid., p. 535; J. Faure et al., ibid., p. 541. W.P. Leemans et al., submitted. C.B. Schroeder et al., Phys. Rev. E bf 72, 055401 (2005). C.B. Schroeder et al., Phys. Plasmas 13, 033103 (2006). G. Fubiani et al., Phys. Rev. E 73, 026402 (2006).

  5. Waves in space plasmas - The mirror trapping of hot auroral electrons

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Coroniti, F. V.; Kennel, C. F.

    1980-01-01

    A brief review is given of the problem of precipitation of auroral electrons by electrostatic Bernstein waves. Since the magnetospheric loss cone is small, only moderately small intense levels of wave turbulence are required to remove any large anisotropy sources of free energy and to maintain a weakly anisotropic electron distribution on strong diffusion precipitation. The electrostatic electron cyclotron harmonic waves are nonconvectively unstable for weak loss cone anisotropies and over a large range of parameters for both the hot and cold distributions. Since the instability is nonconvective, weak wave growth can be maintained independent of the flux level of the hot electrons, i.e., the instability does not have the stably trapped flux limit imposed by convective amplification. Recent plasma numerical simulations show that the nonlinear evolution of this instability involves both the pitch angle diffusion of the hot electrons and the heating of the cold electrons.

  6. Comparison of simulated and observed trapped and precipitating electron fluxes during a magnetic storm

    NASA Astrophysics Data System (ADS)

    Chen, Margaret W.; Lemon, Colby L.; Orlova, Ksenia; Shprits, Yuri; Hecht, James; Walterscheid, R. L.

    2015-10-01

    The ability to accurately model precipitating electron distributions is crucial for understanding magnetosphere-ionosphere-thermosphere coupling processes. We use the magnetically and electrically self-consistent Rice Convection Model-Equilibrium (RCM-E) of the inner magnetosphere to assess how well different electron loss models can account for observed electron fluxes during the large 10 August 2000 magnetic storm. The strong pitch angle scattering rate produces excessive loss on the morning and dayside at geosynchronous orbit (GEO) compared to what is observed by a Los Alamos National Laboratory satellite. RCM-E simulations with parameterized scattering due to whistler chorus outside the plasmasphere and hiss inside the plasmasphere are able to account simultaneously for trapped electron fluxes at 1.2 keV to ~100 keV observed at GEO and for precipitating electron fluxes and electron characteristic energies in the ionosphere at 833 km measured by the NOAA 15 satellite.

  7. Electrochemical control over photoinduced electron transfer and trapping in CdSe-CdTe quantum-dot solids.

    PubMed

    Boehme, Simon C; Walvis, T Ardaan; Infante, Ivan; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Houtepen, Arjan J

    2014-07-22

    Understanding and controlling charge transfer between different kinds of colloidal quantum dots (QDs) is important for devices such as light-emitting diodes and solar cells and for thermoelectric applications. Here we study photoinduced electron transfer between CdTe and CdSe QDs in a QD film. We find that very efficient electron trapping in CdTe QDs obstructs electron transfer to CdSe QDs under most conditions. Only the use of thiol ligands results in somewhat slower electron trapping; in this case the competition between trapping and electron transfer results in a small fraction of electrons being transferred to CdSe. However, we demonstrate that electron trapping can be controlled and even avoided altogether by using the unique combination of electrochemistry and transient absorption spectroscopy. When the Fermi level is raised electrochemically, traps are filled with electrons and electron transfer from CdTe to CdSe QDs occurs with unity efficiency. These results show the great importance of knowing and controlling the Fermi level in QD films and open up the possibility of studying the density of trap states in QD films as well as the systematic investigation of the intrinsic electron transfer rates in donor-acceptor films. PMID:24883930

  8. Electron dominated thermoelectric response in MNiSn (M: Ti, Zr, Hf) half-Heusler alloys.

    PubMed

    Gandi, Appala Naidu; Schwingenschlögl, Udo

    2016-05-18

    We solve the transport equations of the electrons and phonons to understand the thermoelectric behaviour of the technologically important half-Heusler alloys MNiSn (M: Ti, Zr, Hf). Doping is simulated within the rigid band approximation. We clarify the origin of the electron dominated thermoelectric response and determine the carrier concentrations with maximal figures of merit. The phonon mean free path is studied to calculate the grain size below which grain refinement methods can enforce ballistic heat conduction to enhance the figure of merit. PMID:27156360

  9. Effect of dust charging and trapped electrons on nonlinear solitary structures in an inhomogeneous magnetized plasma

    SciTech Connect

    Kumar, Ravinder; Malik, Hitendra K.; Singh, Khushvant

    2012-01-15

    Main concerns of the present article are to investigate the effects of dust charging and trapped electrons on the solitary structures evolved in an inhomogeneous magnetized plasma. Such a plasma is found to support two types of waves, namely, fast wave and slow wave. Slow wave propagates in the plasma only when the wave propagation angle {theta} satisfies the condition {theta}{>=}tan{sup -1}{l_brace}({radical}((1+2{sigma})-[(n{sub dlh}({gamma}{sub 1}-1))/(1+n{sub dlh}{gamma}{sub 1})])-v{sub 0}/u{sub 0}){r_brace}, where v{sub 0}(u{sub 0}) is the z- (x-) component of ion drift velocity, {sigma} = T{sub i}/T{sub eff}, n{sub dlh} = n{sub d0}/(n{sub el0} + n{sub eh0}), and {gamma}{sub 1}=-(1/{Phi}{sub i0})[(1-{Phi}{sub i0}/1+{sigma}(1-{Phi}{sub i0}))] together with T{sub i} as ion temperature, n{sub el0}(n{sub eh0}) as the density of trapped (isothermal) electrons, {Phi}{sub i0} as the dust grain (density n{sub d0}) surface potential relative to zero plasma potential, and T{sub eff}=(n{sub elo}+n{sub eho})T{sub el}T{sub eh}/(n{sub elo}T{sub eh}+n{sub eho}T{sub el}), where T{sub el}(T{sub eh}) is the temperature of trapped (isothermal) electrons. Both the waves evolve in the form of density hill type structures in the plasma, confirming that these solitary structures are compressive in nature. These structures are found to attain higher amplitude when the charge on the dust grains is fluctuated (in comparison with the case of fixed charge) and also when the dust grains and trapped electrons are more in number; the same is the case with higher temperature of ions and electrons. Slow solitary structures show weak dependence on the dust concentration. Both types of structures are found to become narrower under the application of stronger magnetic field. With regard to the charging of dust grains, it is observed that the charge gets reduced for the higher trapped electron density and temperature of ions and electrons, and dust charging shows weak dependence on the ion

  10. Approximate analytical solutions for the trapped electron distribution due to quasi-linear diffusion by whistler mode waves

    NASA Astrophysics Data System (ADS)

    Mourenas, D.; Artemyev, A. V.; Agapitov, O. V.; Krasnoselskikh, V.; Li, W.

    2014-12-01

    The distribution of trapped energetic electrons inside the Earth's radiation belts is the focus of intense studies aiming at better describing the evolution of the space environment in the presence of various disturbances induced by the solar wind or by an enhanced lightning activity. Such studies are usually performed by means of comparisons with full numerical simulations solving the Fokker-Planck quasi-linear diffusion equation for the particle distribution function. Here we present for the first time approximate but realistic analytical solutions for the electron distribution, which are shown to be in good agreement with exact numerical solutions in situations where resonant scattering of energetic electrons by whistler mode hiss, lightning-generated or chorus waves, is the dominant process. Quiet time distributions are well recovered, as well as the evolution of energized relativistic electron distributions during disturbed geomagnetic conditions. It is further shown that careful comparisons between the analytical solutions and measured distributions may allow to infer important bounce- and drift-averaged wave characteristics (such as wave amplitude). It could also help to improve the global understanding of underlying physical phenomena.

  11. Compact soft x-ray spectrometer for plasma diagnostics at the Heidelberg Electron Beam Ion Trap

    SciTech Connect

    Lapierre, A.; Crespo Lopez-Urrutia, J. R.; Baumann, T. M.; Epp, S. W.; Gonchar, A.; Gonzalez Martinez, A. J.; Liang, G.; Rohr, A.; Soria Orts, R.; Simon, M. C.; Tawara, H.; Versteegen, R.; Ullrich, J.

    2007-12-15

    A compact flat-field soft x-ray grazing-incidence grating spectrometer equipped with a cryogenically cooled back-illuminated charge-coupled device camera was built and implemented at the Heidelberg Electron Beam Ion Trap. The instrument spans the spectral region from 1 to 37 nm using two different gratings. In slitless operation mode, it directly images a radiation source, in this case ions confined in an electron beam ion trap, with high efficiency and reaching hereby a resolving power of {lambda}/{delta}{lambda} congruent with 130 at 2 nm and of {lambda}/{delta}{lambda} congruent with 600 at 28 nm. Capable of automatized operation, its low noise and excellent stability make it an ideal instrument not only for spectroscopic diagnostics requiring wide spectral coverage but also for precision wavelength measurements.

  12. Characterization of deep electron traps in 4H-SiC Junction Barrier Schottky rectifiers

    NASA Astrophysics Data System (ADS)

    Gelczuk, Ł.; Dąbrowska-Szata, M.; Sochacki, M.; Szmidt, J.

    2014-04-01

    Conventional deep level transient spectroscopy (DLTS) technique was used to study deep electron traps in 4H-SiC Junction Barrier Schottky (JBS) rectifiers. 4H-SiC epitaxial layers, doped with nitrogen and grown on standard n+-4H-SiC substrates were exposed to low-dose aluminum ion implantation process under the Schottky contact in order to form both JBS grid and junction termination extension (JTE), and assure good rectifying properties of the diodes. Several deep electron traps were revealed and attributed to impurities or intrinsic defects in 4H-SiC epitaxial layers, on the basis of comparison of their electrical parameters (i.e. activation energies, apparent capture cross sections and concentrations) with previously published results.

  13. Demonstration of charge breeding in a compact room temperature electron beam ion trap

    SciTech Connect

    Vorobjev, G.; Sokolov, A.; Herfurth, F.; Kester, O.; Quint, W.; Stoehlker, Th.; Thorn, A.; Zschornack, G.

    2012-05-15

    For the first time, a small room-temperature electron beam ion trap (EBIT), operated with permanent magnets, was successfully used for charge breeding experiments. The relatively low magnetic field of this EBIT does not contribute to the capture of the ions; single-charged ions are only caught by the space charge potential of the electron beam. An over-barrier injection method was used to fill the EBIT's electrostatic trap with externally produced, single-charged potassium ions. Charge states as high as K{sup 19+} were reached after about a 3 s breeding time. The capture and breeding efficiencies up to 0.016(4)% for K{sup 17+} have been measured.

  14. Electron trapping and acceleration by kinetic Alfvén waves in solar flares

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Zimovets, I. V.; Rankin, R.

    2016-05-01

    Context. Theoretical models and spacecraft observations of solar flares highlight the role of wave-particle interaction for non-local electron acceleration. In one scenario, the acceleration of a large electron population up to high energies is due to the transport of electromagnetic energy from the loop-top region down to the footpoints, which is then followed by the energy being released in dense plasma in the lower atmosphere. Aims: We consider one particular mechanism of non-linear electron acceleration by kinetic Alfvén waves. Here, waves are generated by plasma flows in the energy release region near the loop top. We estimate the efficiency of this mechanism and the energies of accelerated electrons. Methods: We use analytical estimates and test-particle modelling to investigate the effects of electron trapping and acceleration by kinetic Alfvén waves in the inhomogeneous plasma of the solar corona. Results: We demonstrate that, for realistic wave amplitudes, electrons can be accelerated up to 10-1000 keV during their propagation along magnetic field lines. Here the electric field that is parallel to the direction of the background magnetic field is about 10 to 103 times the amplitude of the Dreicer electric field. The acceleration mechanism strongly depends on electron scattering which is due to collisions that only take place near the loop footpoints. Conclusions: The non-linear wave-particle interaction can play an important role in the generation of relativistic electrons within flare loops. Electron trapping and coherent acceleration by kinetic Alfvén waves represent the energy cascade from large-scale plasma flows that originate at the loop-top region down to the electron scale. The non-diffusive character of the non-linear electron acceleration may be responsible for the fast generation of high-energy particles.

  15. Angular-momentum-dominated electron beams and flat-beam generation

    SciTech Connect

    Sun, Yin-e

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 {+-} 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  16. Multisectional linear ion trap and novel loading method for optical spectroscopy of electron and nuclear transitions.

    PubMed

    Sysoev, Alexey A; Troyan, Victor I; Borisyuk, Peter V; Krasavin, Andrey V; Vasiliev, Oleg S; Palchikov, Vitaly G; Avdeev, Ivan A; Chernyshev, Denis M; Poteshin, Sergey S

    2015-01-01

    There is a growing need for the development of atomic and nuclear frequency standards because of the important contribution of methods for precision time and frequency measurements to the development of fundamental science, technology, and the economy. It is also conditioned by their potential use in optical clocks and quantum logic applications. It is especially important to develop a universal method that could allow one to use ions of most elements effectively (including ones that are not easily evaporated) proposed for the above-mentioned applications. A linear quadrupole ion trap for the optical spectroscopy of electron and nuclear transitions has been developed and evaluated experimentally. An ion source construction is based on an ultra-high vacuum evaporator in which a metal sample is subjected to an electron beam of energy up to 1 keV, resulting in the appearance of gaseous atoms and ions of various charge state. The linear ion trap consists of five successive quadrupole sections including an entrance quadrupole section, quadrupole mass filter, quadrupole ion guide, ion-trap section, and exit quadrupole section. The same radiofrequency but a different direct current voltage feeds the quadrupole sections. The instrument allows the mass and energy selected trapping of ions from ion beams of various intensities and their localization in the area of laser irradiation. The preliminary results presented show that the proposed instrument and methods allow one to produce effectively up to triply charged thorium ions as well as to trap ions for future spectroscopic study. The instrument is proposed for future use in optical clocks and quantum logic application development. PMID:25906029

  17. Si-Si bond as a deep trap for electrons and holes in silicon nitride

    NASA Astrophysics Data System (ADS)

    Karpushin, A. A.; Sorokin, A. N.; Gritsenko, V. A.

    2016-02-01

    A two-stage model of the capture of electrons and holes in traps in amorphous silicon nitride Si3N4 has been proposed. The electronic structure of a "Si-Si bond" intrinsic defect in Si3N4 has been calculated in the tight-binding approximation without fitting parameters. The properties of the Si-Si bond such as a giant cross section for capture of electrons and holes and a giant lifetime of trapped carriers have been explained. It has been shown that the Si-Si bond in the neutral state gives shallow levels near the bottom of the conduction band and the top of the valence band, which have a large cross section for capture. The capture of an electron or a hole on this bond is accompanied by the shift of shallow levels by 1.4-1.5 eV to the band gap owing to the polaron effect and a change in the localization region of valence electrons of atoms of the Si-Si bond. The calculations have been proposed with a new method for parameterizing the matrix elements of the tightbinding Hamiltonian taking into account a change in the localization region of valence electrons of an isolated atom incorporated into a solid.

  18. Dynamic trapping of electrons in the porcupine ionospheric ion beam experiment

    NASA Astrophysics Data System (ADS)

    Bohm, M.; Brenning, N.; Faelthammar, C.-G.

    1992-12-01

    Electrons are needed to maintain quasineutrality in a case where positive ions are injected across the magnetic field into a limited volume in a magnetized plasma. In the absence of collisions, a positive potential builds up and traps the electrons which enter the region along the magnetic field. If the added density of ions exceeds the ambient density, large potential differences along the magnetic field can be maintained this way. The process explains several features of the Porcupine xenon beam injection experiment, where strong magnetic field aligned electric fields were measured in the vicinity of a xenon ion beam which was injected into the ambient ionosphere from a spinning sub payload.

  19. EPR study of electron traps in x-ray-irradiated yttria-stabilized zirconia

    SciTech Connect

    Azzoni, C.B.; Paleari, A. )

    1989-10-01

    Single crystals of yttria-stabilized zirconia (12 mol % of Y{sub 2}O{sub 3}) have been x-ray irradiated at room temperature. The electron paramagnetic resonance spectrum of the filled electron traps is analyzed in terms of a single oxygen vacancy type of defect with its symmetry axis along the {l angle}111{r angle} direction. The angular dependence of the linewidth and the asymmetry of the line shape are attributed to the disordered rearrangements of the anion sublattice surrounding the oxygen vacancy. This affects the local crystal fields and the directions of the symmetry axis of the defects.

  20. Tornado-type closed magnetic trap for an electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Abramova, K. B.; Smirnov, A. N.; Voronin, A. V.; Zorin, V. G.

    2000-02-01

    We propose to use a Tornado-type closed magnetic trap for creation of a source of multicharged ions with plasma heating by microwave radiation. Plasma loss in closed traps is determined by diffusion across the magnetic field, which increases substantially plasma confinement time as compared to the classical mirror trap. The Tornado trap also possesses merits such as: an opportunity to produce high magnetic fields up to 3 T, which makes possible heating and confinement of plasma with a high density of electrons; an opportunity to use supplementary coils for ion extraction; plasma stability to magnetohydrodynamic perturbations because the magnetic field structure corresponds to the "min B" configuration; and relatively low costs. All estimates and calculations were carried out for the existing Tornado-322 pulse installation (maximal magnetic field 2.8 T) with plasma heating at 53 GHz frequency. The numerical simulation has shown that, by the end of the magnetic field pulse, ion distribution over charge states may reach a maximum at Ar+16 for the plasma density of 1013cm-3. The current density of ions Ar+16 can be varied from 10 mA/cm2 to approximately 1 A/cm2.

  1. Electron cyclotron resonance near the axis of the gas-dynamic trap

    SciTech Connect

    Bagulov, D. S.; Kotelnikov, I. A.

    2012-08-15

    Propagation of an extraordinary electromagnetic wave in the vicinity of electron cyclotron resonance surface in an open linear trap is studied analytically, taking into account inhomogeneity of the magnetic field in paraxial approximation. Ray trajectories are derived from a reduced dispersion equation that makes it possible to avoid the difficulty associated with a transition from large propagation angles to the case of strictly longitudinal propagation. Our approach is based on the theory, originally developed by Zvonkov and Timofeev [Sov. J. Plasma Phys. 14, 743 (1988)], who used the paraxial approximation for the magnetic field strength, but did not consider the slope of the magnetic field lines, which led to considerable error, as has been recently noted by Gospodchikov and Smolyakova [Plasma Phys. Rep. 37, 768-774 (2011)]. We have found ray trajectories in analytic form and demonstrated that the inhomogeneity of both the magnetic field strength and the field direction can qualitatively change the picture of wave propagation and significantly affect the efficiency of electron cyclotron heating of a plasma in a linear magnetic trap. Analysis of the ray trajectories has revealed a criterion for the resonance point on the axis of the trap to be an attractor for the ray trajectories. It is also shown that a family of ray trajectories can still reach the resonance point on the axis if the latter generally repels the ray trajectories. As an example, results of general theory are applied to the electron cyclotron resonance heating experiment which is under preparation on the gas dynamic trap in the Budker Institute of Nuclear Physics [Shalashov et al., Phys. Plasmas 19, 052503 (2012)].

  2. Scattering of Trapped Electrons by VLF Waves During a Magnetic Strom

    NASA Astrophysics Data System (ADS)

    Walt, M.

    2004-12-01

    The Source/Loss Cone Energetic Particle Spectrometer (SEPS) on the NASA Polar satellite measures particle fluxes with high angular resolution (1.5 deg) near the atmospheric loss cone. During the weak magnetic storm (Dst=-40 nT) of September 10, 1996 the trapped electron fluxes increased, and the angular distributions of down-going 150 keV electrons extended well inside the atmospheric loss cone. Simultaneous measurements of up-going electrons showed empty loss cones. These loss cone fluxes were observed at MLT of ~14 hrs, latitude near 45 deg, and L between 4 and 6.5, the extent of the diffusion into the loss cone increasing with increasing L. Wave measurements with the Plasma Wave Instrument, also on the Polar satellite, showed strong VLF hiss and chorus at the time of the pitch angle diffusion. The enhanced waves and electron precipitation persisted for several days. These observations support the original Kennel and Petschek (JGR 71, 1, 1966) concept that an increase in trapped electron flux would initiate wave growth and loss of particles by pitch angle scattering. However, in this case the waves did not propagate parallel to the magnetic field and thus would couple waves and particles at different L values.

  3. Theory and experiments of electron-hole recombination at silicon/silicon dioxide interface traps and tunneling in thin oxide MOS transistors

    NASA Astrophysics Data System (ADS)

    Cai, Jin

    2000-10-01

    Surface recombination and channel have dominated the electrical characteristics, performance and reliability of p/n junction diodes and transistors. This dissertation uses a sensitive direct-current current voltage (DCIV) method to measure base terminal currents (IB) modulated by the gate bias (VGB) and forward p/n junction bias (VPN) in a MOS transistor (MOST). Base terminal currents originate from electron-hole recombination at Si/SiO2 interface traps. Fundamental theories which relate DCIV characteristics to device and material parameters are presented. Three theory-based applications are demonstrated on both the unstressed as well as hot-carrier-stressed MOSTs: (1) determination of interface trap density and energy levels, (2) spatial profile of interface traps in the drain/base junction-space-charge region and in the channel region, and (3) determination of gate oxide thickness and impurity doping concentrations. The results show that interface trap energy levels are discrete, which is consistent with those from silicon dangling bonds; in unstressed MOS transistors interface trap density in the channel region rises sharply toward source and drain, and after channel-hot-carrier stress, interface trap density increases mostly in the junction space-charge region. As the gate oxide thins below 3 nm, the gate oxide leakage current via quantum mechanical tunneling becomes significant. A gate oxide tunneling theory which refined the traditional WKB tunneling probability is developed for modeling tunneling currents at low electric fields through a trapezoidal SiO2 barrier. Correlation with experimental data on thin oxide MOSTs reveals two new results: (1) hole tunneling dominates over electron tunneling in p+gate p-channel MOSTs, and (2) the small gate/drain overlap region passes higher tunneling currents than the channel region under depletion to flatband gate voltages. The good theory-experimental correlation enables the extraction of impurity doping concentrations

  4. Excess electron trapping in duplex DNA: long range transfer via stacked adenines.

    PubMed

    Black, Paul J; Bernhard, William A

    2012-11-01

    An understanding of charge transfer (CT) in DNA lies at the root of assessing the risks and benefits of exposure to ionizing radiation. Energy deposition by high-energy photons and fast-charged particles creates holes and excess electrons (EEs) in DNA, and the subsequent reactions determine the complexity of DNA damage and ultimately the risk of disease. Further interest in CT comes from the possibility that hole transfer, excess electron transfer (EET), or both in DNA might be used to develop nanoscale circuits. To study EET in DNA, EPR spectroscopy was used to determine the distribution of EE trapping by oligodeoxynucleotides irradiated and observed at 4 K. Our results indicate that stretches of consecutive adenine bases on the same strand serve as an ideal conduit for intrastrand EET in duplex DNA at 4 K. Specifically, we show that A is an efficient trap for EE at 4 K if, and only if, the A strand of the duplex does not contain one of the other three bases. If there is a T, C, or G on the A strand, then trapping occurs at T or C instead of A. This holds true for stretches up to 32 A's. Whereas T competes effectively against A for the EE, it does not compete effectively against C. Long stretches of T pass the majority of EE to C. Our results show that AT stretches channel EE to cytosine, an end point with significance to both radiation damage and the photochemical repair of pyrimidine dimers. PMID:23067129

  5. Electron Cloud Generation and Trapping in a Quadrupole Magnet at the Los Alamos Proton Storage Ring

    SciTech Connect

    Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; Borden, Michael J.; O'Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; Pivi, Mauro T.F.; /SLAC

    2008-03-17

    Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the 'prompt' electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the 'swept' electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100 {micro}s. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.

  6. Investigation of nonextensivity trapped electrons effect on the solitary ion-acoustic wave using fractional Schamel equation

    NASA Astrophysics Data System (ADS)

    Nazari-Golshan, A.

    2016-08-01

    Ion-acoustic (IA) solitary wave propagation is investigated by solving the fractional Schamel equation (FSE) in a homogenous system of unmagnetized plasma. This plasma consists of the nonextensive trapped electrons and cold fluid ions. The effects of the nonextensive q-parameter, electron trapping, and fractional parameter have been studied. The FSE is derived by using the semi-inverse and Agrawal's methods. The analytical results show that an increase in the amount of electron trapping and nonextensive q-parameter increases the soliton ion-acoustic amplitude in agreement with the previously obtained results. However, it is vice-versa for the fractional parameter. This feature leads to the fact that the fractional parameter may be used to increase the IA soliton amplitude instead of increasing electron trapping and nonextensive parameters.

  7. Effects of traps and polarization charges on device performance of AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Hussein, A. SH.; Ghazai, Alaa J.; Salman, Emad A.; Hassan, Z.

    2013-11-01

    This paper presents the simulated electrical characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) by using ISE TCAD software. The effects of interface traps, bulk traps and polarization charges are investigated. It was observed that the role and dynamic of traps affect the device performance which requires a precondition to calculate the DC characteristics that are in agreement with the experimental data. On the other hand, polarization charges lead to quantum confinement of the electrons in the channel and form two-dimensional electron gas. The electron quantization leads to increasing the drain current and shift in the threshold voltage. The device performance can be improved by optimizing the fixed interface charge and thus reducing the bulk traps to enhance the DC characteristics.

  8. Electron cyclotron resonance near the axis of a quadrupole linear trap

    NASA Astrophysics Data System (ADS)

    Kotelnikov, I. A.; Romé, M.

    2012-12-01

    The quasi-longitudinal propagation of an extraordinary electromagnetic wave in the vicinity of the electron cyclotron resonance layer in an open linear trap with a quadrupole magnetic field is studied analytically, taking into account the inhomogeneity of the magnetic field in a paraxial approximation. The ray trajectories are derived from a simplified dispersion equation, that is, nonetheless able to accurately describe the transition from finite to zero perpendicular refractive index. A criterion for an on-axis resonance point to be an attractor for the ray trajectories is formulated, which generalizes a similar criterion for axisymmetric linear traps derived in a recent paper [D. S. Bagulov and I. A. Kotelnikov, Phys. Plasmas 19, 082502 (2012)].

  9. Electron cyclotron resonance near the axis of a quadrupole linear trap

    SciTech Connect

    Kotelnikov, I. A.; Rome, M.

    2012-12-15

    The quasi-longitudinal propagation of an extraordinary electromagnetic wave in the vicinity of the electron cyclotron resonance layer in an open linear trap with a quadrupole magnetic field is studied analytically, taking into account the inhomogeneity of the magnetic field in a paraxial approximation. The ray trajectories are derived from a simplified dispersion equation, that is, nonetheless able to accurately describe the transition from finite to zero perpendicular refractive index. A criterion for an on-axis resonance point to be an attractor for the ray trajectories is formulated, which generalizes a similar criterion for axisymmetric linear traps derived in a recent paper [D. S. Bagulov and I. A. Kotelnikov, Phys. Plasmas 19, 082502 (2012)].

  10. A new precision measurement of the electron's electric dipole moment using trapped ions

    NASA Astrophysics Data System (ADS)

    Cairncross, William; Cossel, Kevin C.; Grau, Matt; Gresh, Daniel N.; Ng, Kia Boon; Ni, Yiqi; Zhou, Yan; Cornell, Eric A.; Ye, Jun

    2016-05-01

    A precision measurement of the permanent electric dipole moment of the electron (eEDM) can be used to place constraints on extensions to the Standard Model. The most sensitive measurements of the eEDM to date have used neutral atomic or molecular beams, and thus are all susceptible to similar classes of systematic errors. Here we present a competitive measurement of the eEDM in a radically different experimental scheme: a thermal cloud of HfF+ ions confined in an RF trap. The long coherence times achieved in the RF trap and the large effective electric field of a molecular system provide high sensitivity to an eEDM, while our new experimental platform permits studies of a different class of systematic errors. We will present our experimental setup, known sources of systematic error and our efforts to suppress them, and the results of our recent eEDM measurement.

  11. Mapping electron-beam-injected trapped charge with scattering scanning near-field optical microscopy.

    PubMed

    Tranca, Denis E; Sánchez-Ortiga, Emilio; Saavedra, Genaro; Martínez-Corral, Manuel; Tofail, Syed A M; Stanciu, Stefan G; Hristu, Radu; Stanciu, George A

    2016-03-01

    Scattering scanning near-field optical microscopy (s-SNOM) has been demonstrated as a valuable tool for mapping the optical and optoelectronic properties of materials with nanoscale resolution. Here we report experimental evidence that trapped electric charges injected by an electron beam at the surface of dielectric samples affect the sample-dipole interaction, which has direct impact on the s-SNOM image content. Nanoscale mapping of the surface trapped charge holds significant potential for the precise tailoring of the electrostatic properties of dielectric and semiconductive samples, such as hydroxyapatite, which has particular importance with respect to biomedical applications. The methodology developed here is highly relevant to semiconductor device fabrication as well. PMID:26974112

  12. Zonal flow generation and its nonlinear dynamics in trapped electron mode turbulence of flat density tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Guo, Z. B.; Hahm, T. S.

    2016-06-01

    We investigate zonal flow (ZF) generation in ion temperature gradient driven trapped-electron-mode (ITG-driven TEM) turbulence via modulational instability analysis. We show that the acceleration of a seed ZF is a consequence of the competition of negative radiation pressure (NRP, acting as a driving force) and positive radiation pressure (PRP, acting as a retarding force) of the ITG-driven TEM turbulence. A critical dimensionless ion temperature logarithmic gradient (R/{{L}{{T\\text{i}},\\text{c}}} ) normalized to the major radius is obtained by balancing the NRP- and PRP effects. For \\frac{R}{{{L}{{T\\text{i}}}}}<\\frac{R}{{{L}{{T\\text{i}},\\text{c}}}} , the NRP effect is dominant and the seed ZF is accelerated. Otherwise, the PRP effect is dominant and the seed ZF is decelerated. In addition, a new nonlinear evolution mechanism of the ZF is also proposed. It is shown that the turbulence energy intensity spectrum gets steepened in k-space due to the ZF shearing, which in turn induces nonlinear growth of the ZF.

  13. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory.

    PubMed

    Schwarz, S; Baumann, T M; Kittimanapun, K; Lapierre, A; Snyder, A

    2014-02-01

    The Electron Beam Ion Trap (EBIT) in NSCL's reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT's superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm(2) has been reached when the EBIT magnet was operated at 4 T. PMID:24593604

  14. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory

    SciTech Connect

    Schwarz, S. Baumann, T. M.; Kittimanapun, K.; Lapierre, A.; Snyder, A.

    2014-02-15

    The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.

  15. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory

    NASA Astrophysics Data System (ADS)

    Schwarz, S.; Baumann, T. M.; Kittimanapun, K.; Lapierre, A.; Snyder, A.

    2014-02-01

    The Electron Beam Ion Trap (EBIT) in NSCL's reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT's superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm2 has been reached when the EBIT magnet was operated at 4 T.

  16. Properties and parameters of the electron beam injected into the mirror magnetic trap of a plasma accelerator

    NASA Astrophysics Data System (ADS)

    Andreev, V. V.; Novitsky, A. A.; Vinnichenko, L. A.; Umnov, A. M.; Ndong, D. O.

    2016-03-01

    The parameters of the injector of an axial plasma beam injected into a plasma accelerator operating on the basis of gyroresonance acceleration of electrons in the reverse magnetic field are determined. The trapping of the beam electrons into the regime of gyroresonance acceleration is numerically simulated by the particle- in-cell method. The optimal time of axial injection of the beam into a magnetic mirror trap is determined. The beam parameters satisfying the condition of efficient particle trapping into the gyromagnetic autoresonance regime are found.

  17. Polaronic effects in manganese oxides: Self-trapped electronic states in lanthanum manganate and sodium chloride

    NASA Astrophysics Data System (ADS)

    Perebeinos, Vasili

    2001-12-01

    Self-trapped states occur in many insulating solids but are not especially well-understood. There is a need for better theoretical models and better experimental tools for exploring these states. This thesis provides models for two kinds of materials LaMnO3 and NaCl, and predicts experimental effects which can be used to characterize such states. LaMnO3 is an insulating antiferromagnet which can be doped with holes over a wide concentration range, as in La1- xCaxMnO3. Here I study the regime x << 1 where particularly interesting and simple behavior is predicted. The model has electronic and lattice-vibrational degrees of freedom chosen to represent the Mn ion outer electronic states and their interaction with oxygen motions in the three dimensional perovskite crystal structure. Four independent types of data are available to choose three adjusted parameters. Using electronic structure calculations, optical conductivity and Raman spectra for this choice the predicted magnitude of the static Jahn-Teller distortion agrees within 10-15% with neutron diffraction data. I use the model to analyze and predict the self-localized states which form under optical excitation and under hole doping. In particular five types of behavior are analyzed: (1)the insulating nature of lightly doped LaMnO3 due to the anti-Jahn-Teller polaron formation; (2)phonon broadening due to the exciton formation; (3)polaronic angle-resolved- photoemission-spectra (ARPES); (4)Raman spectra due to the Franck-Condon mechanism; (5)the self-trapped exciton in NaCl and its optical properties including the Franck-Condon effect using the first-principles Density Functional Theory (DFT) calculations. Experimental confirmation of the predicted behavior for LaMnO3 will differentiate the Jahn-Teller model studied here from competing versions. The results given here are novel in five ways. (1)Essentially exact analytical polaronic spectra of the two-orbital model Hamiltonian have been obtained. (2)Self-trapped

  18. A Multislit Transverse-Emittance Diagnostic for Space-Charge-Dominated Electron Beams

    NASA Astrophysics Data System (ADS)

    Piot, P.; Song, J.; Li, R.; Krafft, G. A.; Jordan, K.; Feldl, E.; Kehne, D.; Denard, J.-C.

    1997-05-01

    Jefferson Lab is building a 10 MeV injector to provide electron beam for a high-power free-electron laser (FEL). To characterize the transverse phase space of the space-charged-dominated beam produced by this injector, we designed an interceptive multislit emittance diagnostic. It incorporates an algorithm for phase-space reconstruction and subsequent calculation of the Twiss parameters and emittance for both transverse directions at an update rate exceeding 1 Hz, a speed that will facilitate the transverse-phase-space matching between the injector and the FEL's accelerator that is critical for proper operation. This paper describes issues pertaining to the diagnostic's design. It also discusses the acquisition system, as well as the software algorithm and its implementation in the FEL control system. First results obtained from testing this diagnostic in Jefferson Lab's Injector Test Stand are also included.

  19. Reduced model prediction of electron temperature profiles in microtearing-dominated NSTX plasmas

    NASA Astrophysics Data System (ADS)

    Kaye, S. M.; Guttenfelder, W.; Bell, R.; Gerhardt, S.; Leblanc, B.; Maingi, R.

    2014-10-01

    A representative H-mode discharge from the National Spherical Torus Experiment (NSTX) is studied in detail as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as βe, νe*, the MHD α parameter and the gradient scale lengths of Te, Ti and ne were examined prior to performing linear gyrokinetic calculations to determine the fastest growing microinstability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early in the discharge, when βe and νe* were relatively low, ballooning parity modes were dominant. As both βe and νe* increased with time, microtearing became the dominant low-kθmode, especially in the outer half of the plasma. There are instances in time and radius where other modes, at higher-kθ, may be important for driving electron transport. The Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting Te for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant. This work has been supported by U.S. Dept of Energy contracts DE-AC02-09CH11466.

  20. Measurements of the electron-impact double-to-single ionization ratio using trapped lithium

    NASA Astrophysics Data System (ADS)

    Huang, M.-T.; Zhang, L.; Hasegawa, S.; Southworth, S. H.; Young, L.

    2002-07-01

    The Li2+ to Li+ production cross-section ratio of ground-state atomic Li by electron-impact ionization has been measured for electron energies ranging from 200 eV to 1500 eV. The measurements were done using a pulsed, ion imaging time-of-flight spectrometer with Li atoms confined in a magneto-optical trap. The ratios are more accurate than the single earlier result for the Li2+ to Li+ ratios, a composite of two absolute measurements, and are systematically lower. Both experiments show similar energy dependences that disagree with the trend predicted by a semiempirical formulation. These measurements provide a benchmark for theoretical studies of electron-impact double ionization.

  1. Collisionless reversed magnetic shear trapped electron instability and contribution of sidebands to anomalous transport

    NASA Astrophysics Data System (ADS)

    Rogister, André L.; Singh, Raghvendra

    2005-11-01

    By keeping account of the trapped electron ∇B and curvature drifts, it is found that the spatial decay of the collisionless electron drift wave is governed either by the trapped electron response or by the resonant interaction of ions with the sidebands of the primary oscillation. In the former case, pairs of spatially bounded unstable and damped solutions are obtained for negative magnetic shear (ŝ<0) if, as usual, LTe=1/∂rlnTe<0; there are no bounded solutions if ŝLTe<0. In the latter case, there is either a set of bounded damped solutions if ηi>0 or a set of bounded unstable solutions if ηi<0. The unstable modes have a radiating character and the growth rates are γ ˜(2n+1)√1+2q2 ∣ŝ∣∣LNωe*/qR∣ (n is the Hermite polynomial solution index, q the safety factor, ŝ the magnetic shear parameter, R the major radius, ωe* the electron diamagnetic frequency, LN=1/∂rlnNe, and ηi=LN/LTi).The sidebands are responsible for unusually large ratios Qe/TeΓe, where Qe and Γe are the anomalous electron energy flux and the particle flux. These results may explain the box-type Te profile observed in lower hybrid current drive reversed magnetic shear plasmas on the Japan Atomic Energy Research Institute Tokamak 60 Upgrade (JT-60U) [H. Ninomiya and the JT-60U Team, Phys. Fluids B 4, 2070 (1992)]. It is finally demonstrated that the ballooning hypothesis generally leads to conflicting requirements: it is thus hardly relevant for the electron drift branch! The "radiating" boundary condition that has formerly been imposed on the slab solution is finally discussed.

  2. Trapped electron plasma formation and equilibrium with a low-power radio-frequency drive

    SciTech Connect

    Romé, M.; Maero, G.; Paroli, B.; Pozzoli, R.; Chen, S.

    2015-06-29

    Penning-Malmberg traps confining electron plasmas usually rely on external sources like thermo- and photocathodes. It has been already demonstrated that electron plasmas of comparable densities can be produced by applying a radio-frequency (RF) power to any inner electrode of the trap. Such excitation may result in significant electron heating and ionization of the residual gas with the formation of a plasma column when the RF frequency is of the order or larger than the typical axial bounce frequencies of few-eV electrons, even at RF amplitude of few volts. While discharges are common in plasma generation at higher pressures and RF power, this mechanism is not yet well explored in our working conditions, namely ultra-high vacuum and very low RF power. This plasma production mechanism is very sensitive to the experimental conditions. Interesting phenomena can be observed: transition from a diffuse to a narrow-section, denser plasma column; presence of low-order diocotron modes in transient and steady-state plasmas; modulation of the m=1 diocotron mode and suppression of its instability despite the presence of positive ions and resistive loads. These observations are reported here, and possible explanations are discussed. In addition, a possible electron heating mechanism is investigated with a single-particle, one-dimensional model described by an area-preserving map where an electron bounces within a square potential well and the RF excitation is modelled by a time-oscillating square barrier. The low-energy part of the Poincaré plot includes both quasi-periodic and chaotic regions, where heating up to ionization energies is achievable. Results of a systematic analysis of the map extracting its chaotic properties and scaling laws as a function of the control parameters are reported.

  3. Search for Trapped Electrons and a Magnetic Moment at Mars by Mariner IV.

    PubMed

    O'gallagher, J J; Simpson, J A

    1965-09-10

    The Mariner IV spacecraft on 14-15 July 1965 passed within 9850 kilometers of Mars, carrying a solid-state charged-particle telescope which could detect electrons greater than 40 kiloelectron volts and protons greater than 1 million electron volts. The trajectory could have passed through a bow shock, a transition region, and a magnetospheric boundary where particles could be stably trapped for a wide range of Martian magnetic moments. No evidence of charged-particle radiation was found in any of these regions. In view of these results, an upper limit is established for the Martian magnetic moment provided it is assumed that the same physical processes leading to acceleration and trapping of electrons in Earth's magnetic field would be found in a Martian magnetic field. On this basis, the upper limit for the Martian magnetic moment is 0.1 percent that of Earth for a wide range of postulated orientations with respect to the rotational axis of Mars. The implications of these results for the physical and biological environment of Mars are briefly discussed. PMID:17747452

  4. Low jitter metal vapor vacuum arc ion source for electron beam ion trap injections

    SciTech Connect

    Holland, Glenn E.; Boyer, Craig N.; Seely, John F.; Tan, J.N.; Pomeroy, J.M.; Gillaspy, J.D.

    2005-07-15

    We describe a metal vapor vacuum arc (MeVVA) ion source containing eight different cathodes that are individually selectable via the control electronics which does not require moving components in vacuum. Inside the vacuum assembly, the arc plasma is produced by means of a 30 {mu}s pulse (26 kV,125 A) delivering 2.4 mC of charge to the cathode sample material. The trigger jitter is minimized (<200 ns) to improve the capture efficiency of the ions which are injected into an ion trap. During a single discharge, the over-damped pulse produces an ion flux of 8.4x10{sup 9} ions/cm{sup 2}, measured by an unbiased Faraday cup positioned 20 cm from the extractor grid, at discharge rates up to 5 Hz. The electronic triggering of the discharge is via a fiber optic interface. We present the design, fabrication details, and performance of this MeVVA, recently installed on the National Institute of Standards and Technology electron beam ion trap (EBIT)

  5. Long term behavior of trapped relativistic electrons and their correlation with solar wind speed

    SciTech Connect

    Belian, R.D.; Cayton, T.E.; Christensen, R.A.; Ingraham, J.C.; Reeves, G.D.

    1995-12-31

    We examine Los Alamos energetic electron data from 1979 through the present to show long term trends in the trapped relativistic electron populations at geosynchronous Earth orbit. Such populations are thought to be associated with high-speed solar wind structures typically present near solar minimum. We will show that high-energy electron fluxes, E > 1.4 MeV, displayed a solar-like cycle of about 10.5 years, but that the behavior is out of phase with the sunspot cycle. We will also compare relativistic electrons during the cycle with solar wind speed from the MIT plasma analyzers on IMP-8. It will be shown that relativistic electrons correlate well with high solar winds only during limited, short periods of time. We will also confirm the observation that the higher-energy electrons occur with a longer delay after the establishment of the high-speed solar wind. Comparison of our data with previously published data indicate that the higher the solar wind speed, the sooner the relativistic electrons occur.

  6. Finite Larmor radius effects on the coupled trapped electron and ion temperature gradient modes

    SciTech Connect

    Sandberg, I.; Isliker, H.; Pavlenko, V. P.

    2007-09-15

    The properties of the coupled trapped electron and toroidal ion temperature gradient modes are investigated using the standard reactive fluid model and taking rigorously into account the effects attributed to the ion polarization drift and to the drifts associated with the lowest-order finite ion Larmor radius effects. In the flat density regime, where the coupling between the modes is relatively weak, the properties of the unstable modes are slightly modified through these effects. For the peak density regions, where the coupling of the modes is rather strong, these second-order drifts determine the spectra of the unstable modes near the marginal conditions.

  7. Electron collisions in the trapped gyro-Landau fluid transport model

    NASA Astrophysics Data System (ADS)

    Staebler, G. M.; Kinsey, J. E.

    2010-12-01

    Accurately modeling electron collisions in the trapped gyro-Landau fluid (TGLF) equations has been a major challenge. Insights gained from numerically solving the gyrokinetic equation have lead to a significant improvement of the low order TGLF model. The theoretical motivation and verification of this model with the velocity-space gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] will be presented. The improvement in the fidelity of TGLF to GYRO is shown to also lead to better prediction of experimental temperature profiles by TGLF for a dedicated collision frequency scan.

  8. Electron collisions in the trapped gyro-Landau fluid transport model

    SciTech Connect

    Staebler, G. M.; Kinsey, J. E.

    2010-12-15

    Accurately modeling electron collisions in the trapped gyro-Landau fluid (TGLF) equations has been a major challenge. Insights gained from numerically solving the gyrokinetic equation have lead to a significant improvement of the low order TGLF model. The theoretical motivation and verification of this model with the velocity-space gyrokinetic code GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] will be presented. The improvement in the fidelity of TGLF to GYRO is shown to also lead to better prediction of experimental temperature profiles by TGLF for a dedicated collision frequency scan.

  9. Injection of metallic elements into an electron-beam ion trap using a Knudsen cell

    SciTech Connect

    Yamada, C.; Nagata, K.; Nakamura, N.; Ohtani, S.; Takahashi, S.; Tobiyama, T.; Tona, M.; Watanabe, H.; Yoshiyasu, N.; Sakurai, M.; Kavanagh, A. P.; Currell, F. J.

    2006-06-15

    A method of injecting metallic elements into an electron-beam ion trap (EBIT) is described. The method is advantageous over the conventional coaxial and pulsed injection methods in two ways: (a) complicated switching of injection and extraction beams can be avoided when extracting beams of highly charged ions from the EBIT and (b) a beam of stable intensity can be achieved. This method may be applicable to any metallic elements or metallic compounds that have vapor pressures of {approx}0.1 Pa at a temperature lower than 1900 deg. C. We have employed this method for the extraction of highly charged ions of Bi, Er, Fe, and Ho.

  10. Electron, hole and exciton self-trapping in germanium doped silica glass from DFT calculations with self-interactions correction

    SciTech Connect

    Du, Jincheng; Corrales, Louis R.; Tsemekhman, Kiril L.; Bylaska, Eric J.

    2007-02-01

    We performed density functional theory (DFT) calculations of electron, hole and exciton self-trapping in germanium doped silica glass to understand the refractive index change in these glasses induced by UV irradiation. The local structure relaxation and excess electron density distribution upon trapping of the above species were calculated. The results show that both trapped exciton and electron are highly localized on germanium ion and, to some extent, on its oxygen neighbors. Exciton self-trapping is found to lead to the formation of Ge E’ center and non-bridging hole center. Electron trapping changes the GeO4 tetrahedron structure into trigonal bi-pyramid with the majority of the excess electron density located along the equatorial line. Self-trapped hole is localized on bridging oxygen ions that are not coordinated to germanium atoms and leads to elongation of the Si-O bonds and change of the Si-O-Si bond angles. We did comparative study of standard DFT vs. DFT with a hybrid PBE0 exchange and correlation functional. The results show that the two methods give qualitatively similar relaxed structure and charge distribution for the electron and exciton trapping in germanium doped silica glass; however, only using the PBE0 functional reproduces the hole self-trapping. This research is supported by the Divisions of Chemical Science, Office of Basic Energy Sciences, US Department of Energy. This research was performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory (PNNL). The EMSL is funded by DOE’s Office of Biological and Environmental Research. The pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.